1
|
Slater AS, McDonald AG, Hickey RM, Davey GP. Glycosyltransferases: glycoengineers in human milk oligosaccharide synthesis and manufacturing. Front Mol Biosci 2025; 12:1587602. [PMID: 40370521 PMCID: PMC12074965 DOI: 10.3389/fmolb.2025.1587602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/11/2025] [Indexed: 05/16/2025] Open
Abstract
Human milk oligosaccharides (HMOs) are a diverse group of complex carbohydrates that play crucial roles in infant health, promoting a beneficial gut microbiota, modulating immune responses, and protecting against pathogens. Central to the synthesis of HMOs are glycosyltransferases, a specialized class of enzymes that catalyse the transfer of sugar moieties to form the complex glycan structures characteristic of HMOs. This review provides an in-depth analysis of glycosyltransferases, beginning with their classification based on structural and functional characteristics. The catalytic activity of these enzymes is explored, highlighting the mechanisms by which they facilitate the precise addition of monosaccharides in HMO biosynthesis. Structural insights into glycosyltransferases are also discussed, shedding light on how their conformational features enable specific glycosidic bond formations. This review maps out the key biosynthetic pathways involved in HMO production, including the synthesis of lactose, and subsequent fucosylation and sialylation processes, all of which are intricately regulated by glycosyltransferases. Industrial methods for HMO synthesis, including chemical, enzymatic, and microbial approaches, are examined, emphasizing the role of glycosyltransferases in these processes. Finally, the review discusses future directions in glycosyltransferase research, particularly in enhancing the efficiency of HMO synthesis and developing advanced analytical techniques to better understand the structural complexity and biological functions of HMOs.
Collapse
Affiliation(s)
- Alanna S. Slater
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Andrew G. McDonald
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Rita M. Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Gavin P. Davey
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Gammariello CS, Hanson J, Relling AE, Oliveira MXS, Sipka AS, Enger KM, Enger BD. Localized mammary gland changes in milk composition and venous blood metabolite concentrations result from sterile subclinical mastitis. J Dairy Sci 2024; 107:6148-6160. [PMID: 38608954 DOI: 10.3168/jds.2023-24044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/06/2024] [Indexed: 04/14/2024]
Abstract
Subclinical mastitis reduces milk yield and elicits undesirable changes in milk composition, but the mechanisms resulting in reduced milk production in affected mammary glands are incompletely understood. This study investigated the effects of sterile inflammation on mammary gland metabolism by assessing changes in milk and venous blood composition. Mid-lactation primiparous Holstein cows (n = 4) had udder halves randomly allocated to treatments; quarters of 1 udder half were infused with 2 billion cfu of formalin-fixed Staphylococcus aureus (FX-STAPH) and quarters of the opposite udder half were infused with saline (SAL). Blood samples were collected from the right and left subcutaneous abdominal veins in 2.6 h intervals until 40 h postchallenge and analyzed for blood gas and metabolite concentrations. Milk from FX-STAPH udder halves had significantly increased SCS by the first milking at 8 h postchallenge. By 16 h postchallenge, FX-STAPH udder halves had increased concentrations of protein and lactate and lower lactose concentrations than SAL udder halves. Milk fat concentrations, milk yields, ECM yields, and the ferric reducing antioxidant power of milk were not significantly different between SAL and FX-STAPH udder halves. Venous blood of FX-STAPH halves had marginally greater concentrations of saturated O2, partial pressures of O2, and glucose concentrations than SAL halves. Conversely, total and partial pressures of CO2 did not differ between udder half treatments, suggesting a shift in local metabolite utilization in FX-STAPH udder halves. These results indicate that changes in milk composition resulting from mastitis are accompanied by changes in some key blood metabolite concentrations. The shift in venous blood metabolite concentrations, along with the marked increase in milk lactate, suggests that local mammary tissue or recruited immune cells, or both, alter metabolite usage in mammary tissues. Future studies are needed to quantify the uptake of key milk precursors during mastitis.
Collapse
Affiliation(s)
- C S Gammariello
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - J Hanson
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - A E Relling
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - M X S Oliveira
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - A S Sipka
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - K M Enger
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - B D Enger
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691.
| |
Collapse
|
3
|
Tran HT, Wan MLY, Ambite I, Cavalera M, Grossi M, Háček J, Esmaeili P, Carneiro ANBM, Chaudhuri A, Ahmadi S, Svanborg C. BAMLET administration via drinking water inhibits intestinal tumor development and promotes long-term health. Sci Rep 2024; 14:3838. [PMID: 38360830 PMCID: PMC10869698 DOI: 10.1038/s41598-024-54040-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
Though new targeted therapies for colorectal cancer, which progresses from local intestinal tumors to metastatic disease, are being developed, tumor specificity remains an important problem, and side effects a major concern. Here, we show that the protein-fatty acid complex BAMLET (bovine alpha-lactalbumin made lethal to tumor cells) can act as a peroral treatment for colorectal cancer. ApcMin/+ mice, which carry mutations relevant to hereditary and sporadic human colorectal cancer, that received BAMLET in the drinking water showed long-term protection against tumor development and decreased expression of tumor growth-, migration-, metastasis- and angiogenesis-related genes. BAMLET treatment via drinking water inhibited the Wnt/β-catenin and PD-1 signaling pathways and prolonged survival without evidence of toxicity. Systemic disease in the lungs, livers, spleens, and kidneys, which accompanied tumor progression, was inhibited by BAMLET treatment. The metabolic response to BAMLET included carbohydrate and lipid metabolism, which were inhibited in tumor prone ApcMin/+ mice and weakly regulated in C57BL/6 mice, suggesting potential health benefits of peroral BAMLET administration in addition to the potent antitumor effects. Together, these findings suggest that BAMLET administration in the drinking water maintains antitumor pressure by removing emergent cancer cells and reprogramming gene expression in intestinal and extra-intestinal tissues.
Collapse
Affiliation(s)
- Hien Thi Tran
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Murphy Lam Yim Wan
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Ines Ambite
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Michele Cavalera
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Mario Grossi
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Jaromir Háček
- Department of Pathology and Molecular Medicine, Motol University Hospital, 2nd Faculty of Medicine, Charles University Praha, 150 06, Prague, Czech Republic
| | - Parisa Esmaeili
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - António N B M Carneiro
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Arunima Chaudhuri
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Shahram Ahmadi
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Catharina Svanborg
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden.
| |
Collapse
|
4
|
Ghanta KP, Mondal S, Bandyopadhyay S. Exploring the Dynamic Heterogeneity at the Interface of a Protein in Aqueous Ionic Liquid Solutions. J Phys Chem B 2022; 126:7271-7285. [DOI: 10.1021/acs.jpcb.2c03940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Krishna Prasad Ghanta
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sandip Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
5
|
Ghanta KP, Mondal S, Mondal S, Bandyopadhyay S. Contrasting Effects of Ionic Liquids of Varying Degree of Hydrophilicity on the Conformational and Interfacial Properties of a Globular Protein. J Phys Chem B 2021; 125:9441-9453. [PMID: 34433280 DOI: 10.1021/acs.jpcb.1c04167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ionic liquids (ILs), depending on their cation-anion combinations, are known to influence the conformational properties and activities of proteins in a nonuniform manner. To obtain microscopic understanding of such influence, it is important to characterize protein-IL interactions and explore the modified solvation environment around the protein. In this work, molecular dynamics (MD) simulations of the globular protein α-lactalbumin have been carried out in aqueous IL solutions containing 1-butyl-3-methylimidazolium cations (BMIM+) in combination with a series of anions with varying degree of hydrophilicity, namely, hexafluorophosphate (PF6-), ethyl sulfate (ETS-), acetate (OAc-), chloride (Cl-), dicyanamide (DCA-), and nitrate (NO3-) . The calculations revealed that ILs with hydrophobic and hydrophilic anions have contrasting influence on conformational flexibility of the protein. It is further observed that the BMIM+ cations exhibit site-specific orientations at the interface depending on the hydrophilicity of the anion component. Most importantly, the results demonstrated enhanced propensity of hydrophilic ILs to replace relatively weaker protein-water hydrogen bonds by stronger protein-IL hydrogen bonds at the protein surface as compared to the hydrophobic ILs. Such breaking of protein-water hydrogen bonds at a greater extent leads to greater loss of water hydrating the protein in the presence of hydrophilic ILs, thereby reducing the protein's stability.
Collapse
Affiliation(s)
- Krishna Prasad Ghanta
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Souvik Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sandip Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
6
|
Wu ZZ, Peng WC, Liu JX, Xu GZ, Wang DM. Effect of chromium methionine supplementation on lactation performance, hepatic respiratory rate and anti-oxidative capacity in early-lactating dairy cows. Animal 2021; 15:100326. [PMID: 34371467 DOI: 10.1016/j.animal.2021.100326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022] Open
Abstract
Chromium may regulate dairy cow metabolism; a chelated formation of chromium methionine (Cr-Met) is available to the feed industry. The objective of this study was to investigate the effect of Cr-Met supplementation on lactation performance, hepatic respiratory rate and anti-oxidative capacity in early-lactating Holstein dairy cows. 64 multiparous cows were assigned to 16 blocks based on parity and milk yield and then the four cows in a block were randomly allocated to four treatment groups with 0, 4, 8 or 16 g/d of Cr-Met per cow supplemented to a basal diet. Cows were moved from an open dry lot to a naturally ventilated tie stall barn 2 weeks before treatment to adapt to this facility, fed and milked at 0630, 1400, and 1930 h every day. The experiment lasted for 12 weeks. Milk yield and composition were recorded weekly. Dry matter intake was measured every 2 weeks for a total of six times throughout the trial. The plasma variables were measured in weeks 4, 8 and 12 of the experiment. Supplementation of Cr-Met did not affect DM intake of cows. As the supplementation of Cr-Met increased, yields of milk, fat, energy corrected milk (P < 0.01) and lactose (P = 0.01) increased in a linear manner. In terms of plasma variables, insulin concentration decreased in a linear manner with Cr-Met supplementation. As for variables relating to hepatic respiration rate, concentrations of pyruvate and NAD in the plasma were increased in quadratic manners, and lactic dehydrogenase activity was linearly increased as Cr-Met feeding levels increased. Moreover, plasma glutathione peroxidase and superoxide dismutase activity were increased in a linear manner. In conclusion, our study suggested that Cr-Met supplementation improved lactation performance of early-lactating dairy cows through enhancing antioxidant capacity and hepatic cellular respiration.
Collapse
Affiliation(s)
- Z Z Wu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - W C Peng
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - J X Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - G Z Xu
- Zinpro Corporation, Eden Prairie, MN 55344, United States
| | - D M Wang
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
7
|
Sadovnikova A, Garcia SC, Hovey RC. A Comparative Review of the Cell Biology, Biochemistry, and Genetics of Lactose Synthesis. J Mammary Gland Biol Neoplasia 2021; 26:181-196. [PMID: 34125364 PMCID: PMC8236053 DOI: 10.1007/s10911-021-09490-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
Lactose is the primary carbohydrate in the milk of most mammals and is unique in that it is only synthesized by epithelial cells in the mammary glands. Lactose is also essential for the development and nutrition of infants. Across species, the concentration of lactose in milk holds a strong positive correlation with overall milk volume. Additionally, there is a range of examples where the onset of lactose synthesis as well as the content of lactose in milk varies between species and throughout a lactation. Despite this diversity, the precursors, genes, proteins and ions that regulate lactose synthesis have not received the depth of study they likely deserve relative to the significance of this simple and abundant molecule. Through this review, our objective is to highlight the requirements for lactose synthesis at the biochemical, cellular and temporal levels through a comparative approach. This overview also serves as the prelude to a companion review describing the dietary, hormonal, molecular, and genetic factors that regulate lactose synthesis.
Collapse
Affiliation(s)
- Anna Sadovnikova
- Graduate Group in Nutritional Biology, Physician Scientist Training Program, University of California, Davis, CA, USA.
- Department of Animal Science, University of California, Davis, CA, USA.
| | - Sergio C Garcia
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, CA, USA
| |
Collapse
|
8
|
Sadovnikova A, Garcia SC, Hovey RC. A Comparative Review of the Extrinsic and Intrinsic Factors Regulating Lactose Synthesis. J Mammary Gland Biol Neoplasia 2021; 26:197-215. [PMID: 34125363 PMCID: PMC8236052 DOI: 10.1007/s10911-021-09491-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
Milk is critical for the survival of all mammalian offspring, where its production by a mammary gland is also positively associated with its lactose concentration. A clearer understanding of the factors that regulate lactose synthesis stands to direct strategies for improving neonatal health while also highlighting opportunities to manipulate and improve milk production and composition. In this review we draw a cross-species comparison of the extra- and intramammary factors that regulate lactose synthesis, with a special focus on humans, dairy animals, and rodents. We outline the various factors known to influence lactose synthesis including diet, hormones, and substrate supply, as well as the intracellular molecular and genetic mechanisms. We also discuss the strengths and limitations of various in vivo and in vitro systems for the study of lactose synthesis, which remains an important research gap.
Collapse
Affiliation(s)
- Anna Sadovnikova
- Graduate Group in Nutritional Biology, Physician Scientist Training Program, University of California, Davis, CA, United States.
- Department of Animal Science, University of California, Davis, CA, United States.
| | - Sergio C Garcia
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, CA, United States
| |
Collapse
|
9
|
Wu J, He S, Yu Z, Lan D, Xiong X, Li Z. Transcriptomic study of yak mammary gland tissue during lactation. Anim Biotechnol 2020; 33:672-679. [PMID: 32959729 DOI: 10.1080/10495398.2020.1823401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Yak milk, a high-quality milk, is one of the best raw materials for dairy products and economically important to pastoral herdsmen. To make a further understanding of the molecular differences in mammary tissues of the yaks with different milk production during lactation, in this study, we took the use of RNA-seq to perform high-throughput sequencing and analysis of the mammary gland transcriptomes of both high-yielding yak and low-yielding yaks during lactation. By the comparison and analysis of the transcriptome data for the mammary gland tissue of high-yielding yak and low-yield yak, 144 differential genes were screened out, of which 49 were upregulated and 95 were downregulated. Further functional analysis indicated that these differential genes involved in multiple classes based on Gene Ontology (GO) and multiple Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The GO analysis showed that the functions of the differential genes are closely related to the carbohydrate metabolism and other biological processes. KEGG pathway analysis revealed that these genes are mostly enriched in the pathway of antigen processing and presentation, phagosome pathway and type I diabetes pathway and enriched followed by extracellular matrix receptor interaction pathway. Moreover, several other pathways related to amino acid metabolism also showed significant enrichment. Here, the mammary gland transcriptomes of high-yielding yak and low-yielding yaks during lactation have for the first time been compared, and the related differential genes have been screened out and analyzed. Our study paves a way for the further elucidation of the basic molecular mechanism of yak mammary gland tissue, and at the same time provides new ideas for improving the milk production of yaks.
Collapse
Affiliation(s)
- Jinbo Wu
- Animal Husbandry Science Institute of ABa Autonomous Prefecture, Hongyuan, P. R. China
| | - Shiming He
- Animal Husbandry Science Institute of ABa Autonomous Prefecture, Hongyuan, P. R. China
| | - Zhonghua Yu
- Animal Husbandry Science Institute of ABa Autonomous Prefecture, Hongyuan, P. R. China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, P. R. China
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, P. R. China
| | - Zhu Li
- Animal Husbandry Science Institute of ABa Autonomous Prefecture, Hongyuan, P. R. China
| |
Collapse
|
10
|
Ghanta KP, Pal T, Mondal S, Bandyopadhyay S. Microscopic Understanding of the Effect of Ionic Liquid on Protein from Molecular Simulation Studies. J Phys Chem B 2020; 124:3909-3921. [PMID: 32302476 DOI: 10.1021/acs.jpcb.0c02001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We have performed molecular dynamics (MD) simulations of the protein α-lactalbumin in aqueous solution containing the ionic liquid (IL) 1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIM][BF4]) as the cosolvent at different concentrations. Attempts have been made to obtain quantitative understanding of the effects of the IL on the conformational features of the protein as well as the distributions of the IL and water around it. The calculations revealed enhanced rigidity of the protein with reduced conformational fluctuations and increasingly correlated local motions in the presence of the IL. Nonuniform relative population of the BMIM+ and BF4- ions at the protein surface with respect to that in the bulk solution has been observed. It is demonstrated that exchange of water by the IL around the protein results in rearrangement of the hydrogen bond network at the interface with breaking of protein-water hydrogen bonds and formation of protein-IL hydrogen bonds. Importantly, it is found that the protein forms increased number of stronger salt bridges in the presence of IL. This shows that the formation of a greater number of such stronger salt bridges is the origin behind the enhanced rigidity of the protein in the presence of the IL.
Collapse
Affiliation(s)
- Krishna Prasad Ghanta
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Tamisra Pal
- Centre for Computational and Data Sciences, Indian Institute of Technology, Kharagpur 721302, India
| | - Sandip Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India.,Centre for Computational and Data Sciences, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
11
|
Spitzer AJ, Tian Q, Choudhary RK, Zhao FQ. Bacterial Endotoxin Induces Oxidative Stress and Reduces Milk Protein Expression and Hypoxia in the Mouse Mammary Gland. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3894309. [PMID: 32273941 PMCID: PMC7128054 DOI: 10.1155/2020/3894309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/19/2019] [Accepted: 02/27/2020] [Indexed: 12/19/2022]
Abstract
The aim of this study was to investigate the mechanisms underlying the reduced milk production during mastitis. We hypothesized that bacterial endotoxin induces hypoxia, oxidative stress, and cell apoptosis while inhibiting milk gene expression in the mammary gland. To test this hypothesis, the left and right sides of the 4th pair of mouse mammary glands were alternatively injected with either lipopolysaccharide (LPS, E. coli 055: B5, 100 μL of 0.2 mg/mL) or sterile PBS through the teat meatus 3 days postpartum. At 10.5 and 22.5 h postinjection, pimonidazole HCl, a hypoxyprobe, was injected intraperitoneally. At 12 or 24 h after the LPS injection, the 4th glands were individually collected (n = 8) and analyzed. LPS treatment induced mammary inflammation at both 12 and 24 h but promoted cell apoptosis only at 12 h. Consistently, H2O2 content was increased at 12 h (P < 0.01), but dropped dramatically at 24 h (P < 0.01) in the LPS-treated gland. Nevertheless, the total antioxidative capacity in tissue tended to be decreased by LPS at both 12 and 24 h (P = 0.07 and 0.06, respectively). In agreement with these findings, LPS increased or tended to increase the mRNA expression of antioxidative genes Nqo1 at 12 h (P = 0.05) and SLC7A11 at 24 h (P = 0.08). In addition, LPS inhibited mammary expression of Csn2 and Lalba across time and protein expression of Csn1s1 at 24 h (P < 0.05). Furthermore, hypoxyprobe staining intensity was greater in the alveoli of the PBS-treated gland than the LPS-treated gland at both 12 and 24 h, demonstrating a rise in oxygen tension by LPS treatment. In summary, our observations indicated that while intramammary LPS challenge incurs inflammation, it induces oxidative stress, increases cell apoptosis and oxygen tension, and differentially inhibits the milk protein expression in the mammary gland.
Collapse
Affiliation(s)
- Alexander Jonathan Spitzer
- Department of Animal and Veterinary Sciences, University of Vermont, 570 Main Street, Burlington, VT 05452, USA
| | - Qing Tian
- Department of Animal and Veterinary Sciences, University of Vermont, 570 Main Street, Burlington, VT 05452, USA
| | - Ratan K. Choudhary
- Department of Animal and Veterinary Sciences, University of Vermont, 570 Main Street, Burlington, VT 05452, USA
| | - Feng-Qi Zhao
- Department of Animal and Veterinary Sciences, University of Vermont, 570 Main Street, Burlington, VT 05452, USA
| |
Collapse
|
12
|
Zhu H, Jia X, Ren M, Yang L, Chen J, Han L, Ding Y, Ding M. Mifepristone Treatment in Pregnant Murine Model Induced Mammary Gland Dysplasia and Postpartum Hypogalactia. Front Cell Dev Biol 2020; 8:102. [PMID: 32154252 PMCID: PMC7047202 DOI: 10.3389/fcell.2020.00102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Mammary gland dysplasia and postpartum hypogalactia often occur in humans and in the livestock breeding industry. However, their underlying mechanisms are not clear yet. Mifepristone, which has a high affinity for progesterone (P4) and glucocorticoid receptors, was exploited here to induce the disorders of mammary gland development and lactation. Four strategies were devised for treating pregnant mice with mifepristone. In the first strategy, mice were administered 1.20 mg mifepristone/kg body weight (BW) on pregnancy day 4 (Pd4). In the second strategy, mifepristone was administered to mice twice, with 1.20 mg/kg BW on Pd4 and 0.40 mg/kg BW on Pd8. In the third strategy, mice were treated with a single dose of 0.40 mg mifepristone/kg BW on Pd8. In the fourth strategy, mice were administered 0.40 mg mifepristone/kg BW on Pd8 and 0.20 mg mifepristone/kg BW on Pd12. The results suggested that mifepristone administration at the dose of 1.20 mg/kg BW on Pd4 caused significant reduction in milk production on lactation day 1 (Ld1), Ld2, and Ld3, as assessed using a weigh-suckle-weigh assay. Mammary β-casein expression, milk yields, litter growth rates, gland structure, and serum concentrations of 17-β estrogen (E2), P4, prolactin (PRL), growth hormone (GH), corticosterone (CORT) and oxytocin (OT) as well as the receptors of these hormones were determined during pregnancy or lactation after performing the first (Pd4) strategy. The results demonstrated that mifepristone administration during early pregnancy decreased β-casein expression, milk yields and litter growth rates, induced fewer alveoli, enlarged alveolar lumina, and altered the levels of E2, P4, PRL, GH, CORT, and OT as well as the mRNA expression of these hormonal receptors during pregnancy or early lactation. The present study on pregnant mice treated with mifepristone offers an innovative murine model to study the mechanism underlying mammary gland dysplasia and postpartum hypogalactia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Snyder NA, Palmer MV, Reinhardt TA, Cunningham KW. Milk biosynthesis requires the Golgi cation exchanger TMEM165. J Biol Chem 2019; 294:3181-3191. [PMID: 30622138 PMCID: PMC6398142 DOI: 10.1074/jbc.ra118.006270] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/02/2019] [Indexed: 11/06/2022] Open
Abstract
Milk is a hallmark of mammals that is critical for normal growth and development of offspring. During biosynthesis of lactose in the Golgi complex, H+ is produced as a by-product, and there is no known mechanism for maintaining luminal pH within the physiological range. Here, using conditional, tissue-specific knockout mice, immunostaining, and biochemical assays, we test whether the putative H+/Ca2+/Mn2+ exchanger known as TMEM165 (transmembrane protein 165) participates in normal milk production. We find TMEM165 is crucial in the lactating mammary gland for normal biosynthesis of lactose and for normal growth rates of nursing pups. The milk of TMEM165-deficient mice contained elevated concentrations of fat, protein, iron, and zinc, which are likely caused by decreased osmosis-mediated dilution of the milk caused by the decreased biosynthesis of lactose. When normalized to total protein levels, only calcium and manganese levels were significantly lower in the milk from TMEM165-deficient dams than control dams. These findings suggest that TMEM165 supplies Ca2+ and Mn2+ to the Golgi complex in exchange for H+ to sustain the functions of lactose synthase and potentially other glycosyl-transferases. Our findings highlight the importance of cation and pH homeostasis in the Golgi complex of professional secretory cells and the critical role of TMEM165 in this process.
Collapse
Affiliation(s)
- Nathan A Snyder
- From the Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218 and
| | - Mitchell V Palmer
- the Bacterial Diseases of Livestock, Research Unit, United States Department of Agriculture/Agricultural Research Services, National Animal Disease Center, Ames, Iowa 50010
| | | | - Kyle W Cunningham
- From the Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218 and
| |
Collapse
|
14
|
Zhu H, Hu L, Liu J, Chen H, Cui C, Song Y, Jin Y, Zhang Y. Generation of β-lactoglobulin-modified transgenic goats by homologous recombination. FEBS J 2016; 283:4600-4613. [PMID: 27917606 DOI: 10.1111/febs.13950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/23/2016] [Accepted: 11/01/2016] [Indexed: 12/16/2022]
Abstract
β-Lactoglobulin (BLG) is a dominant allergen present in the milk of goats and other ungulates, although it is not found in human breast milk. Thus, the presence of BLG restricts the consumption of goat's milk by humans. In the present study, we examined whether the disruption of the BLG gene in goats by homologous recombination (HR) reduced BLG content in goat's milk and decreased the allergic response to milk. In one approach, exon 2 of the BLG gene was efficiently targeted using HR with a BLG knockout vector. In a second approach to disrupt BLG gene expression and drive exogenous human α-lactalbumin (hLA) gene expression, two hLA knock-in constructs were used to target exons 1-4 of the BLG gene via HR, and expression of hLA was then confirmed in goat mammary epithelial cells in vitro. The recombinant clones from both approaches were then used for somatic cell nuclear transfer, generating two transgenic goats possessing a BLG knockout allele or site-specific hLA integration allele. Milk assays demonstrated a reduction in BLG levels in both the BLG knockout and hLA knock-in goats; furthermore, hLA was present in the hLA knock-in goat's milk. Allergenic analysis in mice indicated that the transgenic goat's milk was less allergenic than wild-type goat's milk. These results support the development of gene-targeted animals as an effective tool for reducing allergic reactions to milk and improving nutrition.
Collapse
Affiliation(s)
- Hongmei Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Linyong Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Huatao Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Chenchen Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yujie Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Kamikawa A, Ichii O, Sakazaki J, Ishikawa T. Ca2+-activated Cl− channel currents in mammary secretory cells from lactating mouse. Am J Physiol Cell Physiol 2016; 311:C808-C819. [DOI: 10.1152/ajpcell.00050.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/19/2016] [Indexed: 11/22/2022]
Abstract
The Cl− secretion via Ca2+-activated Cl− channel (CaCC) is critical for fluid secretion in exocrine glands like the salivary gland. Also in the mammary gland, it has been hypothesized that CaCC plays an important role in the secretion of Cl− and aqueous phase of milk. However, there has been no evidence for the functional expression of CaCC in native mammary secretory (MS) cells of lactating animals. We therefore assessed membrane current in MS cells that were freshly isolated from lactating mice using whole cell patch-clamp techniques. In MS cells, we detected CaCC current that exhibited the following characteristics: 1) Ca2+-dependent activation at the concentrations of submicromolar range; 2) voltage-dependent activation; 3) slow kinetics for activation and deactivation; 4) outward rectification of the steady-state current; 5) anion permeability in the sequence of I− > NO3− > Br− > Cl− >> glutamate; 6) inhibition by Cl− channel blockers (niflumic acid, DIDS, and CaCCinh-A01). These characteristics of native CaCC current were similar to reported characteristics of heterologously expressed TMEM16A. RT-PCR analyses showed the expression of multiple CaCC channels including TMEM16A, Best1, and Best3 in the mammary glands of lactating mice. Immunohistochemical staining revealed the localization of TMEM16A protein at the apical membrane of the MS cells. Collectively, our data strongly suggest that MS cells functionally express CaCC, which is at least partly constituted by TMEM16A. The CaCC such as TMEM16A at the apical membrane of the MS cells may influence the quantity and/or quality of milk.
Collapse
Affiliation(s)
- Akihiro Kamikawa
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan; and
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Junpei Sakazaki
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan; and
| | - Toru Ishikawa
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan; and
| |
Collapse
|
16
|
Heo YT, Ha WT, Lee R, Lee WY, Jeong HY, Hwang KC, Song H. Mammary alveolar cell as in vitro evaluation system for casein gene expression involved in glucose level. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:878-885. [PMID: 27660020 PMCID: PMC5411853 DOI: 10.5713/ajas.16.0515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/08/2016] [Accepted: 09/19/2016] [Indexed: 01/09/2023]
Abstract
Objective Glucose is an essential fuel in the energy metabolism and synthesis pathways of all mammalian cells. In lactating animals, glucose is the major precursor for lactose and is a substrate for the synthesis of milk proteins and fat in mammary secretory (alveolar) epithelial cells. However, clear utilization of glucose in mammary cells during lactogenesis is still unknown, due to the lack of in vitro analyzing models. Therefore, the objective of this study was to test the reliability of the mammary alveolar (MAC-T) cell as an in vitro study model for glucose metabolism and lactating system. Methods Undifferentiated MAC-T cells were cultured in three types of Dulbecco’s modified Eagle’s medium with varying levels of glucose (no-glucose: 0 g/L, low-glucose: 1 g/L, and high-glucose: 4.5 g/L) for 8 d, after which differentiation to casein secretion was induced. Cell proliferation and expression levels of apoptotic genes, Insulin like growth factor-1 (IGF1) receptor, oxytocin receptor, αS1, αS2, and β casein genes were analyzed at 1, 2, 4, and 8 d after differentiation. Results The proliferation of MAC-T cells with high-glucose treatment was seen to be significantly higher. Expression of apoptotic genes was not affected in any group. However, expression levels of the mammary development related gene (IGF1 receptor) and lactation related gene (oxytocin receptor) were significantly higher in the low-glucose group. Expressions of αS1-casein, αS2-casein, and β-casein were also higher in the low-glucose treated group as compared to that in the no-glucose and high-glucose groups. Conclusion The results demonstrated that although a high-glucose environment increases cell proliferation in MAC-T cells, a low-glucose treatment to MAC-T cells induces higher expression of casein genes. Our results suggest that the MAC-T cells may be used as an in vitro model to analyze mammary cell development and lactation connected with precise biological effects.
Collapse
Affiliation(s)
- Young Tae Heo
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Korea
| | - Woo Tae Ha
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Korea
| | - Ran Lee
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Korea
| | - Won-Young Lee
- Division of Food Bioscience, RIBHS, College of Biomedical and Health Sciences, Konkuk University, Chung-ju 380-701, Korea
| | - Ha Yeon Jeong
- Department of Animal Resources Development Dairy Science Division, National Institute of Animal Science, RDA, Cheonan 331-801, Korea
| | - Kyu Chan Hwang
- Sooam Biotech Research Foundations, Seoul 152-895, Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
17
|
Zhu H, Liu J, Cui C, Song Y, Ge H, Hu L, Li Q, Jin Y, Zhang Y. Targeting Human α-Lactalbumin Gene Insertion into the Goat β-Lactoglobulin Locus by TALEN-Mediated Homologous Recombination. PLoS One 2016; 11:e0156636. [PMID: 27258157 PMCID: PMC4892491 DOI: 10.1371/journal.pone.0156636] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022] Open
Abstract
Special value of goat milk in human nutrition and well being is associated with medical problems of food allergies which are caused by milk proteins such as β-lactoglobulin (BLG). Here, we employed transcription activator-like effector nuclease (TALEN)-assisted homologous recombination in goat fibroblasts to introduce human α-lactalbumin (hLA) genes into goat BLG locus. TALEN-mediated targeting enabled isolation of colonies with mono- and bi-allelic transgene integration in up to 10.1% and 1.1%, respectively, after selection. Specifically, BLG mRNA levels were gradually decreasing in both mo- and bi-allelic goat mammary epithelial cells (GMECs) while hLA demonstrated expression in GMECs in vitro. Gene-targeted fibroblast cells were efficiently used in somatic cell nuclear transfer, resulting in production of hLA knock-in goats directing down-regulated BLG expression and abundant hLA secretion in animal milk. Our findings provide valuable background for animal milk optimization and expedited development for agriculture and biomedicine.
Collapse
Affiliation(s)
- Hongmei Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chenchen Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yujie Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hengtao Ge
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Linyong Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qian Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
18
|
Lin Y, Sun X, Hou X, Qu B, Gao X, Li Q. Effects of glucose on lactose synthesis in mammary epithelial cells from dairy cow. BMC Vet Res 2016; 12:81. [PMID: 27229304 PMCID: PMC4880877 DOI: 10.1186/s12917-016-0704-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 05/17/2016] [Indexed: 11/10/2022] Open
Abstract
Background Lactose, as the primary osmotic component in milk, is the major determinant of milk volume. Glucose is the primary precursor of lactose. However, the effect of glucose on lactose synthesis in dairy cow mammary glands and the mechanism governing this process are poorly understood. Results Here we showed that glucose has the ability to induce lactose synthesis in dairy cow mammary epithelial cells, as well as increase cell viability and proliferation. A concentration of 12 mM glucose was the optimum concentration to induce cell growth and lactose synthesis in cultured dairy cow mammary epithelial cells. In vitro, 12 mM glucose enhanced lactose content, along with the expression of genes involved in glucose transportation and the lactose biosynthesis pathway, including GLUT1, SLC35A2, SLC35B1, HK2, β4GalT-I, and AKT1. In addition, we found that AKT1 knockdown inhibited cell growth and lactose synthesis as well as expression of GLUT1, SLC35A2, SLC35B1, HK2, and β4GalT-I. Conclusions Glucose induces cell growth and lactose synthesis in dairy cow mammary epithelial cells. Protein kinase B alpha acts as a regulator of metabolism in dairy cow mammary gland to mediate the effects of glucose on lactose synthesis. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0704-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ye Lin
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoxu Sun
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoming Hou
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Qu
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| | - Xuejun Gao
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| | - Qingzhang Li
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
19
|
Osorio JS, Lohakare J, Bionaz M. Biosynthesis of milk fat, protein, and lactose: roles of transcriptional and posttranscriptional regulation. Physiol Genomics 2016; 48:231-56. [DOI: 10.1152/physiolgenomics.00016.2015] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The demand for high-quality milk is increasing worldwide. The efficiency of milk synthesis can be improved by taking advantage of the accumulated knowledge of the transcriptional and posttranscriptional regulation of genes coding for proteins involved in the synthesis of fat, protein, and lactose in the mammary gland. Research in this area is relatively new, but data accumulated in the last 10 years provide a relatively clear picture. Milk fat synthesis appears to be regulated, at least in bovines, by an interactive network between SREBP1, PPARγ, and LXRα, with a potential role for other transcription factors, such as Spot14, ChREBP, and Sp1. Milk protein synthesis is highly regulated by insulin, amino acids, and amino acid transporters via transcriptional and posttranscriptional routes, with the insulin-mTOR pathway playing a central role. The transcriptional regulation of lactose synthesis is still poorly understood, but it is clear that glucose transporters play an important role. They can also cooperatively interact with amino acid transporters and the mTOR pathway. Recent data indicate the possibility of nutrigenomic interventions to increase milk fat synthesis by feeding long-chain fatty acids and milk protein synthesis by feeding amino acids. We propose a transcriptional network model to account for all available findings. This model encompasses a complex network of proteins that control milk synthesis with a cross talk between milk fat, protein, and lactose regulation, with mTOR functioning as a central hub.
Collapse
Affiliation(s)
| | - Jayant Lohakare
- Oregon State University, Corvallis, Oregon; and
- Kangwon National University, Chuncheon, South Korea
| | | |
Collapse
|
20
|
Montazer-Torbati F, Boutinaud M, Brun N, Richard C, Neveu A, Jaffrézic F, Laloë D, LeBourhis D, Nguyen M, Chadi S, Jammes H, Renard JP, Chat S, Boukadiri A, Devinoy E. Differences during the first lactation between cows cloned by somatic cell nuclear transfer and noncloned cows. J Dairy Sci 2016; 99:4778-4794. [PMID: 27016834 DOI: 10.3168/jds.2015-10532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/08/2016] [Indexed: 01/06/2023]
Abstract
Lactation performance is dependent on both the genetic characteristics and the environmental conditions surrounding lactating cows. However, individual variations can still be observed within a given breed under similar environmental conditions. The role of the environment between birth and lactation could be better appreciated in cloned cows, which are presumed to be genetically identical, but differences in lactation performance between cloned and noncloned cows first need to be clearly evaluated. Conflicting results have been described in the literature, so our aim was to clarify this situation. Nine cloned Prim' Holstein cows were produced by the transfer of nuclei from a single fibroblast cell line after cell fusion with enucleated oocytes. The cloned cows and 9 noncloned counterparts were raised under similar conditions. Milk production and composition were recorded monthly from calving until 200d in milk. At 67d in milk, biopsies were sampled from the rear quarter of the udder, their mammary epithelial cell content was evaluated, and mammary cell renewal, RNA, and DNA were then analyzed in relevant samples. The results showed that milk production did not differ significantly between cloned and noncloned cows, but milk protein and fat contents were less variable in cloned cows. Furthermore, milk fat yield and contents were lower in cloned cows during early lactation. At around 67 DIM, milk fat and protein yields, as well as milk fat, protein, and lactose contents, were also lower in cloned cows. These lower yields could be linked to the higher apoptotic rate observed in cloned cows. Apoptosis is triggered by insulin-like factor growth binding protein 5 (IGFBP5) and plasminogen activator inhibitor (PAI), which both interact with CSN1S2. During our experiments, CSN1S2 transcript levels were lower in the mammary gland of cloned cows. The mammary cell apoptotic rate observed in cloned cows may have been related to the higher levels of DNA (cytosine-5-)-methyltransferase 1 (DNMT1) transcripts, coding for products that maintain the epigenetic status of cells. We conclude, therefore, that milk production in cloned cows differs slightly from that of noncloned cows. These differences may be due, in part, to a higher incidence of subclinical mastitis. They were associated with differences in cell apoptosis and linked to variations in DNMT1 mRNA. However, milk protein and fat contents were more similar among cloned cows than among noncloned cows.
Collapse
Affiliation(s)
| | - M Boutinaud
- INRA, UMR1348 Pegase, F-35590 Saint Gilles, France; Agrocampus Ouest, UMR1348 Pegase, F-35000 Rennes, France
| | - N Brun
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France
| | - C Richard
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - A Neveu
- INRA, UE1298 Unité commune d'expérimentation animale, F-78350 Jouy-en-Josas, France
| | - F Jaffrézic
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France
| | - D Laloë
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France
| | - D LeBourhis
- ALLICE, lieu-dit Le Perroi, F-37380 Nouzilly, France
| | - M Nguyen
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France
| | - S Chadi
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France
| | - H Jammes
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - J-P Renard
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - S Chat
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France
| | - A Boukadiri
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France
| | - E Devinoy
- INRA, UMR1313 GABI, F-78350 Jouy-en-Josas, France.
| |
Collapse
|
21
|
Abstract
It has been thirty years since the first genetically engineered animal with altered milk composition was reported. During the intervening years, the world population has increased from 5bn to 7bn people. An increasing demand for protein in the human diet has followed this population expansion, putting huge stress on the food supply chain. Many solutions to the grand challenge of food security for all have been proposed and are currently under investigation and study. Amongst these, genetics still has an important role to play, aiming to continually enable the selection of livestock with enhanced traits. Part of the geneticist's tool box is the technology of genetic engineering. In this Invited Review, we indicate that this technology has come a long way, we focus on the genetic engineering of dairy animals and we argue that the new strategies for precision breeding demand proper evaluation as to how they could contribute to the essential increases in agricultural productivity our society must achieve.
Collapse
|
22
|
McCormick NH, Lee S, Hennigar SR, Kelleher SL. ZnT4 (SLC30A4)-null ("lethal milk") mice have defects in mammary gland secretion and hallmarks of precocious involution during lactation. Am J Physiol Regul Integr Comp Physiol 2015; 310:R33-40. [PMID: 26538236 DOI: 10.1152/ajpregu.00315.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/02/2015] [Indexed: 02/01/2023]
Abstract
During lactation, highly specialized secretory mammary epithelial cells (MECs) produce and secrete huge quantities of nutrients and nonnutritive factors into breast milk. The zinc (Zn) transporter ZnT4 (SLC30A4) transports Zn into the trans-Golgi apparatus for lactose synthesis, and across the apical cell membrane for efflux from MECs into milk. This is consistent with observations in "lethal milk" (lm/lm) mice, which have a truncation mutation in SLC30A4, and present with not only low milk Zn concentration, but also smaller mammary glands, decreased milk volume, and lactation failure by lactation day 2. However, the molecular underpinnings of these defects are not understood. Here, we used lactating C57BL/6J(lm/lm) (ZnT4-null) mice to explore the consequences of a ZnT4-null phenotype on mammary gland function during early lactation. Lactating C57BL/6J(lm/lm) mice had significantly fewer, smaller, and collapsed alveoli comprising swollen, lipid-filled MECs during early lactation. These defects were associated with decreased Akt expression and STAT5 activation, indicative of defects in MEC secretion. In addition, increased expression of ZnT2, TNF-α, and cleaved e-cadherin concomitant with increased activation of STAT3 implicated the loss of ZnT4 in precocious activation of involution. Collectively, our study indicates that the loss of ZnT4 has profound consequences on MEC secretion and may promote tissue remodeling in the mammary gland during early lactation.
Collapse
Affiliation(s)
- Nicholas H McCormick
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Sooyeon Lee
- Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, Pennsylvania
| | - Stephen R Hennigar
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Shannon L Kelleher
- Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, Pennsylvania; Department of Pharmacology, Penn State Hershey College of Medicine, Hershey, Pennsylvania; Department of Surgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania; and Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
23
|
Madende M, Osthoff G, Patterton HG, Patterton HE, Martin P, Opperman DJ. Characterization of casein and alpha lactalbumin of African elephant (Loxodonta africana) milk. J Dairy Sci 2015; 98:8308-18. [PMID: 26454297 DOI: 10.3168/jds.2014-9195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 08/14/2015] [Indexed: 11/19/2022]
Abstract
The current research reports partial characterization of the caseins and α-lactalbumin (α-LA) of the African elephant with proposed unique structure-function properties. Extensive research has been carried out to understand the structure of the casein micelles. Crystallographic structure elucidation of caseins and casein micelles is not possible. Consequently, several models have been developed in an effort to describe the casein micelle, specifically of cow milk. Here we report the characterization of African elephant milk caseins. The κ-caseins and β-caseins were investigated, and their relative ratio was found to be approximately 1:8.5, whereas α-caseins were not detected. The gene sequence of β-casein in the NCBI database was revisited, and a different sequence in the N-terminal region is proposed. Amino acid sequence alignment and hydropathy plots showed that the κ-casein of African elephant milk is similar to that of other mammals, whereas the β-casein is similar to the human protein, and displayed a section of unique AA composition and additional hydrophilic regions compared with bovine caseins. Elephant milk is destabilized by 62% alcohol, and it is speculated that the β-casein characteristics may allow maintenance of the colloidal nature of the casein micelle, a role that was previously only associated with κ-casein. The oligosaccharide content of milk was reported to be low in dairy animals but high in some other species such as humans and elephants. In the milk of the African elephant, lactose and oligosaccharides both occur at high levels. These levels are typically related to the content of α-LA in the mammary gland and thus point to a specialized carbohydrate synthesis, where the whey protein α-LA plays a role. We report the characterization of African elephant α-LA. Homology modeling of the α-LA showed that it is structurally similar to crystal structures of other mammalian species, which in turn may be an indication that its functional properties, such as lactose synthesis, should not be impaired.
Collapse
Affiliation(s)
- M Madende
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, PO Box 339, Bloemfontein 9300, Republic of South Africa
| | - G Osthoff
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, PO Box 339, Bloemfontein 9300, Republic of South Africa.
| | - H-G Patterton
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, PO Box 339, Bloemfontein 9300, Republic of South Africa
| | - H E Patterton
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, PO Box 339, Bloemfontein 9300, Republic of South Africa
| | - P Martin
- UMR1313 Génétique Animale et Biologie Integrative, Institut National de la Recherche Agronomique, Domaine de Vilvert - Bâtiment 221, 78350 Jouy-en-Josas, France
| | - D J Opperman
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, PO Box 339, Bloemfontein 9300, Republic of South Africa
| |
Collapse
|
24
|
Tetens JL, Qanbari S, Drögemüller C, Pimentel ECG, Bennewitz J, Thaller G, Tetens J. Bos indicus introgression into (peri-)alpine cattle breeds - evidence from the analysis of bovine whey protein variants. Anim Genet 2014; 45:585-8. [PMID: 24931299 DOI: 10.1111/age.12185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2014] [Indexed: 11/28/2022]
Abstract
The major bovine whey proteins, α-lactalbumin (α-LA) and β-lactoglobulin (β-LG), exhibit breed-specific genetic variation. The aim of this study was to identify possible new protein variants and determine the distribution of variants across a variety of 18 taurine and indicine cattle breeds applying a DNA-based sequencing approach. To this end, the open reading frames of the respective genes (LALBA and LGB) were sequenced in 476 animals. Within the LALBA gene, a previously unknown synonymous and a previously undesignated non-synonymous nucleotide exchange were identified. Furthermore, two known α-LA variants (A and B) and four known β-LG variants (A, B, C and W) were determined. The occurrence of typical indicine variants in some taurine cattle breeds, such as Suisse Eringer, German Hinterwälder and Hungarian Grey Steppe, further supports the hypothesis of ancient Bos indicus introgression into (peri-)alpine cattle breeds.
Collapse
Affiliation(s)
- J L Tetens
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, D-24118, Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Rudolph MC, Wellberg EA, Lewis AS, Terrell KL, Merz AL, Maluf NK, Serkova NJ, Anderson SM. Thyroid hormone responsive protein Spot14 enhances catalysis of fatty acid synthase in lactating mammary epithelium. J Lipid Res 2014; 55:1052-65. [PMID: 24771867 DOI: 10.1194/jlr.m044487] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Indexed: 12/21/2022] Open
Abstract
Thyroid hormone responsive protein Spot 14 has been consistently associated with de novo fatty acid synthesis activity in multiple tissues, including the lactating mammary gland, which synthesizes large quantities of medium chain fatty acids (MCFAs) exclusively via FASN. However, the molecular function of Spot14 remains undefined during lactation. Spot14-null mice produce milk deficient in total triglyceride and de novo MCFA that does not sustain optimal neonatal growth. The lactation defect was rescued by provision of a high fat diet to the lactating dam. Transgenic mice overexpressing Spot14 in mammary epithelium produced total milk fat equivalent to controls, but with significantly greater MCFA. Spot14-null dams have no diminution of metabolic gene expression, enzyme protein levels, or intermediate metabolites that accounts for impaired de novo MCFA. When [(13)C] fatty acid products were quantified in vitro using crude cytosolic lysates, native FASN activity was 1.6-fold greater in control relative to Spot14-null lysates, and add back of Spot14 partially restored activity. Recombinant FASN catalysis increased 1.4-fold and C = 14:0 yield was enhanced 4-fold in vitro following addition of Spot14. These findings implicate Spot14 as a direct protein enhancer of FASN catalysis in the mammary gland during lactation when maximal MCFA production is needed.
Collapse
Affiliation(s)
- Michael C Rudolph
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO Departments of Pathology University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Elizabeth A Wellberg
- Departments of Pathology University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Andrew S Lewis
- Departments of Pathology University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kristina L Terrell
- Departments of Pathology University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Andrea L Merz
- Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - N Karl Maluf
- School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Natalie J Serkova
- Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Steven M Anderson
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO Departments of Pathology University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
26
|
Zhao FQ. Biology of glucose transport in the mammary gland. J Mammary Gland Biol Neoplasia 2014; 19:3-17. [PMID: 24221747 DOI: 10.1007/s10911-013-9310-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/29/2013] [Indexed: 01/10/2023] Open
Abstract
Glucose is the major precursor of lactose, which is synthesized in Golgi vesicles of mammary secretory alveolar epithelial cells during lactation. Glucose is taken up by mammary epithelial cells through a passive, facilitative process, which is driven by the downward glucose concentration gradient across the plasma membrane. This process is mediated by facilitative glucose transporters (GLUTs), of which there are 14 known isoforms. Mammary glands mainly express GLUT1 and GLUT8, and GLUT1 is the predominant isoform with a Km of ~10 mM and transport activity for mannose and galactose in addition to glucose. Mammary glucose transport activity increases dramatically from the virgin state to the lactation state, with a concomitant increase in GLUT expression. The increased GLUT expression during lactogenesis is not stimulated by the accepted lactogenic hormones. New evidence indicates that a possible low oxygen tension resulting from increased metabolic rate and oxygen consumption may play a major role in stimulating glucose uptake and GLUT1 expression in mammary epithelial cells during lactogenesis. In addition to its primary presence on the plasma membrane, GLUT1 is also expressed on the Golgi membrane of mammary epithelial cells and is likely involved in facilitating the uptake of glucose and galactose to the site of lactose synthesis. Because lactose synthesis dictates milk volume, regulation of GLUT expression and trafficking represents potentially fruitful areas for further research in dairy production. In addition, this research will have pathological implications for the treatment of breast cancer because glucose uptake and GLUT expression are up-regulated in breast cancer cells to accommodate the increased glucose need.
Collapse
Affiliation(s)
- Feng-Qi Zhao
- Laboratory of Lactation and Metabolic Physiology, Department of Animal Science, University of Vermont, 211 Terrill Building, 570 Main Street, Burlington, VT, 05405, USA,
| |
Collapse
|
27
|
Thakkar SK, Giuffrida F, Cristina CH, De Castro CA, Mukherjee R, Tran LA, Steenhout P, Lee LY, Destaillats F. Dynamics of human milk nutrient composition of women from Singapore with a special focus on lipids. Am J Hum Biol 2013; 25:770-9. [PMID: 24105777 DOI: 10.1002/ajhb.22446] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/06/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND A recent report suggested that human milk (HM) composition not only changes with lactation stages but also vary according to gender of the offspring. In spite of available literature, the dynamic changes of HM composition still remain to be completely explored and characterized. Progress in analytical technologies together with quantitative sampling of HM allows for a better quantification of HM nutrients and thereby providing a deeper understanding of the dynamics of HM secretion. OBJECTIVE To characterize and quantify HM nutrients based on appropriate for analyses sampling procedures and advanced analytical methodologies. CLINICAL STUDY DESIGN We conducted an observatory, single center, longitudinal trial with HM collection at 30, 60, and 120 days postpartum from 50 mothers (singleton-deliveries of 25 male and 25 female infants). HM samples were analyzed for lipid, lactose, energy density, fatty acids, phospholipids, and gangliosides. Longitudinal analyses of the datasets have been carried out using linear mixed models. RESULTS HM for male infants compared to females at 120 days, were higher for energy content and lipids by 24 and 39%, respectively. Similarly, other bioactive lipids such as linoleic acid, phospholipids and gangliosides were also significantly different based on the gender of the infant. Significant stage-based differences were observed for total lipids, energy density, phospholipids, and gangliosides. Such difference in HM composition may stem from different energy needs to cope up for individual growth and development. CONCLUSION Collectively, the current observations affirm that HM secretion, especially the lipid composition, is a very dynamic and personalized biological process.
Collapse
Affiliation(s)
- Sagar K Thakkar
- Nestlé Research Center, Nestec, Vers-chez-les-Blanc, 1000, Lausanne, 26, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
The decrease in milk yield during once daily milking is due to regulation of synthetic activity rather than apoptosis of mammary epithelial cells in goats. Animal 2013; 7:124-33. [DOI: 10.1017/s1751731112001176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
29
|
Targeted microRNA expression in dairy cattle directs production of β-lactoglobulin-free, high-casein milk. Proc Natl Acad Sci U S A 2012; 109:16811-6. [PMID: 23027958 DOI: 10.1073/pnas.1210057109] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Milk from dairy cows contains the protein β-lactoglobulin (BLG), which is not present in human milk. As it is a major milk allergen, we wished to decrease BLG levels in milk by RNAi. In vitro screening of 10 microRNAs (miRNAs), either individually or in tandem combinations, identified several that achieved as much as a 98% knockdown of BLG. One tandem construct was expressed in the mammary gland of an ovine BLG-expressing mouse model, resulting in 96% knockdown of ovine BLG in milk. Following this in vivo validation, we produced a transgenic calf, engineered to express these tandem miRNAs. Analysis of hormonally induced milk from this calf demonstrated absence of BLG and a concurrent increase of all casein milk proteins. The findings demonstrate miRNA-mediated depletion of an allergenic milk protein in cattle and validate targeted miRNA expression as an effective strategy to alter milk composition and other livestock traits.
Collapse
|
30
|
Abstract
Lactation represents an important element of the life history strategies of all mammals, whether monotreme, marsupial, or eutherian. Milk originated as a glandular skin secretion in synapsids (the lineage ancestral to mammals), perhaps as early as the Pennsylvanian period, that is, approximately 310 million years ago (mya). Early synapsids laid eggs with parchment-like shells intolerant of desiccation and apparently dependent on glandular skin secretions for moisture. Mammary glands probably evolved from apocrine-like glands that combined multiple modes of secretion and developed in association with hair follicles. Comparative analyses of the evolutionary origin of milk constituents support a scenario in which these secretions evolved into a nutrient-rich milk long before mammals arose. A variety of antimicrobial and secretory constituents were co-opted into novel roles related to nutrition of the young. Secretory calcium-binding phosphoproteins may originally have had a role in calcium delivery to eggs; however, by evolving into large, complex casein micelles, they took on an important role in transport of amino acids, calcium and phosphorus. Several proteins involved in immunity, including an ancestral butyrophilin and xanthine oxidoreductase, were incorporated into a novel membrane-bound lipid droplet (the milk fat globule) that became a primary mode of energy transfer. An ancestral c-lysozyme lost its lytic functions in favor of a role as α-lactalbumin, which modifies a galactosyltransferase to recognize glucose as an acceptor, leading to the synthesis of novel milk sugars, of which free oligosaccharides may have predated free lactose. An ancestral lipocalin and an ancestral whey acidic protein four-disulphide core protein apparently lost their original transport and antimicrobial functions when they became the whey proteins β-lactoglobulin and whey acidic protein, which with α-lactalbumin provide limiting sulfur amino acids to the young. By the late Triassic period (ca 210 mya), mammaliaforms (mammalian ancestors) were endothermic (requiring fluid to replace incubatory water losses of eggs), very small in size (making large eggs impossible), and had rapid growth and limited tooth replacement (indicating delayed onset of feeding and reliance on milk). Thus, milk had already supplanted egg yolk as the primary nutrient source, and by the Jurassic period (ca 170 mya) vitellogenin genes were being lost. All primary milk constituents evolved before the appearance of mammals, and some constituents may have origins that predate the split of the synapsids from sauropsids (the lineage leading to 'reptiles' and birds). Thus, the modern dairy industry is built upon a very old foundation, the cornerstones of which were laid even before dinosaurs ruled the earth in the Jurassic and Cretaceous periods.
Collapse
|
31
|
Association of polymorphism of the β(1, 4)-galactosyltransferase-I gene with milk production traits in Holsteins. Mol Biol Rep 2012; 39:6715-21. [DOI: 10.1007/s11033-012-1495-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 01/24/2012] [Indexed: 10/14/2022]
|
32
|
Le Guillou S, Tilly G, Passet B, Lefèvre L, Vilotte M, Costa J, Le Provost F, Vilotte JL. Short communication: Mouse mammary tumor virus driven α-lactalbumin expression effects on lactation and fertility of transgenic mice. J Dairy Sci 2011; 94:2418-24. [PMID: 21524533 DOI: 10.3168/jds.2010-4034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 01/31/2011] [Indexed: 11/19/2022]
Abstract
α-Lactalbumin (Alac) is one of the major milk proteins. Its gene expression is restricted to epithelial cells of the lactating mammary gland. The Alac interaction with a uridine 5'-diphosphate-galactosyltransferase induces lactose synthesis, a major osmotic regulator of milk secretion. Other functions attributed to this protein include induction of apoptosis and anti-inflammatory activities. To assess if forced expression of this gene during early gestation or involution could affect mammary physiology, an Alac-encoding minigene was expressed in transgenic mice under the transcriptional regulation of the mouse mammary tumor virus promoter. The mammary expression did not interfere with gestation, resulted in a slight increase in milk yield as indirectly assessed by the 11% increased growth rate of the pups reared by transgenic females compared with that of those reared by control mice, and induced a slight delay in the early involution process, as demonstrated by histological analyses. The use of the mouse mammary tumor virus promoter resulted in Alac expression in several nonmammary tissues, such as the brain, the testis, the ovary, and the uterus. Although it did not affect male reproductive performances, it induced a female subfertile phenotype, characterized by embryonic implantation failure in the transgenic female reproductive tract.
Collapse
Affiliation(s)
- S Le Guillou
- INRA, UMR 1313 Génétique Animale et Biologie Intégrative, Bâtiment 440, F-78350 Jouy-en-Josas, France.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
High-protein diet during gestation and lactation affects mammary gland mRNA abundance, milk composition and pre-weaning litter growth in mice. Animal 2011; 5:268-77. [DOI: 10.1017/s1751731110001734] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
34
|
Fahrenkrug SC, Blake A, Carlson DF, Doran T, Van Eenennaam A, Faber D, Galli C, Gao Q, Hackett PB, Li N, Maga EA, Muir WM, Murray JD, Shi D, Stotish R, Sullivan E, Taylor JF, Walton M, Wheeler M, Whitelaw B, Glenn BP. Precision genetics for complex objectives in animal agriculture. J Anim Sci 2010; 88:2530-9. [PMID: 20228236 PMCID: PMC7109650 DOI: 10.2527/jas.2010-2847] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 02/26/2010] [Indexed: 01/09/2023] Open
Abstract
Indirect modification of animal genomes by interspecific hybridization, cross-breeding, and selection has produced an enormous spectrum of phenotypic diversity over more than 10,000 yr of animal domestication. Using these established technologies, the farming community has successfully increased the yield and efficiency of production in most agricultural species while utilizing land resources that are often unsuitable for other agricultural purposes. Moving forward, animal well-being and agricultural sustainability are moral and economic priorities of consumers and producers alike. Therefore, these considerations will be included in any strategy designed to meet the challenges produced by global climate change and an expanding world population. Improvements in the efficiency and precision of genetic technologies will enable a timely response to meet the multifaceted food requirements of a rapidly increasing world population.
Collapse
Affiliation(s)
- S C Fahrenkrug
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota 55108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rullo R, Di Luccia A, Chianese L, Pieragostini E. Hot topic: Gene duplication at the α-lactalbumin locus: Finding the evidence in water buffalo (Bubalus bubalus L.). J Dairy Sci 2010; 93:2161-7. [DOI: 10.3168/jds.2009-2627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 01/22/2010] [Indexed: 11/19/2022]
|
36
|
Baldassarre H, Schirm M, Deslauriers J, Turcotte C, Bordignon V. Protein profile and alpha-lactalbumin concentration in the milk of standard and transgenic goats expressing recombinant human butyrylcholinesterase. Transgenic Res 2009; 18:621-32. [PMID: 19296233 DOI: 10.1007/s11248-009-9254-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Accepted: 03/06/2009] [Indexed: 11/24/2022]
Abstract
The expression of recombinant proteins of pharmaceutical interest in the milk of transgenic farm animals can result in phenotypes exhibiting compromised lactation performance, as a result of the extraordinary demand placed on the mammary gland. In this study, we investigated differences in the protein composition of milk from control and transgenic goats expressing recombinant human butyrylcholinesterase. In Experiment 1, the milk was characterized by gel electrophoresis and liquid chromatography/mass spectrometry in order to identify protein bands that were uniquely visible in the transgenic milk and/or at differing band densities compared with controls. Differences in protein content were additionally evaluated by computer assisted band densitometry. Proteins identified in the transgenic milk only included serum proteins (i.e. complement component 3b, ceruloplasmin), a cytoskeleton protein (i.e. actin) and a stress-induced protein (94 kDA glucose-regulated protein). Proteins exhibiting evident differences in band density between the transgenic and control groups included immunoglobulins, serum albumin, beta-lactoglobulin and alpha-lactalbumin. These results were found to be indicative of compromised epithelial tight junctions, premature mammary cell death, and protein synthesis stress resulting from transgene expression. In Experiment 2, the concentration of alpha-lactalbumin was determined using the IDRing assay and was found to be significantly reduced on day 1 of lactation in transgenic goats (4.33 +/- 0.97 vs. 2.24 +/- 0.25 mg/ml, P < 0.01), but was not different from non-transgenic controls by day 30 (0.99 +/- 0.46 vs. 0.90 +/- 0.11 mg/ml, P > 0.05). We concluded that a decreased/delayed expression of the alpha-lactalbumin gene may be the cause for the delayed start of milk production observed in this herd of transgenic goats.
Collapse
Affiliation(s)
- H Baldassarre
- Pharmathene Canada Inc., P.O. Box 320, St. Telesphore, QC, H0P 1Y0, Canada.
| | | | | | | | | |
Collapse
|
37
|
Whitelaw CB, Farini E, Webster J. The changing role of cell culture in the generation of transgenic livestock. Cytotechnology 2008; 31:3-8. [PMID: 19003119 DOI: 10.1023/a:1008044517150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transgenesis may allow the generation of farm animals with altered phenotype, animal models for research and animal bioreactors. Although such animals have been produced, the time and expense involved in generating transgenic livestock and then evaluating the transgene expression pattern is very restrictive. If questions about the ability and efficiency of expression could be asked solely in vitro rapid progress could be achieved. Unfortunately, experiments addressing transcriptional control in vitro have proved unreliable in their ability to indicate whether a transgene will be transcribed or not. However, initial studies suggest that cell culture may be able to predict in vivo post-transcriptional events. We review these issues and propose that strategies which engineer the transgene integration site could enhance the probability for efficient expression. This approach has now become feasible with the development of techniques allowing animals to be generated from somatic cells by nuclear transfer. The important step in this procedure is the use of cells grown in culture as the source of genetic information, allowing the selection of specific transgene integration events. This technology which has dramatically increased the potential use of transgenic livestock for both agricultural and biotechnological applications, is based on standard cell culture methodology. We are now at the start of a new era in large animal transgenics.
Collapse
|
38
|
Bleck GT, Wheeler MB, Hansen LB, Chester-Jones H, Miller DJ. Lactose synthase components in milk: concentrations of alpha-lactalbumin and beta1,4-galactosyltransferase in milk of cows from several breeds at various stages of lactation. Reprod Domest Anim 2008; 44:241-7. [PMID: 18694425 DOI: 10.1111/j.1439-0531.2007.01047.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
It is believed that milk production is determined by the number and activity of mammary secretory cells. Secretory activity, as assessed by milk volume, depends on secretion of the major osmole in milk, lactose, which is produced by lactose synthase. The amount of either of the two proteins in lactose synthase may regulate milk production. The objective of this study was to determine whether the concentrations in milk of the two components of lactose synthase, alpha-lactalbumin (alpha-LA) and beta1,4-galactosyltransferase (B4GALT), were related to genetic background, stage of lactation, breed or parity of dairy cows. alpha-Lactalbumin and B4GALT concentrations were measured by ELISA and by enzyme assays, respectively, from single milk samples. Two herds with a total of 279 cows were used in the analysis. One herd contained Ayrshire, Brown Swiss, Holstein and Jersey cows; the second herd contained two groups of cows; Holsteins selected for high milk production and Holsteins with 1960s genetics. The alpha-LA concentration in milk was greater in Jerseys and Ayrshires than in Holsteins and Brown Swiss. However, no difference in alpha-LA concentration was observed in milk from high and low genetic merit cows in the Minnesota herd or among different genetic backgrounds in the Illinois herd. beta1,4-Galactosyltransferase concentrations were similar for all groups that were analyzed. alpha-Lactalbumin concentrations were positively correlated with milk protein concentration, milk fat concentration and lactose concentration. beta1,4-Galactosyltransferase concentration in milk exhibited a strong positive correlation with number of days in milk. Although the concentration of B4GALT increased as lactation progressed, the values did not show any correlation with persistency of lactation or late lactation milk production. In conclusion, this survey shows that the two components of lactose synthase are each correlated to protein concentration and individually correlated to the concentration of other milk components and stage of lactation.
Collapse
Affiliation(s)
- G T Bleck
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
39
|
Zhou Y, Akers RM, Jiang H. Growth hormone can induce expression of four major milk protein genes in transfected MAC-T cells. J Dairy Sci 2008; 91:100-8. [PMID: 18096930 DOI: 10.3168/jds.2007-0509] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Growth hormone (GH) can increase milk production in cattle, and this effect was thought to be mediated by an indirect mechanism because traditional ligand binding assays failed to detect GH binding sites in the mammary gland. However, recent findings that GH receptor (GHR) mRNA and protein are expressed in the epithelial cells of the bovine mammary gland suggest that GH may directly act on these cells to affect milk production. Therefore, the objective of this study was to determine whether GH could affect milk protein gene expression, nutrient uptake, and cell proliferation in bovine mammary epithelial cells using the bovine mammary epithelial cell-derived MAC-T cells as a model. Native MAC-T cells had low expression of GHR. Thus, we transfected them with expression plasmids for GHR and signal transducer and activator of transcription 5 (STAT5), 2 key components of GHR signaling, to maximize their GH response. Growth hormone increased the expression of alphaS1-casein, alphaS2-casein, beta-casein, and alpha-lactalbumin mRNA 16- to 117-fold in the transfected MAC-T cells, whereas it had no effect on the expression of kappa-casein, beta-lactoglobulin, or insulin-like growth factor I mRNA. Cotransfection analyses showed that GH also strongly induced reporter gene expression from alphaS1-casein, alphaS2-casein, beta-casein, and alpha-lactalbumin gene promoters. Growth hormone had no effect on the uptake of 2-deoxyglucose, an unmetabolizable glucose analog, amino acids, or oleic acid; neither did it affect cell proliferation or death. These observations together with the fact that GH receptor mRNA and protein are expressed in the epithelial cells of the bovine mammary gland raise the possibility that GH might act directly on the mammary epithelial cells in cows to stimulate transcription of major milk protein genes, as part of the mechanism by which GH stimulates milk production.
Collapse
Affiliation(s)
- Y Zhou
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, 24061, USA
| | | | | |
Collapse
|
40
|
Anderson SM, Rudolph MC, McManaman JL, Neville MC. Key stages in mammary gland development. Secretory activation in the mammary gland: it's not just about milk protein synthesis! Breast Cancer Res 2007; 9:204. [PMID: 17338830 PMCID: PMC1851396 DOI: 10.1186/bcr1653] [Citation(s) in RCA: 290] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transition from pregnancy to lactation is a critical event in the survival of the newborn since all the nutrient requirements of the infant are provided by milk. While milk contains numerous components, including proteins, that aid in maintaining the health of the infant, lactose and milk fat represent the critical energy providing elements of milk. Much of the research to date on mammary epithelial differentiation has focused upon expression of milk protein genes, providing a somewhat distorted view of alveolar differentiation and secretory activation. While expression of milk protein genes increases during pregnancy and at secretory activation, the genes whose expression is more tightly regulated at this transition are those that regulate lipid biosynthesis. The sterol regulatory element binding protein (SREBP) family of transcription factors is recognized as regulating fatty acid and cholesterol biosynthesis. We propose that SREBP1 is a critical regulator of secretory activation with regard to lipid biosynthesis, in a manner that responds to diet, and that the serine/threonine protein kinase Akt influences this process, resulting in a highly efficient lipid synthetic organ that is able to support the nutritional needs of the newborn.
Collapse
Affiliation(s)
- Steven M Anderson
- Department of Pathology, University of Colorado Health Sciences Center, East 17th Avenue, Aurora, CO 80045, USA
- Program in Molecular Biology, University of Colorado Health Sciences Center, East 17th Avenue, Aurora, CO 80045, USA
| | - Michael C Rudolph
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, East 17th Avenue, Aurora, CO 80045, USA
| | - James L McManaman
- Program in Molecular Biology, University of Colorado Health Sciences Center, East 17th Avenue, Aurora, CO 80045, USA
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, East 17th Avenue, Aurora, CO 80045, USA
- Department of Obstetrics and Gynecology, University of Colorado Health Sciences Center, East 17th Avenue, Aurora, CO 80045, USA
| | - Margaret C Neville
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, East 17th Avenue, Aurora, CO 80045, USA
- Department of Obstetrics and Gynecology, University of Colorado Health Sciences Center, East 17th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
41
|
Melo EO, Canavessi AMO, Franco MM, Rumpf R. Animal transgenesis: state of the art and applications. J Appl Genet 2007; 48:47-61. [PMID: 17272861 DOI: 10.1007/bf03194657] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There is a constant expectation for fast improvement of livestock production and human health care products. The advent of DNA recombinant technology and the possibility of gene transfer between organisms of distinct species, or even distinct phylogenic kingdoms, has opened a wide range of possibilities. Nowadays we can produce human insulin in bacteria or human coagulation factors in cattle milk. The recent advances in gene transfer, animal cloning, and assisted reproductive techniques have partly fulfilled the expectation in the field of livestock transgenesis. This paper reviews the recent advances and applications of transgenesis in livestock and their derivative products. At first, the state of art and the techniques that enhance the efficiency of livestock transgenesis are presented. The consequent reduction in the cost and time necessary to reach a final product has enabled the multiplication of transgenic prototypes around the world. We also analyze here some emerging applications of livestock transgenesis in the field of pharmacology, meat and dairy industry, xenotransplantation, and human disease modeling. Finally, some bioethical and commercial concerns raised by the transgenesis applications are discussed.
Collapse
Affiliation(s)
- Eduardo O Melo
- EMBRAPA Genetic Resources and Biotechnology, Av. W/5, Norte Final, PBI, Sala 7B, Brasilia, DF, Brazil, CEP 70770-900.
| | | | | | | |
Collapse
|
42
|
Casein micelle structure: What can be learned from milk synthesis and structural biology? Curr Opin Colloid Interface Sci 2006. [DOI: 10.1016/j.cocis.2005.11.005] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Li X, Zhang J, Gao H, Vieth E, Bae KH, Zhang YP, Lee SJ, Raikwar S, Gardner TA, Hutchins GD, VanderPutten D, Kao C, Jeng MH. Transcriptional targeting modalities in breast cancer gene therapy using adenovirus vectors controlled by alpha-lactalbumin promoter. Mol Cancer Ther 2006; 4:1850-9. [PMID: 16373700 DOI: 10.1158/1535-7163.mct-05-0167] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The breast-specific antigen alpha-lactalbumin is expressed in >60% of breast cancer tissues. To evaluate the effect of gene therapy for breast cancer by controlling adenovirus replication with human alpha-lactalbumin promoter, we investigated the activity of a 762-bp human alpha-lactalbumin promoter. Alpha-lactalbumin promoter showed significantly higher activity in MDA-MB-435S and T47D breast cancer cells than in normal breast cell lines or other tumor cell lines. We then developed two novel breast cancer-restricted replicative adenoviruses, AdALAE1a and AdE1aALAE1b. In AdALAE1a, expression of adenoviral E1a gene is under the control of alpha-lactalbumin promoter, and in AdE1aALAE1b, expression of both E1a and E1b genes is under the control of a single alpha-lactalbumin promoter. Both breast cancer-restricted replicative adenoviruses showed viral replication efficiency and tumor cell-killing capability similar to wild-type adenovirus in MDA-MB-435S and T47D cells. The replication efficiency and tumor cell-killing capability of both viruses were attenuated significantly in cells that did not support alpha-lactalbumin promoter. AdE1aALAE1b showed better breast cancer-restricted replication than AdALAE1a, suggesting that a transcriptional targeting modality with alpha-lactalbumin promoter controlling both E1a and E1b gene expression is superior to alpha-lactalbumin promoter controlling only E1a gene expression. Importantly, we found that AdE1aALAE1b could be used to target hormone-independent breast tumors in vivo by inhibiting the growth of MDA-MB-435S s.c. tumors. These data showed that alpha-lactalbumin promoter could regulate the replication of adenovirus to target hormone-independent breast cancers, suggesting that alpha-lactalbumin promoter can be used to develop a novel therapeutic modality for hormone-independent breast cancer.
Collapse
Affiliation(s)
- Xiong Li
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yamano K, Inoue M, Masaki S, Saki M, Ichimura M, Satoh M. Human adenosine A(3) receptor leads to intracellular Ca(2+) mobilization but is insufficient to activate the signaling pathway via phosphoinositide 3-kinase gamma in mice. Biochem Pharmacol 2005; 70:1487-96. [PMID: 16157310 DOI: 10.1016/j.bcp.2005.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 08/10/2005] [Accepted: 08/10/2005] [Indexed: 11/30/2022]
Abstract
Selective antagonists for the adenosine A(3) receptor (A3AR), a member of the G protein-coupled receptors, have been indicated as potential drugs for anti-asthma or anti-inflammation. However, potent antagonists for the rodent A3AR have not been identified. To evaluate the pharmacological effects of human A3AR antagonists in mice, we here generated A3AR-humanized mice, in which the mouse A3AR gene was replaced by its human counterpart. The expression levels of human A3AR in the A3AR-humanized mice were equivalent to those of mouse A3AR in wild-type mice. Elevation of the intracellular Ca(2+) concentration induced by an A3AR agonist was observed in bone marrow-derived mast cells from the A3AR-humanized mice and this Ca(2+) mobilization was completely antagonized by a human A3AR antagonist. However, antigen-dependent degranulation was not potentiated by the A3AR agonist in the mast cells from A3AR-humanized mice. The agonist-stimulated human A3AR did not lead to the phosphorylation of either extracellular signal-regulated kinase 1/2 or protein kinase B in A3AR-humanized mice. The rate of human A3AR internalization in the mast cells was also markedly decreased compared with that of mouse A3AR in the mast cells. These results demonstrate that the human A3AR is insufficient to activate phosphoinositide 3-kinase gamma-dependent signaling pathways in mice, probably due to the uncoupling of member(s) of the G proteins, which are capable of activating phosphoinositide 3-kinase gamma, to the human A3AR, despite the mouse G protein(s) responsible for the Ca(2+) elevation are coupled with the human A3AR.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Adenosine A3 Receptor Antagonists
- Animals
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/pathology
- Calcium/antagonists & inhibitors
- Calcium/metabolism
- Calcium Signaling/physiology
- Cell Degranulation/immunology
- Chimera
- Class Ib Phosphatidylinositol 3-Kinase
- Gene Expression/drug effects
- Humans
- Immunoglobulin E/immunology
- Iodine Radioisotopes
- Isoenzymes/chemistry
- Isoenzymes/physiology
- Male
- Mast Cells/drug effects
- Mice
- Mice, Inbred C57BL/genetics
- Mice, Inbred ICR/genetics
- Mice, Knockout/genetics
- Mice, Knockout/metabolism
- Mitogen-Activated Protein Kinase 1/metabolism
- Phenotype
- Phosphatidylinositol 3-Kinases/chemistry
- Phosphatidylinositol 3-Kinases/physiology
- Phosphorylation
- Protein Kinases/metabolism
- Purines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Adenosine A3/drug effects
- Receptor, Adenosine A3/physiology
- Receptors, Leukotriene B4/genetics
- Receptors, Leukotriene B4/metabolism
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
Collapse
Affiliation(s)
- Kazuya Yamano
- Tokyo Research Laboratories, Kyowa Hakko Kogyo Co. Ltd., 3-6-6 Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Chowanadisai W, Kelleher SL, Nemeth JF, Yachetti S, Kuhlman CF, Jackson JG, Davis AM, Lien EL, Lönnerdal B. Detection of a single nucleotide polymorphism in the human α-lactalbumin gene: implications for human milk proteins. J Nutr Biochem 2005; 16:272-8. [PMID: 15866226 DOI: 10.1016/j.jnutbio.2004.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 12/21/2004] [Accepted: 12/23/2004] [Indexed: 11/23/2022]
Abstract
Variability in the protein composition of breast milk has been observed in many women and is believed to be due to natural variation of the human population. Single nucleotide polymorphisms (SNPs) are present throughout the entire human genome, but the impact of this variation on human milk composition and biological activity and infant nutrition and health is unclear. The goals of this study were to characterize a variant of human alpha-lactalbumin observed in milk from a Filipino population by determining the location of the polymorphism in the amino acid and genomic sequences of alpha-lactalbumin. Milk and blood samples were collected from 20 Filipino women, and milk samples were collected from an additional 450 women from nine different countries. alpha-Lactalbumin concentration was measured by high-performance liquid chromatography (HPLC), and milk samples containing the variant form of the protein were identified with both HPLC and mass spectrometry (MS). The molecular weight of the variant form was measured by MS, and the location of the polymorphism was narrowed down by protein reduction, alkylation and trypsin digestion. Genomic DNA was isolated from whole blood, and the polymorphism location and subject genotype were determined by amplifying the entire coding sequence of human alpha-lactalbumin by PCR, followed by DNA sequencing. A variant form of alpha-lactalbumin was observed in HPLC chromatograms, and the difference in molecular weight was determined by MS (wild type=14,070 Da, variant=14,056 Da). Protein reduction and digestion narrowed the polymorphism between the 33rd and 77th amino acid of the protein. The genetic polymorphism was identified as adenine to guanine, which translates to a substitution from isoleucine to valine at amino acid 46. The frequency of variation was higher in milk from China, Japan and Philippines, which suggests that this polymorphism is most prevalent in Asia. There are SNPs in the genome for human milk proteins and their implications for protein bioactivity and infant nutrition need to be considered.
Collapse
Affiliation(s)
- Winyoo Chowanadisai
- Department of Nutrition, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Liu S, Wei Y, Hu G, Gao H, Liu S, Lao W. An expression profile of human alpha-lactalbumin in the milk of transgenic mouse. ACTA ACUST UNITED AC 2005; 47:197-202. [PMID: 15524275 DOI: 10.1007/bf03182763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Five female transgenic mice were produced by microinjection using a construct made up of a 7.3-kb-5' flanking region and a 2.0-kb coding region of human alpha-lactalbumin, as well as a 227-bp 3'-flanking region from bovine growth hormone gene. A founder female expressed human alpha-lactalbumin as much as 0.3 g per liter of its milk, approximately a 3-fold increase in the total alpha-lactalbumin concentration of the transgenic mouse milk. Compared with the normal mice, the expression profile of the halpha-Lac transgene in the transgenics is different during the lactation, showing low level in the first 3 days and becoming increased from day 4, then gradually reaching and stabilizing at the highest level from day 13. In addition, the milk yielding volume in the transgenics tended to be higher than in normal mice, suggesting higher concentrations of alpha-lactalbumin might boost more milk output.
Collapse
Affiliation(s)
- Siguo Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | |
Collapse
|
47
|
Farrell HM, Jimenez-Flores R, Bleck GT, Brown EM, Butler JE, Creamer LK, Hicks CL, Hollar CM, Ng-Kwai-Hang KF, Swaisgood HE. Nomenclature of the Proteins of Cows’ Milk—Sixth Revision. J Dairy Sci 2004; 87:1641-74. [PMID: 15453478 DOI: 10.3168/jds.s0022-0302(04)73319-6] [Citation(s) in RCA: 760] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This report of the American Dairy Science Association Committee on the Nomenclature, Classification, and Methodology of Milk Proteins reviews changes in the nomenclature of milk proteins necessitated by recent advances of our knowledge of milk proteins. Identification of major caseins and whey proteins continues to be based upon their primary structures. Nomenclature of the immunoglobulins consistent with new international standards has been developed, and all bovine immunoglobulins have been characterized at the molecular level. Other significant findings related to nomenclature and protein methodology are elucidation of several new genetic variants of the major milk proteins, establishment by sequencing techniques and sequence alignment of the bovine caseins and whey proteins as the reference point for the nomenclature of all homologous milk proteins, completion of crystallographic studies for major whey proteins, and advances in the study of lactoferrin, allowing it to be added to the list of fully characterized milk proteins.
Collapse
Affiliation(s)
- H M Farrell
- US Department of Agriculture, Eastern Regional Research Center, Wyndmoor, PA 19038, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hadsell DL. Genetic Manipulation of Mammary Gland Development and Lactation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 554:229-51. [PMID: 15384580 DOI: 10.1007/978-1-4757-4242-8_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The mammalian genome is believed to contain some 30,000 to 40,000 different genes. Of these an estimated 42% have no known function. Genetically engineered mouse models (GEMM) have been a powerful tool available for determining gene function in vivo. In the mammary gland, a variety of genetic engineering approaches have been applied successfully to understanding the importance of specific gene products to mammary gland development and lactation. Our own laboratory has applied genetically engineered mice to facilitate understanding of the regulation of mammary gland development and lactation by insulin-like growth factors (IGF) and by the transcription factor, upstream stimulatory factor (USF-2). Our studies on transgenic mice that overexpress IGF-I have demonstrated the importance of IGF-dependent signaling pathways to maintenance of mammary epithelial cells during the declining phase of lactation. Our analysis of early developmental processes in mammary tissue from mice that carry a targeted mutation in the IGF-I receptor gene suggests that IGF-dependent stimulation of cell cycle progression is more important to early mammary gland development than potential antiapoptotic effects. Lastly, our studies on mice that carry a targeted mutation of the Usf2 gene have demonstrated that this gene is necessary for normal lactation and have highlighted the importance of this gene to the maintenance of protein synthesis. These studies, as well as studies of others, have highlighted both the strengths and limitations inherent in the use of GEMM. Limitations serve as the driving force behind development of new experimental strategies and genetic engineering schemes that will allow for a full understanding of gene function within the mammary gland.
Collapse
Affiliation(s)
- Darryl L Hadsell
- The USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
49
|
Hadsell DL, Bonnette S, George J, Torres D, Klimentidis Y, Klementidis Y, Gao S, Haney PM, Summy-Long J, Soloff MS, Parlow AF, Sirito M, Sawadogo M. Diminished milk synthesis in upstream stimulatory factor 2 null mice is associated with decreased circulating oxytocin and decreased mammary gland expression of eukaryotic initiation factors 4E and 4G. Mol Endocrinol 2003; 17:2251-67. [PMID: 12907752 DOI: 10.1210/me.2002-0031] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Previous studies have suggested that upstream stimulatory factors (USFs) regulate genes involved with cell cycle progression. Because of the relationship of USFs to an important oncogene in breast cancer, c-myc, we chose to determine the importance of USF to normal mammary gland development in the mouse. Expression of USF in the mammary gland throughout development demonstrated only modest changes. Mutation of the Usf2 gene was associated with reduced fertility in females, but had no effect on prepartum mammary gland development. However, lactation performance in Usf2-/- females was only half of that observed in Usf2+/+ females, and both lactose and nitrogen were decreased in milk from Usf2-/- dams. This decrease was associated with diminished mammary tissue wet weight and luminal area by d 9 of lactation and with a decreased protein-DNA ratio. This decrease was associated with reduced abundance of the eukaryotic initiation factors eIF4E and eIF4G. Blood oxytocin concentrations on d 9 postpartum were also lower in Usf2-/- mice than Usf2+/+ mice. In contrast, the mutation had no effect on blood prolactin concentrations, mammary cell proliferation or apoptosis, mammary tissue oxytocin receptors, or milk protein gene expression. The mutation had only modest effects on maternal behavior. These data support the idea that USF is important to physiological processes necessary for the establishment and maintenance of normal lactation and suggest that USF-2 may impact lactation through both systemic and mammary cell-specific mechanisms.
Collapse
Affiliation(s)
- Darryl L Hadsell
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Human and bovine milk differ substantially in the ratio of whey to casein protein (approximately 60:40 in human milk and approximately 20:80 in bovine milk) and in the proportions of specific proteins. Although current infant formulas closely mimic the ratio of total whey to casein inhuman milk, the concentration of a-lactalbumin (the dominant protein in human milk) is relatively low in formula, whereas beta-lactoglobulin, a protein not found in human milk, is the most dominant whey protein in formula. Because of the differences in the protein profiles of human milk and infant formula, amino acid profiles also differ. To meet all essential amino acid requirements of infants, formula concentrations of protein must be higher than those in human milk. Recently, whey sources with elevated concentrations of alpha-lactalbumin have become available, which permitted the development of formulas with increased concentrations of this protein and decreased concentrations of beta-lactoglobulin. alpha-Lactalbumin is rich in tryptophan, which is typically the limiting amino acid in formula, and as a result, formulas have been developed with lower protein but higher tryptophan concentrations. This type of formula may offer a number of advantages to the neonate, which include producing plasma tryptophan concentrations equal to those found in breastfed infants and obviating the need for the body to dispose of excess nitrogen loads.
Collapse
Affiliation(s)
- Eric L Lien
- Wyeth Nutrition Research & Development, Philadelphia, PA 19101, USA.
| |
Collapse
|