1
|
Ocular Mucus Membrane Pemphigoid: A Primary Versus Secondary Entity. Cornea 2023; 42:280-283. [PMID: 36036657 DOI: 10.1097/ico.0000000000003056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/20/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE The purpose of this review was to investigate the idea that inflammatory events of the conjunctiva and ocular surface may act as triggering events for the onset of ocular mucus membrane pemphigoid (oMMP). METHODS A retrospective chart review of patients with biopsy-proven oMMP and no systemic pemphigoid disease. The presence, or absence, of the following inflammatory conditions at the time of OMMP diagnosis was noted: significant eyelid disease, significant atopic eye disease, Stevens-Johnson syndrome, graft-versus-host disease, viral keratitis, sarcoidosis with ocular involvement, chemical burns, medicamentosa, Sjogren syndrome, systemic lupus erythematosus with ocular involvement, and epidemic keratoconjunctivitis. Response to immunomodulatory therapy (IMT) was also recorded. RESULTS A total of 779 patient records were identified. Conjunctival biopsy was present in 724 patients, with 646 (89.2%) being positive. One hundred thirty-nine patients (21.5%) with positive biopsies had extraocular pemphigoid disease and were excluded from further analysis. Of the 507 included patients, 154 (30.4%) had at least one of the specified inflammatory conditions present at the time of OMMP diagnosis. One hundred eighteen patients (23.3%) had only 1 such condition, 35 (6.9%) had 2, and 1 patient had 3. In patients with at least one of these conditions present, response to IMT was seen in 84.9% of patients with sufficient follow-up. CONCLUSIONS Our study suggests that oMMP may arise as a secondary pathology to acute inflammatory events or chronic inflammatory states of the conjunctiva and ocular surface.
Collapse
|
2
|
Ge S, Xu Q, Li H, Shao T, Zhong F, Leung PSC, Shuai Z. Differential immune response to xenobiotic-modified self-molecule in simple and connective tissue disease-associated primary biliary cholangitis. Liver Int 2022; 42:2204-2215. [PMID: 35791754 DOI: 10.1111/liv.15360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/09/2022] [Accepted: 07/03/2022] [Indexed: 02/12/2023]
Abstract
BACKGROUND AND AIMS Our previous studies demonstrated that 2-octynoic acid (2OA) might alter the conformational structure of the inner lipoic acid (LA) binding domain (ILD) in the E2 subunit of pyruvate dehydrogenase complex (PDC-E2), leading to the loss of immune tolerance in simple primary biliary cholangitis (S-PBC). Here, we further explore if this etiological mechanism also accounts for connective tissue disease-associated PBC (CTD-PBC). METHODS Intein-mediated protein ligation was used to prepare ILD, LA-ILD and 2OA-ILD, and their reactivity with serum samples from 124 S-PBC and 132 CTD-PBC patients was examined. The antibodies to LA, 2OA, LA-ILD and 2OA-ILD, the isotypes of antibodies to LA, 2OA and ILD, were comparatively detected between the two patient groups by enzyme-linked immunosorbent assay and immunoblotting. RESULTS Both the percentage and reactivity of antibody to 2OA in S-PBC were significantly higher than in CTD-PBC. Antibodies to 2OA and to LA between the two groups separately shared the same characteristics. Remarkably, coexistence of the antibodies to LA-ILD and to 2OA, and coexistence of the antibodies to LA and to 2OA in S-PBC were both significantly more frequent than in CTD-PBC, whereas the percentage of anti-LA antibody without anti-2OA antibody in S-PBC was markedly lower than in CTD-PBC. Moreover, the isotype of antibody to LA was predominantly IgG in CTD-PBC, whilst this isotype was mainly IgM in S-PBC. CONCLUSION Xenobiotic 2OA might play less important pathogenic role in CTD-PBC than in S-PBC, suggesting that different underlying mechanisms are involved in their immune intolerance to PDC-E2.
Collapse
Affiliation(s)
- Shangqing Ge
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qinyao Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haiyan Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tihong Shao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, California, USA
| | - Feng Zhong
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, California, USA
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| |
Collapse
|
3
|
Chan EKL. Anti-Ro52 Autoantibody Is Common in Systemic Autoimmune Rheumatic Diseases and Correlating with Worse Outcome when Associated with interstitial lung disease in Systemic Sclerosis and Autoimmune Myositis. Clin Rev Allergy Immunol 2022; 63:178-193. [PMID: 35040083 DOI: 10.1007/s12016-021-08911-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 01/13/2023]
Abstract
This review highlights the 30 plus years research progress since the discovery of autoantibody to Ro52/TRIM21 in patients with systemic lupus erythematosus (SLE) and Sjögren's syndrome (SjS). After the initial expression cloning of the Ro52 cDNA, it has taken many years to the current understanding in the interesting biological function of Ro52 as an E3 ubiquitin ligase and its role in innate immune clearance of intracellular IgG-bound complex. Early observations show that anti-Ro52, mostly associated with anti-SS-A/Ro60 and/or anti-SS-B/La, is commonly found in SLE (40-70%), SjS (70-90%), neonatal lupus erythematosus (NLE, 75-90%), and subacute cutaneous lupus erythematosus (50-60%). Anti-Ro52 has long been postulated to play a direct pathogenic role in congenital heart block in NLE as well as in the QT interval prolongation in some adults. The widespread availability of the anti-Ro52 assay has led to the detection of anti-Ro52 in other diseases including autoimmune hepatitis (20-40%), systemic sclerosis (10-30%), and autoimmune myositis (20-40%). More than ten studies have pointed to an association of anti-Ro52 with interstitial lung disease and, more importantly, correlating with poor outcome and worse survival. Other studies are implicating an interesting role for anti-Ro52 in the diagnosis of certain cancers. Future studies are needed to examine the mechanism in the pathogenesis of anti-Ro52 and carefully documenting its causal relationships in different disease conditions.
Collapse
Affiliation(s)
- Edward K L Chan
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL, 32610-0424, USA.
| |
Collapse
|
4
|
Gupta S, Li D, Ostrov DA, Nguyen CQ. Epitope Mapping of Pathogenic Autoantigens on Sjögren’s Syndrome-Susceptible Human Leukocyte Antigens Using In Silico Techniques. J Clin Med 2022; 11:jcm11061690. [PMID: 35330015 PMCID: PMC8953074 DOI: 10.3390/jcm11061690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/17/2022] Open
Abstract
Sjögren’s syndrome (SjS) is characterized by lymphocytic infiltration and the dysfunction of the salivary and lacrimal glands. The autoimmune response is driven by the effector T cells and their cytokines. The activation of the effector helper T cells is mediated by autoantigen presentation by human leukocyte antigen (HLA) class II molecules of antigen-presenting cells. Studies using familial aggregation, animal models, and genome-wide association demonstrate a significant genetic correlation between specific risk HLAs and SjS. One of the key HLA alleles is HLA-DRB1*0301; it is one of the most influential associations with primary SjS, having the highest odds ratio and occurrence across different ethnic groups. The specific autoantigens attributed to SjS remain elusive, especially the specific antigenic epitopes presented by HLA-DRB1*0301. This study applied a high throughput in silico mapping technique to identify antigenic epitopes of known SjS autoantigens presented by high-risk HLAs. Furthermore, we identified specific binding HLA-DRB1*0301 epitopes using structural modeling tools such as Immune Epitope Database and Analysis Resource IEDB, AutoDock Vina, and COOT. By deciphering the critical epitopes of autoantigens presented by HLA-DRB1*0301, we gain a better understanding of the origin of the antigens, determine the T cell receptor function, learn the mechanism of disease progression, and develop therapeutic applications.
Collapse
Affiliation(s)
- Shivai Gupta
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Danmeng Li
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (D.L.); (D.A.O.)
| | - David A. Ostrov
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (D.L.); (D.A.O.)
| | - Cuong Q. Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
- Center of Orphaned Autoimmune Diseases, University of Florida, Gainesville, FL 32611, USA
- Correspondence: ; Tel.: +1-352-294-4180; Fax: +1-352-392-9704
| |
Collapse
|
5
|
Reed JH. Transforming mutations in the development of pathogenic B cell clones and autoantibodies. Immunol Rev 2022; 307:101-115. [PMID: 35001403 DOI: 10.1111/imr.13064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 12/16/2022]
Abstract
Autoimmune diseases are characterized by serum autoantibodies, some of which are pathogenic, causing severe manifestations and organ injury. However, autoantibodies of the same antigenic reactivity are also present in the serum of asymptomatic people years before they develop any clinical signs of autoimmunity. Autoantibodies can arise during multiple stages of B cell development, and various genetic and environmental factors drive their production. However, what drives the development of pathogenic autoantibodies is poorly understood. Advances in single-cell technology have enabled the deep analysis of rare B cell clones producing pathogenic autoantibodies responsible for vasculitis in patients with primary Sjögren's syndrome complicated by mixed cryoglobulinaemia. These findings demonstrated a cascade of genetic events involving stereotypic immunoglobulin V(D)J recombination and transforming somatic mutations in lymphoma genes and V(D)J regions that disrupted antibody quality control mechanisms and decreased autoantibody solubility. Most studies consider V(D)J mutations that enhance autoantibody affinity to drive pathology; however, V(D)J mutations that increase autoantibody propensity to form insoluble complexes could be a major contributor to autoantibody pathogenicity. Defining the molecular characteristics of pathogenic autoantibodies and failed tolerance checkpoints driving their formation will improve prognostication, enabling early treatment to prevent escalating organ damage and B cell malignancy.
Collapse
Affiliation(s)
- Joanne H Reed
- Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Anti-TROVE2 Antibody Determined by Immune-Related Array May Serve as a Predictive Marker for Adalimumab Immunogenicity and Effectiveness in RA. J Immunol Res 2021; 2021:6656121. [PMID: 33763493 PMCID: PMC7963899 DOI: 10.1155/2021/6656121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 11/18/2022] Open
Abstract
Anti-drug antibody (ADAb) development is associated with secondary therapeutic failure in biologic-treated rheumatoid arthritis (RA) patients. With a treat-to-target goal, we aimed to identify biomarkers for predicting ADAb development and therapeutic response in adalimumab-treated patients. Three independent cohorts were enrolled. In Cohort-1, 24 plasma samples (6 ADAb-positive and 6 ADAb-negative patients at baseline and week 24 of adalimumab therapy, respectively) were assayed with immune-related microarray containing 1,636 correctly folded functional proteins. Next, we executed statistically powered autoantibody profiling analysis of 50 samples in Cohort-2 (24 ADAb-positive and 26 ADAb-negative patients). Subsequently, immunofluorescence assay was performed on 48 samples in Cohort-3 to correlate with ADAb titers and drug levels. The biomarkers were identified for predicting ADAb development and therapeutic response using the immune-related microarray and machine learning approach. ADAb-positive patients had lower drug levels at week 24 (median = 0.024 μg/ml) compared with ADAb-negative patients (median = 6.38 μg/ml, p < 0.001). ROC analysis based on the ADAb status revealed the top 20 autoantibodies with AUC ≥ 0.7 in differentiating both groups in Cohort-1. Analysis of Cohort-2 dataset identified a panel of 8 biomarkers (TROVE2, SSB, NDE1, ZHX2, SH3GL1, CARD9, PTPN20, and KLHL12) with 80.6% specificity, 77.4% sensitivity, and 79.0% accuracy in discriminating poor from EULAR responders. Immunofluorescence assay validated that anti-TROVE2 antibody could highly predict ADAb development and poor EULAR response (AUC 0.79 and 0.89, respectively). Multivariate regression analysis proved anti-TROVE2 antibody to be an independent predictor for developing ADAb. Immune-related protein microarray and replication analysis identified anti-TROVE2 antibody as a useful biomarker for predicting ADAb development and therapeutic response in adalimumab-treated patients.
Collapse
|
7
|
Gkoutzourelas A, Liaskos C, Mytilinaiou MG, Simopoulou T, Katsiari C, Tsirogianni A, Daoussis D, Scheper T, Meyer W, Bogdanos DP, Sakkas LI. Anti-Ro60 Seropositivity Determines Anti-Ro52 Epitope Mapping in Patients With Systemic Sclerosis. Front Immunol 2018; 9:2835. [PMID: 30581434 PMCID: PMC6293197 DOI: 10.3389/fimmu.2018.02835] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022] Open
Abstract
Epitope mapping of anti-Ro52 antibodies (Abs) has been extensively studied in patients with Sjögren's syndrome (SjS) and systemic lupus erythematosus (SLE). Comprehensive epitope mapping in systemic sclerosis (SSc), where anti-Ro52 antibodies are also frequently detected, has not been performed. The aim of the present study was to fully characterize Ro52 epitopes in anti-Ro52-positive SSc using Ro52 fragments spanning the full antigen. Further analysis was made according to anti-Ro60 status. Epitope mapping was performed in 43 anti-Ro52-positive SSc patients. Seventy eight anti-Ro52-positive pathological controls, including 20 patients with SjS, 28 patients with SLE, 15 patients with dermatomyositis (DM), and 15 patients with primary biliary cholangitis (PBC), and 20 anti-Ro52-negative healthy individuals as normal controls were also tested. Five recombinant Ro52 fragments [Ro52-1 (aa 1-127), Ro52-2 (aa 125-268), Ro52-3 (aa 268-475), Ro52-4 (aa 57-180), and Ro52-5 (aa 181-320) were used to test reactivity by line-immunoassay and in house ELISA. Anti-Ro60 reactivity was tested by ELISA. All anti-Ro52 positive sera reacted with Ro52-2; none recognized Ro52-3. Antibodies against Ro52-1 were less frequently found in SSc than in SjS/SLE (11.6 vs. 41.7%, p = 0.001); and antibodies against Ro52-4 were less frequently found in SSc than in SjS/SLE (27.9 vs. 50%, p = 0.03). In SSc patients, reactivity against Ro52-1 was more frequent in anti-Ro52+/anti-Ro60+ than in anti-Ro52+/anti-Ro60-patients (33.3 vs. 0%, p = 0.003). In this comprehensive analysis of Ro52 epitope mapping in SSc, the coiled coil domain remains the predominant epitope on Ro52. Contrary to SjS and SLE, patients with SSc fail to identify epitopic regions within the N-terminus of the protein, especially if they lack con-current anti-Ro60 reactivity.
Collapse
Affiliation(s)
- Athanasios Gkoutzourelas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christos Liaskos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Maria G. Mytilinaiou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Theodora Simopoulou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christina Katsiari
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Alexandra Tsirogianni
- Department of Immunology-Histocompatibility, Evangelismos General Hospital, Athens, Greece
| | - Dimitrios Daoussis
- Department of Rheumatology, Patras University Hospital, Faculty of Medicine, University of Patras Medical School, Patras, Greece
| | - Thomas Scheper
- Institute of Immunology Affiliated to Euroimmun AG, Lübeck, Germany
| | - Wolfgang Meyer
- Institute of Immunology Affiliated to Euroimmun AG, Lübeck, Germany
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Lazaros I. Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
8
|
Soloviova K, Puliaiev M, Puliaev R, Puliaeva I, Via CS. Both perforin and FasL are required for optimal CD8 T cell control of autoreactive B cells and autoantibody production in parent-into-F1 lupus mice. Clin Immunol 2018; 194:34-42. [PMID: 29940333 PMCID: PMC6089648 DOI: 10.1016/j.clim.2018.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/29/2022]
Abstract
To test the relative roles of perforin (pfp) vs. FasL in CTL control of autoreactive B cell expansion, we used the parent-into-F1 model of murine graft-vs.-host disease in which donor CD8 CTL prevent lupus like disease by eliminating activated autoreactive B cells. F1 mice receiving either pfp or FasL defective donor T cells exhibited an intermediate short-term phenotype. Pairing of purified normal CD4 T cells with either pfp or FasL defective CD8 T cell subsets resulted in impaired host B cell elimination and mild lupus like disease that was roughly equivalent in the two experimental groups. Thus, in addition to major roles in tumor and intracellular pathogen control, pfp mediated CD8 CTL killing plays a significant role in controlling autoreactive B cell expansion and lupus downregulation that is comparable to that mediated by FasL killing. Importantly, both pathways are required for optimal elimination of activated autoreactive B cells.
Collapse
Affiliation(s)
- Kateryna Soloviova
- Pathology Department, Uniformed Services University of Health Sciences, Bethesda, MD 20815, United States
| | - Maksym Puliaiev
- Pathology Department, Uniformed Services University of Health Sciences, Bethesda, MD 20815, United States
| | - Roman Puliaev
- Pathology Department, Uniformed Services University of Health Sciences, Bethesda, MD 20815, United States
| | - Irina Puliaeva
- Pathology Department, Uniformed Services University of Health Sciences, Bethesda, MD 20815, United States
| | - Charles S Via
- Pathology Department, Uniformed Services University of Health Sciences, Bethesda, MD 20815, United States.
| |
Collapse
|
9
|
Didona D, Di Zenzo G. Humoral Epitope Spreading in Autoimmune Bullous Diseases. Front Immunol 2018; 9:779. [PMID: 29719538 PMCID: PMC5913575 DOI: 10.3389/fimmu.2018.00779] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/28/2018] [Indexed: 12/15/2022] Open
Abstract
Autoimmune blistering diseases are characterized by autoantibodies against structural adhesion proteins of the skin and mucous membranes. Extensive characterization of their autoantibody targets has improved understanding of pathogenesis and laid the basis for the study of antigens/epitopes diversification, a process termed epitope spreading (ES). In this review, we have reported and discussed ES phenomena in autoimmune bullous diseases and underlined their functional role in disease pathogenesis. A functional ES has been proposed: (1) in bullous pemphigoid patients and correlates with the initial phase of the disease, (2) in pemphigus vulgaris patients with mucosal involvement during the clinical transition to a mucocutaneous form, (3) in endemic pemphigus foliaceus, underlining its role in disease pathogenesis, and (4) in numerous cases of disease transition associated with an intermolecular diversification of immune response. All these findings could give useful information to better understand autoimmune disease pathogenesis and to design antigen/epitope specific therapeutic approaches.
Collapse
Affiliation(s)
- Dario Didona
- Clinic for Dermatology and Allergology, University Hospital Marburg, University of Marburg, Marburg, Germany
| | - Giovanni Di Zenzo
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell’Immacolata (IDI)-IRCCS, Rome, Italy
| |
Collapse
|
10
|
Arora P, Malik M, Sachdeva R, Saxena L, Das J, Ramachandran VG, Pal R. Innate and humoral recognition of the products of cell death: differential antigenicity and immunogenicity in lupus. Clin Exp Immunol 2016; 187:353-368. [PMID: 27783388 DOI: 10.1111/cei.12889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2016] [Indexed: 10/20/2022] Open
Abstract
While apoptotic debris is believed to constitute the original antigenic insult in lupus (which is characterized by a time-dependent diversification of autoreactivity), whether such debris and autoantibodies specifically recognizing its constituents mediate differential effects on innate and humoral responses in lupus-prone mice is currently unknown. Apoptotic blebs (as opposed to cellular lysate) enhanced preferentially the maturation of dendritic cells (DCs) from bone marrow precursors drawn from lupus-prone mice. Murine, somatically mutated, apoptotic cell-reactive immunoglobulin (Ig)G monoclonal antibodies demonstrated enhanced recognition of DCs and also displayed a prominent lupus strain-specific bias in mediating DC maturation. Further, immunization of such antibodies specifically in lupus-prone mice resulted in widespread humoral autoreactivity; hypergammaglobulinaemia (a hallmark of systemic autoimmunity) was observed, accompanied by enhanced antibody titres to cellular moieties. Induced antibodies recognized antigens distinct from those recognized by the antibodies employed for immunization; in particular, nephritis-associated anti-double stranded (ds) DNA antibodies and neonatal lupus-associated anti-Ro60 antibodies were elicited by a non-dsDNA, non-Ro60 reactive antibody, and Sm was a favoured target. Further, only in lupus-prone mice did such immunization enhance the kinetics of humoral anti-self responses, resulting in the advanced onset of glomerulosclerosis. These studies reveal that preferential innate and humoral recognition of the products of cell death in a lupus milieu influence the indices associated with autoimmune pathology.
Collapse
Affiliation(s)
- P Arora
- National Institute of Immunology, New Delhi, India
| | - M Malik
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - R Sachdeva
- National Institute of Immunology, New Delhi, India
| | - L Saxena
- National Institute of Immunology, New Delhi, India.,Department of Respiratory Virology, V.P. Chest Institute, University of Delhi, Delhi, India
| | - J Das
- National Institute of Immunology, New Delhi, India.,Dr Reddy's Laboratories, Biologics Development Center, Bachupalli, Hyderabad, Andhra Pradesh, India
| | - V G Ramachandran
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - R Pal
- National Institute of Immunology, New Delhi, India
| |
Collapse
|
11
|
Yaciuk JC, Pan Y, Schwarz K, Pan ZJ, Maier-Moore JS, Kosanke SD, Lawrence C, Farris AD. Defective selection of thymic regulatory T cells accompanies autoimmunity and pulmonary infiltrates in Tcra-deficient mice double transgenic for human La/Sjögren's syndrome-B and human La-specific TCR. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:1514-22. [PMID: 25582858 PMCID: PMC4323622 DOI: 10.4049/jimmunol.1400319] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A human La/Sjögren's syndrome-B (hLa)-specific TCR/hLa neo-self-Ag double-transgenic (Tg) mouse model was developed and used to investigate cellular tolerance and autoimmunity to the ubiquitous RNA-binding La Ag often targeted in systemic lupus erythematosus and Sjögren's syndrome. Extensive thymic clonal deletion of CD4(+) T cells occurred in H-2(k/k) double-Tg mice presenting high levels of the I-E(k)-restricted hLa T cell epitope. In contrast, deletion was less extensive in H-2(k/b) double-Tg mice presenting lower levels of the epitope, and some surviving thymocytes were positively selected as thymic regulatory T cells (tTreg). These mice remained serologically tolerant to hLa and healthy. H-2(k/b) double-Tg mice deficient of all endogenous Tcra genes, a deficiency known to impair Treg development and function, produced IgG anti-hLa autoantibodies and displayed defective tTreg development. These autoimmune mice had interstitial lung disease characterized by lymphocytic aggregates containing Tg T cells with an activated, effector memory phenotype. Salivary gland infiltrates were notably absent. Thus, expression of nuclear hLa Ag induces thymic clonal deletion and tTreg selection, and lymphocytic infiltration of the lung is a consequence of La-specific CD4(+) T cell autoimmunity.
Collapse
Affiliation(s)
- Jane C Yaciuk
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Yujun Pan
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Karen Schwarz
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Zi-Jian Pan
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Jacen S Maier-Moore
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Stanley D Kosanke
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Christina Lawrence
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - A Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| |
Collapse
|
12
|
Nocturne G, Mariette X. Advances in understanding the pathogenesis of primary Sjögren's syndrome. Nat Rev Rheumatol 2013; 9:544-56. [PMID: 23857130 DOI: 10.1038/nrrheum.2013.110] [Citation(s) in RCA: 286] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Primary Sjögren's syndrome (pSS) is a prototypic autoimmune disorder, management of which has long suffered from a lack of knowledge of the underlying pathophysiological mechanisms; however, over the past decade major advances have been made in understanding the pathogenesis of pSS. The innate immune system has been demonstrated to have an important role at the early stage of the disease, notably through activation of the type I interferon (IFN) system. In addition, mechanisms of B-cell activation in pSS have become clearer, particularly owing to recognition of the involvement of the TNF family cytokine B-cell-activating factor, production of which is highly dependent on expression of type I and type II IFNs. Moreover, key inroads have been made in understanding lymphomagenesis, the most severe complication of pSS. IL-12 production and subsequent T-cell activation, mainly IFN-γ-secreting type 1 T-helper cells, have also been implicated in disease pathogenesis. Furthermore, evidence implicates neuroendocrine system dysfunction in pSS pathogenesis. These pathophysiological advances open new avenues of investigation. Indeed, the increased understanding of pSS pathogenesis has already led to the development of promising novel therapeutic strategies. This article summarizes recent findings regarding the pathogenic mechanisms involved in pSS and their implications.
Collapse
Affiliation(s)
- Gaëtane Nocturne
- Service de Rhumatologie, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Sud, INSERM U1012, 78 rue du Général Leclerc, Le Kremlin Bicêtre, France
| | | |
Collapse
|
13
|
Chandrashekara S. The treatment strategies of autoimmune disease may need a different approach from conventional protocol: a review. Indian J Pharmacol 2013; 44:665-71. [PMID: 23248391 PMCID: PMC3523489 DOI: 10.4103/0253-7613.103235] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/25/2012] [Accepted: 09/01/2012] [Indexed: 12/19/2022] Open
Abstract
Autoimmune disease (AD) is one of the emerging noncommunicable diseases. Remission is a possibility in AD, but current treatment strategies are not able to achieve this. We have well-established protocols for infections, oncology, metabolic diseases, and transplantation which are often used as models for the management of AD. Studies and observations suggest that in contrast to diseases used as a role model, AD has wide variability, different causative and pathogenic process, which is highly dynamic, making the current treatment strategies to fall short of expected complete remission. In this brief review, it is attempted to highlight the current understanding of AD and the probable gaps in the treatment strategies. Few hypothetical suggestions to modify the treatment protocols are presented.
Collapse
Affiliation(s)
- S Chandrashekara
- Department of Immunology and Rheumatology, NHCL, Watertank Road, Basaweswarnagar, Bangalore, Karnataka, India
| |
Collapse
|
14
|
Clinical and pathological roles of Ro/SSA autoantibody system. Clin Dev Immunol 2012; 2012:606195. [PMID: 23304190 PMCID: PMC3523155 DOI: 10.1155/2012/606195] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/19/2012] [Indexed: 11/17/2022]
Abstract
Anti-Ro/SSA antibodies are among the most frequently detected autoantibodies against extractable nuclear antigens and have been associated with systemic lupus erythematosus (SLE) and Sjögren's syndrome (SS). Although the presence of these autoantibodies is one of the criteria for the diagnosis and classification of SS, they are also sometimes seen in other systemic autoimmune diseases. In the last few decades, the knowledge of the prevalence of anti-Ro/SSA antibodies in various autoimmune diseases and symptoms has been expanded, and the clinical importance of these antibodies is increasing. Nonetheless, the pathological role of the antibodies is still poorly understood. In this paper, we summarize the milestones of the anti-Ro/SSA autoantibody system and provide new insights into the association between the autoantibodies and the pathogenesis of autoimmune diseases.
Collapse
|
15
|
Salinas GF, Braza F, Brouard S, Tak PP, Baeten D. The role of B lymphocytes in the progression from autoimmunity to autoimmune disease. Clin Immunol 2012. [PMID: 23202542 DOI: 10.1016/j.clim.2012.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Autoimmunity, defined as the presence of autoreactive T and/or B lymphocytes in the periphery, is a frequent and probably even physiological condition. It is mainly caused by the fact that the central tolerance mechanisms, which are responsible for counter-selection of autoreactive lymphocytes, are not perfect and thus a limited number of these autoreactive cells can mature and enter the periphery. Nonetheless, autoreactive cells do not lead automatically to autoimmune disease as evidenced by a multitude of experimental and human data sets. Interestingly, the progression from autoimmunity to autoimmune disease is not only determined by the degree of central tolerance leakage and thus the amount of autoreactive lymphocytes in the periphery, but also by peripheral mechanism of activation and control of the autoreactive cells. In this review, we discuss the contribution of peripheral B lymphocytes in this process, ranging from activation of T cells and epitope spreading to control of the autoimmune process by regulatory mechanisms. We also discuss the parallels with the role of B cells in the induction and control of alloimmunity in the context of organ transplantation, as more precise knowledge of the pathogenic antigens and time of initiation of the immune response in allo- versus auto-immunity allows better dissection of the exact role of B cells. Since peripheral mechanisms may be easier to modulate than central tolerance, a more thorough understanding of the role of peripheral B cells in the progression from autoimmunity to autoimmune disease may open new avenues for treatment and prevention of autoimmune disorders.
Collapse
Affiliation(s)
- Gabriela Franco Salinas
- Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Kurien BT, Porter A, Dorri Y, Iqbal S, D'Souza A, Singh A, Asfa S, Cartellieri M, Mathias K, Matsumoto H, Bachmann M, Hensley K, Scofield RH. Degree of modification of Ro60 by the lipid peroxidation by-product 4-hydroxy-2-nonenal may differentially induce Sjögren syndrome or systemic lupus erythematosus in BALB/c mice. Free Radic Biol Med 2011; 50:1222-33. [PMID: 20946951 PMCID: PMC3591494 DOI: 10.1016/j.freeradbiomed.2010.10.687] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 08/04/2010] [Accepted: 10/05/2010] [Indexed: 01/10/2023]
Abstract
Our previous work showed that immunization of rabbits with 4-hydroxy-2-nonenal-modified Ro60 (HNE-Ro60) accelerates autoimmunity. We extended this model into mice, hypothesizing that the severity of autoimmunity would be dependent on the degree of HNE modification of Ro60. Five groups of BALB/c mice (10/group) were used. Group I was immunized with Ro60. Groups II to IV were immunized with Ro60 modified with 0.4 mM (low), 2 mM (medium), and 10 mM (high) HNE, respectively. Group V controls received Freund's adjuvant. A rapid abrogation of tolerance to Ro60/La antigens occurred in mice immunized with HNE-modified Ro60, especially in the low and medium HNE-Ro60 groups. Lymphocytic infiltration and significantly high decrement in salivary flow (37%) compared to controls was observed only in the high HNE-Ro60 group, suggesting induction of a Sjögren syndrome-like condition in this group. Anti-dsDNA occurred only in mice immunized with medium HNE-Ro60. This group did not have a significant decrement in salivary flow, suggesting induction of a systemic lupus erythematosus-like manifestation in this group. Significantly high antibodies to Ro60 were found in saliva of mice in the low and medium HNE-Ro60 and the Ro60 groups, as well as anti-HNE Ro60 in the low and medium HNE-Ro60 groups. Understanding the mechanism of this differential induction may help discriminate between these two autoimmune diseases.
Collapse
Affiliation(s)
- Biji T Kurien
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Current concepts: mouse models of Sjögren's syndrome. J Biomed Biotechnol 2010; 2011:549107. [PMID: 21253584 PMCID: PMC3018660 DOI: 10.1155/2011/549107] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 11/10/2010] [Indexed: 11/18/2022] Open
Abstract
Sjögren's syndrome (SjS) is a complex chronic autoimmune disease of unknown etiology which primarily targets the exocrine glands, resulting in eventual loss of secretory function. The disease can present as either primary SjS or secondary SjS, the latter of which occurs concomitantly with another autoimmune disease such as rheumatoid arthritis, systemic lupus erythematosus, scleroderma, or primary biliary cirrhosis. Current advancements in therapeutic prevention and treatment for SjS are impeded by lack of understanding in the pathophysiological and clinical progression of the disease. Development of appropriate mouse models for both primary and secondary SjS is needed in order to advance knowledge of this disease. This paper details important features, advantages, and pitfalls of current animal models of SjS, including spontaneous, transgenic, knockout, immunization, and transplantation chimera mouse models, and emphasizes the need for a better model in representing the human SjS phenotype.
Collapse
|
18
|
Implications of the parent-into-F1 model for human lupus pathogenesis: roles for cytotoxic T lymphocytes and viral pathogens. Curr Opin Rheumatol 2010; 22:493-8. [PMID: 20485174 DOI: 10.1097/bor.0b013e32833b0174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW The central role of CD4 T cells in lupus pathogenesis is well recognized; however, the mechanism by which CD4 T cells lose tolerance and promote humoral autoimmunity remains unclear. This review examines mechanisms elucidated in the parent-into-F1 model of lupus and their possible parallels in human lupus pathogenesis. RECENT FINDINGS In the parent-into-F1 model, lupus results from the transfer of normal, foreign reactive CD4 T cells targeted to intrinsically normal F1 B cells. Transfer of normal CD8 T cells prevents lupus, whereas transfer of CD8 T cells with killing defects does not but is correctable with additional in-vivo enhancement of CD8 cytotoxic T lymphocyte (CTL) function. The parent-into-F1 model has two major similarities to Epstein-Barr virus infection: CD4 T-cell-driven polyclonal B-cell hyperactivity and a critical dependence on CD8 CTL for elimination of activated B cells. These similarities are discussed in relation to human lupus pathogenesis. SUMMARY Work in the parent-into-F1 model supports the idea that lupus may result from defective CD8 T-cell function and that therapeutic enhancement of CD8 effectors with selective targeting to autoreactive B cells may be beneficial. Despite strong evidence linking Epstein-Barr virus infection with human lupus, the exact nature of this link requires further study.
Collapse
|
19
|
Keech CL, Pang KC, McCluskey J, Chen W. Direct antigen presentation by DC shapes the functional CD8(+) T-cell repertoire against the nuclear self-antigen La-SSB. Eur J Immunol 2010; 40:330-8. [PMID: 19950171 DOI: 10.1002/eji.200939522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Controversy still surrounds the importance of cross-presentation versus endogenous or direct presentation of MHC-I restricted Ag in CD8(+) T-cell (T(CD8+)) immunity. It is even less clear what relative role these pathways play in shaping the T-cell repertoire specific for ubiquitous self-antigens, especially in cases where both Ag presentation pathways could potentially be involved. Here we provide evidence that a T(CD8+) repertoire specific for a determinant from the nuclear autoantigen La-SSB is largely shaped by direct presentation. In this system, mouse T(CD8+) reactive to a xenogeneic human La (hLa(51-58)) K(b) peptide did not recognize directly presented peptide on either spleen cells from hLa-Tg mice or hLa transfected syngeneic cells. Interestingly, the same T(CD8+) were activated by in vivo challenge with allogeneic APC expressing either the Tg hLa or loaded with intact recombinant hLa protein, indicating functional cross-presentation of the hLa(51-58). However, in irradiated bone marrow chimeric mice, DC expressing Tg hLa, but not WT DC that matured in hLa-Tg mice, constitutively presented the hLa(51-58) to T(CD8+). These data demonstrate that although both the direct- and cross-presentation pathways are potentially operative in revealing hLa(51-58) to T(CD8+), the T(CD8+) repertoire to this determinant is shaped quantitatively according to the efficiency of Ag presentation.
Collapse
Affiliation(s)
- Catherine L Keech
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
20
|
Reed JH, Giannakopoulos B, Jackson MW, Krilis SA, Gordon TP. Ro 60 functions as a receptor for beta(2)-glycoprotein I on apoptotic cells. ACTA ACUST UNITED AC 2009; 60:860-9. [PMID: 19248095 DOI: 10.1002/art.24361] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The autoantigens 60-kd Ro/SSA (Ro 60) and beta(2)-glycoprotein I (beta(2)GPI) are both displayed on the surface membrane of apoptotic cells. Epitope-spreading experiments have suggested that these autoantigens may be present as a complex on the apoptotic cell surface. This study was undertaken to investigate whether beta(2)GPI interacts with Ro 60 on apoptotic cells and alters the binding of anti-Ro 60 IgG. METHODS The interaction between soluble recombinant Ro 60 fragments and beta(2)GPI was investigated in vitro by direct and saturation binding assays using native human beta(2)GPI and recombinant domain deletion mutants. Binding of beta(2)GPI to early and late apoptotic cells was assessed by multiparameter flow cytometry, and specificity of binding was determined by competitive inhibition with soluble recombinant Ro 60 and anti-Ro 60 IgG. RESULTS The Ro 60 fragment expressing a surface-exposed epitope (apotope) bound with high affinity (K(d) = approximately 15 nM) to domain V of beta(2)GPI in vitro. Beta(2)-glycoprotein I bound to the surface of apoptotic cells in a dose-dependent manner and was blocked by the Ro 60 apotope fragment. In reciprocal competitive inhibition studies, beta(2)GPI blocked the binding of anti-Ro 60 autoantibodies to apoptotic cells in a dose-dependent manner, and anti-Ro 60 IgG inhibited the binding of beta(2)GPI. Moreover, beta(2)GPI showed a 2-fold increase in binding to apoptotic cells that overexpress Ro 60 on the surface. CONCLUSION These results demonstrate that Ro 60 functions as a novel receptor for beta(2)GPI on the surface of apoptotic cells. The formation of Ro 60-beta(2)GPI complexes may protect against anti-Ro 60 autoantibody-mediated tissue injury.
Collapse
Affiliation(s)
- Joanne H Reed
- Flinders University of South Australia, Adelaide, and Flinders Medical Centre, Bedford Park, South Australia, Australia
| | | | | | | | | |
Collapse
|
21
|
A common repertoire of autoantibodies is shared by cancer and autoimmune disease patients: Inflammation in their induction and impact on tumor growth. Cancer Lett 2008; 281:8-23. [PMID: 19091462 DOI: 10.1016/j.canlet.2008.11.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 09/16/2008] [Accepted: 11/07/2008] [Indexed: 01/09/2023]
Abstract
The repertoire of autoantibodies found in cancer patients partly overlaps with that typical of patients with autoimmune diseases. Beside the biochemical and immunological properties of the target antigens and their altered expression in tumor tissues, the intratumoral inflammatory context can play a key role in the induction of autoimmune disease-associated autoantibodies in cancer patients. Furthermore, the impact of such antibodies on cancer growth and progression can be deeply influenced by the interplay with inflammation. The characterization of the spontaneous humoral responses occurring in cancer patients, of the mechanisms that trigger and sustain the autoantibody response and of the biological effects of such autoantibodies may help the rational design of anti-cancer immunotherapeutic protocols.
Collapse
|
22
|
Abstract
Sjögren's syndrome is an autoimmune, chronic inflammatory disease characterized by focal mononuclear cell infiltration of exocrine tissues, accompanied by loss of secretory function. The pathogenesis of autoimmune diseases is complex and, therefore, difficult to study in vitro. As of today, the role of initiating factors remains obscure, clinical symptoms develop late, and there are no tests for early diagnosis of SS. Hence, the disease is difficult to detect and treat. Animal models may provide insights into the identification of target antigens, narrowing the relevant pathological immune mechanisms, and to study the evolution of tissue pathology. This review summarizes current knowledge on murine strains, both spontaneous and induced models, used to study Sjögren's syndrome. Special attention is paid to the characteristics of different strains regarding their properties to mimic specific aspects or stages of the disease.
Collapse
Affiliation(s)
- Malin V Jonsson
- Broegelmann Research Laboratory, The Gade Institute, University of Bergen, Armauer Hansen Building, 5021, Bergen, Norway
| | | | | |
Collapse
|
23
|
Poole BD, Scofield RH, Harley JB, James JA. Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus. Autoimmunity 2008; 39:63-70. [PMID: 16455583 DOI: 10.1080/08916930500484849] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Systemic lupus erythematosus (SLE or lupus) is a complex disease with a multifactoral etiology, with genetic, hormonal, and environmental influences. Molecular mimicry as a result of viral infection may contribute to the development of lupus. The pattern of autoantibody development in lupus is consistent with initiation through molecular mimicry, as the initial autoantigenic epitopes that have been observed are limited and cross-reactive with viral proteins. Autoantibody specificity may then later diversify to other autoantigens through B-cell epitope spreading. Epstein-Barr virus (EBV) is an excellent candidate to be involved in molecular mimicry in lupus. EBV infection has been associated with lupus through serological and DNA studies. Infection with EBV results in the production of the viral protein Epstein-Barr virus nuclear antigen-1 (EBNA-1), antibodies against which cross-react with lupus-associated autoantigens, including Ro, Sm B/B', and Sm D1, in lupus patients. The immune response against EBV, and EBNA-1 in particular, differs among lupus patients and healthy controls, with controls maintaining a limited humoral response and failing to produce long-standing cross-reactive antibodies. We hypothesize that the humoral immune response to EBNA-1 in susceptible individuals leads to the generation of cross-reactive antibodies. Through the process of epitope spreading, these cross-reactive antibodies target additional, non-cross reactive autoepitopes, spread to additional autoantigens, and become pathogenic, leading eventually to clinical lupus. This paper reviews some of the current literature supporting roles for EBV exposure and epitope spreading in SLE.
Collapse
Affiliation(s)
- Brian D Poole
- Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma, OK 73104, USA
| | | | | | | |
Collapse
|
24
|
Dudek NL, Maier S, Chen ZJ, Mudd PA, Mannering SI, Jackson DC, Zeng W, Keech CL, Hamlin K, Pan ZJ, Davis-Schwarz K, Workman-Azbill J, Bachmann M, McCluskey J, Farris AD. T cell epitopes of the La/SSB autoantigen in humanized transgenic mice expressing the HLA class II haplotype DRB1*0301/DQB1*0201. ARTHRITIS AND RHEUMATISM 2007; 56:3387-98. [PMID: 17907193 DOI: 10.1002/art.22870] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE T cells are implicated in the production of anti-La/SSB and anti-Ro/SSA autoantibodies commonly associated with the DR3/DQ2 haplotype in systemic lupus erythematosus and Sjögren's syndrome. This study was undertaken to investigate the DR3/DQ2-restricted T cell response to wild-type human La (hLa) and a truncated form of mutant La. METHODS Humanized transgenic mice expressing HLA-DRB1*0301/DQB1*0201 (DR3/DQ2) were immunized with recombinant antigen and examined for development of autoantibodies and T cell proliferation against overlapping peptides spanning the La autoantigen. HLA restriction and peptide binding of identified T cell epitopes to DR3 or DQ2 were determined using blocking monoclonal antibodies and a direct binding assay. RESULTS DR3/DQ2-transgenic mice generated an unusually rapid class-switched humoral response to hLa with characteristic spreading to Ro 52 and Ro 60 proteins following hLa protein immunization. Seven T cell determinants in hLa were restricted to the HLA-DR3/DQ2 haplotype. Six epitopes tested were restricted to HLA-DR and bound DR3 with semiconserved DR3 binding motifs. No DQ restriction of these epitopes was demonstrable despite efficient DQ binding activity in some cases. No neo-T cell epitopes were identified in mutant La; however, T cells primed with mutant La exhibited a striking increase in proliferation to the epitope hLa(151-168) compared with T cells primed with hLa. CONCLUSION Multiple DR3-restricted epitopes of hLa have been identified. These findings suggest that truncation of La produced by somatic mutation or possibly granzyme B-mediated cleavage alters the immunodominance hierarchy of T cell responsiveness to hLa and may be a factor in the initiation or maintenance of anti-La autoimmunity.
Collapse
Affiliation(s)
- Nadine L Dudek
- Bio21 Molecular Science and Biotechnology Institute, and University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Reed JH, Neufing PJ, Jackson MW, Clancy RM, Macardle PJ, Buyon JP, Gordon TP. Different temporal expression of immunodominant Ro60/60 kDa-SSA and La/SSB apotopes. Clin Exp Immunol 2007; 148:153-60. [PMID: 17286801 PMCID: PMC1868853 DOI: 10.1111/j.1365-2249.2007.03331.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2007] [Indexed: 12/24/2022] Open
Abstract
Opsonization of apoptotic cardiocytes by maternal anti-Ro/SSA and anti-La/SSB antibodies contributes to tissue injury in the neonatal lupus syndrome. The objective of the current study was to quantify the surface membrane expression of Ro/La components during different phases of apoptosis and map the Ro/La apotopes (epitopes expressed on apoptotic cells) bound by cognate antibodies. Multi-parameter flow cytometry was used to define early and late apoptotic populations and their respective binding by monospecific anti-Ro and anti-La IgGs. Anti-Ro60 bound specifically to early apoptotic Jurkat cells and remained accessible on the cell surface throughout early and late apoptosis. In contrast, anti-La bound exclusively to late apoptotic cells in experiments controlled for non-specific membrane leakage of IgG. Ro52 was not accessible for antibody binding on either apoptotic population. The immunodominant NH2-terminal and RNA recognition motif (RRM) epitopes of La were expressed as apotopes on late apoptotic cells, confirming recent in vivo findings. An immunodominant internal epitope of Ro60 that contains the RRM, and is recognized by a majority of sera from mothers of children with congenital heart block (CHB) and patients with primary Sjögren's syndrome, was also accessible as an apotope on early apoptotic cells. The distinct temporal expression of the immunodominant Ro60 and La apotopes indicates that these intracellular autoantigens translocate independently to the cell surface, and supports a model in which maternal antibody populations against both Ro60 and La apotopes act in an additive fashion to increase the risk of tissue damage in CHB.
Collapse
Affiliation(s)
- J H Reed
- Department of Immunology, Allergy and Arthritis, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
26
|
Sciascia SA, Robson K, Zhu L, Garland M, Grabosch S, Kelamis J, Messamore W, Bradley T, Sourk A, Westberg L, Goodnight W, Tongson K, Holloway N, Wardak Z, Sudyka M, Masrani S, Chintalapati S, Cagaanan M, Brown JC, Stetler DA. Immunization of nonautoimmune mice with DNA binding domains of the largest subunit of RNA polymerase I results in production of anti-dsDNA and anti-Sm/RNP antibodies. Autoimmunity 2007; 40:38-47. [PMID: 17364496 DOI: 10.1080/08916930601185550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Antibodies against the N-terminal (NT) but not the basic domain (BD), DNA binding regions of the largest subunit (S1) of RNA polymerase I (RNAPI) were detected in the sera of MRL-lpr/lpr lupus mice. Antibodies against both RNAPI(S1)-NT and -BD, as well as other systemic lupus erythematosus (SLE) autoantigens (La, ribosomal P proteins and Sm/RNP) were produced by rabbits immunized with anti-DNA antibodies that had been affinity purified from SLE patients. Immunization of nonautoimmune mice (Balb/c) with RNAPI(S1)-NT, RNAPI(S1)-BD, or La in the form of GST fusion proteins, induced production of anti-double-stranded (ds) DNA and anti-Sm/RNP. GST-P1 did not induce an anti-dsDNA response in these mice. These results demonstrate that RNAPI(S1)-NT, RNAPI(S1)-BD and La can participate in an anti-autoantigen/anti-DNA antibody loop during an SLE-like autoimmune response.
Collapse
Affiliation(s)
- Sandra A Sciascia
- Department of Molecular Biosciences, University of Kansas. Lawrence, KS 66045, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Thrasyvoulides A, Liakata E, Lymberi P. Spreading of antibody reactivity to non-thyroid antigens during experimental immunization with human thyroglobulin. Clin Exp Immunol 2006; 147:120-7. [PMID: 17177971 PMCID: PMC1810443 DOI: 10.1111/j.1365-2249.2006.03246.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Intermolecular spreading of antibody reactivity has been implicated in the evolution of autoimmune disease. In this study, spreading of antibody reactivity to non-thyroid autoantigens after experimental immunization with thyroglobulin (Tg) was investigated. For this purpose, two rabbits were injected with human Tg six times (stages 1-6) every 3 weeks. Animals were also bled before priming. Antisera were tested by enzyme-linked immunosorbent assay (ELISA) for reactivity to several non-thyroid antigens: bovine serum albumin (BSA), native DNA (nDNA), human myosin, human globular (G) and filamentous (F) actin and porcine tubulin. Tg-immunized animals developed the following serological reactivity pattern: (a) high reactivity to myosin from stage 2 onward, (b) significant reactivity to F-actin, remaining high up to stage 6, (c) reactivity to BSA with a peak at stage 3, (d) a small increase of reactivity to G-actin at stage 3 and (e) no increase of reactivity to nDNA and tubulin. The study of affinity-purified anti-Tg antibodies and the use of competitive assays revealed that reactivity to F-actin was not due to cross-reaction with Tg. On the contrary, reactivity to myosin during the first stages of immunization was due to cross-reaction with Tg, while at stage 6 it became myosin-specific. Reactivity to BSA at stage 3 was also due to cross-reaction with Tg. We conclude that at least part of the induced anti-Tg antibodies may result from the expansion of B cell clones producing polyreactive natural autoantibodies, and polyreactivity of anti-Tg antibodies during the first stages of Tg-immunization may be responsible for the intermolecular spreading of antibody response.
Collapse
Affiliation(s)
- A Thrasyvoulides
- Laboratory of Immunology, Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | | | | |
Collapse
|
28
|
Balboni I, Chan SM, Kattah M, Tenenbaum JD, Butte AJ, Utz PJ. Multiplexed protein array platforms for analysis of autoimmune diseases. Annu Rev Immunol 2006; 24:391-418. [PMID: 16551254 DOI: 10.1146/annurev.immunol.24.021605.090709] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several proteomics platforms have emerged in the past decade that show great promise for filling in the many gaps that remain from earlier studies of the genome and from the sequencing of the human genome itself. This review describes applications of proteomics technologies to the study of autoimmune diseases. We focus largely on biased technology platforms that are capable of analyzing a large panel of known analytes, as opposed to techniques such as two-dimensional gel electrophoresis (2DIGE) or mass spectroscopy that represent unbiased approaches (as reviewed in 1). At present, the main analytes that can be systematically studied in autoimmunity include autoantibodies, cytokines and chemokines, components of signaling pathways, and cell-surface receptors. We review the most commonly used platforms for such studies, citing important discoveries and limitations that exist. We conclude by reviewing advances in biomedical informatics that will eventually allow the human proteome to be deciphered.
Collapse
Affiliation(s)
- Imelda Balboni
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
29
|
Scofield RH, Asfa S, Obeso D, Jonsson R, Kurien BT. Immunization with short peptides from the 60-kDa Ro antigen recapitulates the serological and pathological findings as well as the salivary gland dysfunction of Sjogren's syndrome. THE JOURNAL OF IMMUNOLOGY 2006; 175:8409-14. [PMID: 16339583 DOI: 10.4049/jimmunol.175.12.8409] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sjögren's syndrome is a poorly understood autoimmune inflammatory illness that affects the salivary and lacrimal glands as well as other organ systems. We undertook the present study to determine whether mice immunized with short peptides from the 60-kDa Ro (or SSA) Ag, which is a common target of the autoimmunity of Sjögren's syndrome, develop an illness similar to Sjögren's syndrome. BALB/c mice were immunized with one of two short peptides from 60-kDa Ro that are know to induce epitope spreading. The animals were analyzed for the presence of anti-Ro and anti-La (or SSB) in the sera by immunoblot and ELISA. Salivary glands were collected and examined by histology after H&E staining. Salivary lymphocytes were purified and studied for cell surface makers by fluorescence-activated cell sorting. Timed stimulated salivary flow was measured. As reported previously, BALB/c mice immunized with 60-kDa Ro peptides developed an immune response directed against the entire Ro/La ribonucleoprotein particle that was similar to that found in humans with lupus or Sjögren's syndrome. Functional studies showed a statistical decrease in salivary flow in immunized mice compared with controls. Furthermore, there were lymphocytic infiltrates in the salivary glands of immunized animals that were not present in controls. The infiltrates consisted of both CD4- and CD8+ T lymphocytes as well as B lymphocytes. BALB/c mice immunized with 60-kDa Ro peptides develop anti-Ro, salivary gland lymphocyte infiltrates, and salivary dysfunction that is highly reminiscent of human Sjögren's syndrome.
Collapse
Affiliation(s)
- R Hal Scofield
- Arthritis and Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | | | | | | | | |
Collapse
|
30
|
Rai G, Ray S, Shaw RE, Degrange PF, Mage RG, Newman BA. Models of systemic lupus erythematosus: development of autoimmunity following peptide immunizations of noninbred pedigreed rabbits. THE JOURNAL OF IMMUNOLOGY 2006; 176:660-7. [PMID: 16365462 DOI: 10.4049/jimmunol.176.1.660] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reported in this study are the initial results from studies to develop rabbit models of systemic lupus erythematosus (SLE) by immunizations using two distinct peptides on branched polylysine backbones (multiple Ag peptide)-peptides. Eleven rabbits received a peptide from the Sm B/B' spliceosomal complex previously shown to be immunogenic in rabbits, and 13 rabbits received a peptide from the rabbit N-methyl-d-aspartate receptor NR2b. All 24 animals in different generations of pedigreed, noninbred rabbits produced peptide-specific responses. Anti-nuclear autoantibody responses, including anti-dsDNA, were seen in 17 of 24 rabbits. To date, two rabbits have been observed to have seizure-like events and a third nystagmus. A model for eliciting development of SLE in genetically related yet heterogeneous rabbits may more closely resemble development of human SLE than do some models in inbred mice. Through selective breeding, it may also ultimately provide additional information about the genetics and etiology of SLE and serve as a model for assessing new treatment options.
Collapse
Affiliation(s)
- Geeta Rai
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
31
|
Gandhi R, Hussain E, Das J, Handa R, Pal R. Anti-idiotype-mediated epitope spreading and diminished phagocytosis by a human monoclonal antibody recognizing late-stage apoptotic cells. Cell Death Differ 2006; 13:1715-26. [PMID: 16470225 DOI: 10.1038/sj.cdd.4401866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Apoptotic cells are considered an important auto-antigenic source in diseases such as systemic lupus erythematosus (SLE). A human monoclonal antibody demonstrating exquisite specificity towards late-stage apoptotic cells was generated from an SLE patient. Polyreactive recognition of ribonucleoproteins Ro52 and Ro60 was observed. The antibody significantly diminished the phagocytosis of apoptotic cells and a concomitant decrease in transforming growth factor-beta (TGF-beta) secretion was observed. Light and heavy chain sequencing revealed the antibody to be in essentially germline configuration. Elicited anti-idiotypic antibodies bound distinct self-antigens and showed augmented reactivity towards apoptotic cells as well. Thus, near-germline encoded antibodies recognizing antigens externalized during the process of apoptosis can mediate a variety of potentially pathogenic effects; decreases in the phagocytic uptake of dying cells would constitute a disease-perpetuating event and stimulation of the idiotypic network could lead to intermolecular epitope spreading, increasing the range of molecular targets..
Collapse
Affiliation(s)
- R Gandhi
- Immunoendocrinology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | |
Collapse
|
32
|
Pal R, Deshmukh US, Ohyama Y, Fang Q, Kannapell CC, Gaskin F, Fu SM. Evidence for multiple shared antigenic determinants within Ro60 and other lupus-related ribonucleoprotein autoantigens in human autoimmune responses. THE JOURNAL OF IMMUNOLOGY 2006; 175:7669-77. [PMID: 16301677 DOI: 10.4049/jimmunol.175.11.7669] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ab responses directed against several ribonucleoprotein (RNP) Ags are a characteristic feature of systemic lupus erythematosus (SLE). Previous work in our laboratory using mouse model systems had revealed that both epitope spreading and inherent cross-reactivity between ribonucleoproteins contributes to the observed multiple specificities in autoimmune sera. We have now extended these studies to human autoimmune responses. Using purified polyclonal and mAbs derived from SLE patients, cross-reactivity between Ro60 and SmD was demonstrated. The cross-reactive epitope was mapped to nonhomologous regions on Ro60(481-505) and SmD(88-102). Five mAbs specifically recognized apoptotic cells, demonstrated variable levels of cross-reactivity toward other nonhomologous ribonucleoprotein targets and bound multiple, nonoverlapping and nonhomologous epitopes on Ro60. Our study demonstrates that cross-reactivity between frequently targeted autoantigens is an important aspect of human systemic autoimmune responses. The presence of multiple cross-reactive epitopes on Ro60 might be important for the generation of anti-Ro60 Ab in SLE patients and in normal individuals displaying no evidence of clinical disease.
Collapse
Affiliation(s)
- Rahul Pal
- The Specialized Center of Research on Systemic Lupus Erythematosus, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Neufing PJ, Clancy RM, Jackson MW, Tran HB, Buyon JP, Gordon TP. Exposure and binding of selected immunodominant La/SSB epitopes on human apoptotic cells. ARTHRITIS AND RHEUMATISM 2005; 52:3934-42. [PMID: 16320341 DOI: 10.1002/art.21486] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Opsonization of apoptotic cells by autoantibodies bound to surface membrane-translocated La/SSB antigens may initiate tissue damage in the setting of congenital heart block. By injecting pregnant mice with human anti-La antibodies, we previously demonstrated the formation of IgG-apoptotic cell complexes in the developing mouse fetus; however, the binding of anti-La antibodies to human-specific epitopes could not be addressed. Accordingly, the objective of the current study was to delineate the epitope specificity of human La antibodies that are exposed on the surface of apoptotic cells. METHODS We used fluorescence microscopy and flow cytometry to assess the binding of human anti-La antibodies affinity purified against immunodominant epitopes of La to human cells undergoing spontaneous apoptosis, in a murine xenograft model in vivo and in cultured human fetal cardiocytes rendered apoptotic in vitro, respectively. RESULTS Anti-La antibodies bound to immunodominant epitopes of La within the NH(2)-terminus and the RNA recognition motif (RRM) region of apoptotic human cells, in both xenografts and fetal cardiocytes. In contrast, human antibodies affinity purified against the COOH-terminal La epitope did not bind apoptotic cells in either model. This defines the topology of redistributed La during apoptosis, with surface exposure of the NH(2)-terminus and RRM regions. The potential importance of anti-La NH(2)-terminal and anti-La RRM specificity was confirmed by detection of this reactivity in mothers of children with congenital heart block. CONCLUSION These findings provide insight into both the molecular modification of the La autoantigen during apoptosis and the specificity of antibodies capable of binding to surface-exposed La. Subsequent formation of surface immune complexes may lead to tissue injury in patients with autoimmune diseases such as congenital heart block.
Collapse
Affiliation(s)
- Petra J Neufing
- Department of Immunology, Allergy and Arthritis, Flinders University, Adelaide, South Australia, Australia.
| | | | | | | | | | | |
Collapse
|
34
|
Uchida K, Akita Y, Matsuo K, Fujiwara S, Nakagawa A, Kazaoka Y, Hachiya H, Naganawa Y, Oh-iwa I, Ohura K, Saga S, Kawai T, Matsumoto Y, Shimozato K, Kozaki KI. Identification of specific autoantigens in Sjögren's syndrome by SEREX. Immunology 2005; 116:53-63. [PMID: 16108817 PMCID: PMC1802401 DOI: 10.1111/j.1365-2567.2005.02197.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We carried out SEREX (serological analysis of antigens by recombinant cDNA expression cloning) using sera from patients with Sjögren's syndrome (SjS) and investigated the frequencies of autoantibodies against autoantigens identified by SEREX in the sera of healthy individuals (HI) and patients with SjS, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). IFI16 and two kelch-like proteins, KLHL12 and KLHL7, were found to be novel autoantigens in SjS by SEREX. A markedly high frequency of anti-IFI16 autoantibodies was observed in the sera of SjS (SjS, 70%; RA, 13%; SLE, 33%; HI, 0%). Interestingly, all serum samples from SjS demonstrated immunoreactivity against one or both of IFI16 and SS-B/La. The presence of autoantibodies against KLHL12 and KLHL7 in the sera was significantly specific to SjS (23% and 17%, respectively), as they were not detected in RA, SLE or HI. Furthermore, we confirmed that transcripts of these autoantigens were expressed preferentially in the salivary glands and immuno-privileged testes. Our results suggest these autoantigens may be useful as serological markers for the clinical diagnosis of SjS and may play a crucial role as organ-specific autoantigens in the aetiopathogenesis of SjS. This study warranted clinical evaluations of autoantibodies against IFI16, KLHL12 and KLHL7 in combination with anti-SS-B/La autoantibodies.
Collapse
Affiliation(s)
- Kazuo Uchida
- Second Department of Oral and Maxillofacial Surgery, Aichi Gakuin University School of DentistryNagoya, Japan
| | - Yoichi Akita
- Department of Dental Material Science, Aichi Gakuin University School of DentistryNagoya, Japan
| | - Keitaro Matsuo
- Division of Epidemiology and Prevention, Aichi Cancer Center Research InstituteNagoya, Japan
| | - Shigeyoshi Fujiwara
- Department of Oral and Maxillofacial Surgery, Japanese Red Cross Nagoya First HospitalNagoya, Japan
| | - Atsuko Nakagawa
- Department of Pathology and Laboratory Medicine, National Children's Medical CenterTokyo, Japan
| | - Yoshiaki Kazaoka
- Department of Oral and Maxillofacial Surgery, Aichi Medical University School of MedicineNagakute, Japan
| | - Hiroshi Hachiya
- Department of Oral and Maxillofacial Surgery, Hekinan Citizen HospitalHekinan, Japan
| | - Yoshiyuki Naganawa
- Department of Oral and Maxillofacial Surgery, Ogaki Municipal HospitalOgaki, Japan
| | - Ichiro Oh-iwa
- Department of Oral and Maxillofacial Surgery, Japanese Red Cross Nagoya First HospitalNagoya, Japan
| | - Kiyoshi Ohura
- Department of Pharmacology, Osaka Dental UniversityHirakata, Japan
| | - Shinsuke Saga
- Department of Pathology, Aichi Medical University School of MedicineNagakute, Japan
| | - Tatsushi Kawai
- Department of Dental Material Science, Aichi Gakuin University School of DentistryNagoya, Japan
| | - Yoshinari Matsumoto
- Department of Dermatology, Aichi Medical University School of MedicineNagakute, Japan
| | - Kazuo Shimozato
- Second Department of Oral and Maxillofacial Surgery, Aichi Gakuin University School of DentistryNagoya, Japan
| | - Ken-ichi Kozaki
- Department of Pharmacology, Osaka Dental UniversityHirakata, Japan
| |
Collapse
|
35
|
Carl PL, Temple BRS, Cohen PL. Most nuclear systemic autoantigens are extremely disordered proteins: implications for the etiology of systemic autoimmunity. Arthritis Res Ther 2005; 7:R1360-74. [PMID: 16277689 PMCID: PMC1297582 DOI: 10.1186/ar1832] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 08/04/2005] [Accepted: 08/31/2005] [Indexed: 12/02/2022] Open
Abstract
Patients with systemic autoimmune diseases usually produce high levels of antibodies to self-antigens (autoantigens). The repertoire of common autoantigens is remarkably limited, yet no readily understandable shared thread links these apparently diverse proteins. Using computer prediction algorithms, we have found that most nuclear systemic autoantigens are predicted to contain long regions of extreme structural disorder. Such disordered regions would generally make poor B cell epitopes and are predicted to be under-represented as potential T cell epitopes. Consideration of the potential role of protein disorder may give novel insights into the possible role of molecular mimicry in the pathogenesis of autoimmunity. The recognition of extreme autoantigen protein disorder has led us to an explicit model of epitope spreading that explains many of the paradoxical aspects of autoimmunity - in particular, the difficulty in identifying autoantigen-specific helper T cells that might collaborate with the B cells activated in systemic autoimmunity. The model also explains the experimentally observed breakdown of major histocompatibility complex (MHC) class specificity in peptides associated with the MHC II proteins of activated autoimmune B cells, and sheds light on the selection of particular T cell epitopes in autoimmunity. Finally, the model helps to rationalize the relative rarity of clinically significant autoimmunity despite the prevalence of low specificity/low avidity autoantibodies in normal individuals.
Collapse
Affiliation(s)
- Philip L Carl
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brenda RS Temple
- R. L. Juliano Structural Bioinformatics Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Philip L Cohen
- Division of Rheumatology, University of Pennsylvania School of Medicine and Philadelphia VA Medical Center, Philadelphia, PA 19104, USA
| |
Collapse
|
36
|
Robertson J, Wu J, Arends J, Zhou C, McMahon J, Torres L, Lou YH. Activation of glomerular basement membrane-specific B cells in the renal draining lymph node after T cell-mediated glomerular injury. J Am Soc Nephrol 2005; 16:3256-63. [PMID: 16162812 DOI: 10.1681/asn.2005040421] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Linear binding of IgG to the glomerular basement membrane (GBM) is the hallmark of anti-GBM glomerulonephritis (GN). However, the precise mechanism by which diverse autoantibodies to GBM are induced in GN has not been determined. It was demonstrated previously that a single T cell epitope pCol(28-40) derived from collagen IV alpha3 chain not only induced severe GN in Wistar Kyoto rats but also triggered a diversified anti-GBM antibody response through "B cell epitope spreading." In this study, an expansion of T and B cells in the renal draining lymph node (RDLN) of diseased animals after glomerular injury was observed. RDLN was demonstrated to be the location of GBM-specific B cell activation. First, B cells from RDLN of pCol(28-40)-immunized rats produced in vitro anti-GBM antibodies and antinuclear antibodies. Second, B cells specific to the peptidic B cell epitope in pCol(28-40) were absent among expanding B cells in RDLN. Those findings provided a unique opportunity to track activation of diverse GBM-specific B cells in RDLN. Expression of B lymphocyte-induced maturation protein-1, which is involved in differentiation of plasma cells, in B cells of RDLN was detected and further elevated only after T cell-mediated prominent glomerular injury (day 19). This was supported by the fact that anti-GBM antibodies became detectable only after day 20. Those results suggest that T cell-mediated glomerular injury may trigger de novo internal immunization of autoantigens released from damaged GBM, which further leads to activation of a group of GBM-specific B cells in RDLN.
Collapse
Affiliation(s)
- Julie Robertson
- Department of Diagnostic Sciences, Dental Branch, University of Texas Health Science Center at Houston, 6516 M.D. Anderson Blvd, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Ferreira R, Barreto M, Santos E, Pereira C, Martins B, Andreia R, Crespo F, Viana JF, Vasconcelos C, Ferreira C, Vicente AM, Fesel C. Heritable factors shape natural human IgM reactivity to Ro60/SS-A and may predispose for SLE-associated IgG anti-Ro and anti-La autoantibody production. J Autoimmun 2005; 25:155-63. [PMID: 16006098 DOI: 10.1016/j.jaut.2005.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 05/24/2005] [Accepted: 05/25/2005] [Indexed: 12/22/2022]
Abstract
Systemic lupus erythematosus (SLE) is characterized by various IgG autoreactivities, among which anti-Ro/SS-A is particularly pathology-associated and early detectable. SLE also shows significant familial aggregation, but genetic factors are not well understood and remain controversial for disease-associated IgG. Here we report that IgM anti-Ro showed a uniquely high degree of heritability in a study of SLE-affected families. Unlike IgM anti-La or anti-dsDNA, IgM anti-Ro was also significantly correlated to IgG anti-Ro among SLE patients, as well as to IgG anti-La and anti-dsDNA. We conclude that largely genetically determined, thus natural IgM anti-Ro-bearing precursor B-cells, may be an important factor for class switching and determinant spreading in early phases of SLE pathogenesis. Furthermore, we found unexpected sex differences in isotype/specificity correlations among SLE-unaffected relatives and control subjects, which could help understand the strong gender bias associated with SLE. We propose that the study of such correlation structures may reveal characteristic spreading pathways relevant for human SLE.
Collapse
Affiliation(s)
- Ricardo Ferreira
- Instituto Gulbenkian de Ciência, Apartado 14, 2781-901 Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Deshmukh US, Bagavant H, Lewis J, Gaskin F, Fu SM. Epitope spreading within lupus-associated ribonucleoprotein antigens. Clin Immunol 2005; 117:112-20. [PMID: 16095971 DOI: 10.1016/j.clim.2005.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 07/07/2005] [Indexed: 12/11/2022]
Abstract
Autoantibodies reactive with several cellular antigens are present in the sera of patients with systemic lupus erythematosus. Polypeptides within the Ro-RNP complex and the snRNP complex are often targeted by these autoantibodies. One of the mechanisms responsible for their evolution is that of epitope spreading. Experimental animal model systems provide evidence for this. This review discusses the animal model systems of epitope spreading within these ribonucleoprotein antigens, the mechanisms of epitope spreading, and its relevance for disease pathogenesis.
Collapse
Affiliation(s)
- Umesh S Deshmukh
- Division of Rheumatology and Immunology, Specialized Center of Research on Systemic Lupus Erythematosus, Department of Internal Medicine, HSC Box 800412, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
39
|
Ramos-Casals M, Font J. Primary Sjögren's syndrome: current and emergent aetiopathogenic concepts. Rheumatology (Oxford) 2005; 44:1354-67. [PMID: 15956090 DOI: 10.1093/rheumatology/keh714] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- M Ramos-Casals
- Department of Autoimmune Diseases, Hospital Clínic, C/Villarroel, 170, 08036-Barcelona, Spain.
| | | |
Collapse
|
40
|
Triantafyllopoulou A, Moutsopoulos HM. Autoimmunity and Coxsackievirus Infection in Primary Sjögren's Syndrome. Ann N Y Acad Sci 2005; 1050:389-96. [PMID: 16014556 DOI: 10.1196/annals.1313.090] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Exocrine gland epithelial cells are the target of autoimmune pathology in primary Sjögren's syndrome (pSS). Their activated phenotype has incited the notion that they are infected by a virus. We recently presented evidence that coxsackieviruses may persistently infect the salivary glands of pSS patients. We hypothesize that coxsackieviruses may play a permissive role for the perpetuation and possibly the induction of autoimmune disease in pSS.
Collapse
Affiliation(s)
- Antigoni Triantafyllopoulou
- Department of Pathophysiology, National University of Athens Medical School, M. Asias 75, Goudi, Athens 11527, Greece
| | | |
Collapse
|
41
|
Kurien BT, Asfa S, Li C, Dorri Y, Jonsson R, Scofield RH. Induction of Oral Tolerance in Experimental Sjogren's Syndrome Autoimmunity. Scand J Immunol 2005; 61:418-25. [PMID: 15882433 DOI: 10.1111/j.1365-3083.2005.01593.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous studies have showed that immunization with peptides from Ro 60 results in Sjogren's syndrome (SS)-like condition in BALB/c mice. We hypothesized that oral feeding with Ro 60 peptide or Ro 60 would prevent the disease. Four groups (each consisting of 10) of BALB/c mice were used. Group I-III were immunized with Ro 274 peptide. Group IV mice were administered adjuvant only. Group II mice were fed orally with Ro 274 peptide and Group III with Ro 60 for 5 days before immunization. There was a significant reduction in the binding of sera from both Group II and Group III mice to most of the Ro multiple antigenic peptides bound by Group I mice. In Group III mice, salivary flow was maintained above that of the Group I mice (average: 117.5 versus 58.6 microl; t = 2.7; P = 0.02). Salivary infiltrates were drastically decreased in the Ro peptide or Ro 60-fed groups, compared to non-tolerized group. Two of eight mice in Group II and 3/6 mice in Group III had no infiltrates, whereas all eight mice studied in Group I had a significant number of infiltrates. Thus, epitope spreading was prevented, lymphocytic infiltration was blocked and saliva flow was restored by means of oral feeding of either Ro 274 or Ro 60 in this animal model of SS.
Collapse
Affiliation(s)
- B T Kurien
- Arthritis and Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
42
|
Andrade F, Casciola-Rosen LA, Rosen A. Generation of novel covalent RNA-protein complexes in cells by ultraviolet B irradiation: implications for autoimmunity. ARTHRITIS AND RHEUMATISM 2005; 52:1160-70. [PMID: 15818701 DOI: 10.1002/art.20992] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To determine whether ultraviolet B (UVB) irradiation induces novel modifications in autoantigens targeted during experimental photoinduced epidermal damage. METHODS To search for novel UVB-induced autoantigen modifications, lysates made from UVB-irradiated human keratinocytes or HeLa cells were immunoblotted using human autoantibodies that recognize ribonucleoprotein autoantigens. Novel autoantigen structures identified were further characterized using nucleases and RNA hybridization. RESULTS Human sera that recognize U1-70 kd (U1-70K) and La by immunoblotting also recognized multiple novel species when they were used to immunoblot lysates of UVB-irradiated keratinocytes or HeLa cells. These species were not present in control cells and were not observed when apoptosis was induced by Fas ligation or cytotoxic lymphocyte granule contents. Biochemical analysis using multiple assays revealed that these novel UVB-induced molecular species result from the covalent crosslinking between the U1 RNA and the hYRNA molecules with their associated proteins, including U1-70K, La, and likely components of the Sm particle. CONCLUSION These data demonstrate that UVB irradiation of live cells can directly induce covalent RNA-protein complexes, which are recognized by human autoantibodies. As previously described for other autoantigens, these covalent complexes of RNA and proteins may have important consequences in terms of antigen capture and processing.
Collapse
Affiliation(s)
- Felipe Andrade
- Instituto Nacional de Cs. Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| | | | | |
Collapse
|
43
|
Scofield RH, Kurien BT, Ganick S, McClain MT, Pye Q, James JA, Schneider RI, Broyles RH, Bachmann M, Hensley K. Modification of lupus-associated 60-kDa Ro protein with the lipid oxidation product 4-hydroxy-2-nonenal increases antigenicity and facilitates epitope spreading. Free Radic Biol Med 2005; 38:719-28. [PMID: 15721982 DOI: 10.1016/j.freeradbiomed.2004.11.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 09/04/2004] [Accepted: 11/01/2004] [Indexed: 12/11/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with autoantibodies as a near universal feature of the disease. The Ro ribonucleoprotein particle, composed of a 60-kDa protein noncovalently associated with human cytoplasmic RNA, is the target of antibodies in 25-40% of lupus patients. Purified human 60-kDa Ro was found to be oxidatively modified. Earlier investigations from our laboratory revealed increased oxidative damage in SLE patients. Therefore we hypothesized that oxidation by-products, such as 4-hydroxy-2-nonenal (HNE), could lead to neoantigens like HNE-modified 60-kDa Ro, which could in turn initiate autoimmunity or drive epitope spreading. To test this hypothesis we immunized rabbits with either HNE-modified 60-kDa Ro or the unmodified Ro. Intramolecular epitope spreading within the Ro molecule and intermolecular epitope spreading to La, double-stranded DNA, nRNP, and Sm occurred preferentially in HNE-Ro-immunized animals. Nonspecific anti-HNE antibody, generated by immunization with HNE-keyhole limpet hemocyanin conjugate, did not significantly bind to these autoantigens. These data may suggest a hitherto unappreciated mechanism by which oxidative stress facilitates epitope spreading in SLE.
Collapse
Affiliation(s)
- R Hal Scofield
- Arthritis and Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Monneaux F, Parietti V, Briand JP, Muller S. Intramolecular T cell spreading in unprimed MRL/lpr mice: importance of the U1-70k protein sequence 131-151. ACTA ACUST UNITED AC 2004; 50:3232-8. [PMID: 15476231 DOI: 10.1002/art.20510] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To analyze spontaneous T cell spreading against determinants of the U1-70K protein in young autoimmune MRL/lpr lupus mice, in comparison with the T cell spreading occurring in normal BALB/c mice immunized with peptide 131-151 of this protein. METHODS Peripheral blood lymphocytes (PBLs) from both unprimed MRL/lpr mice and immunized BALB/c mice were tested for their ability to proliferate ex vivo in response to 18 overlapping peptides of the U1-70K spliceosomal protein, using assays for lymphocyte proliferation and secretion of interleukin-2. RESULTS The proliferative response to peptides of the U1-70K protein evolved rapidly in MRL/lpr mice tested at different ages. At least 5 peptides were recognized by PBLs from 8-week-old autoimmune mice, whereas a different peptide was recognized by PBLs from MRL/lpr mice at 12 weeks of age. At 15 weeks, the proliferative response was weak or negative when assessed with any of the test peptides. At least 2 major peptides recognized by MRL/lpr PBLs were also recognized by PBLs generated in the BALB/c mice primed with peptide 131-151. We further demonstrated that, in preautoimmune MRL/lpr mice, repeated administration of phosphorylated peptide 131-151 (called P140), which was shown previously to be protective, transiently abolished T cell intramolecular spreading to other regions of the 70K protein. CONCLUSION This is the first study to demonstrate that intramolecular T cell spreading effectively occurs in MRL/lpr mice with lupus, and that region 131-151 is important in the cascade of events observed in the murine lupus response. This sequence might originate a mechanism of tolerance spreading that leads to the beneficial effect observed in MRL/lpr mice after treatment with the phosphorylated peptide 131-151.
Collapse
Affiliation(s)
- Fanny Monneaux
- Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | |
Collapse
|
45
|
van der Geld YM, Stegeman CA, Kallenberg CGM. B cell epitope specificity in ANCA-associated vasculitis: does it matter? Clin Exp Immunol 2004; 137:451-9. [PMID: 15320893 PMCID: PMC1809135 DOI: 10.1111/j.1365-2249.2004.02572.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pauci-immune idiopathic small-vessel vasculitis is strongly associated with the presence of antineutrophil cytoplasm autoantibodies (ANCA). Antibodies to PR3 predominate in patients with Wegener's granulomatosis; antibodies to myeloperoxidase (MPO) are found more frequently in patients with microscopic polyangiitis. There is increasing in vivo and in vitro evidence for a pathogenic role of ANCA in systemic vasculitis based on associations of ANCA with disease activity. If ANCA are pathogenic, why is the course of disease different from one patient to another? Antibodies can recognize different binding sites (epitopes) on their corresponding antigens. Differences in binding specificity may influence the pathogenic potential of the antibodies. Differences between epitope specificity of ANCA between patients or changes in epitope specificity of ANCA in time in an individual patient may, accordingly, result in differences in disease expression. This review will focus on epitope specificity of autoantibodies in systemic autoimmune diseases and especially on the epitope specificity of PR3- and MPO-ANCA. We will discuss whether PR3-ANCA or MPO-ANCA recognize different epitopes on PR3 and MPO, respectively, and whether the epitopes recognized by ANCA change in parallel with the disease activity of ANCA-associated vasculitis. Finally, we will speculate if the direct pathogenic role of ANCA can be ascribed to one relapse- or disease-inducing epitope. Characterization of relapse- or disease-inducing epitopes bound by PR3-ANCA and MPO-ANCA is significant for understanding initiation and reactivation of ANCA-associated vasculitis. Elucidating a disease-inducing epitope bound by ANCA may lead to the development of epitope-specific therapeutic strategies.
Collapse
Affiliation(s)
- Y M van der Geld
- Department of Clinical Immunology, University Hospital Groningen, Groningen, The Netherlands.
| | | | | |
Collapse
|
46
|
Rarok AA, van der Geld YM, Stegeman CA, Limburg PC, Kallenberg CGM. Diversity of PR3-ANCA epitope specificity in Wegener's granulomatosis. Analysis using the biosensor technology. J Clin Immunol 2004; 23:460-8. [PMID: 15031633 DOI: 10.1023/b:joci.0000010422.73892.b5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Wegener's granulomatosis is a systemic disease characterized by the presence of antineutrophil cytoplasm autoantibodies specific for proteinase 3 (PR3-ANCA). The functional characteristics of PR3-ANCA differ between quiescent and active disease, suggesting changes in the properties of the autoantibodies in time. Using biosensor technology, we found that PR3-ANCA of different patients (n = 8) recognize a limited number of overlapping regions on PR3 at the time of diagnosis of Wegener's granulomatosis. This area might cover an immunodominant epitope, common for PR3-ANCA from all patients, irrespective of the size of the total area recognized by an individual autoantibody. Experiments with sera (n = 4) collected at the moment of diagnosis and at the time of relapse showed that the individual epitope specificities of PR3-ANCA change during the course of the disease. These changes in epitope specificity of PR3-ANCA may be responsible for the differences in functional properties of these autoantibodies between various stages of the disease.
Collapse
Affiliation(s)
- Agnieszka A Rarok
- Department of Internal Medicine, University Hospital Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
McClain MT, Lutz CS, Kaufman KM, Faig OZ, Gross TF, James JA. Structural availability influences the capacity of autoantigenic epitopes to induce a widespread lupus-like autoimmune response. Proc Natl Acad Sci U S A 2004; 101:3551-6. [PMID: 14988508 PMCID: PMC373500 DOI: 10.1073/pnas.0306267101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Indexed: 11/18/2022] Open
Abstract
A subset of lupus patients with severe nephritis and anti-nRNP reactivity produces autoantibodies primarily against two major epitopes of the nRNP A (also known as U1A) protein. These sequences span amino acids 44-56 (A3) and amino acids 103-115 (A6). These two epitopes represent structurally different regions of the protein, as both epitopes are located on the surface, but the A6 epitope is functionally masked in vivo by binding between nRNP A and the U1 RNA. Rabbits were immunized with either the A3 or A6 peptides constructed on a branching polylysine backbone. Rabbits immunized with each of these peptides first developed antibodies directed against the peptide of immunization. With boosting, the immune response of rabbits immunized with the A3 peptide spread to other common antigenic regions of nRNP A. These regions of nRNP A bound by A3 immunized rabbits are very similar to common epitopes in human systemic lupus erythematosus. These A3 immunized rabbits also develop antibodies to common antigenic regions of nRNP 70K, nRNP C, Sm B/B', and Sm D1 proteins, as well as clinical symptoms of systemic lupus erythematosus such as leukopenia and renal insufficiency. On the other hand, rabbits immunized with the A6 peptide only develop antibodies to the peptide of immunization. Anti-A3, but not anti-A6, antibodies are capable of immunoprecipitating native small nuclear ribonucleoprotein complexes. Immunization with the A3 peptide of nRNP A (a surface epitope), but not the A6 peptide (masked), induces an extensive, varied immune response against multiple small nuclear ribonucleoprotein autoantigens similar to that seen in human systemic lupus erythematosus.
Collapse
Affiliation(s)
- Micah T McClain
- Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, and Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
48
|
Aplin BD, Keech CL, de Kauwe AL, Gordon TP, Cavill D, McCluskey J. Tolerance through indifference: autoreactive B cells to the nuclear antigen La show no evidence of tolerance in a transgenic model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:5890-900. [PMID: 14634099 DOI: 10.4049/jimmunol.171.11.5890] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic autoimmune diseases are characterized by the production of high titer autoantibodies specific for ubiquitous nuclear self-Ags such as DNA, Sm, and La (SS-B), so the normal mechanisms of B cell tolerance to disease-associated nuclear Ags have been of great interest. Mechanisms of B cell tolerance include deletion, anergy, developmental arrest, receptor editing, and B cell differentiation to the B-1 subtype. However, recent studies in our laboratory have suggested that B cell tolerance to the nuclear autoantigen La is limited in normal mice, and tolerance may reside primarily in the T cell compartment. To test this hypothesis, we created Ig transgenic mice expressing the IgM H chain from an mAb specific for a xenogeneic epitope within human La (hLa). These mice were bred with hLa-transgenic mice that constitutively express hLa in a manner comparable to endogenous mouse La. Between 5-15% of transgenic B cells developing in the absence of hLa were specific for hLa, and these cells were neither depleted nor developmentally arrested in the presence of endogenous hLa expression. Instead, these autoreactive B cells matured normally and differentiated into Ab-forming cells, capable of secreting high titer autoantibody. Additionally, the life span of autoreactive hLa-specific B cells was not reduced, and they were phenotypically and functionally indistinguishable from naive nonautoreactive hLa-specific B cells developing in the absence of hLa. Together these data suggest a lack of intrinsic B cell tolerance involving any known mechanisms indicating that these autoreactive B cells are indifferent to their autoantigen.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/analysis
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/metabolism
- Antibody Affinity/genetics
- Antibody Specificity/genetics
- Autoantibodies/biosynthesis
- Autoantigens/genetics
- Autoantigens/immunology
- Autoantigens/physiology
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line
- Cell Survival/genetics
- Cell Survival/immunology
- Cells, Cultured
- Humans
- Immune Tolerance/genetics
- Immunoglobulin M/biosynthesis
- Immunoglobulin M/blood
- Immunoglobulins/analysis
- Immunoglobulins/biosynthesis
- Immunoglobulins/metabolism
- Lipopolysaccharides/pharmacology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lymphocyte Activation/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Animal
- Receptors, Antigen, B-Cell/physiology
- Ribonucleoproteins/genetics
- Ribonucleoproteins/immunology
- Ribonucleoproteins/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Sjogren's Syndrome/genetics
- Sjogren's Syndrome/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Transfection
- SS-B Antigen
Collapse
Affiliation(s)
- Brett D Aplin
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Hepatitis C is a widespread chronic liver disease leading to cirrhosis and to the complications of portal hypertension. Based on biochemical and clinical features, it is almost indistinguishable from autoimmune hepatitis, which is characterized by the absence of viral infection, and other causes of chronic liver diseases, and represents a classical autoimmune disease with loss of immunological tolerance of liver tissue. Although the differentiation between both diseases is not difficult due the availability of diagnostic viral markers, it is well recognized that not only are autoantibodies present in autoimmune hepatitis frequently detected in hepatitis C, but also that an array of immune-mediated symptoms and diseases occur in patients with chronic hepatitis C. This has prompted research aimed at identifying a link between hepatitis C and autoimmunity, and autoimmune hepatitis in particular. This review focuses on the general immunological mechanisms linking viral infections with autoimmunity and includes the specific features of hepatitis C- and D-associated autoimmunity. Virus infection remains at the center of molecular and cellular research aimed at identifying the forces driving human autoimmunity and autoimmune diseases.
Collapse
Affiliation(s)
- Christian P Strassburg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | | | | |
Collapse
|
50
|
Purcell AW, Todd A, Kinoshita G, Lynch TA, Keech CL, Gething MJ, Gordon TP. Association of stress proteins with autoantigens: a possible mechanism for triggering autoimmunity? Clin Exp Immunol 2003; 132:193-200. [PMID: 12699405 PMCID: PMC1808692 DOI: 10.1046/j.1365-2249.2003.02153.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Patterns of autoantibody production are diagnostic of many autoimmune disorders; the recent observation of additional autospecificities towards stress-induced proteins may also provide insight into the mechanisms by which such responses arise. Grp78 (also known as BiP) is a target of autoaggressive B and T cell responses in our murine model of anti-Ro (SS-A) autoimmunity and also in rheumatoid arthritis. In this report we demonstrate reciprocal intermolecular spreading occurs between Ro52 and Grp78 in immunized mice, reflecting physiological association of these molecules in vivo. Moreover, we provide direct biochemical evidence that Grp78 associates with the clinically relevant autoantigen, Ro52 (SS-A). Due to the discrete compartmentalization of Ro52 (nucleocytoplasmic) and Grp78 (endoplasmic reticulum; ER) we propose that association of these molecules occurs either in apoptotic cells, where they have been demonstrated indirectly to co-localize in discrete apoptotic bodies, or in B cells themselves where both Ro52 and Grp78 are known to bind to immunoglobulin heavy chains. Tagging of molecules by association with Grp78 may facilitate receptor mediated phagocytotsis of the complex; we show evidence that exogenous Grp78 can associate with cell surface receptors on a subpopulation of murine splenocytes. Given the likelihood that Grp78 will associate with viral glycoproteins in the ER it is possible that it may become a bystander target of the spreading antiviral immune response. Thus, we propose a model whereby immunity elicited towards Grp78 leads to the selection of responses towards the Ro polypeptides and the subsequent cascade of responses observed in human disease.
Collapse
Affiliation(s)
- A W Purcell
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|