1
|
Mishra A, Hughes AC, Amon JD, Rudner DZ, Wang X, Kearns DB. SwrA-mediated Multimerization of DegU and an Upstream Activation Sequence Enhance Flagellar Gene Expression in Bacillus subtilis. J Mol Biol 2024; 436:168419. [PMID: 38141873 PMCID: PMC11462632 DOI: 10.1016/j.jmb.2023.168419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
The earliest genes in bacterial flagellar assembly are activated by narrowly-conserved proteins called master regulators that often act as heteromeric complexes. A complex of SwrA and the response-regulator transcription factor DegU is thought to form the master flagellar regulator in Bacillus subtilis but how the two proteins co-operate to activate gene expression is poorly-understood. Here we find using ChIP-Seq that SwrA interacts with a subset of DegU binding sites in the chromosome and does so in a DegU-dependent manner. Using this information, we identify a DegU-specific inverted repeat DNA sequence in the Pflache promoter region and show that SwrA synergizes with DegU phosphorylation to increase binding affinity. We further demonstrate that the SwrA/DegU footprint extends from the DegU binding site towards the promoter, likely through SwrA-induced DegU multimerization. The location of the DegU inverted repeat was critical and moving the binding site closer to the promoter impaired transcription by disrupting a previously-unrecognized upstream activation sequence (UAS). Thus, the SwrA-DegU heteromeric complex likely enables both remote binding and interaction between the activator and RNA polymerase. Small co-activator proteins like SwrA may allow selective activation of subsets of genes where activator multimerization is needed. Why some promoters require activator multimerization and some require UAS sequences is unknown.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Biology, Indiana University, Bloomington, IN 47408, USA
| | - Anna C Hughes
- Department of Biology, Indiana University, Bloomington, IN 47408, USA
| | - Jeremy D Amon
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN 47408, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN 47408, USA.
| |
Collapse
|
2
|
Zhou B, Xiong Y, Nevo Y, Kahan T, Yakovian O, Alon S, Bhattacharya S, Rosenshine I, Sinai L, Ben-Yehuda S. Dormant bacterial spores encrypt a long-lasting transcriptional program to be executed during revival. Mol Cell 2023; 83:4158-4173.e7. [PMID: 37949068 DOI: 10.1016/j.molcel.2023.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Sporulating bacteria can retreat into long-lasting dormant spores that preserve the capacity to germinate when propitious. However, how the revival transcriptional program is memorized for years remains elusive. We revealed that in dormant spores, core RNA polymerase (RNAP) resides in a central chromosomal domain, where it remains bound to a subset of intergenic promoter regions. These regions regulate genes encoding for most essential cellular functions, such as rRNAs and tRNAs. Upon awakening, RNAP recruits key transcriptional components, including sigma factor, and progresses to express the adjacent downstream genes. Mutants devoid of spore DNA-compacting proteins exhibit scattered RNAP localization and subsequently disordered firing of gene expression during germination. Accordingly, we propose that the spore chromosome is structured to preserve the transcriptional program by halting RNAP, prepared to execute transcription at the auspicious time. Such a mechanism may sustain long-term transcriptional programs in diverse organisms displaying a quiescent life form.
Collapse
Affiliation(s)
- Bing Zhou
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel
| | - Yifei Xiong
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE Computation Center at the Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Tamar Kahan
- Bioinformatics Unit, Faculty of Medicine, The Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Oren Yakovian
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel; The Racah Institute of Physics, Faculty of Science, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Sima Alon
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel
| | - Saurabh Bhattacharya
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel
| | - Lior Sinai
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel.
| | - Sigal Ben-Yehuda
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel.
| |
Collapse
|
3
|
Mishra A, Hughes AC, Amon JD, Rudner DZ, Wang X, Kearns DB. SwrA extends DegU over an UP element to activate flagellar gene expression in Bacillus subtilis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552067. [PMID: 37577504 PMCID: PMC10418190 DOI: 10.1101/2023.08.04.552067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
SwrA activates flagellar gene expression in Bacillus subtilis to increase the frequency of motile cells in liquid and elevate flagellar density to enable swarming over solid surfaces. Here we use ChIP-seq to show that SwrA interacts with many sites on the chromosome in a manner that depends on the response regulator DegU. We identify a DegU-specific inverted repeat DNA sequence and show that SwrA synergizes with phosphorylation to increase DegU DNA binding affinity. We further show that SwrA increases the size of the DegU footprint expanding the region bound by DegU towards the promoter. The location of the DegU inverted repeat was critical and moving the binding site closer to the promoter impaired transcription more that could be explained by deactivation. We conclude that SwrA/DegU forms a heteromeric complex that enables both remote binding and interaction between the activator and RNA polymerase in the context of an interceding UP element. We speculate that multimeric activators that resolve cis-element spatial conflicts are common in bacteria and likely act on flagellar biosynthesis loci and other long operons of other multi-subunit complexes. IMPORTANCE In Bacteria, the sigma subunit of RNA polymerase recognizes specific DNA sequences called promoters that determine where gene transcription begins. Some promoters also have sequences immediately upstream called an UP element that is bound by the alpha subunit of RNA polymerase and is often necessary for transcription. Finally, promoters may be activated by transcription factors that bind DNA specific sequences and help recruit RNA polymerase to weak promoter elements. Here we show that the promoter for the 32 gene long flagellar operon in Bacillus subtilis requires an UP element and is activated by a heteromeric transcription factor of DegU and SwrA. Our evidence suggests that SwrA oligomerizes DegU over the DNA to allow RNA polymerase to interact with DegU and the UP element simultaneously. Heteromeric activator complexes are known but poorly-understood in bacteria and we speculate they may be needed to resolve spatial conflicts in the DNA sequence.
Collapse
|
4
|
Distinct Interaction Mechanism of RNAP and ResD and Distal Subsites for Transcription Activation of Nitrite Reductase in Bacillus subtilisψ. J Bacteriol 2021; 204:e0043221. [PMID: 34898263 DOI: 10.1128/jb.00432-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ResD-ResE signal transduction system plays a pivotal role in anaerobic nitrate respiration in Bacillus subtilis. The nasD operon encoding nitrite reductase is essential for nitrate respiration and is tightly controlled by the ResD response regulator. To understand the mechanism of ResD-dependent transcription activation of the nasD operon, we explored ResD-RNA polymerase (RNAP), ResD-DNA, and RNAP-DNA interactions required for nasD transcription. Full transcriptional activation requires the upstream promoter region where five molecules of ResD bind. The distal ResD-binding subsite at -87 to -84 partially overlaps a sequence similar to the consensus distal subsite of the upstream (UP) element with which the Escherichia coli C-terminal domain of the α subunit (αCTD) of RNAP interacts to stimulate transcription. We propose that interaction between αCTD and ResD at the promoter-distal site is essential for stimulating nasD transcription. Although nasD has an extended -10 promoter, it lacks a reasonable -35 element. Genetic analysis and structural simulations predicted that the absence of the -35 element might be compensated by interactions between σA and αCTD, and between αCTD and ResD at the promoter-proximal ResD-binding subsite. Thus, our work suggested that ResD likely participates in nasD transcription activation by binding to two αCTD subunits at the proximal and distal promoter sites, representing a unique configuration for transcription activation. IMPORTANCE A significant number of ResD-controlled genes have been identified and transcription regulatory pathways in which ResD participates have emerged. Nevertheless, the mechanism of how ResD activates transcription of different genes in a nucleotide sequence-specific manner has been less explored. This study suggested that among the five ResD-binding subsites in the promoter of the nasD operon, the promoter-proximal and -distal ResD-binding subsites play important roles in nasD activation by adapting different modes of protein-protein and protein-DNA interactions. The finding of a new-type of protein-promoter architecture provides insight into the understanding of transcription activation mechanisms controlled by transcription factors including the ubiquitous response regulators of two-component regulatory systems particularly in Gram-positive bacteria.
Collapse
|
5
|
Exploring the Amino Acid Residue Requirements of the RNA Polymerase (RNAP) α Subunit C-Terminal Domain for Productive Interaction between Spx and RNAP of Bacillus subtilis. J Bacteriol 2017; 199:JB.00124-17. [PMID: 28484046 DOI: 10.1128/jb.00124-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/01/2017] [Indexed: 01/21/2023] Open
Abstract
Bacillus subtilis Spx is a global transcriptional regulator that is conserved among Gram-positive bacteria, in which Spx is required for preventing oxidatively induced proteotoxicity. Upon stress induction, Spx engages RNA polymerase (RNAP) through interaction with the C-terminal domain of the rpoA-encoded RNAP α subunit (αCTD). Previous mutational analysis of rpoA revealed that substitutions of Y263 in αCTD severely impaired Spx-activated transcription. Attempts to substitute alanine for αCTD R261, R268, R289, E255, E298, and K294 were unsuccessful, suggesting that these residues are essential. To determine whether these RpoA residues were required for productive Spx-RNAP interaction, we ectopically expressed the putatively lethal rpoA mutant alleles in the rpoAY263C mutant, where "Y263C" indicates the amino acid change that results from mutation of the allele. By complementation analysis, we show that Spx-bound αCTD amino acid residues are not essential for Spx-activated transcription in vivo but that R261A, E298A, and E255A mutants confer a partial defect in NaCl-stress induction of Spx-controlled genes. In addition, strains expressing rpoAE255A are defective in disulfide stress resistance and produce RNAP having a reduced affinity for Spx. The E255 residue corresponds to Escherichia coli αD259, which has been implicated in αCTD-σ70 interaction (σ70 R603, corresponding to R362 of B. subtilis σA). However, the combined rpoAE255A and sigAR362A mutations have an additive negative effect on Spx-dependent expression, suggesting the residues' differing roles in Spx-activated transcription. Our findings suggest that, while αCTD is essential for Spx-activated transcription, Spx is the primary DNA-binding determinant of the Spx-αCTD complex.IMPORTANCE Though extensively studied in Escherichia coli, the role of αCTD in activator-stimulated transcription is largely uncharacterized in Bacillus subtilis Here, we conduct phenotypic analyses of putatively lethal αCTD alanine codon substitution mutants to determine whether these residues function in specific DNA binding at the Spx-αCTD-DNA interface. Our findings suggest that multisubunit RNAP contact to Spx is optimal for activation while Spx fulfills the most stringent requirement of upstream promoter binding. Furthermore, several αCTD residues targeted for mutagenesis in this study are conserved among many bacterial species and thus insights on their function in other regulatory systems may be suggested herein.
Collapse
|
6
|
Evidence that Oxidative Stress Induces spxA2 Transcription in Bacillus anthracis Sterne through a Mechanism Requiring SpxA1 and Positive Autoregulation. J Bacteriol 2016; 198:2902-2913. [PMID: 27501985 PMCID: PMC5055595 DOI: 10.1128/jb.00512-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/02/2016] [Indexed: 12/22/2022] Open
Abstract
Bacillus anthracis possesses two paralogs of the transcriptional regulator, Spx. SpxA1 and SpxA2 interact with RNA polymerase (RNAP) to activate the transcription of genes implicated in the prevention and alleviation of oxidative protein damage. The spxA2 gene is highly upregulated in infected macrophages, but how this is achieved is unknown. Previous studies have shown that the spxA2 gene was under negative control by the Rrf2 family repressor protein, SaiR, whose activity is sensitive to oxidative stress. These studies also suggested that spxA2 was under positive autoregulation. In the present study, we show by in vivo and in vitro analyses that spxA2 is under direct autoregulation but is also dependent on the SpxA1 paralogous protein. The deletion of either spxA1 or spxA2 reduced the diamide-inducible expression of an spxA2-lacZ construct. In vitro transcription reactions using purified B. anthracis RNAP showed that SpxA1 and SpxA2 protein stimulates transcription from a DNA fragment containing the spxA2 promoter. Ectopically positioned spxA2-lacZ fusion requires both SpxA1 and SpxA2 for expression, but the requirement for SpxA1 is partially overcome when saiR is deleted. Electrophoretic mobility shift assays showed that SpxA1 and SpxA2 enhance the affinity of RNAP for spxA2 promoter DNA and that this activity is sensitive to reductant. We hypothesize that the previously observed upregulation of spxA2 in the oxidative environment of the macrophage is at least partly due to SpxA1-mediated SaiR repressor inactivation and the positive autoregulation of spxA2 transcription. IMPORTANCE Regulators of transcription initiation are known to govern the expression of genes required for virulence in pathogenic bacterial species. Members of the Spx family of transcription factors function in control of genes required for virulence and viability in low-GC Gram-positive bacteria. In Bacillus anthracis, the spxA2 gene is highly induced in infected macrophages, which suggests an important role in the control of virulence gene expression during the anthrax disease state. We provide evidence that elevated concentrations of oxidized, active SpxA2 result from an autoregulatory positive-feedback loop driving spxA2 transcription.
Collapse
|
7
|
Murayama S, Ishikawa S, Chumsakul O, Ogasawara N, Oshima T. The Role of α-CTD in the Genome-Wide Transcriptional Regulation of the Bacillus subtilis Cells. PLoS One 2015; 10:e0131588. [PMID: 26154296 PMCID: PMC4495994 DOI: 10.1371/journal.pone.0131588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/02/2015] [Indexed: 11/22/2022] Open
Abstract
The amino acid sequence of the RNA polymerase (RNAP) α-subunit is well conserved throughout the Eubacteria. Its C-terminal domain (α-CTD) is important for the transcriptional regulation of specific promoters in both Escherichia coli and Bacillus subtilis, through interactions with transcription factors and/or a DNA element called the "UP element". However, there is only limited information regarding the α-CTD regulated genes in B. subtilis and the importance of this subunit in the transcriptional regulation of B. subtilis. Here, we established strains and the growth conditions in which the α-subunit of RNAP was replaced with a C-terminally truncated version. Transcriptomic and ChAP-chip analyses revealed that α-CTD deficiency reduced the transcription and RNAP binding of genes related to the utilization of secondary carbon sources, transition state responses, and ribosome synthesis. In E. coli, it is known that α-CTD also contributes to the expression of genes related to the utilization of secondary carbon sources and ribosome synthesis. Our results suggest that the biological importance of α-CTD is conserved in B. subtilis and E. coli, but that its specific roles have diversified between these two bacteria.
Collapse
Affiliation(s)
- Satohiko Murayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916–5, Takayama, Ikoma, Nara 630–0192, Japan
| | - Shu Ishikawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916–5, Takayama, Ikoma, Nara 630–0192, Japan
| | - Onuma Chumsakul
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916–5, Takayama, Ikoma, Nara 630–0192, Japan
| | - Naotake Ogasawara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916–5, Takayama, Ikoma, Nara 630–0192, Japan
| | - Taku Oshima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916–5, Takayama, Ikoma, Nara 630–0192, Japan
| |
Collapse
|
8
|
The second messenger cyclic Di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD. J Bacteriol 2013; 195:5174-85. [PMID: 24039264 DOI: 10.1128/jb.00501-13] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Gram-positive obligate anaerobe Clostridium difficile causes potentially fatal intestinal diseases. How this organism regulates virulence gene expression is poorly understood. In many bacterial species, the second messenger cyclic di-GMP (c-di-GMP) negatively regulates flagellar motility and, in some cases, virulence. c-di-GMP was previously shown to repress motility of C. difficile. Recent evidence indicates that flagellar gene expression is tightly linked with expression of the genes encoding the two C. difficile toxins TcdA and TcdB, which are key virulence factors for this pathogen. Here, the effect of c-di-GMP on expression of the toxin genes tcdA and tcdB was determined, and the mechanism connecting flagellar and toxin gene expressions was examined. In C. difficile, increasing c-di-GMP levels reduced the expression levels of tcdA and tcdB, as well as that of tcdR, which encodes an alternative sigma factor that activates tcdA and tcdB expression. We hypothesized that the C. difficile orthologue of the flagellar alternative sigma factor SigD (FliA; σ(28)) mediates regulation of toxin gene expression in response to c-di-GMP. Indeed, ectopic expression of sigD in C. difficile resulted in increased expression levels of tcdR, tcdA, and tcdB. Furthermore, sigD expression enhanced toxin production and increased the cytopathic effect of C. difficile on cultured fibroblasts. Finally, evidence is provided that SigD directly activates tcdR expression and that SigD cannot activate tcdA or tcdB expression independent of TcdR. Taken together, these data suggest that SigD positively regulates toxin genes in C. difficile and that c-di-GMP can inhibit both motility and toxin production via SigD, making this signaling molecule a key virulence gene regulator in C. difficile.
Collapse
|
9
|
DNA-binding properties of the Bacillus subtilis and Aeribacillus pallidus AC6 σ(D) proteins. J Bacteriol 2010; 193:575-9. [PMID: 21097624 DOI: 10.1128/jb.01193-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
σ(D) proteins from Aeribacillus pallidus AC6 and Bacillus subtilis bound specifically, albeit weakly, to promoter DNA even in the absence of core RNA polymerase. Binding required a conserved CG motif within the -10 element, and this motif is known to be recognized by σ region 2.4 and critical for promoter activity.
Collapse
|
10
|
Osterberg S, Skärfstad E, Shingler V. The sigma-factor FliA, ppGpp and DksA coordinate transcriptional control of the aer2 gene of Pseudomonas putida. Environ Microbiol 2010; 12:1439-51. [PMID: 20089044 DOI: 10.1111/j.1462-2920.2009.02139.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here the sigma-factor requirement for transcription of three similar, but differentially regulated, aer genes of Pseudomonas putida KT2440 is investigated. Previous work has shown that the three Aer proteins, like chemoreceptors, colocalize to a single pole in a CheA-dependent manner. Lack of Aer2 - the most abundant of these three proteins - mediates defects in metabolism-dependent taxis and aerotaxis, while lack of Aer1 or Aer3 has no apparent phenotype. We show, using wild-type and mutant P. putida derivatives combined with P. putida reconstituted FliA- (sigma(28)) and sigma(70)-dependent in vitro transcription assays, that transcription of aer2 is coupled to motility through the flagella sigma-factor FliA, while sigma(70) is responsible for transcription of aer1 and aer3. By comparing activities of the wild-type and mutant forms of the aer2 promoter, we present evidence (i) that transcription from FliA-dependent Paer2 is enhanced by changes towards the Escherichia coli consensus for FliA promoters rather than towards that of P. putida, (ii) that the nature of the AT-rich upstream region is important for both output and sigma(70) discrimination of this promoter, and (iii) that Paer2 output is directly stimulated by the bacterial alarmone ppGpp and its cofactor DksA.
Collapse
Affiliation(s)
- Sofia Osterberg
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | |
Collapse
|
11
|
Activation of the promoter of the fengycin synthetase operon by the UP element. J Bacteriol 2009; 191:4615-23. [PMID: 19447911 DOI: 10.1128/jb.00255-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis F29-3 produces an antifungal peptidic antibiotic that is synthesized nonribosomally by fengycin synthetases. Our previous work established that the promoter of the fengycin synthetase operon is located 86 nucleotides upstream of the translational initiation codon of fenC. This investigation involved transcriptional fusions with a DNA fragment that contains the region between positions -105 and +80 and determined that deleting the region between positions -55 and -42 reduces the promoter activity by 64.5%. Transcriptional fusions in the B. subtilis DB2 chromosome also indicated that mutating the sequence markedly reduces the promoter activity. An in vitro transcription analysis confirmed that the transcription is inefficient when the sequence in this region is mutated. Electrophoretic mobility shift and footprinting analyses demonstrated that the C-terminal domain of the RNA polymerase alpha subunit binds to the region between positions -55 and -39. These results indicated that the sequence is an UP element. Finally, this UP element is critical for the production of fengycin, since mutating the UP sequence in the chromosome of B. subtilis F29-3 reduces the transcription of the fen operon by 85% and prevents the cells from producing enough fengycin to suppress the germination of Paecilomyces variotii spores on agar plates.
Collapse
|
12
|
Abstract
In Bacteria, transcription is catalyzed by a single RNA polymerase (RNAP) whose promoter selectivity and activity is governed by a wide variety of transcription factors. The net effect of these transcriptional regulators is to determine which genes are transcribed, and at what levels, under any specific growth condition. RNAP thus serves as a nexus of gene regulation that integrates the information coming from a variety of sensory systems to appropriately modulate gene expression. The techniques presented in this volume provide a set of tools and approaches for investigating the factors controlling RNAP activity at both individual promoters and on a genomic scale. This introductory chapter provides a brief overview of RNAP and the transcription cycle and introduces general principles of how the fundamental steps of transcription are influenced by both DNA (promoter) sequences and trans-acting factors.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Cornell University, 327 Wing Hall, Ithaca, NY 14853-8101, USA.
| |
Collapse
|
13
|
Abstract
We demonstrate that transcription of the gene swrAA, required for swarming migration in Bacillus subtilis, is driven by two promoters: a sigD-dependent promoter and a putative sigA-dependent promoter, which is inactive during growth in liquid Luria-Bertani medium and becomes active in the presence of the phosphorylated form of the response regulator DegU or on semisolid surfaces. Since sigD transcription is enhanced by SwrAA, this finding reveals that swrA expression is controlled by a positive feedback loop. We also demonstrate that the positive action of SwrAA in swimming and swarming motility is prevented in strains carrying a deletion of the two-component system degS-degU and that this effect is independent of swrAA transcription. Therefore, both DegU and SwrAA must be present to achieve full motility in B. subtilis.
Collapse
|
14
|
Dekhtyar M, Morin A, Sakanyan V. Triad pattern algorithm for predicting strong promoter candidates in bacterial genomes. BMC Bioinformatics 2008; 9:233. [PMID: 18471287 PMCID: PMC2412878 DOI: 10.1186/1471-2105-9-233] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 05/09/2008] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Bacterial promoters, which increase the efficiency of gene expression, differ from other promoters by several characteristics. This difference, not yet widely exploited in bioinformatics, looks promising for the development of relevant computational tools to search for strong promoters in bacterial genomes. RESULTS We describe a new triad pattern algorithm that predicts strong promoter candidates in annotated bacterial genomes by matching specific patterns for the group I sigma70 factors of Escherichia coli RNA polymerase. It detects promoter-specific motifs by consecutively matching three patterns, consisting of an UP-element, required for interaction with the alpha subunit, and then optimally-separated patterns of -35 and -10 boxes, required for interaction with the sigma70 subunit of RNA polymerase. Analysis of 43 bacterial genomes revealed that the frequency of candidate sequences depends on the A+T content of the DNA under examination. The accuracy of in silico prediction was experimentally validated for the genome of a hyperthermophilic bacterium, Thermotoga maritima, by applying a cell-free expression assay using the predicted strong promoters. In this organism, the strong promoters govern genes for translation, energy metabolism, transport, cell movement, and other as-yet unidentified functions. CONCLUSION The triad pattern algorithm developed for predicting strong bacterial promoters is well suited for analyzing bacterial genomes with an A+T content of less than 62%. This computational tool opens new prospects for investigating global gene expression, and individual strong promoters in bacteria of medical and/or economic significance.
Collapse
Affiliation(s)
| | - Amelie Morin
- Laboratoire de Biotechnologie, UMR CNRS 6204, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
| | - Vehary Sakanyan
- Laboratoire de Biotechnologie, UMR CNRS 6204, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
- ProtNeteomix, 2 rue de la Houssinière, 44322 Nantes, France
| |
Collapse
|
15
|
Sinoquet C, Demey S, Braun F. Large-scale computational and statistical analyses of high transcription potentialities in 32 prokaryotic genomes. Nucleic Acids Res 2008; 36:3332-40. [PMID: 18440978 PMCID: PMC2425493 DOI: 10.1093/nar/gkn135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This article compares 32 bacterial genomes with respect to their high transcription potentialities. The sigma70 promoter has been widely studied for Escherichia coli model and a consensus is known. Since transcriptional regulations are known to compensate for promoter weakness (i.e. when the promoter similarity with regard to the consensus is rather low), predicting functional promoters is a hard task. Instead, the research work presented here comes within the scope of investigating potentially high ORF expression, in relation with three criteria: (i) high similarity to the sigma70 consensus (namely, the consensus variant appropriate for each genome), (ii) transcription strength reinforcement through a supplementary binding site--the upstream promoter (UP) element--and (iii) enhancement through an optimal Shine-Dalgarno (SD) sequence. We show that in the AT-rich Firmicutes' genomes, frequencies of potentially strong sigma70-like promoters are exceptionally high. Besides, though they contain a low number of strong promoters (SPs), some genomes may show a high proportion of promoters harbouring an UP element. Putative SPs of lesser quality are more frequently associated with an UP element than putative strong promoters of better quality. A meaningful difference is statistically ascertained when comparing bacterial genomes with similarly AT-rich genomes generated at random; the difference is the highest for Firmicutes. Comparing some Firmicutes genomes with similarly AT-rich Proteobacteria genomes, we confirm the Firmicutes specificity. We show that this specificity is neither explained by AT-bias nor genome size bias; neither does it originate in the abundance of optimal SD sequences, a typical and significant feature of Firmicutes more thoroughly analysed in our study.
Collapse
Affiliation(s)
- Christine Sinoquet
- Computer Science Institute of Nantes-Atlantic (Lina), U.M.R. C.N.R.S. 6241, University of Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex, France.
| | | | | |
Collapse
|
16
|
Yakhnin H, Pandit P, Petty TJ, Baker CS, Romeo T, Babitzke P. CsrA of Bacillus subtilis regulates translation initiation of the gene encoding the flagellin protein (hag) by blocking ribosome binding. Mol Microbiol 2007; 64:1605-20. [PMID: 17555441 DOI: 10.1111/j.1365-2958.2007.05765.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The global regulatory Csr (carbon storage regulator) and the homologous Rsm (repressor of secondary metabolites) systems of Gram-negative bacteria typically consist of an RNA-binding protein (CsrA/RsmA) and at least one sRNA that functions as a CsrA antagonist. CsrA modulates gene expression post-transcriptionally by regulating translation initiation and/or mRNA stability of target transcripts. While Csr has been extensively studied in Gram-negative bacteria, until now Csr has not been characterized in any Gram-positive organism. csrA of Bacillus subtilis is the last gene of a flagellum biosynthetic operon. In addition to the previously identified sigma(D)-dependent promoter that controls expression of the entire operon, a sigma(A)-dependent promoter was identified that temporally controls expression of the last two genes of the operon (fliW-csrA); expression peaks 1 h after cell growth deviates from exponential phase. hag, the gene encoding flagellin, was identified as a CsrA-regulated gene. CsrA was found to repress hag'-'lacZ expression, while overexpression of csrA reduces cell motility. In vitro binding studies identified two CsrA binding sites in the hag leader transcript, one of which overlaps the hag Shine-Dalgarno sequence. Toeprint and cell-free translation studies demonstrate that bound CsrA prevents ribosome binding to the hag transcript, thereby inhibiting translation initiation and Hag synthesis.
Collapse
Affiliation(s)
- Helen Yakhnin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
17
|
Muramatsu M, Hihara Y. Coordinated high-light response of genes encoding subunits of photosystem I is achieved by AT-rich upstream sequences in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 2007; 189:2750-8. [PMID: 17277074 PMCID: PMC1855792 DOI: 10.1128/jb.01903-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Accepted: 01/23/2007] [Indexed: 11/20/2022] Open
Abstract
Genes encoding subunits of photosystem I (PSI genes) in the cyanobacterium Synechocystis sp. strain PCC 6803 are actively transcribed under low-light conditions, whereas their transcription is coordinately and rapidly down-regulated upon the shift to high-light conditions. In order to identify the molecular mechanism of the coordinated high-light response, we searched for common light-responsive elements in the promoter region of PSI genes. First, the precise architecture of the psaD promoter was determined and compared with the previously identified structure of the psaAB promoter. One of two promoters of the psaAB genes (P1) and of the psaD gene (P2) possessed an AT-rich light-responsive element located just upstream of the basal promoter region. These sequences enhanced the basal promoter activity under low-light conditions, and their activity was transiently suppressed upon the shift to high-light conditions. Subsequent analysis of psaC, psaE, psaK1, and psaLI promoters revealed that their light response was also achieved by AT-rich sequences located at the -70 to -46 region. These results clearly show that AT-rich upstream elements are responsible for the coordinated high-light response of PSI genes dispersed throughout Synechocystis genome.
Collapse
Affiliation(s)
- Masayuki Muramatsu
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-okubo, Saitama 338-8570, Japan
| | | |
Collapse
|
18
|
Paul CJ, Twine SM, Tam KJ, Mullen JA, Kelly JF, Austin JW, Logan SM. Flagellin diversity in Clostridium botulinum groups I and II: a new strategy for strain identification. Appl Environ Microbiol 2007; 73:2963-75. [PMID: 17351097 PMCID: PMC1892883 DOI: 10.1128/aem.02623-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Strains of Clostridium botulinum are traditionally identified by botulinum neurotoxin type; however, identification of an additional target for typing would improve differentiation. Isolation of flagellar filaments and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that C. botulinum produced multiple flagellin proteins. Nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) analysis of in-gel tryptic digests identified peptides in all flagellin bands that matched two homologous tandem flagellin genes identified in the C. botulinum Hall A genome. Designated flaA1 and flaA2, these open reading frames encode the major structural flagellins of C. botulinum. Colony PCR and sequencing of flaA1/A2 variable regions classified 80 environmental and clinical strains into group I or group II and clustered isolates into 12 flagellar types. Flagellar type was distinct from neurotoxin type, and epidemiologically related isolates clustered together. Sequencing a larger PCR product, obtained during amplification of flaA1/A2 from type E strain Bennett identified a second flagellin gene, flaB. LC-MS analysis confirmed that flaB encoded a large type E-specific flagellin protein, and the predicted molecular mass for FlaB matched that observed by SDS-PAGE. In contrast, the molecular mass of FlaA was 2 to 12 kDa larger than the mass predicted by the flaA1/A2 sequence of a given strain, suggesting that FlaA is posttranslationally modified. While identification of FlaB, and the observation by SDS-PAGE of different masses of the FlaA proteins, showed the flagellin proteins of C. botulinum to be diverse, the presence of the flaA1/A2 gene in all strains examined facilitates single locus sequence typing of C. botulinum using the flagellin variable region.
Collapse
Affiliation(s)
- Catherine J Paul
- Bureau of Microbial Hazards, HFPB, Health Canada, Sir Frederick G. Banting Research Centre, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Shen L, Feng X, Yuan Y, Luo X, Hatch TP, Hughes KT, Liu JS, Zhang YX. Selective promoter recognition by chlamydial sigma28 holoenzyme. J Bacteriol 2006; 188:7364-77. [PMID: 16936033 PMCID: PMC1636291 DOI: 10.1128/jb.01014-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sigma transcription factor confers the promoter recognition specificity of RNA polymerase (RNAP) in eubacteria. Chlamydia trachomatis has three known sigma factors, sigma(66), sigma(54), and sigma(28). We developed two methods to facilitate the characterization of promoter sequences recognized by C. trachomatis sigma(28) (sigma(28)(Ct)). One involved the arabinose-induced expression of plasmid-encoded sigma(28)(Ct) in a strain of Escherichia coli defective in the sigma(28) structural gene, fliA. The second was an analysis of transcription in vitro with a hybrid holoenzyme reconstituted with E. coli RNAP core and recombinant sigma(28)(Ct). These approaches were used to investigate the interactions of sigma(28)(Ct) with the sigma(28)(Ct)-dependent hctB promoter and selected E. coli sigma(28) (sigma(28)(Ec))-dependent promoters, in parallel, compared with the promoter recognition properties of sigma(28)(EC). Our results indicate that RNAP containing sigma(28)(Ct) has at least three characteristics: (i) it is capable of recognizing some but not all sigma(28)(EC)-dependent promoters; (ii) it can distinguish different promoter structures, preferentially activating promoters with upstream AT-rich sequences; and (iii) it possesses a greater flexibility than sigma(28)(EC) in recognizing variants with different spacing lengths separating the -35 and -10 elements of the core promoter.
Collapse
Affiliation(s)
- Li Shen
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, MA 02118, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Newberry KJ, Nakano S, Zuber P, Brennan RG. Crystal structure of the Bacillus subtilis anti-alpha, global transcriptional regulator, Spx, in complex with the alpha C-terminal domain of RNA polymerase. Proc Natl Acad Sci U S A 2005; 102:15839-44. [PMID: 16249335 PMCID: PMC1266077 DOI: 10.1073/pnas.0506592102] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 09/13/2005] [Indexed: 11/18/2022] Open
Abstract
Spx, a global transcription regulator in Bacillus subtilis, interacts with the C-terminal domain of the alpha subunit (alphaCTD) of RNA polymerase to control gene expression under conditions of disulfide stress, which is sensed by disulfide bond formation between Spx residues C10 and C13. Here, we describe the crystal structure of the B. subtilis alphaCTD bound to oxidized Spx. Analysis of the complex reveals interactions between three regions of "anti-alpha" Spx and helix alpha1 and the "261" determinant of alphaCTD. The former contact could disrupt the interaction between alphaCTD and activator proteins or alter the DNA-bound conformation of alphaCTD, thereby repressing activator-stimulated transcription. Binding to the 261 determinant would prevent interaction between alphaCTD and region 4 of sigma(A). Intriguingly, the Spx disulfide bond is far from the alphaCTD-Spx interface, suggesting that Spx regulates transcription allosterically or through the redox-dependent creation or destruction of binding sites for additional components of the transcription machinery.
Collapse
Affiliation(s)
- Kate J Newberry
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239
| | | | | | | |
Collapse
|
21
|
Ross W, Gourse RL. Sequence-independent upstream DNA-alphaCTD interactions strongly stimulate Escherichia coli RNA polymerase-lacUV5 promoter association. Proc Natl Acad Sci U S A 2004; 102:291-6. [PMID: 15626760 PMCID: PMC544289 DOI: 10.1073/pnas.0405814102] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The C-terminal domains of the two alpha-subunits (alphaCTD) in Escherichia coli RNA polymerase (RNAP) recognize specific sequences called UP elements in some promoters. These interactions can increase transcription dramatically. Previously, effects of upstream DNA-alphaCTD interactions on transcription were quantified relative to control promoters with nonspecific DNA sequences substituted for UP elements. However, contributions of nonspecific upstream DNA-alphaCTD interactions to promoter activity have not been evaluated extensively. Here, we examine effects of removal of alphaCTD, upstream promoter DNA, or both on the rate of open-complex formation with promoters that lack UP elements. Deletion of alphaCTD decreased the composite second-order association rate constant, k(a), of RNAP for the lacUV5 promoter by approximately 10-fold. Much of this effect was attributable to a decrease in the isomerization rate constant, k(2). Removal of promoter DNA upstream of the -35 element also decreased both k(a) and k(2) approximately 10-fold. Upstream DNA extending approximately to base pair -100 was sufficient for maximal association rates of wild-type RNAP with lacUV5 promoter fragments. The alphaCTD and upstream DNA did not affect dissociation rates from the open complex. We suggest that sequence-independent upstream DNA interactions with alphaCTD are major contributors to initiation at many (or all) promoters (not merely promoters containing UP elements) and that these interactions facilitate isomerization events occurring well downstream of the alpha-binding sites. In addition to highlighting the functional importance of nonspecific protein-DNA interactions, these results suggest also that UP element-alphaCTD interactions play an even larger role in transcription initiation than appreciated previously.
Collapse
Affiliation(s)
- Wilma Ross
- Department of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706, USA
| | | |
Collapse
|
22
|
Kearns DB, Chu F, Branda SS, Kolter R, Losick R. A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 2004; 55:739-49. [PMID: 15661000 DOI: 10.1111/j.1365-2958.2004.04440.x] [Citation(s) in RCA: 442] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wild strains of Bacillus subtilis are capable of forming architecturally complex communities of cells known as biofilms. Critical to biofilm formation is the eps operon, which is believed to be responsible for the biosynthesis of an exopolysaccharide that binds chains of cells together in bundles. We report that transcription of eps is under the negative regulation of SinR, a repressor that was found to bind to multiple sites in the regulatory region of the operon. Mutations in sinR bypassed the requirement in biofilm formation of two genes of unknown function, ylbF and ymcA, and sinI, which is known to encode an antagonist of SinR. We propose that these genes are members of a pathway that is responsible for counteracting SinR-mediated repression. We further propose that SinR is a master regulator that governs the transition between a planktonic state in which the bacteria swim as single cells in liquid or swarm in small groups over surfaces, and a sessile state in which the bacteria adhere to each other to form bundled chains and assemble into multicellular communities.
Collapse
Affiliation(s)
- Daniel B Kearns
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
23
|
Krásný L, Gourse RL. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J 2004; 23:4473-83. [PMID: 15496987 PMCID: PMC526457 DOI: 10.1038/sj.emboj.7600423] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 08/25/2004] [Indexed: 11/08/2022] Open
Abstract
As an approach to the study of rRNA synthesis in Gram-positive bacteria, we characterized the regulation of the Bacillus subtilis rrnB and rrnO rRNA promoters. We conclude that B. subtilis and Escherichia coli use different strategies to control rRNA synthesis. In contrast to E. coli, it appears that the initiating NTP for transcription from B. subtilis rRNA promoters is GTP, promoter strength is determined primarily by the core promoter (-10/-35 region), and changes in promoter activity always correlate with changes in the intracellular GTP concentration. rRNA promoters in B. subtilis appear to be regulated by changes in the initiating NTP pools, but in some growth transitions, changes in rRNA promoter activity are also dependent on relA, which codes for ppGpp synthetase. In contrast to the situation for E. coli where ppGpp decreases rRNA promoter activity by directly inhibiting RNA polymerase, it appears that ppGpp may not inhibit B. subtilis RNA polymerase directly. Rather, increases in the ppGpp concentration might reduce the available GTP pools, thereby modulating rRNA promoter activity indirectly.
Collapse
Affiliation(s)
- Libor Krásný
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
- Department of Gene Expression, Institute of Molecular Genetics, Prague, Czech Republic
| | - Richard L Gourse
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706, USA. Tel.: +1 608 262 9813; Fax: +1 608 262 9865; E-mail:
| |
Collapse
|
24
|
Amati G, Bisicchia P, Galizzi A. DegU-P represses expression of the motility fla-che operon in Bacillus subtilis. J Bacteriol 2004; 186:6003-14. [PMID: 15342569 PMCID: PMC515139 DOI: 10.1128/jb.186.18.6003-6014.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis implements several adaptive strategies to cope with nutrient limitation experienced at the end of exponential growth. The DegS-DegU two-component system is part of the network involved in the regulation of postexponential responses, such as competence development, the production of exoenzymes, and motility. The degU32(Hy) mutation extends the half-life of the phosphorylated form of DegU (DegU-P); this in turn increases the production of alkaline protease, levan-sucrase, and other exoenzymes and inhibits motility and the production of flagella. The expression of the flagellum-specific sigma factor SigD, of the flagellin gene hag, and of the fla-che operon is strongly reduced in a degU32(Hy) genetic background. To investigate the mechanism of action of DegU-P on motility, we isolated mutants of degU32(Hy) that completely suppressed the motility deficiency. The mutations were genetically mapped and characterized by PCR and sequencing. Most of the mutations were found to delete a transcriptional termination signal upstream of the main flagellar operon, fla-che, thus allowing transcriptional readthrough from the cod operon. Two additional mutations improved the sigmaA-dependent promoter sequence of the fla-che operon. Using an electrophoretic mobility shift assay, we have demonstrated that purified DegU binds specifically to the PA promoter region of the fla-che operon. The data suggest that DegU represses transcription of the fla-che operon, and they indicate a central role of the operon in regulating the synthesis and assembly of flagella.
Collapse
Affiliation(s)
- Giuseppe Amati
- Dipartimento di Genetica e Microbiologia, Via Abbiategrasso 207, 27100 Pavia, Italy.
| | | | | |
Collapse
|
25
|
Susanna KA, van der Werff AF, den Hengst CD, Calles B, Salas M, Venema G, Hamoen LW, Kuipers OP. Mechanism of transcription activation at the comG promoter by the competence transcription factor ComK of Bacillus subtilis. J Bacteriol 2004; 186:1120-8. [PMID: 14762007 PMCID: PMC344208 DOI: 10.1128/jb.186.4.1120-1128.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of genetic competence in Bacillus subtilis is regulated by a complex signal transduction cascade, which results in the synthesis of the competence transcription factor, encoded by comK. ComK is required for the transcription of the late competence genes that encode the DNA binding and uptake machinery and of genes required for homologous recombination. In vivo and in vitro experiments have shown that ComK is responsible for transcription activation at the comG promoter. In this study, we investigated the mechanism of this transcription activation. The intrinsic binding characteristics of RNA polymerase with and without ComK at the comG promoter were determined, demonstrating that ComK stabilizes the binding of RNA polymerase to the comG promoter. This stabilization probably occurs through interactions with the upstream DNA, since a deletion of the upstream DNA resulted in an almost complete abolishment of stabilization of RNA polymerase binding. Furthermore, a strong requirement for the presence of an extra AT box in addition to the common ComK-binding site was shown. In vitro transcription with B. subtilis RNA polymerase reconstituted with wild-type alpha-subunits and with C-terminal deletion mutants of the alpha-subunits was performed, demonstrating that these deletions do not abolish transcription activation by ComK. This indicates that ComK is not a type I activator. We also show that ComK is not required for open complex formation. A possible mechanism for transcription activation is proposed, implying that the major stimulatory effect of ComK is on binding of RNA polymerase.
Collapse
Affiliation(s)
- K A Susanna
- Department of Genetics, University of Groningen, NL-9751 NN Haren, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Meijer WJJ, Salas M. Relevance of UP elements for three strong Bacillus subtilis phage phi29 promoters. Nucleic Acids Res 2004; 32:1166-76. [PMID: 14973248 PMCID: PMC373416 DOI: 10.1093/nar/gkh290] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Various Escherichia coli promoters contain, in addition to the classical -35 and -10 hexamers, a third recognition element, named the UP element. Located upstream of the -35 box, UP elements stimulate promoter activity by forming a docking site for the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD). Accumulating genetic, biochemical and structural information has provided a detailed picture on the molecular mechanism underlying UP element-dependent promoter stimulation in E.coli. However, far less is known about functional UP elements of Bacillus subtilis promoters. Here we analyse the strong early sigma(A)-RNA polymerase-dependent promoters C2, A2c and A2b of the lytic B.subtilis phage phi29. We demonstrate that the phage promoters contain functional UP elements although their contribution to promoter strength is very different. Moreover, we show that the UP element of the A2b promoter, being critical for its activity, is located further upstream of the -35 box than most E.coli UP elements. The importance of the UP elements for the phage promoters and how they relate to other UP elements are discussed.
Collapse
Affiliation(s)
- Wilfried J J Meijer
- Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | |
Collapse
|
27
|
Senesi S, Ghelardi E, Celandroni F, Salvetti S, Parisio E, Galizzi A. Surface-associated flagellum formation and swarming differentiation in Bacillus subtilis are controlled by the ifm locus. J Bacteriol 2004; 186:1158-64. [PMID: 14762011 PMCID: PMC344213 DOI: 10.1128/jb.186.4.1158-1164.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Accepted: 10/21/2003] [Indexed: 11/20/2022] Open
Abstract
Knowledge of the highly regulated processes governing the production of flagella in Bacillus subtilis is the result of several observations obtained from growing this microorganism in liquid cultures. No information is available regarding the regulation of flagellar formation in B. subtilis in response to contact with a solid surface. One of the best-characterized responses of flagellated eubacteria to surfaces is swarming motility, a coordinate cell differentiation process that allows collective movement of bacteria over solid substrates. This study describes the swarming ability of a B. subtilis hypermotile mutant harboring a mutation in the ifm locus that has long been known to affect the degree of flagellation and motility in liquid media. On solid media, the mutant produces elongated and hyperflagellated cells displaying a 10-fold increase in extracellular flagellin. In contrast to the mutant, the parental strain, as well as other laboratory strains carrying a wild-type ifm locus, fails to activate a swarm response. Furthermore, it stops to produce flagella when transferred from liquid to solid medium. Evidence is provided that the absence of flagella is due to the lack of flagellin gene expression. However, restoration of flagellin synthesis in cells overexpressing sigma(D) or carrying a deletion of flgM does not recover the ability to assemble flagella. Thus, the ifm gene plays a determinantal role in the ability of B. subtilis to contact with solid surfaces.
Collapse
Affiliation(s)
- Sonia Senesi
- Dipartimento di Patologia Sperimentale, Biotecnologie Mediche, Infettivologia ed Epidemiologia, Università di Pisa, 56127 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Macchi R, Montesissa L, Murakami K, Ishihama A, De Lorenzo V, Bertoni G. Recruitment of sigma54-RNA polymerase to the Pu promoter of Pseudomonas putida through integration host factor-mediated positioning switch of alpha subunit carboxyl-terminal domain on an UP-like element. J Biol Chem 2003; 278:27695-702. [PMID: 12754257 DOI: 10.1074/jbc.m303031200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interactions between the sigma54-containing RNA polymerase (sigma54-RNAP) and the region of the Pseudomonas putida Pu promoter spanning from the enhancer to the binding site for the integration host factor (IHF) were analyzed both by DNase I and hydroxyl radical footprinting. A short Pu region centered at position -104 was found to be involved in the interaction with sigma54-RNAP, both in the absence and in the presence of IHF protein. Deletion or scrambling of the -104 region strongly reduced promoter affinity in vitro and promoter activity in vivo, respectively. The reduction in promoter affinity coincided with the loss of IHF-mediated recruitment of the sigma54-RNAP in vitro. The experiments with oriented-alpha sigma54-RNAP derivatives containing bound chemical nuclease revealed interchangeable positioning of only one of the two alpha subunit carboxyl-terminal domains (alphaCTDs) both at the -104 region and in the surroundings of position -78. The addition of IHF resulted in perfect position symmetry of the two alphaCTDs. These results indicate that, in the absence of IHF, the sigma54-RNAP asymmetrically uses only one alphaCTD subunit to establish productive contacts with upstream sequences of the Pu promoter. In the presence of IHF-induced curvature, the closer proximity of the upstream DNA to the body of the sigma54-RNAP can allow the other alphaCTD to be engaged in and thus favor closed complex formation.
Collapse
Affiliation(s)
- Raffaella Macchi
- Dipartimento di Genetica e Biologia dei Microrganismi, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- John D Helmann
- Department of Microbiology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
30
|
Katayama S, Matsushita O, Tamai E, Miyata S, Okabe A. Phased A-tracts bind to the alpha subunit of RNA polymerase with increased affinity at low temperature. FEBS Lett 2001; 509:235-8. [PMID: 11741595 DOI: 10.1016/s0014-5793(01)03148-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previously we showed that the expression of a Clostridium perfringens phospholipase C gene (plc) is activated by promoter upstream phased A-tracts in a low temperature-dependent manner. In this paper we characterize the interaction between the alpha subunit of C. perfringens RNA polymerase and the phased A-tracts. Hydroxyl radical footprinting and fluorescence polarization assaying revealed that the alpha subunit binds to the minor grooves of the phased A-tracts through its C-terminal domain with increased affinity at low temperature. The result provides a molecular mechanism underlying the activation of the plc promoter by the phased A-tracts.
Collapse
Affiliation(s)
- S Katayama
- Department of Biochemistry and Chemistry, Faculty of Science, Okayama University of Science, 1-1, Ridai-cho, Okayama 700-0005, Japan
| | | | | | | | | |
Collapse
|
31
|
Meng W, Belyaeva T, Savery NJ, Busby SJ, Ross WE, Gaal T, Gourse RL, Thomas MS. UP element-dependent transcription at the Escherichia coli rrnB P1 promoter: positional requirements and role of the RNA polymerase alpha subunit linker. Nucleic Acids Res 2001; 29:4166-78. [PMID: 11600705 PMCID: PMC60210 DOI: 10.1093/nar/29.20.4166] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The UP element stimulates transcription from the rrnB P1 promoter through a direct interaction with the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD). We investigated the effect on transcription from rrnB P1 of varying both the location of the UP element and the length of the alpha subunit interdomain linker, separately and in combination. Displacement of the UP element by a single turn of the DNA helix resulted in a large decrease in transcription from rrnB P1, while displacement by half a turn or two turns totally abolished UP element-dependent transcription. Deletions of six or more amino acids from within the alpha subunit linker resulted in a decrease in UP element-dependent stimulation, which correlated with decreased binding of alphaCTD to the UP element. Increasing the alpha linker length was less deleterious to RNA polymerase function at rrnB P1 but did not compensate for the decrease in activation that resulted from displacing the UP element. Our results suggest that the location of the UP element at rrnB P1 is crucial to its function and that the natural length of the alpha subunit linker is optimal for utilisation of the UP element at this promoter.
Collapse
Affiliation(s)
- W Meng
- Laboratory of Molecular Microbiology, Division of Genomic Medicine, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Scholz HC, Riedmann E, Witte A, Lubitz W, Kuen B. S-layer variation in Bacillus stearothermophilus PV72 is based on DNA rearrangements between the chromosome and the naturally occurring megaplasmids. J Bacteriol 2001; 183:1672-9. [PMID: 11160098 PMCID: PMC95052 DOI: 10.1128/jb.183.5.1672-1679.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus stearothermophilus PV72 expresses different S-layer genes (sbsA and sbsB) under different growth conditions. No stretches of significant sequence identity between sbsA and sbsB were detected. In order to investigate S-layer gene regulation in B. stearothermophilus PV72, we characterized the upstream regulatory region of sbsA and sbsB by sequencing and primer extension analysis. Both genes are transcribed from unique but different promoters, independently of the growth phase. Localization of sbsB in the sbsA-expressing strain PV72/p6 revealed that the coding region of the second S-layer gene sbsB is located not on the chromosome but on a natural megaplasmid of the strain, whereas the upstream regulatory region of sbsB was exclusively detected on the chromosome of PV72/p6. For sbsB expression, the coding region has to be integrated into the chromosomally located expression site. After the switch to sbsB expression, the sbsA coding region was removed from the chromosome but could still be detected on the plasmid of the sbsB-expressing strain PV72/p2. The sbsA upstream regulatory region, however, remained on the chromosome. This is the first report of S-layer variation not caused by intrachromosomal DNA rearrangements, but where variant formation depends on recombinational events between the plasmid and the chromosome.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Base Sequence
- Chromosomes, Bacterial/genetics
- DNA Primers/genetics
- Gene Expression Regulation, Bacterial/genetics
- Genetic Variation/genetics
- Geobacillus stearothermophilus/genetics
- Geobacillus stearothermophilus/growth & development
- Membrane Proteins/genetics
- Molecular Sequence Data
- Plasmids/genetics
- Promoter Regions, Genetic
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- Recombination, Genetic/genetics
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- H C Scholz
- Institute of Animal Hygiene and Public Veterinary Health, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
33
|
Ross W, Ernst A, Gourse RL. Fine structure of E. coli RNA polymerase-promoter interactions: alpha subunit binding to the UP element minor groove. Genes Dev 2001; 15:491-506. [PMID: 11238372 PMCID: PMC312649 DOI: 10.1101/gad.870001] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The alpha subunit of E. coli RNAP plays an important role in the recognition of many promoters by binding to the A+T-rich UP element, a DNA sequence located upstream of the recognition elements for the sigma subunit, the -35 and -10 hexamers. We examined DNA-RNAP interactions using high resolution interference and protection footprinting methods and using the minor groove-binding drug distamycin. Our results suggest that alpha interacts with bases in the DNA minor groove and with the DNA backbone along the minor groove, but that UP element major groove surfaces do not make a significant contribution to alpha binding. On the basis of these and previous results, we propose a model in which alpha contacts UP element DNA through amino acid residues located in a pair of helix-hairpin-helix motifs. Furthermore, our experiments extend existing information about recognition of the core promoter by sigma(70) by identifying functional groups in the major grooves of the -35 and -10 hexamers in which modifications interfere with RNAP binding. These studies greatly improve the resolution of our picture of the promoter-RNAP interaction.
Collapse
Affiliation(s)
- W Ross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
34
|
Yasuno K, Yamazaki T, Tanaka Y, Kodama TS, Matsugami A, Katahira M, Ishihama A, Kyogoku Y. Interaction of the C-terminal domain of the E. coli RNA polymerase alpha subunit with the UP element: recognizing the backbone structure in the minor groove surface. J Mol Biol 2001; 306:213-25. [PMID: 11237595 DOI: 10.1006/jmbi.2000.4369] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The C-terminal domain of the alpha-subunit of Escherichia coli RNA polymerase (alphaCTD) is responsible for transcriptional activation through interaction with both activator proteins and UP element DNA. Previously, we determined the solution structure of alphaCTD. Here, we investigated the interaction between alphaCTD and UP element DNA by NMR. DNA titration curves and intermolecular NOE measurements indicate that alphaCTD can bind to multiple sites on the UP element DNA. Unlike many transcription factors, alphaCTD does not have a strict base sequence requirement for binding. There is a good correlation between the strength of the interaction and the extent of intrinsic bending of the DNA oligomer estimated from the gel retardation assay. We propose that alphaCTD recognizes the backbone structure of DNA oligomers responsible for the intrinsic bending. Moreover, NMR studies and drug competition experiments indicated that alphaCTD interacts with the UP element on the minor groove side of the DNA. The C-terminal end of helix-1, the N-terminal end of helix-4, and the loop between helices 3 and 4 are used for the interaction. Based on these observations, we propose a model for the UP element-alphaCTD complex.
Collapse
Affiliation(s)
- K Yasuno
- Division of Molecular Biophysics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Osaka, Suita, 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kunnimalaiyaan M, Stevenson DM, Zhou Y, Vary PS. Analysis of the replicon region and identification of an rRNA operon on pBM400 of Bacillus megaterium QM B1551. Mol Microbiol 2001; 39:1010-21. [PMID: 11251820 DOI: 10.1046/j.1365-2958.2001.02292.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An 18 633 bp region containing the replicon from the approximately 53 kb pBM400 plasmid of Bacillus megaterium QM B1551 has been sequenced and characterized. This region contained a complete rRNA operon plus 10 other potential open reading frames (ORFs). The replicon consisted of an upstream promoter and three contiguous genes (repM400, orfB and orfC) that could encode putative proteins of 428, 251 and 289 amino acids respectively. A 1.6 kb minimal replicon was defined and contained most of repM400. OrfB was shown to be required for stability. Three 12 bp identical tandem repeats were located within the coding region of repM400, and their presence on another plasmid caused incompatibility with their own cognate replicon. Nonsense, frameshift and deletion mutations in repM400 prevented replication, but each mutation could be complemented in trans. RepM400 had no significant similarity to sequences in the GenBank database, whereas five other ORFs had some similarity to gene products from other plasmids and the Bacillus genome. An rRNA operon was located upstream of the replication region and is the first rRNA operon to be sequenced from B. megaterium. Its unusual location on non-essential plasmid DNA has implications for systematics and evolutionary biology.
Collapse
Affiliation(s)
- M Kunnimalaiyaan
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | | | | | | |
Collapse
|
36
|
Gourse RL, Ross W, Gaal T. UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. Mol Microbiol 2000; 37:687-95. [PMID: 10972792 DOI: 10.1046/j.1365-2958.2000.01972.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In recent years, it has become clear that promoter recognition by bacterial RNA polymerase involves interactions not only between core promoter elements and the sigma subunit, but also between a DNA element upstream of the core promoter and the alpha subunit. DNA binding by alpha can increase transcription dramatically. Here we review the current state of our understanding of the alpha interaction with DNA during basal transcription initiation (i.e. in the absence of proteins other than RNA polymerase) and activated transcription initiation (i.e. when stimulated by transcription factors).
Collapse
Affiliation(s)
- R L Gourse
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
37
|
Estrem ST, Ross W, Gaal T, Chen ZW, Niu W, Ebright RH, Gourse RL. Bacterial promoter architecture: subsite structure of UP elements and interactions with the carboxy-terminal domain of the RNA polymerase alpha subunit. Genes Dev 1999; 13:2134-47. [PMID: 10465790 PMCID: PMC316962 DOI: 10.1101/gad.13.16.2134] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We demonstrate here that the previously described bacterial promoter upstream element (UP element) consists of two distinct subsites, each of which, by itself, can bind the RNA polymerase holoenzyme alpha subunit carboxy-terminal domain (RNAP alphaCTD) and stimulate transcription. Using binding-site-selection experiments, we identify the consensus sequence for each subsite. The selected proximal subsites (positions -46 to -38; consensus 5'-AAAAAARNR-3') stimulate transcription up to 170-fold, and the selected distal subsites (positions -57 to -47; consensus 5'-AWWWWWTTTTT-3') stimulate transcription up to 16-fold. RNAP has subunit composition alpha(2)betabeta'sigma and thus contains two copies of alphaCTD. Experiments with RNAP derivatives containing only one copy of alphaCTD indicate, in contrast to a previous report, that the two alphaCTDs function interchangeably with respect to UP element recognition. Furthermore, function of the consensus proximal subsite requires only one copy of alphaCTD, whereas function of the consensus distal subsite requires both copies of alphaCTD. We propose that each subsite constitutes a binding site for a copy of alphaCTD, and that binding of an alphaCTD to the proximal subsite region (through specific interactions with a consensus proximal subsite or through nonspecific interactions with a nonconsensus proximal subsite) is a prerequisite for binding of the other alphaCTD to the distal subsite.
Collapse
Affiliation(s)
- S T Estrem
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706 USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Gourse RL, Gaal T, Aiyar SE, Barker MM, Estrem ST, Hirvonen CA, Ross W. Strength and regulation without transcription factors: lessons from bacterial rRNA promoters. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:131-9. [PMID: 10384277 DOI: 10.1101/sqb.1998.63.131] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- R L Gourse
- Department of Bacteriology, University of Wisconsin, Madison 53706, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Katayama S, Matsushita O, Jung CM, Minami J, Okabe A. Promoter upstream bent DNA activates the transcription of the Clostridium perfringens phospholipase C gene in a low temperature-dependent manner. EMBO J 1999; 18:3442-50. [PMID: 10369683 PMCID: PMC1171423 DOI: 10.1093/emboj/18.12.3442] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The phospholipase C gene (plc) of Clostridium perfringens possesses three phased A-tracts forming bent DNA upstream of the promoter. An in vitro transcription assay involving C.perfringens RNA polymerase (RNAP) showed that the phased A-tracts have a stimulatory effect on the plc promoter, and that the effect is proportional to the number of A-tracts, and more prominent at lower temperature. A gel retardation assay and hydroxyl radical footprinting revealed that the phased A-tracts facilitate the formation of the RNAP-plc promoter complex through extension of the contact region. The upstream (UP) element of the Escherichia coli rrnB P1 promoter stimulated the downstream promoter activity temperature independently, differing from the phased A-tracts. When the UP element was placed upstream of the plc promoter, low temperature-dependent stimulation was observed, although this effect was less prominent than that of the phased A-tracts. These results suggest that both the phased A-tracts and UP element cause low temperature-dependent activation of the plc promoter through a similar mechanism, and that the more efficient low temperature-dependent activation by the phased A-tracts may be due to an increase in the bending angle at a lower temperature.
Collapse
Affiliation(s)
- S Katayama
- Department of Microbiology, Faculty of Medicine, Kagawa Medical University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | |
Collapse
|
40
|
Ide N, Ikebe T, Kutsukake K. Reevaluation of the promoter structure of the class 3 flagellar operons of Escherichia coli and Salmonella. Genes Genet Syst 1999; 74:113-6. [PMID: 10586520 DOI: 10.1266/ggs.74.113] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Flagellar class 3 operons of Escherichia coli and Salmonella are transcribed by RNA polymerase containing sigma 28. The consensus sequence of the sigma 28-dependent promoters was believed to be TAAA N15 GCCGATAA. In this study, we found that the E. coli genome contains a large number of sequences homologous to this consensus. However, we showed that they do not always exert a sigma 28-dependent promoter activity. We compare more carefully the sequences of the class 3 flagellar promoters and propose a revised structure of the sigma 28-dependent promoters as TAAAGTTT N11 GCCGATAA.
Collapse
Affiliation(s)
- N Ide
- Faculty of Applied Biological Science, Hiroshima University, Japan
| | | | | |
Collapse
|
41
|
Yang DH, von Kalckreuth J, Allmansberger R. Synthesis of the sigmaD protein is not sufficient to trigger expression of motility functions in Bacillus subtilis. J Bacteriol 1999; 181:2942-6. [PMID: 10217790 PMCID: PMC93741 DOI: 10.1128/jb.181.9.2942-2946.1999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1998] [Accepted: 02/17/1999] [Indexed: 11/20/2022] Open
Abstract
The gene encoding sigmaD, sigD, is transcribed from two promoter regions, the fla/che promoter region in front of the fla/che operon and PsigD directly in front of sigD. If sigmaD is translated from transcripts originating from PsigD, the cell is unable to express motility functions but synthesizes autolysins. Therefore, one function of the additional promoter is to allow the cell to express autolysins without expressing motility functions as well.
Collapse
Affiliation(s)
- D H Yang
- Lehrstuhl für Mikrobiologie, Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | | | | |
Collapse
|
42
|
Aiyar SE, Gourse RL, Ross W. Upstream A-tracts increase bacterial promoter activity through interactions with the RNA polymerase alpha subunit. Proc Natl Acad Sci U S A 1998; 95:14652-7. [PMID: 9843944 PMCID: PMC24504 DOI: 10.1073/pnas.95.25.14652] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upstream A-tracts stimulate transcription from a variety of bacterial promoters, and this has been widely attributed to direct effects of the intrinsic curvature of A-tract-containing DNA. In this work we report experiments that suggest a different mechanism for the effects of upstream A-tracts on transcription. The similarity of A-tract-containing sequences to the adenine- and thymine-rich upstream recognition elements (UP elements) found in some bacterial promoters suggested that A-tracts might increase promoter activity by interacting with the alpha subunit of RNA polymerase (RNAP). We found that an A-tract-containing sequence placed upstream of the Escherichia coli lac or rrnB P1 promoters stimulated transcription both in vivo and in vitro, and that this stimulation required the C-terminal (DNA-binding) domain of the RNAP alpha subunit. The A-tract sequence was protected by wild-type RNAP but not by alpha-mutant RNAPs in footprints. The effect of the A-tracts on transcription was not as great as that of the most active UP elements, consistent with the degree of similarity of the A-tract sequence to the UP element consensus. A-tracts functioned best when positioned close to the -35 hexamer rather than one helical turn farther upstream, similar to the positioning optimal for UP element function. We conclude that A-tracts function as UP elements, stimulating transcription by providing binding site(s) for the RNAP alphaCTD, and we suggest that these interactions could contribute to the previously described wrapping of promoter DNA around RNAP.
Collapse
Affiliation(s)
- S E Aiyar
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
43
|
Ross W, Aiyar SE, Salomon J, Gourse RL. Escherichia coli promoters with UP elements of different strengths: modular structure of bacterial promoters. J Bacteriol 1998; 180:5375-83. [PMID: 9765569 PMCID: PMC107586 DOI: 10.1128/jb.180.20.5375-5383.1998] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/1998] [Accepted: 08/17/1998] [Indexed: 11/20/2022] Open
Abstract
The alpha subunit of Escherichia coli RNA polymerase (RNAP) participates in promoter recognition through specific interactions with UP element DNA, a region upstream of the recognition hexamers for the sigma subunit (the -10 and -35 hexamers). UP elements have been described in only a small number of promoters, including the rRNA promoter rrnB P1, where the sequence has a very large (30- to 70-fold) effect on promoter activity. Here, we analyzed the effects of upstream sequences from several additional E. coli promoters (rrnD P1, rrnB P2, lambda pR, lac, merT, and RNA II). The relative effects of different upstream sequences were compared in the context of their own core promoters or as hybrids to the lac core promoter. Different upstream sequences had different effects, increasing transcription from 1.5- to approximately 90-fold, and several had the properties of UP elements: they increased transcription in vitro in the absence of accessory protein factors, and transcription stimulation required the C-terminal domain of the RNAP alpha subunit. The effects of the upstream sequences correlated generally with their degree of similarity to an UP element consensus sequence derived previously. Protection of upstream sequences by RNAP in footprinting experiments occurred in all cases and was thus not a reliable indicator of UP element strength. These data support a modular view of bacterial promoters in which activity reflects the composite effects of RNAP interactions with appropriately spaced recognition elements (-10, -35, and UP elements), each of which contributes to activity depending on its similarity to the consensus.
Collapse
Affiliation(s)
- W Ross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
44
|
Rowe-Magnus DA, Mencía M, Rojo F, Salas M, Spiegelman GB. Transcriptional activation of the Bacillus subtilis spoIIG promoter by the response regulator Spo0A is independent of the C-terminal domain of the RNA polymerase alpha subunit. J Bacteriol 1998; 180:4760-3. [PMID: 9721325 PMCID: PMC107497 DOI: 10.1128/jb.180.17.4760-4763.1998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro transcription from the spoIIG promoter by Bacillus subtilis RNA polymerase reconstituted with wild-type alpha subunits and with C-terminal deletion mutants of the alpha subunit was equally stimulated by the response regulator Spo0A. Some differences in the structure of open complexes formed by RNA polymerase containing alpha subunit mutants were noted, although the wild-type and mutant polymerases appeared to use the same initiation mechanism.
Collapse
Affiliation(s)
- D A Rowe-Magnus
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada V6T 1Z3
| | | | | | | | | |
Collapse
|
45
|
Estrem ST, Gaal T, Ross W, Gourse RL. Identification of an UP element consensus sequence for bacterial promoters. Proc Natl Acad Sci U S A 1998; 95:9761-6. [PMID: 9707549 PMCID: PMC21410 DOI: 10.1073/pnas.95.17.9761] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/1998] [Indexed: 11/18/2022] Open
Abstract
The UP element, a component of bacterial promoters located upstream of the -35 hexamer, increases transcription by interacting with the RNA polymerase alpha-subunit. By using a modification of the SELEX procedure for identification of protein-binding sites, we selected in vitro and subsequently screened in vivo for sequences that greatly increased promoter activity when situated upstream of the Escherichia coli rrnB P1 core promoter. A set of 31 of these upstream sequences increased transcription from 136- to 326-fold in vivo, considerably more than the natural rrnB P1 UP element, and was used to derive a consensus sequence: -59 nnAAA(A/T)(A/T)T(A/T)TTTTnnAAAAnnn -38. The most active selected sequence contained the derived consensus, displayed all of the properties of an UP element, and the interaction of this sequence with the alpha C-terminal domain was similar to that of previously characterized UP elements. The identification of the UP element consensus should facilitate a detailed understanding of the alpha-DNA interaction. Based on the evolutionary conservation of the residues in alpha responsible for interaction with UP elements, we suggest that the UP element consensus sequence should be applicable throughout eubacteria, should generally facilitate promoter prediction, and may be of use for biotechnological applications.
Collapse
Affiliation(s)
- S T Estrem
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
46
|
Estacio W, Anna-Arriola SS, Adedipe M, Márquez-Magaña LM. Dual promoters are responsible for transcription initiation of the fla/che operon in Bacillus subtilis. J Bacteriol 1998; 180:3548-55. [PMID: 9657996 PMCID: PMC107321 DOI: 10.1128/jb.180.14.3548-3555.1998] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The fla/che region contains more than 30 genes required for flagellar synthesis and chemotaxis in Bacillus subtilis, including the gene for the flagellum-specific sigmaD factor, sigD. Sequence and primer extension data demonstrate that a PA promoter immediately upstream of flgB, henceforth referred to as the fla/che PA, and the PD-3 promoter are active in vivo. Transcription from the PD-3 element is dependent on sigmaD activity and is regulated by the flagellum-specific negative regulator, FlgM. In a strain containing a deletion of fla/che PA (PADelta), sigmaD protein was not detected, demonstrating that the fla/che PA is necessary for wild-type expression of the sigD gene. Thus, sigD is part of the >26-kb fla/che operon. Consistent with a lack of detectable sigmaD protein, the PADelta strain grows as long filaments and does not express a sigmaD-dependent hag::lacZ reporter construct. These phenotypes are indicative of a lack of sigD expression or complete inhibition of sigmaD activity by FlgM. However, sigmaD activity is found in a double mutant containing the PADelta and a null mutation in flgM. The double mutant no longer grows as long filaments, and expression of hag::lacZ is partially restored. These data demonstrate that a low level of sigmaD activity does exist in the PADelta mutant but can be detected only in the presence of a null mutation in flgM. Therefore, normal expression of sigD may also involve another promoter(s) within the fla/che operon.
Collapse
Affiliation(s)
- W Estacio
- Department of Biology, San Francisco State University, San Francisco, California 94132, USA
| | | | | | | |
Collapse
|
47
|
Savchenko A, Weigel P, Dimova D, Lecocq M, Sakanyan V. The Bacillus stearothermophilus argCJBD operon harbours a strong promoter as evaluated in Escherichia coli cells. Gene 1998; 212:167-77. [PMID: 9611259 DOI: 10.1016/s0378-1119(98)00174-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have shown that the B. stearothermophilus argCJBD genes form a single operon. In B. stearothermophilus, a specific repressor governs operon expression by binding to the argCo operator site overlapping the Parg promoter sequence (Dion et al., 1997). Therefore, the enzymatic and transcriptional analyses performed in this work did not reflect the potential strength of Parg in the native host. For evaluation of the Parg promoter strength, E. coli was used as a host since its own ArgR repressor does not interact with the B. stearothermophilus heterologous operator. Parg-promoted argC gene expression dramatically increased, reaching up to 38% of the total protein in E. coli cells. An AT-rich sequence upstream of a -35 site of Parg was found to be indispensable for the promoter strength. Plasmids carrying the B. stearothermophilus argCJBD operon linked with its Parg/argCo region were unstable in E. coli. Stabilization of plasmids was achieved by repression of B. stearothermophilus arg genes through the action of the B. subtilis AhrC repressor.
Collapse
Affiliation(s)
- A Savchenko
- Unité de Recherche sur la Biocatalyse, Laboratoire de Biotechnologie, Faculté des Sciences et des Techniques, Université de Nantes, 2, rue de la Houssinière, F-44322, Nantes, Cedex 03, France
| | | | | | | | | |
Collapse
|
48
|
Rojo F, Mencía M, Monsalve M, Salas M. Transcription activation and repression by interaction of a regulator with the alpha subunit of RNA polymerase: the model of phage phi 29 protein p4. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 60:29-46. [PMID: 9594570 DOI: 10.1016/s0079-6603(08)60888-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Regulatory protein p4, encoded by Bacillus subtilis phage phi 29, has proved to be a very useful model to analyze the molecular mechanisms of transcription regulation. Protein p4 modulates the transcription of phage phi 29 genome by activating the late A3 promoter (PA3) and simultaneously repressing the two main early promoters, A2b and A2c (or PA2b and PA2c). This review describes in detail the regulatory mechanism leading to activation or repression, and discusses them in the context of the recent findings on the role of the RNA polymerase alpha subunit in transcription regulation. Activation of PA3 implies the p4-mediated stabilization of RNA polymerase at the promoter as a closed complex. Repression of the early A2b promoter occurs by binding of protein p4 to a site that partially overlaps the -35 consensus region of the promoter, therefore preventing the binding of RNA polymerase to the promoter. Repression of the A2c promoter, located 96 bp downstream from PA2b, occurs by a different mechanism that implies the simultaneous binding of protein p4 and RNA polymerase to the promoter in such a way that promoter clearance is inhibited. Interestingly, activation of PA3 and repression of PA2c require an interaction between protein p4 and RNA polymerase, and in both cases this interaction occurs between the same surface of protein p4 and the C-terminal domain of the alpha subunit of RNA polymerase, which provides new insights into how a protein can activate or repress transcription by subtle variations in the protein-DNA complexes formed at promoters.
Collapse
Affiliation(s)
- F Rojo
- Centro Nacional de Biotecnología (CSIC), Universidad Autónoma, Madrid, Spain
| | | | | | | |
Collapse
|
49
|
Wang B, Kraig E, Kolodrubetz D. A new member of the S-layer protein family: characterization of the crs gene from Campylobacter rectus. Infect Immun 1998; 66:1521-6. [PMID: 9529076 PMCID: PMC108083 DOI: 10.1128/iai.66.4.1521-1526.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Strains of the periodontal pathogen Campylobacter rectus express a 150- to 166-kDa protein on their cell surface. This protein forms a paracrystalline lattice, called the surface layer (S-layer), on the outer membrane of this gram-negative bacterium. To initiate a genetic analysis of the function of the S-layer in the pathogenesis of C. rectus, we have cloned and characterized its gene. The S-layer gene (crs) from C. rectus 314 encodes a cell surface protein which does not have a cleaved signal peptide at its amino terminus. Although the amino acid sequence deduced from the crs gene has 50% identity with the amino-terminal 30 amino acids of the four S-layer proteins from Campylobacter fetus, the similarity decreases to less than 16% over the rest of the protein. Thus, the crs gene from C. rectus encodes a novel S-layer protein whose precise role in pathogenesis may differ from that of S-layer proteins from other organisms. Southern and Northern blot analyses with probes from different segments of the crs gene indicate that the S-layer gene is a single-copy, monocistronic gene in C. rectus. RNA end mapping and sequence analyses were used to define the crs promoter; there is an exact match to the Escherichia coli -10 promoter consensus sequence but only a weak match to the -35 consensus element. Southern blots of DNA from another strain of C. rectus, ATCC 33238, demonstrated that the crs gene is also present in that strain but that there are numerous restriction fragment length polymorphisms in the second half of the gene. This finding suggests that the carboxy halves of the S-layer proteins from strains 314 and 33238 differ. It remains to be determined whether the diversities in sequence are reflected in functional or antigenic differences important for the pathogenesis of different C. rectus isolates.
Collapse
Affiliation(s)
- B Wang
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284, USA
| | | | | |
Collapse
|
50
|
Mencía M, Monsalve M, Rojo F, Salas M. Substitution of the C-terminal domain of the Escherichia coli RNA polymerase alpha subunit by that from Bacillus subtilis makes the enzyme responsive to a Bacillus subtilis transcriptional activator. J Mol Biol 1998; 275:177-85. [PMID: 9466901 DOI: 10.1006/jmbi.1997.1463] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulatory protein p4 of Bacillus subtilis phage phi 29 activates transcription from the viral late A3 promoter by interacting with the C-terminal domain (CTD) of the B. subtilis RNA polymerase alpha subunit, thereby stabilizing the holoenzyme at the promoter. Protein p4 does not interact with the Escherichia coli RNA polymerase and cannot activate transcription with this enzyme. We have constructed a chimerical alpha subunit containing the N-terminal domain of the E. coli alpha subunit and the CTD of the B. subtilis alpha subunit. Reconstitution of RNA polymerases containing this chimerical alpha subunit, the E. coli beta and beta' subunits, and the vegetative sigma factor from either E. coli (sigma 70) or B. subtilis (sigma A), generated hybrid enzymes that were responsive to protein p4 and efficiently supported activation at the A3 promoter. Protein p4 activated transcription with the chimerical enzymes through the same activation surface used with B. subtilis RNA polymerase. Therefore, the B. subtilis alpha-CTD allowed activation by p4 even when the rest of the RNA polymerase subunits belonged to E. coli, a distantly related bacterium. These results strongly suggest that protein p4 works essentially by serving as an anchor that stabilizes RNA polymerase at the promoter.
Collapse
Affiliation(s)
- M Mencía
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | | | | | | |
Collapse
|