1
|
Yan X, Yu PY, Srinivasan A, Abdul Rehman S, Sreenivas SK, Conway JB, Prigozhin MB. Identifying intermolecular interactions in single-molecule localization microscopy. Proc Natl Acad Sci U S A 2025; 122:e2409426122. [PMID: 40354526 DOI: 10.1073/pnas.2409426122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 03/29/2025] [Indexed: 05/14/2025] Open
Abstract
Intermolecular interactions underlie all cellular functions, yet visualizing these interactions at the single-molecule level remains challenging. Single-molecule localization microscopy (SMLM) offers a potential solution. Given a nanoscale map of two putative interaction partners, it should be possible to assign molecules either to the class of coupled pairs or to the class of noncoupled bystanders. Here, we developed a probabilistic algorithm that allows accurate determination of both the absolute number and the proportion of molecules that form coupled pairs. The algorithm calculates interaction probabilities for all possible pairs of localized molecules, selects the most likely interaction set, and corrects for any spurious colocalizations. Benchmarking this approach across a set of simulated molecular localization maps with varying densities (up to ∼55 molecules μm-2) and localization precisions (1 to 50 nm) showed typical errors in the identification of correct pairs of only a few percent. At molecular densities of ∼5 to 10 molecules μm-2 and localization precisions of 20 to 30 nm, which are typical parameters for SMLM imaging, the recall was ∼90%. The algorithm was effective at differentiating between noninteracting and coupled molecules both in simulations and experiments. Finally, it correctly inferred the number of coupled pairs over time in a simulated reaction-diffusion system, enabling determination of the underlying rate constants. The proposed approach promises to enable direct visualization and quantification of intermolecular interactions using SMLM.
Collapse
Affiliation(s)
- Xingchi Yan
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, MA 02138
| | - Polly Y Yu
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, MA 02138
- Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Arvind Srinivasan
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Sohaib Abdul Rehman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Surabhi Kottigegollahalli Sreenivas
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Jeremy B Conway
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Maxim B Prigozhin
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| |
Collapse
|
2
|
Park S, Merino-Urteaga R, Karwacki-Neisius V, Carrizo GE, Athreya A, Marin-Gonzalez A, Benning NA, Park J, Mitchener MM, Bhanu NV, Garcia BA, Zhang B, Muir TW, Pearce EL, Ha T. Native nucleosomes intrinsically encode genome organization principles. Nature 2025:10.1038/s41586-025-08971-7. [PMID: 40335690 DOI: 10.1038/s41586-025-08971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/03/2025] [Indexed: 05/09/2025]
Abstract
The eukaryotic genome is packed into nucleosomes of 147 base pairs around a histone core and is organized into euchromatin and heterochromatin, corresponding to the A and B compartments, respectively1,2. Here we investigated whether individual nucleosomes contain sufficient information for 3D genomic organization into compartments, for example, in their biophysical properties. We purified native mononucleosomes to high monodispersity and used physiological concentrations of polyamines to determine their condensability. The chromosomal regions known to partition into A compartments have low condensability and those for B compartments have high condensability. Chromatin polymer simulations using condensability as the only input, without any trans factors, reproduced the A/B compartments. Condensability is also strongly anticorrelated with gene expression, particularly near the promoters and in a cell type-dependent manner. Therefore, mononucleosomes have biophysical properties associated with genes being on or off. Comparisons with genetic and epigenetic features indicate that nucleosome condensability is an emergent property, providing a natural axis on which to project the high-dimensional cellular chromatin state. Analysis using various condensing agents or histone modifications and mutations indicates that the genome organization principle encoded into nucleosomes is mostly electrostatic in nature. Polyamine depletion in mouse T cells, resulting from either knocking out or inhibiting ornithine decarboxylase, results in hyperpolarized condensability, indicating that when cells cannot rely on polyamines to translate the biophysical properties of nucleosomes to 3D genome organization, they accentuate condensability contrast, which may explain the dysfunction observed with polyamine deficiency3-5.
Collapse
Affiliation(s)
- Sangwoo Park
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raquel Merino-Urteaga
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Violetta Karwacki-Neisius
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Gustavo Ezequiel Carrizo
- Department of Oncology, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Advait Athreya
- Computational and Systems Biology Program, MIT, Cambridge, MA, USA
| | - Alberto Marin-Gonzalez
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Nils A Benning
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jonghan Park
- College of Medicine, Yonsei University, Seoul, Republic of Korea
| | | | - Natarajan V Bhanu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine St. Louis, St. Louis, MO, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine St. Louis, St. Louis, MO, USA
| | - Bin Zhang
- Department of Chemistry, MIT, Cambridge, MA, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Erika L Pearce
- Department of Oncology, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Leng F, Merino-Urteaga R, Wang X, Zhang W, Ha T, Hur S. Ultrastable and versatile multimeric ensembles of FoxP3 on microsatellites. Mol Cell 2025; 85:1509-1524.e7. [PMID: 40179879 DOI: 10.1016/j.molcel.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/29/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025]
Abstract
Microsatellites are essential genomic components increasingly linked to transcriptional regulation. FoxP3, a transcription factor critical for regulatory T cell (Treg) development, recognizes TTTG repeat microsatellites by forming multimers along DNA. However, FoxP3 also binds a broader range of TnG repeats (n = 2-5), often at the edges of accessible chromatin regions. This raises questions about how FoxP3 adapts to sequence variability and the potential role of nucleosomes. Using cryoelectron microscopy and single-molecule analyses, we show that murine FoxP3 assembles into various distinct supramolecular structures, depending on DNA sequence. This structural plasticity enables FoxP3 to bridge 2-4 DNA duplexes, forming ultrastable structures that coordinate multiple genomic loci. Nucleosomes further facilitate FoxP3 assembly by inducing local DNA bending, creating a nucleus that recruits distal DNA elements through multiway bridging. Our findings thus reveal FoxP3's unusual ability to shapeshift to accommodate evolutionarily dynamic microsatellites and its potential to reinforce chromatin boundaries and three-dimensional genomic architecture.
Collapse
Affiliation(s)
- Fangwei Leng
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Institute of Immunology, Chinese Institutes for Medical Research, Beijing 100069, China
| | - Raquel Merino-Urteaga
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xi Wang
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Wenxiang Zhang
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Shanghai Institute of Immunology, Shanghai Jiaotong University, Shanghai 200025, China
| | - Taekjip Ha
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Sun Hur
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Meyer K, Huang B, Weiner OD. Emerging roles of transcriptional condensates as temporal signal integrators. Nat Rev Genet 2025:10.1038/s41576-025-00837-y. [PMID: 40240649 DOI: 10.1038/s41576-025-00837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
Transcription factors relay information from the external environment to gene regulatory networks that control cell physiology. To confer signalling specificity, robustness and coordination, these signalling networks use temporal communication codes, such as the amplitude, duration or frequency of signals. Although much is known about how temporal information is encoded, a mechanistic understanding of how gene regulatory networks decode signalling dynamics is lacking. Recent advances in our understanding of phase separation of transcriptional condensates provide new biophysical frameworks for both temporal encoding and decoding mechanisms. In this Perspective, we summarize the mechanisms by which transcriptional condensates could enable temporal decoding through signal adaptation, memory and persistence. We further outline methods to probe and manipulate dynamic communication codes of transcription factors and condensates to rationally control gene activation.
Collapse
Affiliation(s)
- Kirstin Meyer
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.
| | - Bo Huang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Basu M, Mainan A, Roy S, Mishra PP. Emergence of a dynamic G-tetraplex scaffold: uncovering low salt-induced conformational heterogeneity and the folding mechanism of telomeric DNA. Phys Chem Chem Phys 2025; 27:7104-7119. [PMID: 40109194 DOI: 10.1039/d4cp04362f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The topological diversity of human telomeric G-quadruplex structures is intrinsically related to their folding mechanisms, and is significantly modulated by ion-atmospheric conditions. Unlike previous studies that focused on higher Na+ or K+ concentrations, this study explores G-quadruplex folding and dynamics under low NaCl conditions (≤100 mM) using single-molecule FRET microscopy and advanced structure-based DNA simulation techniques. The smFRET data reveal three distinct populations: unfolded, intermediate dynamic triplex, and dynamic tetraplex structural ensemble. The broad distribution of the folded population highlights the dynamic nature of the quadruplex structure under low salt conditions. In agreement with smFRET results, free energy simulations show that with the increase of NaCl concentration, the population shifts towards the folded state, and differentiates all intermediate structural ensembles. The dynamic equilibrium between the triplex and tetraplex scaffolds explains the microscopic basis of conformational heterogeneity within the folded basin. Simulations also reveal that the flexibility of dynamic tetraplex bases depends on the equilibrium distribution of ions underpinning a few ion-mediated dynamic non-native interactions in the G-quadruplex structure. Contrary to the previously held belief that Na+ induces minimal structural heterogeneity, our combined experimental and simulation approaches demonstrate and rationalize the structural variability in G-quadruplexes under low NaCl concentrations.
Collapse
Affiliation(s)
- Manali Basu
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
- Homi Bhabha National Institute, Mumbai, India
| | - Avijit Mainan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Nadia, West Bengal 741246, India.
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Nadia, West Bengal 741246, India.
| | - Padmaja Prasad Mishra
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
6
|
Meng Y, Peplowski L, Wu T, Gong H, Gu R, Han L, Xia Y, Liu Z, Zhou Z, Cheng Z. A Versatile Protein Scaffold Engineered for the Hierarchical Assembly of Robust and Highly Active Enzymes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500405. [PMID: 39985242 PMCID: PMC12005783 DOI: 10.1002/advs.202500405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Indexed: 02/24/2025]
Abstract
Scaffold proteins play immense roles in bringing enzymes together to enhance their properties. However, the direct fusion of scaffold with bulky guest enzymes may disrupt the assembly process or diminish catalytic efficiency. Most self-assembling protein scaffolds are engineered to form structures beforehand, and then carry guest proteins via different conjugation strategies in vitro. Here, a robust self-assembling scaffold is presented, engineered from Methanococcus jannaschii using disulfide bonds, which efficiently assembles bulky enzymes into higher-order helices without additional chemistry or bio-conjugation in vitro. When fused directly with monomeric Endo-1,4-beta-xylanase A, the catalytic efficiency of the guest enzyme increased by 2.5 times with enhanced thermostability. Additionally, integrating the scaffold with the multimeric metalloenzyme nitrile hydratase overcame the typical stability-activity trade-off of such industrial enzyme, yielding three-fold higher activity and 28-fold higher thermostability. Structural analyses suggest that the artificially made helical twist structures create new interface interactions and provide a concentration of active sites of guest enzymes. Further fusion of fluorescent protein pairs with the scaffold exhibited a 12-fold higher FRET efficiency, suggesting its potential for dual-enzyme cascade applications. Overall, this study showcases a simple yet powerful protein scaffold that organizes guest enzymes into hierarchical structures with enhanced catalytic performance.
Collapse
Affiliation(s)
- Yiwei Meng
- Key Laboratory of Industrial Biotechnology (Ministry of Education)School of BiotechnologyJiangnan UniversityWuxiJiangsuChina
| | - Lukasz Peplowski
- Institute of PhysicsFaculty of PhysicsAstronomy and InformaticsNicolaus Copernicus University in TorunGrudziadzka 5Torun87–100Poland
| | - Tong Wu
- Key Laboratory of Industrial Biotechnology (Ministry of Education)School of BiotechnologyJiangnan UniversityWuxiJiangsuChina
| | - Heng Gong
- Key Laboratory of Industrial Biotechnology (Ministry of Education)School of BiotechnologyJiangnan UniversityWuxiJiangsuChina
| | - Ran Gu
- Key Laboratory of Industrial Biotechnology (Ministry of Education)School of BiotechnologyJiangnan UniversityWuxiJiangsuChina
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology (Ministry of Education)School of BiotechnologyJiangnan UniversityWuxiJiangsuChina
| | - Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology (Ministry of Education)School of BiotechnologyJiangnan UniversityWuxiJiangsuChina
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology (Ministry of Education)School of BiotechnologyJiangnan UniversityWuxiJiangsuChina
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education)School of BiotechnologyJiangnan UniversityWuxiJiangsuChina
- Jiangnan University (Rugao) Food Biotechnology Research InstituteRugaoJiangsuChina
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology (Ministry of Education)School of BiotechnologyJiangnan UniversityWuxiJiangsuChina
| |
Collapse
|
7
|
Jiang Y, Zhao C, Zhang C, Li W, Liu D, Zhao B. Single-molecule techniques in studying the molecular mechanisms of DNA synapsis in non-homologous end-joining repair. BIOPHYSICS REPORTS 2025; 11:46-55. [PMID: 40070660 PMCID: PMC11891076 DOI: 10.52601/bpr.2024.240043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/13/2024] [Indexed: 03/14/2025] Open
Abstract
DNA double-strand breaks (DSBs) are the most severe form of DNA damage, primarily repaired by the non-homologous end joining (NHEJ) pathway. A critical step in this process is DNA synapsis, where the two broken ends are brought together to facilitate timely repair. Deficiencies in NHEJ synapsis can lead to improper DNA end configurations, potentially resulting in chromosomal translocations. NHEJ synapsis is a highly dynamic, multi-protein mediated assembly process. Recent advances in single-molecule techniques have led to significant progress in understanding the molecular mechanisms driving NHEJ synapsis. In this review, we summarize single-molecule methods developed for studying NHEJ synapsis, with a particular focus on the single-molecule fluorescence resonance energy transfer (smFRET) technique. We discuss the various molecular mechanisms of NHEJ synapsis uncovered through these studies and explore the coupling between synapsis and other steps in NHEJ. Additionally, we highlight the strategies, limitations, and future directions for single-molecule studies of NHEJ synapsis.
Collapse
Affiliation(s)
- Yuhao Jiang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, China
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Chao Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Chenyang Zhang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Weilin Li
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Di Liu
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, China
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Bailin Zhao
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| |
Collapse
|
8
|
Peulen TO, Hemmen K, Greife A, Webb BM, Felekyan S, Sali A, Seidel CAM, Sanabria H, Heinze KG. tttrlib: modular software for integrating fluorescence spectroscopy, imaging, and molecular modeling. Bioinformatics 2025; 41:btaf025. [PMID: 39836627 PMCID: PMC11796090 DOI: 10.1093/bioinformatics/btaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 01/04/2025] [Accepted: 01/17/2025] [Indexed: 01/23/2025] Open
Abstract
SUMMARY We introduce software for reading, writing and processing fluorescence single-molecule and image spectroscopy data and developing analysis pipelines to unify various spectroscopic analysis tools. Our software can be used for processing multiple experiment types, e.g. for time-resolved single-molecule spectroscopy, laser scanning microscopy, fluorescence correlation spectroscopy and image correlation spectroscopy. The software is file format agnostic and processes multiple time-resolved data formats and outputs. Our software eliminates the need for data conversion and mitigates data archiving issues. AVAILABILITY AND IMPLEMENTATION tttrlib is available via pip (https://pypi.org/project/tttrlib/) and bioconda while the open-source code is available via GitHub (https://github.com/fluorescence-tools/tttrlib). Presented examples and additional documentation demonstrating how to implement in vitro and live-cell image spectroscopy analysis are available at https://docs.peulen.xyz/tttrlib and https://zenodo.org/records/14002224.
Collapse
Affiliation(s)
- Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and Quantitative Biosciences Institute, University of California, San Francisco, CA, 94143, United States
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-University Würzburg (JMU), Würzburg, 97080, Germany
| | - Katherina Hemmen
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-University Würzburg (JMU), Würzburg, 97080, Germany
| | - Annemarie Greife
- Chair of Molecular Physical Chemistry, Heinrich-Heine University, Düsseldorf, 40225, Germany
| | - Benjamin M Webb
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and Quantitative Biosciences Institute, University of California, San Francisco, CA, 94143, United States
| | - Suren Felekyan
- Chair of Molecular Physical Chemistry, Heinrich-Heine University, Düsseldorf, 40225, Germany
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and Quantitative Biosciences Institute, University of California, San Francisco, CA, 94143, United States
| | - Claus A M Seidel
- Chair of Molecular Physical Chemistry, Heinrich-Heine University, Düsseldorf, 40225, Germany
| | - Hugo Sanabria
- Department of Physics & Astronomy, Clemson University, Clemson, SC, 29634, United States
| | - Katrin G Heinze
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-University Würzburg (JMU), Würzburg, 97080, Germany
| |
Collapse
|
9
|
Choi I, Baek I. Single-molecule imaging for investigating the transcriptional control. Mol Cells 2025; 48:100179. [PMID: 39814141 PMCID: PMC11847471 DOI: 10.1016/j.mocell.2025.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/28/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
Transcription is an essential biological process involving numerous factors, including transcription factors (TFs), which play a central role in this process by binding to their cognate DNA motifs. Although cells must tightly regulate the kinetics of factor association and dissociation during transcription, factor dynamics during transcription remain poorly characterized, primarily because of the reliance on ensemble experiments that average out molecular heterogeneity. Recent advances in single-molecule fluorescence imaging techniques have enabled the exploration of TF dynamics at unprecedented resolution. Findings on the temporal dynamics of individual TFs have challenged classical models and provided new insights into transcriptional regulation. Single-molecule imaging has also elucidated the assembly kinetics of transcription complexes. In this review, we describe the single-molecule fluorescence imaging methods widely used to determine factor dynamics during transcription. We highlight new findings on TF binding to chromatin, TF target search, and the assembly order of transcription complexes. Additionally, we discuss the remaining challenges in achieving a comprehensive understanding of the temporal regulation of transcription.
Collapse
Affiliation(s)
- Insung Choi
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Inwha Baek
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; Institute of Regulatory Innovation through Science (IRIS), Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
10
|
Atsavapranee B, Sunden F, Herschlag D, Fordyce P. Quantifying protein unfolding kinetics with a high-throughput microfluidic platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633299. [PMID: 39868203 PMCID: PMC11761748 DOI: 10.1101/2025.01.15.633299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Even after folding, proteins transiently sample unfolded or partially unfolded intermediates, and these species are often at risk of irreversible alteration (e.g. via proteolysis, aggregation, or post-translational modification). Kinetic stability, in addition to thermodynamic stability, can directly impact protein lifetime, abundance, and the formation of alternative, sometimes disruptive states. However, we have very few measurements of protein unfolding rates or how mutations alter these rates, largely due to technical challenges associated with their measurement. To address this need, we developed SPARKfold (Simultaneous Proteolysis Assay Revealing Kinetics of Folding), a microfluidic platform to express, purify, and measure unfolding rate constants for >1000 protein variants in parallel via on-chip native proteolysis. To demonstrate the power and potential of SPARKfold, we determined unfolding rate constants for 1,104 protein samples in parallel. We built a library of 31 dihydrofolate reductase (DHFR) orthologs with up to 78 chamber replicates per variant to provide the statistical power required to evaluate the system's ability to resolve subtle effects. SPARKfold rate constants for 5 constructs agreed with those obtained using traditional techniques across a 150-fold range, validating the accuracy of the technique. Comparisons of mutant kinetic effects via SPARKfold with previously published measurements impacts on folding thermodynamics provided information about the folding transition state and pathways via φ analysis. Overall, SPARKfold enables rapid characterization of protein variants to dissect the nature of the unfolding transition state. In future work, SPARKfold can reveal mutations that drive misfolding and aggregation and enable rational design of kinetically hyperstable variants for industrial use in harsh environments.
Collapse
Affiliation(s)
- B. Atsavapranee
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - F. Sunden
- Department of Biochemistry, Stanford University, Stanford, CA 94305
| | - D. Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305
| | - P.M. Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Department of Genetics, Stanford University, Stanford, CA 94305
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305
| |
Collapse
|
11
|
Kosuri P. Single-molecule DNA dynamics with graphene energy transfer. Nat Methods 2025; 22:16-17. [PMID: 39658594 DOI: 10.1038/s41592-024-02560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Affiliation(s)
- Pallav Kosuri
- Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
12
|
Fort J, Nicolàs-Aragó A, Maggi L, Martinez-Molledo M, Kapiki D, González-Novoa P, Gómez-Gejo P, Zijlstra N, Bodoy S, Pardon E, Steyaert J, Llorca O, Orozco M, Cordes T, Palacín M. The conserved lysine residue in transmembrane helix 5 is pivotal for the cytoplasmic gating of the L-amino acid transporters. PNAS NEXUS 2025; 4:pgae584. [PMID: 39822574 PMCID: PMC11736713 DOI: 10.1093/pnasnexus/pgae584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025]
Abstract
L-Amino acid transporters (LATs) play a key role in a wide range of physiological processes. Defects in LATs can lead to neurological disorders and aminoacidurias, while the overexpression of these transporters is related to cancer. BasC is a bacterial LAT transporter with an APC fold. In this study, to monitor the cytoplasmic motion of BasC, we developed a single-molecule Förster resonance energy transfer assay that can characterize the conformational states of the intracellular gate in solution at room temperature. Based on combined biochemical and biophysical data and molecular dynamics simulations, we propose a model in which the conserved lysine residue in TM5 supports TM1a to explore both open and closed states within the cytoplasmic gate under apo conditions. This equilibrium can be altered by substrates, mutation of conserved lysine 154 in TM5, or a transport-blocking nanobody interacting with TM1a. Overall, these findings provide insights into the transport mechanism of BasC and highlight the significance of the lysine residue in TM5 in the cytoplasmic gating of LATs.
Collapse
Affiliation(s)
- Joana Fort
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Adrià Nicolàs-Aragó
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luca Maggi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Maria Martinez-Molledo
- Structural Biology Programme, Spanish National Cancer Research Centre, 28029 Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Despoina Kapiki
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Paula González-Novoa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain
| | - Patricia Gómez-Gejo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Niels Zijlstra
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Susanna Bodoy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Biosciences, Universitat de Vic—Universitat Central de Catalunya, de la Laura 13, 08500 Vic, Spain
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinaan 2, 1050 Brussel, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinaan 2, 1050 Brussel, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinaan 2, 1050 Brussel, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinaan 2, 1050 Brussel, Belgium
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre, 28029 Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
- Biophysical Chemistry, Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Manuel Palacín
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
13
|
Miller JJ, Mallimadugula UL, Zimmerman MI, Stuchell-Brereton MD, Soranno A, Bowman GR. Accounting for Fast vs Slow Exchange in Single Molecule FRET Experiments Reveals Hidden Conformational States. J Chem Theory Comput 2024; 20:10339-10349. [PMID: 39588651 PMCID: PMC11886876 DOI: 10.1021/acs.jctc.4c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Proteins are dynamic systems whose structural preferences determine their function. Unfortunately, building atomically detailed models of protein structural ensembles remains challenging, limiting our understanding of the relationships between sequence, structure, and function. Combining single molecule Förster resonance energy transfer (smFRET) experiments with molecular dynamics simulations could provide experimentally grounded, all-atom models of a protein's structural ensemble. However, agreement between the two techniques is often insufficient to achieve this goal. Here, we explore whether accounting for important experimental details like averaging across structures sampled during a given smFRET measurement is responsible for this apparent discrepancy. We present an approach to account for this time-averaging by leveraging the kinetic information available from Markov state models of a protein's dynamics. This allows us to accurately assess which time scales are averaged during an experiment. We find this approach significantly improves agreement between simulations and experiments in proteins with varying degrees of dynamics, including the well-ordered protein T4 lysozyme, the partially disordered protein apolipoprotein E (ApoE), and a disordered amyloid protein (Aβ40). We find evidence for hidden states that are not apparent in smFRET experiments because of time averaging with other structures, akin to states in fast exchange in nuclear magnetic resonance, and evaluate different force fields. Finally, we show how remaining discrepancies between computations and experiments can be used to guide additional simulations and build structural models for states that were previously unaccounted for. We expect our approach will enable combining simulations and experiments to understand the link between sequence, structure, and function in many settings. Understanding protein dynamics is crucial for understanding protein function, yet few methodologies report on protein motion at an atomic level. Combining single molecule Förster resonance energy transfer (smFRET) experiments with computer simulations could provide atomistic models of protein ensembles which are grounded in experiments, however, there has been limited agreement between the two methods to date. Here, we present an algorithm to recapitulate smFRET experiments from molecular dynamics simulations. This approach significantly improves agreement between simulations and experiments for proteins across the ordered spectrum. Moreover, with this approach we can confidently create atomic models for states observed during smFRET experiments which were otherwise difficult to model due to high amounts of flexibility, disorder, or large deviations from crystal-like states.
Collapse
Affiliation(s)
- Justin J. Miller
- Departments of Biochemistry & Biophysics and Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Upasana L. Mallimadugula
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Maxwell I. Zimmerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Melissa D. Stuchell-Brereton
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gregory R. Bowman
- Departments of Biochemistry & Biophysics and Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
14
|
Frost D, Cook K, Sanabria H. Time-heterogeneity of the Förster Radius from Dipole Orientational Dynamics Impacts Single-Molecule FRET Experiments. ARXIV 2024:arXiv:2404.09883v2. [PMID: 38699162 PMCID: PMC11065046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Förster resonance energy transfer (FRET) is a quantum mechanical phenomenon involving the non-radiative transfer of energy between coupled electric dipoles. Due to the strong dependence of FRET on the distance between the dipoles, it is frequently used as a "molecular ruler" in biology, chemistry, and physics. This is done by placing dipolar molecules called dyes on molecules of interest. In time-resolved confocal single-molecule FRET (smFRET) experiments, the joint distribution of the FRET efficiency and the donor fluorescence lifetime can reveal underlying molecular conformational dynamics via deviation from their theoretical Förster relationship. This deviation is referred to as a dynamic shift. Quantifying the dynamic shift caused by the motion of the fluorescent dyes is essential to decoupling the dynamics of the studied molecules and the dyes. We develop novel Langevin models for the dye linker dynamics, including rotational dynamics, based on first principle physics and proper dye linker chemistry to match accessible volumes predicted by molecular dynamics simulations. By simulating the dyes' stochastic translational and rotational dynamics, we show that the observed dynamic shift can largely be attributed to the mutual orientational dynamics of the electric dipole moments associated with the dyes, not their accessible volume. Our models provide the most up-to-date and accurate estimation of FRET.
Collapse
Affiliation(s)
- David Frost
- School of Mathematical and Statistical Sciences, Clemson University
| | - Keisha Cook
- School of Mathematical and Statistical Sciences, Clemson University
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University
| |
Collapse
|
15
|
Wen J, Zhang Q, Zhou L. Fluorescent probes for sensing and visualizing methylglyoxal: progress, challenges, and perspectives. RSC Adv 2024; 14:38757-38777. [PMID: 39659598 PMCID: PMC11629108 DOI: 10.1039/d4ra07512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
Methylglyoxal (MGO) plays an important role not only in physiological processes but also in pathological conditions, including diabetes, hypertension, and Alzheimer's disease. Therefore, developing accurate quantitative tools for MGO is of great significance for studying pathogenesis. Among the various methods available, the fluorescent probe method has garnered considerable attention due to its noninvasive detection capability, exceptional optical properties, good biocompatibility, and high sensitivity. In this review, we provide a brief overview of recent research on fluorescent probes used for MGO biosensing and bioimaging in living cells, tissues, and animals. Additionally, we summarize the advantages and existing challenges and also discuss future directions for development in this field.
Collapse
Affiliation(s)
- Jing Wen
- School of Food Science and Technology, Hunan Agricultural University Changsha Hunan 410125 China
| | - Qingya Zhang
- College of Food Science and Engineering, Central South University of Forestry and Technology Changsha Hunan 410004 China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology Changsha Hunan 410004 China
| |
Collapse
|
16
|
Kim Y, Kim S, Heo K, Lee S. Single-molecule FRET-based approach for protein-targeted drug discovery. Mol Cells 2024; 47:100150. [PMID: 39549747 DOI: 10.1016/j.mocell.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Abstract
Many therapeutic drugs target various proteins involved in diverse biological processes. Among these proteins, type II topoisomerases are critical targets for anticancer and antibacterial chemotherapies, yet the action mechanisms of many type II topoisomerase-targeting drugs have not been fully elucidated. In this regard, the development of rapid and accurate methods to identify the mode of action of potential drug candidates is crucial to improve the efficiency of drug screening and discovery. Here, using type II topoisomerase as a model system, we present a single-molecule fluorescence resonance energy transfer-based drug screening method capable of delineating when and how the drug candidates participate in the entire reaction steps of the target protein. This unique capability has been demonstrated to be applicable to the identification of representative types of widely prescribed drugs targeting type II topoisomerase: etoposide which stabilizes the enzyme-DNA cleavage complex, and bisdioxopiperazines (ICRF-I93) which lock the N-terminal gate of the enzyme into the closed state. Based on this demonstration experiment, we expect that our proposed method will be extended to broad applications in the screening of potent drugs targeting various proteins.
Collapse
Affiliation(s)
- Yuyoung Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Surim Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kang Heo
- Strategic Development Team, Vieworks Company, Anyang-si, Gyeonggi-do 14055, Republic of Korea
| | - Sanghwa Lee
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea.
| |
Collapse
|
17
|
Zhou S, Miao Y, Qiu H, Yao Y, Wang W, Chen C. Deep learning based local feature classification to automatically identify single molecule fluorescence events. Commun Biol 2024; 7:1404. [PMID: 39468368 PMCID: PMC11519536 DOI: 10.1038/s42003-024-07122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
Long-term single-molecule fluorescence measurements are widely used powerful tools to study the conformational dynamics of biomolecules in real time to further elucidate their conformational dynamics. Typically, thousands or even more single-molecule traces are analyzed to provide statistically meaningful information, which is labor-intensive and can introduce user bias. Recently, several deep-learning models have been developed to automatically classify single-molecule traces. In this study, we introduce DEBRIS (Deep lEarning Based fRagmentatIon approach for Single-molecule fluorescence event identification), a deep-learning model focusing on classifying local features and capable of automatically identifying steady fluorescence signals and dynamically emerging signals of different patterns. DEBRIS efficiently and accurately identifies both one-color and two-color single-molecule events, including their start and end points. By adjusting user-defined criteria, DEBRIS becomes the pioneer in using a deep learning model to accurately classify four different types of single-molecule fluorescence events using the same trained model, demonstrating its universality and ability to enrich the current toolbox.
Collapse
Affiliation(s)
- Shuqi Zhou
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yu Miao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Haoren Qiu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yuan Yao
- Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Wenjuan Wang
- Technology Center for Protein Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Chunlai Chen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
18
|
Erard M, Favard C, Lavis LD, Recher G, Rigneault H, Sage D. Back to the future - 20 years of progress and developments in photonic microscopy and biological imaging. J Cell Sci 2024; 137:jcs262344. [PMID: 39465534 DOI: 10.1242/jcs.262344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
In 2023, the ImaBio consortium (imabio-cnrs.fr), an interdisciplinary life microscopy research group at the Centre National de la Recherche Scientifique, celebrated its 20th anniversary. ImaBio contributes to the biological imaging community through organization of MiFoBio conferences, which are interdisciplinary conferences featuring lectures and hands-on workshops that attract specialists from around the world. MiFoBio conferences provide the community with an opportunity to reflect on the evolution of the field, and the 2023 event offered retrospective talks discussing the past 20 years of topics in microscopy, including imaging of multicellular assemblies, image analysis, quantification of molecular motions and interactions within cells, advancements in fluorescent labels, and laser technology for multiphoton and label-free imaging of thick biological samples. In this Perspective, we compile summaries of these presentations overviewing 20 years of advancements in a specific area of microscopy, each of which concludes with a brief look towards the future. The full presentations are available on the ImaBio YouTube channel (youtube.com/@gdrimabio5724).
Collapse
Affiliation(s)
- Marie Erard
- ImaBio consortium, GDR 2004, CNRS Ingénierie, France
- Université Paris-Saclay, Institut de Chimie Physique, UMR 8000 CNRS, 91405, Orsay, France
| | - Cyril Favard
- ImaBio consortium, GDR 2004, CNRS Ingénierie, France
- Membrane Domains and Viral Assembly, Infectious Disease Research Institute of Montpellier (IRIM), CNRS UMR 9004, Université de Montpellier, 34293 Montpellier, France
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Gaëlle Recher
- ImaBio consortium, GDR 2004, CNRS Ingénierie, France
- Laboratoire Photonique, Numérique et Nanosciences (LP2N), UMR CNRS 5298, Institut d'Optique Graduate School, Université de Bordeaux BioImaging and OptoFluidics Team, 33400 Talence, France
| | - Hervé Rigneault
- ImaBio consortium, GDR 2004, CNRS Ingénierie, France
- Aix Marseille Univ, CNRS, Centrale Med, Institut Fresnel, 13397 Marseille, France
| | - Daniel Sage
- Biomedical Imaging Group and Center for Imaging , Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Sahl SJ, Matthias J, Inamdar K, Weber M, Khan TA, Brüser C, Jakobs S, Becker S, Griesinger C, Broichhagen J, Hell SW. Direct optical measurement of intramolecular distances with angstrom precision. Science 2024; 386:180-187. [PMID: 39388556 DOI: 10.1126/science.adj7368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/03/2024] [Indexed: 10/12/2024]
Abstract
Optical investigations of nanometer distances between proteins, their subunits, or other biomolecules have been the exclusive prerogative of Förster resonance energy transfer (FRET) microscopy for decades. In this work, we show that MINFLUX fluorescence nanoscopy measures intramolecular distances down to 1 nanometer-and in planar projections down to 1 angstrom-directly, linearly, and with angstrom precision. Our method was validated by quantifying well-characterized 1- to 10-nanometer distances in polypeptides and proteins. Moreover, we visualized the orientations of immunoglobulin subunits, applied the method in human cells, and revealed specific configurations of a histidine kinase PAS domain dimer. Our results open the door for examining proximities and interactions by direct position measurements at the intramacromolecular scale.
Collapse
Affiliation(s)
- Steffen J Sahl
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Jessica Matthias
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Kaushik Inamdar
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Michael Weber
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Taukeer A Khan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Christian Brüser
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, Göttingen 37075, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, Göttingen 37075, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Christian Griesinger
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
20
|
Asadiatouei P, Salem CB, Wanninger S, Ploetz E, Lamb DC. Deep-LASI, single-molecule data analysis software. Biophys J 2024; 123:2682-2695. [PMID: 38384132 PMCID: PMC11393668 DOI: 10.1016/j.bpj.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
By avoiding ensemble averaging, single-molecule methods provide novel means of extracting mechanistic insights into function of material and molecules at the nanoscale. However, one of the big limitations is the vast amount of data required for analyzing and extracting the desired information, which is time-consuming and user dependent. Here, we introduce Deep-LASI, a software suite for the manual and automatic analysis of single-molecule traces, interactions, and the underlying kinetics. The software can handle data from one-, two- and three-color fluorescence data, and was particularly designed for the analysis of two- and three-color single-molecule fluorescence resonance energy transfer experiments. The functionalities of the software include: the registration of multiple-channels, trace sorting and categorization, determination of the photobleaching steps, calculation of fluorescence resonance energy transfer correction factors, and kinetic analyses based on hidden Markov modeling or deep neural networks. After a kinetic analysis, the ensuing transition density plots are generated, which can be used for further quantification of the kinetic parameters of the system. Each step in the workflow can be performed manually or with the support of machine learning algorithms. Upon reading in the initial data set, it is also possible to perform the remaining analysis steps automatically without additional supervision. Hence, the time dedicated to the analysis of single-molecule experiments can be reduced from days/weeks to minutes. After a thorough description of the functionalities of the software, we also demonstrate the capabilities of the software via the analysis of a previously published dynamic three-color DNA origami structure fluctuating between three states. With the drastic time reduction in data analysis, new types of experiments become realistically possible that complement our currently available palette of methodologies for investigating the nanoworld.
Collapse
Affiliation(s)
- Pooyeh Asadiatouei
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Clemens-Bässem Salem
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Simon Wanninger
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Don C Lamb
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
21
|
Aguirre Rivera J, Mao G, Sabantsev A, Panfilov M, Hou Q, Lindell M, Chanez C, Ritort F, Jinek M, Deindl S. Massively parallel analysis of single-molecule dynamics on next-generation sequencing chips. Science 2024; 385:892-898. [PMID: 39172826 DOI: 10.1126/science.adn5371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/12/2024] [Indexed: 08/24/2024]
Abstract
Single-molecule techniques are ideally poised to characterize complex dynamics but are typically limited to investigating a small number of different samples. However, a large sequence or chemical space often needs to be explored to derive a comprehensive understanding of complex biological processes. Here we describe multiplexed single-molecule characterization at the library scale (MUSCLE), a method that combines single-molecule fluorescence microscopy with next-generation sequencing to enable highly multiplexed observations of complex dynamics. We comprehensively profiled the sequence dependence of DNA hairpin properties and Cas9-induced target DNA unwinding-rewinding dynamics. The ability to explore a large sequence space for Cas9 allowed us to identify a number of target sequences with unexpected behaviors. We envision that MUSCLE will enable the mechanistic exploration of many fundamental biological processes.
Collapse
Affiliation(s)
- J Aguirre Rivera
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - G Mao
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - A Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - M Panfilov
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - Q Hou
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - M Lindell
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, 75144 Uppsala, Sweden
| | - C Chanez
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland
| | - F Ritort
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - M Jinek
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland
| | - S Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| |
Collapse
|
22
|
Sarkar M, Raj R R, Maliekal TT. Finding the partner: FRET and beyond. Exp Cell Res 2024; 441:114166. [PMID: 39029572 DOI: 10.1016/j.yexcr.2024.114166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Given the importance of aberrant protein-protein interactions (PPIs) in disease, the recent drug discovery focuses on targeting the altered PPIs to treat the disease. In this context, identifying the atypical PPIs underlying the disease is critical for the development of diagnostics and therapeutics. Various biochemical, biophysical, and genetic methods have been reported to study PPIs. Here, we are giving a short account of those techniques with more emphasis on Förster resonance energy transfer (FRET), which can be used to monitor macromolecular interactions in live cells. Besides the basics of FRET, we explain the modifications of its application, like Single molecule FRET (smFRET), Fluorescence Lifetime Imaging Microscopy-FRET (FLIM-FRET), and photoswitching FRET. While smFRET is extensively used for evaluating the biology of nucleic acids and also to develop diagnostics, FLIM-FRET is widely exploited to study the PPIs underlying neurological disorders and cancer. Photoswitching FRET is a relatively newer technique and it has tremendous potential to unravel the significance of different PPIs. Besides these modifications, there are several advancements in the field by introducing new fluorophores. Identification of lanthanide chelates, quantum dots, and other nanoparticle fluorophores has revolutionized the applications of FRET in diagnostics and basic biology. Yet, these methods can be employed to study the interactions of only two molecules. Since the majority of the PPIs are multimeric complexes, we still need to improve our technologies to study these interactions in live cells in real-time.
Collapse
Affiliation(s)
- Meghna Sarkar
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Reshma Raj R
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India; Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Tessy Thomas Maliekal
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India; Regional Centre for Biotechnology, Faridabad, Haryana 121001, India.
| |
Collapse
|
23
|
Power RM, Tschanz A, Zimmermann T, Ries J. Build and operation of a custom 3D, multicolor, single-molecule localization microscope. Nat Protoc 2024; 19:2467-2525. [PMID: 38702387 DOI: 10.1038/s41596-024-00989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/19/2024] [Indexed: 05/06/2024]
Abstract
Single-molecule localization microscopy (SMLM) enables imaging scientists to visualize biological structures with unprecedented resolution. Particularly powerful implementations of SMLM are capable of three-dimensional, multicolor and high-throughput imaging and can yield key biological insights. However, widespread access to these technologies is limited, primarily by the cost of commercial options and complexity of de novo development of custom systems. Here we provide a comprehensive guide for interested researchers who wish to establish a high-end, custom-built SMLM setup in their laboratories. We detail the initial configuration and subsequent assembly of the SMLM, including the instructions for the alignment of all the optical pathways, the software and hardware integration, and the operation of the instrument. We describe the validation steps, including the preparation and imaging of test and biological samples with structures of well-defined geometries, and assist the user in troubleshooting and benchmarking the system's performance. Additionally, we provide a walkthrough of the reconstruction of a super-resolved dataset from acquired raw images using the Super-resolution Microscopy Analysis Platform. Depending on the instrument configuration, the cost of the components is in the range US$95,000-180,000, similar to other open-source advanced SMLMs, and substantially lower than the cost of a commercial instrument. A builder with some experience of optical systems is expected to require 4-8 months from the start of the system construction to attain high-quality three-dimensional and multicolor biological images.
Collapse
Affiliation(s)
- Rory M Power
- EMBL Imaging Centre, EMBL Heidelberg, Heidelberg, Germany.
| | - Aline Tschanz
- Cell Biology and Biophysics Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Timo Zimmermann
- EMBL Imaging Centre, EMBL Heidelberg, Heidelberg, Germany
- Cell Biology and Biophysics Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Jonas Ries
- Cell Biology and Biophysics Unit, EMBL Heidelberg, Heidelberg, Germany.
- Max Perutz Labs, Vienna Biocenter Campus, Vienna, Austria.
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational Biology, Vienna, Austria.
- University of Vienna, Faculty of Physics, Vienna, Austria.
| |
Collapse
|
24
|
Gao C, Gao Q, Zhao C, Huo Y, Zhang Z, Yang J, Jia C, Guo X. Technologies for investigating single-molecule chemical reactions. Natl Sci Rev 2024; 11:nwae236. [PMID: 39224448 PMCID: PMC11367963 DOI: 10.1093/nsr/nwae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Single molecules, the smallest independently stable units in the material world, serve as the fundamental building blocks of matter. Among different branches of single-molecule sciences, single-molecule chemical reactions, by revealing the behavior and properties of individual molecules at the molecular scale, are particularly attractive because they can advance the understanding of chemical reaction mechanisms and help to address key scientific problems in broad fields such as physics, chemistry, biology and materials science. This review provides a timely, comprehensive overview of single-molecule chemical reactions based on various technical platforms such as scanning probe microscopy, single-molecule junction, single-molecule nanostructure, single-molecule fluorescence detection and crossed molecular beam. We present multidimensional analyses of single-molecule chemical reactions, offering new perspectives for research in different areas, such as photocatalysis/electrocatalysis, organic reactions, surface reactions and biological reactions. Finally, we discuss the opportunities and challenges in this thriving field of single-molecule chemical reactions.
Collapse
Affiliation(s)
- Chunyan Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Yani Huo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Zhizhuo Zhang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Jinlong Yang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
25
|
Foote A, Ishii K, Cullinane B, Tahara T, Goldsmith RH. Quantifying Microsecond Solution-Phase Conformational Dynamics of a DNA Hairpin at the Single-Molecule Level. ACS PHYSICAL CHEMISTRY AU 2024; 4:408-419. [PMID: 39069982 PMCID: PMC11274281 DOI: 10.1021/acsphyschemau.3c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 07/30/2024]
Abstract
Quantifying the rapid conformational dynamics of biological systems is fundamental to understanding the mechanism. However, biomolecules are complex, often containing static and dynamic heterogeneity, thus motivating the use of single-molecule methods, particularly those that can operate in solution. In this study, we measure microsecond conformational dynamics of solution-phase DNA hairpins at the single-molecule level using an anti-Brownian electrokinetic (ABEL) trap. Different conformational states were distinguished by their fluorescence lifetimes, and kinetic parameters describing transitions between these states were determined using two-dimensional fluorescence lifetime correlation (2DFLCS) analysis. Rather than combining fluorescence signals from the entire data set ensemble, long observation times of individual molecules allowed ABEL-2DFLCS to be performed on each molecule independently, yielding the underlying distribution of the system's kinetic parameters. ABEL-2DFLCS on the DNA hairpins resolved an underlying heterogeneity of fluorescence lifetimes and provided signatures of two-state exponential dynamics with rapid (
Collapse
Affiliation(s)
- Alexander
K. Foote
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Kunihiko Ishii
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Brendan Cullinane
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Randall H. Goldsmith
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
26
|
Winkelmann H, Richter CP, Eising J, Piehler J, Kurre R. Correlative single-molecule and structured illumination microscopy of fast dynamics at the plasma membrane. Nat Commun 2024; 15:5813. [PMID: 38987559 PMCID: PMC11236984 DOI: 10.1038/s41467-024-49876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Total internal reflection fluorescence (TIRF) microscopy offers powerful means to uncover the functional organization of proteins in the plasma membrane with very high spatial and temporal resolution. Traditional TIRF illumination, however, shows a Gaussian intensity profile, which is typically deteriorated by overlaying interference fringes hampering precise quantification of intensities-an important requisite for quantitative analyses in single-molecule localization microscopy (SMLM). Here, we combine flat-field illumination by using a standard πShaper with multi-angular TIR illumination by incorporating a spatial light modulator compatible with fast super-resolution structured illumination microscopy (SIM). This distinct combination enables quantitative multi-color SMLM with a highly homogenous illumination. By using a dual camera setup with optimized image splitting optics, we achieve a versatile combination of SMLM and SIM with up to three channels. We deploy this setup for establishing robust detection of receptor stoichiometries based on single-molecule intensity analysis and single-molecule Förster resonance energy transfer (smFRET). Homogeneous illumination furthermore enables long-term tracking and localization microscopy (TALM) of cell surface receptors identifying spatial heterogeneity of mobility and accessibility in the plasma membrane. By combination of TALM and SIM, spatially and molecularly heterogenous diffusion properties can be correlated with nanoscale cytoskeletal organization and dynamics.
Collapse
Affiliation(s)
- Hauke Winkelmann
- Division of Biophysics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany
| | - Christian P Richter
- Division of Biophysics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany
| | - Jasper Eising
- Division of Biophysics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany
| | - Jacob Piehler
- Division of Biophysics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany.
- Center for Cellular Nanoanalytics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany.
| | - Rainer Kurre
- Division of Biophysics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany.
- Center for Cellular Nanoanalytics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany.
- Integrated Bioimaging Facility iBiOs, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany.
| |
Collapse
|
27
|
Cichos F, Xia T, Yang H, Zijlstra P. The ever-expanding optics of single-molecules and nanoparticles. J Chem Phys 2024; 161:010401. [PMID: 38949895 DOI: 10.1063/5.0221680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Affiliation(s)
- F Cichos
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - T Xia
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - H Yang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - P Zijlstra
- Department of Applied Physics and Science Education, Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands
| |
Collapse
|
28
|
Modak A, Kilic Z, Chattrakun K, Terry DS, Kalathur RC, Blanchard SC. Single-Molecule Imaging of Integral Membrane Protein Dynamics and Function. Annu Rev Biophys 2024; 53:427-453. [PMID: 39013028 DOI: 10.1146/annurev-biophys-070323-024308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Integral membrane proteins (IMPs) play central roles in cellular physiology and represent the majority of known drug targets. Single-molecule fluorescence and fluorescence resonance energy transfer (FRET) methods have recently emerged as valuable tools for investigating structure-function relationships in IMPs. This review focuses on the practical foundations required for examining polytopic IMP function using single-molecule FRET (smFRET) and provides an overview of the technical and conceptual frameworks emerging from this area of investigation. In this context, we highlight the utility of smFRET methods to reveal transient conformational states critical to IMP function and the use of smFRET data to guide structural and drug mechanism-of-action investigations. We also identify frontiers where progress is likely to be paramount to advancing the field.
Collapse
Affiliation(s)
- Arnab Modak
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Zeliha Kilic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Kanokporn Chattrakun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Ravi C Kalathur
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; , , , , ,
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
29
|
Pati AK, Kilic Z, Martin MI, Terry DS, Borgia A, Bar S, Jockusch S, Kiselev R, Altman RB, Blanchard SC. Recovering true FRET efficiencies from smFRET investigations requires triplet state mitigation. Nat Methods 2024; 21:1222-1230. [PMID: 38877317 PMCID: PMC11239528 DOI: 10.1038/s41592-024-02293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/25/2024] [Indexed: 06/16/2024]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) methods employed to quantify time-dependent compositional and conformational changes within biomolecules require elevated illumination intensities to recover robust photon emission streams from individual fluorophores. Here we show that outside the weak-excitation limit, and in regimes where fluorophores must undergo many rapid cycles of excitation and relaxation, non-fluorescing, excitation-induced triplet states with lifetimes orders of magnitude longer lived than photon-emitting singlet states degrade photon emission streams from both donor and acceptor fluorophores resulting in illumination-intensity-dependent changes in FRET efficiency. These changes are not commonly taken into consideration; therefore, robust strategies to suppress excited state accumulations are required to recover accurate and precise FRET efficiency, and thus distance, estimates. We propose both robust triplet state suppression and data correction strategies that enable the recovery of FRET efficiencies more closely approximating true values, thereby extending the spatial and temporal resolution of smFRET.
Collapse
Affiliation(s)
- Avik K Pati
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Zeliha Kilic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maxwell I Martin
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alessandro Borgia
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sukanta Bar
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Steffen Jockusch
- Center for Photochemical Sciences and Department of Chemistry, Bowling Green State University, Bowling Green, OH, USA
| | - Roman Kiselev
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Roger B Altman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
30
|
Akhtar J, Imran M, Wang G. Protocol for live-cell Förster resonance energy transfer imaging to reveal the bistable insulin response of single C2C12-derived myotubes. STAR Protoc 2024; 5:103109. [PMID: 38829736 PMCID: PMC11179099 DOI: 10.1016/j.xpro.2024.103109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Based on our hypothesis that myotubes exhibit a bistable response to insulin, here we present a protocol for finely measuring Akt phosphorylation in single myotubes under insulin stimulation. We describe steps to stably express a Förster resonance energy transfer (FRET)-based Akt biosensor in C2C12-derived myotubes and perform single-cell FRET imaging. This protocol highlights its potential for precision medicine in analyzing protein phosphorylation dynamics at the single-cell level. For complete details on the use and execution of this protocol, please refer to Akhtar et al.1.
Collapse
Affiliation(s)
- Javed Akhtar
- Futian Biomedical Innovation R&D Center, The Chinese University of Hong Kong, Shenzhen 518172, China; Biomedical Science and Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; Center for Endocrinology and Metabolic Diseases, Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Muhammad Imran
- Department of Computer Science & IT, Institute of Southern Punjab, Multan, Pakistan
| | - Guanyu Wang
- Futian Biomedical Innovation R&D Center, The Chinese University of Hong Kong, Shenzhen 518172, China; Biomedical Science and Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; Center for Endocrinology and Metabolic Diseases, Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen 518172, China.
| |
Collapse
|
31
|
Joron K, Zamel J, Kalisman N, Lerner E. Evidence for a compact σ 70 conformation in vitro and in vivo. iScience 2024; 27:110140. [PMID: 38957792 PMCID: PMC11217687 DOI: 10.1016/j.isci.2024.110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of transcription in Escherichia coli (E. coli) is facilitated by promoter specificity factors, also known as σ factors, which may bind a promoter only as part of a complex with RNA polymerase (RNAP). By performing in vitro cross-linking mass spectrometry (CL-MS) of apo-σ70, we reveal structural features suggesting a compact conformation compared to the known RNAP-bound extended conformation. Then, we validate the existence of the compact conformation using in vivo CL-MS by identifying cross-links similar to those found in vitro, which deviate from the extended conformation only during the stationary phase of bacterial growth. Conclusively, we provide information in support of a compact conformation of apo-σ70 that exists in live cells, which might represent a transcriptionally inactive form that can be activated upon binding to RNAP.
Collapse
Affiliation(s)
- Khalil Joron
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Joanna Zamel
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nir Kalisman
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eitan Lerner
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
32
|
Li J, Jo MH, Yan J, Hall T, Lee J, López-Sánchez U, Yan S, Ha T, Springer TA. Ligand binding initiates single-molecule integrin conformational activation. Cell 2024; 187:2990-3005.e17. [PMID: 38772370 PMCID: PMC11162317 DOI: 10.1016/j.cell.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/21/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Integrins link the extracellular environment to the actin cytoskeleton in cell migration and adhesiveness. Rapid coordination between events outside and inside the cell is essential. Single-molecule fluorescence dynamics show that ligand binding to the bent-closed integrin conformation, which predominates on cell surfaces, is followed within milliseconds by two concerted changes, leg extension and headpiece opening, to give the high-affinity integrin conformation. The extended-closed integrin conformation is not an intermediate but can be directly accessed from the extended-open conformation and provides a pathway for ligand dissociation. In contrast to ligand, talin, which links the integrin β-subunit cytoplasmic domain to the actin cytoskeleton, modestly stabilizes but does not induce extension or opening. Integrin activation is thus initiated by outside-in signaling and followed by inside-out signaling. Our results further imply that talin binding is insufficient for inside-out integrin activation and that tensile force transmission through the ligand-integrin-talin-actin cytoskeleton complex is required.
Collapse
Affiliation(s)
- Jing Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Myung Hyun Jo
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jiabin Yan
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Taylor Hall
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Joon Lee
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Uriel López-Sánchez
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sophia Yan
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Newton South High School, Newton, MA 02459, USA
| | - Taekjip Ha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Miller JJ, Mallimadugula UL, Zimmerman MI, Stuchell-Brereton MD, Soranno A, Bowman GR. Accounting for fast vs slow exchange in single molecule FRET experiments reveals hidden conformational states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597137. [PMID: 38895430 PMCID: PMC11185552 DOI: 10.1101/2024.06.03.597137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Proteins are dynamic systems whose structural preferences determine their function. Unfortunately, building atomically detailed models of protein structural ensembles remains challenging, limiting our understanding of the relationships between sequence, structure, and function. Combining single molecule Förster resonance energy transfer (smFRET) experiments with molecular dynamics simulations could provide experimentally grounded, all-atom models of a protein's structural ensemble. However, agreement between the two techniques is often insufficient to achieve this goal. Here, we explore whether accounting for important experimental details like averaging across structures sampled during a given smFRET measurement is responsible for this apparent discrepancy. We present an approach to account for this time-averaging by leveraging the kinetic information available from Markov state models of a protein's dynamics. This allows us to accurately assess which timescales are averaged during an experiment. We find this approach significantly improves agreement between simulations and experiments in proteins with varying degrees of dynamics, including the well-ordered protein T4 lysozyme, the partially disordered protein apolipoprotein E (ApoE), and a disordered amyloid protein (Aβ40). We find evidence for hidden states that are not apparent in smFRET experiments because of time averaging with other structures, akin to states in fast exchange in NMR, and evaluate different force fields. Finally, we show how remaining discrepancies between computations and experiments can be used to guide additional simulations and build structural models for states that were previously unaccounted for. We expect our approach will enable combining simulations and experiments to understand the link between sequence, structure, and function in many settings.
Collapse
Affiliation(s)
- Justin J. Miller
- Departments of Biochemistry & Biophysics and Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Upasana L. Mallimadugula
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Maxwell I. Zimmerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Melissa D. Stuchell-Brereton
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gregory R. Bowman
- Departments of Biochemistry & Biophysics and Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
34
|
Rudnizky S, Murray PJ, Wolfe CH, Ha T. Single-Macromolecule Studies of Eukaryotic Genomic Maintenance. Annu Rev Phys Chem 2024; 75:209-230. [PMID: 38382570 DOI: 10.1146/annurev-physchem-090722-010601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Genomes are self-organized and self-maintained as long, complex macromolecules of chromatin. The inherent heterogeneity, stochasticity, phase separation, and chromatin dynamics of genome operation make it challenging to study genomes using ensemble methods. Various single-molecule force-, fluorescent-, and sequencing-based techniques rooted in different disciplines have been developed to fill critical gaps in the capabilities of bulk measurements, each providing unique, otherwise inaccessible, insights into the structure and maintenance of the genome. Capable of capturing molecular-level details about the organization, conformational changes, and packaging of genetic material, as well as processive and stochastic movements of maintenance factors, a single-molecule toolbox provides an excellent opportunity for collaborative research to understand how genetic material functions in health and malfunctions in disease. In this review, we discuss novel insights brought to genomic sciences by single-molecule techniques and their potential to continue to revolutionize the field-one molecule at a time.
Collapse
Affiliation(s)
- Sergei Rudnizky
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter J Murray
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA;
| | - Clara H Wolfe
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Feng XA, Yamadi M, Fu Y, Ness KM, Liu C, Ahmed I, Bowman GD, Johnson ME, Ha T, Wu C. GAGA zinc finger transcription factor searches chromatin by 1D-3D facilitated diffusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.14.549009. [PMID: 37502885 PMCID: PMC10369947 DOI: 10.1101/2023.07.14.549009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
To elucidate how eukaryotic sequence-specific transcription factors (TFs) search for gene targets on chromatin, we used multi-color smFRET and single-particle imaging to track the diffusion of purified GAGA-Associated Factor (GAF) on DNA and nucleosomes. Monomeric GAF DNA-binding domain (DBD) bearing one zinc finger finds its cognate site by 1D or 3D diffusion on bare DNA and rapidly slides back-and-forth between naturally clustered motifs for seconds before escape. Multimeric, full-length GAF also finds clustered motifs on DNA by 1D-3D diffusion, but remains locked on target for longer periods. Nucleosome architecture effectively blocks GAF-DBD 1D-sliding into the histone core but favors retention of GAF-DBD when targeting solvent-exposed sites by 3D-diffusion. Despite the occlusive power of nucleosomes, 1D-3D facilitated diffusion enables GAF to effectively search for clustered cognate motifs in chromatin, providing a mechanism for navigation to nucleosome and nucleosome-free sites by a member of the largest TF family.
Collapse
Affiliation(s)
- Xinyu A. Feng
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Maryam Yamadi
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yiben Fu
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kaitlin M. Ness
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Celina Liu
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ishtiyaq Ahmed
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gregory D. Bowman
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Margaret E. Johnson
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Taekjip Ha
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Carl Wu
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
36
|
Yan X, Yu PY, Srinivasan A, Abdul Rehman S, Prigozhin MB. Identifying Intermolecular Interactions in Single-Molecule Localization Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593617. [PMID: 38798627 PMCID: PMC11118527 DOI: 10.1101/2024.05.10.593617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Intermolecular interactions underlie all cellular functions, yet visualizing these interactions at the single-molecule level remains challenging. Single-molecule localization microscopy (SMLM) offers a potential solution. Given a nanoscale map of two putative interaction partners, it should be possible to assign molecules either to the class of coupled pairs or to the class of non-coupled bystanders. Here, we developed a probabilistic algorithm that allows accurate determination of both the absolute number and the proportion of molecules that form coupled pairs. The algorithm calculates interaction probabilities for all possible pairs of localized molecules, selects the most likely interaction set, and corrects for any spurious colocalizations. Benchmarking this approach across a set of simulated molecular localization maps with varying densities (up to ∼ 50 molecules µm - 2 ) and localization precisions (5 to 50 nm) showed typical errors in the identification of correct pairs of only a few percent. At molecular densities of ∼ 5-10 molecules µm - 2 and localization precisions of 20-30 nm, which are typical parameters for SMLM imaging, the recall was ∼ 90%. The algorithm was effective at differentiating between non-interacting and coupled molecules both in simulations and experiments. Finally, it correctly inferred the number of coupled pairs over time in a simulated reaction-diffusion system, enabling determination of the underlying rate constants. The proposed approach promises to enable direct visualization and quantification of intermolecular interactions using SMLM.
Collapse
|
37
|
Jacobi R, González L. Resonance energy transfer in orthogonally arranged chromophores: a question of molecular representation. Phys Chem Chem Phys 2024; 26:12299-12305. [PMID: 38602332 DOI: 10.1039/d4cp00420e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Energy transfer between orthogonally arranged chromophores is typically considered impossible according to conventional Förster resonance energy transfer theory. Nevertheless, the disruption of orthogonality by nuclear vibrations can enable energy transfer, what has prompted the necessity for formal expansions of the standard theory. Here, we propose that there is no need to extend conventional Förster theory in such cases. Instead, a more accurate representation of the chromophores is required. Through calculations of the energy transfer rate using structures from a thermal ensemble, rather than relying on equilibrium geometries, we show that the standard Förster resonance energy transfer theory is still capable of describing energy transfer in orthogonally arranged systems. Our calculations explain how thermal vibrations influence the electronic properties of the states involved in energy transfer, affecting the alignment of transition dipole moments and the intensity of transitions.
Collapse
Affiliation(s)
- Richard Jacobi
- Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Leticia González
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| |
Collapse
|
38
|
Clark BS, Silvernail I, Gordon K, Castaneda JF, Morgan AN, Rolband LA, LeBlanc SJ. A practical guide to time-resolved fluorescence microscopy and spectroscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577300. [PMID: 38586000 PMCID: PMC10996486 DOI: 10.1101/2024.01.25.577300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Time-correlated single photon counting (TCSPC) coupled with confocal microscopy is a versatile biophysical tool that enables real-time monitoring of biomolecular dynamics across many timescales. With TCSPC, Fluorescence correlation spectroscopy (FCS) and pulsed interleaved excitation-Förster resonance energy transfer (PIE-FRET) are collected simultaneously on diffusing molecules to extract diffusion characteristics and proximity information. This article is a guide to calibrating FCS and PIE-FRET measurements with several biological samples including liposomes, streptavidin-coated quantum dots, proteins, and nucleic acids for reliable determination of diffusion coefficients and FRET efficiency. The FRET efficiency results are also compared to surface-attached single molecules using fluorescence lifetime imaging microscopy (FLIM-FRET). Combining the methods is a powerful approach to revealing mechanistic details of biological processes and pathways.
Collapse
|
39
|
Pangeni S, Biswas G, Kaushik V, Kuppa S, Yang O, Lin CT, Mishra G, Levy Y, Antony E, Ha T. Rapid Long-distance Migration of RPA on Single Stranded DNA Occurs Through Intersegmental Transfer Utilizing Multivalent Interactions. J Mol Biol 2024; 436:168491. [PMID: 38360091 PMCID: PMC10949852 DOI: 10.1016/j.jmb.2024.168491] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Replication Protein A (RPA) is asingle strandedDNA(ssDNA)binding protein that coordinates diverse DNA metabolic processes including DNA replication, repair, and recombination. RPA is a heterotrimeric protein with six functional oligosaccharide/oligonucleotide (OB) domains and flexible linkers. Flexibility enables RPA to adopt multiple configurations andis thought to modulate its function. Here, usingsingle moleculeconfocal fluorescencemicroscopy combinedwith optical tweezers and coarse-grained molecular dynamics simulations, we investigated the diffusional migration of single RPA molecules on ssDNA undertension.The diffusioncoefficientDis the highest (20,000nucleotides2/s) at 3pNtension and in 100 mMKCl and markedly decreases whentensionor salt concentrationincreases. We attribute the tension effect to intersegmental transfer which is hindered by DNA stretching and the salt effect to an increase in binding site size and interaction energy of RPA-ssDNA. Our integrative study allowed us to estimate the size and frequency of intersegmental transfer events that occur through transient bridging of distant sites on DNA by multiple binding sites on RPA. Interestingly, deletion of RPA trimeric core still allowed significant ssDNA binding although the reduced contact area made RPA 15-fold more mobile. Finally, we characterized the effect of RPA crowding on RPA migration. These findings reveal how the high affinity RPA-ssDNA interactions are remodeled to yield access, a key step in several DNA metabolic processes.
Collapse
Affiliation(s)
- Sushil Pangeni
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Gargi Biswas
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Vikas Kaushik
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Olivia Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chang-Ting Lin
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Garima Mishra
- Department of Physics, Ashoka University, Sonepet, Haryana, India
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO, USA.
| | - Taekjip Ha
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
40
|
Montepietra D, Tesei G, Martins JM, Kunze MBA, Best RB, Lindorff-Larsen K. FRETpredict: a Python package for FRET efficiency predictions using rotamer libraries. Commun Biol 2024; 7:298. [PMID: 38461354 PMCID: PMC10925062 DOI: 10.1038/s42003-024-05910-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/12/2024] [Indexed: 03/11/2024] Open
Abstract
Förster resonance energy transfer (FRET) is a widely-used and versatile technique for the structural characterization of biomolecules. Here, we introduce FRETpredict, an easy-to-use Python software to predict FRET efficiencies from ensembles of protein conformations. FRETpredict uses a rotamer library approach to describe the FRET probes covalently bound to the protein. The software efficiently and flexibly operates on large conformational ensembles such as those generated by molecular dynamics simulations to facilitate the validation or refinement of molecular models and the interpretation of experimental data. We provide access to rotamer libraries for many commonly used dyes and linkers and describe a general methodology to generate new rotamer libraries for FRET probes. We demonstrate the performance and accuracy of the software for different types of systems: a rigid peptide (polyproline 11), an intrinsically disordered protein (ACTR), and three folded proteins (HiSiaP, SBD2, and MalE). FRETpredict is open source (GPLv3) and is available at github.com/KULL-Centre/FRETpredict and as a Python PyPI package at pypi.org/project/FRETpredict .
Collapse
Affiliation(s)
- Daniele Montepietra
- Department of Chemical, Life and Environmental Sustainability Sciences, University of Parma, Parma, 43125, Italy
- Istituto Nanoscienze - CNR-NANO, Center S3, via G. Campi 213/A, 41125, Modena, Italy
| | - Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - João M Martins
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Micha B A Kunze
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark.
| |
Collapse
|
41
|
Kish M, Ivory DP, Phillips JJ. Transient Structural Dynamics of Glycogen Phosphorylase from Nonequilibrium Hydrogen/Deuterium-Exchange Mass Spectrometry. J Am Chem Soc 2024; 146:298-307. [PMID: 38158228 PMCID: PMC10786028 DOI: 10.1021/jacs.3c08934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
It remains a major challenge to ascertain the specific structurally dynamic changes that underpin protein functional switching. There is a growing need in molecular biology and drug discovery to complement structural models with the ability to determine the dynamic structural changes that occur as these proteins are regulated and function. The archetypal allosteric enzyme glycogen phosphorylase is a clinical target of great interest to treat type II diabetes and metastatic cancers. Here, we developed a time-resolved nonequilibrium millisecond hydrogen/deuterium-exchange mass spectrometry (HDX-MS) approach capable of precisely locating dynamic structural changes during allosteric activation and inhibition of glycogen phosphorylase. We resolved obligate transient changes in the localized structure that are absent when directly comparing active/inactive states of the enzyme and show that they are common to allosteric activation by AMP and inhibition by caffeine, operating at different sites. This indicates that opposing allosteric regulation by inhibitor and activator ligands is mediated by pathways that intersect with a common structurally dynamic motif. This mass spectrometry approach uniquely stands to discover local transient structural dynamics and could be used broadly to identify features that influence the structural transitions of proteins.
Collapse
Affiliation(s)
- Monika Kish
- Living
Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4
4QD, U.K.
| | - Dylan P. Ivory
- Living
Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4
4QD, U.K.
| | - Jonathan J. Phillips
- Living
Systems Institute, Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4
4QD, U.K.
- Alan
Turing Institute, British Library, London NW1 2DB, U.K.
| |
Collapse
|
42
|
Sethi S, Wijesinghe KM, Dhakal S. Single-Molecule FRET-Based Multiplexed Detection. Methods Mol Biol 2024; 2744:183-195. [PMID: 38683319 DOI: 10.1007/978-1-0716-3581-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Single-molecule multiplexed detection is a high-promise toolkit for the expanding field of biosensing and molecular diagnostics. Among many single-molecule techniques available today for biomarker sensing including fluorescence, force, electrochemical, spectroscopic, barcoding, and other techniques, fluorescence-based approaches are arguably the most widely used methods due to their high sensitivity, selectivity, and readily available fluorophore-labeling schemes for a wide variety of biomolecules. However, multiplexed imaging using fluorescence techniques has proven to be challenging due to the sophisticated labeling schemes often requiring multiple FRET (fluorescence resonance energy transfer) pairs and/or excitation sources, which lead to overlapping signals and complicate data analysis. Here, we describe a single-molecule FRET method that enables multiplexed analysis while still using only one FRET pair, and thus the described approach is a significant step forward from conventional FRET methods.
Collapse
Affiliation(s)
- Srishty Sethi
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Kalani M Wijesinghe
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
43
|
Liao TW, Huang L, Wilson TJ, Ganser LR, Lilley DMJ, Ha T. Linking folding dynamics and function of SAM/SAH riboswitches at the single molecule level. Nucleic Acids Res 2023; 51:8957-8969. [PMID: 37522343 PMCID: PMC10516623 DOI: 10.1093/nar/gkad633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Riboswitches are regulatory elements found in bacterial mRNAs that control downstream gene expression through ligand-induced conformational changes. Here, we used single-molecule FRET to map the conformational landscape of the translational SAM/SAH riboswitch and probe how co-transcriptional ligand-induced conformational changes affect its translation regulation function. Riboswitch folding is highly heterogeneous, suggesting a rugged conformational landscape that allows for sampling of the ligand-bound conformation even in the absence of ligand. The addition of ligand shifts the landscape, favoring the ligand-bound conformation. Mutation studies identified a key structural element, the pseudoknot helix, that is crucial for determining ligand-free conformations and their ligand responsiveness. We also investigated ribosomal binding site accessibility under two scenarios: pre-folding and co-transcriptional folding. The regulatory function of the SAM/SAH riboswitch involves kinetically favoring ligand binding, but co-transcriptional folding reduces this preference with a less compact initial conformation that exposes the Shine-Dalgarno sequence and takes min to redistribute to more compact conformations of the pre-folded riboswitch. Such slow equilibration decreases the effective ligand affinity. Overall, our study provides a deeper understanding of the complex folding process and how the riboswitch adapts its folding pattern in response to ligand, modulates ribosome accessibility and the role of co-transcriptional folding in these processes.
Collapse
Affiliation(s)
- Ting-Wei Liao
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Timothy J Wilson
- Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Laura R Ganser
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David M J Lilley
- Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Taekjip Ha
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| |
Collapse
|
44
|
Liu T, Khanal S, Hertslet GD, Lamichhane R. Single-molecule analysis reveals that a glucagon-bound extracellular domain of the glucagon receptor is dynamic. J Biol Chem 2023; 299:105160. [PMID: 37586587 PMCID: PMC10514447 DOI: 10.1016/j.jbc.2023.105160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
Dynamic information is vital to understanding the activation mechanism of G protein-coupled receptors (GPCRs). Despite the availability of high-resolution structures of different conformational states, the dynamics of those states at the molecular level are poorly understood. Here, we used total internal reflection fluorescence microscopy to study the extracellular domain (ECD) of the glucagon receptor (GCGR), a class B family GPCR that controls glucose homeostasis. Single-molecule fluorescence resonance energy transfer was used to observe the ECD dynamics of GCGR molecules expressed and purified from mammalian cells. We observed that for apo-GCGR, the ECD is dynamic and spent time predominantly in a closed conformation. In the presence of glucagon, the ECD is wide open and also shows more dynamic behavior than apo-GCGR, a finding that was not previously reported. These results suggest that both apo-GCGR and glucagon-bound GCGRs show reversible opening and closing of the ECD with respect to the seven-transmembrane (7TM) domain. This work demonstrates a molecular approach to visualizing the dynamics of the GCGR ECD and provides a foundation for understanding the conformational changes underlying GPCR activation, which is critical in the development of new therapeutics.
Collapse
Affiliation(s)
- Ting Liu
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts & Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Susmita Khanal
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts & Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Gillian D Hertslet
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts & Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Rajan Lamichhane
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts & Sciences, University of Tennessee, Knoxville, Tennessee, USA.
| |
Collapse
|
45
|
White D, Smith MA, Chanda B, Goldsmith RH. Strategies for Overcoming the Single-Molecule Concentration Barrier. ACS MEASUREMENT SCIENCE AU 2023; 3:239-257. [PMID: 37600457 PMCID: PMC10436376 DOI: 10.1021/acsmeasuresciau.3c00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 08/22/2023]
Abstract
Fluorescence-based single-molecule approaches have helped revolutionize our understanding of chemical and biological mechanisms. Unfortunately, these methods are only suitable at low concentrations of fluorescent molecules so that single fluorescent species of interest can be successfully resolved beyond background signal. The application of these techniques has therefore been limited to high-affinity interactions despite most biological and chemical processes occurring at much higher reactant concentrations. Fortunately, recent methodological advances have demonstrated that this concentration barrier can indeed be broken, with techniques reaching concentrations as high as 1 mM. The goal of this Review is to discuss the challenges in performing single-molecule fluorescence techniques at high-concentration, offer applications in both biology and chemistry, and highlight the major milestones that shatter the concentration barrier. We also hope to inspire the widespread use of these techniques so we can begin exploring the new physical phenomena lying beyond this barrier.
Collapse
Affiliation(s)
- David
S. White
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Mackinsey A. Smith
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Baron Chanda
- Center
for
Investigation of Membrane Excitability Diseases, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Randall H. Goldsmith
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
46
|
Kim JM, Seong BL, Jung J. Highly chromophoric dual-terminus labeling of an intrinsically disordered native eukaryotic protein of interest at nanoscale. Int J Biol Macromol 2023:125396. [PMID: 37348577 DOI: 10.1016/j.ijbiomac.2023.125396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Chemical conjugation of purified proteins of interest (POIs) in Escherichia coli cells is effective for high expression but has limitations for highly chromogenic dual labeling of intrinsically disordered native proteins (IDNPs). Our probes can tag IDNPs using chemical conjugation during protein synthesis and folding while preserving biologically active structures in mammalian cells. We fluorescently labeled IDNPs in mammalian cells using pure fluorescent methionine and ATTO 565-biotin at the N-or C-terminus, respectively. The dual-labeled Tat protein was used as a model for IDNPs in HeLa cells and detected using Ni-NTA beads to estimate its highly chromogenic concentration. We also demonstrated highly chromogenic double labeling of genetically encoded fluorescent-Tat expression in eukaryotic cells using a single fluorescent dye pair with Förster resonance energy transfer (FRET) ratio and two-color correlation analysis. This study aims to solve native POI processing and achieve ultra-sensitive protein folding for biological and ecological applications at the nanoscale.
Collapse
Affiliation(s)
- Jung Min Kim
- Department of Environmental Science and Ecological Engineering, Ojeong Resilience Institute, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02842, Republic of Korea.
| | - Baik Lin Seong
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02842, Republic of Korea
| |
Collapse
|
47
|
Kümmerlin M, Mazumder A, Kapanidis AN. Bleaching-resistant, Near-continuous Single-molecule Fluorescence and FRET Based on Fluorogenic and Transient DNA Binding. Chemphyschem 2023; 24:e202300175. [PMID: 37043705 PMCID: PMC10946581 DOI: 10.1002/cphc.202300175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/16/2023] [Indexed: 04/14/2023]
Abstract
Photobleaching of fluorescent probes limits the observation span of typical single-molecule fluorescence measurements and hinders observation of dynamics at long timescales. Here, we present a general strategy to circumvent photobleaching by replenishing fluorescent probes via transient binding of fluorogenic DNAs to complementary DNA strands attached to a target molecule. Our strategy allows observation of near-continuous single-molecule fluorescence for more than an hour, a timescale two orders of magnitude longer than the typical photobleaching time of single fluorophores under our conditions. Using two orthogonal sequences, we show that our method is adaptable to Förster Resonance Energy Transfer (FRET) and that can be used to study the conformational dynamics of dynamic structures, such as DNA Holliday junctions, for extended periods. By adjusting the temporal resolution and observation span, our approach enables capturing the conformational dynamics of proteins and nucleic acids over a wide range of timescales.
Collapse
Affiliation(s)
- Mirjam Kümmerlin
- Department of PhysicsUniversity of OxfordOxfordOX1 3PUUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordDorothy Crowfoot Hodgkin BuildingOxfordOX1 3QUUK
| | - Abhishek Mazumder
- Department of PhysicsUniversity of OxfordOxfordOX1 3PUUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordDorothy Crowfoot Hodgkin BuildingOxfordOX1 3QUUK
- Structural Biology and Bioinformatics DivisionCSIR-Indian Institute of Chemical Biology4, Raja S. C. Mullick RoadKolkata700 032India
| | - Achillefs N. Kapanidis
- Department of PhysicsUniversity of OxfordOxfordOX1 3PUUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordDorothy Crowfoot Hodgkin BuildingOxfordOX1 3QUUK
| |
Collapse
|
48
|
Wijesinghe WCB, Min D. Single-Molecule Force Spectroscopy of Membrane Protein Folding. J Mol Biol 2023; 435:167975. [PMID: 37330286 DOI: 10.1016/j.jmb.2023.167975] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/19/2023]
Abstract
Single-molecule force spectroscopy is a unique method that can probe the structural changes of single proteins at a high spatiotemporal resolution while mechanically manipulating them over a wide force range. Here, we review the current understanding of membrane protein folding learned by using the force spectroscopy approach. Membrane protein folding in lipid bilayers is one of the most complex biological processes in which diverse lipid molecules and chaperone proteins are intricately involved. The approach of single protein forced unfolding in lipid bilayers has produced important findings and insights into membrane protein folding. This review provides an overview of the forced unfolding approach, including recent achievements and technical advances. Progress in the methods can reveal more interesting cases of membrane protein folding and clarify general mechanisms and principles.
Collapse
Affiliation(s)
- W C Bhashini Wijesinghe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
49
|
Ji J, Wang W, Chen C. Single-molecule techniques to visualize and to characterize liquid-liquid phase separation and phase transition. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1023-1033. [PMID: 36876423 PMCID: PMC10415186 DOI: 10.3724/abbs.2023028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 02/23/2023] Open
Abstract
Biomolecules forming membraneless structures via liquid-liquid phase separation (LLPS) is a common event in living cells. Some liquid-like condensates can convert into solid-like aggregations, and such a phase transition process is related to some neurodegenerative diseases. Liquid-like condensates and solid-like aggregations usually exhibit distinctive fluidity and are commonly distinguished via their morphology and dynamic properties identified through ensemble methods. Emerging single-molecule techniques are a group of highly sensitive techniques, which can offer further mechanistic insights into LLPS and phase transition at the molecular level. Here, we summarize the working principles of several commonly used single-molecule techniques and demonstrate their unique power in manipulating LLPS, examining mechanical properties at the nanoscale, and monitoring dynamic and thermodynamic properties at the molecular level. Thus, single-molecule techniques are unique tools to characterize LLPS and liquid-to-solid phase transition under close-to-physiological conditions.
Collapse
Affiliation(s)
- Jinyao Ji
- School of Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center of Biological StructureTsinghua UniversityBeijing100084China
| | - Wenjuan Wang
- School of Life SciencesTechnology Center for Protein SciencesTsinghua UniversityBeijing100084China
| | - Chunlai Chen
- School of Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center of Biological StructureTsinghua UniversityBeijing100084China
| |
Collapse
|
50
|
Gumus E, Bingol H, Zor E. Lateral flow assays for detection of disease biomarkers. J Pharm Biomed Anal 2023; 225:115206. [PMID: 36586382 DOI: 10.1016/j.jpba.2022.115206] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Early diagnosis saves lives in many diseases. In this sense, monitoring of biomarkers is crucial for the diagnosis of diseases. Lateral flow assays (LFAs) have attracted great attention among paper-based point-of-care testing (POCT) due to their low cost, user-friendliness, and time-saving advantages. Developments in the field of health have led to an increase of interest in these rapid tests. LFAs are used in the diagnosis and monitoring of many diseases, thanks to biomarkers that can be observed in body fluids. This review covers the recent advances dealing with the design and strategies for the development of LFA for the detection of biomarkers used in clinical applications in the last 5 years. We focus on various strategies such as choosing the nanoparticle type, single or multiple test approaches, and equipment for signal transducing for the detection of the most common biomarkers in different diseases such as cancer, cardiovascular, infectious, and others including Parkinson's and Alzheimer's diseases. We expect that this study will contribute to the different approaches in LFA and pave the way for other clinical applications.
Collapse
Affiliation(s)
- Eda Gumus
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey
| | - Haluk Bingol
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Chemistry Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey
| | - Erhan Zor
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Science Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey.
| |
Collapse
|