1
|
Raghavan AR, May K, Subramanian VV, Blitzblau HG, Patel NJ, Houseley J, Hochwagen A. Distinct chromatin regulators downmodulate meiotic axis formation and DNA break induction at chromosome ends. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640173. [PMID: 40093131 PMCID: PMC11908166 DOI: 10.1101/2025.02.27.640173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
In many organisms, meiotic crossover recombination is suppressed near the extreme ends of chromosomes. Here, we identified two chromatin modifiers, the histone methyltransferase Dot1 and the Sir silencing complex, as regulators of this process in Saccharomyces cerevisiae. We show that the recombination-promoting axis proteins Red1 and Hop1, but not the axis-associated cohesin Rec8, are significantly reduced within 20 kb of telomeres compared to the chromosome interior. Dot1, which preferentially methylates histones in the chromosome interior, is required for this pattern by directing Red1 binding toward the chromosome interior. In parallel, the Sir complex suppresses the induction of meiotic DNA double-strand breaks (DSBs) at chromosome ends. Sir-dependent DSB suppression is independent of axis deposition and occurs in a chromosome end-specific manner that mirrors the spreading and transcriptional silencing activity of the complex, suggesting that the Sir complex suppresses DSB formation by limiting the openness of promoters, the preferred sites of meiotic DSB formation. We conclude that multiple chromatin-based mechanisms collaborate to achieve a robust reduction of meiotic recombination near chromosome ends.
Collapse
Affiliation(s)
| | - Kieron May
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Vijayalakshmi V Subramanian
- Department of Biology, New York University, New York, USA
- Department of Biology, IISER Tirupati, Tirupati, India
| | | | - Neem J Patel
- Department of Biology, New York University, New York, USA
| | | | | |
Collapse
|
2
|
Abstract
Meiosis is a specialized cell division program that is essential for sexual reproduction. The two meiotic divisions reduce chromosome number by half, typically generating haploid genomes that are packaged into gametes. To achieve this ploidy reduction, meiosis relies on highly unusual chromosomal processes including the pairing of homologous chromosomes, assembly of the synaptonemal complex, programmed formation of DNA breaks followed by their processing into crossovers, and the segregation of homologous chromosomes during the first meiotic division. These processes are embedded in a carefully orchestrated cell differentiation program with multiple interdependencies between DNA metabolism, chromosome morphogenesis, and waves of gene expression that together ensure the correct number of chromosomes is delivered to the next generation. Studies in the budding yeast Saccharomyces cerevisiae have established essentially all fundamental paradigms of meiosis-specific chromosome metabolism and have uncovered components and molecular mechanisms that underlie these conserved processes. Here, we provide an overview of all stages of meiosis in this key model system and highlight how basic mechanisms of genome stability, chromosome architecture, and cell cycle control have been adapted to achieve the unique outcome of meiosis.
Collapse
Affiliation(s)
- G Valentin Börner
- Center for Gene Regulation in Health and Disease (GRHD), Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | | | - Amy J MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
3
|
Hassold TJ, Hunt PA. Missed connections: recombination and human aneuploidy. Prenat Diagn 2021; 41:584-590. [PMID: 33484483 DOI: 10.1002/pd.5910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
The physical exchange of DNA between homologs, crossing-over, is essential to orchestrate the unique, reductional first meiotic division (MI). In females, the events of meiotic recombination that serve to tether homologs and facilitate their disjunction at MI occur during fetal development, preceding the MI division by several decades in our species. Data from studies in humans and mice demonstrate that placement of recombination sites during fetal development influences the likelihood of an MI nondisjunction event that results in the production of an aneuploid egg. Here we briefly summarize what we know about the relationship between aneuploidy and meiotic recombination and important considerations for the future of human assisted reproduction.
Collapse
Affiliation(s)
- Terry J Hassold
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, USA
| | - Patricia A Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, USA
| |
Collapse
|
4
|
Hughes SE, Hawley RS. Meiosis: Location, Location, Location, How Crossovers Ensure Segregation. Curr Biol 2020; 30:R311-R313. [PMID: 32259504 DOI: 10.1016/j.cub.2020.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The proper behavior of homologous chromosomes at the first meiotic division is usually ensured by crossing over. A new study shows that crossover position influences the successful completion of the chromatin remodeling processes that facilitate homologous segregation.
Collapse
Affiliation(s)
- Stacie E Hughes
- Stowers Institute for Medical Research, 1000 E. 50(th) St., Kansas City, MO 64110, USA
| | - R Scott Hawley
- Stowers Institute for Medical Research, 1000 E. 50(th) St., Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| |
Collapse
|
5
|
Cahoon CK, Libuda DE. Leagues of their own: sexually dimorphic features of meiotic prophase I. Chromosoma 2019; 128:199-214. [PMID: 30826870 PMCID: PMC6823309 DOI: 10.1007/s00412-019-00692-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 01/12/2023]
Abstract
Meiosis is a conserved cell division process that is used by sexually reproducing organisms to generate haploid gametes. Males and females produce different end products of meiosis: eggs (females) and sperm (males). In addition, these unique end products demonstrate sex-specific differences that occur throughout meiosis to produce the final genetic material that is packaged into distinct gametes with unique extracellular morphologies and nuclear sizes. These sexually dimorphic features of meiosis include the meiotic chromosome architecture, in which both the lengths of the chromosomes and the requirement for specific meiotic axis proteins being different between the sexes. Moreover, these changes likely cause sex-specific changes in the recombination landscape with the sex that has the longer chromosomes usually obtaining more crossovers. Additionally, epigenetic regulation of meiosis may contribute to sexually dimorphic recombination landscapes. Here we explore the sexually dimorphic features of both the chromosome axis and crossing over for each stage of meiotic prophase I in Mus musculus, Caenorhabditis elegans, and Arabidopsis thaliana. Furthermore, we consider how sex-specific changes in the meiotic chromosome axes and the epigenetic landscape may function together to regulate crossing over in each sex, indicating that the mechanisms controlling crossing over may be different in oogenesis and spermatogenesis.
Collapse
Affiliation(s)
- Cori K Cahoon
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, OR, 97403-1229, USA
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, OR, 97403-1229, USA.
| |
Collapse
|
6
|
Female Meiosis: Synapsis, Recombination, and Segregation in Drosophila melanogaster. Genetics 2018; 208:875-908. [PMID: 29487146 PMCID: PMC5844340 DOI: 10.1534/genetics.117.300081] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
A century of genetic studies of the meiotic process in Drosophila melanogaster females has been greatly augmented by both modern molecular biology and major advances in cytology. These approaches, and the findings they have allowed, are the subject of this review. Specifically, these efforts have revealed that meiotic pairing in Drosophila females is not an extension of somatic pairing, but rather occurs by a poorly understood process during premeiotic mitoses. This process of meiotic pairing requires the function of several components of the synaptonemal complex (SC). When fully assembled, the SC also plays a critical role in maintaining homolog synapsis and in facilitating the maturation of double-strand breaks (DSBs) into mature crossover (CO) events. Considerable progress has been made in elucidating not only the structure, function, and assembly of the SC, but also the proteins that facilitate the formation and repair of DSBs into both COs and noncrossovers (NCOs). The events that control the decision to mature a DSB as either a CO or an NCO, as well as determining which of the two CO pathways (class I or class II) might be employed, are also being characterized by genetic and genomic approaches. These advances allow a reconsideration of meiotic phenomena such as interference and the centromere effect, which were previously described only by genetic studies. In delineating the mechanisms by which the oocyte controls the number and position of COs, it becomes possible to understand the role of CO position in ensuring the proper orientation of homologs on the first meiotic spindle. Studies of bivalent orientation have occurred in the context of numerous investigations into the assembly, structure, and function of the first meiotic spindle. Additionally, studies have examined the mechanisms ensuring the segregation of chromosomes that have failed to undergo crossing over.
Collapse
|
7
|
Meiotic Consequences of Genetic Divergence Across the Murine Pseudoautosomal Region. Genetics 2017; 205:1089-1100. [PMID: 28100589 PMCID: PMC5340325 DOI: 10.1534/genetics.116.189092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023] Open
Abstract
The production of haploid gametes during meiosis is dependent on the homology-driven processes of pairing, synapsis, and recombination. On the mammalian heterogametic sex chromosomes, these key meiotic activities are confined to the pseudoautosomal region (PAR), a short region of near-perfect sequence homology between the X and Y chromosomes. Despite its established importance for meiosis, the PAR is rapidly evolving, raising the question of how proper X/Y segregation is buffered against the accumulation of homology-disrupting mutations. Here, I investigate the interplay of PAR evolution and function in two interfertile house mouse subspecies characterized by structurally divergent PARs, Mus musculus domesticus and M. m. castaneus. Using cytogenetic methods to visualize the sex chromosomes at meiosis, I show that intersubspecific F1 hybrids harbor an increased frequency of pachytene spermatocytes with unsynapsed sex chromosomes. This high rate of asynapsis is due, in part, to the premature release of synaptic associations prior to completion of prophase I. Further, I show that when sex chromosomes do synapse in intersubspecific hybrids, recombination is reduced across the paired region. Together, these meiotic defects afflict ∼50% of spermatocytes from F1 hybrids and lead to increased apoptosis in meiotically dividing cells. Despite flagrant disruption of the meiotic program, a subset of spermatocytes complete meiosis and intersubspecific F1 males remain fertile. These findings cast light on the meiotic constraints that shape sex chromosome evolution and offer initial clues to resolve the paradox raised by the rapid evolution of this functionally significant locus.
Collapse
|
8
|
Meiotic Centromere Coupling and Pairing Function by Two Separate Mechanisms in Saccharomyces cerevisiae. Genetics 2016; 205:657-671. [PMID: 27913618 DOI: 10.1534/genetics.116.190264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 11/25/2016] [Indexed: 12/17/2022] Open
Abstract
In meiosis I, chromosomes become paired with their homologous partners and then are pulled toward opposite poles of the spindle. In the budding yeast, Saccharomyces cerevisiae, in early meiotic prophase, centromeres are observed to associate in pairs in a homology-independent manner; a process called centromere coupling. Later, as homologous chromosomes align, their centromeres associate in a process called centromere pairing. The synaptonemal complex protein Zip1 is necessary for both types of centromere association. We aimed to test the role of centromere coupling in modulating recombination at centromeres, and to test whether the two types of centromere associations depend upon the same sets of genes. The zip1-S75E mutation, which blocks centromere coupling but no other known functions of Zip1, was used to show that in the absence of centromere coupling, centromere-proximal recombination was unchanged. Further, this mutation did not diminish centromere pairing, demonstrating that these two processes have different genetic requirements. In addition, we tested other synaptonemal complex components, Ecm11 and Zip4, for their contributions to centromere pairing. ECM11 was dispensable for centromere pairing and segregation of achiasmate partner chromosomes; while ZIP4 was not required for centromere pairing during pachytene, but was required for proper segregation of achiasmate chromosomes. These findings help differentiate the two mechanisms that allow centromeres to interact in meiotic prophase, and illustrate that centromere pairing, which was previously shown to be necessary to ensure disjunction of achiasmate chromosomes, is not sufficient for ensuring their disjunction.
Collapse
|
9
|
Termolino P, Cremona G, Consiglio MF, Conicella C. Insights into epigenetic landscape of recombination-free regions. Chromosoma 2016; 125:301-8. [PMID: 26801812 PMCID: PMC4830869 DOI: 10.1007/s00412-016-0574-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 01/10/2016] [Accepted: 01/12/2016] [Indexed: 11/29/2022]
Abstract
Genome architecture is shaped by gene-rich and repeat-rich regions also known as euchromatin and heterochromatin, respectively. Under normal conditions, the repeat-containing regions undergo little or no meiotic crossover (CO) recombination. COs within repeats are risky for the genome integrity. Indeed, they can promote non-allelic homologous recombination (NAHR) resulting in deleterious genomic rearrangements associated with diseases in humans. The assembly of heterochromatin is driven by the combinatorial action of many factors including histones, their modifications, and DNA methylation. In this review, we discuss current knowledge dealing with the epigenetic signatures of the major repeat regions where COs are suppressed. Then we describe mutants for epiregulators of heterochromatin in different organisms to find out how chromatin structure influences the CO rate and distribution.
Collapse
Affiliation(s)
- Pasquale Termolino
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy
| | - Gaetana Cremona
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy
| | - Maria Federica Consiglio
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy
| | - Clara Conicella
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy.
| |
Collapse
|
10
|
Abstract
The study of homologous recombination has its historical roots in meiosis. In this context, recombination occurs as a programmed event that culminates in the formation of crossovers, which are essential for accurate chromosome segregation and create new combinations of parental alleles. Thus, meiotic recombination underlies both the independent assortment of parental chromosomes and genetic linkage. This review highlights the features of meiotic recombination that distinguish it from recombinational repair in somatic cells, and how the molecular processes of meiotic recombination are embedded and interdependent with the chromosome structures that characterize meiotic prophase. A more in-depth review presents our understanding of how crossover and noncrossover pathways of meiotic recombination are differentiated and regulated. The final section of this review summarizes the studies that have defined defective recombination as a leading cause of pregnancy loss and congenital disease in humans.
Collapse
Affiliation(s)
- Neil Hunter
- Howard Hughes Medical Institute, Department of Microbiology & Molecular Genetics, Department of Molecular & Cellular Biology, Department of Cell Biology & Human Anatomy, University of California Davis, Davis, California 95616
| |
Collapse
|
11
|
Rowsey R, Gruhn J, Broman KW, Hunt PA, Hassold T. Examining variation in recombination levels in the human female: a test of the production-line hypothesis. Am J Hum Genet 2014; 95:108-12. [PMID: 24995869 DOI: 10.1016/j.ajhg.2014.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/10/2014] [Indexed: 11/17/2022] Open
Abstract
The most important risk factor for human aneuploidy is increasing maternal age, but the basis of this association remains unknown. Indeed, one of the earliest models of the maternal-age effect--the "production-line model" proposed by Henderson and Edwards in 1968--remains one of the most-cited explanations. The model has two key components: (1) that the first oocytes to enter meiosis are the first ovulated and (2) that the first to enter meiosis have more recombination events (crossovers) than those that enter meiosis later in fetal life. Studies in rodents have demonstrated that the first oocytes to enter meiosis are indeed the first to be ovulated, but the association between the timing of meiotic entry and recombination levels has not been tested. We recently initiated molecular cytogenetic studies of second-trimester human fetal ovaries, allowing us to directly examine the number and distribution of crossover-associated proteins in prophase-stage oocytes. Our observations on over 8,000 oocytes from 191 ovarian samples demonstrate extraordinary variation in recombination within and among individuals but provide no evidence of a difference in recombination levels between oocytes entering meiosis early in fetal life and those entering late in fetal life. Thus, our data provide a direct test of the second tenet of the production-line model and suggest that it does not provide a plausible explanation for the human maternal-age effect, meaning that-45 years after its introduction-we can finally conclude that the production-line model is not the basis for the maternal-age effect on trisomy.
Collapse
Affiliation(s)
- Ross Rowsey
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Jennifer Gruhn
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Karl W Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Patricia A Hunt
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Terry Hassold
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
12
|
Gruhn JR, Rubio C, Broman KW, Hunt PA, Hassold T. Cytological studies of human meiosis: sex-specific differences in recombination originate at, or prior to, establishment of double-strand breaks. PLoS One 2013; 8:e85075. [PMID: 24376867 PMCID: PMC3869931 DOI: 10.1371/journal.pone.0085075] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/21/2013] [Indexed: 11/19/2022] Open
Abstract
Meiotic recombination is sexually dimorphic in most mammalian species, including humans, but the basis for the male:female differences remains unclear. In the present study, we used cytological methodology to directly compare recombination levels between human males and females, and to examine possible sex-specific differences in upstream events of double-strand break (DSB) formation and synaptic initiation. Specifically, we utilized the DNA mismatch repair protein MLH1 as a marker of recombination events, the RecA homologue RAD51 as a surrogate for DSBs, and the synaptonemal complex proteins SYCP3 and/or SYCP1 to examine synapsis between homologs. Consistent with linkage studies, genome-wide recombination levels were higher in females than in males, and the placement of exchanges varied between the sexes. Subsequent analyses of DSBs and synaptic initiation sites indicated similar male:female differences, providing strong evidence that sex-specific differences in recombination rates are established at or before the formation of meiotic DSBs. We then asked whether these differences might be linked to variation in the organization of the meiotic axis and/or axis-associated DNA and, indeed, we observed striking male:female differences in synaptonemal complex (SC) length and DNA loop size. Taken together, our observations suggest that sex specific differences in recombination in humans may derive from chromatin differences established prior to the onset of the recombination pathway.
Collapse
Affiliation(s)
- Jennifer R. Gruhn
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Carmen Rubio
- Preimplantation Genetic Diagnosis Unit, Iviomics, Paterna, Valencia, Spain
| | - Karl W. Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Patricia A. Hunt
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Terry Hassold
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
13
|
Rockmill B, Lefrançois P, Voelkel-Meiman K, Oke A, Roeder GS, Fung JC. High throughput sequencing reveals alterations in the recombination signatures with diminishing Spo11 activity. PLoS Genet 2013; 9:e1003932. [PMID: 24204324 PMCID: PMC3814317 DOI: 10.1371/journal.pgen.1003932] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 09/16/2013] [Indexed: 12/03/2022] Open
Abstract
Spo11 is the topoisomerase-like enzyme responsible for the induction of the meiosis-specific double strand breaks (DSBs), which initiates the recombination events responsible for proper chromosome segregation. Nineteen PCR-induced alleles of SPO11 were identified and characterized genetically and cytologically. Recombination, spore viability and synaptonemal complex (SC) formation were decreased to varying extents in these mutants. Arrest by ndt80 restored these events in two severe hypomorphic mutants, suggesting that ndt80-arrested nuclei are capable of extended DSB activity. While crossing-over, spore viability and synaptonemal complex (SC) formation defects correlated, the extent of such defects was not predictive of the level of heteroallelic gene conversions (prototrophs) exhibited by each mutant. High throughput sequencing of tetrads from spo11 hypomorphs revealed that gene conversion tracts associated with COs are significantly longer and gene conversion tracts unassociated with COs are significantly shorter than in wild type. By modeling the extent of these tract changes, we could account for the discrepancy in genetic measurements of prototrophy and crossover association. These findings provide an explanation for the unexpectedly low prototroph levels exhibited by spo11 hypomorphs and have important implications for genetic studies that assume an unbiased recovery of prototrophs, such as measurements of CO homeostasis. Our genetic and physical data support previous observations of DSB-limited meioses, in which COs are disproportionally maintained over NCOs (CO homeostasis). Most eukaryotes depend on the meiotic division to segregate each pair of chromosomes properly into their gametes. Chromosome segregation mistakes happening during meiosis are responsible for most miscarriages as well as many diseases such as Down's and Kleinfelter's syndromes in humans. Proper chromosome segregation during meiosis depends on efficient and regulated recombination events that link homologous chromosomes prior to the first meiotic division. These linkages are initiated at double-stranded breaks (DSBs) in chromosomal DNA by Spo11 and associated proteins. We isolated a valuable new set of SPO11 alleles in yeast with a wide range of Spo11 activity. Genetic analysis and high throughput sequencing of tetrads from these mutants has revealed unexpected features of meiotic recombination. First, Spo11 DSBs likely continue to form throughout a pachytene arrest in cells compromised for Spo11 activity. Second, the number of recombination initiation events in a given meiosis influences the repair outcome of those events. In addition, our results provide support for crossover homeostasis – a phenomenon in which crossovers are disproportionately maintained over other types of repair in the face of a decrease in DSBs.
Collapse
Affiliation(s)
- Beth Rockmill
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Philippe Lefrançois
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Karen Voelkel-Meiman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Ashwini Oke
- Department of Obstetrics, Gynecology and Reproductive Sciences and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - G. Shirleen Roeder
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Jennifer C. Fung
- Department of Obstetrics, Gynecology and Reproductive Sciences and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Global linkage map connects meiotic centromere function to chromosome size in budding yeast. G3-GENES GENOMES GENETICS 2013; 3:1741-51. [PMID: 23979930 PMCID: PMC3789798 DOI: 10.1534/g3.113.007377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Synthetic genetic array (SGA) analysis automates yeast genetics, enabling high-throughput construction of ordered arrays of double mutants. Quantitative colony sizes derived from SGA analysis can be used to measure cellular fitness and score for genetic interactions, such as synthetic lethality. Here we show that SGA colony sizes also can be used to obtain global maps of meiotic recombination because recombination frequency affects double-mutant formation for gene pairs located on the same chromosome and therefore influences the size of the resultant double-mutant colony. We obtained quantitative colony size data for ~1.2 million double mutants located on the same chromosome and constructed a genome-scale genetic linkage map at ~5 kb resolution. We found that our linkage map is reproducible and consistent with previous global studies of meiotic recombination. In particular, we confirmed that the total number of crossovers per chromosome tends to follow a simple linear model that depends on chromosome size. In addition, we observed a previously unappreciated relationship between the size of linkage regions surrounding each centromere and chromosome size, suggesting that crossovers tend to occur farther away from the centromere on larger chromosomes. The pericentric regions of larger chromosomes also appeared to load larger clusters of meiotic cohesin Rec8, and acquire fewer Spo11-catalyzed DNA double-strand breaks. Given that crossovers too near or too far from centromeres are detrimental to homolog disjunction and increase the incidence of aneuploidy, our data suggest that chromosome size may have a direct role in regulating the fidelity of chromosome segregation during meiosis.
Collapse
|
15
|
Oliver TR, Tinker SW, Allen EG, Hollis N, Locke AE, Bean LJH, Chowdhury R, Begum F, Marazita M, Cheung V, Feingold E, Sherman SL. Altered patterns of multiple recombinant events are associated with nondisjunction of chromosome 21. Hum Genet 2012; 131:1039-46. [PMID: 22160426 PMCID: PMC3925977 DOI: 10.1007/s00439-011-1121-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/27/2011] [Indexed: 12/01/2022]
Abstract
We have previously examined characteristics of maternal chromosomes 21 that exhibited a single recombination on 21q and proposed that certain recombination configurations are risk factors for either meiosis I (MI) or meiosis II (MII) nondisjunction. The primary goal of this analysis was to examine characteristics of maternal chromosomes 21 that exhibited multiple recombinant events on 21q to determine whether additional risk factors or mechanisms are suggested. In order to identify the origin (maternal or paternal) and stage (MI or MII) of the meiotic errors, as well as placement of recombination, we genotyped over 1,500 SNPs on 21q. Our analyses included 785 maternal MI errors, 87 of which exhibited two recombinations on 21q, and 283 maternal MII errors, 81 of which exhibited two recombinations on 21q. Among MI cases, the average location of the distal recombination was proximal to that of normally segregating chromosomes 21 (35.28 vs. 38.86 Mb), a different pattern than that seen for single events and one that suggests an association with genomic features. For MII errors, the most proximal recombination was closer to the centromere than that on normally segregating chromosomes 21 and this proximity was associated with increasing maternal age. This pattern is same as that seen among MII errors that exhibit only one recombination. These findings are important as they help us better understand mechanisms that may underlie both age-related and nonage-related meiotic chromosome mal-segregation.
Collapse
Affiliation(s)
- Tiffany Renee Oliver
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Suite 301, Whitehead Bldg, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet 2012; 13:493-504. [PMID: 22705668 PMCID: PMC3551553 DOI: 10.1038/nrg3245] [Citation(s) in RCA: 705] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Trisomic and monosomic (aneuploid) embryos account for at least 10% of human pregnancies and, for women nearing the end of their reproductive lifespan, the incidence may exceed 50%. The errors that lead to aneuploidy almost always occur in the oocyte but, despite intensive investigation, the underlying molecular basis has remained elusive. Recent studies of humans and model organisms have shed new light on the complexity of meiotic defects, providing evidence that the age-related increase in errors in the human female is not attributable to a single factor but to an interplay between unique features of oogenesis and a host of endogenous and exogenous factors.
Collapse
Affiliation(s)
- So I Nagaoka
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | | | | |
Collapse
|
17
|
Kitajima TS, Ohsugi M, Ellenberg J. Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes. Cell 2011; 146:568-81. [PMID: 21854982 DOI: 10.1016/j.cell.2011.07.031] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 05/17/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
Abstract
Chromosomes must establish stable biorientation prior to anaphase to achieve faithful segregation during cell division. The detailed process by which chromosomes are bioriented and how biorientation is coordinated with spindle assembly and chromosome congression remain unclear. Here, we provide complete 3D kinetochore-tracking datasets throughout cell division by high-resolution imaging of meiosis I in live mouse oocytes. We show that in acentrosomal oocytes, chromosome congression forms an intermediate chromosome configuration, the prometaphase belt, which precedes biorientation. Chromosomes then invade the elongating spindle center to form the metaphase plate and start biorienting. Close to 90% of all chromosomes undergo one or more rounds of error correction of their kinetochore-microtubule attachments before achieving correct biorientation. This process depends on Aurora kinase activity. Our analysis reveals the error-prone nature of homologous chromosome biorientation, providing a possible explanation for the high incidence of aneuploid eggs observed in mammals, including humans.
Collapse
Affiliation(s)
- Tomoya S Kitajima
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, Heidelberg D-69117, Germany
| | | | | |
Collapse
|
18
|
Chromosome 21 non-disjunction and Down syndrome birth in an Indian cohort: analysis of incidence and aetiology from family linkage data. Genet Res (Camb) 2010; 92:189-97. [DOI: 10.1017/s0016672310000224] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
SummaryWe analysed the family linkage data obtained from short tandem repeat (STR) genotyping of 212 unrelated Indian families having a single Down syndrome (DS) baby each, in order to explore the incidence and aetiology of this human aneuploidy in our cohort. The estimated values of maternal meiotic I and meiotic II non-disjunction (NDJ) errors of chromosome 21 (Ch 21) were ~78 and ~22%, respectively. Within the paternal outcome group, about 47 and 53% were accounted for NDJ at meiosis I and meiosis II, respectively. We estimated only ~2% post-zygotic mitotic errors. The comparison of average age of conception between controls and DS-bearing mothers revealed a significant difference (P<0·001) with DS-bearing women were on an average older than controls and meiotic II non-disjoined mothers were oldest among meiotic outcome groups. Our linkage analysis suggested an overall reduction in recombination by more than 50% on meiotic I non-disjoined maternal Ch 21 with error prone to susceptible chiasma formation within the ~5·1 kbp segment near the telomeric end. We stratified meiotic I non-disjoined women in three age groups, viz. young (⩽28 years), middle (29–34 years) and old (⩾35 years) and found linear decrease in the frequency of achiasmate meiosis from the young to the old group. In contrary, a linear increase in the multiple chiasma frequency from the young to the old group was observed. Considering these results together, we propose that the risk factors for Ch 21 NDJ are of two types, one being ‘maternal age-independent’ and the other being ‘maternal age-dependent’. Moreover, a comparison of our present Indian dataset with that of other published data of ethnically different populations suggested that the genetics that underlies the NDJ of Ch 21 is probably universal irrespective of racial difference across human populations. The present study is the first population-based report on any DS cohort from the Indian subcontinent and our work will help future workers in understanding better the aetiology of this birth defect.
Collapse
|
19
|
Jaramillo-Lambert A, Engebrecht J. A single unpaired and transcriptionally silenced X chromosome locally precludes checkpoint signaling in the Caenorhabditis elegans germ line. Genetics 2010; 184:613-28. [PMID: 20008570 PMCID: PMC2845332 DOI: 10.1534/genetics.109.110338] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/07/2009] [Indexed: 12/26/2022] Open
Abstract
In many organisms, female and male meiosis display extensive sexual dimorphism in the temporal meiotic program, the number and location of recombination events, sex chromosome segregation, and checkpoint function. We show here that both meiotic prophase timing and germ-line apoptosis, one output of checkpoint signaling, are dictated by the sex of the germ line (oogenesis vs. spermatogenesis) in Caenorhabditis elegans. During oogenesis in feminized animals (fem-3), a single pair of asynapsed autosomes elicits a checkpoint response, yet an unpaired X chromosome fails to induce checkpoint activation. The single X in males and fem-3 worms is a substrate for the meiotic recombination machinery and repair of the resulting double strand breaks appears to be delayed compared with worms carrying paired X chromosomes. Synaptonemal complex axial HORMA domain proteins, implicated in repair of meiotic double strand breaks (DSBs) and checkpoint function, are assembled and disassembled on the single X similarly to paired chromosomes, but the central region component, SYP-1, is not loaded on the X chromosome in males. In fem-3 worms some X chromosomes achieve nonhomologous self-synapsis; however, germ cells with SYP-1-positive X chromosomes are not preferentially protected from apoptosis. Analyses of chromatin and X-linked gene expression indicate that a single X, unlike asynapsed X chromosomes or autosomes, maintains repressive chromatin marks and remains transcriptionally silenced and suggests that this state locally precludes checkpoint signaling.
Collapse
Affiliation(s)
- Aimee Jaramillo-Lambert
- Department of Molecular and Cellular Biology, Genetics Graduate Group, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
20
|
Ghosh S, Feingold E, Dey SK. Etiology of Down syndrome: Evidence for consistent association among altered meiotic recombination, nondisjunction, and maternal age across populations. Am J Med Genet A 2009; 149A:1415-20. [PMID: 19533770 PMCID: PMC2732749 DOI: 10.1002/ajmg.a.32932] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Down syndrome caused by meiotic nondisjunction of chromosome 21 in humans, is well known to be associated with advanced maternal age, but success in identifying and understanding other risk factors has been limited. Recently published work in a U.S. population suggested intriguing interactions between the maternal age effect and altered recombination patterns during meiosis, but some of the results were counter-intuitive. We have tested these hypotheses in a population sample from India, and found that essentially all of the results of the U.S. study are replicated even in our ethnically very different population. We examined meiotic recombination patterns in a total of 138 families from the eastern part of India, each with a single free trisomy 21 child. We genotyped each family with a set of STR markers using PCR and characterized the stage of origin of nondisjunction and the recombination pattern of maternal chromosome 21 during oogenesis. Our sample contains 107 maternal meiosis I errors and 31 maternal meiosis II errors and we subsequently stratified them with respect to maternal age and the number of detectable crossover events. We observed an association between meiosis I nondisjunction and recombination in the telomeric 5.1 Mb of chromosome 21. By contrast, in meiosis II cases we observed preferential pericentromeric exchanges covering the proximal 5.7 Mb region, with interaction between maternal age and the location of the crossover. Overall reduction of recombination irrespective of maternal age is also evident in meiosis I cases. Our findings are very consistent with previously reported data in a U.S. population and our results are the first independent confirmation of those previous reports. This not only provides much needed confirmation of previous results, but it suggests that the genetic etiology underlying the occurrence of trisomy 21 may be similar across human populations.
Collapse
Affiliation(s)
- Sujoy Ghosh
- Human Genetics Research Unit. Department of Biotechnology. West Bengal University of Technology. Salt lake City. BF - 142. Sector I. Kolkata. Pin: 700064 West Bengal. India
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh and Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh. Pennsylvania, USA
| | - Subrata kumar Dey
- Human Genetics Research Unit. Department of Biotechnology. West Bengal University of Technology. Salt lake City. BF - 142. Sector I. Kolkata. Pin: 700064 West Bengal. India
| |
Collapse
|
21
|
Conrad MN, Lee CY, Chao G, Shinohara M, Kosaka H, Shinohara A, Conchello JA, Dresser ME. Rapid telomere movement in meiotic prophase is promoted by NDJ1, MPS3, and CSM4 and is modulated by recombination. Cell 2008; 133:1175-87. [PMID: 18585352 DOI: 10.1016/j.cell.2008.04.047] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 02/07/2008] [Accepted: 04/12/2008] [Indexed: 11/18/2022]
Abstract
Haploidization of the genome in meiosis requires that chromosomes be sorted exclusively into pairs stabilized by synaptonemal complexes (SCs) and crossovers. This sorting and pairing is accompanied by active chromosome positioning in meiotic prophase in which telomeres cluster near the spindle pole to form the bouquet before dispersing around the nuclear envelope. We now describe telomere-led rapid prophase movements (RPMs) that frequently exceed 1 microm/s and persist throughout meiotic prophase. Bouquet formation and RPMs depend on NDJ1, MPS3, and a new member of this pathway, CSM4, which encodes a meiosis-specific nuclear envelope protein required specifically for telomere mobility. RPMs initiate independently of recombination but differ quantitatively in mutants that fail to complete recombination, suggesting that RPMs respond to recombination status. Together with recombination defects described for ndj1, our observations suggest that RPMs and SCs balance the disruption and stabilization of recombinational interactions, respectively, to regulate crossing over.
Collapse
Affiliation(s)
- Michael N Conrad
- Program in Molecular, Cell and Developmental Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Meiotic reciprocal recombination (crossing over) was examined in the outermost 60-80 kb of almost all Saccharomyces cerevisiae chromosomes. These sequences included both repetitive gene-poor subtelomeric heterochromatin-like regions and their adjacent unique gene-rich euchromatin-like regions. Subtelomeric sequences underwent very little crossing over, exhibiting approximately two- to threefold fewer crossovers per kilobase of DNA than the genomic average. Surprisingly, the adjacent euchromatic regions underwent crossing over at twice the average genomic rate and contained at least nine new recombination "hot spots." These results prompted an analysis of existing genetic mapping data, which showed that meiotic reciprocal recombination rates were on average greater near chromosome ends exclusive of the subtelomeres. Thus, the distribution of crossovers in S. cerevisiae appears to resemble that found in several higher eukaryotes where the outermost chromosomal regions show increased crossing over.
Collapse
|
23
|
Davis L, Rozalén AE, Moreno S, Smith GR, Martín-Castellanos C. Rec25 and Rec27, novel linear-element components, link cohesin to meiotic DNA breakage and recombination. Curr Biol 2008; 18:849-54. [PMID: 18514516 PMCID: PMC3119532 DOI: 10.1016/j.cub.2008.05.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/18/2008] [Accepted: 05/02/2008] [Indexed: 01/12/2023]
Abstract
Meiosis is a specialized nuclear division by which sexually reproducing diploid organisms generate haploid gametes. Recombination between homologous chromosomes facilitates accurate meiotic chromosome segregation and is initiated by DNA double-strand breaks (DSBs) made by the conserved topoisomerase-like protein Spo11 (Rec12 in fission yeast), but DSBs are not evenly distributed across the genome. In Schizosaccharomyces pombe, proteinaceous structures known as linear elements (LinEs) are formed during meiotic prophase. The meiosis-specific cohesin subunits Rec8 and Rec11 are essential for DSB formation in some regions of the genome, as well as for formation of LinEs or the related synaptonemal complex (SC) in other eukaryotes. Proteins required for DSB formation decorate LinEs, and mutants lacking Rec10, a major component of LinEs, are completely defective for recombination. Although recombination may occur in the context of LinEs, it is not well understood how Rec10 is loaded onto chromosomes. We describe two novel components of LinEs in fission yeast, Rec25 and Rec27. Comparisons of rec25Delta, rec27Delta, and rec10Delta mutants suggest multiple pathways to load Rec10. In the major pathway, Rec10 is loaded, together with Rec25 and Rec27, in a Rec8-dependent manner with subsequent region-specific effects on recombination.
Collapse
Affiliation(s)
- Luther Davis
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, U.S.A
| | - Ana E. Rozalén
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Sergio Moreno
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Gerald R. Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, U.S.A
| | - Cristina Martín-Castellanos
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
24
|
Oliver TR, Feingold E, Yu K, Cheung V, Tinker S, Yadav-Shah M, Masse N, Sherman SL. New insights into human nondisjunction of chromosome 21 in oocytes. PLoS Genet 2008; 4:e1000033. [PMID: 18369452 PMCID: PMC2265487 DOI: 10.1371/journal.pgen.1000033] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 02/11/2008] [Indexed: 11/18/2022] Open
Abstract
Nondisjunction of chromosome 21 is the leading cause of Down syndrome. Two risk factors for maternal nondisjunction of chromosome 21 are increased maternal age and altered recombination. In order to provide further insight on mechanisms underlying nondisjunction, we examined the association between these two well established risk factors for chromosome 21 nondisjunction. In our approach, short tandem repeat markers along chromosome 21 were genotyped in DNA collected from individuals with free trisomy 21 and their parents. This information was used to determine the origin of the nondisjunction error and the maternal recombination profile. We analyzed 615 maternal meiosis I and 253 maternal meiosis II cases stratified by maternal age. The examination of meiosis II errors, the first of its type, suggests that the presence of a single exchange within the pericentromeric region of 21q interacts with maternal age-related risk factors. This observation could be explained in two general ways: 1) a pericentromeric exchange initiates or exacerbates the susceptibility to maternal age risk factors or 2) a pericentromeric exchange protects the bivalent against age-related risk factors allowing proper segregation of homologues at meiosis I, but not segregation of sisters at meiosis II. In contrast, analysis of maternal meiosis I errors indicates that a single telomeric exchange imposes the same risk for nondisjunction, irrespective of the age of the oocyte. Our results emphasize the fact that human nondisjunction is a multifactorial trait that must be dissected into its component parts to identify specific associated risk factors.
Collapse
Affiliation(s)
- Tiffany Renee Oliver
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Fukuda T, Kugou K, Sasanuma H, Shibata T, Ohta K. Targeted induction of meiotic double-strand breaks reveals chromosomal domain-dependent regulation of Spo11 and interactions among potential sites of meiotic recombination. Nucleic Acids Res 2007; 36:984-97. [PMID: 18096626 PMCID: PMC2241902 DOI: 10.1093/nar/gkm1082] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Meiotic recombination is initiated by programmed DNA double-strand break (DSB) formation mediated by Spo11. DSBs occur with frequency in chromosomal regions called hot domains but are seldom seen in cold domains. To obtain insights into the determinants of the distribution of meiotic DSBs, we examined the effects of inducing targeted DSBs during yeast meiosis using a UAS-directed form of Spo11 (Gal4BD-Spo11) and a meiosis-specific endonuclease, VDE (PI-SceI). Gal4BD-Spo11 cleaved its target sequence (UAS) integrated in hot domains but rarely in cold domains. However, Gal4BD-Spo11 did bind to UAS and VDE efficiently cleaved its recognition sequence in either context, suggesting that a cold domain is not a region of inaccessible or uncleavable chromosome structure. Importantly, self-association of Spo11 occurred at UAS in a hot domain but not in a cold domain, raising the possibility that Spo11 remains in an inactive intermediate state in cold domains. Integration of UAS adjacent to known DSB hotspots allowed us to detect competitive interactions among hotspots for activation. Moreover, the presence of VDE-introduced DSB repressed proximal hotspot activity, implicating DSBs themselves in interactions among hotspots. Thus, potential sites for Spo11-mediated DSB are subject to domain-specific and local competitive regulations during and after DSB formation.
Collapse
Affiliation(s)
- Tomoyuki Fukuda
- Shibata Distinguished Senior Scientist Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
26
|
Jones KT. Meiosis in oocytes: predisposition to aneuploidy and its increased incidence with age. Hum Reprod Update 2007; 14:143-58. [PMID: 18084010 DOI: 10.1093/humupd/dmm043] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mammalian oocytes begin meiosis in the fetal ovary, but only complete it when fertilized in the adult reproductive tract. This review examines the cell biology of this protracted process: from entry of primordial germ cells into meiosis to conception. The defining feature of meiosis is two consecutive cell divisions (meiosis I and II) and two cell cycle arrests: at the germinal vesicle (GV), dictyate stage of prophase I and at metaphase II. These arrests are spanned by three key events, the focus of this review: (i) passage from mitosis to GV arrest during fetal life, regulated by retinoic acid; (ii) passage through meiosis I and (iii) completion of meiosis II following fertilization, both meiotic divisions being regulated by cyclin-dependent kinase (CDK1) activity. Meiosis I in human oocytes is associated with an age-related high rate of chromosomal mis-segregation, such as trisomy 21 (Down's syndrome), resulting in aneuploid conceptuses. Although aneuploidy is likely to be multifactorial, oocytes from older women may be predisposed to be becoming aneuploid as a consequence of an age-long decline in the cohesive ties holding chromosomes together. Such loss goes undetected by the oocyte during meiosis I either because its ability to respond and block division also deteriorates with age, or as a consequence of being inherently unable to respond to the types of segregation defects induced by cohesion loss.
Collapse
Affiliation(s)
- Keith T Jones
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Framlington Place, Newcastle, NE2 4HH, UK.
| |
Collapse
|
27
|
Robine N, Uematsu N, Amiot F, Gidrol X, Barillot E, Nicolas A, Borde V. Genome-wide redistribution of meiotic double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol 2007; 27:1868-80. [PMID: 17189430 PMCID: PMC1820458 DOI: 10.1128/mcb.02063-06] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 11/30/2006] [Accepted: 12/12/2006] [Indexed: 02/05/2023] Open
Abstract
Meiotic recombination is initiated by the formation of programmed DNA double-strand breaks (DSBs) catalyzed by the Spo11 protein. DSBs are not randomly distributed along chromosomes. To better understand factors that control the distribution of DSBs in budding yeast, we have examined the genome-wide binding and cleavage properties of the Gal4 DNA binding domain (Gal4BD)-Spo11 fusion protein. We found that Gal4BD-Spo11 cleaves only a subset of its binding sites, indicating that the association of Spo11 with chromatin is not sufficient for DSB formation. In centromere-associated regions, the centromere itself prevents DSB cleavage by tethered Gal4BD-Spo11 since its displacement restores targeted DSB formation. In addition, we observed that new DSBs introduced by Gal4BD-Spo11 inhibit surrounding DSB formation over long distances (up to 60 kb), keeping constant the number of DSBs per chromosomal region. Together, these results demonstrate that the targeting of Spo11 to new chromosomal locations leads to both local stimulation and genome-wide redistribution of recombination initiation and that some chromosomal regions are inherently cold regardless of the presence of Spo11.
Collapse
Affiliation(s)
- Nicolas Robine
- Institut Curie, Recombinaison et Instabilité Génétique, Centre de Recherche, UMR7147 CNRS-Institut Curie-Université P. et M. Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
28
|
Rockmill B, Voelkel-Meiman K, Roeder GS. Centromere-proximal crossovers are associated with precocious separation of sister chromatids during meiosis in Saccharomyces cerevisiae. Genetics 2006; 174:1745-54. [PMID: 17028345 PMCID: PMC1698618 DOI: 10.1534/genetics.106.058933] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 09/24/2006] [Indexed: 11/18/2022] Open
Abstract
In most organisms, meiotic chromosome segregation is dependent on crossovers (COs), which enable pairs of homologous chromosomes to segregate to opposite poles at meiosis I. In mammals, the majority of meiotic chromosome segregation errors result from a lack of COs between homologs. Observations in Homo sapiens and Drosophila melanogaster have revealed a second class of exceptional events in which a CO occurred near the centromere of the missegregated chromosome. We show that in wild-type strains of Saccharomyces cerevisiae, most spore inviability is due to precocious separation of sister chromatids (PSSC) and that PSSC is often associated with centromere-proximal crossing over. COs, as opposed to nonreciprocal recombination events (NCOs), are preferentially associated with missegregation. Strains mutant for the RecQ homolog, SGS1, display reduced spore viability and increased crossing over. Much of the spore inviability in sgs1 results from PSSC, and these events are often associated with centromere-proximal COs, just as in wild type. When crossing over in sgs1 is reduced by the introduction of a nonnull allele of SPO11, spore viability is improved, suggesting that the increased PSSC is due to increased crossing over. We present a model for PSSC in which a centromere-proximal CO promotes local loss of sister-chromatid cohesion.
Collapse
Affiliation(s)
- Beth Rockmill
- Howard Hughes Medical Institute, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | |
Collapse
|
29
|
Sherman SL, Lamb NE, Feingold E. Relationship of recombination patterns and maternal age among non-disjoined chromosomes 21. Biochem Soc Trans 2006; 34:578-80. [PMID: 16856865 DOI: 10.1042/bst0340578] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Advancing maternal age has long been identified as the primary risk factor for human chromosome trisomy. More recently, altered patterns of meiotic recombination have been found to be associated with non-disjunction. We have used trisomy 21 as a model for human non-disjunction that occurs during the formation of oocytes to understand the role of maternal age and recombination. Patterns of recombination that increase the risk for non-disjunction of chromosome 21 include absence of any exchange, an exchange near the centromere or a single, telomeric exchange. Our recent work has shown that different susceptibility patterns are associated with the origin of the meiotic error and maternal age. For MI (meiosis I) errors, the proportion of oocytes with susceptible recombination patterns is highest among young mothers and decreases significantly in the oldest age group. In fact, the pattern of exchanges among the oldest age group mimics the pattern observed among normally disjoining chromosomes 21. These results suggest that oocytes of younger women, with functional meiotic apparatus and/or robust ovarian environment, are able to properly resolve all but the most susceptible exchange patterns. As women age, however, meiotic mechanisms erode, making it difficult to resolve even stable exchange events. Interestingly, our preliminary recombination results on MII errors reveal the opposite relationship with maternal age: susceptible pericentromeric exchanges occur most often in the older age group compared with the younger age group. If confirmed, we will have further evidence for multiple risk factors for non-disjunction that act at different times in the meiotic process.
Collapse
Affiliation(s)
- S L Sherman
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
30
|
Sherman SL, Freeman SB, Allen EG, Lamb NE. Risk factors for nondisjunction of trisomy 21. Cytogenet Genome Res 2006; 111:273-80. [PMID: 16192705 DOI: 10.1159/000086900] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 03/15/2005] [Indexed: 11/19/2022] Open
Abstract
The leading cause of Down syndrome (DS) is nondisjunction of chromosome 21 occurring during the formation of gametes. In this review, we discuss the progress made to identify risk factors associated with this type of chromosome error occurring in oogenesis and spermatogenesis. For errors occurring in oocytes, the primary risk factors are maternal age and altered recombination. We review the current progress made with respect to these factors and briefly outline the potential environmental and genetic influences that may play a role. Although the studies of paternal nondisjunction are limited due to the relatively small proportion of errors of this type, we review the potential influence of paternal age, recombination and other environmental and genetic factors on susceptibility. Although progress has been made to understand the mechanisms and risk factors that underlie nondisjunction, considerably more research needs to be conducted to dissect this multifactorial trait, one that has a considerable impact on our species.
Collapse
Affiliation(s)
- S L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
31
|
Lamb NE, Sherman SL, Hassold TJ. Effect of meiotic recombination on the production of aneuploid gametes in humans. Cytogenet Genome Res 2005; 111:250-5. [PMID: 16192701 DOI: 10.1159/000086896] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 03/04/2005] [Indexed: 12/24/2022] Open
Abstract
Within the last decade, aberrant meiotic recombination has been confirmed as a molecular risk factor for chromosome nondisjunction in humans. Recombination tethers homologous chromosomes, linking and guiding them through proper segregation at meiosis I. In model organisms, mutations that disturb the recombination pathway increase the frequency of chromosome malsegregation and alterations in both the amount and placement of meiotic recombination are associated with nondisjunction. This association has been established for humans as well. Significant alterations in recombination have been found for all meiosis I-derived trisomies studied to date and a subset of so called "meiosis II" trisomy. Often exchange levels are reduced in a subset of cases where the nondisjoining chromosome fails to undergo recombination. For other trisomies, the placement of meiotic recombination has been altered. It appears that recombination too near the centromere or too far from the centromere imparts an increased risk for nondisjunction. Recent evidence from trisomy 21 also suggests an association may exist between recombination and maternal age, the most widely identified risk factor for aneuploidy. Among cases of maternal meiosis I-derived trisomy 21, increasing maternal age is associated with a decreasing frequency of recombination in the susceptible pericentromeric and telomeric regions. It is likely that multiple risk factors lead to nondisjunction, some age dependent and others age independent, some that act globally and others that are chromosome specific. Future studies are expected to shed new light on the timing and placement of recombination, providing additional clues to the link between altered recombination and chromosome nondisjunction.
Collapse
Affiliation(s)
- N E Lamb
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
32
|
Sun F, Oliver-Bonet M, Liehr T, Starke H, Trpkov K, Ko E, Rademaker A, Martin RH. Discontinuities and unsynapsed regions in meiotic chromosomes have a cis effect on meiotic recombination patterns in normal human males. Hum Mol Genet 2005; 14:3013-8. [PMID: 16155114 DOI: 10.1093/hmg/ddi332] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
During meiosis, homologous chromosome pairing is essential for subsequent meiotic recombination (crossover). Discontinuous chromosome regions (gaps) or unsynapsed chromosome regions (splits) in the synaptonemal complex (SC) indicate anomalies in chromosome synapsis. Recently developed immunofluorescence techniques (using antibodies against SC proteins and the crossover-associated MLH1 protein) were combined with fluorescence in situ hybridization (using centromere-specific DNA probes) to identify bivalents with gaps/splits and to examine the effect of gaps/splits on meiotic recombination patterns during the pachytene stage of meiotic prophase from three normal human males. Gaps were observed only in the heterochromatic regions of chromosomes 9 and 1, with 9q gaps accounting for 90% of these events. Most splits were also found in chromosomes 9 and 1, with 58% of splits occurring on 9q. Gaps and splits significantly altered the distribution of MLH1 foci on the SC. On gapped SC 9q, the frequency of MLH1 foci was decreased compared with controls, and single 9q crossovers tended toward a more distal distribution. Furthermore, the larger the gap the more distal the location of the MLH1 focus closest to the q arm's telomere. MLH1 foci on split SC 9 had distributions similar to those of gapped SC 9; however, splits did not change the frequencies of MLH1 foci on SC 9. This is the first demonstration that gaps and splits have an effect on meiotic recombination in humans.
Collapse
Affiliation(s)
- Fei Sun
- Department of Medical Genetics, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Argueso JL, Wanat J, Gemici Z, Alani E. Competing crossover pathways act during meiosis in Saccharomyces cerevisiae. Genetics 2005; 168:1805-16. [PMID: 15611158 PMCID: PMC1448724 DOI: 10.1534/genetics.104.032912] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In Saccharomyces cerevisiae the MSH4-MSH5, MLH1-MLH3, and MUS81-MMS4 complexes act to promote crossing over during meiosis. MSH4-MSH5, but not MUS81-MMS4, promotes crossovers that display interference. A role for MLH1-MLH3 in crossover control is less clear partly because mlh1Delta mutants retain crossover interference yet display a decrease in crossing over that is only slightly less severe than that seen in msh4Delta and msh5Delta mutants. We analyzed the effects of msh5Delta, mlh1Delta, and mms4Delta single, double, and triple mutants on meiotic crossing over at four consecutive genetic intervals on chromosome XV using newly developed computer software. mlh1Delta mms4Delta double mutants displayed the largest decrease in crossing over (13- to 15-fold) of all mutant combinations, yet these strains displayed relatively high spore viability (42%). In contrast, msh5Delta mms4Delta and msh5Delta mms4Delta mlh1Delta mutants displayed smaller decreases in crossing over (4- to 6-fold); however, spore viability (18-19%) was lower in these strains than in mlh1Delta mms4Delta strains. These data suggest that meiotic crossing over can occur in yeast through three distinct crossover pathways. In one pathway, MUS81-MMS4 promotes interference-independent crossing over; in a second pathway, both MSH4-MSH5 and MLH1-MLH3 promote interference-dependent crossovers. A third pathway, which appears to be repressed by MSH4-MSH5, yields deleterious crossovers.
Collapse
Affiliation(s)
- Juan Lucas Argueso
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | |
Collapse
|
34
|
Lamb NE, Yu K, Shaffer J, Feingold E, Sherman SL. Association between maternal age and meiotic recombination for trisomy 21. Am J Hum Genet 2005; 76:91-9. [PMID: 15551222 PMCID: PMC1196437 DOI: 10.1086/427266] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 11/08/2004] [Indexed: 11/03/2022] Open
Abstract
Altered genetic recombination has been identified as the first molecular correlate of chromosome nondisjunction in both humans and model organisms. Little evidence has emerged to link maternal age--long recognized as the primary risk factor for nondisjunction--with altered recombination, although some studies have provided hints of such a relationship. To determine whether an association does exist, chromosome 21 recombination patterns were examined in 400 trisomy 21 cases of maternal meiosis I origin, grouped by maternal age. These recombination patterns were used to predict the chromosome 21 exchange patterns established during meiosis I. There was no statistically significant association between age and overall rate of exchange. The placement of meiotic exchange, however, differed significantly among the age groups. Susceptible patterns (pericentromeric and telomeric exchanges) accounted for 34% of all exchanges among the youngest class of women but only 10% of those among the oldest class. The pattern of exchanges among the oldest age group mimicked the pattern observed among normally disjoining chromosomes 21. These results suggest that the greatest risk factor for nondisjunction among younger women is the presence of a susceptible exchange pattern. We hypothesize that environmental and age-related insults accumulate in the ovary as a woman ages, leading to malsegregation of oocytes with stable exchange patterns. It is this risk, due to recombination-independent factors, that would be most influenced by increasing age, leading to the observed maternal age effect.
Collapse
Affiliation(s)
- Neil E Lamb
- Department of Human Genetics, Emory University, 615 Michael Street, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
35
|
Koehler KE, Millie EA, Cherry JP, Schrump SE, Hassold TJ. Meiotic exchange and segregation in female mice heterozygous for paracentric inversions. Genetics 2004; 166:1199-214. [PMID: 15082541 PMCID: PMC1470797 DOI: 10.1534/genetics.166.3.1199] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inversion heterozygosity has long been noted for its ability to suppress the transmission of recombinant chromosomes, as well as for altering the frequency and location of recombination events. In our search for meiotic situations with enrichment for nonexchange and/or single distal-exchange chromosome pairs, exchange configurations that are at higher risk for nondisjunction in humans and other organisms, we examined both exchange and segregation patterns in 2728 oocytes from mice heterozygous for paracentric inversions, as well as controls. We found dramatic alterations in exchange position in the heterozygotes, including an increased frequency of distal exchanges for two of the inversions studied. However, nondisjunction was not significantly increased in oocytes heterozygous for any inversion. When data from all inversion heterozygotes were pooled, meiotic nondisjunction was slightly but significantly higher in inversion heterozygotes (1.2%) than in controls (0%), although the frequency was still too low to justify the use of inversion heterozygotes as a model of human nondisjunction.
Collapse
Affiliation(s)
- Kara E Koehler
- Department of Genetics and the Center for Human Genetics, Case Western Reserve University and the University Hospitals of Cleveland, Cleveland, Ohio 44106-4955, USA.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Maternal ageing is the only etiological factor unequivocally associated with the occurrence of aneuploid conceptuses. Molecular studies of trisomies have demonstrated that the pattern of recombinaison was an important predisposing factor to meiotic nondisjunction. To complete this data, a large chromosomal study has been undertaken on 1,397 unfertilised human oocytes recovered from women participating in in vitro fertilization programmes. Conventional whole chromosome nondisjunction and premature chromatid separation were the major types of numerical abnormalities observed. A positive relationship was found between maternal age and these two types of nondisjunction, but the most significant correlation was observed with chromatid separation resulting in the presence of free chromatid in metaphase II oocyte. These data revealed that chromatid separation was an essential factor in the age-dependent occurrence of aneuploidy. This finding provided new insights into the mechanism of nondisjunction in female meiosis since disturbance in molecular chromatid cohesion by cohesins might be a causal mechanism predisposing to nondisjunction and involved in the maternal age effect.
Collapse
Affiliation(s)
- Franck Pellestor
- Institut de Génétique humaine, CNRS UPR 1142, 141, rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| |
Collapse
|
37
|
Shonn MA, Murray AL, Murray AW. Spindle checkpoint component Mad2 contributes to biorientation of homologous chromosomes. Curr Biol 2004; 13:1979-84. [PMID: 14614824 DOI: 10.1016/j.cub.2003.10.057] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell cycle checkpoints sense defects in chromosome metabolism, halt the cell cycle, and activate pathways that repair the defects. The spindle checkpoint arrests the cell cycle in response to defects in the interaction between microtubules and kinetochores (the proteinaceous complex assembled on centromeric DNA), but no repair function has been demonstrated for this checkpoint. We show that the roles of two spindle checkpoint components, Mad2 and Mad3, differ in meiosis I. In the absence of Mad2, meiosis I nondisjunction occurs at a high frequency and can be corrected by delaying the onset of anaphase. The absence of Mad3 does not induce nondisjunction, even though mad3Delta cells cannot arrest the cell cycle in response to kinetochores that lack either microtubules or tension on the linkage between chromosomes and microtubules. The two proteins have different roles in chromosome alignment. Compared to wild type and mad3Delta cells, mad2Delta mutants are slower to attach homologous chromosomes to opposite poles of the spindle. This observation suggests that Mad2 plays a role in reorienting chromosomes that are incorrectly attached to the spindle as well as delaying the cell cycle, whereas Mad3 is needed for the cell cycle delay, but not for chromosome reorientation.
Collapse
Affiliation(s)
- Marion A Shonn
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02130, USA
| | | | | |
Collapse
|
38
|
Sloter E, Nath J, Eskenazi B, Wyrobek AJ. Effects of male age on the frequencies of germinal and heritable chromosomal abnormalities in humans and rodents. Fertil Steril 2004; 81:925-43. [PMID: 15066442 DOI: 10.1016/j.fertnstert.2003.07.043] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Revised: 07/09/2003] [Accepted: 07/09/2003] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To review evidence regarding the effects of male age on germinal and heritable chromosomal abnormalities using available human and rodent studies and to evaluate possible underlying mechanisms. DESIGN Review of English language-published research using MEDLINE database, excluding case reports and anecdotal data. RESULT(S) There was little evidence from offspring or germ cell studies for a generalized male age effect on autosomal aneuploidy, except in rodents. Sex chromosomal nondisjunction increased with age in both human and rodent male germ cells. Both human and rodent data showed age-related increases in the number of sperm with chromosomal breaks and fragments and suggest that postmeiotic cells are particularly vulnerable to the effects of aging. Translocation frequencies increased with age in murine spermatocytes, at rates comparable to mouse and human somatic cells. Age-related mechanisms of induction may include accumulation of environmental damage, reduced efficiency of DNA repair, increased genomic instability, genetic factors, hormonal influences, suppressed apoptosis, or decreased effectiveness of antioxidants and micronutrients. CONCLUSION(S) The weight of evidence suggests that the increasing trend toward fathering at older ages may have significant effects on the viability and genetic health of human pregnancies and offspring, primarily as a result of structural chromosomal aberrations in sperm.
Collapse
Affiliation(s)
- Eddie Sloter
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Recent studies in Caenorhabditis elegans show that crossover interference, which usually limits the number of exchanges per meiotic bivalent to just 'one', requires the continuity of both homologs. One 'function' of crossover interference may be the prevention of crossover events that might not effectively hold homologs together.
Collapse
Affiliation(s)
- J Edward van Veen
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | |
Collapse
|
40
|
Barton AB, Su Y, Lamb J, Barber D, Kaback DB. A Function for Subtelomeric DNA in Saccharomyces cerevisiae. Genetics 2003; 165:929-34. [PMID: 14573499 PMCID: PMC1462788 DOI: 10.1093/genetics/165.2.929] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The subtelomeric DNA sequences from chromosome I of Saccharomyces cerevisiae are shown to be inherently poor substrates for meiotic recombination. On the basis of these results and prior observations that crossovers near telomeres do not promote efficient meiosis I segregation, we suggest that subtelomeric sequences evolved to prevent recombination from occurring where it cannot promote efficient segregation.
Collapse
Affiliation(s)
- Arnold B Barton
- Department of Microbiology and Molecular Genetics, International Center for Public Health, UMDNJ-New Jersey Medical School, Graduate School of Biomedical Sciences, Newark, New Jersey 07103, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
The separation of homologous chromosomes during meiosis in eukaryotes is the physical basis of Mendelian inheritance. The core of the meiotic process is a specialized nuclear division (meiosis I) in which homologs pair with each other, recombine, and then segregate from each other. The processes of chromosome alignment and pairing allow for homolog recognition. Reciprocal meiotic recombination ensures meiotic chromosome segregation by converting sister chromatid cohesion into mechanisms that hold homologous chromosomes together. Finally, the ability of sister kinetochores to orient to a single pole at metaphase I allows the separation of homologs to two different daughter cells. Failures to properly accomplish this elegant chromosome dance result in aneuploidy, a major cause of miscarriage and birth defects in human beings.
Collapse
Affiliation(s)
- Scott L Page
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | |
Collapse
|
42
|
Abstract
Studies in Drosophila support the view that a failure of cohesion between sister chromatids may contribute to meiotic nondisjunction in humans. Moreover, the demonstration of a meiotic aneugen in mice provides important clues to the higher frequencies of nondisjunction observed in older women.
Collapse
Affiliation(s)
- R Scott Hawley
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA.
| |
Collapse
|
43
|
Maxfield Boumil R, Kemp B, Angelichio M, Nilsson-Tillgren T, Dawson DS. Meiotic segregation of a homeologous chromosome pair. Mol Genet Genomics 2003; 268:750-60. [PMID: 12655401 DOI: 10.1007/s00438-002-0796-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2002] [Accepted: 12/05/2002] [Indexed: 10/25/2022]
Abstract
During meiosis, the alignment of homologous chromosomes facilitates their subsequent migration away from one another to opposite spindle poles at anaphase I. Recombination is part of the mechanism by which chromosomes identify their homologous partners, and serves to link the homologs in a way that, in some organisms, has been shown to promote proper attachment to the meiotic spindle. We have built a diploid strain that contains a pair of homeologous chromosomes V': one is derived from Saccharomyces cerevisiae and one originates from S. carlsbergensis. Sequence analysis reveals that these chromosomes share 71% sequence identity. The homeologs experience high levels of meiotic double-stranded breaks. Despite their relatedness and their competence to initiate recombination, the meiotic segregation behavior of the homeologous chromosomes suggests that, in most meioses, they are partitioned by a meiotic segregation system that has been shown previously to partition non-exchange chromosomes and pairs with no homology. Though the homeologous chromosomes show a degree of meiotic segregation fidelity similar to that of other non-exchange pairs, our data provide evidence that their limited sequence homology may provide some bias in meiotic partner choice.
Collapse
Affiliation(s)
- R Maxfield Boumil
- Department of Molecular Biology and Microbiology, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Turner JM, Burgoyne PS, Singh PB. M31 and macroH2A1.2 colocalise at the pseudoautosomal region during mouse meiosis. J Cell Sci 2001; 114:3367-75. [PMID: 11591824 DOI: 10.1242/jcs.114.18.3367] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Progression through meiotic prophase is associated with dramatic changes in chromosome condensation. Two proteins that have been implicated in effecting these changes are the mammalian HP1-like protein M31 (HP1β or MOD1) and the unusual core histone macroH2A1.2. Previous analyses of M31 and macroH2A1.2 localisation in mouse testis sections have indicated that both proteins are components of meiotic centromeric heterochromatin and of the sex body, the transcriptionally inactive domain of the X and Y chromosomes. This second observation has raised the possibility that these proteins co-operate in meiotic sex chromosome inactivation. In order to investigate the roles of M31 and macroH2A1.2 in meiosis in greater detail, we have examined their localisation patterns in surface-spread meiocytes from male and female mice. Using this approach, we report that, in addition to their previous described staining patterns, both proteins localise to a focus within the portion of the pseudoautosomal region (PAR) that contains the steroid sulphatase (Sts) gene. In light of the timing of its appearance and of its behaviour in sex-chromosomally variant mice, we suggest a role for this heterochromatin focus in preventing complete desynapsis of the terminally associated X and Y chromosomes prior to anaphase I.
Collapse
Affiliation(s)
- J M Turner
- Laboratory of Developmental Genetics, National Institute for Medical Research, Mill Hill London, NW7 1AA, UK
| | | | | |
Collapse
|
46
|
Abstract
Aneuploidy (trisomy or monosomy) is the most commonly identified chromosome abnormality in humans, occurring in at least 5% of all clinically recognized pregnancies. Most aneuploid conceptuses perish in utero, which makes this the leading genetic cause of pregnancy loss. However, some aneuploid fetuses survive to term and, as a class, aneuploidy is the most common known cause of mental retardation. Despite the devastating clinical consequences of aneuploidy, relatively little is known of how trisomy and monosomy originate in humans. However, recent molecular and cytogenetic approaches are now beginning to shed light on the non-disjunctional processes that lead to aneuploidy.
Collapse
Affiliation(s)
- T Hassold
- Department of Genetics, Case Western Reserve University, 10,900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
47
|
Lynn A, Kashuk C, Petersen MB, Bailey JA, Cox DR, Antonarakis SE, Chakravarti A. Patterns of meiotic recombination on the long arm of human chromosome 21. Genome Res 2000; 10:1319-32. [PMID: 10984450 DOI: 10.1101/gr.138100] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study we quantify the features of meiotic recombination on the long arm of human chromosome 21. We constructed a 67. 3-centimorgan (cM) high-resolution, comprehensive, and accurate genetic linkage map of chromosome 21q using 187 highly polymorphic markers covering almost the entire long arm; 46 loci, consisting of mutually recombining marker sets, were ordered with greater than 1000:1 odds and with average interlocus distance of 1.46 cM. These markers were used to accurately identify all exchanges in 186 female and 160 male meioses and to show (1) significant excess of recombination in female versus male meioses, (2) an overall decline in female:male recombination between the centromere and the telomere, (3) greater positive chiasma interference in male than in female meioses, and (4) lack of correlation between exchange frequency and parental age. By comparing the genetic map with the 21q sequence map, we show a general trend of increasing male, but near-constant female, recombination versus physical distance across 21q, explaining the gender-specific recombination effect. The recombination rate varies considerably between genders across 21q but is the greatest (eightfold) in the pericentromeric region, with a rate of approximately 250 kb/cM in females and approximately 2125 kb/cM in males. We used information on the locations of all exchanges to construct an empirical map function that confirms the statistical findings of positive interference. These analyses reveal that occurrence of recombination on 21q is not only gender-specific but also region-specific and that recombination suppression at the centromere is not universal. We also find evidence that male exchange location is highly correlated with gene density.
Collapse
Affiliation(s)
- A Lynn
- Department of Genetics and Center for Human Genetics, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Rutkowski LH, Esposito RE. Recombination can partially substitute for SPO13 in regulating meiosis I in budding yeast. Genetics 2000; 155:1607-21. [PMID: 10924460 PMCID: PMC1461194 DOI: 10.1093/genetics/155.4.1607] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombination and chromosome synapsis bring homologous chromosomes together, creating chiasmata that ensure accurate disjunction during reductional division. SPO13 is a key gene required for meiosis I (MI) reductional segregation, but dispensable for recombination, in Saccharomyces cerevisiae. Absence of SPO13 leads to single-division meiosis where reductional segregation is largely eliminated, but other meiotic events occur relatively normally. This phenotype allows haploids to produce viable meiotic products. Spo13p is thought to act by delaying nuclear division until sister centromeres/chromatids undergo proper cohesion for segregation to the same pole at MI. In the present study, a search for new spo13-like mutations that allow haploid meiosis recovered only new spo13 alleles. Unexpectedly, an unusual reduced-expression allele (spo13-23) was recovered that behaves similarly to a null mutant in haploids but to a wild-type allele in diploids, dependent on the presence of recombining homologs rather than on a diploid genome. This finding demonstrates that in addition to promoting accurate homolog disjunction, recombination can also function to partially substitute for SPO13 in promoting sister cohesion. Analysis of various recombination-defective mutants indicates that this contribution of recombination to reductional segregation requires full levels of crossing over. The implications of these results regarding SPO13 function are discussed.
Collapse
Affiliation(s)
- L H Rutkowski
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
49
|
Shonn MA, McCarroll R, Murray AW. Requirement of the spindle checkpoint for proper chromosome segregation in budding yeast meiosis. Science 2000; 289:300-3. [PMID: 10894778 DOI: 10.1126/science.289.5477.300] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The spindle checkpoint was characterized in meiosis of budding yeast. In the absence of the checkpoint, the frequency of meiosis I missegregation increased with increasing chromosome length, reaching 19% for the longest chromosome. Meiosis I nondisjunction in spindle checkpoint mutants could be prevented by delaying the onset of anaphase. In a recombination-defective mutant (spo11Delta), the checkpoint delays the biochemical events of anaphase I, suggesting that chromosomes that are attached to microtubules but are not under tension can activate the spindle checkpoint. Spindle checkpoint mutants reduce the accuracy of chromosome segregation in meiosis I much more than that in meiosis II, suggesting that checkpoint defects may contribute to Down syndrome.
Collapse
Affiliation(s)
- M A Shonn
- Department of Biochemistry and Department of Physiology, University of California, San Francisco, CA 94143-0444, USA
| | | | | |
Collapse
|
50
|
Affiliation(s)
- M E Dresser
- Oklahoma Medical Research Foundation, Core Facility for Imaging, Program in Mol. and Cell Biology, 825 Northeast 13th Street, Oklahoma City, OK 73104, USA
| |
Collapse
|