1
|
Marr B, Jo D, Jang M, Lee SH. Cytokines in Focus: IL-2 and IL-15 in NK Adoptive Cell Cancer Immunotherapy. Immune Netw 2025; 25:e17. [PMID: 40342841 PMCID: PMC12056295 DOI: 10.4110/in.2025.25.e17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 05/11/2025] Open
Abstract
NK cell adoptive cell therapy (ACT) has emerged as a promising strategy for cancer immunotherapy, offering advantages in scalability, accessibility, efficacy, and safety. Ex vivo activation and expansion protocols, incorporating feeder cells and cytokine cocktails, have enabled the production of highly functional NK cells in clinically relevant quantities. Advances in NK cell engineering, including CRISPR-mediated gene editing and chimeric Ag receptor technologies, have further enhanced cytotoxicity, persistence, and tumor targeting. Cytokine support post-adoptive transfer, particularly with IL-2 and IL-15, remains critical for promoting NK cell survival, proliferation, and anti-tumor activity despite persistent challenges such as regulatory T cell expansion and cytokine-related toxicities. This review explores the evolving roles of IL-2 and IL-15 in NK cell-based ACT, evaluating their potential and limitations, and highlights strategies to optimize these cytokines for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Bryan Marr
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Donghyeon Jo
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mihue Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, Faculty of Medicine and Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
2
|
Lectins as mitosis stimulating factors: Briefly reviewed. Life Sci 2018; 207:152-157. [DOI: 10.1016/j.lfs.2018.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 01/10/2023]
|
3
|
Kuwabara T, Kasai H, Kondo M. Acetylation Modulates IL-2 Receptor Signaling in T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:4334-4343. [PMID: 27799311 DOI: 10.4049/jimmunol.1601174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/05/2016] [Indexed: 01/21/2023]
Abstract
Ligand binding to the cognate cytokine receptors activates intracellular signaling by recruiting protein tyrosine kinases and other protein modification enzymes. However, the roles of protein modifications other than phosphorylation remain unclear. In this study, we examine a novel regulatory mechanism of Stat5, based on its acetylation. As for phosphorylation, IL-2 induces the acetylation of signaling molecules, including Stat5, in the murine T cell line CTLL-2. Stat5 is acetylated in the cytoplasm by CREB-binding protein (CBP). Acetylated Lys696 and Lys700 on Stat5 are critical indicators for limited proteolysis, which leads to the generation of a truncated form of Stat5. In turn, the truncated form of Stat5 prevents transcription of the full-length form of Stat5. We also demonstrate that CBP physically associates with the IL-2 receptor β-chain. CBP, found in the nucleus in resting CTLL-2 cells, relocates to the cytoplasm after IL-2 stimulation in an MEK/ERK pathway-dependent manner. Thus, IL-2-mediated acetylation plays an important role in the modulation of cytokine signaling and T cell fate.
Collapse
Affiliation(s)
- Taku Kuwabara
- Department of Molecular Immunology, Toho University School of Medicine, Tokyo 143-8540, Japan; and
| | - Hirotake Kasai
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Motonari Kondo
- Department of Molecular Immunology, Toho University School of Medicine, Tokyo 143-8540, Japan; and
| |
Collapse
|
4
|
Llavero F, Urzelai B, Osinalde N, Gálvez P, Lacerda HM, Parada LA, Zugaza JL. Guanine nucleotide exchange factor αPIX leads to activation of the Rac 1 GTPase/glycogen phosphorylase pathway in interleukin (IL)-2-stimulated T cells. J Biol Chem 2015; 290:9171-82. [PMID: 25694429 DOI: 10.1074/jbc.m114.608414] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Indexed: 01/27/2023] Open
Abstract
Recently, we have reported that the active form of Rac 1 GTPase binds to the glycogen phosphorylase muscle isoform (PYGM) and modulates its enzymatic activity leading to T cell proliferation. In the lymphoid system, Rac 1 and in general other small GTPases of the Rho family participate in the signaling cascades that are activated after engagement of the T cell antigen receptor. However, little is known about the IL-2-dependent Rac 1 activator molecules. For the first time, a signaling pathway leading to the activation of Rac 1/PYGM in response to IL-2-stimulated T cell proliferation is described. More specifically, αPIX, a known guanine nucleotide exchange factor for the small GTPases of the Rho family, preferentially Rac 1, mediates PYGM activation in Kit 225 T cells stimulated with IL-2. Using directed mutagenesis, phosphorylation of αPIX Rho-GEF serines 225 and 488 is required for activation of the Rac 1/PYGM pathway. IL-2-stimulated serine phosphorylation was corroborated in Kit 225 T cells cultures. A parallel pharmacological and genetic approach identified PKCθ as the serine/threonine kinase responsible for αPIX serine phosphorylation. The phosphorylated state of αPIX was required to activate first Rac 1 and subsequently PYGM. These results demonstrate that the IL-2 receptor activation, among other early events, leads to activation of PKCθ. To activate Rac 1 and consequently PYGM, PKCθ phosphorylates αPIX in T cells. The biological significance of this PKCθ/αPIX/Rac 1 GTPase/PYGM signaling pathway seems to be the control of different cellular responses such as migration and proliferation.
Collapse
Affiliation(s)
- Francisco Llavero
- From the Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, 48940 Leioa, Spain, the Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Building 205, 48170 Zamudio, Spain
| | - Bakarne Urzelai
- From the Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, 48940 Leioa, Spain
| | - Nerea Osinalde
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Patricia Gálvez
- the Pharmascience Division, Technological Park of Health Sciences, Avda. de la Ciencia, s/n 18100 Armilla, Granada, Spain
| | - Hadriano M Lacerda
- the Department of Biomedical Sciences and Human Oncology, Unit of Cancer Epidemiology, Università degli Studi di Torino, 10124 Torino, Italy
| | - Luis A Parada
- the Instituto de Patología Experimental, Universidad Nacional de Salta, 4400 Salta, Argentina, and
| | - José L Zugaza
- From the Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, 48940 Leioa, Spain, the Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Building 205, 48170 Zamudio, Spain, the IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
5
|
Abstract
Interleukin-15 (IL-15) exerts many biological functions essential for the maintenance and function of multiple cell types. Although its expression is tightly regulated, IL-15 upregulation has been reported in many organ-specific autoimmune disorders. In celiac disease, an intestinal inflammatory disorder driven by gluten exposure, the upregulation of IL-15 expression in the intestinal mucosa has become a hallmark of the disease. Interestingly, because it is overexpressed both in the gut epithelium and in the lamina propria, IL-15 acts on distinct cell types and impacts distinct immune components and pathways to disrupt intestinal immune homeostasis. In this article, we review our current knowledge of the multifaceted roles of IL-15 with regard to the main immunological processes involved in the pathogenesis of celiac disease.
Collapse
Affiliation(s)
- Valérie Abadie
- Sainte-Justine Hospital Research Center, Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | | |
Collapse
|
6
|
Osinalde N, Sanchez-Quiles V, Akimov V, Guerra B, Blagoev B, Kratchmarova I. Simultaneous dissection and comparison of IL-2 and IL-15 signaling pathways by global quantitative phosphoproteomics. Proteomics 2014; 15:520-31. [PMID: 25142963 DOI: 10.1002/pmic.201400194] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/28/2014] [Accepted: 08/14/2014] [Indexed: 01/09/2023]
Abstract
Common γ-chain family of cytokines (IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, where IL stands for interleukin) are key regulators of the immune homeostasis that exhibit pleiotropic biological activities and even sometimes redundant roles as a result of the utilization of the same receptor subunit. However, they also exert distinct functions that make each of them to be indispensable. For instance, all family members can act as T-cell growth factors; however, we found that IL-15 but not IL-7 can replace IL-2 to promote and sustain the proliferation of Kit225T cells. In addition to the γ-chain, IL-2 and IL-15 share the β-chain, which creates the paradox of how they can trigger diverse phenotypes despite signaling through the same receptors. To investigate this paradigm, we combined SILAC with enrichment of tyrosine-phosphorylated proteins and peptides followed by mass spectrometric analysis to quantitatively assess the signaling networks triggered downstream IL-2/IL-2R and IL-15/IL-15R. This study confirmed that the transduction pathways initiated by both cytokines are highly similar and revealed that the main signaling branches, JAK/STAT, RAS/MAPK and PI3K/AKT, were nearly equivalently activated in response to both ILs. Despite that, our study revealed that receptor internalization rates differ in IL-2- and IL-15-treated cells indicating a discrete modulation of cytokine signaling. All MS data have been deposited in the ProteomeXchange with identifier PXD001129 (http://proteomecentral.proteomexchange.org/dataset/PXD001129).
Collapse
Affiliation(s)
- Nerea Osinalde
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Interleukin-15 (IL-15) exerts many biological functions essential for the maintenance and function of multiple cell types. Although its expression is tightly regulated, IL-15 upregulation has been reported in many organ-specific autoimmune disorders. In celiac disease, an intestinal inflammatory disorder driven by gluten exposure, the upregulation of IL-15 expression in the intestinal mucosa has become a hallmark of the disease. Interestingly, because it is overexpressed both in the gut epithelium and in the lamina propria, IL-15 acts on distinct cell types and impacts distinct immune components and pathways to disrupt intestinal immune homeostasis. In this article, we review our current knowledge of the multifaceted roles of IL-15 with regard to the main immunological processes involved in the pathogenesis of celiac disease.
Collapse
Affiliation(s)
- Valérie Abadie
- Sainte-Justine Hospital Research Center, Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | | |
Collapse
|
8
|
Marzec M, Halasa K, Liu X, Wang HY, Cheng M, Baldwin D, Tobias JW, Schuster SJ, Woetmann A, Zhang Q, Turner SD, Ødum N, Wasik MA. Malignant transformation of CD4+ T lymphocytes mediated by oncogenic kinase NPM/ALK recapitulates IL-2-induced cell signaling and gene expression reprogramming. THE JOURNAL OF IMMUNOLOGY 2013; 191:6200-7. [PMID: 24218456 DOI: 10.4049/jimmunol.1300744] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Anaplastic lymphoma kinase (ALK), physiologically expressed only by nervous system cells, displays a remarkable capacity to transform CD4(+) T lymphocytes and other types of nonneural cells. In this study, we report that activity of nucleophosmin (NPM)/ALK chimeric protein, the dominant form of ALK expressed in T cell lymphomas (TCLs), closely resembles cell activation induced by IL-2, the key cytokine supporting growth and survival of normal CD4(+) T lymphocytes. Direct comparison of gene expression by ALK(+) TCL cells treated with an ALK inhibitor and IL-2-dependent ALK(-) TCL cells stimulated with the cytokine revealed a very similar, albeit inverse, gene-regulation pattern. Depending on the analysis method, up to 67% of the affected genes were modulated in common by NPM/ALK and IL-2. Based on the gene expression patterns, Jak/STAT- and IL-2-signaling pathways topped the list of pathways identified as affected by both IL-2 and NPM/ALK. The expression dependence on NPM/ALK and IL-2 of the five selected genes-CD25 (IL-2Rα), Egr-1, Fosl-1, SOCS3, and Irf-4-was confirmed at the protein level. In both ALK(+) TCL and IL-2-stimulated ALK(-) TCL cells, CD25, SOCS3, and Irf-4 genes were activated predominantly by the STAT5 and STAT3 transcription factors, whereas transcription of Egr-1 and Fosl-1 was induced by the MEK-ERK pathway. Finally, we found that Egr-1, a protein not associated previously with either IL-2 or ALK, contributes to the cell proliferation. These findings indicate that NPM/ALK transforms the target CD4(+) T lymphocytes, at least in part, by using the pre-existing, IL-2-dependent signaling pathways.
Collapse
Affiliation(s)
- Michal Marzec
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Giron-Michel J, Azzi S, Ferrini S, Chouaib S, Camussi G, Eid P, Azzarone B. Interleukin-15 is a major regulator of the cell-microenvironment interactions in human renal homeostasis. Cytokine Growth Factor Rev 2013; 24:13-22. [DOI: 10.1016/j.cytogfr.2012.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
|
10
|
TCR-mediated Erk activation does not depend on Sos and Grb2 in peripheral human T cells. EMBO Rep 2012; 13:386-91. [PMID: 22344067 DOI: 10.1038/embor.2012.17] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 02/07/2023] Open
Abstract
Sos proteins are ubiquitously expressed activators of Ras. Lymphoid cells also express RasGRP1, another Ras activator. Sos and RasGRP1 are thought to cooperatively control full Ras activation upon T-cell receptor triggering. Using RNA interference, we evaluated whether this mechanism operates in primary human T cells. We found that T-cell antigen receptor (TCR)-mediated Erk activation requires RasGRP1, but not Grb2/Sos. Conversely, Grb2/Sos—but not RasGRP1—are required for IL2-mediated Erk activation. Thus, RasGRP1 and Grb2/Sos are insulators of signals that lead to Ras activation induced by different stimuli, rather than cooperating downstream of the TCR.
Collapse
|
11
|
Arrizabalaga O, Lacerda HM, Zubiaga AM, Zugaza JL. Rac1 protein regulates glycogen phosphorylase activation and controls interleukin (IL)-2-dependent T cell proliferation. J Biol Chem 2012; 287:11878-90. [PMID: 22337875 DOI: 10.1074/jbc.m111.297804] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small GTPases of the Rho family have been implicated in important cellular processes such as cell migration and adhesion, protein secretion, and/or gene transcription. In the lymphoid system, these GTPases participate in the signaling cascades that are activated after engagement of antigen receptors. However, little is known about the role that Rho GTPases play in IL-2-mediated responses. Here, we show that IL-2 induces Rac1 activation in Kit 225 T cells. We identified by mass spectrometry the muscle isoform of glycogen phosphorylase (PYGM) as a novel Rac1 effector molecule in IL-2-stimulated cells. The interaction between the active form of Rac1 (Rac1-GTP) and PYGM was established directly through a domain comprising amino acids 191-270 of PYGM that exhibits significant homology with the Rac binding domain of PAK1. The integrity of this region was crucial for PYGM activation. Importantly, IL-2-dependent cellular proliferation was inhibited upon blocking both the activation of Rac1 and the activity of PYGM. These results reveal a new role for Rac1 in cell signaling, showing that this GTPase triggers T cell proliferation upon IL-2 stimulation by associating with PYGM and modulating its enzymatic activity.
Collapse
Affiliation(s)
- Onetsine Arrizabalaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, 48940 Leioa, Spain
| | | | | | | |
Collapse
|
12
|
Osinalde N, Moss H, Arrizabalaga O, Omaetxebarria MJ, Blagoev B, Zubiaga AM, Fullaondo A, Arizmendi JM, Kratchmarova I. Interleukin-2 signaling pathway analysis by quantitative phosphoproteomics. J Proteomics 2011; 75:177-91. [PMID: 21722762 DOI: 10.1016/j.jprot.2011.06.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/24/2011] [Accepted: 06/07/2011] [Indexed: 11/18/2022]
Abstract
Interleukin-2 (IL-2) is major cytokine involved in T cell proliferation, differentiation and apoptosis. Association between IL-2 and its receptor (IL-2R), triggers activation of complex signaling cascade governed by tyrosine phosphorylation that culminates in transcription of genes involved in modulation of the immune response. The complete characterization of the IL-2 pathway is essential to understand how aberrant IL-2 signaling results in several diseases such as cancer or autoimmunity and also how IL-2 treatments affect cancer patients. To gain insights into the downstream machinery activated by IL-2, we aimed to define the global tyrosine-phosphoproteome of IL-2 pathway in human T cell line Kit225 using high resolution mass spectrometry combined with phosphotyrosine immunoprecipitation and SILAC. The molecular snapshot at 5min of IL-2 stimulation resulted in identification of 172 proteins among which 79 were found with increased abundance in the tyrosine-phosphorylated complexes, including several previously not reported IL-2 downstream effectors. Combinatorial site-specific phosphoproteomic analysis resulted in identification of 99 phosphorylated sites mapping to the identified proteins with increased abundance in the tyrosine-phosphorylated complexes, of which 34 were not previously described. In addition, chemical inhibition of the identified IL-2-mediated JAK, PI3K and MAPK signaling pathways, resulted in distinct alteration on the IL-2 dependent proliferation.
Collapse
MESH Headings
- Cell Line, Tumor
- Humans
- Interleukin-2/analysis
- Interleukin-2/genetics
- Interleukin-2/metabolism
- Intracellular Signaling Peptides and Proteins/analysis
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Phosphoproteins/analysis
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Proteomics/methods
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Nerea Osinalde
- Department of Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gómez-Nicola D, Valle-Argos B, Pallas-Bazarra N, Nieto-Sampedro M. Interleukin-15 regulates proliferation and self-renewal of adult neural stem cells. Mol Biol Cell 2011; 22:1960-70. [PMID: 21508317 PMCID: PMC3113763 DOI: 10.1091/mbc.e11-01-0053] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role of IL-15 in the regulation of neural stem cell biology appears as a key mechanism in the control of adult neurogenesis, with direct implications for the development of pathologies with a neuroimmune component. The impact of inflammation is crucial for the regulation of the biology of neural stem cells (NSCs). Interleukin-15 (IL-15) appears as a likely candidate for regulating neurogenesis, based on its well-known mitogenic properties. We show here that NSCs of the subventricular zone (SVZ) express IL-15, which regulates NSC proliferation, as evidenced by the study of IL-15−/− mice and the effects of acute IL-15 administration, coupled to 5-bromo-2′-deoxyuridine/5-ethynyl-2′-deoxyuridine dual-pulse labeling. Moreover, IL-15 regulates NSC differentiation, its deficiency leading to an impaired generation of neuroblasts in the SVZ–rostral migratory stream axis, recoverable through the action of exogenous IL-15. IL-15 expressed in cultured NSCs is linked to self-renewal, proliferation, and differentiation. IL-15–/– NSCs presented deficient proliferation and self-renewal, as evidenced in proliferation and colony-forming assays and the analysis of cell cycle–regulatory proteins. Moreover, IL-15–deficient NSCs were more prone to differentiate than wild-type NSCs, not affecting the cell population balance. Lack of IL-15 led to a defective activation of the JAK/STAT and ERK pathways, key for the regulation of proliferation and differentiation of NSCs. The results show that IL-15 is a key regulator of neurogenesis in the adult and is essential to understanding diseases with an inflammatory component.
Collapse
Affiliation(s)
- Diego Gómez-Nicola
- Functional and Systems Neurobiology Department, Cajal Institute (CSIC), Madrid, Spain.
| | | | | | | |
Collapse
|
14
|
He X, Smeets RL, Koenen HJPM, Vink PM, Wagenaars J, Boots AMH, Joosten I. Mycophenolic acid-mediated suppression of human CD4+ T cells: more than mere guanine nucleotide deprivation. Am J Transplant 2011; 11:439-49. [PMID: 21342445 DOI: 10.1111/j.1600-6143.2010.03413.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mycophenolic acid is the active ingredient of the immunosuppressant mycophenolate mofetil that is widely used in transplantation medicine and autoimmunity. Mycophenolic acid inhibits inosine monophosphate dehydrogenase, an enzyme involved in biosynthesis of guanine nucleotides required for lymphocyte clonal expansion. Here, we present novel insights into the mechanisms underlying mycophenolic acid-mediated suppression of human CD4+ T cells. Upon CD3/CD28 stimulation, mycophenolic acid inhibited T cell IL-17, IFN-γ and TNF-α production but not IL-2 production. Phenotypic analysis showed that drug treatment enhanced the expression of negative co-stimulators PD-1, CTLA-4 and the transcription factor FoxP3 and decreased the expression of positive co-stimulators CD27 and CD28, whereas CD25 was unaffected. Mycophenolic acid-treated cells were anergic, but not suppressive, and at the same time proved hyperblastoid with high metabolic activity. Moreover, a reduced Akt/mTOR and STAT5 signaling was observed. Interestingly, the co-stimulatory molecule CD70 was uniquely and dose-dependently upregulated on mycophenolic acid-treated T cells and found to be directly linked to target enzyme inhibition. CD70 on mycophenolic acid-treated cells proved functional: an anti-CD70 agonist was found to restore both STAT5 and Akt/mTOR signaling and may thereby prevent apoptosis and promote survival. These novel insights may contribute to optimization of protocols for MPA-based immunosuppressive regimens.
Collapse
Affiliation(s)
- X He
- Department of Laboratory Medicine, Laboratory Medical Immunology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
15
|
Xi G, Shen X, Radhakrishnan Y, Maile L, Clemmons D. Hyperglycemia-induced p66shc inhibits insulin-like growth factor I-dependent cell survival via impairment of Src kinase-mediated phosphoinositide-3 kinase/AKT activation in vascular smooth muscle cells. Endocrinology 2010; 151:3611-23. [PMID: 20534722 PMCID: PMC2940520 DOI: 10.1210/en.2010-0242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hyperglycemia has been shown to induce the p66shc expression leading to increased reactive oxygen species (ROS) generation and apoptosis. In the present study, we demonstrated that hyperglycemia induced p66shc expression in vascular smooth muscle cells. This induction was associated with an increase in apoptosis as assessed by the increase of capspase-3 enzymatic activity, cleaved caspase-3 protein, and the number of dead cells. The ability of IGF-I to inhibit apoptosis was also attenuated. Further studies showed that hyperglycemia-induced p66shc inhibited IGF-I-stimulated phosphoinositide (PI)-3 kinase and AKT activation. Mechanistic studies showed that knockdown of p66shc enhanced IGF-I-stimulated SHPS-1/p85, p85/SHP-2, and p85/Grb2 association, all of which are required for PI-3 kinase/AKT activation. These responses were attenuated by overexpression of p66shc. IGF-I-stimulated p85 and AKT recruitment to the cell membrane fraction was altered in the same manner. Disruption of p66shc-Src interaction using either a blocking peptide or by expressing a p66shc mutant that did not bind to Src rescued IGF-I-stimulated PI-3 kinase/AKT activation as well as IGF-I-dependent cell survival. Although the highest absolute level of ROS was detected in p66shc-overexpressing cells, the relative increase in ROS induced by hyperglycemia was independent of p66shc expression. Taken together, our data suggest that the increase in p66shc that occurs in response to hyperglycemia is functioning to inhibit IGF-I-stimulated signaling and that the incremental increase in SMC sensitivity to IGF-I stimulation that occurs in response to p66shc induction of ROS is not sufficient to overcome the inhibitory effect of p66shc on Src kinase activation.
Collapse
Affiliation(s)
- Gang Xi
- Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
16
|
Gomez-Nicola D, Valle-Argos B, Nieto-Sampedro M. Blockade of IL-15 activity inhibits microglial activation through the NFkappaB, p38, and ERK1/2 pathways, reducing cytokine and chemokine release. Glia 2010; 58:264-76. [PMID: 19610094 DOI: 10.1002/glia.20920] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reactive glia formation is one of the hallmarks of damage to the CNS, but little information exists on the signals that direct its activation. Microglial cells are the main regulators of both innate and adaptative immune responses in the CNS. The proinflammatory cytokine IL-15 is involved in regulating the response of T and B cells, playing a key role in regulating nervous system inflammatory events. We have used a microglial culture model of inflammation induced by LPS and IFNgamma to evaluate the role of IL-15 in the proinflammatory response. Our results indicate that IL-15 is necessary for the reactive response, its deficiency (IL-15-/-) leading to the development of a defective proinflammatory response. Blockade of IL-15, both with blocking antibodies or with the ganglioside Neurostatin, inhibited the activation of the NFkappaB pathway, decreasing iNOS expression and NO production. Inhibiting IL-15 signaling also blocked the activation of the mitogen-activated protein kinase (MAPK) pathways ERK1/2 and p38. The major consequence of these inhibitory effects, analyzed using cytokine antibody arrays, was a severe decrease in the production of chemokines, cytokines and growth factors, like CCL17, CCL19, IL-12, or TIMP-1, that are essential for the development of the phenotypic changes of glial activation. In conclusion, activation of the IL-15 system seems a necessary step for the development of glial reactivity and the regulation of the physiology of glial cells. Modulating IL-15 activity opens the possibility of developing new strategies to control gliotic events upon inflammatory stimulation.
Collapse
Affiliation(s)
- Diego Gomez-Nicola
- Experimental Neurology Unit, Hospital Nacional de Parapléjicos, Toledo, Spain
| | | | | |
Collapse
|
17
|
Du J, Yang H, Zhang D, Wang J, Guo H, Peng B, Guo Y, Ding J. Structural Basis for the Blockage of IL-2 Signaling by Therapeutic Antibody Basiliximab. THE JOURNAL OF IMMUNOLOGY 2009; 184:1361-8. [DOI: 10.4049/jimmunol.0903178] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Priatel JJ, Chen X, Huang YH, Chow MT, Zenewicz LA, Coughlin JJ, Shen H, Stone JC, Tan R, Teh HS. RasGRP1 regulates antigen-induced developmental programming by naive CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2009; 184:666-76. [PMID: 20007535 DOI: 10.4049/jimmunol.0803521] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ag encounter by naive CD8 T cells initiates a developmental program consisting of cellular proliferation, changes in gene expression, and the formation of effector and memory T cells. The strength and duration of TCR signaling are known to be important parameters regulating the differentiation of naive CD8 T cells, although the molecular signals arbitrating these processes remain poorly defined. The Ras-guanyl nucleotide exchange factor RasGRP1 has been shown to transduce TCR-mediated signals critically required for the maturation of developing thymocytes. To elucidate the role of RasGRP1 in CD8 T cell differentiation, in vitro and in vivo experiments were performed with 2C TCR transgenic CD8 T cells lacking RasGRP1. In this study, we report that RasGRP1 regulates the threshold of T cell activation and Ag-induced expansion, at least in part, through the regulation of IL-2 production. Moreover, RasGRP1(-/-) 2C CD8 T cells exhibit an anergic phenotype in response to cognate Ag stimulation that is partially reversible upon the addition of exogenous IL-2. By contrast, the capacity of IL-2/IL-2R interactions to mediate Ras activation and CD8 T cell expansion and differentiation appears to be largely RasGRP1-independent. Collectively, our results demonstrate that RasGRP1 plays a selective role in T cell signaling, controlling the initiation and duration of CD8 T cell immune responses.
Collapse
Affiliation(s)
- John J Priatel
- Child and Family Research Institute, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kemp RA, Pearson CF, Cornish GH, Seddon BP. Evidence of STAT5-dependent and -independent routes to CD8 memory formation and a preferential role for IL-7 over IL-15 in STAT5 activation. Immunol Cell Biol 2009; 88:213-9. [PMID: 19949423 PMCID: PMC2842934 DOI: 10.1038/icb.2009.95] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
IL-7 and IL-15 have non-redundant roles in promoting development of memory CD8+ T cells. STAT5 is activated by receptors of both cytokines and has also been implicated as a requirement for generation of memory. To determine whether STAT5 activity was required for IL-7 and IL-15-mediated generation of memory, we expressed either wild type (WT) or constitutively active (CA) forms of STAT5a in normal effector cells and then observed their ability to form memory in cytokine replete or deficient hosts. Receptor independent CA-STAT5a significantly enhanced memory formation in the absence of either cytokine but did not mediate complete rescue. Interestingly, WT-STAT5a expression enhanced memory formation in a strictly IL-7 dependent manner, suggesting that IL-7 is a more potent activator of STAT5 than IL-15 in vivo. These data suggest that the non-redundant requirement for IL-7 and IL-15 is mediated through differential activation of both STAT5-dependent and STAT5-independent pathways.
Collapse
Affiliation(s)
- Roslyn A Kemp
- Division of Immune Cell Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | | | | | |
Collapse
|
20
|
Hou LF, He SJ, Wang JX, Yang Y, Zhu FH, Zhou Y, He PL, Zhang Y, Yang YF, Li Y, Tang W, Zuo JP. SM934, a water-soluble derivative of arteminisin, exerts immunosuppressive functions in vitro and in vivo. Int Immunopharmacol 2009; 9:1509-17. [DOI: 10.1016/j.intimp.2009.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 09/01/2009] [Accepted: 09/06/2009] [Indexed: 11/26/2022]
|
21
|
Benczik M, Gaffen SL. The Interleukin (IL)‐2 Family Cytokines: Survival and Proliferation Signaling Pathways in T Lymphocytes. Immunol Invest 2009; 33:109-42. [PMID: 15195693 DOI: 10.1081/imm-120030732] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lymphocyte populations in the immune system are maintained by a well-organized balance between cellular proliferation, cellular survival and programmed cell death (apoptosis). One of the primary functions of many cytokines is to coordinate these processes. In particular, the interleukin (IL)-2 family of cytokines, which consists of six cytokines (IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21) that all share a common receptor subunit (gammac), plays a major role in promoting and maintaining T lymphocyte populations. The details of the molecular signaling pathways mediated by these cytokines have not been fully elucidated. However, the three major pathways clearly involved include the JAK/STAT, MAPK and phosphatidylinositol 3-kinase (P13K) pathways. The details of these pathways as they apply to the IL-2 family of cytokines is discussed, with a focus on their roles in proliferation and survival signaling.
Collapse
Affiliation(s)
- Marta Benczik
- Department of Oral Biology, University at Buffalo, SUNY, Buffalo, New York 14214, USA
| | | |
Collapse
|
22
|
Xi G, Shen X, Clemmons DR. p66shc negatively regulates insulin-like growth factor I signal transduction via inhibition of p52shc binding to Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 leading to impaired growth factor receptor-bound protein-2 membrane recruitment. Mol Endocrinol 2008; 22:2162-75. [PMID: 18606861 DOI: 10.1210/me.2008-0079] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our previous studies have indicated an essential role of p52shc in mediating IGF-I activation of MAPK in smooth muscle cells (SMC). However, the role of the p66 isoform of shc in IGF-I signal transduction is unclear. In the current study, two approaches were employed to investigate the role of p66shc in mediating IGF-I signaling. Knockdown p66shc by small interfering RNA enhanced IGF-I-stimulated p52shc tyrosine phosphorylation and growth factor receptor-bound protein-2 (Grb2) association, resulting in increased IGF-I-dependent MAPK activation. This was associated with enhanced IGF-I-stimulated cell proliferation. In contrast, knockdown of p66shc did not affect IGF-I-stimulated IGF-I receptor tyrosine phosphorylation. Overexpression of p66shc impaired IGF-I-stimulated p52shc tyrosine phosphorylation and p52shc-Grb2 association. In addition, IGF-I-dependent MAPK activation was also impaired, and SMC proliferation in response to IGF-I was inhibited. IGF-I-dependent cell migration was enhanced by p66shc knockdown and attenuated by p66shc overexpression. Mechanistic studies indicated that p66shc inhibited IGF-I signal transduction via competitively inhibiting the binding of Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to SHP substrate-1 (SHPS-1), leading to the disruption of SHPS-1/SHP-2/Src/p52shc complex formation, an event that has been shown previously to be essential for p52shc phosphorylation and Grb2 recruitment. These findings indicate that p66shc functions to negatively regulate the formation of a signaling complex that is required for p52shc activation in response to IGF-I, thus leading to attenuation of IGF-I-stimulated cell proliferation and migration.
Collapse
Affiliation(s)
- Gang Xi
- Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
23
|
PIP3 pathway in regulatory T cells and autoimmunity. Immunol Res 2008; 39:194-224. [PMID: 17917066 DOI: 10.1007/s12026-007-0075-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/07/2023]
Abstract
Regulatory T cells (Tregs) play an important role in preventing both autoimmune and inflammatory diseases. Many recent studies have focused on defining the signal transduction pathways essential for the development and the function of Tregs. Increasing evidence suggest that T-cell receptor (TCR), interleukin-2 (IL-2) receptor (IL-2R), and co-stimulatory receptor signaling are important in the early development, peripheral homeostasis, and function of Tregs. The phosphoinositide-3 kinase (PI3K)-regulated pathway (PIP3 pathway) is one of the major signaling pathways activated upon TCR, IL-2R, and CD28 stimulation, leading to T-cell activation, proliferation, and cell survival. Activation of the PIP3 pathway is also negatively regulated by two phosphatidylinositol phosphatases SHIP and PTEN. Several mouse models deficient for the molecules involved in PIP3 pathway suggest that impairment of PIP3 signaling leads to dysregulation of immune responses and, in some cases, autoimmunity. This review will summarize the current understanding of the importance of the PIP3 pathway in T-cell signaling and the possible roles this pathway performs in the development and the function of Tregs.
Collapse
|
24
|
George R, Schuller AC, Harris R, Ladbury JE. A phosphorylation-dependent gating mechanism controls the SH2 domain interactions of the Shc adaptor protein. J Mol Biol 2007; 377:740-7. [PMID: 18279888 DOI: 10.1016/j.jmb.2007.12.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 12/18/2007] [Accepted: 12/19/2007] [Indexed: 11/26/2022]
Abstract
The Shc (Src homology collagen-like) adaptor protein plays a crucial role in linking stimulated receptors to mitogen-activated protein kinase activation through the formation of dynamic signalling complexes. Shc comprises an N-terminal phosphotyrosine binding (PTB) domain, a C-terminal Src homology 2 (SH2) domain and a central proline-rich collagen homology 1 domain. The latter domain contains three tyrosine residues that are known to become phosphorylated. We have expressed and purified the human p52Shc isoform and characterised its binding to different ligands. CD spectra revealed that some parts of the Shc protein are not fully folded, remaining largely unaffected by the binding of ligands. The PTB domain binds peptide and Ins-1,4,5-P(3) (but not Ins-1,3,5-P(3)) independently, suggesting two distinct sites of interaction. In the unphosphorylated Shc, the SH2 domain is non-functional. Ligand binding to the PTB domain does not affect this. However, phosphorylation of the three tyrosine residues promotes binding to the SH2 domain. Thus, Shc has an intrinsic phosphorylation-dependent gating mechanism where the SH2 domain adopts an open conformation only when tyrosine phosphorylation has occurred.
Collapse
Affiliation(s)
- Roger George
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
25
|
Burchill MA, Yang J, Vang KB, Farrar MA. Interleukin-2 receptor signaling in regulatory T cell development and homeostasis. Immunol Lett 2007; 114:1-8. [PMID: 17936914 PMCID: PMC2094047 DOI: 10.1016/j.imlet.2007.08.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 08/17/2007] [Accepted: 08/21/2007] [Indexed: 01/17/2023]
Abstract
Interleukin-2 (IL2) was initially identified from supernatants of activated lymphocytes over 30 years ago. In the ensuing 15 years, the cDNAs for both IL2 and the three chains of the interleukin-2 receptor (IL2R) were cloned. Subsequently, many of the downstream biochemical pathways activated by the IL2 receptor complex were identified and the structure of IL2 bound to this tripartite receptor complex was solved. Thus, we now have a very good understanding of how each chain contributes to high affinity IL2 binding and signal transduction. In contrast, over the past 30 years the role that IL2 plays in regulating lymphocyte function has involved many surprising twists and turns. For example, IL2 has been shown, paradoxically, to regulate both lymphocyte proliferation and lymphocyte death. In this review, we briefly outline the original findings suggesting a role for IL2 as a T cell growth factor, as well as subsequent studies pointing to its function as an initiator of activation-induced cell death, but then focus on the newly appreciated role for IL2 and IL2R signaling in the development and homeostasis of regulatory T cells.
Collapse
Affiliation(s)
- Matthew A. Burchill
- Center for Immunology, The Cancer Center, Department of Laboratory Medicine and Pathology, University of Minnesota, 312 Church Street SE, 6-116 Nils Hasselmo Hall, Minneapolis, MN 55455 USA
| | - Jianying Yang
- Center for Immunology, The Cancer Center, Department of Laboratory Medicine and Pathology, University of Minnesota, 312 Church Street SE, 6-116 Nils Hasselmo Hall, Minneapolis, MN 55455 USA
| | - Kieng B. Vang
- Center for Immunology, The Cancer Center, Department of Laboratory Medicine and Pathology, University of Minnesota, 312 Church Street SE, 6-116 Nils Hasselmo Hall, Minneapolis, MN 55455 USA
| | - Michael A. Farrar
- Center for Immunology, The Cancer Center, Department of Laboratory Medicine and Pathology, University of Minnesota, 312 Church Street SE, 6-116 Nils Hasselmo Hall, Minneapolis, MN 55455 USA
| |
Collapse
|
26
|
The opposite effects of IL-15 and IL-21 on CLL B cells correlate with differential activation of the JAK/STAT and ERK1/2 pathways. Blood 2007; 111:517-24. [PMID: 17938255 DOI: 10.1182/blood-2007-04-087882] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The clonal expansion of chronic lymphocytic leukemia (CLL) cells requires the interaction with the microenvironment and is under the control of several cytokines. Here, we investigated the effect of IL-15 and IL-21, which are closely related to IL-2 and share the usage of the common gamma chain and of its JAK3-associated pathway. We found remarkable differences in the signal transduction pathways activated by these cytokines, which determined different responses in CLL cells. IL-15 caused cell proliferation and prevented apoptosis induced by surface IgM cross-linking. These effects were more evident in cells stimulated via surface CD40, which exhibited increased cell expression of IL-15Ralpha chain and, in some of the cases, also of IL-2Rbeta. IL-21 failed to induce CLL cell proliferation and instead promoted apoptosis. Following cell exposure to IL-15, phosphorylation of STAT5 was predominantly observed, whereas, following stimulation with IL-21, there was predominant STAT1 and STAT3 activation. Moreover, IL-15 but not IL-21 caused an increased phosphorylation of Shc and ERK1/2. Pharmacological inhibition of JAK3 or of MEK, which phosphorylates ERK1/2, efficiently blocked IL-15-induced CLL cell proliferation and the antiapoptotic effect of this cytokine. The knowledge of the signaling pathways regulating CLL cell survival and proliferation may provide new molecular targets for therapeutic intervention.
Collapse
|
27
|
Lockyer HM, Tran E, Nelson BH. STAT5 Is Essential for Akt/p70S6 Kinase Activity during IL-2-Induced Lymphocyte Proliferation. THE JOURNAL OF IMMUNOLOGY 2007; 179:5301-8. [PMID: 17911616 DOI: 10.4049/jimmunol.179.8.5301] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-2R activates two distinct signaling pathways mediated by the adaptor protein Shc and the transcription factor STAT5. Prior mutagenesis studies of the IL-2R have indicated that the Shc and STAT5 pathways are redundant in the ability to induce lymphocyte proliferation. Yet paradoxically, T cells from STAT5-deficient mice fail to proliferate in response to IL-2, suggesting that the Shc pathway is unable to promote mitogenesis in the genetic absence of STAT5. Here we show in the murine lymphocyte cell line Ba/F3 that low levels of STAT5 activity are essential for Shc signaling. In the absence of STAT5 activity, Shc was unable to sustain activation of the Akt/p70S6 kinase pathway or promote lymphocyte proliferation and viability. Restoring STAT5 activity via a heterologous receptor rescued Shc-induced Akt/p70S6 kinase activity and cell proliferation with kinetics consistent with a transcriptional mechanism. Thus, STAT5 appears to regulate the expression of one or more unidentified components of the Akt pathway. Our results not only explain the severe proliferative defect in STAT5-deficient T cells but also provide mechanistic insight into the oncogenic properties of STAT5 in various leukemias and lymphomas.
Collapse
Affiliation(s)
- Heather M Lockyer
- British Columbia Cancer Agency, Trev and Joyce Deeley Research Centre, Victoria, Canada
| | | | | |
Collapse
|
28
|
Patrussi L, Mariggio' S, Paccani SR, Capitani N, Zizza P, Corda D, Baldari CT. Glycerophosphoinositol-4-phosphate enhances SDF-1alpha-stimulated T-cell chemotaxis through PTK-dependent activation of Vav. Cell Signal 2007; 19:2351-60. [PMID: 17716865 DOI: 10.1016/j.cellsig.2007.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 07/20/2007] [Accepted: 07/23/2007] [Indexed: 10/24/2022]
Abstract
Glycerophosphoinositols (GPIs) are water-soluble phosphoinosite metabolites produced by all cell types, whose levels increase in response to a variety of extracellular stimuli, and are particularly high in Ras-transformed cells. GPIs are released to the extracellular space, wherefrom they can be taken up by other cells through a specific transporter. Exogenous GPIs affect a plethora of cellular functions. Among these compounds the most active is GroPIns4P, which affects cAMP levels and PKA-dependent functions through the inhibition of heterotrimeric Gs proteins. GroPIns4P has also recently been found to promote actin cytoskeleton reorganization by inducing Rho and Rac activation through an as yet unidentified mechanism. Here we have assessed the potential effects of GroPIns4P on T-cells. We found that GroPIns4P enhances CXCR4-dependent chemotaxis. This activity results from the capacity of GroPIns4P to activate the Rho GTPase exchange factor, Vav, through an Lck-dependent pathway which also results in activation of the stress kinases JNK and p38. GroPIns4P was also found to activate with a delayed kinetics the Lck-dependent activation of ZAP-70, Shc and Erk1/2. The activities of GroPIns4P were found to be dependent on its capacity to inhibit cAMP production and PKA activation. Collectively, the data provide the first evidence of a role of glycerophosphoinositols as modulators of T-cell signaling and establish a mechanistic basis for the effects of this phosphoinositide derivative on F-actin dynamics.
Collapse
Affiliation(s)
- Laura Patrussi
- Department of Evolutionary Biology, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Ramshaw HS, Guthridge MA, Stomski FC, Barry EF, Ooms L, Mitchell CA, Begley CG, Lopez AF. The Shc-binding site of the betac subunit of the GM-CSF/IL-3/IL-5 receptors is a negative regulator of hematopoiesis. Blood 2007; 110:3582-90. [PMID: 17638849 PMCID: PMC2077308 DOI: 10.1182/blood-2007-01-070391] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tyrosine and serine phosphorylation of the common beta chain (beta(c)) of the granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 receptors is widely viewed as a general mechanism that provides positive inputs by coupling the receptor to signaling pathways that stimulate several cellular functions. We show here that despite the known action of Tyr577 in beta(c) to recruit Shc-PI-3 kinase (PI3K) pathway members, Tyr577 plays, surprisingly, a negative regulatory role in cell function, and that this is mediated, at least in part, through the uncoupling of SH2-containing inositol 5'-phosphatase (SHIP) from beta(c). Fetal liver cells from beta(c)/beta(IL-3)(-/-) mice expressing human GM-CSF receptor alpha chain and beta(c) Tyr577Phe mutant showed enhanced colony formation and expansion of progenitor cells in response to GM-CSF. Dissection of these activities revealed that basal survival was increased, as well as cytokine-stimulated proliferation. As expected, the recruitment and activation of Shc was abolished, but interestingly, Gab-2 and Akt phosphorylation increased. Significantly, the activation of PI3K was enhanced and prolonged, accompanied by loss of SHIP activity. These results reveal a previously unrecognized negative signaling role for Tyr577 in beta(c) and demonstrate that uncoupling Shc from cytokine receptors enhances PI3K signaling as well as survival and proliferation.
Collapse
Affiliation(s)
- Hayley S Ramshaw
- Cytokine Receptor Laboratory, Division of Human Immunology, Institute of Medical and Veterinary Science, Hanson Institute, Adelaide, Australia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hsu CL, Kikuchi K, Kondo M. Activation of mitogen-activated protein kinase kinase (MEK)/extracellular signal regulated kinase (ERK) signaling pathway is involved in myeloid lineage commitment. Blood 2007; 110:1420-8. [PMID: 17536016 PMCID: PMC1975832 DOI: 10.1182/blood-2007-02-071761] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Common lymphoid progenitors (CLPs) are lymphoid-lineage-committed progenitor cells. However, they maintain a latent myeloid differentiation potential that can be initiated by stimulation with interleukin-2 (IL-2) via ectopically expressed IL-2 receptors. Although CLPs express IL-7 receptors, which share the common gamma chain with IL-2 receptors, IL-7 cannot initiate lineage conversion in CLPs. In this study, we demonstrate that the critical signals for initiating lineage conversion in CLPs are delivered via IL-2 receptor beta (IL-2R beta) intracellular domains. Fusion of the A region of the IL-2R beta cytoplasmic tail to IL-7R alpha enables IL-7 to initiate myeloid differentiation in CLPs. We found that Shc, which associates with the A region, mediates lineage conversion signals through the mitogen activated protein kinase (MAPK) pathway. Because mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitors completely blocked IL-2-mediated lineage conversion, MAPK activation, specifically via the MEK/ERK pathway, is critically involved in the initiation of this event. Furthermore, formation of granulocyte/macrophage (GM) colonies by hematopoietic stem cells, but not by common myeloid progenitors (CMPs), was severely reduced in the presence of MEK/ERK inhibitors. These results demonstrate that activation of MEK/ERK plays an important role in GM lineage commitment.
Collapse
Affiliation(s)
- Chia-Lin Hsu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
31
|
Jin P, Wang E, Provenzano M, Deola S, Selleri S, Ren J, Voiculescu S, Stroncek D, Panelli MC, Marincola FM. Molecular signatures induced by interleukin-2 on peripheral blood mononuclear cells and T cell subsets. J Transl Med 2006; 4:26. [PMID: 16805915 PMCID: PMC1557669 DOI: 10.1186/1479-5876-4-26] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 06/28/2006] [Indexed: 12/03/2022] Open
Abstract
Experimentally, interleukin-2 (IL-2) exerts complex immunological functions promoting the proliferation, survival and activation of T cells on one hand and inducing immune regulatory mechanisms on the other. This complexity results from a cross talk among immune cells which sways the effects of IL-2 according to the experimental or clinical condition tested. Recombinant IL-2 (rIL-2) stimulation of peripheral blood mononuclear cells (PBMC) from 47 donors of different genetic background induced generalized T cell activation and anti-apoptotic effects. Most effects were dependent upon interactions among immune cells. Specialized functions of CD4 and CD8 T cells were less dependent upon and often dampened by the presence of other PBMC populations. In particular, cytotoxic T cell effector function was variably affected with a component strictly dependent upon the direct stimulation of CD8 T cells in the absence of other PBMC. This observation may provide a roadmap for the interpretation of the discrepant biological activities of rIL-2 observed in distinct pathological conditions or treatment modalities.
Collapse
Affiliation(s)
- Ping Jin
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Ena Wang
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Maurizio Provenzano
- Immune Oncology Section, Department of Surgery, University Hospital ZLF, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Sara Deola
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Silvia Selleri
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Jiaqiang Ren
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Sonia Voiculescu
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - David Stroncek
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Monica C Panelli
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Francesco M Marincola
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
32
|
Zambricki E, Shigeoka A, Kishimoto H, Sprent J, Burakoff S, Carpenter C, Milford E, McKay D. Signaling T-cell survival and death by IL-2 and IL-15. Am J Transplant 2005; 5:2623-31. [PMID: 16212621 DOI: 10.1111/j.1600-6143.2005.01075.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Interleukin 2 (IL-2) and interleukin 15 (IL-15) bind to common T-cell surface receptors comprised of unique alpha (IL-2R alpha or IL-15R alpha) and shared beta/gamma chain subunits. Ligation of this receptor by IL-2 can lead to apoptosis whereas IL-15 ligation favors cell survival. Our study examined intra-cellular signaling events associated with IL-2- and IL-15-induced apoptosis and survival in human T cells. We found IL-2 and IL-15 could both induce apoptosis and survival; the outcome depended on cytokine concentration. No qualitative differences in Jak/Stat, Ras/MAPK or PI3K/AKT signaling were seen over a wide range of IL-2 and IL-15 concentrations. These findings suggest that, like T-cell receptor signaling, IL-2R beta/gamma chain signaling is regulated, or "tuned," by the concentration of cytokine.
Collapse
Affiliation(s)
- Elizabeth Zambricki
- Department of Immunology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang H, Conrad DM, Butler JJ, Zhao C, Blay J, Hoskin DW. Adenosine acts through A2 receptors to inhibit IL-2-induced tyrosine phosphorylation of STAT5 in T lymphocytes: role of cyclic adenosine 3',5'-monophosphate and phosphatases. THE JOURNAL OF IMMUNOLOGY 2004; 173:932-44. [PMID: 15240680 DOI: 10.4049/jimmunol.173.2.932] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adenosine is a purine nucleoside with immunosuppressive activity that acts through cell surface receptors (A(1), A(2a), A(2b), A(3)) on responsive cells such as T lymphocytes. IL-2 is a major T cell growth and survival factor that is responsible for inducing Jak1, Jak3, and STAT5 phosphorylation, as well as causing STAT5 to translocate to the nucleus and bind regulatory elements in the genome. In this study, we show that adenosine suppressed IL-2-dependent proliferation of CTLL-2 T cells by inhibiting STAT5a/b tyrosine phosphorylation that is associated with IL-2R signaling without affecting IL-2-induced phosphorylation of Jak1 or Jak3. The inhibitory effect of adenosine on IL-2-induced STAT5a/b tyrosine phosphorylation was reversed by the protein tyrosine phosphatase inhibitors sodium orthovanadate and bpV(phen). Adenosine dramatically increased Src homology region 2 domain-containing phosphatase-2 (SHP-2) tyrosine phosphorylation and its association with STAT5 in IL-2-stimulated CTLL-2 T cells, implicating SHP-2 in adenosine-induced STAT5a/b dephosphorylation. The inhibitory effect of adenosine on IL-2-induced STAT5a/b tyrosine phosphorylation was reproduced by A(2) receptor agonists and was blocked by selective A(2a) and A(2b) receptor antagonists, indicating that adenosine was mediating its effect through A(2) receptors. Inhibition of STAT5a/b phosphorylation was reproduced with cell-permeable 8-bromo-cAMP or forskolin-induced activation of adenylyl cyclase, and blocked by the cAMP/protein kinase A inhibitor Rp-cAMP. Forskolin and 8-bromo-cAMP also induced SHP-2 tyrosine phosphorylation. Collectively, these findings suggest that adenosine acts through A(2) receptors and associated cAMP/protein kinase A-dependent signaling pathways to activate SHP-2 and cause STAT5 dephosphorylation that results in reduced IL-2R signaling in T cells.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Marks RE, Ho AW, Rivas F, Marshall E, Janardhan S, Gajewski TF. Differential Ras signaling via the antigen receptor and IL-2 receptor in primary T lymphocytes. Biochem Biophys Res Commun 2004; 312:691-6. [PMID: 14680820 DOI: 10.1016/j.bbrc.2003.10.168] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Indexed: 11/23/2022]
Abstract
Ras can become activated via multiple distinct receptors in T lymphocytes. However, mechanistic studies of Ras signaling in normal T cells have been hampered by the lack of an efficient technology for gene transfer into resting post-thymic cells. We have overcome this limitation by utilizing adenoviral transduction of T cells from Coxsackie/adenovirus receptor transgenic mice. Unexpectedly, dominant negative Ras17N blocked activation of Ras and ERK in response to IL-2R engagement but not TCR/CD3 ligation. However, TCR-induced ERK activation was suppressed by inhibitors of PKC and PLC-gamma. This first biochemical study of DN Ras in normal quiescent T cells reveals a striking contrast in Ras signaling via two receptors, and suggests that the principal mechanism of TCR-induced Ras activation in normal T cells may be distinct from that utilized in T-lineage tumor cell lines.
Collapse
Affiliation(s)
- Reinhard E Marks
- Department of Pathology, Department of Medicine Section of Hematology/Oncology, The Ben May Institute for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
35
|
Moon JJ, Rubio ED, Martino A, Krumm A, Nelson BH. A Permissive Role for Phosphatidylinositol 3-Kinase in the Stat5- mediated Expression of Cyclin D2 by the Interleukin-2 Receptor. J Biol Chem 2004; 279:5520-7. [PMID: 14660677 DOI: 10.1074/jbc.m308998200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interleukin-2 (IL-2) receptor promotes T cell proliferation in part by inducing the expression of D-type cyclins, which enable cells to progress from the G1 to S phase of the cell cycle. We previously showed that the IL-2 receptor induces expression of cyclin D2 by activating the transcription factor Stat5, which binds directly and immediately to a site upstream of the cyclin D2 promoter. We show here that subsequent transcription of the cyclin D2 gene occurs by a delayed, cycloheximide-sensitive mechanism, which implies the involvement of additional regulatory mechanisms. The transcription factor c-Myc is induced by Stat5 and is reported to bind to two E box motifs in the cyclin D2 promoter. However, in IL-2-stimulated T cells, c-Myc does not appear to be involved in cyclin D2 induction, since we found that these two E boxes are preferentially bound by USF-1 and USF-2 and, moreover, are dispensable for cyclin D2 promoter activity. Instead, we found that Stat5 activates the phosphatidylinositol 3-kinase (PI3 kinase) pathway by a delayed, cycloheximide-sensitive mechanism and that PI3 kinase activity is essential for the induction of cyclin D2 by Stat5. Chromatin immunoprecipitation experiments revealed that PI3 kinase is required for the optimal binding of RNA polymerase II to the promoters of cyclin D2 as well as other genes. Our results reveal a novel link between PI3 kinase and RNA polymerase II promoter binding activity and demonstrate discrete, coordinated roles for the PI3 kinase and Stat5 pathways in cyclin D2 transcription.
Collapse
Affiliation(s)
- James J Moon
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
36
|
Gong Y, Zhao X. Shc-dependent pathway is redundant but dominant in MAPK cascade activation by EGF receptors: a modeling inference. FEBS Lett 2003; 554:467-72. [PMID: 14623113 DOI: 10.1016/s0014-5793(03)01174-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In cell signaling cascades, one stimulus often leads to various physiological functions by multiple pathways. Perturbation of one pathway by blocking or overexpressing one of its components will result in changes in multiple pathways and multiple cell functions. Thus, it is important to reveal the relative contribution of each pathway to each function in order to assess the consequence of perturbations (e.g. drug delivery). By exploring an established mathematical model, the Shc-dependent pathway is found to be both redundant and dominant during activation of the mitogen-activated protein kinase cascade by epidermal growth factor receptor (EGFR). Its dominance results from the majority consumption of the common precursor ((EGF-EGFR*)2-GAP) by this pathway. The key steps for the dominance are the binding and phosphorylation of Shc. In conclusion, cells may prefer the long Shc-dependent pathway to the short Shc-independent pathway.
Collapse
Affiliation(s)
- Yunchen Gong
- Department of Animal Science, McGill University, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC, Canada H9X 3V9.
| | | |
Collapse
|
37
|
Dubois S, Shou W, Haneline LS, Fleischer S, Waldmann TA, Müller JR. Distinct pathways involving the FK506-binding proteins 12 and 12.6 underlie IL-2-versus IL-15-mediated proliferation of T cells. Proc Natl Acad Sci U S A 2003; 100:14169-74. [PMID: 14605212 PMCID: PMC283564 DOI: 10.1073/pnas.2335979100] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular basis for the different roles of IL-2 and IL-15 in lymphocyte function has been poorly defined. Searching for differences that underlie the distinct T cell responses to the two cytokines, we observed a marked susceptibility of the IL-15-induced but not of the IL-2-induced proliferation to rapamycin despite a decrease of p70S6 kinase (p70S6K) activation by the drug in response to both cytokines. Activated splenic T lymphocytes deficient in the FK506-binding protein (FKBP) 12, a target of rapamycin activity, had reduced proliferation in response to IL-15 but not to IL-2. This decreased proliferation was accompanied by reduced activation of p70S6K and of the extracellular signal-regulated kinases (ERK) after IL-15 treatment. In contrast to FKBP12-/- cells, splenic FKBP12.6-/- T cells exhibited a decreased proliferative response to IL-2 in the presence of rapamycin without affecting p70S6K or ERK activation. Thus, IL-15 induces T cell proliferation mainly via FKBP12-mediated p70S6K activation. In contrast, IL-2 signaling involves multiple pathways that include at least one additional pathway that depends on FKBP12.6.
Collapse
Affiliation(s)
- Sigrid Dubois
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
38
|
Gala S, Schibeci SD, Marreiros A, Calvo V, Merida I, Williamson P. Expression of an active p110 catalytic subunit of phosphatidylinositol 3-kinase alters the proliferative capacity of interleukin-2 receptor signals. Immunol Cell Biol 2003; 81:343-9. [PMID: 12969321 DOI: 10.1046/j.1440-1711.2003.t01-2-01179.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activation of phosphatidylinositol 3-kinase (PI3K) is an early and essential step in interleukin-2 receptor (IL-2R) signalling, and plays an important role in regulating both cell survival and cellular proliferation. In the present study, we utilized Baf-B03 cells expressing mutated IL-2R to examine the contribution of PI3K to proliferative capacity. In this model IL-2-mediated induction of the downstream PI3K-dependent signalling molecule p70 S6 kinase was detected, but there was no proliferative response. Increasing the level of PI3K activity by transfection of an active form of the catalytic subunit, p110*, enabled the proliferative capacity of the mutated receptor. Whereas, in cells without p110*, IL-2 lacked the capacity to induce c-myc and to overcome an S-phase checkpoint, S-phase transition was restored by transfection of p110*, and this was accompanied by an increase in the c-myc response. Despite the presence of p110*, activity cells still required IL-2R-derived signals for proliferation, and IL-2Rbeta truncated at amino acid 350 were sufficient to provide this signalling activity. The data support a model in which the level of available PI3K can determine the cellular response to IL-2.
Collapse
Affiliation(s)
- Salvador Gala
- Institute for Immunology and Allergy Research, Westmead Millennium Institute, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Lindemann MJ, Benczik M, Gaffen SL. Anti-apoptotic signaling by the interleukin-2 receptor reveals a function for cytoplasmic tyrosine residues within the common gamma (gamma c) receptor subunit. J Biol Chem 2003; 278:10239-49. [PMID: 12525482 DOI: 10.1074/jbc.m209471200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The interleukin-2 receptor (IL-2R) is composed of one affinity-modulating subunit (IL-2Ralpha) and two essential signaling subunits (IL-2Rbeta and gammac). Although most known signaling events are mediated through tyrosine residues located within IL-2Rbeta, no functions have yet been ascribed to gammac tyrosine residues. In this study, we describe a role for gammac tyrosines in anti-apoptotic signal transduction. We have shown previously that a tyrosine-deficient IL-2Rbeta chain paired with wild type gammac stimulated enhancement of bcl-2 mRNA in IL-2-dependent T cells, but it was not determined which region of the IL-2R or which pathway was activated to direct this signaling response. Here we show that up-regulation of Bcl-2 by an IL-2R lacking IL-2Rbeta tyrosine residues leads to increased cell survival after cytokine deprivation; strikingly, this survival signal does not occur in the absence of gammac tyrosine residues. These gammac-dependent signals are revealed only in the absence of IL-2Rbeta tyrosines, indicating that the IL-2R engages at least two distinct signaling pathways to regulate apoptosis and Bcl-2 expression. Mechanistically, the gammac-dependent signal requires activation of Janus kinases 1 and 3 and is sensitive to wortmannin, implicating phosphatidylinositol 3-kinase. Consistent with involvement of phosphatidylinositol 3-kinase, Akt can be activated via tyrosine residues on gammac. Thus, gammac mediates an anti-apoptotic signaling pathway through Akt which cooperates with signals from its partner chain, IL-2Rbeta.
Collapse
Affiliation(s)
- Matthew J Lindemann
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | |
Collapse
|
40
|
Abstract
Shc is a prototype adapter protein that is expressed from the earliest stages of T-cell development. Shc becomes rapidly tyrosine phosphorylated after T-cell receptor (TCR) engagement. Expression of dominant negative forms of Shc in T-cell lines had also suggested a role for this adapter downstream of the TCR. However, until recently, the relative significance of Shc compared to several other adapters in T cells was unclear. Mice lacking Shc expression specifically in the T-cell lineage together with inducible expression of dominant negative Shc in transgenic mice have revealed an essential and nonredundant role for Shc in thymic T-cell development. Functional defects in a Jurkat T-cell line lacking Shc expression also suggest a role for Shc in mature T-cell functions. While the requirement of Shc in T-cell signaling is now established, precisely what signaling pathways downstream of Shc make this adapter unique are less clear. Although the Shc-mediated activation of the extracellular signal regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) pathway could be one component, Shc likely signals to other pathways in T cells that are not yet discovered. A better molecular understanding of Shc function in the future could provide insights into how multiple adapters coordinate the various outcomes downstream of the TCR.
Collapse
Affiliation(s)
- Li Zhang
- Department of Microbiology and the Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
41
|
Jiang K, Zhong B, Ritchey C, Gilvary DL, Hong-Geller E, Wei S, Djeu JY. Regulation of Akt-dependent cell survival by Syk and Rac. Blood 2003; 101:236-44. [PMID: 12393431 DOI: 10.1182/blood-2002-04-1251] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Interleukin-2 (IL-2) prevents cell apoptosis and promotes survival, but the involved mechanisms have not been completely defined. Although phosphatidylinositide 3-kinase (PI 3-kinase) has been implicated in IL-2-mediated survival mechanisms, none of the 3 chains of the IL-2 receptor (IL-2R) expresses a binding site for PI 3-kinase. However, IL-2Rbeta does express a Syk-binding motif. By using an IL-2-dependent natural killer (NK) cell line, followed by validation of the results in fresh human NK cells, we identified Syk as a critical effector essential for IL-2-mediated prosurvival signaling in NK cells. Down-regulation of Syk by piceatannol treatment impaired NK cellular viability and induced prominent apoptosis as effectively as suppression of PI 3-kinase function by LY294002. Expression of kinase-deficient Syk or pretreatment with piceatannol markedly suppressed IL-2-stimulated activation of PI 3-kinase and Akt, demonstrating that Syk is upstream of PI 3-kinase and Akt. However, constitutively active PI 3-kinase reversed this loss of Akt function caused by kinase-deficient Syk or piceatannol. Thus, Syk appears to regulate PI 3-kinase, which controls Akt activity during IL-2 stimulation. More important, we observed Rac1 activation by IL-2 and found that it mediated PI 3-kinase activation of Akt. This conclusion came from experiments in which dominant-negative Rac1 significantly decreased IL-2-induced Akt activation, whereas constitutively active Rac1 reelevated Akt activity not only in Syk-impaired but also in PI 3-kinase-impaired NK cells. These results constitute the first report of a Syk --> PI3K --> Rac1 --> Akt signal cascade controlled by IL-2 that mediates NK cell survival.
Collapse
Affiliation(s)
- Kun Jiang
- Immunology Program, H. Lee Moffitt Cancer Center, Department of Interdisciplinary Oncology, University of South Florida College of Medicine, Tampa 33612, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Xue HH, Kovanen PE, Pise-Masison CA, Berg M, Radovich MF, Brady JN, Leonard WJ. IL-2 negatively regulates IL-7 receptor alpha chain expression in activated T lymphocytes. Proc Natl Acad Sci U S A 2002; 99:13759-64. [PMID: 12354940 PMCID: PMC129770 DOI: 10.1073/pnas.212214999] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interleukin (IL)-2 is a type I four-alpha-helical bundle cytokine that plays vital roles in antigen-mediated proliferation of peripheral blood T cells and also is critical for activation-induced cell death. We now demonstrate that IL-2 potently decreases expression of IL-7 receptor alpha chain (IL-7Ralpha) mRNA and protein. The fact that IL-7Ralpha is a component of the receptors for both IL-7 and thymic stromal lymphopoietin (TSLP) suggests that IL-2 can negatively regulate signals by each of these cytokines. Previously it was known that the IL-2 and IL-7 receptors shared the common cytokine receptor gamma chain, gamma(c), which suggested a possible competition between these cytokines for a receptor component. Our findings now suggest a previously unknown type of cross-talk between IL-2 and IL-7 signaling by showing that IL-2 signaling can diminish IL-7Ralpha expression via a phosphatidylinositol 3-kinase/Akt-dependent mechanism.
Collapse
Affiliation(s)
- Hai-Hui Xue
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10, Room 7N252, Bethesda, MD 20892-1674, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Interleukin-2 (IL-2) plays a major role in the proliferation of cell populations during an immune reaction. The beta(c) and gamma(c) subunits of the IL-2 receptor (IL-2R) are sufficient and necessary for signal transduction. Despite lacking known catalytic domains, receptor engagement leads to the activation of a diverse array protein tyrosine kinases (PTKs). In resting or anergised T cells, Jak3 is not activated. Signals arising from the PROX domain of the gamma(c) subunit activate p56(lck) (lck) leading to the induction of anti-apoptotic mechanisms. When Jak3 is activated, in primed T cells, other PTKs predominantly mediate the induction of anti-apoptotic mechanisms and drive cellular proliferation. This review intends to suggest a role for these differences within the context of the immune system.
Collapse
Affiliation(s)
- Jonathan M Ellery
- Department of Biosciences, University of Kent at Canterbury, Canterbury, Kent CT2 7NJ, UK.
| | | |
Collapse
|
44
|
Abstract
The adapter protein Shc was initially identified as an SH2 containing proto-oncogene involved in growth factor signaling. Since then a number of studies in multiple systems have implicated a role for Shc in signaling via many different types of receptors, such as growth factor receptors, antigen receptors, cytokine receptors, G-protein coupled receptors, hormone receptors and integrins. In addition to the ubiquitous ShcA, two other shc gene products, ShcB and ShcC, which are predominantly expressed in neuronal cells, have also been identified. ShcA knockout mice are embryonic lethal and have clearly suggested an important role for ShcA in vivo. Based on dominant negative studies and mouse embryos deficient in ShcA, a clear role for Shc in leading to mitogen activated protein kinase (MAPK) activation has been established. However MAPK activation may not be the sole function of Shc proteins. Although Shc has also been linked to other signaling events such as c-Myc activation and cell survival, the mechanistic understanding of these signaling events remains poorly characterized. Given the apparently central role that Shc plays signaling via many receptors, delineating the precise mechanism(s) of Shc-mediated signaling may be critical to our understanding of the effects mediated through these receptors.
Collapse
Affiliation(s)
- K S Ravichandran
- Beirne Carter Center for Immunology Research and the Department of Microbiology, University of Virginia, Charlottesville, Virginia, VA 22908, USA.
| |
Collapse
|
45
|
Moon JJ, Nelson BH. Phosphatidylinositol 3-kinase potentiates, but does not trigger, T cell proliferation mediated by the IL-2 receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2714-23. [PMID: 11509615 DOI: 10.4049/jimmunol.167.5.2714] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proliferative signaling by the IL-2R can occur through two distinct pathways, one mediated by Stat5 and one by the adaptor protein Shc. Although Stat5 induces T cell proliferation by serving as a transcription factor, the mechanism of proliferative signaling by Shc is poorly defined. We examined the roles of two major signaling pathways downstream of Shc, the p44/p42 mitogen-activated protein kinase (extracellular signal-related kinase (Erk)) and phosphatidylinositol 3-kinase (PI3K) pathways, in promitogenic gene induction and proliferation in the IL-2-dependent T cell line CTLL-2. Using IL-2R mutants and specific pharmacologic inhibitors, we found that the PI3K, but not Erk, pathway is required for maximal induction of c-myc, cyclin D2, cyclin D3, cyclin E, and bcl-x(L) by Shc. To test whether the PI3K pathway is sufficient for proliferative signaling, a tamoxifen-regulated form of PI3K (mp110*ER) was expressed in CTLL-2 cells. Activation of the PI3K pathway through mp110*ER failed to up-regulate expression of the c-myc, cyclin D2, cyclin D3, cyclin E, bcl-2, or bcl-x(L) genes or down-regulate expression of p27(Kip1), even when coactivated with the Janus kinases (Jak) or the Raf/Erk pathway. Moreover, mp110*ER induced modest levels of thymidine incorporation without subsequent cell division. Although insufficient for mitogenesis, mp110*ER enhanced Stat5-mediated proliferative signaling through a mechanism independent of Stat5 transcriptional activity. Thus, in addition to serving a necessary, but insufficient role in Shc-mediated promitogenic gene expression, the PI3K pathway contributes to T cell proliferation by potentiating mitogenic signaling by Stat5.
Collapse
Affiliation(s)
- J J Moon
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
46
|
Abstract
Interleukin (IL-)2 and its receptor (IL-2R) constitute one of the most extensively studied cytokine receptor systems. IL-2 is produced primarily by activated T cells and is involved in early T cell activation as well as in maintaining homeostatic immune responses that prevent autoimmunity. This review focuses on molecular signaling pathways triggered by the IL-2/IL-2R complex, with an emphasis on how the IL-2R physically translates its interaction with IL-2 into a coherent biological outcome. The IL-2R is composed of three subunits, IL-2Ralpha, IL-2Rbeta and gammac. Although IL-2Ralpha is an important affinity modulator that is essential for proper responses in vivo, it does not contribute to signaling due a short cytoplasmic tail. In contrast, IL-2Rbeta and gammac together are necessary and sufficient for effective signal transduction, and they serve physically to connect the receptor complex to cytoplasmic signaling intermediates. Despite an absolute requirement for gammac in signaling, the majority of known pathways physically link to the receptor via IL-2Rbeta, generally through phosphorylated cytoplasmic tyrosine residues. This review highlights work performed both in cultured cells and in vivo that defines the functional contributions of specific receptor subdomains-and, by inference, the specific signaling pathways that they activate-to IL-2-dependent biological activities.
Collapse
Affiliation(s)
- S L Gaffen
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY14214, USA.
| |
Collapse
|
47
|
Ciprés A, Carrasco S, Mérida I. Deletion of the acidic-rich domain of the IL-2Rbeta chain increases receptor-associated PI3K activity. FEBS Lett 2001; 500:99-104. [PMID: 11434934 DOI: 10.1016/s0014-5793(01)02594-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Interleukin-2 (IL-2) regulates the proliferation and homeostasis of lymphocytes through the coordinated activation of distinct signaling pathways. Deletion of the acidic-rich domain of the IL-2 receptor beta chain (IL-2Rbeta) prevents association of Src tyrosine kinases to the receptor, as well as IL-2-induced Akt activation. Cells bearing this deletion (BafbetaDeltaA) maintain full proliferation in response to IL-2 both in vivo and in vitro, suggesting that those pathways are dispensable for this important function of IL-2. In this study, we re-examined phosphatidylinositol-3 kinase (PI3K) activation in BafbetaDeltaA cells and found that, in BaF/3 IL-2RbetaDeltaA cells, deletion of the acidic domain induced constitutive activation of the receptor-associated PI3K activity. This, in turn, was responsible for the higher basal Akt activity observed in cells expressing this deletion. Based on these data, and since pharmacological abrogation of PI3K activity prevented IL-2-driven cell proliferation of BafbetaDeltaA cells, we conclude that the PI3K/Akt pathway is still functionally relevant in cells bearing this mutation. Moreover, we show that the PI3K-induced signals are, at least in part, responsible for c-myc expression. In conclusion, we have used this model to better identify those signals that are integral components of the molecular mechanisms responsible for IL-2-regulated cell proliferation.
Collapse
Affiliation(s)
- A Ciprés
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049, Madrid, Spain
| | | | | |
Collapse
|
48
|
Crouin C, Arnaud M, Gesbert F, Camonis J, Bertoglio J. A yeast two-hybrid study of human p97/Gab2 interactions with its SH2 domain-containing binding partners. FEBS Lett 2001; 495:148-53. [PMID: 11334882 DOI: 10.1016/s0014-5793(01)02373-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
p97/Gab2 is a recently characterized member of a large family of scaffold proteins that play essential roles in signal transduction. Gab2 becomes tyrosine-phosphorylated in response to a variety of growth factors and forms multimolecular complexes with SH2 domain-containing signaling molecules such as the p85-regulatory subunit of the phosphoinositide-3-kinase (p85-PI3K), the tyrosine phosphatase SHP-2 and the adapter protein CrkL. To characterize the interactions between Gab2 and its SH2-containing binding partners, we designed a modified yeast two-hybrid system in which the Lyn tyrosine kinase is expressed in a regulated manner in yeast. Using this assay, we demonstrated that p97/Gab2 specifically interacts with the SH2 domains of PI3K, SHP-2 and CrkL. Interaction with p85-PI3K is mediated by tyrosine residues Y452, Y476 and Y584 of Gab2, while interaction with SHP-2 depends exclusively on tyrosine Y614. CrkL interaction is mediated by its SH2 domain recognizing Y266 and Y293, despite the latter being in a non-consensus (YTFK) environment.
Collapse
Affiliation(s)
- C Crouin
- Inserm Unit 461, Faculté de Pharmacie Paris-XI, Châtenay-Malabry, france
| | | | | | | | | |
Collapse
|
49
|
Martino A, Holmes JH, Lord JD, Moon JJ, Nelson BH. Stat5 and Sp1 regulate transcription of the cyclin D2 gene in response to IL-2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:1723-9. [PMID: 11160217 DOI: 10.4049/jimmunol.166.3.1723] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The IL-2R promotes rapid expansion of activated T cells through signals mediated by the adaptor protein Shc and the transcription factor Stat5. The mechanisms that engage the cell cycle are not well defined. We report on the transcriptional regulation of the cell cycle gene cyclin D2 by the IL-2R. IL-2-responsive induction of a luciferase reporter gene containing 1624 bp of the cyclin D2 promoter/enhancer was studied in the murine CD8(+) T cell line CTLL2. Reporter gene deletional analysis and EMSAs indicate an IL-2-regulated enhancer element flanks nucleotide -1204 and binds a complex of at least three proteins. The enhancer element is bound constitutively by Sp1 and an unknown factor(s) and inducibly by Stat5 in response to IL-2. The Stat5 binding site was essential for IL-2-mediated reporter gene activity, and maximum induction required the adjacent Sp1 binding site. Receptor mutagenesis studies in the pro-B cell line BA/FG (a derivative of the BA/F3 cell line) demonstrated a correlation between Stat5 activity and cyclin D2 mRNA levels when the Stat5 signal was isolated, disrupted, and then rescued. Further, a dominant-negative form of Stat5 lacking the trans-activation domain inhibited induction of cyclin D2 mRNA. We propose that the IL-2R regulates the cyclin D2 gene in part through formation of an enhancer complex containing Stat5 and Sp1.
Collapse
Affiliation(s)
- A Martino
- Virginia Mason Research Center, Seattle, WA 98101, USA.
| | | | | | | | | |
Collapse
|
50
|
Gu H, Maeda H, Moon JJ, Lord JD, Yoakim M, Nelson BH, Neel BG. New role for Shc in activation of the phosphatidylinositol 3-kinase/Akt pathway. Mol Cell Biol 2000; 20:7109-20. [PMID: 10982827 PMCID: PMC86258 DOI: 10.1128/mcb.20.19.7109-7120.2000] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2000] [Accepted: 06/12/2000] [Indexed: 11/20/2022] Open
Abstract
Most, if not all, cytokines activate phosphatidylinositol 3-kinase (PI-3K). Although many cytokine receptors have direct binding sites for the p85 subunit of PI-3K, others, such as the interleukin-3 (IL-3) receptor beta common chain (betac) and the IL-2 receptor beta chain (IL-2Rbeta), lack such sites, leaving the mechanism by which they activate PI-3K unclear. Here, we show that the protooncoprotein Shc, which promotes Ras activation by recruiting the Grb2-Sos complex in response to stimulation of cytokine stimulation, also signals to the PI-3K/Akt pathway. Analysis of Y-->F and "add-back" mutants of betac shows that Y577, the Shc binding site, is the major site required for Gab2 phosphorylation in response to cytokine stimulation. When fused directly to a mutant form of IL-2Rbeta that lacks other cytoplasmic tyrosines, Shc can promote Gab2 tyrosyl phosphorylation. Mutation of the three tyrosyl phosphorylation sites of Shc, which bind Grb2, blocks the ability of the Shc chimera to evoke Gab2 tyrosyl phosphorylation. Overexpression of mutants of Grb2 with inactive SH2 or SH3 domains also blocks cytokine-stimulated Gab2 phosphorylation. The majority of cytokine-stimulated PI-3K activity associates with Gab2, and inducible expression of a Gab2 mutant unable to bind PI-3K markedly impairs IL-3-induced Akt activation and cell growth. Experiments with the chimeric receptors indicate that Shc also signals to the PI-3K/Akt pathway in response to IL-2. Our results suggest that cytokine receptors lacking direct PI-3K binding sites activate Akt via a Shc/Grb2/Gab2/PI-3K pathway, thereby regulating cell survival and/or proliferation.
Collapse
Affiliation(s)
- H Gu
- Cancer Biology Program, Division of Hematology-Oncology, Department of Medicine, Beth Israel-Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|