1
|
Ravindran A, Holappa L, Niskanen H, Skovorodkin I, Kaisto S, Beter M, Kiema M, Selvarajan I, Nurminen V, Aavik E, Aherrahrou R, Pasonen-Seppänen S, Fortino V, Laakkonen JP, Ylä-Herttuala S, Vainio S, Örd T, Kaikkonen MU. Translatome profiling reveals Itih4 as a novel smooth muscle cell-specific gene in atherosclerosis. Cardiovasc Res 2024; 120:869-882. [PMID: 38289873 PMCID: PMC11218691 DOI: 10.1093/cvr/cvae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024] Open
Abstract
AIMS Vascular smooth muscle cells (SMCs) and their derivatives are key contributors to the development of atherosclerosis. However, studying changes in SMC gene expression in heterogeneous vascular tissues is challenging due to the technical limitations and high cost associated with current approaches. In this paper, we apply translating ribosome affinity purification sequencing to profile SMC-specific gene expression directly from tissue. METHODS AND RESULTS To facilitate SMC-specific translatome analysis, we generated SMCTRAP mice, a transgenic mouse line expressing enhanced green fluorescent protein (EGFP)-tagged ribosomal protein L10a (EGFP-L10a) under the control of the SMC-specific αSMA promoter. These mice were further crossed with the atherosclerosis model Ldlr-/-, ApoB100/100 to generate SMCTRAP-AS mice and used to profile atherosclerosis-associated SMCs in thoracic aorta samples of 15-month-old SMCTRAP and SMCTRAP-AS mice. Our analysis of SMCTRAP-AS mice showed that EGFP-L10a expression was localized to SMCs in various tissues, including the aortic wall and plaque. The TRAP fraction demonstrated high enrichment of known SMC-specific genes, confirming the specificity of our approach. We identified several genes, including Cemip, Lum, Mfge8, Spp1, and Serpina3, which are known to be involved in atherosclerosis-induced gene expression. Moreover, we identified several novel genes not previously linked to SMCs in atherosclerosis, such as Anxa4, Cd276, inter-alpha-trypsin inhibitor-4 (Itih4), Myof, Pcdh11x, Rab31, Serpinb6b, Slc35e4, Slc8a3, and Spink5. Among them, we confirmed the SMC-specific expression of Itih4 in atherosclerotic lesions using immunofluorescence staining of mouse aortic roots and spatial transcriptomics of human carotid arteries. Furthermore, our more detailed analysis of Itih4 showed its link to coronary artery disease through the colocalization of genome-wide association studies, splice quantitative trait loci (QTL), and protein QTL signals. CONCLUSION We generated a SMC-specific TRAP mouse line to study atherosclerosis and identified Itih4 as a novel SMC-expressed gene in atherosclerotic plaques, warranting further investigation of its putative function in extracellular matrix stability and genetic evidence of causality.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Apolipoprotein B-100/genetics
- Apolipoprotein B-100/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Disease Models, Animal
- Gene Expression Profiling
- Gene Expression Regulation
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Plaque, Atherosclerotic
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Aarthi Ravindran
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Lari Holappa
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Henri Niskanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Ilya Skovorodkin
- Disease networks research unit, Faculty of Biochemistry and Molecular Medicine, Kvantum Institute, Infotech Oulu, University of Oulu, Oulu, Finland
| | - Susanna Kaisto
- Disease networks research unit, Faculty of Biochemistry and Molecular Medicine, Kvantum Institute, Infotech Oulu, University of Oulu, Oulu, Finland
| | - Mustafa Beter
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Miika Kiema
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Ilakya Selvarajan
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Valtteri Nurminen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Einari Aavik
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Rédouane Aherrahrou
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
- Institute for Cardiogenetics, Universität zu Lübeck, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Heart Centre Lübeck, 23562 Lübeck, Germany
| | - Sanna Pasonen-Seppänen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vittorio Fortino
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Johanna P Laakkonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Seppo Vainio
- Disease networks research unit, Faculty of Biochemistry and Molecular Medicine, Kvantum Institute, Infotech Oulu, University of Oulu, Oulu, Finland
| | - Tiit Örd
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Minna U Kaikkonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| |
Collapse
|
2
|
Choudhary M, Malek G. Potential therapeutic targets for age-related macular degeneration: The nuclear option. Prog Retin Eye Res 2023; 94:101130. [PMID: 36220751 PMCID: PMC10082136 DOI: 10.1016/j.preteyeres.2022.101130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/18/2022] [Accepted: 09/18/2022] [Indexed: 02/07/2023]
Abstract
The functions and activities of nuclear receptors, the largest family of transcription factors in the human genome, have classically focused on their ability to act as steroid and hormone sensors in endocrine organs. However, they are responsible for a diverse array of physiological functions, including cellular homeostasis and metabolism, during development and aging. Though the eye is not a traditional endocrine organ, recent studies have revealed high expression levels of nuclear receptors in cells throughout the posterior pole. These findings have precipitated an interest in investigating the role of these transcription factors in the eye as a function of age and ocular disease, in particular age-related macular degeneration (AMD). As the leading cause of vision impairment in the elderly, identifying signaling pathways that may be targeted for AMD therapy is of great importance, given the lack of therapeutic options for over 85% of patients with this disease. Herein we review this relatively new field and recent findings supporting the hypothesis that the eye is a secondary endocrine organ, in which nuclear receptors serve as the bedrock for biological processes in cells vulnerable in AMD, including retinal pigment epithelial and choroidal endothelial cells, and discuss the therapeutic potential of targeting these receptors for AMD.
Collapse
Affiliation(s)
- Mayur Choudhary
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
3
|
Örd T, Lönnberg T, Nurminen V, Ravindran A, Niskanen H, Kiema M, Õunap K, Maria M, Moreau PR, Mishra PP, Palani S, Virta J, Liljenbäck H, Aavik E, Roivainen A, Ylä-Herttuala S, Laakkonen JP, Lehtimäki T, Kaikkonen MU. Dissecting the polygenic basis of atherosclerosis via disease-associated cell state signatures. Am J Hum Genet 2023; 110:722-740. [PMID: 37060905 PMCID: PMC10183377 DOI: 10.1016/j.ajhg.2023.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 04/17/2023] Open
Abstract
Coronary artery disease (CAD) is a pandemic disease where up to half of the risk is explained by genetic factors. Advanced insights into the genetic basis of CAD require deeper understanding of the contributions of different cell types, molecular pathways, and genes to disease heritability. Here, we investigate the biological diversity of atherosclerosis-associated cell states and interrogate their contribution to the genetic risk of CAD by using single-cell and bulk RNA sequencing (RNA-seq) of mouse and human lesions. We identified 12 disease-associated cell states that we characterized further by gene set functional profiling, ligand-receptor prediction, and transcription factor inference. Importantly, Vcam1+ smooth muscle cell state genes contributed most to SNP-based heritability of CAD. In line with this, genetic variants near smooth muscle cell state genes and regulatory elements explained the largest fraction of CAD-risk variance between individuals. Using this information for variant prioritization, we derived a hybrid polygenic risk score (PRS) that demonstrated improved performance over a classical PRS. Our results provide insights into the biological mechanisms associated with CAD risk, which could make a promising contribution to precision medicine and tailored therapeutic interventions in the future.
Collapse
Affiliation(s)
- Tiit Örd
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku
| | - Valtteri Nurminen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Aarthi Ravindran
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Henri Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Miika Kiema
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Kadri Õunap
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Maleeha Maria
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Pierre R Moreau
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Senthil Palani
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Jenni Virta
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland; Turku Center for Disease Modeling, University of Turku, 20520 Turku, Finland
| | - Einari Aavik
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland; Turku Center for Disease Modeling, University of Turku, 20520 Turku, Finland; Turku PET Centre, Turku University Hospital, 20520 Turku, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Minna U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland.
| |
Collapse
|
4
|
Choudhary M, Tayyari F, Handa JT, Malek G. Characterization and identification of measurable endpoints in a mouse model featuring age-related retinal pathologies: a platform to test therapies. J Transl Med 2022; 102:1132-1142. [PMID: 36775353 PMCID: PMC10041606 DOI: 10.1038/s41374-022-00795-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
Apolipoprotein B100 (apoB100) is the structural protein of cholesterol carriers including low-density lipoproteins. It is a constituent of sub-retinal pigment epithelial (sub-RPE) deposits and pro-atherogenic plaques, hallmarks of early dry age-related macular degeneration (AMD), an ocular neurodegenerative blinding disease, and cardiovascular disease, respectively. Herein, we characterized the retinal pathology of transgenic mice expressing mouse apoB100 in order to catalog their functional and morphological ocular phenotypes as a function of age and establish measurable endpoints for their use as a mouse model to test potential therapies. ApoB100 mice were found to exhibit an age-related decline in retinal function, as measured by electroretinogram (ERG) recordings of their scotopic a-wave, scotopic b-wave; and c-wave amplitudes. ApoB100 mice also displayed a buildup of the cholesterol carrier, apolipoprotein E (apoE) within and below the supporting extracellular matrix, Bruch's membrane (BrM), along with BrM thickening, and accumulation of thin diffuse electron-dense sub-RPE deposits, the severity of which increased with age. Moreover, the combination of apoB100 and advanced age were found to be associated with RPE morphological changes and the presence of sub-retinal immune cells as visualized in RPE-choroid flatmounts. Finally, aged apoB100 mice showed higher levels of circulating and ocular pro-inflammatory cytokines, supporting a link between age and increased local and systemic inflammation. Collectively, the data support the use of aged apoB100 mice as a platform to evaluate potential therapies for retinal degeneration, specifically drugs intended to target removal of lipids from Bruch's membrane and/or alleviate ocular inflammation.
Collapse
Affiliation(s)
- Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Faryan Tayyari
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
5
|
Shen Y, Gu HM, Zhai L, Wang B, Qin S, Zhang DW. The role of hepatic Surf4 in lipoprotein metabolism and the development of atherosclerosis in apoE -/- mice. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159196. [PMID: 35803528 DOI: 10.1016/j.bbalip.2022.159196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
Abstract
Elevated plasma levels of low-density lipoprotein-C (LDL-C) increase the risk of atherosclerotic cardiovascular disease. Circulating LDL is derived from very low-density lipoprotein (VLDL) metabolism and cleared by LDL receptor (LDLR). We have previously demonstrated that cargo receptor Surfeit 4 (Surf4) mediates VLDL secretion. Inhibition of hepatic Surf4 impairs VLDL secretion, significantly reduces plasma LDL-C levels, and markedly mitigates the development of atherosclerosis in LDLR knockout (Ldlr-/-) mice. Here, we investigated the role of Surf4 in lipoprotein metabolism and the development of atherosclerosis in another commonly used mouse model of atherosclerosis, apolipoprotein E knockout (apoE-/-) mice. Adeno-associated viral shRNA was used to silence Surf4 expression mainly in the liver of apoE-/- mice. In apoE-/- mice fed a regular chow diet, knockdown of Surf4 expression significantly reduced triglyceride secretion and plasma levels of non-HDL cholesterol and triglycerides without causing hepatic lipid accumulation or liver damage. When Surf4 was knocked down in apoE-/- mice fed the Western-type diet, we observed a significant reduction in plasma levels of non-HDL cholesterol, but not triglycerides. Knockdown of Surf4 did not increase hepatic cholesterol and triglyceride levels or cause liver damage, but significantly diminished atherosclerosis lesions. Therefore, our findings indicate the potential of hepatic Surf4 inhibition as a novel therapeutic strategy to reduce the risk of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Yishi Shen
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Hong-Mei Gu
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lei Zhai
- Institute of Atherosclerosis in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Binxiang Wang
- Institute of Atherosclerosis in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Shucun Qin
- Institute of Atherosclerosis in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China.
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
6
|
Gisterå A, Ketelhuth DFJ, Malin SG, Hansson GK. Animal Models of Atherosclerosis-Supportive Notes and Tricks of the Trade. Circ Res 2022; 130:1869-1887. [PMID: 35679358 DOI: 10.1161/circresaha.122.320263] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atherosclerotic cardiovascular disease is a major cause of death among humans. Animal models have shown that cholesterol and inflammation are causatively involved in the disease process. Apolipoprotein B-containing lipoproteins elicit immune reactions and instigate inflammation in the vessel wall. Still, a treatment that is specific to vascular inflammation is lacking, which motivates continued in vivo investigations of the immune-vascular interactions that drive the disease. In this review, we distill old notions with emerging concepts into a contemporary understanding of vascular disease models. Pros and cons of different models are listed and the complex integrative interplay between cholesterol homeostasis, immune activation, and adaptations of the vascular system is discussed. Key limitations with atherosclerosis models are highlighted, and we suggest improvements that could accelerate progress in the field. However, excessively rigid experimental guidelines or limiting usage to certain animal models can be counterproductive. Continued work in improved models, as well as the development of new models, should be of great value in research and could aid the development of cardiovascular disease diagnostics and therapeutics of the future.
Collapse
Affiliation(s)
- Anton Gisterå
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.)
| | - Daniel F J Ketelhuth
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.).,Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark (SDU), Odense, Denmark (D.F.J.K)
| | - Stephen G Malin
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.)
| | - Göran K Hansson
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.)
| |
Collapse
|
7
|
Cao X, Sanchez JC, Dinabandhu A, Guo C, Patel TP, Yang Z, Hu MW, Chen L, Wang Y, Malik D, Jee K, Daoud YJ, Handa JT, Zhang H, Qian J, Montaner S, Sodhi A. Aqueous proteins help predict the response of patients with neovascular age-related macular degeneration to anti-VEGF therapy. J Clin Invest 2022; 132:e144469. [PMID: 34874918 PMCID: PMC8759792 DOI: 10.1172/jci144469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/24/2021] [Indexed: 01/14/2023] Open
Abstract
BackgroundTo reduce the treatment burden for patients with neovascular age-related macular degeneration (nvAMD), emerging therapies targeting vascular endothelial growth factor (VEGF) are being designed to extend the interval between treatments, thereby minimizing the number of intraocular injections. However, which patients will benefit from longer-acting agents is not clear.MethodsEyes with nvAMD (n = 122) underwent 3 consecutive monthly injections with currently available anti-VEGF therapies, followed by a treat-and-extend protocol. Patients who remained quiescent 12 weeks from their prior treatment entered a treatment pause and were switched to pro re nata (PRN) treatment (based on vision, clinical exam, and/or imaging studies). Proteomic analysis was performed on aqueous fluid to identify proteins that correlate with patients' response to treatment.ResultsAt the end of 1 year, 38 of 122 eyes (31%) entered a treatment pause (≥30 weeks). Conversely, 21 of 122 eyes (17%) failed extension and required monthly treatment at the end of year 1. Proteomic analysis of aqueous fluid identified proteins that correlated with patients' response to treatment, including proteins previously implicated in AMD pathogenesis. Interestingly, apolipoprotein-B100 (ApoB100), a principal component of drusen implicated in the progression of nonneovascular AMD, was increased in treated patients who required less frequent injections. ApoB100 expression was higher in AMD eyes compared with controls but was lower in eyes that develop choroidal neovascularization (CNV), consistent with a protective role. Accordingly, mice overexpressing ApoB100 were partially protected from laser-induced CNV.FundingThis work was supported by the National Eye Institute, National Institutes of Health grants R01EY029750, R01EY025705, and R01 EY27961; the Research to Prevent Blindness, Inc.; the Alcon Research Institute; and Johns Hopkins University through the Robert Bond Welch and Branna and Irving Sisenwein professorships in ophthalmology.ConclusionAqueous biomarkers could help identify patients with nvAMD who may not require or benefit from long-term treatment with anti-VEGF therapy.
Collapse
Affiliation(s)
- Xuan Cao
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jaron Castillo Sanchez
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aumreetam Dinabandhu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology and Diagnostic Sciences, School of Dentistry and Department of Pathology, School of Medicine, Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Chuanyu Guo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tapan P. Patel
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhiyong Yang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ming-Wen Hu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuefan Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Danyal Malik
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathleen Jee
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yassine J. Daoud
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James T. Handa
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, School of Dentistry and Department of Pathology, School of Medicine, Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Development and validation of a method to deliver vitamin A to macrophages. Methods Enzymol 2022; 674:363-389. [DOI: 10.1016/bs.mie.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Landowski M, Bowes Rickman C. Targeting Lipid Metabolism for the Treatment of Age-Related Macular Degeneration: Insights from Preclinical Mouse Models. J Ocul Pharmacol Ther 2021; 38:3-32. [PMID: 34788573 PMCID: PMC8817708 DOI: 10.1089/jop.2021.0067] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major leading cause of irreversible visual impairment in the world with limited therapeutic interventions. Histological, biochemical, genetic, and epidemiological studies strongly implicate dysregulated lipid metabolism in the retinal pigmented epithelium (RPE) in AMD pathobiology. However, effective therapies targeting lipid metabolism still need to be identified and developed for this blinding disease. To test lipid metabolism-targeting therapies, preclinical AMD mouse models are needed to establish therapeutic efficacy and the role of lipid metabolism in the development of AMD-like pathology. In this review, we provide a comprehensive overview of current AMD mouse models available to researchers that could be used to provide preclinical evidence supporting therapies targeting lipid metabolism for AMD. Based on previous studies of AMD mouse models, we discuss strategies to modulate lipid metabolism as well as examples of studies evaluating lipid-targeting therapeutics to restore lipid processing in the RPE. The use of AMD mouse models may lead to worthy lipid-targeting candidate therapies for clinical trials to prevent the blindness caused by AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
10
|
Bristow CL, Winston R. Alphataxin, an Orally Available Small Molecule, Decreases LDL Levels in Mice as a Surrogate for the LDL-Lowering Activity of Alpha-1 Antitrypsin in Humans. Front Pharmacol 2021; 12:695971. [PMID: 34177602 PMCID: PMC8220083 DOI: 10.3389/fphar.2021.695971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
The abundant blood protein α1-proteinase inhibitor (α1PI, Αlpha-1, α1-antitrypsin, SerpinA1) is known to bind to the active site of granule-associated human leukocyte elastase (HLE-G). Less well known is that binding of α1PI to cell surface HLE (HLE-CS) induces lymphocyte locomotion mediated by members of the low density lipoprotein receptor family (LDL-RFMs) thereby facilitating low density lipoprotein (LDL) clearance. LDL and α1PI were previously shown to be in negative feedback regulation during transport and clearance of lipoproteins. Further examination herein of the influence of α1PI in lipoprotein regulation using data from a small randomized, double-blind clinical trial shows that treatment of HIV-1-infected individuals with α1PI plasma products lowered apolipoprotein and lipoprotein levels including LDL. Although promising, plasma-purified α1PI is limited in quantity and not a feasible treatment for the vast number of people who need treatment for lowering LDL levels. We sought to develop orally available small molecules to act as surrogates for α1PI. Small molecule β-lactams are highly characterized for their binding to the active site of HLE-G including crystallographic studies at 1.84 Å. Using high throughput screening (HLE-G inhibition, HLE-CS-induced cellular locomotion), we show here that a panel of β-lactams, including the LDL-lowering drug ezetimibe, have the capacity to act as surrogates for α1PI by binding to HLE-G and HLE-CS. Because β-lactams are antibiotics that also have the capacity to promote evolution of antibiotic resistant bacteria, we modified the β-lactam Alphataxin to prevent antibiotic activity. We demonstrate using the diet-induced obesity (DIO) mouse model that Alphataxin, a penam, is as effective in lowering LDL levels as FDA-approved ezetimibe, a monobactam. Non-antibiotic β-lactams provide a promising new therapeutic class of small molecules for lowering LDL levels.
Collapse
Affiliation(s)
- Cynthia L Bristow
- Alpha-1 Biologics, Long Island High Technology Incubator, Stony Brook University, Stony Brook, NY, United States.,Institute for Human Genetics and Biochemistry, Vesenaz, Switzerland
| | - Ronald Winston
- Alpha-1 Biologics, Long Island High Technology Incubator, Stony Brook University, Stony Brook, NY, United States.,Institute for Human Genetics and Biochemistry, Vesenaz, Switzerland
| |
Collapse
|
11
|
Minniti ME, Pedrelli M, Vedin L, Delbès A, Denis RG, Öörni K, Sala C, Pirazzini C, Thiagarajan D, Nurmi HJ, Grompe M, Mills K, Garagnani P, Ellis EC, Strom SC, Luquet SH, Wilson EM, Bial J, Steffensen KR, Parini P. Insights From Liver-Humanized Mice on Cholesterol Lipoprotein Metabolism and LXR-Agonist Pharmacodynamics in Humans. Hepatology 2020; 72:656-670. [PMID: 31785104 PMCID: PMC7496592 DOI: 10.1002/hep.31052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Genetically modified mice have been used extensively to study human disease. However, the data gained are not always translatable to humans because of major species differences. Liver-humanized mice (LHM) are considered a promising model to study human hepatic and systemic metabolism. Therefore, we aimed to further explore their lipoprotein metabolism and to characterize key hepatic species-related, physiological differences. APPROACH AND RESULTS Fah-/- , Rag2-/- , and Il2rg-/- knockout mice on the nonobese diabetic (FRGN) background were repopulated with primary human hepatocytes from different donors. Cholesterol lipoprotein profiles of LHM showed a human-like pattern, characterized by a high ratio of low-density lipoprotein to high-density lipoprotein, and dependency on the human donor. This pattern was determined by a higher level of apolipoprotein B100 in circulation, as a result of lower hepatic mRNA editing and low-density lipoprotein receptor expression, and higher levels of circulating proprotein convertase subtilisin/kexin type 9. As a consequence, LHM lipoproteins bind to human aortic proteoglycans in a pattern similar to human lipoproteins. Unexpectedly, cholesteryl ester transfer protein was not required to determine the human-like cholesterol lipoprotein profile. Moreover, LHM treated with GW3965 mimicked the negative lipid outcomes of the first human trial of liver X receptor stimulation (i.e., a dramatic increase of cholesterol and triglycerides in circulation). Innovatively, LHM allowed the characterization of these effects at a molecular level. CONCLUSIONS LHM represent an interesting translatable model of human hepatic and lipoprotein metabolism. Because several metabolic parameters displayed donor dependency, LHM may also be used in studies for personalized medicine.
Collapse
Affiliation(s)
- Mirko E. Minniti
- Department of Laboratory MedicineDivision of Clinical ChemistryKarolinska InstituteStockholmSweden
| | - Matteo Pedrelli
- Department of Laboratory MedicineDivision of Clinical ChemistryKarolinska InstituteStockholmSweden
| | - Lise‐Lotte Vedin
- Department of Laboratory MedicineDivision of Clinical ChemistryKarolinska InstituteStockholmSweden
| | - Anne‐Sophie Delbès
- Unit of Functional and Adaptive BiologyParis Diderot UniversitySorbonne Paris CitéParisFrance
| | - Raphaël G.P. Denis
- Unit of Functional and Adaptive BiologyParis Diderot UniversitySorbonne Paris CitéParisFrance
| | - Katariina Öörni
- Atherosclerosis Research LaboratoryWihuri Research InstituteHelsinkiFinland
| | - Claudia Sala
- Department of Physics and AstronomyUniversity of BolognaBolognaItaly
| | | | - Divya Thiagarajan
- Department of Laboratory MedicineClinical Research CenterKarolinska InstituteStockholmSweden
| | - Harri J. Nurmi
- Atherosclerosis Research LaboratoryWihuri Research InstituteHelsinkiFinland,Center of Excellence in Translational Cancer BiologyUniversity of HelsinkiBiomedicum HelsinkiHelsinkiFinland
| | - Markus Grompe
- Department of PediatricsOregon Stem Cell CenterOregon Health and Science UniversityPortlandOR,Yecuris CorporationTualatinOR
| | - Kevin Mills
- Center for Inborn Errors of MetabolismUniversity College LondonLondonUK
| | - Paolo Garagnani
- Department of Laboratory MedicineDivision of Clinical ChemistryKarolinska InstituteStockholmSweden,Department of Experimental, Diagnostic, and Specialty Medicine, and “L. Galvani” Interdepartmental Research CenterUniversity of BolognaBolognaItaly
| | - Ewa C.S. Ellis
- Department of Clinical ScienceIntervention and TechnologyDivision of SurgeryKarolinska Institute at Karolinska University Hospital HuddingeStockholmSweden
| | - Stephen C. Strom
- Department of Laboratory MedicineDivision of PathologyKarolinska InstituteStockholmSweden
| | - Serge H. Luquet
- Unit of Functional and Adaptive BiologyParis Diderot UniversitySorbonne Paris CitéParisFrance
| | | | | | - Knut R. Steffensen
- Department of Laboratory MedicineDivision of Clinical ChemistryKarolinska InstituteStockholmSweden
| | - Paolo Parini
- Department of Laboratory MedicineDivision of Clinical ChemistryKarolinska InstituteStockholmSweden,Department of MedicineMetabolism UnitKarolinska Institute at Karolinska University Hospital HuddingeStockholmSweden,Patient Area Nephrology and Endocrinology, Inflammation and Infection ThemeKarolinska University HospitalStockholmSweden
| |
Collapse
|
12
|
Cedó L, Metso J, Santos D, García-León A, Plana N, Sabate-Soler S, Rotllan N, Rivas-Urbina A, Méndez-Lara KA, Tondo M, Girona J, Julve J, Pallarès V, Benitez-Amaro A, Llorente-Cortes V, Pérez A, Gómez-Coronado D, Ruotsalainen AK, Levonen AL, Sanchez-Quesada JL, Masana L, Kovanen PT, Jauhiainen M, Lee-Rueckert M, Blanco-Vaca F, Escolà-Gil JC. LDL Receptor Regulates the Reverse Transport of Macrophage-Derived Unesterified Cholesterol via Concerted Action of the HDL-LDL Axis: Insight From Mouse Models. Circ Res 2020; 127:778-792. [PMID: 32495699 DOI: 10.1161/circresaha.119.316424] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RATIONALE The HDL (high-density lipoprotein)-mediated stimulation of cellular cholesterol efflux initiates macrophage-specific reverse cholesterol transport (m-RCT), which ends in the fecal excretion of macrophage-derived unesterified cholesterol (UC). Early studies established that LDL (low-density lipoprotein) particles could act as efficient intermediate acceptors of cellular-derived UC, thereby preventing the saturation of HDL particles and facilitating their cholesterol efflux capacity. However, the capacity of LDL to act as a plasma cholesterol reservoir and its potential impact in supporting the m-RCT pathway in vivo both remain unknown. OBJECTIVE We investigated LDL contributions to the m-RCT pathway in hypercholesterolemic mice. METHODS AND RESULTS Macrophage cholesterol efflux induced in vitro by LDL added to the culture media either alone or together with HDL or ex vivo by plasma derived from subjects with familial hypercholesterolemia was assessed. In vivo, m-RCT was evaluated in mouse models of hypercholesterolemia that were naturally deficient in CETP (cholesteryl ester transfer protein) and fed a Western-type diet. LDL induced the efflux of radiolabeled UC from cultured macrophages, and, in the simultaneous presence of HDL, a rapid transfer of the radiolabeled UC from HDL to LDL occurred. However, LDL did not exert a synergistic effect on HDL cholesterol efflux capacity in the familial hypercholesterolemia plasma. The m-RCT rates of the LDLr (LDL receptor)-KO (knockout), LDLr-KO/APOB100, and PCSK9 (proprotein convertase subtilisin/kexin type 9)-overexpressing mice were all significantly reduced relative to the wild-type mice. In contrast, m-RCT remained unchanged in HAPOB100 Tg (human APOB100 transgenic) mice with fully functional LDLr, despite increased levels of plasma APO (apolipoprotein)-B-containing lipoproteins. CONCLUSIONS Hepatic LDLr plays a critical role in the flow of macrophage-derived UC to feces, while the plasma increase of APOB-containing lipoproteins is unable to stimulate m-RCT. The results indicate that, besides the major HDL-dependent m-RCT pathway via SR-BI (scavenger receptor class B type 1) to the liver, a CETP-independent m-RCT path exists, in which LDL mediates the transfer of cholesterol from macrophages to feces. Graphical Abstract: A graphical abstract is available for this article.
Collapse
Affiliation(s)
- Lídia Cedó
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain (L.C., D.S., N.P., J.J., A.P., J.L.S.-Q., L.M., F.B.-V., J.C.E.-G.)
| | - Jari Metso
- Minerva Foundation Institute for Medical Research and National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum, Helsinki, Finland (J.M., M.J.)
| | - David Santos
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain (L.C., D.S., N.P., J.J., A.P., J.L.S.-Q., L.M., F.B.-V., J.C.E.-G.)
| | - Annabel García-León
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.)
| | - Núria Plana
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain (L.C., D.S., N.P., J.J., A.P., J.L.S.-Q., L.M., F.B.-V., J.C.E.-G.).,Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain (N.P., J.G., L.M.)
| | - Sonia Sabate-Soler
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.)
| | - Noemí Rotllan
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.)
| | - Andrea Rivas-Urbina
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain (A.R.-U., K.A.M.-L., J.J., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.)
| | - Karen A Méndez-Lara
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain (A.R.-U., K.A.M.-L., J.J., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.)
| | - Mireia Tondo
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.)
| | - Josefa Girona
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain (N.P., J.G., L.M.)
| | - Josep Julve
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain (A.R.-U., K.A.M.-L., J.J., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain (L.C., D.S., N.P., J.J., A.P., J.L.S.-Q., L.M., F.B.-V., J.C.E.-G.)
| | - Victor Pallarès
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.)
| | - Aleyda Benitez-Amaro
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Institut de Recerca Josep Carreras, Barcelona, Spain (V.P.); Biomedical Research Institute Sant Pau (IIB Sant Pau), Institute of Biomedical Research of Barcelona-Spanish National Research Council (A.B.-A., V.L.-C.)
| | - Vicenta Llorente-Cortes
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, Institut de Recerca Josep Carreras, Barcelona, Spain (V.P.); Biomedical Research Institute Sant Pau (IIB Sant Pau), Institute of Biomedical Research of Barcelona-Spanish National Research Council (A.B.-A., V.L.-C.).,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (V.L.-C.)
| | - Antonio Pérez
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain (A.R.-U., K.A.M.-L., J.J., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain (L.C., D.S., N.P., J.J., A.P., J.L.S.-Q., L.M., F.B.-V., J.C.E.-G.)
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain (D.G.-C.).,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain (D.G.-C.)
| | - Anna-Kaisa Ruotsalainen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio (A.-K.R., A.-L.L.)
| | - Anna-Liisa Levonen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio (A.-K.R., A.-L.L.)
| | - José Luis Sanchez-Quesada
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain (A.R.-U., K.A.M.-L., J.J., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain (L.C., D.S., N.P., J.J., A.P., J.L.S.-Q., L.M., F.B.-V., J.C.E.-G.)
| | - Luís Masana
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain (L.C., D.S., N.P., J.J., A.P., J.L.S.-Q., L.M., F.B.-V., J.C.E.-G.).,Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain (N.P., J.G., L.M.)
| | - Petri T Kovanen
- and Wihuri Research Institute, Helsinki, Finland (P.T.K., M.L.-R.)
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research and National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum, Helsinki, Finland (J.M., M.J.)
| | | | - Francisco Blanco-Vaca
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain (A.R.-U., K.A.M.-L., J.J., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain (L.C., D.S., N.P., J.J., A.P., J.L.S.-Q., L.M., F.B.-V., J.C.E.-G.)
| | - Joan Carles Escolà-Gil
- From the Institut d'Investigacions Biomèdiques Sant Pau, Barcelona, Spain (L.C., D.S., A.G.-L., S.S.-S., N.R., A.R.-U., K.A.M.-L., M.T., J.J., V.P., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain (A.R.-U., K.A.M.-L., J.J., A.P., J.L.S.-Q., F.B.-V., J.C.E.-G.).,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain (L.C., D.S., N.P., J.J., A.P., J.L.S.-Q., L.M., F.B.-V., J.C.E.-G.)
| |
Collapse
|
13
|
Collin GB, Gogna N, Chang B, Damkham N, Pinkney J, Hyde LF, Stone L, Naggert JK, Nishina PM, Krebs MP. Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells 2020; 9:E931. [PMID: 32290105 PMCID: PMC7227028 DOI: 10.3390/cells9040931] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Navdeep Gogna
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jai Pinkney
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| |
Collapse
|
14
|
Laitakari A, Huttunen R, Kuvaja P, Hannuksela P, Szabo Z, Heikkilä M, Kerkelä R, Myllyharju J, Dimova EY, Serpi R, Koivunen P. Systemic long-term inactivation of hypoxia-inducible factor prolyl 4-hydroxylase 2 ameliorates aging-induced changes in mice without affecting their life span. FASEB J 2020; 34:5590-5609. [PMID: 32100354 DOI: 10.1096/fj.201902331r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/27/2022]
Abstract
Hypoxia inactivates hypoxia-inducible factor (HIF) prolyl 4-hydroxylases (HIF-P4Hs), which stabilize HIF and upregulate genes to restore tissue oxygenation. HIF-P4Hs can also be inhibited by small molecules studied in clinical trials for renal anemia. Knowledge of systemic long-term inactivation of HIF-P4Hs is limited but crucial, since HIF overexpression is associated with cancers. We aimed to determine the effects of systemic genetic inhibition of the most abundant isoenzyme HIF prolyl 4-hydroxylase-2 (HIF-P4H-2)/PHD2/EglN1 on life span and tissue homeostasis in aged mice. Our data showed no difference between wild-type and HIF-P4H-2-deficient mice in the average age reached. There were several differences, however, in the primary causes of death and comorbidities, the HIF-P4H-2-deficient mice having less inflammation, liver diseases, including cancer, and myocardial infarctions, and not developing anemia. No increased cancer incidence was observed due to HIF-P4H-2-deficiency. These data suggest that chronic inactivation of HIF-P4H-2 is not harmful but rather improves the quality of life in senescence.
Collapse
Affiliation(s)
- Anna Laitakari
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Riikka Huttunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Paula Kuvaja
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,Department of Pathology, Oulu University Hospital, Oulu, Finland
| | - Pauliina Hannuksela
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Zoltan Szabo
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Minna Heikkilä
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Johanna Myllyharju
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| |
Collapse
|
15
|
Choudhary M, Ismail EN, Yao PL, Tayyari F, Radu RA, Nusinowitz S, Boulton ME, Apte RS, Ruberti JW, Handa JT, Tontonoz P, Malek G. LXRs regulate features of age-related macular degeneration and may be a potential therapeutic target. JCI Insight 2020; 5:131928. [PMID: 31829999 DOI: 10.1172/jci.insight.131928] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Effective treatments and animal models for the most prevalent neurodegenerative form of blindness in elderly people, called age-related macular degeneration (AMD), are lacking. Genome-wide association studies have identified lipid metabolism and inflammation as AMD-associated pathogenic pathways. Given liver X receptors (LXRs), encoded by the nuclear receptor subfamily 1 group H members 2 and 3 (NR1H3 and NR1H2), are master regulators of these pathways, herein we investigated the role of LXR in human and mouse eyes as a function of age and disease and tested the therapeutic potential of targeting LXR. We identified immunopositive LXR fragments in human extracellular early dry AMD lesions and a decrease in LXR expression within the retinal pigment epithelium (RPE) as a function of age. Aged mice lacking LXR presented with isoform-dependent ocular pathologies. Specifically, loss of the Nr1h3 isoform resulted in pathobiologies aligned with AMD, supported by compromised visual function, accumulation of native and oxidized lipids in the outer retina, and upregulation of ocular inflammatory cytokines, while absence of Nr1h2 was associated with ocular lipoidal degeneration. LXR activation not only ameliorated lipid accumulation and oxidant-induced injury in RPE cells but also decreased ocular inflammatory markers and lipid deposition in a mouse model, thereby providing translational support for pursuing LXR-active pharmaceuticals as potential therapies for dry AMD.
Collapse
Affiliation(s)
- Mayur Choudhary
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ebraheim N Ismail
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Pei-Li Yao
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Faryan Tayyari
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Roxana A Radu
- Stein Eye Institute, Department of Ophthalmology, UCLA, Los Angeles, California, USA
| | - Steven Nusinowitz
- Stein Eye Institute, Department of Ophthalmology, UCLA, Los Angeles, California, USA
| | - Michael E Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rajendra S Apte
- Department of Ophthalmology and Visual Sciences, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
16
|
Punjabi M, Xu L, Ochoa-Espinosa A, Kosareva A, Wolff T, Murtaja A, Broisat A, Devoogdt N, Kaufmann BA. Ultrasound Molecular Imaging of Atherosclerosis With Nanobodies: Translatable Microbubble Targeting Murine and Human VCAM (Vascular Cell Adhesion Molecule) 1. Arterioscler Thromb Vasc Biol 2019; 39:2520-2530. [PMID: 31597443 DOI: 10.1161/atvbaha.119.313088] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Contrast-enhanced ultrasound molecular imaging (CEUMI) of endothelial expression of VCAM (vascular cell adhesion molecule)-1 could improve risk stratification for atherosclerosis. The microbubble contrast agents developed for preclinical studies are not suitable for clinical translation. Our aim was to characterize and validate a microbubble contrast agent using a clinically translatable single-variable domain immunoglobulin (nanobody) ligand. Approach and Results: Microbubble with a nanobody targeting VCAM-1 (MBcAbVcam1-5) and microbubble with a control nanobody (MBVHH2E7) were prepared and characterized in vitro. Attachment efficiency to VCAM-1 under continuous and pulsatile flow was investigated using activated murine endothelial cells. In vivo CEUMI of the aorta was performed in atherosclerotic double knockout and wild-type mice after injection of MBcAbVcam1-5 and MBVHH2E7. Ex vivo CEUMI of human endarterectomy specimens was performed in a closed-loop circulation model. The surface density of the nanobody ligand was 3.5×105 per microbubble. Compared with MBVHH2E7, MBcAbVcam1-5 showed increased attachment under continuous flow with increasing shear stress of 1-8 dynes/cm2 while under pulsatile flow attachment occurred at higher shear stress. CEUMI in double knockout mice showed signal enhancement for MBcAbVcam1-5 in early (P=0.0003 versus MBVHH2E7) and late atherosclerosis (P=0.007 versus MBVHH2E7); in wild-type mice, there were no differences between MBcAbVcam1-5 and MBVHH2E7. CEUMI in human endarterectomy specimens showed a 100% increase in signal for MBcAbVcam1-5versus MBVHH2E7 (20.6±27.7 versus 9.6±14.7, P=0.0156). CONCLUSIONS CEUMI of the expression of VCAM-1 is feasible in murine models of atherosclerosis and on human tissue using a clinically translatable microbubble bearing a VCAM-1 targeted nanobody.
Collapse
Affiliation(s)
- Mukesh Punjabi
- From the Cardiovascular Molecular Imaging Laboratory, Department of Biomedicine, University of Basel, Switzerland (M.P., L.X., A.O.-E., A.K., B.A.K.)
| | - Lifen Xu
- From the Cardiovascular Molecular Imaging Laboratory, Department of Biomedicine, University of Basel, Switzerland (M.P., L.X., A.O.-E., A.K., B.A.K.)
| | - Amanda Ochoa-Espinosa
- From the Cardiovascular Molecular Imaging Laboratory, Department of Biomedicine, University of Basel, Switzerland (M.P., L.X., A.O.-E., A.K., B.A.K.)
| | - Alexandra Kosareva
- From the Cardiovascular Molecular Imaging Laboratory, Department of Biomedicine, University of Basel, Switzerland (M.P., L.X., A.O.-E., A.K., B.A.K.)
| | - Thomas Wolff
- Department of Vascular Surgery (T.W., A.M.), University Hospital and University of Basel, Switzerland
| | - Ahmed Murtaja
- Department of Vascular Surgery (T.W., A.M.), University Hospital and University of Basel, Switzerland
| | - Alexis Broisat
- University Grenoble Alpes, Inserm, U1039, LRB, France (A.B.)
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Belgium (N.D.)
| | - Beat A Kaufmann
- From the Cardiovascular Molecular Imaging Laboratory, Department of Biomedicine, University of Basel, Switzerland (M.P., L.X., A.O.-E., A.K., B.A.K.).,Department of Cardiology (B.A.K.), University Hospital and University of Basel, Switzerland
| |
Collapse
|
17
|
Kung CP, Maggi LB, Weber JD. The Role of RNA Editing in Cancer Development and Metabolic Disorders. Front Endocrinol (Lausanne) 2018; 9:762. [PMID: 30619092 PMCID: PMC6305585 DOI: 10.3389/fendo.2018.00762] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022] Open
Abstract
Numerous human diseases arise from alterations of genetic information, most notably DNA mutations. Thought to be merely the intermediate between DNA and protein, changes in RNA sequence were an afterthought until the discovery of RNA editing 30 years ago. RNA editing alters RNA sequence without altering the sequence or integrity of genomic DNA. The most common RNA editing events are A-to-I changes mediated by adenosine deaminase acting on RNA (ADAR), and C-to-U editing mediated by apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1). Both A-to-I and C-to-U editing were first identified in the context of embryonic development and physiological homeostasis. The role of RNA editing in human disease has only recently started to be understood. In this review, the impact of RNA editing on the development of cancer and metabolic disorders will be examined. Distinctive functions of each RNA editase that regulate either A-to-I or C-to-U editing will be highlighted in addition to pointing out important regulatory mechanisms governing these processes. The potential of developing novel therapeutic approaches through intervention of RNA editing will be explored. As the role of RNA editing in human disease is elucidated, the clinical utility of RNA editing targeted therapies will be needed. This review aims to serve as a bridge of information between past findings and future directions of RNA editing in the context of cancer and metabolic disease.
Collapse
Affiliation(s)
- Che-Pei Kung
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Leonard B. Maggi
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Jason D. Weber
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
- Siteman Cancer Center, Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
18
|
Millar CL, Norris GH, Jiang C, Kry J, Vitols A, Garcia C, Park YK, Lee JY, Blesso CN. Long-Term Supplementation of Black Elderberries Promotes Hyperlipidemia, but Reduces Liver Inflammation and Improves HDL Function and Atherosclerotic Plaque Stability in Apolipoprotein E-Knockout Mice. Mol Nutr Food Res 2018; 62:e1800404. [PMID: 30267603 DOI: 10.1002/mnfr.201800404] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/19/2018] [Indexed: 11/08/2022]
Abstract
SCOPE HDL particles are protective against atherosclerosis, but may become dysfunctional during inflammation and chronic disease progression. Anthocyanin-rich foods, such as the black elderberry, may improve HDL function and prevent disease development via antioxidant and/or anti-inflammatory effects. This study investigates the long-term consumption of black elderberry extract (BEE) on HDL function and atherosclerosis in apolipoprotein (apo) E-/- mice. METHODS AND RESULTS ApoE-/- mice (n = 12/group) are fed a low-fat diet, supplemented with 0, 0.25%, or 1% (by weight) BEE (≈37.5-150 mg anthocyanins per kg body weight) for 24 weeks. Feeding 1% BEE increases total serum cholesterol (+31%) and non-HDL cholesterol (+32%) compared with the control diet. PON1 arylesterase (+32%) and lactonase (+45%) activities also increase with the 1% BEE diet. Both 0.25% BEE and 1% BEE diets strongly increase HDL cholesterol efflux capacity (CEC) by 64% and 85%, respectively. Further, BEE dose-dependently lowers serum liver enzymes and hepatic inflammatory gene expression. Although there is no change in neutral lipid accumulation in atherosclerotic lesions, BEE promotes connective tissue deposition in the aortic root. CONCLUSIONS Chronic BEE supplementation in apoE-/- mice dose-dependently improves HDL function. Despite BEE promoting hyperlipidemia, which likely offsets HDL effects, BEE increases connective tissue content, suggesting improved atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Courtney L Millar
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06118, USA
| | - Gregory H Norris
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06118, USA
| | - Christina Jiang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06118, USA
| | - James Kry
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06118, USA
| | - Addison Vitols
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06118, USA
| | - Chelsea Garcia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06118, USA
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06118, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06118, USA
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06118, USA
| |
Collapse
|
19
|
Ebrahimi KB, Cano M, Rhee J, Datta S, Wang L, Handa JT. Oxidative Stress Induces an Interactive Decline in Wnt and Nrf2 Signaling in Degenerating Retinal Pigment Epithelium. Antioxid Redox Signal 2018; 29:389-407. [PMID: 29186981 PMCID: PMC6025703 DOI: 10.1089/ars.2017.7084] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Cells have evolved a highly sophisticated web of cytoprotective systems to neutralize unwanted oxidative stress, but are challenged by unique modern day stresses such as cigarette smoking and ingestion of a high-fat diet (HFD). Age-related disease, such as age-related macular degeneration (AMD), the most common cause of blindness among the elderly in Western societies, develops in part, when oxidative stress overwhelms cytoprotective systems to injure tissue. Since most studies focus on the protection by a single protective system, the aim of this study was to investigate the impact of more than one cytoprotective system against oxidative stress. RESULTS Wingless (Wnt) and nuclear factor-erythroid 2-related factor 2 (Nrf2), two fundamental signaling systems that are vital to cell survival, decline after mice are exposed to chronic cigarette smoke and HFD, two established AMD risk factors, in a bidirectional feedback loop through phosphorylated glycogen synthase kinase 3 beta. Decreased Wnt and Nrf2 signaling leads to retinal pigment epithelial dysfunction and apoptosis, and a phenotype that is strikingly similar to geographic atrophy (GA), an advanced form of AMD with no effective treatment. INNOVATION This study is the first to show that chronic oxidative stress from common modern day environmental exposures reduces two fundamental and vital cytoprotective networks in a bidirectional feedback loop, and their decline leads to advanced disease phenotype. CONCLUSION Our data offer new insights into how combined modern oxidative stresses of cigarette smoking and HFD contribute to GA through an interactive decline in Wnt and Nrf2 signaling. Antioxid. Redox Signal. 29, 389-407.
Collapse
Affiliation(s)
- Katayoon B Ebrahimi
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Marisol Cano
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| | - John Rhee
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sayantan Datta
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Lei Wang
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| | - James T Handa
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
20
|
Ruotsalainen AK, Lappalainen JP, Heiskanen E, Merentie M, Sihvola V, Näpänkangas J, Lottonen-Raikaslehto L, Kansanen E, Adinolfi S, Kaarniranta K, Ylä-Herttuala S, Jauhiainen M, Pirinen E, Levonen AL. Nuclear factor E2-related factor 2 deficiency impairs atherosclerotic lesion development but promotes features of plaque instability in hypercholesterolaemic mice. Cardiovasc Res 2018; 115:243-254. [DOI: 10.1093/cvr/cvy143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/13/2018] [Indexed: 12/27/2022] Open
Abstract
Abstract
Aims
Oxidative stress and inflammation play an important role in the progression of atherosclerosis. Transcription factor NF-E2-related factor 2 (Nrf2) has antioxidant and anti-inflammatory effects in the vessel wall, but paradoxically, global loss of Nrf2 in apoE deficient mice alleviates atherosclerosis. In this study, we investigated the effect of global Nrf2 deficiency on early and advanced atherogenesis in alternative models of atherosclerosis, LDL receptor deficient mice (LDLR−/−), and LDLR−/− mice expressing apoB-100 only (LDLR−/− ApoB100/100) having a humanized lipoprotein profile.
Methods and results
LDLR−/− mice were fed a high-fat diet (HFD) for 6 or 12 weeks and LDLR−/−ApoB100/100 mice a regular chow diet for 6 or 12 months. Nrf2 deficiency significantly reduced early and more advanced atherosclerosis assessed by lesion size and coverage in the aorta in both models. Nrf2 deficiency in LDLR−/− mice reduced total plasma cholesterol after 6 weeks of HFD and triglycerides in LDLR−/−ApoB100/100 mice on a chow diet. Nrf2 deficiency aggravated aortic plaque maturation in aged LDLR−/−ApoB100/100 mice as it increased plaque calcification. Moreover, ∼36% of Nrf2−/−LDLR−/−ApoB100/100 females developed spontaneous myocardial infarction (MI) or sudden death at 5 to 12 months of age. Interestingly, Nrf2 deficiency increased plaque instability index, enhanced plaque inflammation and calcification, and reduced fibrous cap thickness in brachiocephalic arteries of LDLR−/−ApoB100/100 female mice at age of 12 months.
Conclusions
Absence of Nrf2 reduced atherosclerotic lesion size in both atherosclerosis models, likely via systemic effects on lipid metabolism. However, Nrf2 deficiency in aged LDLR−/−ApoB100/100 mice led to an enhanced atherosclerotic plaque instability likely via increased plaque inflammation and oxidative stress, which possibly predisposed to MI and sudden death.
Collapse
Affiliation(s)
| | - Jari P Lappalainen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Chemistry, University of Eastern Finland and Eastern Finland Laboratory Centre, Kuopio, Finland
| | - Emmi Heiskanen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Mari Merentie
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Virve Sihvola
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Juha Näpänkangas
- Department of Pathology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | | | - Emilia Kansanen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Simone Adinolfi
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- National Institute for Health and Welfare, Genomics and Biomarkes Unit, Helsinki, Finland; and
| | - Eija Pirinen
- Research Program for Molecular Neurology, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
21
|
Chlamydia pneumoniae Infection Exacerbates Atherosclerosis in ApoB100only/LDLR -/- Mouse Strain. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8325915. [PMID: 29770337 PMCID: PMC5889898 DOI: 10.1155/2018/8325915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/31/2018] [Accepted: 02/18/2018] [Indexed: 11/25/2022]
Abstract
Aims Hyperlipidaemia model animals have been used to elucidate the role of Chlamydia pneumoniae (Cpn) infection in atherosclerosis. The aims of this study were to investigate the proatherogenic effect of multiple Cpn infections in ApoB100only/LDLR−/− mice which based on lipid profile can be regarded as the most suitable mouse model of human hypercholesterolemia and to compare the lesion development to that in a major atherosclerosis model ApoE−/− mice. Methods and Results Aorta samples of ApoB100only/LDLR−/− mice infected three times with Cpn were subjected to morphometric analyses. Morphometric evaluation disclosed that Cpn infections exacerbated atherosclerosis development in the aortic root and descending aorta of the mice fed with normal diet. Viable Cpn was detected in the ascending aorta by RT-PCR. Chlamydial 16SrRNA expression showed the presence of viable Cpn in the aorta of infected animals. A similar rate of acceleration of atherosclerosis was observed when the infection protocol was applied in ApoB100only/LDLR−/− and in ApoE−/− mice. Conclusion Similar to ApoE−/− mice, ApoB100only/LDLR−/− mice with more human-relevant serum lipoprotein composition develop increased atherosclerosis after Cpn infections; thus this mouse strain can be used as a model of infection-related atherosclerosis enhancement and can provide further evidence for the proatherogenic influence of Cpn in mice.
Collapse
|
22
|
Gilglioni EH, Chang J, Duijst S, Go S, Adam AAA, Hoekstra R, Verhoeven AJ, Ishii‐Iwamoto EL, Oude Elferink RP. Improved oxygenation dramatically alters metabolism and gene expression in cultured primary mouse hepatocytes. Hepatol Commun 2018; 2:299-312. [PMID: 29507904 PMCID: PMC5831026 DOI: 10.1002/hep4.1140] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/11/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023] Open
Abstract
Primary hepatocyte culture is an important in vitro system for the study of liver functions. In vivo, hepatocytes have high oxidative metabolism. However, oxygen supply by means of diffusion in in vitro static cultures is much less than that by blood circulation in vivo. Therefore, we investigated whether hypoxia contributes to dedifferentiation and deregulated metabolism in cultured hepatocytes. To this end, murine hepatocytes were cultured under static or shaken (60 revolutions per minute) conditions in a collagen sandwich. The effect of hypoxia on hepatocyte cultures was examined by metabolites in media and cells, hypoxia-inducible factors (HIF)-1/2α western blotting, and real-time quantitative polymerase chain reaction for HIF target genes and key genes of glucose and lipid metabolism. Hepatocytes in shaken cultures showed lower glycolytic activity and triglyceride accumulation than static cultures, compatible with improved oxygen delivery and mitochondrial energy metabolism. Consistently, static cultures displayed significant HIF-2α expression, which was undetectable in freshly isolated hepatocytes and shaken cultures. Transcript levels of HIF target genes (glyceraldehyde 3-phosphate dehydrogenase [Gapdh], glucose transporter 1 [Glut1], pyruvate dehydrogenase kinase 1 [Pdk1], and lactate dehydrogenase A [Ldha]) and key genes of lipid metabolism, such as carnitine palmitoyltransferase 1 (Cpt1), apolipoprotein B (Apob), and acetyl-coenzyme A carboxylase 1 (Acc1), were significantly lower in shaken compared to static cultures. Moreover, expression of hepatocyte nuclear factor 4α (Hnf4α) and farnesoid X receptor (Fxr) were better preserved in shaken cultures as a result of improved oxygen delivery. We further revealed that HIF-2 signaling was involved in hypoxia-induced down-regulation of Fxr. Conclusion: Primary murine hepatocytes in static culture suffer from hypoxia. Improving oxygenation by simple shaking prevents major changes in expression of metabolic enzymes and aberrant triglyceride accumulation; in addition, it better maintains the differentiation state of the cells. The shaken culture is, therefore, an advisable strategy for the use of primary hepatocytes as an in vitro model. (Hepatology Communications 2018;2:299-312).
Collapse
Affiliation(s)
- Eduardo H. Gilglioni
- Department of Biochemistry, Laboratory of Experimental SteatosisUniversity of MaringáMaringáBrazil
- Tytgat Institute for Liver and Intestinal Research, Academic Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Jung‐Chin Chang
- Tytgat Institute for Liver and Intestinal Research, Academic Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Suzanne Duijst
- Tytgat Institute for Liver and Intestinal Research, Academic Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Simei Go
- Tytgat Institute for Liver and Intestinal Research, Academic Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Aziza A. A. Adam
- Tytgat Institute for Liver and Intestinal Research, Academic Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
- Surgical Laboratory, Academic Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Ruurdtje Hoekstra
- Tytgat Institute for Liver and Intestinal Research, Academic Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
- Surgical Laboratory, Academic Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Arthur J. Verhoeven
- Tytgat Institute for Liver and Intestinal Research, Academic Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Emy L. Ishii‐Iwamoto
- Department of Biochemistry, Laboratory of Experimental SteatosisUniversity of MaringáMaringáBrazil
| | - Ronald P.J. Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
23
|
Herbert KE, Erridge C. Regulation of low-density lipoprotein cholesterol by intestinal inflammation and the acute phase response. Cardiovasc Res 2017; 114:226-232. [DOI: 10.1093/cvr/cvx237] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
AbstractSystemic inflammation, induced by disease or experimental intervention, is well established to result in elevated levels of circulating triglycerides, and reduced levels of high-density lipoprotein-cholesterol (HDL-C), in most mammalian species. However, the relationship between inflammation and low-density lipoprotein-cholesterol (LDL-C) concentrations is less clear. Most reports indicate that systemic inflammation, as observed during sepsis or following high dose experimental endotoxaemia, lowers total, and LDL-C in man. However, isolated reports have suggested that certain inflammatory conditions are associated with increased LDL-C. In this review, we summarize the emerging evidence that low-grade inflammation specifically of intestinal origin may be associated with increased serum LDL-C levels. Preliminary insights into potential mechanisms that may mediate these effects, including those connecting inflammation to trans-intestinal cholesterol efflux (TICE), are considered. We conclude that this evidence supports the potential downregulation of major mediators of TICE by inflammatory mediators in vitro and during intestinal inflammation in vivo. The TICE-inflammation axis therefore merits further study in terms of its potential to regulate serum LDL-C, and as a readily druggable target for hypercholesterolaemia.
Collapse
Affiliation(s)
- Karl E Herbert
- Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester, Groby Road, Leicester, Leicestershire, LE3 9QP, UK
| | - Clett Erridge
- Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester, Groby Road, Leicester, Leicestershire, LE3 9QP, UK
- Department of Biomedical and Forensic Sciences, Anglia Ruskin University, East Road, Cambridge, Cambridgeshire, CB1 1PT, UK
| |
Collapse
|
24
|
Ahamed J, Laurence J. Role of Platelet-Derived Transforming Growth Factor-β1 and Reactive Oxygen Species in Radiation-Induced Organ Fibrosis. Antioxid Redox Signal 2017; 27:977-988. [PMID: 28562065 PMCID: PMC5649128 DOI: 10.1089/ars.2017.7064] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE This review evaluates the role of platelet-derived transforming growth factor (TGF)-β1 in oxidative stress-linked pathologic fibrosis, with an emphasis on the heart and kidney, by using ionizing radiation as a clinically relevant stimulus. Current radiation-induced organ fibrosis interventions focus on pan-neutralization of TGF-β or the use of anti-oxidants and anti-proliferative agents, with limited clinical efficacy. Recent Advances: Pathologic fibrosis represents excessive accumulation of collagen and other extracellular matrix (ECM) components after dysregulation of a balance between ECM synthesis and degradation. Targets based on endogenous carbon monoxide (CO) pathways and the use of redox modulators such as N-acetylcysteine present promising alternatives to current therapeutic regimens. CRITICAL ISSUES Ionizing radiation leads to direct DNA damage and generation of reactive oxygen species (ROS), with TGF-β1 activation via ROS, thrombin generation, platelet activation, and pro-inflammatory signaling promoting myofibroblast accumulation and ECM production. Feed-forward loops, as TGF-β1 promotes ROS, amplify these profibrotic signals, and persistent low-grade inflammation insures their perpetuation. We highlight differential roles for platelet- versus monocyte-derived TGF-β1, establishing links between canonical and noncanonical TGF-β1 signaling pathways in relationship to macrophage polarization and autophagy, and define points where pharmacologic agents can intervene. FUTURE DIRECTIONS Additional studies are needed to understand mechanisms underlying the anti-fibrotic effects of current and proposed therapeutics, based on limiting platelet TGF-β1 activity, promotion of macrophage polarization, and facilitation of collagen autophagy. Models incorporating endogenous CO and selective TGF-β1 pathways that impact the initiation and progression of pathologic fibrosis, including nuclear factor erythroid 2-related factor (Nrf2) and redox, are of particular interest. Antioxid. Redox Signal. 27, 977-988.
Collapse
Affiliation(s)
- Jasimuddin Ahamed
- 1 Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation , Oklahoma City, Oklahoma
| | - Jeffrey Laurence
- 2 Division of Hematology and Medical Oncology, Weill Cornell Medical College , New York, New York
| |
Collapse
|
25
|
Damsteegt EL, Davie A, Lokman PM. The evolution of apolipoprotein B and its mRNA editing complex. Does the lack of editing contribute to hypertriglyceridemia? Gene 2017; 641:46-54. [PMID: 29031774 DOI: 10.1016/j.gene.2017.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/18/2017] [Accepted: 10/10/2017] [Indexed: 12/30/2022]
Abstract
The evolution of apolipoprotein B (Apob) has been intensely researched due to its importance during lipid transport. Mammalian full-length apob100 can be post-transcriptionally edited by the enzyme apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like complex-one (Apobec1) resulting in a truncated Apob, known as Apob48. Whilst both full-length and truncated forms of Apob are important for normal lipid homeostasis in mammals, there is no evidence for the presence of apob mRNA editing prior to the divergence of the mammals, yet, non-mammalian vertebrates appear to function normally with only Apob100. To date, the majority of the research carried out in non-mammalian vertebrates has focused on chickens with only a very limited number examining apob mRNA editing in fish. This study focused on the molecular evolution of Apobec1 and Apob in order to ascertain if apob mRNA editing occurs in eels, a basal teleost which represents an evolutionarily important animal group. No evidence for the presence of Apobec1 or the ability for eel apob to be edited was found. However, an important link between mutant mice and the evident hypertriglyceridemia in the plasma of non-mammalian vertebrates was made. This study has provided imperative evidence to help bridge the evolutionary gap between fish and mammals and provides further support for the lack of apob mRNA editing in non-mammalian vertebrates.
Collapse
Affiliation(s)
- Erin L Damsteegt
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand.
| | - Andrew Davie
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - P Mark Lokman
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
26
|
Kong SK, Choe MK, Kim HJ, Kim YS, Binas B, Kim HJ. An ApoB100-mimetic vaccine prevents obesity and liver steatosis in ApoE-/- mice. Pharmacol Rep 2017; 69:1140-1144. [PMID: 29128792 DOI: 10.1016/j.pharep.2017.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/17/2017] [Accepted: 05/22/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Recently, a peptide vaccine (B4T) was developed that prevents high fat diet (HFD)-induced obesity and liver steatosis in wild type mice and appears to target an epitope present in ApoB100 but not ApoB48. Here, we ask whether B4T remains effective in ApoE knockout (ApoE-ko) mice, which exhibit a greatly increased ApoB48/ApoB100 ratio and develop atherosclerosis under HFD. METHODS HFD-fed male ApoE-ko mice were injected with B4T or vehicle 3 times between 5 and 15 weeks of age. Until 45 weeks of age, they were regularly weighed and antibody titers determined. In the end, adiposity and organ histologies were examined. RESULTS We find that in the ApoE-ko mice, B4T prevents HFD-induced body weight increases (p<0.01) to a comparable degree as previously shown in wild type mice. Also, liver steatosis was prevented as previously shown in wild type mice. By contrast, atherosclerotic plaque formation was not prevented in any of the vaccinated mice studied, in line with the observation that antibody production paralleled the weight reduction but largely preceded atherogenesis. CONCLUSION The findings demonstrate effectiveness of B4T despite the increased ApoB48/B100 ratio, but argue against an effect on de novo plaque formation. At least under the current vaccination schedule, the obesity- and atherosclerosis-related roles of ApoB appear to be dissociable.
Collapse
Affiliation(s)
- Su-Kang Kong
- Department of Molecular and Life Sciences, College of Science and Technology, Hanyang University (ERICA campus), Ansan, Korea
| | - Moon Kyung Choe
- Department of Molecular and Life Sciences, College of Science and Technology, Hanyang University (ERICA campus), Ansan, Korea
| | - Hyung-Ji Kim
- Department of Neurology, Dankook University Hospital, Cheonan, Chungnam, Korea
| | - Young-Sik Kim
- Department of Pathology, Korea University Ansan Hospital, Ansan, Korea
| | - Bert Binas
- Department of Molecular and Life Sciences, College of Science and Technology, Hanyang University (ERICA campus), Ansan, Korea.
| | - Hyo Joon Kim
- Department of Molecular and Life Sciences, College of Science and Technology, Hanyang University (ERICA campus), Ansan, Korea; SJBiomed Inc., HBI 604, Ansan, Korea.
| |
Collapse
|
27
|
Stabley JN, Towler DA. Arterial Calcification in Diabetes Mellitus: Preclinical Models and Translational Implications. Arterioscler Thromb Vasc Biol 2017; 37:205-217. [PMID: 28062508 PMCID: PMC5480317 DOI: 10.1161/atvbaha.116.306258] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus increasingly afflicts our aging and dysmetabolic population. Type 2 diabetes mellitus and the antecedent metabolic syndrome represent the vast majority of the disease burden-increasingly prevalent in children and older adults. However, type 1 diabetes mellitus is also advancing in preadolescent children. As such, a crushing wave of cardiometabolic disease burden now faces our society. Arteriosclerotic calcification is increased in metabolic syndrome, type 2 diabetes mellitus, and type 1 diabetes mellitus-impairing conduit vessel compliance and function, thereby increasing the risk for dementia, stroke, heart attack, limb ischemia, renal insufficiency, and lower extremity amputation. Preclinical models of these dysmetabolic settings have provided insights into the pathobiology of arterial calcification. Osteochondrogenic morphogens in the BMP-Wnt signaling relay and transcriptional regulatory programs driven by Msx and Runx gene families are entrained to innate immune responses-responses activated by the dysmetabolic state-to direct arterial matrix deposition and mineralization. Recent studies implicate the endothelial-mesenchymal transition in contributing to the phenotypic drift of mineralizing vascular progenitors. In this brief overview, we discuss preclinical disease models that provide mechanistic insights-and point to challenges and opportunities to translate these insights into new therapeutic strategies for our patients afflicted with diabetes mellitus and its arteriosclerotic complications.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Arteries/metabolism
- Arteries/pathology
- Atherosclerosis/etiology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Angiopathies/etiology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Diet, High-Fat
- Disease Models, Animal
- Female
- Genetic Predisposition to Disease
- Humans
- Hyperlipidemias/complications
- Hyperlipidemias/genetics
- Male
- Phenotype
- Plaque, Atherosclerotic
- Rats
- Signal Transduction
- Translational Research, Biomedical
- Vascular Calcification/etiology
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- John N Stabley
- From the Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Dwight A Towler
- From the Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
28
|
Handa JT, Cano M, Wang L, Datta S, Liu T. Lipids, oxidized lipids, oxidation-specific epitopes, and Age-related Macular Degeneration. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:430-440. [PMID: 27480216 DOI: 10.1016/j.bbalip.2016.07.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/25/2022]
Abstract
Age-related Macular Degeneration (AMD) is the leading cause of blindness among the elderly in western societies. While antioxidant micronutrient treatment is available for intermediate non-neovascular disease, and effective anti-vascular endothelial growth factor treatment is available for neovascular disease, treatment for early AMD is lacking due to an incomplete understanding of the early molecular events. The role of lipids, which accumulate in the macula, and their oxidation, has emerged as an important factor in disease development. These oxidized lipids can either directly contribute to tissue injury or react with amine on proteins to form oxidation-specific epitopes, which can induce an innate immune response. If inadequately neutralized, the inflammatory response from these epitopes can incite tissue injury during disease development. This review explores how the accumulation of lipids, their oxidation, and the ensuing inflammatory response might contribute to the pathogenesis of AMD. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder .
Collapse
Affiliation(s)
- James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| | - Marisol Cano
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| | - Lei Wang
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| | - Sayantan Datta
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| | - Tongyun Liu
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| |
Collapse
|
29
|
Deshpande V, Sharma A, Mukhopadhyay R, Thota LNR, Ghatge M, Vangala RK, Kakkar VV, Mundkur L. Understanding the progression of atherosclerosis through gene profiling and co-expression network analysis in Apob(tm2Sgy)Ldlr(tm1Her) double knockout mice. Genomics 2016; 107:239-47. [PMID: 27133569 DOI: 10.1016/j.ygeno.2016.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 01/13/2023]
Abstract
The objective of the study was to gain molecular insights into the progression of atherosclerosis in Apob(tm2Sgy)Ldlr(tm1Her) mice, using transcriptome profiles. Weighted gene co network analysis (WGCNA) and time course analysis using limma were used to study disease progression from 0 to 20weeks. Five co-expression modules were identified by WGCNA using the expression values of 2153 genes. Genes associated with autophagy, endoplasmic reticulum stress, inflammation and lipid metabolism were differentially expressed at early stages of atherosclerosis. Time course analysis highlighted activation of inflammatory gene signaling at 4weeks, cell proliferation and calcification at 8weeks, amyloid like structures and oxidative stress at 14weeks and enhanced production of inflammatory cytokines at 20weeks. Our results suggest that maximum gene perturbations occur during early atherosclerosis which could be the danger signals associated with subclinical disease. Understanding these genes and associated pathways can help in improvement of diagnostic and therapeutic targets for atherosclerosis.
Collapse
Affiliation(s)
| | - Ankit Sharma
- Research Scholar, Manipal University, Thrombosis Research Institute, Bangalore, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | | | - Madankumar Ghatge
- Research Scholar, Manipal University, Thrombosis Research Institute, Bangalore, India
| | - Rajani Kanth Vangala
- Bioinformatics and Biostatistics Unit, Thrombosis Research Institute, Bangalore, India
| | - Vijay V Kakkar
- Thrombosis Research Institute, Bangalore, India; Thrombosis Research Institute, London, UK
| | - Lakshmi Mundkur
- Molecular Immunology, Thrombosis Research Institute, Bangalore, India.
| |
Collapse
|
30
|
Fujihara M, Cano M, Handa JT. Mice that produce ApoB100 lipoproteins in the RPE do not develop drusen yet are still a valuable experimental system. Invest Ophthalmol Vis Sci 2014; 55:7285-95. [PMID: 25316721 DOI: 10.1167/iovs.14-15195] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mice typically produce apolipoprotein B (apoB)-48 and not apoB100. Apolipoprotein B100 accumulates in Bruch's membrane prior to basal deposit and drusen formation during the onset of AMD, raising the possibility that they are a trigger for these Bruch's membrane alterations. The purpose herein, was to determine whether mice that predominantly produce apoB100 develop features of AMD. METHODS The eyes of mice that produce apoB100 were examined for apoB100 synthesis, cholesteryl esterase/filipin labeling for cholesteryl esters, and transmission electron microscopy for lipid particles and phenotype. RESULTS Apolipoprotein B100 was abundant in the RPE-choroid of apoB100, but not wild-type mice by Western blot analysis. The apolipoprotein B100,(35)S-radiolabeled and immunoprecipitated from RPE explants, confirmed that apoB100 was synthesized by RPE. Apolipoprotein B100, but not control mice, had cholesteryl esters and lipid particles in Bruch's membrane. Immunoreactivity of ApoB100 was present in the RPE and Bruch's membrane, but not choroidal endothelium of apoB100 mice. Ultrastructural changes were consistent with aging, but not AMD when aged up to 18 months. The induction of advanced glycation end products to alter Bruch's membrane, did not promote basal linear deposit or drusen formation. CONCLUSIONS Mice that produce apoB100 in the RPE and liver secrete lipoproteins into Bruch's membrane, but not to the extent that distinct features of AMD develop, which suggests that either additional lipoprotein accumulation or additional factors are necessary to initiate their formation.
Collapse
Affiliation(s)
- Masashi Fujihara
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Marisol Cano
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
31
|
Mundkur L, Ponnusamy T, Philip S, Rao LN, Biradar S, Deshpande V, Kumar R, Lu X, Kakkar VV. Oral dosing with multi-antigenic construct induces atheroprotective immune tolerance to individual peptides in mice. Int J Cardiol 2014; 175:340-51. [PMID: 24962340 DOI: 10.1016/j.ijcard.2014.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/26/2014] [Accepted: 06/01/2014] [Indexed: 12/23/2022]
Abstract
Inflammatory immune response to self-antigens plays an important role in the development of atherosclerosis. Restoring immune tolerance to self-proteins reduces the pro-inflammatory response. We previously showed that oral tolerance to a combination of two peptides is atheroprotective. In the present study we expressed epitopes from apolipoprotein B 100 (ApoB), human heat shock protein (HSP60) and Chlamydia pneumonia outer membrane protein (Cpn) in a single protein scaffold and used this multi-antigenic construct to induce tolerance to individual peptides by oral route in ApoBtm2Sgy/Ldlrtm1Her/J mice. Antigen specific tolerance to individual peptides was observed in treated animals as seen by an increase in regulatory T cells. Tolerance to the peptides resulted in a 46.5% (p=0.002) reduction in the development of atherosclerosis compared with control. Atheroprotection was associated with a significant (p<0.05) decrease in plaque inflammation and an increase in the expression of immune regulatory markers in the aorta. CD11c+ cells coexpressing CD11b and CD103 increased in lymphoid organs and were found to activate regulatory T cells and reduce effector T-cell response. Adoptive transfer of CD11c+ cells was atheroprotective. Our results suggest that atheroprotection by oral tolerance to a multi-antigenic construct is mediated by antigen specific regulatory T cells and CD11c+ cells with immune regulatory properties.
Collapse
Affiliation(s)
- Lakshmi Mundkur
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Bangalore, India.
| | - Thiruvelselvan Ponnusamy
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Bangalore, India
| | - Sheena Philip
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Bangalore, India
| | - Lakshmi Narasimha Rao
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Bangalore, India
| | - Suryakant Biradar
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Bangalore, India
| | - Vrushali Deshpande
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Bangalore, India
| | - Ramesh Kumar
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Bangalore, India
| | - Xinjie Lu
- Molecular Immunology Unit, Thrombosis Research Institute, London, United Kingdom
| | - Vijay V Kakkar
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Bangalore, India; Molecular Immunology Unit, Thrombosis Research Institute, London, United Kingdom.
| |
Collapse
|
32
|
Effects of eicosapentaenoic acid and docosahexaenoic acid on chylomicron and VLDL synthesis and secretion in Caco-2 cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:684325. [PMID: 24987699 PMCID: PMC4058467 DOI: 10.1155/2014/684325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/19/2014] [Indexed: 11/18/2022]
Abstract
The present research was undertaken to determine the effects of EPA (20 : 5 n-3) and DHA (22 : 6 n-3) on chylomicron and VLDL synthesis and secretion by Caco-2 cells. Cells were incubated for 12 to 36 h with 400 μM OA, EPA, and DHA; then 36 h was chosen for further study because EPA and DHA decreased de novo triglycerides synthesis in a longer incubation compared with OA (P < 0.01). Neither the uptake nor oxidation was different in response to the respective fatty acids (P > 0.05). Compared with OA, intercellular and secreted nascent apolipoprotein B48 and B100 were decreased by EPA and DHA (P < 0.01). Both DHA and EPA resulted in a lower secretion of chylomicron and VLDL (P < 0.01). In contrast to OA, EPA and DHA were preferentially incorporated into phospholipids instead of triacylglycerols (P < 0.01). These discoveries demonstrated that exposure of DHA and EPA reduced the secretion of chylomicron and VLDL partly by regulating the synthesis of TG and apoB.
Collapse
|
33
|
Lebold KM, Traber MG. Interactions between α-tocopherol, polyunsaturated fatty acids, and lipoxygenases during embryogenesis. Free Radic Biol Med 2014; 66:13-9. [PMID: 23920314 PMCID: PMC3874081 DOI: 10.1016/j.freeradbiomed.2013.07.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 01/18/2023]
Abstract
α-Tocopherol is a lipid-soluble antioxidant that is specifically required for reproduction and embryogenesis. However, since its discovery, α-tocopherol's specific biologic functions, other than as an antioxidant, and the mechanism(s) mediating its requirement for embryogenesis remain unknown. As an antioxidant, α-tocopherol protects polyunsaturated fatty acids (PUFAs) from lipid peroxidation. α-Tocopherol is probably required during embryonic development to protect PUFAs that are crucial to development, specifically arachidonic (ARA) and docosahexaenoic (DHA) acids. Additionally, ARA and DHA are metabolized to bioactive lipid mediators via lipoxygenase enzymes, and α-tocopherol may directly protect, or it may mediate the production and/or actions of, these lipid mediators. In this review, we discuss how α-tocopherol (1) prevents the nonspecific, radical-mediated peroxidation of PUFAs, (2) functions within a greater antioxidant network to modulate the production and/or function of lipid mediators derived from 12- and 12/15-lipoxygenases, and (3) modulates 5-lipoxygenase activity. The application and implication of such interactions are discussed in the context of α-tocopherol requirements during embryogenesis.
Collapse
Affiliation(s)
- Katie M Lebold
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
34
|
Echium oil reduces plasma triglycerides by increasing intravascular lipolysis in apoB100-only low density lipoprotein (LDL) receptor knockout mice. Nutrients 2013; 5:2629-45. [PMID: 23857172 PMCID: PMC3738992 DOI: 10.3390/nu5072629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/09/2013] [Accepted: 06/24/2013] [Indexed: 02/06/2023] Open
Abstract
Echium oil (EO), which is enriched in SDA (18:4 n-3), reduces plasma triglyceride (TG) concentrations in humans and mice. We compared mechanisms by which EO and fish oil (FO) reduce plasma TG concentrations in mildly hypertriglyceridemic male apoB100-only LDLrKO mice. Mice were fed one of three atherogenic diets containing 0.2% cholesterol and palm oil (PO; 20%), EO (10% EO + 10% PO), or FO (10% FO + 10% PO). Livers from PO- and EO-fed mice had similar TG and cholesteryl ester (CE) content, which was significantly higher than in FO-fed mice. Plasma TG secretion was reduced in FO vs. EO-fed mice. Plasma very low density lipoprotein (VLDL) particle size was ordered: PO (63 ± 4 nm) > EO (55 ± 3 nm) > FO (40 ± 2 nm). Post-heparin lipolytic activity was similar among groups, but TG hydrolysis by purified lipoprotein lipase was significantly greater for EO and FO VLDL compared to PO VLDL. Removal of VLDL tracer from plasma was marginally faster in EO vs. PO fed mice. Our results suggest that EO reduces plasma TG primarily through increased intravascular lipolysis of TG and VLDL clearance. Finally, EO may substitute for FO to reduce plasma TG concentrations, but not hepatic steatosis in this mouse model.
Collapse
|
35
|
Donovan LE, Dammer EB, Duong DM, Hanfelt JJ, Levey AI, Seyfried NT, Lah JJ. Exploring the potential of the platelet membrane proteome as a source of peripheral biomarkers for Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2013; 5:32. [PMID: 23764030 PMCID: PMC4054949 DOI: 10.1186/alzrt186] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/01/2013] [Accepted: 06/13/2013] [Indexed: 12/16/2022]
Abstract
Introduction Peripheral biomarkers to diagnose Alzheimer's disease (AD) have not been established. Given parallels between neuron and platelet biology, we hypothesized platelet membrane-associated protein changes may differentiate patients clinically defined with probable AD from noncognitive impaired controls. Methods Purified platelets, confirmed by flow cytometry were obtained from individuals before fractionation by ultracentrifugation. Following a comparison of individual membrane fractions by SDS-PAGE for general proteome uniformity, equal protein weight from the membrane fractions for five representative samples from AD and five samples from controls were pooled. AD and control protein pools were further divided into molecular weight regions by one-dimensional SDS-PAGE, prior to digestion in gel. Tryptic peptides were analyzed by reverse-phase liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Ionized peptide intensities were averaged for each identified protein in the two pools, thereby measuring relative protein abundance between the two membrane protein pools. Log2-transformed ratio (AD/control) of protein abundances fit a normal distribution, thereby permitting determination of significantly changed protein abundances in the AD pool. Results We report a comparative analysis of the membrane-enriched platelet proteome between patients with mild to moderate AD and cognitively normal, healthy subjects. A total of 144 proteins were determined significantly altered in the platelet membrane proteome from patients with probable AD. In particular, secretory (alpha) granule proteins were dramatically reduced in AD. Of these, we confirmed significant reduction of thrombospondin-1 (THBS1) in the AD platelet membrane proteome by immunoblotting. There was a high protein-protein connectivity of proteins in other pathways implicated by proteomic changes to the proteins that define secretory granules. Conclusions Depletion of secretory granule proteins is consistent with a preponderance of post-activated platelets in circulation in AD. Significantly changed pathways implicate additional AD-related defects in platelet glycoprotein synthesis, lipid homeostasis, amyloidogenic proteins, and regulators of protease activity, many of which may be useful plasma membrane-expressed markers for AD. This study highlights the utility of LC-MS/MS to quantify human platelet membrane proteins and suggests that platelets may serve as a source of blood-based biomarkers in neurodegenerative disease.
Collapse
Affiliation(s)
- Laura E Donovan
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, 615 Michael Street NE, Atlanta, Georgia 30322, USA
| | - Eric B Dammer
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street NE, Atlanta, Georgia 30322, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, Georgia 30322, USA
| | - John J Hanfelt
- Department of Biostatistics and Bioinformatics, Emory University School of Medicine, 1518 Clifton Road NE, Atlanta, Georgia 30322, USA
| | - Allan I Levey
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, 615 Michael Street NE, Atlanta, Georgia 30322, USA
| | - Nicholas T Seyfried
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, 615 Michael Street NE, Atlanta, Georgia 30322, USA ; Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, Georgia 30322, USA
| | - James J Lah
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, 615 Michael Street NE, Atlanta, Georgia 30322, USA
| |
Collapse
|
36
|
Gonzales JC, Gordts PLSM, Foley EM, Esko JD. Apolipoproteins E and AV mediate lipoprotein clearance by hepatic proteoglycans. J Clin Invest 2013; 123:2742-51. [PMID: 23676495 DOI: 10.1172/jci67398] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/14/2013] [Indexed: 11/17/2022] Open
Abstract
The heparan sulfate proteoglycan (HSPG) syndecan-1 (SDC1) acts as a major receptor for triglyceride-rich lipoprotein (TRL) clearance in the liver. We sought to identify the relevant apolipoproteins on TRLs that mediate binding to SDC1 and determine their clinical relevance. Evidence supporting ApoE as a major determinant arose from its enrichment in TRLs from mice defective in hepatic heparan sulfate (Ndst1f/fAlbCre⁺ mice), decreased binding of ApoE-deficient TRLs to HSPGs on human hepatoma cells, and decreased clearance of ApoE-deficient [³H]TRLs in vivo. Evidence for a second ligand was suggested by the faster clearance of ApoE-deficient TRLs after injection into WT Ndst1f/fAlbCre⁻ versus mutant Ndst1f/fAlbCre⁺ mice and elevated fasting and postprandial plasma triglycerides in compound Apoe⁻/⁻Ndst1f/fAlbCre⁺ mice compared with either single mutant. ApoAV emerged as a candidate based on 6-fold enrichment of ApoAV in TRLs accumulating in Ndst1f/fAlbCre⁺ mice, decreased binding of TRLs to proteoglycans after depletion of ApoAV or addition of anti-ApoAV mAb, and decreased heparan sulfate-dependent binding of ApoAV-deficient particles to hepatocytes. Importantly, disruption of hepatic heparan sulfate-mediated clearance increased atherosclerosis. We conclude that clearance of TRLs by hepatic HSPGs is atheroprotective and mediated by multivalent binding to ApoE and ApoAV.
Collapse
Affiliation(s)
- Jon C Gonzales
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, UCSD, La Jolla, California 92093-0687, USA
| | | | | | | |
Collapse
|
37
|
Mundkur L, Mukhopadhyay R, Samson S, Varma M, Kale D, Chen D, Shivaprasad S, Sivanandan H, Soman V, Lu X, Kakkar VV. Mucosal tolerance to a combination of ApoB and HSP60 peptides controls plaque progression and stabilizes vulnerable plaque in Apob(tm2Sgy)Ldlr(tm1Her)/J mice. PLoS One 2013; 8:e58364. [PMID: 23505495 PMCID: PMC3594317 DOI: 10.1371/journal.pone.0058364] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 02/04/2013] [Indexed: 11/25/2022] Open
Abstract
Oral tolerance to auto antigens reduces the development of atherosclerosis in mouse models. However, the effect of immune tolerance to multiple self antigenic peptides in plaque progression and stabilization is not known. We studied the protective effect of mucosal tolerance to peptides from apolipoprotein B (ApoB; 661–680) and heat shock protein 60 (HSP60; 153–163), in combination with diet, in the prevention of atherosclerotic lesion progression and plaque stabilization in ApoBtm25gyLDLrtm1Her mice. We found that oral administration of five doses of a combination of ApoB and HSP60 peptides (20 µg/mice/dose) induced tolerance to both the peptides and reduced early plaque development by 39.9% better than the individual peptides (ApoB = 28.7%;HSP60 = 26.8%)(P<0.001). Oral tolerance to combination of peptides along with diet modification arrested plaque progression by 37.6% which was associated with increases in T-regulatory cell and transforming growth factor-β expression in the plaque and peripheral circulation. Reduced macrophage infiltration and tumor necrosis factor-α expression in the plaque was also observed. Tolerance with continued hypercholesterolemia resulted in 60.8% reduction in necrotic core area suggesting plaque stabilization, which was supported by reduction in apoptosis and increased efferocytosis demonstrated by greater expression of receptor tyrosine kinase Mer (MerTK) in the plaque. Tolerance to the two peptides also reduced the expression of matrix metalloproteinase 9, tissue factor, calprotectin, and increased its collagen content. Our study suggests that oral tolerance to ApoB and HSP60 peptide combination induces CD4+ CTLA4+ Tregs and CD4+CD25+Foxp3+ Tregs secreting TGF-β, which inhibit pathogenic T cell response to both peptides thus reducing the development and progression of atherosclerosis and provides evidence for plaque stabilization in ApoBtm25gyLDLrtm1Her mice.
Collapse
Affiliation(s)
- Lakshmi Mundkur
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Bangalore, India
| | - Rupak Mukhopadhyay
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Bangalore, India
| | - Sonia Samson
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Bangalore, India
| | - Meenakshi Varma
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Bangalore, India
| | - Dnyaneswar Kale
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Bangalore, India
| | - Daxin Chen
- Molecular Immunology Unit, Thrombosis Research Institute, London, United Kingdom
| | - Sneha Shivaprasad
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Bangalore, India
| | - Hemapriya Sivanandan
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Bangalore, India
| | - Vinod Soman
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Bangalore, India
| | - Xinjie Lu
- Molecular Immunology Unit, Thrombosis Research Institute, London, United Kingdom
| | - Vijay V. Kakkar
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Bangalore, India
- Molecular Immunology Unit, Thrombosis Research Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Mundkur LA, Varma M, Shivanandan H, Krishna D, Kumar K, Lu X, Kakkar VV. Activation of inflammatory cells and cytokines by peptide epitopes in vitro: a simple in-vitro screening assay for prioritizing them for in-vivo studies. Inflamm Res 2013; 62:471-81. [PMID: 23400302 DOI: 10.1007/s00011-013-0599-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/04/2013] [Accepted: 01/21/2013] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Antigen-specific immune modulation is an attractive approach to atherosclerosis treatment. The aim of this study was to develop an in-vitro assay to screen peptide molecules for their inflammatory propensity. MATERIALS Human dendritic cells derived from CD14(+) monocytes were activated using peptides derived from apolipoprotein B100 (ApoB), heat shock protein 60 (HSP60) and complement cascade (peptide A) in vitro, and used for priming autologous T cells. Proliferation of T cells, their differentiation to regulatory cells (Treg) and their cytokine profile were studied. The efficacy of the peptides in preventing atherosclerosis was studied in ApoB(tm2Sgy)/Ldlr(tm1Her/J) knockout mice. RESULTS AND CONCLUSION ApoB and HSP60 peptides induced T-cell proliferation and expansion of regulatory T cells with interleukin-10 and transforming growth factor-β secretion. In comparison, peptide A was a poor stimulator of T cells and was found to induce tumor necrosis factor-α secretion by activated T cells. ApoB and HSP60 peptides were found to reduce early atherosclerotic lesion formation in mice by 32.1 and 33.5 %, respectively, while the reduction with peptide A was 5.7 %. Thus the in-vitro assay shows an apparent correlation with in-vivo activity and can be developed as a screening assay to prioritize the candidate molecules for animal efficacy testing.
Collapse
Affiliation(s)
- Lakshmi A Mundkur
- Thrombosis Research Institute, Narayana Hrudayalaya, 258/A, Bommasandra Industrial Area, Anekal Taluk, Bangalore, India.
| | | | | | | | | | | | | |
Collapse
|
39
|
Comparison of Oral Tolerance to ApoB and HSP60 Peptides in Preventing Atherosclerosis Lesion Formation in Apob48−/Ldlr− Mice. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/212367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Antigen-specific immune modulation is emerging as an attractive therapeutic option to prevent
atherosclerosis. We compared the efficacy of oral administration of peptides derived from apolipoprotein B (ApoB; 661–680) and heat shock protein 60 (HSP60; 153–163), in the
prevention of atherosclerotic lesion formation hyperlipidemic low density lipoprotein receptordeficient (LDLr−/−), apolipoprotein B-100 only (apoB100/100) mice model. Oral administration of peptides induced tolerance as seen by an increase in regulatory T cells in the peripheral immune system. Tolerance to ApoB peptide reduced plaque development by 28.7% (P<0.001) while HSP60 was effective in reducing lesion development by 26.8% in ApoB48/LDLr−/− mice. While tolerance to HSP60 resulted in increase in anti-inflammatory cytokines (IL10 and TGF-β), ApoB tolerance was effective in reducing the lipid deposition in the lesion. Our results suggest that the two peptides have distinct mechanisms of controlling the development of atherosclerosis in mice.
Collapse
|
40
|
Mukhopadhyay R. Mouse models of atherosclerosis: explaining critical roles of lipid metabolism and inflammation. J Appl Genet 2013; 54:185-92. [PMID: 23361320 DOI: 10.1007/s13353-013-0134-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
Atherosclerosis is the most common cause of death globally. It is a complex disease involving morphological and cellular changes in vascular walls. Studying molecular mechanism of the disease is hindered by disease complexity and lack of robust noninvasive diagnostics in human. Mouse models are the most popular animal models that allow researchers to study the mechanism of disease progression. In this review we discuss the advantage and development of mouse as a model for atherosclerotic research. Along with commonly used models, this review discusses strains that are used to study the role of two critical processes associated with the disease-lipid metabolism and inflammation.
Collapse
Affiliation(s)
- Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, 784 028, India.
| |
Collapse
|
41
|
Blanc V, Xie Y, Luo J, Kennedy S, Davidson NO. Intestine-specific expression of Apobec-1 rescues apolipoprotein B RNA editing and alters chylomicron production in Apobec1 -/- mice. J Lipid Res 2012; 53:2643-55. [PMID: 22993231 DOI: 10.1194/jlr.m030494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intestinal apolipoprotein B (apoB) mRNA undergoes C-to-U editing, mediated by the catalytic deaminase apobec-1, which results in translation of apoB48. Apobec1(-/-) mice produce only apoB100 and secrete larger chylomicron particles than those observed in wild-type (WT) mice. Here we show that transgenic rescue of intestinal apobec-1 expression (Apobec1(Int/O)) restores C-to-U RNA editing of apoB mRNA in vivo, including the canonical site at position 6666 and also at approximately 20 other newly identified downstream sites present in WT mice. The small intestine of Apobec1(Int/O) mice produces only apoB48, and the liver produces only apoB100. Serum chylomicron particles were smaller in Apobec1(Int/O) mice compared with those from Apobec1(-/-) mice, and the predominant fraction of serum apoB48 in Apobec1(Int/O) mice migrated in lipoproteins smaller than chylomicrons, even when these mice were fed a high-fat diet. Because apoB48 arises exclusively from the intestine in Apobec1(Int/O) mice and intestinal apoB48 synthesis and secretion rates were comparable to WT mice, we were able to infer the major sites of origin of serum apoB48 in WT mice. Our findings imply that less than 25% of serum apoB48 in WT mice arises from the intestine, with the majority originating from the liver.
Collapse
Affiliation(s)
- Valerie Blanc
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
42
|
Weinberg RB, Gallagher JW, Fabritius MA, Shelness GS. ApoA-IV modulates the secretory trafficking of apoB and the size of triglyceride-rich lipoproteins. J Lipid Res 2012; 53:736-43. [PMID: 22257482 DOI: 10.1194/jlr.m019992] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although the evidence linking apoA-IV expression and triglyceride (TG)-rich lipoprotein assembly and secretion is compelling, the intracellular mechanisms by which apoA-IV could modulate these processes remain poorly understood. We therefore examined the functional impact of apoA-IV expression on endogenous apoB, TG, and VLDL secretion in stably transfected McA-RH7777 rat hepatoma cells. Expression of apoA-IV modified with the endoplasmic reticulum (ER) retention signal KDEL (apoA-IV-KDEL) dramatically decreased both the rate and efficiency of endogenous apoB secretion, suggesting a presecretory interaction between apoA-IV-KDEL and apoB or apoB-containing lipoproteins. Expression of native apoA-IV using either a constitutive or tetracycline-inducible promoter delayed the initial rate of apoB secretion and reduced the final secretion efficiency by ∼40%. However, whereas apoA-IV-KDEL reduced TG secretion by 75%, expression of native apoA-IV caused a 20-35% increase in TG secretion, accompanied by a ∼55% increase in VLDL-associated apoB, an increase in the TG:phospholipid ratio of secreted d < 1.006 lipoproteins, and a 10.1 nm increase in peak VLDL(1) particle diameter. Native apoA-IV expression had a negligible impact on expression of the MTP gene. These data suggest that by interacting with apoB in the secretory pathway, apoA-IV alters the trafficking kinetics of apoB-containing TG-rich lipoproteins through cellular lipidation compartments, which in turn, enhances particle expansion and increases TG secretion.
Collapse
Affiliation(s)
- Richard B Weinberg
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
43
|
Anderson JL, Carten JD, Farber SA. Zebrafish lipid metabolism: from mediating early patterning to the metabolism of dietary fat and cholesterol. Methods Cell Biol 2011; 101:111-41. [PMID: 21550441 PMCID: PMC3593232 DOI: 10.1016/b978-0-12-387036-0.00005-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipids serve essential functions in cells as signaling molecules, membrane components, and sources of energy. Defects in lipid metabolism are implicated in a number of pandemic human diseases, including diabetes, obesity, and hypercholesterolemia. Many aspects of how fatty acids and cholesterol are absorbed and processed by intestinal cells remain unclear and present a hurdle to developing approaches for disease prevention and treatment. Numerous studies have shown that the zebrafish is an excellent model for vertebrate lipid metabolism. In this chapter, we review studies that employ zebrafish to better understand lipid signaling and metabolism.
Collapse
Affiliation(s)
- Jennifer L Anderson
- Carnegie Institution for Science, Department of Embryology, Baltimore, Maryland, USA
| | | | | |
Collapse
|
44
|
McCarroll J, Baigude H, Yang CS, Rana TM. Nanotubes functionalized with lipids and natural amino acid dendrimers: a new strategy to create nanomaterials for delivering systemic RNAi. Bioconjug Chem 2010; 21:56-63. [PMID: 19957956 DOI: 10.1021/bc900296z] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Single-walled carbon nanotubes (SWNT) have unique electronic, mechanical, and structural properties as well as chemical stability that make them ideal nanomaterials for applications in materials science and medicine. Here, we report the design and creation of a novel strategy for functionalizing SWNT to systemically silence a target gene in mice by delivering siRNA at doses of <1 mg/kg. SWNT were functionalized with lipids and natural amino acid-based dendrimers (TOT) and complexed to siRNA. Our model study of the silencing efficiency of the TOT-siRNA complex showed that, in mice injected at 0.96 mg/kg, an endogenous gene for apoliproprotein B (ApoB) was silenced in liver, plasma levels of ApoB decreased, and total plasma cholesterol decreased. TOT-siRNA treatment was nontoxic and did not induce an immune response. Most (80%) of the RNA trigger molecules assembled with TOT were cleared from the body 48 h after injection, suggesting that the nanotubes did not cause siRNA aggregation or inhibit biodegradation and drug clearance in vivo. These results provide the first evidence that nanotubes can be functionalized with lipids and amino acids to systemically deliver siRNA. This new technology not only can be used for systemic RNAi, but may also be used to deliver other drugs in vivo.
Collapse
Affiliation(s)
- Joshua McCarroll
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
45
|
Chen A, Guo Z, Zhou L, Yang H. Hepatic Endosome Protein Profiling in Apolipoprotein E Deficient Mice Expressing Apolipoprotein B48 but not B100. ACTA ACUST UNITED AC 2010; 2:100-106. [PMID: 21837265 DOI: 10.4172/1948-593x.1000031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liver cells absorb apolipoprotein (Apo) B48-carrying lipoproteins in ApoE's absence, albeit not as efficiently as the ApoE-mediated process. Our objective was to identify differentially expressed hepatic endosome proteins in mice expressing ApoB48 but lacking ApoE and ApoB100 expression (ApoE-/-/B48/48). We purified early and late endosomes from ApoE-/-/B48/48 and wild-type mouse's livers. In ApoE-/-/B48/48 mouse's hepatic endosomes, proteomic analysis revealed elevated protein levels of major urinary protein 6 (MUP), calreticulin, protein disulfide isomerases (PDI) A1, and A3. These proteins are capable of interacting with lipids/lipoproteins and triggering receptor-mediated endocytosis. In addition, hepatic endosomes from ApoE-/- /B48/48 mice exhibited significantly reduced protein levels of haptoglobin, hemopexin, late endosome/lysosome interacting protein, cell division control protein 2 homolog, γ-soluble Nethylmaleimide- sensitive factor attachment protein, vacuolar ATP synthase catalytic subunit A1, dipeptidyl peptidases II, cathepsin B, D, H, and Z. These proteins participate in plasma heme clearance, receptor-mediated signaling, membrane fusion, endosomal/lysosomal acidification, and protein degradation. The significance of increasing endosomal MUP, calreticulin and PDIs in ApoE-/-/B48/48 mouse liver cells is not clear; however, reducing endosomal/ lysosomal membrane proteins and hydrolases might be, at least partially, responsible for the retarded clearance of plasma ApoB-carrying lipoproteins in ApoE-/-/B48/48 mice.
Collapse
Affiliation(s)
- Anshu Chen
- Department of Physiology, Meharry Medical College, Nashville, TN
| | | | | | | |
Collapse
|
46
|
Foley EM, Esko JD. Hepatic heparan sulfate proteoglycans and endocytic clearance of triglyceride-rich lipoproteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:213-33. [PMID: 20807647 DOI: 10.1016/s1877-1173(10)93010-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypertriglyceridemia, characterized by the accumulation of triglyceride-rich lipoproteins in the blood, affects 10-20% of the population in western countries and increases the risk of atherosclerosis, coronary artery disease, and pancreatitis. The etiology of hypertriglyceridemia is complex, and much interest exists in identifying and characterizing the biological and environmental factors that affect the synthesis and turnover of plasma triglycerides. Genetic studies in mice have recently identified that heparan sulfate proteoglycans are a class of receptors that mediate the clearance of triglyceride-rich lipoproteins in the liver. Heparan sulfate proteoglycans are expressed by endothelial cells that line the hepatic sinusoids and the underlying hepatocytes, and are present in the perisinusoidal space (space of Disse). This chapter discusses the dependence of lipoprotein binding on heparan sulfate structure and the identification of hepatocyte syndecan-1 as the primary proteoglycan that mediates triglyceride-rich lipoprotein clearance.
Collapse
Affiliation(s)
- Erin M Foley
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
47
|
Abstract
The vasa vasorum form a network of microvasculature that originate primarily in the adventitial layer of large arteries. These vessels supply oxygen and nutrients to the outer layers of the arterial wall. The expansion of the vasa vasorum to the second order is associated with neovascularization related to progression of atherosclerosis. Immunohistological analysis of human plaques from autopsied aortas have defined plaque progression and show a significant correlation with vasa vasorum neovascularization. Recent technological advances in microcomputed tomography have enabled investigation of vasa vasorum structure and function in nondiseased large arteries from pigs and dogs. Smaller mammals, particularly mice with genetic modifications that enable disease development, have been used extensively to study the vasa vasorum in diseased vessels. Despite the fact that most mouse models that are used to study atherosclerosis are unable to develop plaque to the extent found in humans, studies in both humans and mice underscore the importance of angiogenic vasa vasorum in progression of atherosclerosis. Those who have examined the vasa vasorum in occluded vessels of nondiseased pigs and dogs find that inhibition of the vasa vasorum makes the animals atheroprone. Atherosclerosis is a multifactorial disease. There is increasing evidence that factors, produced in response to changes in the arterial wall, collaborate with the vasa vasorum to enhance the disease process.
Collapse
Affiliation(s)
- Mary Jo Mulligan-Kehoe
- Department of Surgery, Vascular Section, Dartmouth Medical School, Borwell 530E, One Medical Center Drive, Lebanon, NH 03756, USA.
| |
Collapse
|
48
|
Kaufmann BA, Carr CL, Belcik JT, Xie A, Yue Q, Chadderdon S, Caplan ES, Khangura J, Bullens S, Bunting S, Lindner JR. Molecular imaging of the initial inflammatory response in atherosclerosis: implications for early detection of disease. Arterioscler Thromb Vasc Biol 2009; 30:54-9. [PMID: 19834105 DOI: 10.1161/atvbaha.109.196386] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Background- We hypothesized that molecular imaging of endothelial cell adhesion molecule expression could noninvasively evaluate prelesion atherogenic phenotype. METHODS AND RESULTS Mice deficient for the LDL-receptor and the Apobec-1 editing peptide (DKO mice) were studied as an age-dependent model of atherosclerosis. At 10, 20, and 40 weeks of age, ultrasound molecular imaging of the proximal thoracic aorta was performed with contrast agents targeted to P-selectin and VCAM-1. Atherosclerotic lesion severity and content were assessed by ultrahigh frequency ultrasound, histology, and immunohistochemistry. In wild-type mice at all ages, there was neither aortic thickening nor targeted tracer signal enhancement. In DKO mice, lesions progressed from sparse mild intimal thickening at 10 weeks to widespread severe lesions with luminal encroachment at 40 weeks. Molecular imaging for P-selectin and VCAM-1 demonstrated selective signal enhancement (P<0.01 versus nontargeted agent) at all ages for DKO mice. P-selectin and VCAM-1 signal in DKO mice were greater by 3-fold at 10 weeks, 4- to 6-fold at 20 weeks, and 9- to 10-fold at 40 weeks compared to wild-type mice. En face microscopy demonstrated preferential attachment of targeted microbubbles to regions of lesion formation. CONCLUSIONS Noninvasive ultrasound molecular imaging of endothelial activation can detect lesion-prone vascular phenotype before the appearance of obstructive atherosclerotic lesions.
Collapse
Affiliation(s)
- Beat A Kaufmann
- Cardiovascular Division, UHN-62, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Xie Y, Blanc V, Kerr TA, Kennedy S, Luo J, Newberry EP, Davidson NO. Decreased expression of cholesterol 7alpha-hydroxylase and altered bile acid metabolism in Apobec-1-/- mice lead to increased gallstone susceptibility. J Biol Chem 2009; 284:16860-16871. [PMID: 19386592 PMCID: PMC2719322 DOI: 10.1074/jbc.m109.010173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Quantitative trait mapping in mice identified a susceptibility locus for gallstones (Lith6) spanning the Apobec-1 locus, the structural gene encoding the RNA-specific cytidine deaminase responsible for production of apolipoprotein B48 in mammalian small intestine and rodent liver. This observation prompted us to compare dietary gallstone susceptibility in Apobec-1(-/-) mice and congenic C57BL/6 wild type controls. When fed a lithogenic diet (LD) for 2 weeks, 90% Apobec-1(-/-) mice developed solid gallstones in comparison with 16% wild type controls. LD-fed Apobec-1(-/-) mice demonstrated increased biliary cholesterol secretion as well as increased cholesterol saturation and bile acid hydrophobicity indices. These changes occurred despite a relative decrease in cholesterol absorption in LD-fed Apobec-1(-/-) mice. Among the possible mechanisms to account for this phenotype, expression of Cyp7a1 mRNA and protein were significantly decreased in chow-fed Apobec-1(-/-) mice, decreasing further in LD-fed animals. Cyp7a1 transcription in hepatocyte nuclei, however, was unchanged in Apobec-1(-/-) mice, excluding transcriptional repression as a potential mechanism for decreased Cyp7a1 expression. We demonstrated that APOBEC-1 binds to AU-rich regions of the 3'-untranslated region of the Cyp7a1 transcript, containing the UUUN(A/U)U consensus motif, using both UV cross-linking to recombinant APOBEC-1 and in vivo RNA co-immunoprecipitation. In vivo Apobec-1-dependent modulation of Cyp7a1 expression was further confirmed following adenovirus-Apobec-1 administration to chow-fed Apobec-1(-/-) mice, which rescued Cyp7a1 gene expression. Taken together, the findings suggest that the AU-rich RNA binding-protein Apobec-1 mediates post-transcriptional regulation of murine Cyp7a1 expression and influences susceptibility to diet-induced gallstone formation.
Collapse
Affiliation(s)
- Yan Xie
- From the Departments of Medicine, St. Louis, Missouri 63110
| | - Valerie Blanc
- From the Departments of Medicine, St. Louis, Missouri 63110
| | - Thomas A Kerr
- From the Departments of Medicine, St. Louis, Missouri 63110
| | - Susan Kennedy
- From the Departments of Medicine, St. Louis, Missouri 63110
| | - Jianyang Luo
- From the Departments of Medicine, St. Louis, Missouri 63110
| | | | - Nicholas O Davidson
- From the Departments of Medicine, St. Louis, Missouri 63110; Pharmacology and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|
50
|
Skogsberg J, Dicker A, Rydén M, Aström G, Nilsson R, Bhuiyan H, Vitols S, Mairal A, Langin D, Alberts P, Walum E, Tegnér J, Hamsten A, Arner P, Björkegren J. ApoB100-LDL acts as a metabolic signal from liver to peripheral fat causing inhibition of lipolysis in adipocytes. PLoS One 2008; 3:e3771. [PMID: 19020660 PMCID: PMC2582480 DOI: 10.1371/journal.pone.0003771] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 11/03/2008] [Indexed: 12/04/2022] Open
Abstract
Background Free fatty acids released from adipose tissue affect the synthesis of apolipoprotein B-containing lipoproteins and glucose metabolism in the liver. Whether there also exists a reciprocal metabolic arm affecting energy metabolism in white adipose tissue is unknown. Methods and Findings We investigated the effects of apoB-containing lipoproteins on catecholamine-induced lipolysis in adipocytes from subcutaneous fat cells of obese but otherwise healthy men, fat pads from mice with plasma lipoproteins containing high or intermediate levels of apoB100 or no apoB100, primary cultured adipocytes, and 3T3-L1 cells. In subcutaneous fat cells, the rate of lipolysis was inversely related to plasma apoB levels. In human primary adipocytes, LDL inhibited lipolysis in a concentration-dependent fashion. In contrast, VLDL had no effect. Lipolysis was increased in fat pads from mice lacking plasma apoB100, reduced in apoB100-only mice, and intermediate in wild-type mice. Mice lacking apoB100 also had higher oxygen consumption and lipid oxidation. In 3T3-L1 cells, apoB100-containing lipoproteins inhibited lipolysis in a dose-dependent fashion, but lipoproteins containing apoB48 had no effect. ApoB100-LDL mediated inhibition of lipolysis was abolished in fat pads of mice deficient in the LDL receptor (Ldlr−/−Apob100/100). Conclusions Our results show that the binding of apoB100-LDL to adipocytes via the LDL receptor inhibits intracellular noradrenaline-induced lipolysis in adipocytes. Thus, apoB100-LDL is a novel signaling molecule from the liver to peripheral fat deposits that may be an important link between atherogenic dyslipidemias and facets of the metabolic syndrome.
Collapse
Affiliation(s)
- Josefin Skogsberg
- The Computational Medicine Group, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|