1
|
Bonomi F, Limido E, Weinzierl A, Bickelmann C, Ampofo E, Harder Y, Menger MD, Laschke MW. Heat Preconditioning of Nanofat Does Not Improve Its Vascularization Properties. Cells 2025; 14:581. [PMID: 40277906 PMCID: PMC12025451 DOI: 10.3390/cells14080581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Heat preconditioning has been shown to promote nutritive perfusion and tissue survival in autologous fat grafting as well as in flap and breast surgery. However, its impact on the vascularization properties of nanofat has not been investigated so far. Therefore, we exposed nanofat from donor mice to a temperature of 43 °C for 1 h and assessed the effects of this heat stress on cell viability and the expression of heat shock proteins (HSPs) and angiogenesis-related factors. Moreover, dermal substitutes seeded with heat-preconditioned and non-preconditioned control nanofat were implanted into dorsal skinfold chambers of recipient mice to study their vascularization and tissue integration in vivo by means of repeated intravital fluorescence microscopy, histology and immunohistochemistry. Heat preconditioning upregulated the expression of HSPs in nanofat without affecting cell viability. Moreover, it resulted in the downregulation of many pro-angiogenic factors and the increased expression of anti-angiogenic factors, indicating a shift towards an anti-angiogenic phenotype. Accordingly, implanted dermal substitutes seeded with heat-preconditioned nanofat exhibited a reduced vascularization and were not better integrated into the host tissue when compared to controls. These findings indicate that heat preconditioning cannot be recommended for enhancing the vascularization capacity of nanofat.
Collapse
Affiliation(s)
- Francesca Bonomi
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (F.B.); (E.L.); (A.W.); (C.B.); (E.A.); (M.D.M.)
| | - Ettore Limido
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (F.B.); (E.L.); (A.W.); (C.B.); (E.A.); (M.D.M.)
| | - Andrea Weinzierl
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (F.B.); (E.L.); (A.W.); (C.B.); (E.A.); (M.D.M.)
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8006 Zurich, Switzerland
| | - Caroline Bickelmann
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (F.B.); (E.L.); (A.W.); (C.B.); (E.A.); (M.D.M.)
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (F.B.); (E.L.); (A.W.); (C.B.); (E.A.); (M.D.M.)
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), 1005 Lausanne, Switzerland;
- Faculty of Biology and Medicine, University of Lausanne (UNIL), 1005 Lausanne, Switzerland
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (F.B.); (E.L.); (A.W.); (C.B.); (E.A.); (M.D.M.)
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (F.B.); (E.L.); (A.W.); (C.B.); (E.A.); (M.D.M.)
| |
Collapse
|
2
|
Salloom RJ, Ahmad IM, Sahtout DZ, Baine MJ, Abdalla MY. Heme Oxygenase-1 and Prostate Cancer: Function, Regulation, and Implication in Cancer Therapy. Int J Mol Sci 2024; 25:9195. [PMID: 39273143 PMCID: PMC11394971 DOI: 10.3390/ijms25179195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer (PC) is a significant cause of mortality in men worldwide, hence the need for a comprehensive understanding of the molecular mechanisms underlying its progression and resistance to treatment. Heme oxygenase-1 (HO-1), an inducible enzyme involved in heme catabolism, has emerged as a critical player in cancer biology, including PC. This review explores the multifaceted role of HO-1 in PC, encompassing its function, regulation, and implications in cancer therapy. HO-1 influences cell proliferation, anti-apoptotic pathways, angiogenesis, and the tumor microenvironment, thereby influencing tumor growth and metastasis. HO-1 has also been associated with therapy resistance, affecting response to standard treatments. Moreover, HO-1 plays a significant role in immune modulation, affecting the tumor immune microenvironment and potentially influencing therapy outcomes. Understanding the intricate balance of HO-1 in PC is vital for developing effective therapeutic strategies. This review further explores the potential of targeting HO-1 as a therapeutic approach, highlighting challenges and opportunities. Additionally, clinical implications are discussed, focusing on the prognostic value of HO-1 expression and the development of novel combined therapies to augment PC sensitivity to standard treatment strategies. Ultimately, unraveling the complexities of HO-1 in PC biology will provide critical insights into personalized treatment approaches for PC patients.
Collapse
Affiliation(s)
- Ramia J. Salloom
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Iman M. Ahmad
- Department of Clinical, Diagnostic, and Therapeutic Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dania Z. Sahtout
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Michael J. Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Maher Y. Abdalla
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| |
Collapse
|
3
|
D’Amico AG, Maugeri G, Vanella L, Consoli V, Sorrenti V, Bruno F, Federico C, Fallica AN, Pittalà V, D’Agata V. Novel Acetamide-Based HO-1 Inhibitor Counteracts Glioblastoma Progression by Interfering with the Hypoxic-Angiogenic Pathway. Int J Mol Sci 2024; 25:5389. [PMID: 38791428 PMCID: PMC11121434 DOI: 10.3390/ijms25105389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma multiforme (GBM) represents the deadliest tumor among brain cancers. It is a solid tumor characterized by uncontrolled cell proliferation generating the hypoxic niches in the cancer core. By inducing the transcription of hypoxic inducible factor (HIF), hypoxia triggers many signaling cascades responsible for cancer progression and aggressiveness, including enhanced expression of vascular endothelial growth factor (VEGF) or antioxidant enzymes, such as heme oxygenase-1 (HO-1). The present work aimed to investigate the link between HO-1 expression and the hypoxic microenvironment of GBM by culturing two human glioblastoma cell lines (U87MG and A172) in the presence of a hypoxic mimetic agent, deferoxamine (DFX). By targeting hypoxia-induced HO-1, we have tested the effect of a novel acetamide-based HO-1 inhibitor (VP18/58) on GBM progression. Results have demonstrated that hypoxic conditions induced upregulation and nuclear expression of HO-1 in a cell-dependent manner related to malignant phenotype. Moreover, our data demonstrated that the HO-1 inhibitor counteracted GBM progression by modulating the HIFα/HO-1/VEGF signaling cascade in cancer cells bearing more malignant phenotypes.
Collapse
Affiliation(s)
- Agata Grazia D’Amico
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (V.C.); (V.S.); (V.P.)
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (V.C.); (V.S.); (V.P.)
| | - Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (V.C.); (V.S.); (V.P.)
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (V.C.); (V.S.); (V.P.)
| | - Francesca Bruno
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, 95123 Catania, Italy (C.F.)
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, 95123 Catania, Italy (C.F.)
| | - Antonino Nicolò Fallica
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (V.C.); (V.S.); (V.P.)
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (V.C.); (V.S.); (V.P.)
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama 329, Bahrain
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy
| |
Collapse
|
4
|
Ghareghomi S, Moosavi-Movahedi F, Saso L, Habibi-Rezaei M, Khatibi A, Hong J, Moosavi-Movahedi AA. Modulation of Nrf2/HO-1 by Natural Compounds in Lung Cancer. Antioxidants (Basel) 2023; 12:antiox12030735. [PMID: 36978983 PMCID: PMC10044870 DOI: 10.3390/antiox12030735] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Oxidative stresses (OSs) are considered a pivotal factor in creating various pathophysiological conditions. Cells have been able to move forward by modulating numerous signaling pathways to moderate the defects of these stresses during their evolution. The company of Kelch-like ECH-associated protein 1 (Keap1) as a molecular sensing element of the oxidative and electrophilic stress and nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) as a master transcriptional regulator of the antioxidant response makes a master cytoprotective antioxidant pathway known as the Keap1/Nrf2 pathway. This pathway is considered a dual-edged sword with beneficial features for both normal and cancer cells by regulating the gene expression of the array of endogenous antioxidant enzymes. Heme oxygenase-1 (HO-1), a critical enzyme in toxic heme removal, is one of the clear state indicators for the duality of this pathway. Therefore, Nrf2/HO-1 axis targeting is known as a novel strategy for cancer treatment. In this review, the molecular mechanism of action of natural antioxidants on lung cancer cells has been investigated by relying on the Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (F.M.-M.)
| | - Faezeh Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (F.M.-M.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (L.S.); (M.H.-R.); (A.A.M.-M.); Tel.: +39-06-4991-2481 (L.S.); +98-21-6111-3214 (M.H.-R.); +98-21-6640-3957 (A.A.M.-M.); Fax: +39-06-4991-2481 (L.S.); +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680(A.A.M.-M.)
| | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran 1417466191, Iran
- Center of Excellence in NanoBiomedicine, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (L.S.); (M.H.-R.); (A.A.M.-M.); Tel.: +39-06-4991-2481 (L.S.); +98-21-6111-3214 (M.H.-R.); +98-21-6640-3957 (A.A.M.-M.); Fax: +39-06-4991-2481 (L.S.); +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680(A.A.M.-M.)
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran 1993893973, Iran;
| | - Jun Hong
- School of Life Sciences, Henan University, Kaifeng 475000, China;
| | - Ali A. Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (F.M.-M.)
- UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (L.S.); (M.H.-R.); (A.A.M.-M.); Tel.: +39-06-4991-2481 (L.S.); +98-21-6111-3214 (M.H.-R.); +98-21-6640-3957 (A.A.M.-M.); Fax: +39-06-4991-2481 (L.S.); +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680(A.A.M.-M.)
| |
Collapse
|
5
|
Yu QQ, Zhang H, Guo Y, Han B, Jiang P. The Intestinal Redox System and Its Significance in Chemotherapy-Induced Intestinal Mucositis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7255497. [PMID: 35585883 PMCID: PMC9110227 DOI: 10.1155/2022/7255497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022]
Abstract
Chemotherapy-induced intestinal mucositis (CIM) is a significant dose-limiting adverse reaction brought on by the cancer treatment. Multiple studies reported that reactive oxygen species (ROS) is rapidly produced during the initial stages of chemotherapy, when the drugs elicit direct damage to intestinal mucosal cells, which, in turn, results in necrosis, mitochondrial dysfunction, and ROS production. However, the mechanism behind the intestinal redox system-based induction of intestinal mucosal injury and necrosis of CIM is still undetermined. In this article, we summarized relevant information regarding the intestinal redox system, including the composition and regulation of redox enzymes, ROS generation, and its regulation in the intestine. We innovatively proposed the intestinal redox "Tai Chi" theory and revealed its significance in the pathogenesis of CIM. We also conducted an extensive review of the English language-based literatures involving oxidative stress (OS) and its involvement in the pathological mechanisms of CIM. From the date of inception till July 31, 2021, 51 related articles were selected. Based on our analysis of these articles, only five chemotherapeutic drugs, namely, MTX, 5-FU, cisplatin, CPT-11, and oxaliplatin were shown to trigger the ROS-based pathological mechanisms of CIM. We also discussed the redox system-mediated modulation of CIM pathogenesis via elaboration of the relationship between chemotherapeutic drugs and the redox system. It is our belief that this overview of the intestinal redox system and its role in CIM pathogenesis will greatly enhance research direction and improve CIM management in the future.
Collapse
Affiliation(s)
- Qing-Qing Yu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Jining First People's Hospital, Jining Medical College, Jining 272000, China
| | - Heng Zhang
- Department of Laboratory, Shandong Daizhuang Hospital, Jining 272051, China
| | - Yujin Guo
- Jining First People's Hospital, Jining Medical College, Jining 272000, China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Pei Jiang
- Jining First People's Hospital, Jining Medical College, Jining 272000, China
| |
Collapse
|
6
|
Kawasoe J, Uchida Y, Kawamoto H, Miyauchi T, Watanabe T, Saga K, Tanaka K, Ueda S, Terajima H, Taura K, Hatano E. Propionic Acid, Induced in Gut by an Inulin Diet, Suppresses Inflammation and Ameliorates Liver Ischemia and Reperfusion Injury in Mice. Front Immunol 2022; 13:862503. [PMID: 35572528 PMCID: PMC9097600 DOI: 10.3389/fimmu.2022.862503] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
Liver ischemia and reperfusion injury (IRI) is one of the obstacles in liver surgery such as liver resection and transplantation. In this study, we investigated the preventive effect on mouse liver IRI by feeding mice with inulin, which is a heterogeneous blend of indigestible fructose polymer. Mice were fed either a control ordinary diet (CD) or an inulin diet (ID) containing 5% inulin in the CD, for 14 days before the ischemia and reperfusion (IR) maneuver. IR induced-liver damages were significantly ameliorated in the ID group, compared with those in the CD group. Feeding mice with an ID, but not a CD, elevated levels of Bacteroidetes among gut microbiota, and especially increased Bacteroides acidifaciens in mouse feces, which resulted in significant elevation of short-chain fatty acids (SCFAs) in the portal vein of mice. Among SCFAs, propionic acid (PA) was most significantly increased. The microbial gene functions related to PA biosynthesis were much higher in the fecal microbiome of the ID group compared to the CD. However, the action of PA on liver IRI has not been yet clarified. Direct intraperitoneal administration of PA alone prior to the ischemia strongly suppressed liver cell damages as well as inflammatory responses caused by liver IR. Furthermore, PA suppressed the secretion of inflammatory cytokines from peritoneal macrophages stimulated in vitro through TLR-4 with high-mobility group box 1 protein (HMGB-1), known to be released from apoptotic liver cells during the IR insult. The present study shows that PA may play a key role in the inulin-induced amelioration of mouse liver IRI.
Collapse
Affiliation(s)
- Junya Kawasoe
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, Osaka, Japan
| | - Yoichiro Uchida
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, Osaka, Japan
- *Correspondence: Yoichiro Uchida,
| | - Hiroshi Kawamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, Osaka, Japan
| | - Tomoyuki Miyauchi
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, Osaka, Japan
| | - Takeshi Watanabe
- Division of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kenichi Saga
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, Osaka, Japan
| | - Kosuke Tanaka
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, Osaka, Japan
| | - Shugo Ueda
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, Osaka, Japan
| | - Hiroaki Terajima
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, Osaka, Japan
| | - Kojiro Taura
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Sauler M, McDonough JE, Adams TS, Kothapalli N, Barnthaler T, Werder RB, Schupp JC, Nouws J, Robertson MJ, Coarfa C, Yang T, Chioccioli M, Omote N, Cosme C, Poli S, Ayaub EA, Chu SG, Jensen KH, Gomez JL, Britto CJ, Raredon MSB, Niklason LE, Wilson AA, Timshel PN, Kaminski N, Rosas IO. Characterization of the COPD alveolar niche using single-cell RNA sequencing. Nat Commun 2022; 13:494. [PMID: 35078977 PMCID: PMC8789871 DOI: 10.1038/s41467-022-28062-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide, however our understanding of cell specific mechanisms underlying COPD pathobiology remains incomplete. Here, we analyze single-cell RNA sequencing profiles of explanted lung tissue from subjects with advanced COPD or control lungs, and we validate findings using single-cell RNA sequencing of lungs from mice exposed to 10 months of cigarette smoke, RNA sequencing of isolated human alveolar epithelial cells, functional in vitro models, and in situ hybridization and immunostaining of human lung tissue samples. We identify a subpopulation of alveolar epithelial type II cells with transcriptional evidence for aberrant cellular metabolism and reduced cellular stress tolerance in COPD. Using transcriptomic network analyses, we predict capillary endothelial cells are inflamed in COPD, particularly through increased CXCL-motif chemokine signaling. Finally, we detect a high-metallothionein expressing macrophage subpopulation enriched in advanced COPD. Collectively, these findings highlight cell-specific mechanisms involved in the pathobiology of advanced COPD.
Collapse
Affiliation(s)
- Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA.
| | - John E McDonough
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA.
| | - Taylor S Adams
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Neeharika Kothapalli
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Thomas Barnthaler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Rhiannon B Werder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Jonas C Schupp
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease Hannover, German Lung Research Center (DZL), Hannover, Germany
| | - Jessica Nouws
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Matthew J Robertson
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Tao Yang
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Maurizio Chioccioli
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Norihito Omote
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Carlos Cosme
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Sergio Poli
- Department of Internal Medicine, Mount Sinai Medical Center, Miami, FL, USA
| | - Ehab A Ayaub
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah G Chu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jose L Gomez
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Clemente J Britto
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Micha Sam B Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA
| | - Laura E Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ivan O Rosas
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Tripathi A, Kumar B, Sagi SSK. Hypoxia-mediated alterations in pulmonary surfactant protein expressions: Beneficial effects of quercetin prophylaxis. Respir Physiol Neurobiol 2021; 291:103695. [PMID: 34052411 DOI: 10.1016/j.resp.2021.103695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
We have compared the prophylactic efficacies of quercetin and salbutamol in preventing pulmonary surfactants oxidation under hypoxia. Male SD rats supplemented orally with quercetin (50 mg/Kg BW) and salbutamol (2 mg/Kg BW) were exposed to hypobaric hypoxia (7,620 m for 6 h). Hypoxia-mediated elevation in oxidative stress, inflammation, and extravasations of LDH & albumin content in BALF of rats were assessed. Western blotting and mRNA studies determined the differential expressions of Nrf-2, HO-1, and associated surfactant proteins (SP-A, SP-B, SP-C, & SP-D) in rat lungs. Later, the lung configuration under hypoxia was assessed histopathologically. Quercetin and salbutamol pretreatment considerably restored the expressions of Nrf-2, HO-1, and surfactant proteins to normal by attenuating the increase in oxidative stress, inflammation, and extravasations of plasma proteins in the animals under hypoxia. The histopathology has also evidenced the protective effect of quercetin in retaining normal lung architecture under hypoxia over salbutamol. The present study indicates the effectiveness of quercetin prophylaxis in preventing pulmonary surfactants oxidation under hypoxia over salbutamol.
Collapse
Affiliation(s)
- Ankit Tripathi
- Nutrition Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Bhuvnesh Kumar
- Nutrition Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Sarada S K Sagi
- Nutrition Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
9
|
Ryter SW. Significance of Heme and Heme Degradation in the Pathogenesis of Acute Lung and Inflammatory Disorders. Int J Mol Sci 2021; 22:ijms22115509. [PMID: 34073678 PMCID: PMC8197128 DOI: 10.3390/ijms22115509] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
The heme molecule serves as an essential prosthetic group for oxygen transport and storage proteins, as well for cellular metabolic enzyme activities, including those involved in mitochondrial respiration, xenobiotic metabolism, and antioxidant responses. Dysfunction in both heme synthesis and degradation pathways can promote human disease. Heme is a pro-oxidant via iron catalysis that can induce cytotoxicity and injury to the vascular endothelium. Additionally, heme can modulate inflammatory and immune system functions. Thus, the synthesis, utilization and turnover of heme are by necessity tightly regulated. The microsomal heme oxygenase (HO) system degrades heme to carbon monoxide (CO), iron, and biliverdin-IXα, that latter which is converted to bilirubin-IXα by biliverdin reductase. Heme degradation by heme oxygenase-1 (HO-1) is linked to cytoprotection via heme removal, as well as by activity-dependent end-product generation (i.e., bile pigments and CO), and other potential mechanisms. Therapeutic strategies targeting the heme/HO-1 pathway, including therapeutic modulation of heme levels, elevation (or inhibition) of HO-1 protein and activity, and application of CO donor compounds or gas show potential in inflammatory conditions including sepsis and pulmonary diseases.
Collapse
|
10
|
Jennifer B, Berg V, Modak M, Puck A, Seyerl-Jiresch M, Künig S, Zlabinger GJ, Steinberger P, Chou J, Geha RS, Öhler L, Yachie A, Choe H, Kraller M, Stockinger H, Stöckl J. Transferrin receptor 1 is a cellular receptor for human heme-albumin. Commun Biol 2020; 3:621. [PMID: 33110194 PMCID: PMC7591885 DOI: 10.1038/s42003-020-01294-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Iron is essential for living cells. Uptake of iron-loaded transferrin by the transferrin receptor 1 (CD71, TFR) is a major but not sufficient mechanism and an alternative iron-loaded ligand for CD71 has been assumed. Here, we demonstrate that CD71 utilizes heme-albumin as cargo to transport iron into human cells. Binding and endocytosis of heme-albumin via CD71 was sufficient to promote proliferation of various cell types in the absence of transferrin. Growth and differentiation of cells induced by heme-albumin was dependent on heme-oxygenase 1 (HO-1) function and was accompanied with an increase of the intracellular labile iron pool (LIP). Import of heme-albumin via CD71 was further found to contribute to the efficacy of albumin-based drugs such as the chemotherapeutic Abraxane. Thus, heme-albumin/CD71 interaction is a novel route to transport nutrients or drugs into cells and adds to the emerging function of CD71 as a scavenger receptor. Brell, Berg et al find that iron enters cells not only through iron-transferrin uptake by the transferrin receptor (CD71) but also through uptake of heme-albumin by this receptor and that heme-albumin stimulates proliferation in a manner dependent on heme oxygenase 1. This study presents a new route for iron uptake in mammalian cells.
Collapse
Affiliation(s)
- Brell Jennifer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Verena Berg
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Madhura Modak
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Alexander Puck
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Maria Seyerl-Jiresch
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Sarojinidevi Künig
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Gerhard J Zlabinger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Janet Chou
- Division of Immunology, Boston Children´s Hospital, Boston, MA, 02115, USA
| | - Raif S Geha
- Division of Immunology, Boston Children´s Hospital, Boston, MA, 02115, USA
| | - Leopold Öhler
- Department of Internal Medicine, St. Josef Hospital, 1130, Vienna, Austria
| | - Akihiro Yachie
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hyeryun Choe
- Department of Immunology and Microbiology, The Scripps Research Institute, Florida, CA, 92037, USA
| | - Markus Kraller
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Hannes Stockinger
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Johannes Stöckl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
11
|
Jang HY, Hong OY, Chung EY, Park KH, Kim JS. Roles of JNK/Nrf2 Pathway on Hemin-Induced Heme Oxygenase-1 Activation in MCF-7 Human Breast Cancer Cells. ACTA ACUST UNITED AC 2020; 56:medicina56060268. [PMID: 32485912 PMCID: PMC7353851 DOI: 10.3390/medicina56060268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 11/16/2022]
Abstract
Heme oxygenase-1 (HO-1) is highly induced in various human disease states, including cancer, indicating that HO-1 is an emerging target of cancer therapy. In this study, we investigated that the mechanisms of hemin-induced HO-1 expression and its signaling pathways in human breast cancer cell. We used MCF-7 cells, a human breast cancer cell line. Hemin increased HO-1 expression in MCF-7 cells in a dose- and time-dependent manner. Hemin enhanced HO-1 expression through the activation of c-Jun N-terminal kinases (JNK) signaling pathway. Hemin also induced activation of Nrf2, a major transcription factor of HO-1 expression. These responses in MCF-7 cells were completely blocked by pretreatment with brazilin, a HO-1 regulator. These results indicated that brazilin inhibits hemin-induced HO-1 expressions through inactivation of JNK/Nrf2 in MCF-7 cells. Thus, our findings suggest that HO-1 is an important anticancer-target of brazilin in human breast cancer.
Collapse
Affiliation(s)
- Hye-Yeon Jang
- Department of Biochemistry and Institute of Cardiovascular Research, Chonbuk National University Medical School, Jeonju 54896, Korea; (H.-Y.J.); (O.-Y.H.)
| | - On-Yu Hong
- Department of Biochemistry and Institute of Cardiovascular Research, Chonbuk National University Medical School, Jeonju 54896, Korea; (H.-Y.J.); (O.-Y.H.)
| | - Eun-Yong Chung
- Department of Anesthesiology and Pain Medicine, Bucheon St. Mary’s Hospital, Catholic University of Korea, Bucheon 14647, Korea;
| | - Kwang-Hyun Park
- Department of Emergency Medical Rescue, Nambu University, Gwangju 62271, Korea
- Department of Emergency Medicine, Graduate School of Chonnam National University, Gwangju 61469, Korea
- Correspondence: (K.-H.P.); (J.-S.K.); Tel.: +82-62-970-0220 (K.-H.P.); +82-63-270-3085 (J.-S.K.)
| | - Jong-Suk Kim
- Department of Biochemistry and Institute of Cardiovascular Research, Chonbuk National University Medical School, Jeonju 54896, Korea; (H.-Y.J.); (O.-Y.H.)
- Correspondence: (K.-H.P.); (J.-S.K.); Tel.: +82-62-970-0220 (K.-H.P.); +82-63-270-3085 (J.-S.K.)
| |
Collapse
|
12
|
Abstract
This review is focusing on the understanding of various factors and components governing and controlling the occurrence of ventricular arrhythmias including (i) the role of various ion channel-related changes in the action potential (AP), (ii) electrocardiograms (ECGs), (iii) some important arrhythmogenic mediators of reperfusion, and pharmacological approaches to their attenuation. The transmembrane potential in myocardial cells is depending on the cellular concentrations of several ions including sodium, calcium, and potassium on both sides of the cell membrane and active or inactive stages of ion channels. The movements of Na+, K+, and Ca2+ via cell membranes produce various currents that provoke AP, determining the cardiac cycle and heart function. A specific channel has its own type of gate, and it is opening and closing under specific transmembrane voltage, ionic, or metabolic conditions. APs of sinoatrial (SA) node, atrioventricular (AV) node, and Purkinje cells determine the pacemaker activity (depolarization phase 4) of the heart, leading to the surface manifestation, registration, and evaluation of ECG waves in both animal models and humans. AP and ECG changes are key factors in arrhythmogenesis, and the analysis of these changes serve for the clarification of the mechanisms of antiarrhythmic drugs. The classification of antiarrhythmic drugs may be based on their electrophysiological properties emphasizing the connection between basic electrophysiological activities and antiarrhythmic properties. The review also summarizes some important mechanisms of ventricular arrhythmias in the ischemic/reperfused myocardium and permits an assessment of antiarrhythmic potential of drugs used for pharmacotherapy under experimental and clinical conditions.
Collapse
Affiliation(s)
- Arpad Tosaki
- Department of Pharmacology, School of Pharmacy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
13
|
Arai Y, Ito M, Tanaka K, Ozawa J, Motojima Y, Matsuoka K, Igarashi K, Namba F. Increased expression of heme oxygenase-1 suppresses airway branching morphogenesis in fetal mouse lungs exposed to inflammation. Pediatr Res 2020; 87:494-500. [PMID: 31578032 DOI: 10.1038/s41390-019-0588-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Intrauterine inflammation affects fetal lung development. BTB and CNC homology 1 (Bach1) is a transcriptional repressor of heme oxygenase-1 (HO-1) and interleukin-6 (IL-6) genes. We investigated the role of Bach1 in the development of fetal mouse lungs exposed to lipopolysaccharide (LPS) using a whole fetal lung tissue culture system. METHODS We isolated and cultured embryonic day 12.5 fetal mouse lungs from pregnant Bach1 knockout (-/-) and wild-type (WT) mice. Airway branching morphogenesis was assessed by microscopically counting peripheral lung buds after incubation with/without LPS. Expression levels of genes related to inflammation and oxidative stress were evaluated using quantitative PCR. Zinc protoporphyrin, HO-1-specific inhibitor, was used. RESULTS Branching morphogenesis was observed in Bach1-/- and WT fetal mice lungs without LPS exposure; after exposure to LPS, the number of peripheral lung buds was suppressed in Bach1-/- group only. Basal messenger RNA (mRNA) and protein expression of HO-1 was significantly higher in Bach1-/- group than in WT group; IL-6 and monocyte chemoattractant protein-1 mRNA expression was significantly increased after LPS exposure in both groups. Zinc protoporphyrin mitigated the LPS-induced suppression of branching morphogenesis in Bach1-/- mice. CONCLUSION The ablation of Bach1 suppresses airway branching morphogenesis after LPS exposure by increased basal expression levels of HO-1.
Collapse
Affiliation(s)
- Yukio Arai
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, 350-8550, Japan
| | - Masato Ito
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita, Akita, 010-8543, Japan
| | - Kosuke Tanaka
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, 350-8550, Japan
| | - Junichi Ozawa
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, 350-8550, Japan
| | - Yukiko Motojima
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, 350-8550, Japan
| | - Kikumi Matsuoka
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, 350-8550, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Fumihiko Namba
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, 350-8550, Japan.
| |
Collapse
|
14
|
Lin H, Wang X. The effects of gasotransmitters on bronchopulmonary dysplasia. Eur J Pharmacol 2020; 873:172983. [PMID: 32017936 DOI: 10.1016/j.ejphar.2020.172983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Bronchopulmonary dysplasia (BPD), which remains a major clinical problem for preterm infants, is caused mainly by hyperoxia, mechanical ventilation and inflammation. Many approaches have been developed with the aim of decreasing the incidence of or alleviating BPD, but effective methods are still lacking. Gasotransmitters, a type of small gas molecule that can be generated endogenously, exert a protective effect against BPD-associated lung injury; nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are three such gasotransmitters. The protective effects of NO have been extensively studied in animal models of BPD, but the results of these studies are inconsistent with those of clinical trials. NO inhalation seems to have no effect on BPD, although side effects have been reported. NO inhalation is not recommended for BPD treatment in preterm infants, except those with severe pulmonary hypertension. Both CO and H2S decreased lung injury in BPD rodent models in preclinical studies. Another small gas molecule, hydrogen, exerts a protective effect against BPD. The nuclear factor erythroid-derived 2 (Nrf2)/heme oxygenase-1 (HO-1) axis seems to play a central role in the protective effect of these gasotransmitters on BPD. Gasotransmitters play important roles in mammals, but further clinical trials are needed to explore their effects on BPD.
Collapse
Affiliation(s)
- Hai Lin
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Xinbao Wang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
15
|
Inflammation in CF: Key Characteristics and Therapeutic Discovery. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Heme oxygenase-1/carbon monoxide as modulators of autophagy and inflammation. Arch Biochem Biophys 2019; 678:108186. [PMID: 31704095 DOI: 10.1016/j.abb.2019.108186] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/10/2019] [Accepted: 11/04/2019] [Indexed: 12/29/2022]
Abstract
Heme oxygenase-1 (HO-1) catalyzes heme degradation to generate biliverdin-IXα, carbon monoxide (CO), and iron. The HO-1/CO system confers cytoprotection in animal models of organ injury and disease, via modulation of inflammation and apoptosis. Recent studies have uncovered novel anti-inflammatory targets of HO-1/CO including regulation of the autophagy and inflammasome pathways. Autophagy is a lysosome-dependent program for the turnover of cellular organelles such as mitochondria, proteins, and pathogens; which may downregulate inflammatory processes. Therapeutic modulation of autophagy by CO has been demonstrated in models of sepsis. The nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome regulates the maturation of pro-inflammatory cytokines. CO can regulate NLRP3 inflammasome activation and associated pro-inflammatory cytokines production and promote the resolution of inflammation by upregulating the synthesis of specialized pro-resolving mediators (SPMs). Mitochondria may represent a proximal target of HO-1/CO action. HO-1 may localize to mitochondria in response to stress, while CO can moderate mitochondrial dysfunction and regulate mitochondrial autophagy (mitophagy) and biogenesis. The interplay between mitochondrial autophagy, mitochondrial dysfunction, and the regulation and resolution of inflammation may make important contributions to the protection afforded by HO-1/CO in cellular and organ injury models. Recent studies have continued to explore the potential of CO for clinical applications.
Collapse
|
17
|
Liu C, Zhu P, Fujino M, Zhu S, Ito H, Takahashi K, Nakajima M, Tanaka T, Zhuang J, Li XK. 5-ALA/SFC Attenuated Binge Alcohol-Induced Gut Leakiness and Inflammatory Liver Disease in HIV Transgenic Rats. Alcohol Clin Exp Res 2019; 43:1651-1661. [PMID: 31141180 DOI: 10.1111/acer.14117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND This study aimed to investigate the protective effect of 5-aminolevulinic acid (5-ALA) and sodium ferrous citrate (SFC) against binge alcohol-induced gut leakiness and inflammatory liver disease in HIV transgenic (TG) rats. METHODS TG rats were treated with 3 consecutive doses of binge ethanol (EtOH) with or without 5-ALA/SFC. Blood and liver tissue samples were collected at 6 hours following the last dose of EtOH. RESULTS Compared with the wild-type (WT) rats, the TG rats showed increased sensitivity to alcohol-mediated inflammation, as evidenced by the significantly elevated levels of serum endotoxin, AST, ALT, ED1, and ED2 staining in liver. In contrast, 5-ALA/SFC improved the above biochemical and histochemical profiles. 5-ALA/SFC also attenuated the up-regulated mRNA expression of leptin and CCL2. Furthermore, down-regulated intestinal ZO-1 protein expression was also inhibited by 5-ALA/SFC. Moreover, the expressions of HO-1, HO-2, Sirt1, and related signal transduction molecules in liver were increased by 5-ALA/SFC. These results demonstrated that 5-ALA/SFC treatment ameliorated binge alcohol exposure liver injury in a rat model of HIV-infected patients by reducing macrophage activation and expression of inflammatory cytokines/chemokines, and by inducing HO-1, HO-2, and Sirt1 expression. CONCLUSIONS Taken together, these findings suggested that treatment with 5-ALA/SFC has a potential therapeutic effect for binge alcohol exposure liver injury in HIV-infected patients.
Collapse
Affiliation(s)
- Chi Liu
- Division of Transplantation Immunology, Research Institute, National Center for Child Health and Development, Tokyo, Japan
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Masayuki Fujino
- Division of Transplantation Immunology, Research Institute, National Center for Child Health and Development, Tokyo, Japan.,AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | | | | | | | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, Research Institute, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
18
|
Abdalla MY, Ahmad IM, Rachagani S, Banerjee K, Thompson CM, Maurer HC, Olive KP, Bailey KL, Britigan BE, Kumar S. Enhancing responsiveness of pancreatic cancer cells to gemcitabine treatment under hypoxia by heme oxygenase-1 inhibition. Transl Res 2019; 207:56-69. [PMID: 30653942 DOI: 10.1016/j.trsl.2018.12.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 01/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies and has one of the worst prognoses leading to a meager 5-year survival rate of ∼8%. Chemotherapy has had limited success in extending the life span of patients with advanced PDAC due to poor tumor perfusion and hypoxia-induced resistance. Hypoxia reprograms the gene expression profile and upregulates the expression of multiple genes including heme oxygenase-1 (HO-1), which provide survival advantage to PDAC cells. However, the relationships between HO-1, hypoxia, and response to chemotherapy is unclear. Our results showed that hypoxia upregulates the expression of HO-1 in PDAC cells, and HO-1 inhibition using the HO-1 inhibitors zinc protoporphyrin, tin protoporphyrin IX (SnPP), and HO-1 knockout using CRISPR/Cas9 suppresses the proliferation of PDAC cells under hypoxia and sensitize them to gemcitabine under in vitro conditions. Treating orthotopic tumors with SnPP, or SnPP in combination with gemcitabine, significantly reduced the weight of pancreatic tumors (P < 0.05), decreased metastasis and improved the efficacy of gemcitabine treatment (P < 0.05). Mechanistically, inhibition of HO-1 increased the production of reactive oxygen species as demonstrated by increased dihydroethidium, and Mitosox, disrupted glutathione cycle, and enhanced apoptosis. There was significant increase in cleaved caspase-3 staining in tumors after combined treatment with SnPP and gemcitabine comparing to control or gemcitabine alone. In addition, inhibiting HO-1 reduced expression of stemness markers (CD133, and CD44) as compared to control or gemcitabine. Overall, our study may present a novel therapeutic regimen that might be adopted for the treatment of PDAC patients.
Collapse
Affiliation(s)
- Maher Y Abdalla
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Iman M Ahmad
- Department of Medical Imaging and Therapeutic Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Satyanarayana Rachagani
- Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kasturi Banerjee
- Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Christopher M Thompson
- Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - H Carlo Maurer
- Departments of Medicine and Pathology & Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Kenneth P Olive
- Departments of Medicine and Pathology & Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Katie L Bailey
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Bradley E Britigan
- Research Service, VA Medical Center, Nebraska/Western Iowa, Omaha, Nebraska; Department of Internal Medicine; University of Nebraska Medical Center, Omaha, Nebraska
| | - Sushil Kumar
- Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
19
|
Castañeda AR, Pinkerton KE, Bein KJ, Magaña-Méndez A, Yang HT, Ashwood P, Vogel CFA. Ambient particulate matter activates the aryl hydrocarbon receptor in dendritic cells and enhances Th17 polarization. Toxicol Lett 2018; 292:85-96. [PMID: 29689377 PMCID: PMC5971007 DOI: 10.1016/j.toxlet.2018.04.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/01/2018] [Accepted: 04/18/2018] [Indexed: 02/02/2023]
Abstract
The objective of this study was to explore the role of the aryl hydrocarbon receptor (AhR) in ambient particulate matter (PM)-mediated activation of dendritic cells (DCs) and Th17-immune responses in vitro. To assess the potential role of the AhR in PM-mediated activation of DCs, co-stimulation, and cytokine expression, bone marrow (BM)-derived macrophages and DCs from C57BL/6 wildtype or AhR knockout (AhR-/-) mice were treated with PM. Th17 differentiation was assessed via co-cultures of wildtype or AhR-/- BMDCs with autologous naive T cells. PM2.5 significantly induced AhR DNA binding activity to dioxin responsive elements (DRE) and expression of the AhR repressor (AhRR), cytochrome P450 (CYP) 1A1, and CYP1B1, indicating activation of the AhR. In activated (OVA sensitized) BMDCs, PM2.5 induced interleukin (IL)-1β, CD80, CD86, and MHC class II, suggesting enhanced DC activation, co-stimulation, and antigen presentation; responses that were abolished in AhR deficient DCs. DC-T cell co-cultures treated with PM and lipopolysaccharide (LPS) led to elevated IL-17A and IL-22 expression at the mRNA level, which is mediated by the AhR. PM-treated DCs were essential in endowing T cells with a Th17-phenotype, which was associated with enhanced expression of MHC class II and cyclooxygenase (COX)-2. In conclusion, PM enhances DC activation that primes naive T cell differentiation towards a Th17-like phenotype in an AhR-dependent manner.
Collapse
Affiliation(s)
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California, Davis, 95616, USA; Department of Pediatrics, School of Medicine, University of California, Davis, 95817, USA
| | - Keith J Bein
- Center for Health and the Environment, University of California, Davis, 95616, USA; Air Quality Research Center, University of California, Davis, CA, 95616, USA
| | - Alfonso Magaña-Méndez
- Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada, C.P. 22860, Mexico
| | - Houa T Yang
- M.I.N.D. Institute, University of California, Davis, 95817, USA
| | - Paul Ashwood
- M.I.N.D. Institute, University of California, Davis, 95817, USA
| | - Christoph F A Vogel
- Center for Health and the Environment, University of California, Davis, 95616, USA; Department of Environmental Toxicology, University of California, Davis, 95616, USA.
| |
Collapse
|
20
|
Pibiri M, Leoni VP, Atzori L. Heme oxygenase-1 inhibitor tin-protoporphyrin improves liver regeneration after partial hepatectomy. Life Sci 2018; 204:9-14. [PMID: 29738777 DOI: 10.1016/j.lfs.2018.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 12/22/2022]
Abstract
AIMS This study investigates the effects of the heme oxygenase-1 (HO-1) inhibitor tin protoporphyrin IX (SnPP), on rat liver regeneration following 2/3 partial hepatectomy (PH) in order to clarify the controversial role of HO-1 in the regulation of cellular growth. MAIN METHODS Male Wistar rats received a subcutaneous injection of either SnPP (10 μmoles/kg body weight) or saline 12 h before PH and 0, 12 and 24 h after surgery. Rats were killed from 0.5 to 36 h after PH. Bromodeoxyuridine (BrdU) incorporation was used to analyze cell proliferation. Immunohistochemistry, Western blot analysis and quantitative Real Time-PCR were used to assess molecular and cellular changes after PH. KEY FINDINGS Data obtained have shown that administration of SnPP caused an increased entry of hepatocytes into S phase after PH, as demonstrated by labeling (L.I.) and mitotic (M.I.) indexes. Furthermore, enhanced cell cycle entry in PH-animals pre-treated with SnPP was associated with an earlier activation of IL-6 and transcription factors involved in liver regeneration, such as phospho-JNK and phospho-STAT3. SIGNIFICANCE Summarizing, data here reported demonstrate that inhibition of HO-1 enhances rat liver regeneration after PH which is associated to a very rapid increase in the levels of inflammatory mediators such as IL-6, phopsho-JNK and phospho-STAT3, suggesting that HO-1 could act as a negative modulator of liver regeneration. Knowledge about the mechanisms of liver regeneration can be applied to clinical problems caused by delayed liver growth, and HO-1 repression may be a mechanism by which cells can faster proliferate in response to tissue damage.
Collapse
Affiliation(s)
- Monica Pibiri
- Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy
| | - Vera Piera Leoni
- Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy
| | - Luigi Atzori
- Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy.
| |
Collapse
|
21
|
Schwartz M, Böckmann S, Borchert P, Hinz B. SB202190 inhibits endothelial cell apoptosis via induction of autophagy and heme oxygenase-1. Oncotarget 2018; 9:23149-23163. [PMID: 29796178 PMCID: PMC5955409 DOI: 10.18632/oncotarget.25234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
Activation of the p38 mitogen-activated protein kinase (MAPK) pathway has been implicated in various detrimental events finally leading to endothelial dysfunction. The present study therefore investigates the impact of the p38 MAPK inhibitor SB202190 on the expression of the cytoprotective enzyme heme oxygenase-1 (HO-1) as well as metabolic activity, apoptosis and autophagy of endothelial cells. Using human umbilical vein endothelial cells (HUVEC) SB202190 was found to cause a time- and concentration-dependent induction of HO-1 protein. Induction of HO-1 protein expression was mimicked by SB203580, another p38 MAPK inhibitor, but not by SB202474, an inactive structural analogue of p38 MAPK inhibitors. HO-1 induction by both SB202190 and SB203580 was also demonstrated by analysis of mRNA expression. On the functional level, SB202190 was shown to increase metabolic activity and autophagy of HUVEC along with diminishing basal apoptosis. Treatment of cells with tin protoporphyrin IX (SnPPIX), a well-characterised HO-1 enzymatic inhibitor, or HO-1 siRNA left SB202190-modulated metabolic activity and autophagy virtually unaltered but caused a significant reversal of the anti-apoptotic action of SB202190. Conversely, however, HO-1 expression by SB202190 became completely suppressed by the autophagy inhibitor bafilomycin A1. Bafilomycin A1 likewise fully reversed effects of SB202190 on metabolic activity and apoptosis, albeit significantly inducing apoptosis per se. Collectively, this work demonstrates SB202190 to confer upstream induction of autophagy followed by HO-1 induction resulting in potential protective effects against apoptosis. On the other hand, our data oppose HO-1 to contribute to SB202190-mediated increases in metabolic activity and autophagy, respectively.
Collapse
Affiliation(s)
- Margit Schwartz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Sabine Böckmann
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Philipp Borchert
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
22
|
Ow CPC, Ngo JP, Ullah MM, Hilliard LM, Evans RG. Renal hypoxia in kidney disease: Cause or consequence? Acta Physiol (Oxf) 2018; 222:e12999. [PMID: 29159875 DOI: 10.1111/apha.12999] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
Tissue hypoxia has been proposed as an important factor in the pathophysiology of both chronic kidney disease (CKD) and acute kidney injury (AKI), initiating and propagating a vicious cycle of tubular injury, vascular rarefaction, and fibrosis and thus exacerbation of hypoxia. Here, we critically evaluate this proposition by systematically reviewing the literature relevant to the following six questions: (i) Is kidney disease always associated with tissue hypoxia? (ii) Does tissue hypoxia drive signalling cascades that lead to tissue damage and dysfunction? (iii) Does tissue hypoxia per se lead to kidney disease? (iv) Does tissue hypoxia precede pathology? (v) Does tissue hypoxia colocalize with pathology? (vi) Does prevention of tissue hypoxia prevent kidney disease? We conclude that tissue hypoxia is a common feature of both AKI and CKD. Furthermore, at least under in vitro conditions, renal tissue hypoxia drives signalling cascades that lead to tissue damage and dysfunction. Tissue hypoxia itself can lead to renal pathology, independent of other known risk factors for kidney disease. There is also some evidence that tissue hypoxia precedes renal pathology, at least in some forms of kidney disease. However, we have made relatively little progress in determining the spatial relationships between tissue hypoxia and pathological processes (i.e. colocalization) or whether therapies targeted to reduce tissue hypoxia can prevent or delay the progression of renal disease. Thus, the hypothesis that tissue hypoxia is a "common pathway" to both AKI and CKD still remains to be adequately tested.
Collapse
Affiliation(s)
- C. P. C. Ow
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - J. P. Ngo
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - M. M. Ullah
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - L. M. Hilliard
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - R. G. Evans
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| |
Collapse
|
23
|
|
24
|
Pan W, Miao L, Lin Y, Huang X, Ge X, Moosa SL, Liu B, Ren M, Zhou Q, Liang H, Zhang W, Pan L. Regulation mechanism of oxidative stress induced by high glucose through PI3K/Akt/Nrf2 pathway in juvenile blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2017; 70:66-75. [PMID: 28882793 DOI: 10.1016/j.fsi.2017.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/23/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
This study was conducted to investigate the effects of oral administration of a high concentration of glucose on the respiratory burst, antioxidant status, and hepatic gene expression of heme oxygenase-1 (ho1) and PI3K/Akt/Nrf2-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala). Blunt snout bream juveniles with an initial body weight of 19.94 ± 0.58 g were orally fed with a high concentration of glucose (3 g/kg body weight). The results indicated that plasma glucose exhibited a biphasic response. Acute and persistent hyperglycemia due to the oral glucose administration significantly reduced (P < 0.05) the white blood cell count, red blood cell count, and hemoglobin content and caused oxidative stress (significantly increased alanine aminotransferase, aspartate transaminase, alkaline phosphatase, and glucose levels) and early apoptosis of hepatocytes in the fish. Hepatic superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activities increased rapidly (P < 0.05) as protection from oxidative stress and were downregulated (P < 0.05) because of persistent hyperglycemia. Blood respiratory burst was significantly reduced (P < 0.05) because of hyperglycemia and showed a trend that was opposite to that of plasma glucose. Slight upregulation of nrf2 mRNA and antioxidants acts as a compensative protection mechanism, and the downregulated PI3K/Akt pathway blocked this function of Nrf2. In conclusion, the PI3K/Akt pathway and Nrf2 mediated the antioxidative mechanism independently in the blunt snout bream juveniles subjected to the oral administration of a high glucose concentration.
Collapse
Affiliation(s)
- Wenjing Pan
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Linghong Miao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Yan Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Xin Huang
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China.
| | - Silli Laban Moosa
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Mingchun Ren
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Qunlan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Wuxiao Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Liangkun Pan
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| |
Collapse
|
25
|
Pseudomonas Quinolone Signal Induces Oxidative Stress and Inhibits Heme Oxygenase-1 Expression in Lung Epithelial Cells. Infect Immun 2017. [PMID: 28630072 DOI: 10.1128/iai.00176-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pseudomonasaeruginosa causes lung infections in patients with cystic fibrosis (CF). The Pseudomonas quinolone signal (PQS) compound is a secreted P. aeruginosa virulence factor that contributes to the pathogenicity of P. aeruginosa We were able to detect PQS in sputum samples from CF patients infected with P. aeruginosa but not in samples from uninfected patients. We then tested the hypothesis that PQS induces oxidative stress in host cells by determining the ability of PQS to induce the production of reactive oxygen species (ROS) in lung epithelial cells (A549 and primary normal human bronchial epithelial [NHBE]) cells and macrophages (J774A.1 and THP-1). ROS production induced by PQS was detected with fluorescent probes (dichlorodihydrofluorescein diacetate, dihydroethidium, and MitoSOX Red) in conjunction with confocal microscopy and flow cytometry. PQS induced ROS production in lung epithelial (A549 and NHBE) cells and macrophages (J774A.1 and THP-1 cells). NHBE cells were sensitive to PQS concentrations as low as 500 ng/ml. PQS significantly induced early apoptosis (P < 0.05, n = 6) in lung epithelial cells, as measured by annexin/propidium iodide detection by flow cytometry. However, no change in apoptosis upon PQS treatment was seen in J774A.1 cells. Heme oxygenase-1 (HO-1) protein is an antioxidant enzyme usually induced by oxidative stress. Interestingly, incubation with PQS significantly reduced HO-1 and NrF2 expression in A549 and NHBE cells but increased HO-1 expression in J774A.1 cells (P < 0.05, n = 3), as determined by immunoblotting and densitometry. These PQS effects on host cells could play an important role in the pathogenicity of P. aeruginosa infections.
Collapse
|
26
|
Epithelial HO-1/STAT3 affords the protection of subanesthetic isoflurane against zymosan-induced lung injury in mice. Oncotarget 2017; 8:54889-54903. [PMID: 28903389 PMCID: PMC5589628 DOI: 10.18632/oncotarget.18605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/04/2017] [Indexed: 01/17/2023] Open
Abstract
Epithelial dysfunction is a key characteristic of acute lung injury (ALI). Isoflurane (ISO) confers lung protection via anti-inflammatory and anti-apoptotic properties. However, the specific role and potential mechanisms of subanesthetic ISO in lung epithelium protection during zymosan-induced ALI remain unclear. In this study, zymosan increased the expression and activity of beneficial heme oxygenase-1 (HO-1) and signal transducers and activators of transcription 3 (STAT3) in the lung and isolated type II alveolar epithelial cells (AECs-II) from wild-type (WT) mice, which was further enhanced by ISO treatment. ISO reduced the mortality, lung edema, histological changes and pulmonary cell apoptosis, and simultaneously decreased total cells, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels in bronchoalveolar lavage fluid in the zymosan-stimulated WT mice but not in HO-1-deficient mice. Moreover, ISO abated zymosan-augmented lactate dehydrogenase activity, TNF-α and IL-1β production, and apoptosis in WT AECs-II but not in HO-1- or STAT3-silenced cells. Mechanisticly, the epithelial protective effects of ISO on zymosan insult in vivo and in vitro were mediated by a positive feedback loop comprising STAT3 and HO-1. Pro-survival and anti-apoptosis by ISO was highly reliant on activated STAT3, involving in downstream Akt activation and reduced ratio of pro-apoptotic/anti-apoptotic molecules. Overall, HO-1/STAT3 signaling is in favor of lung epithelial protection of ISO in zymosan-challenged mice, suggesting ISO as a valuable therapeutic agent for ALI.
Collapse
|
27
|
Anti-oxidative effects of 4-hydroxybenzyl alcohol in astrocytes confer protective effects in autocrine and paracrine manners. PLoS One 2017; 12:e0177322. [PMID: 28489907 PMCID: PMC5425201 DOI: 10.1371/journal.pone.0177322] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/25/2017] [Indexed: 12/26/2022] Open
Abstract
4-Hydroxybenzyl alcohol (4-HBA) is an important phenolic constituent of Gastrodia elata Blume (GEB), a traditional herbal medicine used in East Asia. Many activities have been reported to underlie the beneficial effects of 4-HBA in the brain, and in particular, its anti-inflammatory, anti-oxidative, and anti-zinc-toxic effects have been implicated in the postischemic brain. Here, the authors investigated the anti-oxidative effect of 4-HBA on astrocytes and sought to identify the underlying molecular mechanisms involved. 4-HBA dose-dependently suppressed H2O2-induced astrocyte cell death. More specifically, pre-incubation of C6 cells (an astrocyte cell line) with 100 μM 4-HBA for 6 hrs increased survival when cells were treated with H2O2 (100 μM, 1 hr) from 54.2±0.7% to 85.9±1.5%. In addition, 4-HBA was found to up-regulate and activate Nrf2, and subsequently, to induce the expressions of several anti-oxidative genes, such as, HO-1, NQO1, and GCLM. Notably, HO-1 was induced by 3.4-fold in 4-HBA-treated C6 cells, and siRNA-mediated HO-1 knockdown demonstrated that Nrf2 activation and HO-1 induction were responsible for the observed cytoprotective effect of 4-HBA. ERK and Akt signaling pathways were activated by 4-HBA in C6 cells, suggesting their involvements in protective effect of 4-HBA. In addition, 4-HBA-conditioned astrocyte culture medium was found to have neuroprotective effects on primary neuronal cultures or fresh C6 cells exposed to oxidative stress, and these effects seemed to be mediated by glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF), which both accumulated in 4-HBA-treated astrocyte culture media. Thus, the 4-HBA-mediated activation of Nrf2 and induction of HO-1 in astrocytes were found to act via autocrine and paracrine mechanisms to confer protective effects. Furthermore, given the pleiotropic effects of 4-HBA with respect to its targeting of various brain cell types and functions, it would appear that 4-HBA has therapeutic potential for the prevention and amelioration of various brain diseases.
Collapse
|
28
|
Suliman HB, Keenan JE, Piantadosi CA. Mitochondrial quality-control dysregulation in conditional HO-1 -/- mice. JCI Insight 2017; 2:e89676. [PMID: 28194437 DOI: 10.1172/jci.insight.89676] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The heme oxygenase-1 (Hmox1; HO-1) pathway was tested for defense of mitochondrial quality control in cardiomyocyte-specific Hmox1 KO mice (HO-1[CM]-/-) exposed to oxidative stress (100% O2). After 48 hours of exposure, these mice showed persistent cardiac inflammation and oxidative tissue damage that caused sarcomeric disruption, cardiomyocyte death, left ventricular dysfunction, and cardiomyopathy, while control hearts showed minimal damage. After hyperoxia, HO-1(CM)-/- hearts showed suppression of the Pgc-1α/nuclear respiratory factor-1 (NRF-1) axis, swelling, low electron density mitochondria by electron microscopy (EM), increased cell death, and extensive collagen deposition. The damage mechanism involves structurally deficient autophagy/mitophagy, impaired LC3II processing, and failure to upregulate Pink1- and Park2-mediated mitophagy. The mitophagy pathway was suppressed through loss of NRF-1 binding to proximal promoter sites on both genes. These results indicate that cardiac Hmox1 induction not only prevents heme toxicity, but also regulates the timing and registration of genetic programs for mitochondrial quality control that limit cell death, pathological remodeling, and cardiac fibrosis.
Collapse
Affiliation(s)
| | | | - Claude A Piantadosi
- Department of Medicine.,Department of Anesthesiology.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
29
|
Poff AM, Kernagis D, D'Agostino DP. Hyperbaric Environment: Oxygen and Cellular Damage versus Protection. Compr Physiol 2016; 7:213-234. [PMID: 28135004 DOI: 10.1002/cphy.c150032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The elevation of tissue pO2 induced by hyperbaric oxygen (HBO) is a physiological stimulus that elicits a variety of cellular responses. These effects are largely mediated by, or in response to, an increase in the production of reactive oxygen and nitrogen species (RONS). The major consequences of elevated RONS include increased oxidative stress and enhanced antioxidant capacity, and modulation of redox-sensitive cell signaling pathways. Interestingly, these phenomena underlie both the therapeutic and potentially toxic effects of HBO. Emerging evidence indicates that supporting mitochondrial health is a potential method of enhancing the therapeutic efficacy of, and preventing oxygen toxicity during, HBO. This review will focus on the cellular consequences of HBO, and explore how these processes mediate a delicate balance of cellular protection versus damage. © 2017 American Physiological Society. Compr Physiol 7:213-234, 2017.
Collapse
Affiliation(s)
- Angela M Poff
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Dawn Kernagis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Institute for Human and Machine Cognition, Pensacola, Florida, USA
| |
Collapse
|
30
|
Manukhina EB, Downey HF, Mallet RT. Role of Nitric Oxide in Cardiovascular Adaptation to Intermittent Hypoxia. Exp Biol Med (Maywood) 2016; 231:343-65. [PMID: 16565431 DOI: 10.1177/153537020623100401] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hypoxia is one of the most frequently encountered stresses in health and disease. The duration, frequency, and severity of hypoxic episodes are critical factors determining whether hypoxia is beneficial or harmful. Adaptation to intermittent hypoxia has been demonstrated to confer cardiovascular protection against more severe and sustained hypoxia, and, moreover, to protect against other stresses, including ischemia. Thus, the direct and cross protective effects of adaptation to intermittent hypoxia have been used for treatment and prevention of a variety of diseases and to increase efficiency of exercise training. Evidence is mounting that nitric oxide (NO) plays a central role in these adaptive mechanisms. NO-dependent protective mechanisms activated by intermittent hypoxia include stimulation of NO synthesis as well as restriction of NO overproduction. In addition, alternative, nonenzymic sources of NO and negative feedback of NO synthesis are important factors in optimizing NO concentrations. The adaptive enhancement of NO synthesis and/or availability activates or increases expression of other protective factors, including heat shock proteins, antioxidants and prostaglandins, making the protection more robust and sustained. Understanding the role of NO in mechanisms of adaptation to hypoxia will support development of therapies to prevent and treat hypoxic or ischemic damage to organs and cells and to increase adaptive capabilities of the organism.
Collapse
|
31
|
Shao JH, Feng GH. Inhibition Mechanism of Novel Pyrazolo[1,5-a]pyrazin-4(5H)-one Derivatives Against Proliferation of A549 and H322 Cancer Cells. ACTA ACUST UNITED AC 2015; 30:260-5. [DOI: 10.1016/s1001-9294(16)30010-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Loboda A, Jozkowicz A, Dulak J. HO-1/CO system in tumor growth, angiogenesis and metabolism - Targeting HO-1 as an anti-tumor therapy. Vascul Pharmacol 2015; 74:11-22. [PMID: 26392237 DOI: 10.1016/j.vph.2015.09.004] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/02/2015] [Accepted: 09/16/2015] [Indexed: 02/08/2023]
Abstract
Heme oxygenase-1 (HO-1, hmox-1) catalyzes the rate-limiting step in the heme degradation processes. Out of three by-products of HO-1 activity, biliverdin, iron ions and carbon monoxide (CO), the latter was mostly shown to mediate many beneficial HO-1 effects, including protection against oxidative injury, regulation of apoptosis, modulation of inflammation as well as contribution to angiogenesis. Mounting evidence suggests that HO-1/CO systemmay be of special benefit in protection inmany pathological conditions, like atherosclerosis or myocardial infarction. By contrast, the augmented expression of HO-1 in tumor tissues may have detrimental effect as HO-1 accelerates the formation of tumor neovasculature and provides the selective advantage for tumor cells to overcome the increased oxidative stress during tumorigenesis and during treatment. The inhibition of HO-1 has been proposed as an anti-cancer therapy, however, because of non-specific effects of known HO-1 inhibitors, the discovery of ideal drug lowering HO-1 expression/activity is still an open question. Importantly, in several types of cancer HO-1/CO system exerts opposite activities, making the possible treatment more complicated. All together indicates the complex role for HO-1/CO in various in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
33
|
Liu X, Gao Y, Li M, Geng C, Xu H, Yang Y, Guo Y, Jiao T, Fang F, Chang Y. Sirt1 mediates the effect of the heme oxygenase inducer, cobalt protoporphyrin, on ameliorating liver metabolic damage caused by a high-fat diet. J Hepatol 2015; 63:713-21. [PMID: 26026874 DOI: 10.1016/j.jhep.2015.05.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/14/2015] [Accepted: 05/19/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Heme oxygenase 1 (HO-1)-mediated increases in adiponectin, ameliorate the deleterious effects of obesity and metabolic syndrome; however, the effect of HO-1 on hepatic lipid metabolism remains elusive. The aim of this study is to evaluate the role of HO-1 in hepatic lipid metabolism. METHODS Functional studies were performed using C57BL/6J (WT) mice and Sirt1 liver specific mutant (Sirt1-deficient) mice. The molecular mechanism was explored in primary hepatocytes and mouse liver. RESULTS Chronic exposure to high-fat diet (HFD) induced hepatic steatosis in WT mice. Treatment of WT mice on HFD with cobalt protoporphyrin (CoPP), an inducer of HO-1 activity, decreased body weight and visceral fat content, reduced intracellular hepatic triglyceride and serum total cholesterol concentrations, and decreased liver lipid droplet formation. Compared with WT mice, the administration of CoPP to Sirt1-deficient mice on HFD increased visceral fat content, and slightly promoted liver lipid droplet formation. CoPP improved glucose tolerance and insulin sensitivity in WT mice on HFD, but compromised insulin sensitivity in Sirt1-deficient mice on HFD. Furthermore, CoPP-induced Sirt1 expression and decreased sterol regulatory element binding protein 1c (SREBP-1c) expression in WT mice on HFD. However, CoPP promoted SREBP-1c expression in Sirt1-deficient hepatocytes, which was reversed by a protein tyrosine phosphatase 1b inhibitor. Additionally, while the administration of CoPP to WT mice on HFD improved antioxidant and anti-inflammatory states, these CoPP-mediated effects were abolished in Sirt1-deficient mice. CONCLUSIONS Sirt1 mediates the effect of CoPP on ameliorating liver metabolic damage caused by HFD.
Collapse
Affiliation(s)
- Xiaojun Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| | - Yong Gao
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Meixia Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Geng
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Haifeng Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Interventional Therapy, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yaoguo Yang
- The Department of Vascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yongjun Guo
- The Department of Clinical Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Tao Jiao
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Fude Fang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| | - Yongsheng Chang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
34
|
Wu CY, Bermúdez-Humarán LG, Yue F, Li M, Zhang LP. Intranasal administration with recombinant Lactococcus lactis expressing heme oxygenase-1 reduces hyperoxia-induced lung inflammation in rat pups. Biotechnol Lett 2015; 37:1203-11. [DOI: 10.1007/s10529-015-1795-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 02/17/2015] [Indexed: 01/07/2023]
|
35
|
Porzionato A, Sfriso MM, Mazzatenta A, Macchi V, De Caro R, Di Giulio C. Effects of hyperoxic exposure on signal transduction pathways in the lung. Respir Physiol Neurobiol 2015; 209:106-14. [DOI: 10.1016/j.resp.2014.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 12/18/2022]
|
36
|
Abdalla MY, Ahmad IM, Switzer B, Britigan BE. Induction of heme oxygenase-1 contributes to survival of Mycobacterium abscessus in human macrophages-like THP-1 cells. Redox Biol 2015; 4:328-39. [PMID: 25638774 PMCID: PMC4326180 DOI: 10.1016/j.redox.2015.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 01/16/2015] [Accepted: 01/17/2015] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium abscessus (M.abs) is a rapidly growing mycobacterial species that infects macrophages, and is an important pathogen in patients with cystic fibrosis. We studied the early stages of M.abs infection of macrophages, with emphasis on the role of heme-oxygenase-1 (HO-1) in this infection. THP-1 cells were activated using TPA into macrophage-like cells and infected with M.abs for different time points. M.abs infection robustly induced HO-1 expression in the THP-1 cells. Production of HO-1 was p38 MAPK-dependent, as p38 inhibitors suppressed HO-1 induction. Pretreatment with HO-1 inhibitors tin-protoporphyrin (SnPP) significantly inhibited M.abs growth inside macrophages. Furthermore, inhibiting HO-1 using HO-1 siRNA or the HO-1 upstream signaling molecule; Nrf2 using Nrf2 siRNA resulted in similar inhibition of M.abs. In contrast, inducing HO-1 did not increase M.abs intracellular growth above control. Products of HO-1 metabolism of heme are bilirubin, biliverdin, carbon monoxide (CO) and iron. The addition of either bilirubin or biliverdin, but not CO, completely restored the SnPP inhibitory effect and partially that with HO-1 siRNA. To understand the mechanisms, we used Syto-62 labeled M.abs to infect macrophages. Interestingly, HO-1 inhibition promoted M.abs-containing phagosome fusion with lysosomes, which should enhance M.abs killing. M.abs infection enhanced THP-1 ROS production as demonstrated by increased DHE, DCF fluorescence, and EPR signal. HO-1 inhibition further increased ROS production in infected macrophages. Our results indicate that HO-1 induction is important for M.abs growth during the early stages of infection, and that the HO-1 products bilirubin and biliverdin, perhaps through modulation of intracellular ROS levels, may be involved. HO-1 induction is important for Mycobacterium abscessus growth inside infected macrophages during the early stages of infection. Reducing HO-1 products may enhance the ability of the macrophage to control Mycobacterium abscessus infection. HO-1 inhibition increases phagosome–lysosome fusion and thus Mycobacterium abscessus killing.
Collapse
Affiliation(s)
- Maher Y Abdalla
- Research Service, VA Medical Center-Omaha Nebraska Western Iowa, Omaha, NE 68105, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center College of Medicine, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center College of Medicine, Omaha, NE 68198, USA.
| | - Iman M Ahmad
- School of Allied Health Professions, University of Nebraska Medical Center College of Medicine, Omaha, NE 68198, USA
| | - Barbara Switzer
- Research Service, VA Medical Center-Omaha Nebraska Western Iowa, Omaha, NE 68105, USA; Department of Internal Medicine, University of Nebraska Medical Center College of Medicine, Omaha, NE 68198, USA
| | - Bradley E Britigan
- Research Service, VA Medical Center-Omaha Nebraska Western Iowa, Omaha, NE 68105, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center College of Medicine, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center College of Medicine, Omaha, NE 68198, USA
| |
Collapse
|
37
|
Khan A, Jamwal S, Bijjem KRV, Prakash A, Kumar P. Neuroprotective effect of hemeoxygenase-1/glycogen synthase kinase-3β modulators in 3-nitropropionic acid-induced neurotoxicity in rats. Neuroscience 2014; 287:66-77. [PMID: 25536048 DOI: 10.1016/j.neuroscience.2014.12.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 01/27/2023]
Abstract
The present study has been designed to explore the possible interaction between hemeoxygenase-1 (HO-1) and glycogen synthase kinase-3β (GSK-3β) pathway in 3-nitropropionic acid (3-NP)-induced neurotoxicity in rats. 3-NP produces neurotoxicity by inhibition of the mitochondrial complex II (enzyme succinate dehydrogenase) and by sensitizing the N-methyl-D-aspartate receptor. Recent studies have reported the therapeutic potential of HO-1/GSK-3β modulators in different neurodegenerative disorders. However, their exact role is yet to be explored. The present study is an attempt to investigate the effect of pharmacological modulation of HO-1/GSK-3β pathway against 3-NP-induced behavioral, biochemical and molecular alterations in rat. Behavioral observation, oxidative stress, pro-inflammatory [tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β)], HO-1 and GSK-3β activity were evaluated post 3-NP treatment. Findings of the present study demonstrate a significant alteration in the locomotor activity, motor coordination, oxidative burden (increased lipid peroxidation, nitrite concentration and decreased endogenous antioxidants), pro-inflammatory mediators [TNF-α, IL-1β], HO-1 and GSK-3β activity in 3-NP-treated animals. Further, administration of hemin (10- and 30-mg/kg; i.p.) and lithium chloride (LiCl) (25- and 50-mg/kg; i.p.) prevented the alteration in body weight, motor impairments, oxidative stress and cellular markers. In addition, combined administration of hemin (10-mg/kg) and LiCl (25-mg/kg) showed synergistic effect on 3-NP-treated rats. Pretreatment with Tin (IV) protoporphyrin (40 μM/kg), HO-1 inhibitor reversed the beneficial effect of LiCl and hemin. Outcomes of the present study suggest that HO-1 and GSK-3β enzymes are involved in the pathophysiology of HD. The modulators of both the pathways might be used as adjuvants or prophylactic therapy for the treatment of HD-like symptoms.
Collapse
Affiliation(s)
- A Khan
- Department of Pharmacology, I.S.F. College of Pharmacy, Ferozepur Road, Ghal Kalan, Moga 142001, Punjab, India
| | - S Jamwal
- Department of Pharmacology, I.S.F. College of Pharmacy, Ferozepur Road, Ghal Kalan, Moga 142001, Punjab, India; Research Scholar, Punjab Technical University, Jalandhar, India
| | - K R V Bijjem
- Department of Pharmacology, I.S.F. College of Pharmacy, Ferozepur Road, Ghal Kalan, Moga 142001, Punjab, India
| | - A Prakash
- Department of Pharmacology, I.S.F. College of Pharmacy, Ferozepur Road, Ghal Kalan, Moga 142001, Punjab, India
| | - P Kumar
- Department of Pharmacology, I.S.F. College of Pharmacy, Ferozepur Road, Ghal Kalan, Moga 142001, Punjab, India.
| |
Collapse
|
38
|
Music E, Khan S, Khamis I, Heikkila JJ. Accumulation of heme oxygenase-1 (HSP32) in Xenopus laevis A6 kidney epithelial cells treated with sodium arsenite, cadmium chloride or proteasomal inhibitors. Comp Biochem Physiol C Toxicol Pharmacol 2014; 166:75-87. [PMID: 25064141 DOI: 10.1016/j.cbpc.2014.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/09/2014] [Accepted: 07/17/2014] [Indexed: 12/12/2022]
Abstract
The present study examined the effect of sodium arsenite, cadmium chloride, heat shock and the proteasomal inhibitors MG132, withaferin A and celastrol on heme oxygenase-1 (HO-1; also known as HSP32) accumulation in Xenopus laevis A6 kidney epithelial cells. Immunoblot analysis revealed that HO-1 accumulation was not induced by heat shock but was enhanced by sodium arsenite and cadmium chloride in a dose- and time-dependent fashion. Immunocytochemistry revealed that these metals induced HO-1 accumulation in a granular pattern primarily in the cytoplasm. Additionally, in 20% of the cells arsenite induced the formation of large HO-1-containing perinuclear structures. In cells recovering from sodium arsenite or cadmium chloride treatment, HO-1 accumulation initially increased to a maximum at 12h followed by a 50% reduction at 48 h. This initial increase in HO-1 levels was likely the result of new synthesis as it was inhibited by cycloheximide. Interestingly, treatment of cells with a mild heat shock enhanced HO-1 accumulation induced by low concentrations of sodium arsenite and cadmium chloride. Finally, we determined that HO-1 accumulation was induced in A6 cells by the proteasomal inhibitors, MG132, withaferin A and celastrol. An examination of heavy metal and proteasomal inhibitor-induced HO-1 accumulation in amphibians is of importance given the presence of toxic heavy metals in aquatic habitats.
Collapse
Affiliation(s)
- Ena Music
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Saad Khan
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Imran Khamis
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - John J Heikkila
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
39
|
Abstract
SIGNIFICANCE Premature and sick neonates are often exposed to high concentrations of oxygen, which results in lung injury and long-term adverse consequences. Nevertheless, neonates are more tolerant to hyperoxia than are adults. This may be, in part, explained by the high lung content of heme oxygenase-1 (HO-1), the rate-limiting enzyme in the degradation of heme and an important stress protein. The abundance of HO-1 dictates its cytoprotective and deleterious effects. Interestingly, in response to hyperoxia, lung HO-1 mRNA is not further up-regulated in neonates, suggesting that lung HO-1 gene expression is tightly regulated so as to optimize cytoprotection when faced with an oxidative stress such as hyperoxia. RECENT ADVANCES In addition to the lack of induction of HO-1 mRNA, neonatal lung HO-1 protein is observed in the nucleus in neonatal mice exposed to hyperoxia but not in adults, which is further evidence for the developmental regulation of HO-1. Nuclear HO-1 had unique properties independent of its enzymatic activity. In addition, there has been increasing evidence that nuclear HO-1 contributes to cellular proliferation and malignant transformation in several human cancers. CRITICAL ISSUES Since HO-1 has dual effects in cytoprotection and cellular proliferation, the titration of HO-1 effects is critical to ensure beneficial actions against oxidative stress. FUTURE DIRECTIONS Much more has to be understood about the specific roles of HO-1 so as to manipulate its abundance and/or nuclear migration to maximize the therapeutic benefit of this pleiotropic protein in the neonatal lung.
Collapse
Affiliation(s)
- Phyllis A Dennery
- Department of Pediatrics, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Wegiel B, Larsen R, Gallo D, Chin BY, Harris C, Mannam P, Kaczmarek E, Lee PJ, Zuckerbraun BS, Flavell R, Soares MP, Otterbein LE. Macrophages sense and kill bacteria through carbon monoxide-dependent inflammasome activation. J Clin Invest 2014; 124:4926-40. [PMID: 25295542 DOI: 10.1172/jci72853] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/28/2014] [Indexed: 01/08/2023] Open
Abstract
Microbial clearance by eukaryotes relies on complex and coordinated processes that remain poorly understood. The gasotransmitter carbon monoxide (CO) is generated by the stress-responsive enzyme heme oxygenase-1 (HO-1, encoded by Hmox1), which is highly induced in macrophages in response to bacterial infection. HO-1 deficiency results in inadequate pathogen clearance, exaggerated tissue damage, and increased mortality. Here, we determined that macrophage-generated CO promotes ATP production and release by bacteria, which then activates the Nacht, LRR, and PYD domains-containing protein 3 (NALP3) inflammasome, intensifying bacterial killing. Bacterial killing defects in HO-1-deficient murine macrophages were restored by administration of CO. Moreover, increased CO levels enhanced the bacterial clearance capacity of human macrophages and WT murine macrophages. CO-dependent bacterial clearance required the NALP3 inflammasome, as CO did not increase bacterial killing in macrophages isolated from NALP3-deficient or caspase-1-deficient mice. IL-1β cleavage and secretion were impaired in HO-1-deficient macrophages, and CO-dependent processing of IL-1β required the presence of bacteria-derived ATP. We found that bacteria remained viable to generate and release ATP in response to CO. The ATP then bound to macrophage nucleotide P2 receptors, resulting in activation of the NALP3/IL-1β inflammasome to amplify bacterial phagocytosis by macrophages. Taken together, our results indicate that macrophage-derived CO permits efficient and coordinated regulation of the host innate response to invading microbes.
Collapse
|
41
|
Vakhshiteh F, Allaudin ZN, Lila MABM, Abbasiliasi S, Ajdari Z. Nucleotide sequencing, cloning, and expression of Capra hircus Heme Oxygenase-1 in caprine islets to promote insulin secretion in vitro. Mol Biotechnol 2014; 57:75-83. [PMID: 25218408 DOI: 10.1007/s12033-014-9803-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Transplantation of islets of Langerhans that have been isolated from whole pancreas is an attractive alternative for the reversal of Type 1 diabetes. However, in vitro culture of isolated pancreatic islets has been reported to cause a decrease in glucose response over time. Hence, the improvement in islet culture conditions is an important goal in islet transplantation. Heme Oxygenase-1 (HO-1) is a stress protein that has been described as an inducible protein with the capacity of preventing apoptosis and cytoprotection via radical scavenging. Therefore, this study was aimed to assess the influence of endogenous HO-1 gene transfer on insulin secretion of caprine islets. The full-length cDNA sequence of Capra hircus HO-1 was determined using specific designed primers and rapid amplification of cDNA ends of pancreatic tissue. The HO-1 cDNA was then cloned into the prokaryotic expression vectors and transfected into caprine islets using lipid carriers. Efficiency of lipid carriers to transfect caprine islets was determined by flow cytometry. Insulin secretion assay was carried out by ovine insulin ELISA. The finding demonstrated that endogenous HO-1 gene transfer could improve caprine islet function in in vitro culture. Consequently, strategies using HO-1 gene transfer to islets might lead to better outcome in islet transplantation.
Collapse
Affiliation(s)
- Faezeh Vakhshiteh
- Institute of Bioscience, Universiti Putra Malaysia, 43300, Serdang, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
42
|
Protective Effect of a cAMP Analogue on Behavioral Deficits and Neuropathological Changes in Cuprizone Model of Demyelination. Mol Neurobiol 2014; 52:130-41. [PMID: 25128030 DOI: 10.1007/s12035-014-8857-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/06/2014] [Indexed: 01/06/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease that leads to neuronal cell loss. Cyclic AMP and its analogs are well known to decrease inflammation and apoptosis. In the present study, we examined the effects of bucladesine, a cell-permeable analogue of cyclic adenosine monophosphate (cAMP), on myelin proteins (PLP, PMP-22), inflammation, and apoptotic, as well as anti-apoptotic factors in cuprizone model of demyelination. C57BL/6J mice were fed with chow containing 0.2% copper chelator cuprizone or vehicle by daily oral gavage for 5 weeks to induce reversible demyelination predominantly of the corpus callosum. Bucladesine was administered intraperitoneally at different doses (0.24, 0.48, or 0.7 μg/kg body weight) during the last 7 days of 5-week cuprizone treatment. Bucladesine exhibited a protective effect on myelination. Furthermore, bucladesine significantly decreased the production of interleukin-6 pro-inflammatory mediator as well as nuclear factor-κB activation and reduced the mean number of apoptotic cells compared to cuprizone-treated mice. Bucladesine also decreased production of caspase-3 as well as Bax and increased Bcl-2 levels. Our data revealed that enhancement of intracellular cAMP prevents demyelination and plays anti-inflammatory and anti-apoptotic properties in mice cuprizone model of demyelination. This suggests the modulation of intracellular cAMP as a potential target for treatment of MS.
Collapse
|
43
|
Zhang C. Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell 2014; 5:750-60. [PMID: 25000876 PMCID: PMC4180463 DOI: 10.1007/s13238-014-0083-7] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/04/2014] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells contain numerous iron-requiring proteins such as iron-sulfur (Fe-S) cluster proteins, hemoproteins and ribonucleotide reductases (RNRs). These proteins utilize iron as a cofactor and perform key roles in DNA replication, DNA repair, metabolic catalysis, iron regulation and cell cycle progression. Disruption of iron homeostasis always impairs the functions of these iron-requiring proteins and is genetically associated with diseases characterized by DNA repair defects in mammals. Organisms have evolved multi-layered mechanisms to regulate iron balance to ensure genome stability and cell development. This review briefly provides current perspectives on iron homeostasis in yeast and mammals, and mainly summarizes the most recent understandings on iron-requiring protein functions involved in DNA stability maintenance and cell cycle control.
Collapse
Affiliation(s)
- Caiguo Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA,
| |
Collapse
|
44
|
Al-Huseini LMA, Aw Yeang HX, Hamdam JM, Sethu S, Alhumeed N, Wong W, Sathish JG. Heme oxygenase-1 regulates dendritic cell function through modulation of p38 MAPK-CREB/ATF1 signaling. J Biol Chem 2014; 289:16442-51. [PMID: 24719331 PMCID: PMC4047411 DOI: 10.1074/jbc.m113.532069] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dendritic cells (DCs) are critical for the initiation of immune responses including activation of CD8 T cells. Intracellular reactive oxygen species (ROS) levels influence DC maturation and function. Intracellular heme, a product of catabolism of heme-containing metalloproteins, is a key inducer of ROS. Intracellular heme levels are regulated by heme oxygenase-1 (HO-1), which catalyzes the degradation of heme. Heme oxygenase-1 has been implicated in regulating DC maturation; however, its role in other DC functions is unclear. Furthermore, the signaling pathways modulated by HO-1 in DCs are unknown. In this study, we demonstrate that inhibition of HO-1 activity in murine bone marrow-derived immature DCs (iDCs) resulted in DCs with raised intracellular ROS levels, a mature phenotype, impaired phagocytic and endocytic function, and increased capacity to stimulate antigen-specific CD8 T cells. Interestingly, our results reveal that the increased ROS levels following HO-1 inhibition did not underlie the changes in phenotype and functions observed in these iDCs. Importantly, we show that the p38 mitogen-activated protein kinase (p38 MAPK), cAMP-responsive element binding protein (CREB), and activating transcription factor 1 (ATF1) pathway is involved in the mediation of the phenotypic and functional changes arising from HO-1 inhibition. Furthermore, up-regulation of HO-1 activity rendered iDCs refractory to lipopolysaccharide-induced activation of p38 MAPK-CREB/ATF1 pathway and DC maturation. Finally, we demonstrate that treatment of iDC with the HO-1 substrate, heme, recapitulates the effects that result from HO-1 inhibition. Based on these results, we conclude that HO-1 regulates DC maturation and function by modulating the p38 MAPK-CREB/ATF1 signaling axis.
Collapse
Affiliation(s)
- Laith M A Al-Huseini
- From the Medical Research Council (MRC) Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, Liverpool L69 3GE, United Kingdom and the Department of Pharmacology and Therapeutics, College of Medicine, Al-Qadisiyah University, P. O. Box 80, Diwaniyah 58001, Iraq
| | - Han Xian Aw Yeang
- From the Medical Research Council (MRC) Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, Liverpool L69 3GE, United Kingdom and
| | - Junnat M Hamdam
- From the Medical Research Council (MRC) Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, Liverpool L69 3GE, United Kingdom and
| | - Swaminathan Sethu
- From the Medical Research Council (MRC) Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, Liverpool L69 3GE, United Kingdom and
| | - Naif Alhumeed
- From the Medical Research Council (MRC) Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, Liverpool L69 3GE, United Kingdom and
| | - Wai Wong
- From the Medical Research Council (MRC) Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, Liverpool L69 3GE, United Kingdom and
| | - Jean G Sathish
- From the Medical Research Council (MRC) Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, Liverpool L69 3GE, United Kingdom and
| |
Collapse
|
45
|
Nishio Y, Fujino M, Zhao M, Ishii T, Ishizuka M, Ito H, Takahashi K, Abe F, Nakajima M, Tanaka T, Taketani S, Nagahara Y, Li XK. 5-Aminolevulinic acid combined with ferrous iron enhances the expression of heme oxygenase-1. Int Immunopharmacol 2014; 19:300-7. [PMID: 24530569 DOI: 10.1016/j.intimp.2014.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 02/08/2023]
Abstract
5-Aminolevulinic acid (5-ALA) is the naturally occurring metabolic precursor of heme. Heme negatively regulates the Maf recognition element (MARE) binding- and repressing-activity of the Bach1 transcription factor through its direct binding to Bach1. Heme oxygenase (HO)-1 is an inducible enzyme that catalyzes the rate-limiting step in the oxidative degradation of heme to free iron, biliverdin and carbon monoxide. These metabolites of heme protect against apoptosis, inflammation and oxidative stress. Monocytes and macrophages play a critical role in the initiation, maintenance and resolution of inflammation. Therefore, the regulation of inflammation in macrophages is an important target under various pathophysiological conditions. In order to address the question of what is responsible for the anti-inflammatory effects of 5-ALA, the induction of HO-1 expression by 5-ALA and sodium ferrous citrate (SFC) was examined in macrophage cell line (RAW264 cells). HO-1 expression induced by 5-ALA combined with SFC (5-ALA/SFC) was partially inhibited by MEK/ERK and p38 MAPK inhibitor. The NF-E2-related factor 2 (Nrf2) was activated and translocated from the cytosol to the nucleus in response to 5-ALA/SFC. Nrf2-specific siRNA reduced the HO-1 expression. In addition, 5-ALA/SFC increased the intracellular levels of heme in cells. The increased heme indicated that the inactivation of Bach1 by heme supports the upregulation of HO-1 expression. Taken together, our data suggest that the exposure of 5-ALA/SFC to RAW264 cells enhances the HO-1 expression via MAPK activation along with the negative regulation of Bach1.
Collapse
Affiliation(s)
- Yoshiaki Nishio
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Biomedical Sciences, Tokyo Denki University, Saitama, Japan
| | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mingyi Zhao
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | | - Shigeru Taketani
- Department of Biotechnology, Kyoto Institute of Technology, Kyoto, Japan
| | - Yukitoshi Nagahara
- Department of Biomedical Sciences, Tokyo Denki University, Saitama, Japan.
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
46
|
Shao J, Feng G. Selective killing effect of oxytetracycline, propafenone and metamizole on A549 or Hela cells. Chin J Cancer Res 2014; 25:662-70. [PMID: 24385693 DOI: 10.3978/j.issn.1000-9604.2013.11.05] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/05/2013] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To determine the selective killing effect of oxytetracycline, propafenone and metamizole on A549 or Hela cells. METHODS Proliferation assay, lactate dehydrogenase (LDH) assay, apoptosis detecting, flow cytometry and western blot were performed. RESULTS It was found that treatment with propafenone at the concentration of 0.014 g/L or higher for 48 h could induce apoptosis in Hela cells greatly, while it was not observed in oxytetracycline and metamizole at the concentration of 0.20 g/L for 48 h. Oxytetracycline, propafenone and metamizole all displayed evident inhibitory effects on the proliferation of A549 cells. The results of LDH assay demonstrated that the drugs at the test range of concentration did not cause necrosis in the cells. Propafenone could elevate the protein level of P53 effectively (P<0.01). CONCLUSIONS Oxytetracycline, propafenone and metamizol (dipyrone) all displayed evident inhibitory effects on the proliferation of A549 cells. Propafenone also displayed evident inhibitory effects on the proliferation of Hela cells.
Collapse
Affiliation(s)
- Jinhui Shao
- Department of Histology and Embryology, School of Medicine, Hubei University of Art and Science, Xiangyang 441053, China
| | - Guihua Feng
- Department of Histology and Embryology, School of Medicine, Hubei University of Art and Science, Xiangyang 441053, China
| |
Collapse
|
47
|
Liu X, Cui Y, Li M, Xu H, Zuo J, Fang F, Chang Y. Cobalt protoporphyrin induces HO-1 expression mediated partially by FOXO1 and reduces mitochondria-derived reactive oxygen species production. PLoS One 2013; 8:e80521. [PMID: 24255720 PMCID: PMC3821864 DOI: 10.1371/journal.pone.0080521] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/14/2013] [Indexed: 12/23/2022] Open
Abstract
Background Reactive oxygen species arise in the mitochondria as byproducts of respiration and oxidase activity and have important roles in many physiological and pathophysiological conditions. The level of reactive oxygen species is regulated by a number of enzymes and physiological antioxidants, including HO-1, Sod2, catalase and COX-2, etc. And HO-1 against oxidative stress requires an increase in stress-responsive genes, such as Sod2 and catalase. Especially for the activity of HO-1, cobalt protoporphyrin is known to be a potent and effective inducer in many tissues. The transcription factor, FOXO1 is resistant to oxidative stress through downregulating reactive oxygen species production. Previous study showed that FOXO1 induces HO-1 expression by binding to HO-1 promoter. The question whether cobalt protoporphyrin induces HO-1 expression mediated by FOXO1 and subsequently lessens reactive oxygen species production remains to be elucidated. Results Cobalt protoporphyrin enhances the expression of FOXO1 and facilitates FOXO1 binding to HO-1 promoter and increasing its transcriptional activity without influencing the FOXO1 protein stability. CoPP induces HO-1 and other oxidative stress-responsive genes expression, such as catalase, cytochrome c, Sod2, and COX-2, and decreases mitochondria-derived reactive oxygen species production, which are mediated partially by FOXO1. Conclusions Cobalt protoporphyrin induces HO-1 and other oxidative stress-responsive genes expression mediated partially by FOXO1, and has an important role in reducing cellular reactive oxygen species level. Cobalt protoporphyrin may be a more promising therapeutic agent to upregulate some antioxidantive genes.
Collapse
Affiliation(s)
- Xiaojun Liu
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (XL); (FF); (YC)
| | - Ying Cui
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meixia Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haifeng Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Interventional Therapy, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jin Zuo
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fude Fang
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (XL); (FF); (YC)
| | - Yongsheng Chang
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (XL); (FF); (YC)
| |
Collapse
|
48
|
Wegiel B, Gallo D, Csizmadia E, Harris C, Belcher J, Vercellotti GM, Penacho N, Seth P, Sukhatme V, Ahmed A, Pandolfi PP, Helczynski L, Bjartell A, Persson JL, Otterbein LE. Carbon monoxide expedites metabolic exhaustion to inhibit tumor growth. Cancer Res 2013; 73:7009-21. [PMID: 24121491 DOI: 10.1158/0008-5472.can-13-1075] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One classical feature of cancer cells is their metabolic acquisition of a highly glycolytic phenotype. Carbon monoxide (CO), one of the products of the cytoprotective molecule heme oxygenase-1 (HO-1) in cancer cells, has been implicated in carcinogenesis and therapeutic resistance. However, the functional contributions of CO and HO-1 to these processes are poorly defined. In human prostate cancers, we found that HO-1 was nuclear localized in malignant cells, with low enzymatic activity in moderately differentiated tumors correlating with relatively worse clinical outcomes. Exposure to CO sensitized prostate cancer cells but not normal cells to chemotherapy, with growth arrest and apoptosis induced in vivo in part through mitotic catastrophe. CO targeted mitochondria activity in cancer cells as evidenced by higher oxygen consumption, free radical generation, and mitochondrial collapse. Collectively, our findings indicated that CO transiently induces an anti-Warburg effect by rapidly fueling cancer cell bioenergetics, ultimately resulting in metabolic exhaustion.
Collapse
Affiliation(s)
- Barbara Wegiel
- Authors' Affiliations: Department of Surgery, Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Department of Clinical Sciences, Section of Urological Cancers, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom; Department of Laboratory Medicine, University Hospital Malmö, Lund University, Malmö, Sweden; and Department of Medicine and Vascular Biology Center, University of Minnesota, Minneapolis, Alfama Inc., Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Skrzypek K, Tertil M, Golda S, Ciesla M, Weglarczyk K, Collet G, Guichard A, Kozakowska M, Boczkowski J, Was H, Gil T, Kuzdzal J, Muchova L, Vitek L, Loboda A, Jozkowicz A, Kieda C, Dulak J. Interplay between heme oxygenase-1 and miR-378 affects non-small cell lung carcinoma growth, vascularization, and metastasis. Antioxid Redox Signal 2013; 19:644-60. [PMID: 23617628 PMCID: PMC3740397 DOI: 10.1089/ars.2013.5184] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AIMS Heme oxygenase-1 (HO-1, HMOX1) can prevent tumor initiation; while in various tumors, it has been demonstrated to promote growth, angiogenesis, and metastasis. Here, we investigated whether HMOX1 can modulate microRNAs (miRNAs) and regulate human non-small cell lung carcinoma (NSCLC) development. RESULTS Stable HMOX1 overexpression in NSCLC NCI-H292 cells up-regulated tumor-suppressive miRNAs, whereas it significantly diminished the expression of oncomirs and angiomirs. The most potently down-regulated was miR-378. HMOX1 also up-regulated p53, down-regulated angiopoietin-1 (Ang-1) and mucin-5AC (MUC5AC), reduced proliferation, migration, and diminished angiogenic potential. Carbon monoxide was a mediator of HMOX1 effects on proliferation, migration, and miR-378 expression. In contrast, stable miR-378 overexpression decreased HMOX1 and p53; while enhanced expression of MUC5AC, vascular endothelial growth factor (VEGF), interleukin-8 (IL-8), and Ang-1, and consequently increased proliferation, migration, and stimulation of endothelial cells. Adenoviral delivery of HMOX1 reversed miR-378 effect on the proliferation and migration of cancer cells. In vivo, HMOX1 overexpressing tumors were smaller, less vascularized and oxygenated, and less metastatic. Overexpression of miR-378 exerted opposite effects. Accordingly, in patients with NSCLC, HMOX1 expression was lower in metastases to lymph nodes than in primary tumors. INNOVATION AND CONCLUSION In vitro and in vivo data indicate that the interplay between HMOX1 and miR-378 significantly modulates NSCLC progression and angiogenesis, suggesting miR-378 as a new therapeutic target. REBOUND TRACK: This work was rejected during standard peer review and rescued by Rebound Peer Review (Antioxid Redox Signal 16, 293-296, 2012) with the following serving as open reviewers: James F. George, Mahin D. Maines, Justin C. Mason, and Yasufumi Sato.
Collapse
Affiliation(s)
- Klaudia Skrzypek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bauckman KA, Haller E, Flores I, Nanjundan M. Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells. Cell Death Dis 2013; 4:e592. [PMID: 23598404 PMCID: PMC3668627 DOI: 10.1038/cddis.2013.87] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/01/2013] [Accepted: 02/19/2013] [Indexed: 02/07/2023]
Abstract
Ovarian cancer is a leading cause of cancer death in women in the United States. While the majority of ovarian cancers are serous, some rarer subtypes (i.e. clear cell) are often associated with endometriosis, a benign gynecological disease. Iron is rich in the cyst fluid of endometriosis-associated ovarian cancers and induces persistent oxidative stress. The role of iron, an essential nutrient involved in multiple cellular functions, in normal ovarian cell survival and ovarian cancer remains unclear. Iron, presented as ferric ammonium citrate (FAC), dramatically inhibits cell survival in ovarian cancer cell types associated with Ras mutations, while it is without effect in immortalized normal ovarian surface epithelial (T80) and endometriotic epithelial cells (lacking Ras mutations). Interestingly, FAC induced changes in cytoplasmic vacuolation concurrently with increases in LC3-II levels (an autophagy marker); these changes occurred in an ATG5/ATG7-dependent, beclin-1/hVps34-independent, and Ras-independent manner. Knockdown of autophagy mediators in HEY ovarian cancer cells reversed FAC-induced LC3-II levels, but there was little effect on reversing the cell death response. Intriguingly, transmission electron microscopy of FAC-treated T80 cells demonstrated abundant lysosomes (confirmed using Lysotracker) rich in iron particles, which occurred in a Ras-independent manner. Although the mitogen-activated protein kinase (MAPK) inhibitor, U0126, reversed FAC-induced LC3-II/autophagic punctae and lysosomes in a Ras-independent manner, it was remarkable that U0126 reversed cell death in malignant ovarian cells associated with Ras mutations. Moreover, FAC increased heme oxygenase-1 expression in H-Ras-overexpressing T80 cells, which was associated with increased cell death when overexpressed in T80 cells. Disruption of intracellular iron levels, via chelation of intracellular iron (deferoxamine), was also detrimental to malignant ovarian cell survival; thus, homeostatic intracellular iron levels are essential for cell survival. Collectively, our results implicate iron in modulating cell death in a Ras- and MAPK-dependent manner in ovarian cancer cells.
Collapse
Affiliation(s)
- K A Bauckman
- Moffitt Cancer Center and Research Institute, Cancer Biology Program, Tampa, FL, USA
| | - E Haller
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - I Flores
- Departments of Microbiology, Obstetrics and Gynecology, Ponce School of Medicine and Health Sciences, Ponce, Puerto Rico
| | - M Nanjundan
- Moffitt Cancer Center and Research Institute, Cancer Biology Program, Tampa, FL, USA
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|