1
|
Yeo XY, Kwon S, Rinai KR, Lee S, Jung S, Park R. A Consolidated Understanding of the Contribution of Redox Dysregulation in the Development of Hearing Impairment. Antioxidants (Basel) 2024; 13:598. [PMID: 38790703 PMCID: PMC11118506 DOI: 10.3390/antiox13050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The etiology of hearing impairment is multifactorial, with contributions from both genetic and environmental factors. Although genetic studies have yielded valuable insights into the development and function of the auditory system, the contribution of gene products and their interaction with alternate environmental factors for the maintenance and development of auditory function requires further elaboration. In this review, we provide an overview of the current knowledge on the role of redox dysregulation as the converging factor between genetic and environmental factor-dependent development of hearing loss, with a focus on understanding the interaction of oxidative stress with the physical components of the peripheral auditory system in auditory disfunction. The potential involvement of molecular factors linked to auditory function in driving redox imbalance is an important promoter of the development of hearing loss over time.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Soohyun Kwon
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
- Department of BioNanotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Kimberley R. Rinai
- Department of Life Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Sungsu Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital and Medical School, Gwangju 61469, Republic of Korea;
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
2
|
Joshi P, Bisht A, Joshi S, Semwal D, Nema NK, Dwivedi J, Sharma S. Ameliorating potential of curcumin and its analogue in central nervous system disorders and related conditions: A review of molecular pathways. Phytother Res 2022; 36:3143-3180. [PMID: 35790042 DOI: 10.1002/ptr.7522] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Curcumin, isolated from turmeric (Curcuma longa L.) is one of the broadly studied phytomolecule owing to its strong antioxidant and anti-inflammatory potential and has been considered a promising therapeutic candidate in a wide range of disorders. Considering, its low bioavailability, different curcumin analogs have been developed to afford desired pharmacokinetic profile and therapeutic outcome in varied pathological states. Several preclinical and clinical studies have indicated that curcumin ameliorates mitochondrial dysfunction, inflammation, oxidative stress apoptosis-mediated neural cell degeneration and could effectively be utilized in the treatment of different neurodegenerative diseases. Hence, in this review, we have summarized key findings of experimental and clinical studies conducted on curcumin and its analogues with special emphasis on molecular pathways, viz. NF-kB, Nrf2-ARE, glial activation, apoptosis, angiogenesis, SOCS/JAK/STAT, PI3K/Akt, ERK1/2 /MyD88 /p38 MAPK, JNK, iNOS/NO, and MMP pathways involved in imparting ameliorative effects in the therapy of neurodegenerative disorders and associated conditions.
Collapse
Affiliation(s)
- Priyanka Joshi
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.,R & D, Patanjali Ayurved Ltd, Patanjali Food and Herbal Park, Haridwar, Uttarakhand, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Sushil Joshi
- R & D, Patanjali Ayurved Ltd, Patanjali Food and Herbal Park, Haridwar, Uttarakhand, India
| | - Deepak Semwal
- Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | - Neelesh Kumar Nema
- Paramount Kumkum Private Limited, Prestige Meridian-1, Bangalore, Karnataka, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| |
Collapse
|
3
|
Valiente-Pallejà A, Tortajada J, Bulduk BK, Vilella E, Garrabou G, Muntané G, Martorell L. Comprehensive summary of mitochondrial DNA alterations in the postmortem human brain: A systematic review. EBioMedicine 2022; 76:103815. [PMID: 35085849 PMCID: PMC8790490 DOI: 10.1016/j.ebiom.2022.103815] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) encodes 37 genes necessary for synthesizing 13 essential subunits of the oxidative phosphorylation system. mtDNA alterations are known to cause mitochondrial disease (MitD), a clinically heterogeneous group of disorders that often present with neuropsychiatric symptoms. Understanding the nature and frequency of mtDNA alterations in health and disease could be a cornerstone in disentangling the relationship between biochemical findings and clinical symptoms of brain disorders. This systematic review aimed to summarize the mtDNA alterations in human brain tissue reported to date that have implications for further research on the pathophysiological significance of mtDNA alterations in brain functioning. METHODS We searched the PubMed and Embase databases using distinct terms related to postmortem human brain and mtDNA up to June 10, 2021. Reports were eligible if they were empirical studies analysing mtDNA in postmortem human brains. FINDINGS A total of 158 of 637 studies fulfilled the inclusion criteria and were clustered into the following groups: MitD (48 entries), neurological diseases (NeuD, 55 entries), psychiatric diseases (PsyD, 15 entries), a miscellaneous group with controls and other clinical diseases (5 entries), ageing (20 entries), and technical issues (5 entries). Ten entries were ascribed to more than one group. Pathogenic single nucleotide variants (pSNVs), both homo- or heteroplasmic variants, have been widely reported in MitD, with heteroplasmy levels varying among brain regions; however, pSNVs are rarer in NeuD, PsyD and ageing. A lower mtDNA copy number (CN) in disease was described in most, but not all, of the identified studies. mtDNA deletions were identified in individuals in the four clinical categories and ageing. Notably, brain samples showed significantly more mtDNA deletions and at higher heteroplasmy percentages than blood samples, and several of the deletions present in the brain were not detected in the blood. Finally, mtDNA heteroplasmy, mtDNA CN and the deletion levels varied depending on the brain region studied. INTERPRETATION mtDNA alterations are well known to affect human tissues, including the brain. In general, we found that studies of MitD, NeuD, PsyD, and ageing were highly variable in terms of the type of disease or ageing process investigated, number of screened individuals, studied brain regions and technology used. In NeuD and PsyD, no particular type of mtDNA alteration could be unequivocally assigned to any specific disease or diagnostic group. However, the presence of mtDNA deletions and mtDNA CN variation imply a role for mtDNA in NeuD and PsyD. Heteroplasmy levels and threshold effects, affected brain regions, and mitotic segregation patterns of mtDNA alterations may be involved in the complex inheritance of NeuD and PsyD and in the ageing process. Therefore, more information is needed regarding the type of mtDNA alteration, the affected brain regions, the heteroplasmy levels, and their relationship with clinical phenotypes and the ageing process. FUNDING Hospital Universitari Institut Pere Mata; Institut d'Investigació Sanitària Pere Virgili; Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (PI18/00514).
Collapse
Affiliation(s)
- Alba Valiente-Pallejà
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Juan Tortajada
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Bengisu K Bulduk
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Elisabet Vilella
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Glòria Garrabou
- Laboratory of Muscle Research and Mitochondrial Function, Department of Internal Medicine-Hospital Clínic of Barcelona (HCB); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), 08036 Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Gerard Muntané
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain; Institute of Evolutionary Biology (IBE), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Catalonia, Spain
| | - Lourdes Martorell
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain.
| |
Collapse
|
4
|
Wei YH, Chuang TY, Chang TW, Chen SS, Chang CC, Cheng WM. Mitochondrial dysfunction in patients with urogenital disease. UROLOGICAL SCIENCE 2021. [DOI: 10.4103/uros.uros_47_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
5
|
Jaberi E, Tresse E, Grønbæk K, Weischenfeldt J, Issazadeh-Navikas S. Identification of unique and shared mitochondrial DNA mutations in neurodegeneration and cancer by single-cell mitochondrial DNA structural variation sequencing (MitoSV-seq). EBioMedicine 2020; 57:102868. [PMID: 32629384 PMCID: PMC7334819 DOI: 10.1016/j.ebiom.2020.102868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background Point mutations and structural variations (SVs) in mitochondrial DNA (mtDNA) contribute to many neurodegenerative diseases. Technical limitations and heteroplasmy, however, have impeded their identification, preventing these changes from being examined in neurons in healthy and disease states. Methods We have developed a high-resolution technique—Mitochondrial DNA Structural Variation Sequencing (MitoSV-seq)—that identifies all types of mtDNA SVs and single-nucleotide variations (SNVs) in single neurons and novel variations that have been undetectable with conventional techniques. Findings Using MitoSV-seq, we discovered SVs/SNVs in dopaminergic neurons in the Ifnar1−/− murine model of Parkinson disease. Further, MitoSV-seq was found to have broad applicability, delivering high-quality, full-length mtDNA sequences in a species-independent manner from human PBMCs, haematological cancers, and tumour cell lines, regardless of heteroplasmy. We characterised several common SVs in haematological cancers (AML and MDS) that were linked to the same mtDNA region, MT-ND5, using only 10 cells, indicating the power of MitoSV-seq in determining single-cancer-cell ontologies. Notably, the MT-ND5 hotspot, shared between all examined cancers and Ifnar1−/− dopaminergic neurons, suggests that its mutations have clinical value as disease biomarkers. Interpretation MitoSV-seq identifies disease-relevant mtDNA mutations in single cells with high resolution, rendering it a potential drug screening platform in neurodegenerative diseases and cancers. Funding The Lundbeck Foundation, Danish Council for Independent Research-Medicine, and European Union Horizon 2020 Research and Innovation Programme.
Collapse
Affiliation(s)
- Elham Jaberi
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Emilie Tresse
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Kirsten Grønbæk
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; Department of Hematology, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; The Danish Stem Cell Center (Danstem), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 14, DK-2200 Copenhagen, Denmark
| | - Joachim Weischenfeldt
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Shohreh Issazadeh-Navikas
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
6
|
Nummert G, Aaspõllu A, Kuningas K, Timm U, Hanski IK, Maran T. Genetic diversity in Siberian flying squirrel (Pteromys volans) in its western frontier with a focus on the Estonian population. MAMMAL RES 2020. [DOI: 10.1007/s13364-020-00509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Tranah GJ. Response: Low Heteroplasmy Rates of Pathogenic mtDNA Variants Do Not Predict Aging. J Gerontol A Biol Sci Med Sci 2019; 74:1027-1028. [PMID: 30561527 DOI: 10.1093/gerona/gly216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, California
| |
Collapse
|
8
|
Chocron ES, Munkácsy E, Pickering AM. Cause or casualty: The role of mitochondrial DNA in aging and age-associated disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:285-297. [PMID: 30419337 PMCID: PMC6310633 DOI: 10.1016/j.bbadis.2018.09.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022]
Abstract
The mitochondrial genome (mtDNA) represents a tiny fraction of the whole genome, comprising just 16.6 kilobases encoding 37 genes involved in oxidative phosphorylation and the mitochondrial translation machinery. Despite its small size, much interest has developed in recent years regarding the role of mtDNA as a determinant of both aging and age-associated diseases. A number of studies have presented compelling evidence for key roles of mtDNA in age-related pathology, although many are correlative rather than demonstrating cause. In this review we will evaluate the evidence supporting and opposing a role for mtDNA in age-associated functional declines and diseases. We provide an overview of mtDNA biology, damage and repair as well as the influence of mitochondrial haplogroups, epigenetics and maternal inheritance in aging and longevity.
Collapse
Affiliation(s)
- E Sandra Chocron
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Erin Munkácsy
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Andrew M Pickering
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA; Department of Molecular Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA.
| |
Collapse
|
9
|
Tranah GJ, Katzman SM, Lauterjung K, Yaffe K, Manini TM, Kritchevsky S, Newman AB, Harris TB, Cummings SR. Mitochondrial DNA m.3243A > G heteroplasmy affects multiple aging phenotypes and risk of mortality. Sci Rep 2018; 8:11887. [PMID: 30089816 PMCID: PMC6082898 DOI: 10.1038/s41598-018-30255-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022] Open
Abstract
Mitochondria contain many copies of a circular DNA molecule (mtDNA), which has been observed as a mixture of normal and mutated states known as heteroplasmy. Elevated heteroplasmy at a single mtDNA site, m.3243A > G, leads to neurologic, sensory, movement, metabolic, and cardiopulmonary impairments. We measured leukocyte mtDNA m.3243A > G heteroplasmy in 789 elderly men and women from the bi-racial, population-based Health, Aging, and Body Composition Study to identify associations with age-related functioning and mortality. Mutation burden for the m.3243A > G ranged from 0-19% and elevated heteroplasmy was associated with reduced strength, cognitive, metabolic, and cardiovascular functioning. Risk of all-cause, dementia and stroke mortality was significantly elevated for participants in the highest tertiles of m.3243A > G heteroplasmy. These results indicate that the accumulation of a rare genetic disease mutation, m.3243A > G, manifests as several aging outcomes and that some diseases of aging may be attributed to the accumulation of mtDNA damage.
Collapse
Grants
- R01-NR012459 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- R01 HL121023 NHLBI NIH HHS
- N01-AG-6-2106 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01-HL121023 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P30 AG028740 NIA NIH HHS
- Z01A6000932 Office of Extramural Research, National Institutes of Health (OER)
- R03-AG032498 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01-AG028050 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01 NR012459 NINR NIH HHS
- R03 AG032498 NIA NIH HHS
- R01 AG028050 NIA NIH HHS
- This research was supported in part by the Intramural Research Program of the NIH, National Institute on Aging, Contracts N01-AG-6-2101, N01-AG-6-2103, and N01-AG-6-2106; National Institutes of Health grants R01-AG028050, R03-AG032498, R01-NR012459, Z01A6000932, R01-HL121023, and a grant from the Research and Education Leadership Committee of the CPMC Foundation and the L. K. Whittier Foundation.
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | National Institutes of Health (NIH)
Collapse
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA.
| | | | - Kevin Lauterjung
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology, and Epidemiology, University of California, San Francisco and the San Francisco VA Medical Center, San Francisco, CA, 94121, USA
| | - Todd M Manini
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, 32601, USA
| | - Stephen Kritchevsky
- Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Tamara B Harris
- Intramural Research Program, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD, 20892, USA
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| |
Collapse
|
10
|
Ma H, Lee Y, Hayama T, Van Dyken C, Marti-Gutierrez N, Li Y, Ahmed R, Koski A, Kang E, Darby H, Gonmanee T, Park Y, Wolf DP, Jai Kim C, Mitalipov S. Germline and somatic mtDNA mutations in mouse aging. PLoS One 2018; 13:e0201304. [PMID: 30040856 PMCID: PMC6057648 DOI: 10.1371/journal.pone.0201304] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/11/2018] [Indexed: 12/13/2022] Open
Abstract
The accumulation of acquired mitochondrial genome (mtDNA) mutations with aging in somatic cells has been implicated in mitochondrial dysfunction and linked to age-onset diseases in humans. Here, we asked if somatic mtDNA mutations are also associated with aging in the mouse. MtDNA integrity in multiple organs and tissues in young and old (2-34 months) wild type (wt) mice was investigated by whole genome sequencing. Remarkably, no acquired somatic mutations were detected in tested tissues. However, we identified several non-synonymous germline mtDNA variants whose heteroplasmy levels (ratio of normal to mutant mtDNA) increased significantly with aging suggesting clonal expansion of inherited mtDNA mutations. Polg mutator mice, a model for premature aging, exhibited both germline and somatic mtDNA mutations whose numbers and heteroplasmy levels increased significantly with age implicating involvement in premature aging. Our results suggest that, in contrast to humans, acquired somatic mtDNA mutations do not accompany the aging process in wt mice.
Collapse
Affiliation(s)
- Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Yeonmi Lee
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Stem Cell Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, South Korea
| | - Tomonari Hayama
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Crystal Van Dyken
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Nuria Marti-Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Ying Li
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Riffat Ahmed
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Amy Koski
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Eunju Kang
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Stem Cell Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, South Korea
| | - Hayley Darby
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Thanasup Gonmanee
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Younjung Park
- Stem Cell Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, South Korea
| | - Don P. Wolf
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Chong Jai Kim
- Stem Cell Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, South Korea
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
11
|
Kurundkar A, Thannickal VJ. Redox mechanisms in age-related lung fibrosis. Redox Biol 2016; 9:67-76. [PMID: 27394680 PMCID: PMC4943089 DOI: 10.1016/j.redox.2016.06.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022] Open
Abstract
Redox signaling and oxidative stress are associated with tissue fibrosis and aging. Aging is recognized as a major risk factor for fibrotic diseases involving multiple organ systems, including that of the lung. A number of oxidant generating enzymes are upregulated while antioxidant defenses are deficient with aging and cellular senescence, leading to redox imbalance and oxidative stress. However, the precise mechanisms by which redox signaling and oxidative stress contribute to the pathogenesis of lung fibrosis are not well understood. Tissue repair is a highly regulated process that involves the interactions of several cell types, including epithelial cells, fibroblasts and inflammatory cells. Fibrosis may develop when these interactions are dysregulated with the acquisition of pro-fibrotic cellular phenotypes. In this review, we explore the roles of redox mechanisms that promote and perpetuate fibrosis in the context of cellular senescence and aging.
Collapse
Affiliation(s)
- Ashish Kurundkar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
12
|
Abstract
In the past century, considerable efforts were made to understand the role of mitochondrial DNA (mtDNA) mutations and of oxidative stress in aging. The classic mitochondrial free radical theory of aging, in which mtDNA mutations cause genotoxic oxidative stress, which in turn creates more mutations, has been a central hypothesis in the field for decades. In the past few years, however, new elements have discredited this original theory. The major sources of mitochondrial DNA mutations seem to be replication errors and failure of the repair mechanisms, and the accumulation of these mutations as observed in aged organisms seems to occur by clonal expansion and not to be caused by a reactive oxygen species-dependent vicious cycle. New hypotheses of how age-associated mitochondrial dysfunction may lead to aging are based on the role of reactive oxygen species as signaling molecules and on their role in mediating stress responses to age-dependent damage. Here, we review the changes that mtDNA undergoes during aging and the past and most recent hypotheses linking these changes to the tissue failure observed in aging.
Collapse
Affiliation(s)
- Milena Pinto
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Carlos T Moraes
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Cell Biology and Anatomy, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
13
|
McKenzie M, Chiotis M, Hroudová J, Lopez Sanchez MIG, Lim SC, Cook MJ, McKelvie P, Cotton RGH, Murphy M, St John JC, Trounce IA. Capture of somatic mtDNA point mutations with severe effects on oxidative phosphorylation in synaptosome cybrid clones from human brain. Hum Mutat 2015; 35:1476-84. [PMID: 25219341 DOI: 10.1002/humu.22694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 09/03/2014] [Indexed: 01/13/2023]
Abstract
Mitochondrial DNA (mtDNA) is replicated throughout life in postmitotic cells, resulting in higher levels of somatic mutation than in nuclear genes. However, controversy remains as to the importance of low-level mtDNA somatic mutants in cancerous and normal human tissues. To capture somatic mtDNA mutations for functional analysis, we generated synaptosome cybrids from synaptic endings isolated from fresh hippocampus and cortex brain biopsies. We analyzed the whole mtDNA genome from 120 cybrid clones derived from four individual donors by chemical cleavage of mismatch and Sanger sequencing, scanning around two million base pairs. Seventeen different somatic point mutations were identified, including eight coding region mutations, four of which result in frameshifts. Examination of one cybrid clone with a novel m.2949_2953delCTATT mutation in MT-RNR2 (which encodes mitochondrial 16S rRNA) revealed a severe disruption of mtDNA-encoded protein translation. We also performed functional studies on a homoplasmic nonsense mutation in MT-ND1, previously reported in oncocytomas, and show that both ATP generation and the stability of oxidative phosphorylation complex I are disrupted. As the mtDNA remains locked against direct genetic manipulation, we demonstrate that the synaptosome cybrid approach can capture biologically relevant mtDNA mutants in vitro to study effects on mitochondrial respiratory chain function.
Collapse
Affiliation(s)
- Matthew McKenzie
- Centre for Genetic Diseases, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia; Monash University, Clayton, Victoria, 3168, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Just RS, Irwin JA, Parson W. Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing. Forensic Sci Int Genet 2015; 18:131-9. [PMID: 26009256 PMCID: PMC4550493 DOI: 10.1016/j.fsigen.2015.05.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/24/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Abstract
Long an important and useful tool in forensic genetic investigations, mitochondrial DNA (mtDNA) typing continues to mature. Research in the last few years has demonstrated both that data from the entire molecule will have practical benefits in forensic DNA casework, and that massively parallel sequencing (MPS) methods will make full mitochondrial genome (mtGenome) sequencing of forensic specimens feasible and cost-effective. A spate of recent studies has employed these new technologies to assess intraindividual mtDNA variation. However, in several instances, contamination and other sources of mixed mtDNA data have been erroneously identified as heteroplasmy. Well vetted mtGenome datasets based on both Sanger and MPS sequences have found authentic point heteroplasmy in approximately 25% of individuals when minor component detection thresholds are in the range of 10-20%, along with positional distribution patterns in the coding region that differ from patterns of point heteroplasmy in the well-studied control region. A few recent studies that examined very low-level heteroplasmy are concordant with these observations when the data are examined at a common level of resolution. In this review we provide an overview of considerations related to the use of MPS technologies to detect mtDNA heteroplasmy. In addition, we examine published reports on point heteroplasmy to characterize features of the data that will assist in the evaluation of future mtGenome data developed by any typing method.
Collapse
Affiliation(s)
- Rebecca S Just
- Armed Forces DNA Identification Laboratory, Armed Forces Medical Examiner System, Dover, DE, USA; American Registry of Pathology, Rockville, MD, USA
| | | | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
15
|
Williams SB, Ye Y, Huang M, Chang DW, Kamat AM, Pu X, Dinney CP, Wu X. Mitochondrial DNA Content as Risk Factor for Bladder Cancer and Its Association with Mitochondrial DNA Polymorphisms. Cancer Prev Res (Phila) 2015; 8:607-13. [PMID: 25896234 DOI: 10.1158/1940-6207.capr-14-0414] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/01/2015] [Indexed: 01/05/2023]
Abstract
Mitochondrial DNA (mtDNA) content has been shown to be associated with cancer susceptibility. We identified 926 bladder cancer patients and compared these with 926 healthy controls frequency matched on age, gender, and ethnicity. Patients diagnosed with bladder cancer had significantly decreased mtDNA content when compared with control subjects (median, 0.98 vs. 1.04, P < 0.001). Low mtDNA content (i.e., less than the median in control subjects) was associated with a statistically significant increased risk of bladder cancer, when compared with high mtDNA content [Odds ratio (OR), 1.37; 95% confidence interval (CI), 1.13-1.66; P < 0.001). In a trend analysis, a statistically significant dose-response relationship was detected between lower mtDNA content and increasing risk of bladder cancer (Ptrend <0.001). When stratified by host characteristics, advanced age (>65 years), male sex and positive smoking history were significantly associated with low mtDNA content and increased risk of bladder cancer. We identified two unique mtDNA polymorphisms significantly associated with risk of bladder cancer: mitot10464c (OR, 1.39; 95% CI, 1.00-1.93; P = 0.048) and mitoa4918g (OR, 1.40; 95% CI, 1.00-1.95; P = 0.049). Analysis of the joint effect of low mtDNA content and unfavorable mtDNA polymorphisms revealed a 2.5-fold increased risk of bladder cancer (OR, 2.50; 95% CI, 1.60-3.94; P < 0.001). Significant interaction was observed between mitoa4918g and mtDNA content (Pinteraction = 0.028). Low mtDNA content was associated with increased risk of bladder cancer and we identified new susceptibility mtDNA alleles associated with increased risk that require further investigation into the biologic underpinnings of bladder carcinogenesis.
Collapse
Affiliation(s)
- Stephen B Williams
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David W Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ashish M Kamat
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xia Pu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Colin P Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
16
|
Naue J, Hörer S, Sänger T, Strobl C, Hatzer-Grubwieser P, Parson W, Lutz-Bonengel S. Evidence for frequent and tissue-specific sequence heteroplasmy in human mitochondrial DNA. Mitochondrion 2014; 20:82-94. [PMID: 25526677 DOI: 10.1016/j.mito.2014.12.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/02/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
Mitochondrial point heteroplasmy is a common event observed not only in patients with mitochondrial diseases but also in healthy individuals. We here report a comprehensive investigation of heteroplasmy occurrence in human including the whole mitochondrial control region from nine different tissue types of 100 individuals. Sanger sequencing was used as a standard method and results were supported by cloning, minisequencing, and massively parallel sequencing. Only 12% of all individuals showed no heteroplasmy, whereas 88% showed at least one heteroplasmic position within the investigated tissues. In 66% of individuals up to 8 positions were affected. The highest relative number of heteroplasmies was detected in muscle and liver (79%, 69%), followed by brain, hair, and heart (36.7%-30.2%). Lower percentages were observed in bone, blood, lung, and buccal cells (19.8%-16.2%). Accumulation of position-specific heteroplasmies was found in muscle (positions 64, 72, 73, 189, and 408), liver (position 72) and brain (partial deletion at position 71). Deeper analysis of these specific positions in muscle revealed a non-random appearance and position-specific dependency on age. MtDNA heteroplasmy frequency and its potential functional importance have been underestimated in the past and its occurrence is ubiquitous and dependent at least on age, tissue, and position-specific mutation rates.
Collapse
Affiliation(s)
- Jana Naue
- Institute of Legal Medicine, Freiburg University Medical Center, Albertstrasse 9, D-79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany.
| | - Steffen Hörer
- Institute of Legal Medicine, Freiburg University Medical Center, Albertstrasse 9, D-79104 Freiburg, Germany.
| | - Timo Sänger
- Institute of Legal Medicine, Freiburg University Medical Center, Albertstrasse 9, D-79104 Freiburg, Germany.
| | - Christina Strobl
- Institute of Legal Medicine, Innsbruck Medical University, Muellerstrasse 44, A-6020 Innsbruck, Austria.
| | - Petra Hatzer-Grubwieser
- Institute of Legal Medicine, Innsbruck Medical University, Muellerstrasse 44, A-6020 Innsbruck, Austria.
| | - Walther Parson
- Institute of Legal Medicine, Innsbruck Medical University, Muellerstrasse 44, A-6020 Innsbruck, Austria; Penn State Eberly College of Science, University Park, PA, USA.
| | - Sabine Lutz-Bonengel
- Institute of Legal Medicine, Freiburg University Medical Center, Albertstrasse 9, D-79104 Freiburg, Germany.
| |
Collapse
|
17
|
DNA Commission of the International Society for Forensic Genetics: Revised and extended guidelines for mitochondrial DNA typing. Forensic Sci Int Genet 2014; 13:134-42. [DOI: 10.1016/j.fsigen.2014.07.010] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 07/19/2014] [Indexed: 11/21/2022]
|
18
|
Rambags BPB, van Boxtel DCJ, Tharasanit T, Lenstra JA, Colenbrander B, Stout TAE. Advancing maternal age predisposes to mitochondrial damage and loss during maturation of equine oocytes in vitro. Theriogenology 2014; 81:959-65. [PMID: 24576711 DOI: 10.1016/j.theriogenology.2014.01.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/08/2014] [Accepted: 01/16/2014] [Indexed: 01/09/2023]
Abstract
In many mammalian species, reproductive success decreases with maternal age. One proposed contributor to this age-related decrease in fertility is a reduction in the quantity or functionality of mitochondria in oocytes. This study examined whether maternal age or (in vitro maturation). IVM affect the quantity of mitochondria in equine oocytes. Oocytes were collected from the ovaries of slaughtered mares categorized as young (<12 years) or aged (≥12 years) and either denuded and prepared for analysis immediately (not-IVM) or matured in vitro for 30 hours before preparation (IVM). The mean oocyte mitochondrial DNA copy number was estimated by quantitative polymerase chain reaction and found to be significantly lower in oocytes from aged mares and that had been subjected to IVM than in any other group. Transmission electron microscopy demonstrated that mitochondria in aged mare oocytes subjected to IVM experienced significantly more swelling and loss of cristae than in other groups. We conclude that maternal aging is associated with a heightened susceptibility to mitochondrial damage and loss in equine oocytes, which manifests during IVM. This predisposition to mitochondrial degeneration probably contributes to reduced fertility in aged mares.
Collapse
Affiliation(s)
- B P B Rambags
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands
| | - D C J van Boxtel
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands
| | - T Tharasanit
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands
| | - J A Lenstra
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands
| | - B Colenbrander
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands
| | - T A E Stout
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands.
| |
Collapse
|
19
|
Frequency and pattern of heteroplasmy in the complete human mitochondrial genome. PLoS One 2013; 8:e74636. [PMID: 24098342 PMCID: PMC3788774 DOI: 10.1371/journal.pone.0074636] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 08/03/2013] [Indexed: 11/19/2022] Open
Abstract
Determining the levels of human mitochondrial heteroplasmy is of utmost importance in several fields. In spite of this, there are currently few published works that have focused on this issue. In order to increase the knowledge of mitochondrial DNA (mtDNA) heteroplasmy, the main goal of this work is to investigate the frequency and the mutational spectrum of heteroplasmy in the human mtDNA genome. To address this, a set of nine primer pairs designed to avoid co-amplification of nuclear DNA (nDNA) sequences of mitochondrial origin (NUMTs) was used to amplify the mitochondrial genome in 101 individuals. The analysed individuals represent a collection with a balanced representation of genders and mtDNA haplogroup distribution, similar to that of a Western European population. The results show that the frequency of heteroplasmic individuals exceeds 61%. The frequency of point heteroplasmy is 28.7%, with a widespread distribution across the entire mtDNA. In addition, an excess of transitions in heteroplasmy were detected, suggesting that genetic drift and/or selection may be acting to reduce its frequency at population level. In fact, heteroplasmy at highly stable positions might have a greater impact on the viability of mitochondria, suggesting that purifying selection must be operating to prevent their fixation within individuals. This study analyses the frequency of heteroplasmy in a healthy population, carrying out an evolutionary analysis of the detected changes and providing a new perspective with important consequences in medical, evolutionary and forensic fields.
Collapse
|
20
|
Kazachkova N, Ramos A, Santos C, Lima M. Mitochondrial DNA damage patterns and aging: revising the evidences for humans and mice. Aging Dis 2013; 4:337-50. [PMID: 24307967 DOI: 10.14336/ad.2013.0400337] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 01/07/2023] Open
Abstract
A significant body of work, accumulated over the years, strongly suggests that damage in mitochondrial DNA (mtDNA) contributes to aging in humans. Contradictory results, however, are reported in the literature, with some studies failing to provide support to this hypothesis. With the purpose of further understanding the aging process, several models, among which mouse models, have been frequently used. Although important affinities are recognized between humans and mice, differences on what concerns physiological properties, disease pathogenesis as well as life-history exist between the two; the extent to which such differences limit the translation, from mice to humans, of insights on the association between mtDNA damage and aging remains to be established. In this paper we revise the studies that analyze the association between patterns of mtDNA damage and aging, investigating putative alterations in mtDNA copy number as well as accumulation of deletions and of point mutations. Reports from the literature do not allow the establishment of a clear association between mtDNA copy number and age, either in humans or in mice. Further analysis, using a wide spectrum of tissues and a high number of individuals would be necessary to elucidate this pattern. Likewise humans, mice demonstrated a clear pattern of age-dependent and tissue-specific accumulation of mtDNA deletions. Deletions increase with age, and the highest amount of deletions has been observed in brain tissues both in humans and mice. On the other hand, mtDNA point mutations accumulation has been clearly associated with age in humans, but not in mice. Although further studies, using the same methodologies and targeting a larger number of samples would be mandatory to draw definitive conclusions, the revision of the available data raises concerns on the ability of mouse models to mimic the mtDNA damage patterns of humans, a fact with implications not only for the study of the aging process, but also for investigations of other processes in which mtDNA dysfunction is a hallmark, such as neurodegeneration.
Collapse
Affiliation(s)
- Nadiya Kazachkova
- Centre of Research in Natural Resources (CIRN), Department of Biology, University of the Azores, Ponta Delgada, Portugal ; Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | | | | | | |
Collapse
|
21
|
Lindberg J, Mills IG, Klevebring D, Liu W, Neiman M, Xu J, Wikström P, Wiklund P, Wiklund F, Egevad L, Grönberg H. The Mitochondrial and Autosomal Mutation Landscapes of Prostate Cancer. Eur Urol 2013; 63:702-8. [DOI: 10.1016/j.eururo.2012.11.053] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/27/2012] [Indexed: 12/01/2022]
|
22
|
Choi KH, Le T, McGuire J, Coyner J, Higgs BW, Diglisic S, Johnson LR, Benedek DM, Ursano RJ. Expression profiles of mitochondrial genes in the frontal cortex and the caudate nucleus of developing humans and mice selectively bred for high and low fear. PLoS One 2012; 7:e49183. [PMID: 23152871 PMCID: PMC3496717 DOI: 10.1371/journal.pone.0049183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 10/04/2012] [Indexed: 12/22/2022] Open
Abstract
A growing body of evidence suggests that mitochondrial function may be important in brain development and psychiatric disorders. However, detailed expression profiles of those genes in human brain development and fear-related behavior remain unclear. Using microarray data available from the public domain and the Gene Ontology analysis, we identified the genes and the functional categories associated with chronological age in the prefrontal cortex (PFC) and the caudate nucleus (CN) of psychiatrically normal humans ranging in age from birth to 50 years. Among those, we found that a substantial number of genes in the PFC (115) and the CN (117) are associated with the GO term: mitochondrion (FDR qv <0.05). A greater number of the genes in the PFC (91%) than the genes in the CN (62%) showed a linear increase in expression during postnatal development. Using quantitative PCR, we validated the developmental expression pattern of four genes including monoamine oxidase B (MAOB), NADH dehydrogenase flavoprotein (NDUFV1), mitochondrial uncoupling protein 5 (SLC25A14) and tubulin beta-3 chain (TUBB3). In mice, overall developmental expression pattern of MAOB, SLC25A14 and TUBB3 in the PFC were comparable to the pattern observed in humans (p<0.05). However, mice selectively bred for high fear did not exhibit normal developmental changes of MAOB and TUBB3. These findings suggest that the genes associated with mitochondrial function in the PFC play a significant role in brain development and fear-related behavior.
Collapse
Affiliation(s)
- Kwang H Choi
- Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci U S A 2012; 109:14508-13. [PMID: 22853953 DOI: 10.1073/pnas.1208715109] [Citation(s) in RCA: 745] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Next-generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of ~1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when "deep sequencing" genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, we have developed a method termed Duplex Sequencing. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors result in mutations in only one strand and can thus be discounted as technical error. We determine that Duplex Sequencing has a theoretical background error rate of less than one artifactual mutation per billion nucleotides sequenced. In addition, we establish that detection of mutations present in only one of the two strands of duplex DNA can be used to identify sites of DNA damage. We apply the method to directly assess the frequency and pattern of random mutations in mitochondrial DNA from human cells.
Collapse
|
24
|
Sequeira A, Martin MV, Rollins B, Moon EA, Bunney WE, Macciardi F, Lupoli S, Smith EN, Kelsoe J, Magnan CN, van Oven M, Baldi P, Wallace DC, Vawter MP. Mitochondrial mutations and polymorphisms in psychiatric disorders. Front Genet 2012; 3:103. [PMID: 22723804 PMCID: PMC3379031 DOI: 10.3389/fgene.2012.00103] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/20/2012] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial deficiencies with unknown causes have been observed in schizophrenia (SZ) and bipolar disorder (BD) in imaging and postmortem studies. Polymorphisms and somatic mutations in mitochondrial DNA (mtDNA) were investigated as potential causes with next generation sequencing of mtDNA (mtDNA-Seq) and genotyping arrays in subjects with SZ, BD, major depressive disorder (MDD), and controls. The common deletion of 4,977 bp in mtDNA was compared between SZ and controls in 11 different vulnerable brain regions and in blood samples, and in dorsolateral prefrontal cortex (DLPFC) of BD, SZ, and controls. In a separate analysis, association of mitochondria SNPs (mtSNPs) with SZ and BD in European ancestry individuals (n = 6,040) was tested using Genetic Association Information Network (GAIN) and Wellcome Trust Case Control Consortium 2 (WTCCC2) datasets. The common deletion levels were highly variable across brain regions, with a 40-fold increase in some regions (nucleus accumbens, caudate nucleus and amygdala), increased with age, and showed little change in blood samples from the same subjects. The common deletion levels were increased in the DLPFC for BD compared to controls, but not in SZ. Full mtDNA genome resequencing of 23 subjects, showed seven novel homoplasmic mutations, five were novel synonymous coding mutations. By logistic regression analysis there were no significant mtSNPs associated with BD or SZ after genome wide correction. However, nominal association of mtSNPs (p < 0.05) to SZ and BD were found in the hypervariable region of mtDNA to T195C and T16519C. The results confirm prior reports that certain brain regions accumulate somatic mutations at higher levels than blood. The study in mtDNA of common polymorphisms, somatic mutations, and rare mutations in larger populations may lead to a better understanding of the pathophysiology of psychiatric disorders.
Collapse
Affiliation(s)
- Adolfo Sequeira
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of CaliforniaIrvine, CA, USA
| | - Maureen V. Martin
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of CaliforniaIrvine, CA, USA
| | - Brandi Rollins
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of CaliforniaIrvine, CA, USA
| | - Emily A. Moon
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of CaliforniaIrvine, CA, USA
| | - William E. Bunney
- Department of Psychiatry and Human Behavior, University of CaliforniaIrvine, CA, USA
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of CaliforniaIrvine, CA, USA
- Department of Medicine, Surgery and Dentistry, University of MilanMilan, Italy
| | - Sara Lupoli
- Department of Medicine, Surgery and Dentistry, University of MilanMilan, Italy
| | - Erin N. Smith
- Department of Pediatrics, School of Medicine, Rady’s Children’s Hospital, University of CaliforniaSan Diego, CA, USA
| | - John Kelsoe
- Psychiatry Service, Veterans Affairs San Diego Healthcare SystemSan Diego, CA, USA
- Department of Psychiatry, University of CaliforniaSan Diego, CA, USA
| | - Christophe N. Magnan
- School of Information and Computer Sciences, Institute for Genomics and Bioinformatics, University of California IrvineIrvine, CA, USA
| | - Mannis van Oven
- Department of Forensic Molecular Biology, Erasmus MC University Medical CenterRotterdam, Netherlands
| | - Pierre Baldi
- School of Information and Computer Sciences, Institute for Genomics and Bioinformatics, University of California IrvineIrvine, CA, USA
| | - Douglas C. Wallace
- Department of Pathology and Laboratory Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Marquis P. Vawter
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of CaliforniaIrvine, CA, USA
| |
Collapse
|
25
|
Tranah GJ, Lam ET, Katzman SM, Nalls MA, Zhao Y, Evans DS, Yokoyama JS, Pawlikowska L, Kwok PY, Mooney S, Kritchevsky S, Goodpaster BH, Newman AB, Harris TB, Manini TM, Cummings SR. Mitochondrial DNA sequence variation is associated with free-living activity energy expenditure in the elderly. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1691-700. [PMID: 22659402 DOI: 10.1016/j.bbabio.2012.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/19/2012] [Accepted: 05/24/2012] [Indexed: 01/11/2023]
Abstract
The decline in activity energy expenditure underlies a range of age-associated pathological conditions, neuromuscular and neurological impairments, disability, and mortality. The majority (90%) of the energy needs of the human body are met by mitochondrial oxidative phosphorylation (OXPHOS). OXPHOS is dependent on the coordinated expression and interaction of genes encoded in the nuclear and mitochondrial genomes. We examined the role of mitochondrial genomic variation in free-living activity energy expenditure (AEE) and physical activity levels (PAL) by sequencing the entire (~16.5 kilobases) mtDNA from 138 Health, Aging, and Body Composition Study participants. Among the common mtDNA variants, the hypervariable region 2 m.185G>A variant was significantly associated with AEE (p=0.001) and PAL (p=0.0005) after adjustment for multiple comparisons. Several unique nonsynonymous variants were identified in the extremes of AEE with some occurring at highly conserved sites predicted to affect protein structure and function. Of interest is the p.T194M, CytB substitution in the lower extreme of AEE occurring at a residue in the Qi site of complex III. Among participants with low activity levels, the burden of singleton variants was 30% higher across the entire mtDNA and OXPHOS complex I when compared to those having moderate to high activity levels. A significant pooled variant association across the hypervariable 2 region was observed for AEE and PAL. These results suggest that mtDNA variation is associated with free-living AEE in older persons and may generate new hypotheses by which specific mtDNA complexes, genes, and variants may contribute to the maintenance of activity levels in late life.
Collapse
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, San Francisco, CA 94107, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tranah GJ, Nalls MA, Katzman SM, Yokoyama JS, Lam ET, Zhao Y, Mooney S, Thomas F, Newman AB, Liu Y, Cummings SR, Harris TB, Yaffe K. Mitochondrial DNA sequence variation associated with dementia and cognitive function in the elderly. J Alzheimers Dis 2012; 32:357-72. [PMID: 22785396 PMCID: PMC4156011 DOI: 10.3233/jad-2012-120466] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondrial dysfunction is a prominent hallmark of Alzheimer's disease (AD). Mitochondrial DNA (mtDNA) damage may be a major cause of abnormal reactive oxidative species production in AD or increased neuronal susceptibility to oxidative injury during aging. The purpose of this study was to assess the influence of mtDNA sequence variation on clinically significant cognitive impairment and dementia risk in the population-based Health, Aging, and Body Composition (Health ABC) Study. We first investigated the role of common mtDNA haplogroups and individual variants on dementia risk and 8-year change on the Modified Mini-Mental State Examination (3MS) and Digit Symbol Substitution Test (DSST) among 1,631 participants of European genetic ancestry. Participants were free of dementia at baseline and incidence was determined in 273 cases from hospital and medication records over 10-12 follow-up years. Participants from haplogroup T had a statistically significant increased risk of developing dementia (OR = 1.86, 95% CI = 1.23, 2.82, p = 0.0008) and haplogroup J participants experienced a statistically significant 8-year decline in 3MS (β = -0.14, 95% CI = -0.27, -0.03, p = 0.0006), both compared with common haplogroup H. The m.15244A>G, p.G166G, CytB variant was associated with a significant decline in DSST score (β = -0.58, 95% CI -0.89, -0.28, p = 0.00019) and the m.14178T>C, p.I166V, ND6 variant was associated with a significant decline in 3MS score (β = -0.87, 95% CI -1.31, -3.86, p = 0.00012). Finally, we sequenced the complete ~16.5 kb mtDNA from 135 Health ABC participants and identified several highly conserved and potentially functional nonsynonymous variants unique to 22 dementia cases and aggregate sequence variation across the hypervariable 2-3 regions that influences 3MS and DSST scores.
Collapse
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Analysis of complete mitochondrial genomes of patients with schizophrenia and bipolar disorder. J Hum Genet 2011; 56:869-72. [DOI: 10.1038/jhg.2011.111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Kassem AM, El-Guendy N, Tantawy M, Abdelhady H, El-Ghor A, Abdel Wahab AH. Mutational hotspots in the mitochondrial D-loop region of cancerous and precancerous colorectal lesions in Egyptian patients. DNA Cell Biol 2011; 30:899-906. [PMID: 21612400 DOI: 10.1089/dna.2010.1186] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations in the mitochondrial genome (mtDNA) are associated with different types of cancer, specifically colorectal cancer (CRC). However, few studies have been performed on precancerous lesions, such as ulcerative colitis (UC) lesions and adenomatous polyps (AP). The aim of this study was to identify mtDNA mutations in the cancerous and precancerous lesions of Egyptian patients. An analysis of the mutations found in six regions of the mtDNA genome (ND1, ND5, COI, tRNAser, D-loop 1, and 2) in 80 Egyptian patients (40 CRC, 20 UC, and 20 AP) was performed using polymerase chain reaction-single-strand conformational polymorphism techniques and followed up by direct sequencing. The overall incidence of mutations was 25%, 25%, and 35% in CRC, UC, and AP cases, respectively. Although there was no common mutation pattern within each group, a large number of mutations were detected in the D-loop region in all of the groups. Some mutations (e.g., T414G) were detected repeatedly in precancerous (UC and AP) and cancerous lesions. Mutations detected in patients with CRC were predominantly found in the ND1 gene (40%). Our preliminary study suggests that Egyptian patients with CRC have a large number of mtDNA mutations, especially in the D-loop region, which have not been previously reported. Mutations in the mtDNA of precancerous lesions (i.e., AP and UC) may contribute to transformation events that lead to CRC.
Collapse
Affiliation(s)
- Abdel Meguid Kassem
- Tropical Medicine Department, Faculty of Medicine, Cairo University, New Maadi, Cairo, Egypt.
| | | | | | | | | | | |
Collapse
|
29
|
Tranah GJ. Mitochondrial-nuclear epistasis: implications for human aging and longevity. Ageing Res Rev 2011; 10:238-52. [PMID: 20601194 PMCID: PMC2995012 DOI: 10.1016/j.arr.2010.06.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 06/17/2010] [Accepted: 06/17/2010] [Indexed: 12/22/2022]
Abstract
There is substantial evidence that mitochondria are involved in the aging process. Mitochondrial function requires the coordinated expression of hundreds of nuclear genes and a few dozen mitochondrial genes, many of which have been associated with either extended or shortened life span. Impaired mitochondrial function resulting from mtDNA and nuclear DNA variation is likely to contribute to an imbalance in cellular energy homeostasis, increased vulnerability to oxidative stress, and an increased rate of cellular senescence and aging. The complex genetic architecture of mitochondria suggests that there may be an equally complex set of gene interactions (epistases) involving genetic variation in the nuclear and mitochondrial genomes. Results from Drosophila suggest that the effects of mtDNA haplotypes on longevity vary among different nuclear allelic backgrounds, which could account for the inconsistent associations that have been observed between mitochondrial DNA (mtDNA) haplogroups and survival in humans. A diversity of pathways may influence the way mitochondria and nuclear-mitochondrial interactions modulate longevity, including: oxidative phosphorylation; mitochondrial uncoupling; antioxidant defenses; mitochondrial fission and fusion; and sirtuin regulation of mitochondrial genes. We hypothesize that aging and longevity, as complex traits having a significant genetic component, are likely to be controlled by nuclear gene variants interacting with both inherited and somatic mtDNA variability.
Collapse
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco Coordinating Center, UCSF, 94107-1728, USA.
| |
Collapse
|
30
|
Factors affecting the detection and quantification of mitochondrial point heteroplasmy using Sanger sequencing and SNaPshot minisequencing. Int J Legal Med 2011; 125:427-36. [PMID: 21249378 DOI: 10.1007/s00414-011-0549-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
Mitochondrial DNA analysis plays an important role in forensic science as well as in the diagnosis of mitochondrial diseases. The occurrence of two different nucleotides at the same sequence position can be caused either by heteroplasmy or by a mix of samples. The detection of superimposed positions in forensic samples and their quantification can provide additional information and might also be useful to identify a mixed sample. Therefore, the detection and visualization of heteroplasmy has to be robust and sensitive at the same time to allow for reliable interpretation of results and to avoid a loss of information. In this study, different factors influencing the analysis of mitochondrial heteroplasmy (DNA polymerases, PCR and sequencing primers, nucleotide incorporation, and sequence context) were examined. BigDye Sanger sequencing and the SNaPshot minisequencing were compared as to the accuracy of detection using artificially created mitochondrial DNA mixtures. Both sequencing strategies showed to be robust, and the parameters tested showed to have a variable impact on the display of nucleotide ratios. However, experiments revealed a high correlation between the expected and the measured nucleotide ratios in cell mixtures. Compared to the SNaPshot minisequencing, Sanger sequencing proved to be the more robust and reliable method for quantification of nucleotide ratios but showed a lower detection sensitivity of minor cytosine components.
Collapse
|
31
|
Roberts KA, Calloway C. Characterization of mitochondrial DNA sequence heteroplasmy in blood tissue and hair as a function of hair morphology. J Forensic Sci 2010; 56:46-60. [PMID: 20840293 DOI: 10.1111/j.1556-4029.2010.01540.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study characterizes mitochondrial DNA (mtDNA) sequence heteroplasmy in blood tissue and hair as a function of hair morphology. Bloodstains (127 individuals) and head hairs (128 individuals) were typed using the mtDNA LINEAR ARRAY™ assay. A total of 1589 hairs were interpreted: 1478 (93%) were homoplasmic and 111 (7%) exhibited heteroplasmy at one or more positions. Seventy-one percent (82/116) of individuals were homoplasmic, whereas 29% (34/116) exhibited heteroplasmy in at least one hair. The results demonstrate intra- and inter-tissue differences in heteroplasmy within individuals. Sequence heteroplasmy among hairs from each individual varied from 0 to 90%; the frequency does not differ significantly with population group, cosmetic treatment, age, gender, medulla morphology, region of the scalp, hair growth phase, or, when comparing living and deceased donors. However, the results support a correlation between heteroplasmy and hair pigmentation; typically, lighter-pigmented hairs exhibit a higher incidence of sequence heteroplasmy compared to darker hairs.
Collapse
Affiliation(s)
- Katherine A Roberts
- School of Criminal Justice and Criminalistics, 1800 Paseo Rancho Castilla, California State University, Los Angeles, Los Angeles, CA 90032, USA.
| | | |
Collapse
|
32
|
Li M, Schönberg A, Schaefer M, Schroeder R, Nasidze I, Stoneking M. Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet 2010; 87:237-49. [PMID: 20696290 PMCID: PMC2917713 DOI: 10.1016/j.ajhg.2010.07.014] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 11/29/2022] Open
Abstract
Heteroplasmy, the existence of multiple mtDNA types within an individual, has been previously detected by using mostly indirect methods and focusing largely on just the hypervariable segments of the control region. Next-generation sequencing technologies should enable studies of heteroplasmy across the entire mtDNA genome at much higher resolution, because many independent reads are generated for each position. However, the higher error rate associated with these technologies must be taken into consideration to avoid false detection of heteroplasmy. We used simulations and phiX174 sequence data to design criteria for accurate detection of heteroplasmy with the Illumina Genome Analyzer platform, and we used artificial mixtures and replicate data to test and refine the criteria. We then applied these criteria to mtDNA sequence reads for 131 individuals from five Eurasian populations that had been generated via a parallel tagged approach. We identified 37 heteroplasmies at 10% frequency or higher at 34 sites in 32 individuals. The mutational spectrum does not differ between heteroplasmic mutations and polymorphisms in the same individuals, but the relative mutation rate at heteroplasmic mutations is significantly higher than that estimated for all mutable sites in the human mtDNA genome. Moreover, there is also a significant excess of nonsynonymous mutations observed among heteroplasmies, compared to polymorphism data from the same individuals. Both mutation-drift and negative selection influence the fate of heteroplasmies to determine the polymorphism spectrum in humans. With appropriate criteria for avoiding false positives due to sequencing errors, next-generation technologies can provide novel insights into genome-wide aspects of mtDNA heteroplasmy.
Collapse
Affiliation(s)
- Mingkun Li
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
| | - Anna Schönberg
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
| | - Michael Schaefer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
| | - Roland Schroeder
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
| | - Ivane Nasidze
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D04103 Leipzig, Germany
| |
Collapse
|
33
|
Mishmar D. The impact of darwinian evolution on medicine: the maternal side of the story. Rambam Maimonides Med J 2010; 1:e0010. [PMID: 23908782 PMCID: PMC3721657 DOI: 10.5041/rmmj.10010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complex disorders are common in the human population and are caused by interplay between genetic and environmental factors. Therefore the quest for the genetic basis of such disorders has much similarity to deciphering the genetic basis of macro-evolutionary processes, such as speciation. Here I discuss conceptual connections between the principles underlying and processes occurring in disease and evolution. Special focus is given to the tremendous mitochondrial genetic variability in the population and within individuals and the impact of both types of variability on evolutionary processes and diseases.
Collapse
Affiliation(s)
- Dan Mishmar
- Department of Life Sciences and the National Institute of Biotechnology (NIBN), Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
34
|
Yoo JH, Suh B, Park TS, Shin MG, Choi YD, Lee CH, Choi JR. Analysis of fluorescence in situ hybridization, mtDNA quantification, and mtDNA sequence for the detection of early bladder cancer. ACTA ACUST UNITED AC 2010; 198:107-17. [PMID: 20362225 DOI: 10.1016/j.cancergencyto.2009.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 11/23/2009] [Accepted: 12/30/2009] [Indexed: 11/15/2022]
Abstract
We designed this study to test the sensitivities of cytology, the nuclear matrix protein 22 (NMP22) assay, and fluorescence in situ hybridization (FISH) in the early detection of urothelial carcinoma, and to identify mtDNA alterations in urinary epithelial cells. We collected 41 urine samples and 26 corresponding peripheral blood samples from patients with clinically suspected urothelial carcinoma. The FISH and NMP22 assays detected 92.1% of the cancers, and cytology detected 60.5%. In the low-grade group, NMP22 and FISH analyses were more sensitive than cytology, but in the high-grade group, all three methods showed approximately 90% sensitivity. Overall, the FISH and NMP22, or FISH and cytology assays combined detected 97.4% of cancers, while cytology with NMP22 detected 92.1%. In the low-grade group, the sensitivity of the three methods combined was above 80%, but in high-grade group, the combined sensitivity was approximately 100%. In the mtDNA control region, we detected characteristic heteroplasmic mtDNA substitution mutations in 1 patient and a mtDNA length heteroplasmic mutation in 303 polyC or 16184 poly C in 20 patients. Overall, urothelial carcinoma-specific mtDNA mutations were observed in 20 of the 26 patients (76.9%). The average mtDNA copy numbers in urine samples and corresponding peripheral blood samples (83.45 +/- 60.36 and 39.0 +/- 24.38, respectively) (mean +/- standard deviation [SD]) differed significantly (P < 0.001). The mtDNA copy numbers in the urine samples from patients with high-grade and low-grade tumors (81.83 +/- 67.78 and 86.49 +/- 46.69, respectively) did not differ significantly (P = 0.589). In conclusion, the FISH assay showed the highest sensitivity for detecting low-grade urothelial carcinoma, and mtDNA copy numbers in urine samples were higher than those in the corresponding peripheral blood samples. The frequency of mtDNA mutations in the D-loop region in patients with cancer was approximately 80% in our study. This report further supports the significance of genetic alteration in urothelial carcinoma and the clinical utility of the FISH, mtDNA quantitation polymerase chain reaction, mtDNA sequencing, and capillary electrophoresis for this purpose.
Collapse
Affiliation(s)
- Jong-Ha Yoo
- Department of Laboratory Medicine, National Health Insurance Corporation Ilsan Hospital, Goyang-si, Kyonggi-do, 410-719, Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Zhao H, Shen J, Medico L, Platek M, Ambrosone CB. Length heteroplasmies in human mitochondrial DNA control regions and breast cancer risk. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2010; 1:184-192. [PMID: 21537390 PMCID: PMC3076767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 03/31/2010] [Indexed: 05/30/2023]
Abstract
It has been proposed that the presence of heteroplasmy in the hypervariable (HV) regions of the mitochondrial DNA (mtDNA) may be an indicator of mitochondrial genome instability, mtDNA dysfunction, and, thus, may be associated with increased cancer risk. However, whether heteroplasmy in the HV regions of mtDNA could be a risk predictor of oxidative stress-related human cancers, such as breast cancer, remains to be determined. To explore the role of heteroplasmy in the HV regions of mtDNA in breast cancer etiology, we analyzed heteroplasmy in the HV regions of mtDNA in whole blood from 103 patients with breast cancer and 103 matched control subjects. Both cases and controls displayed heteroplasmies in both of the HV1 and HV2 regions. Closer examination of the prevalence of length heteroplasmy indicated that the prevalence of heteroplasmies in both of the HV1 and HV2 regions was much higher in the cases than in the controls (HV1: 68% vs 49%, P=0.007; HV2: 46% vs 25%, P=0.002). The presence of length heteroplasmies in both of the HV1 and HV2 regions was associated with 2.18- and 2.49-folds increased risk of breast cancer, respectively, (HV1: OR=2.18, 95% CI: 1.19 - 4.00; HV2: OR=2.49, 95% CI: 1.32 - 4.69). Interestingly, we observed that the controls with length heteroplasmies in both HV1 and HV2 had statistically significantly lower copy number of mtDNA than the ones without heteroplasmies. These results suggest that the length heteroplasmy in the HV regions of mtDNA could be associated with a risk of breast cancer, perhaps through affecting the copy number of mtDNA.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
36
|
Tanaka N, Goto YI, Akanuma J, Kato M, Kinoshita T, Yamashita F, Tanaka M, Asada T. Mitochondrial DNA variants in a Japanese population of patients with Alzheimer’s disease. Mitochondrion 2010; 10:32-7. [DOI: 10.1016/j.mito.2009.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 08/10/2009] [Accepted: 08/18/2009] [Indexed: 12/18/2022]
|
37
|
Byrne EM, McRae AF, Duffy DL, Zhao ZZ, Martin NG, Whitfield JB, Visscher PM, Montgomery GW. Family-based mitochondrial association study of traits related to type 2 diabetes and the metabolic syndrome in adolescents. Diabetologia 2009; 52:2359-2368. [PMID: 19760390 DOI: 10.1007/s00125-009-1510-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 07/06/2009] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS There has been much focus on the potential role of mitochondria in the aetiology of type 2 diabetes and the metabolic syndrome, and many case-control mitochondrial association studies have been undertaken for these conditions. We tested for a potential association between common mitochondrial variants and a number of quantitative traits related to type 2 diabetes in a large sample of >2,000 healthy Australian adolescent twins and their siblings, many of whom were measured on more than one occasion. METHODS To the best of our knowledge, this is the first mitochondrial association study of quantitative traits undertaken using family data. The maternal inheritance pattern of mitochondria means established association methodologies are unsuitable for analysis of mitochondrial data in families. We present a methodology, implemented in the freely available program Sib-Pair for performing such an analysis. RESULTS Despite our study having the power to detect variants with modest effects on these phenotypes, only one significant association was found after correction for multiple testing in any of four age groups. This was for mt14365 with triacylglycerol levels (unadjusted p = 0.0006). This association was not replicated in other age groups. CONCLUSIONS/INTERPRETATION We find little evidence in our sample to suggest that common European mitochondrial variants contribute to variation in quantitative phenotypes related to diabetes. Only one variant showed a significant association in our sample, and this association will need to be replicated in a larger cohort. Such replication studies or future meta-analyses may reveal more subtle effects that could not be detected here because of limitations of sample size.
Collapse
Affiliation(s)
- E M Byrne
- Queensland Statistical Genetics, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, QLD, 4029, Australia.
- Queensland Statistical Genetics, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, QLD, 4029, Australia.
- School of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - A F McRae
- Queensland Statistical Genetics, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, QLD, 4029, Australia
- Queensland Statistical Genetics, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, QLD, 4029, Australia
| | - D L Duffy
- Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - Z Z Zhao
- Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - N G Martin
- Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - J B Whitfield
- Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - P M Visscher
- Queensland Statistical Genetics, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, QLD, 4029, Australia
- Queensland Statistical Genetics, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, QLD, 4029, Australia
| | - G W Montgomery
- Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| |
Collapse
|
38
|
Wani AA, Rangrez AY, Kumar H, Bapat SA, Suresh CG, Barnabas S, Patole MS, Shouche Y. Analysis of reactive oxygen species and antioxidant defenses in complex I deficient patients revealed a specific increase in superoxide dismutase activity. Free Radic Res 2009; 42:415-27. [DOI: 10.1080/10715760802068571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Pietrangeli I, Caruso V, Veneziano L, Spinella A, Arcudi G, Giardina E, Novelli G. Forensic DNA Challenges: Replacing Numbers with Names of Fosse Ardeatine’s Victims. J Forensic Sci 2009; 54:905-8. [DOI: 10.1111/j.1556-4029.2009.01052.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Park SY, Shin MG, Kim HR, Oh JY, Kim SH, Shin JH, Cho YB, Suh SP, Ryang DW. Alteration of mitochondrial DNA sequence and copy number in nasal polyp tissue. Mitochondrion 2009; 9:318-25. [PMID: 19426839 DOI: 10.1016/j.mito.2009.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 04/02/2009] [Accepted: 04/29/2009] [Indexed: 11/19/2022]
Abstract
This study was designed to investigate the possibility that mtDNA mutations might arise in inflammatory or chronically damaged nasal polyp tissue from 23 patients. Thirteen patients (57%) displayed nasal polyp tissue-specific mtDNA mutations in the hypervariable segment of the control region and cytochrome b gene, which were not found in the corresponding blood cells and/or adjacent normal tissue. Nasal polyp tissue-specific length heteroplasmic mutations were also detected in nucleotide position (np) 303-315 homopolymeric poly C track (39%), np 514-523 CA repeats (17%) and np 16184-16193 poly C track (30%). The average mtDNA copy number was about three times higher in nasal polyp tissue than in the corresponding peripheral blood cells and adjacent non-polyp tissues. The level of reactive oxygen species (ROS) was significantly higher in the nasal polyp tissues compared to those from the corresponding samples. High level of ROS in nasal polyp tissue may contribute to development of mtDNA mutations, which may play a crucial role in the vicious cycle of pathophysiology of nasal polyps.
Collapse
Affiliation(s)
- Sang-Young Park
- Department of Laboratory Medicine and Molecular Genetics, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun-eup, Hwasun-gun, Jeollanam-do 519-809, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rollins B, Martin MV, Sequeira PA, Moon EA, Morgan LZ, Watson SJ, Schatzberg A, Akil H, Myers RM, Jones EG, Wallace DC, Bunney WE, Vawter MP. Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder. PLoS One 2009; 4:e4913. [PMID: 19290059 PMCID: PMC2654519 DOI: 10.1371/journal.pone.0004913] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 02/15/2009] [Indexed: 02/06/2023] Open
Abstract
Background Mitochondria provide most of the energy for brain cells by the process of oxidative phosphorylation. Mitochondrial abnormalities and deficiencies in oxidative phosphorylation have been reported in individuals with schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD) in transcriptomic, proteomic, and metabolomic studies. Several mutations in mitochondrial DNA (mtDNA) sequence have been reported in SZ and BD patients. Methodology/Principal Findings Dorsolateral prefrontal cortex (DLPFC) from a cohort of 77 SZ, BD, and MDD subjects and age-matched controls (C) was studied for mtDNA sequence variations and heteroplasmy levels using Affymetrix mtDNA resequencing arrays. Heteroplasmy levels by microarray were compared to levels obtained with SNaPshot and allele specific real-time PCR. This study examined the association between brain pH and mtDNA alleles. The microarray resequencing of mtDNA was 100% concordant with conventional sequencing results for 103 mtDNA variants. The rate of synonymous base pair substitutions in the coding regions of the mtDNA genome was 22% higher (p = 0.0017) in DLPFC of individuals with SZ compared to controls. The association of brain pH and super haplogroup (U, K, UK) was significant (p = 0.004) and independent of postmortem interval time. Conclusions Focusing on haplogroup and individual susceptibility factors in psychiatric disorders by considering mtDNA variants may lead to innovative treatments to improve mitochondrial health and brain function.
Collapse
Affiliation(s)
- Brandi Rollins
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Maureen V. Martin
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - P. Adolfo Sequeira
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Emily A. Moon
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Ling Z. Morgan
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Stanley J. Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alan Schatzberg
- Department of Psychiatry, Stanford University, Palo Alto, California, United States of America
| | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Richard M. Myers
- Hudson Alpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Edward G. Jones
- Neuroscience Center, University of California Davis, Davis, California, United States of America
| | - Douglas C. Wallace
- Molecular and Mitochondrial Medicine and Genetics, University of California Irvine, Irvine, California, United States of America
| | - William E. Bunney
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Marquis P. Vawter
- Department of Psychiatry & Human Behavior, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Kraytsberg Y, Bodyak N, Myerow S, Nicholas A, Ebralidze K, Khrapko K. Quantitative analysis of somatic mitochondrial DNA mutations by single-cell single-molecule PCR. Methods Mol Biol 2009; 554:329-69. [PMID: 19513684 DOI: 10.1007/978-1-59745-521-3_21] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial genome integrity is an important issue in somatic mitochondrial genetics. Development of quantitative methods is indispensable to somatic mitochondrial genetics as quantitative studies are required to characterize heteroplasmy and mutation processes, as well as their effects on phenotypic developments. Quantitative studies include the identification and measurement of the load of pathogenic and non-pathogenic clonal mutations, screening mitochondrial genomes for mutations in order to determine the mutation spectra and characterize an ongoing mutation process. Single-molecule PCR (smPCR) has been shown to be an effective method that can be applied to all areas of quantitative studies. It has distinct advantages over conventional vector-based cloning techniques avoiding the well-known PCR-related artifacts such as the introduction of artificial mutations, preferential allelic amplifications, and "jumping" PCR. smPCR is a straightforward and robust method, which can be effectively used for molecule-by-molecule mutational analysis, even when mitochondrial whole genome (mtWG) analysis is involved. This chapter describes the key features of the smPCR method and provides three examples of its applications in single-cell analysis: di-plex smPCR for deletion quantification, smPCR cloning for clonal point mutation quantification, and smPCR cloning for whole genome sequencing (mtWGS).
Collapse
Affiliation(s)
- Yevgenya Kraytsberg
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
43
|
Nakahara H, Sekiguchi K, Imaizumi K, Mizuno N, Kasai K. Heteroplasmies detected in an amplified mitochondrial DNA control region from a small amount of template. J Forensic Sci 2008; 53:306-11. [PMID: 18298490 DOI: 10.1111/j.1556-4029.2007.00655.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
When mitochondrial DNA (mtDNA) heteroplasmies are detected, they often confound forensic identification, especially if they are the result of poor biological sampling. In this study, we determined the ratio of heteroplasmy in samples that were amplified from a very small amount of template mtDNA or a few cells using a highly sensitive nested polymerase chain reaction (PCR) procedure and a direct sequencing analysis. As a result, more than half of the detected sequences (i.e., 17/20, 15/20, and 14/20) showed homoplasmy derived from a variation in the heteroplasmy proportion when only 10 copies of template mtDNA samples were amplified and analyzed. Additionally, with products amplified from one or several white blood cells (WBCs), several previously undetected heteroplasmies were detected. These results indicate the risks associated with using highly sensitive mtDNA techniques in forensic investigations because of the variable proportions of heteroplasmy or nucleotide substitutions that can possibly be detected from a very small biological sample.
Collapse
Affiliation(s)
- Hiroaki Nakahara
- Biology Section, National Research Institute of Police Science, Kashiwashi, Chiba, Japan.
| | | | | | | | | |
Collapse
|
44
|
Lynch D, Wanglund C, Spathis R, Chan CW, Reiff DM, Lum JK, Garruto RM. The contribution of mitochondrial dysfunction to a gene-environment model of Guamanian ALS and PD. Mitochondrion 2007; 8:109-16. [PMID: 18054291 DOI: 10.1016/j.mito.2007.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 09/21/2007] [Accepted: 09/27/2007] [Indexed: 11/30/2022]
Abstract
Scientific investigations of amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia (PD) of Guam have implicated genetic and environmental risk factors in their etiology. Using brain tissue, we investigated mitochondrial dysfunction and report a higher frequency of somatic mutations in the light strand promoter (LSP) of the mitochondrial control region in Guam ALS and PD patients than in Guam controls, along with the presence of inherited mutations that may contribute to a novel gene-environment interaction risk model. Along with other risk factors, they demonstrate both the importance and significance of genetic and environmental contributions to Guam ALS and PD etiology.
Collapse
Affiliation(s)
- Daniel Lynch
- Laboratory of Biomedical Anthropology and Neurosciences, State University of New York, PO Box 6000, Binghamton, NY 13902-6000, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Shie FS, Ling Z. Therapeutic strategy at the crossroad of neuroinflammation and oxidative stress in age-related neurodegenerative diseases. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.4.419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Kraytsberg Y, Khrapko K. Single-molecule PCR: an artifact-free PCR approach for the analysis of somatic mutations. Expert Rev Mol Diagn 2007; 5:809-15. [PMID: 16149882 DOI: 10.1586/14737159.5.5.809] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A critical review of the clone-by-clone approach to the analysis of complex spectra of somatic mutations is presented. The study of a priori unknown somatic mutations requires painstaking analysis of complex mixtures of multiple mutant and non-mutant DNA molecules. If mutant fractions are sufficiently high, these mixtures can be dissected by the cloning of individual DNA molecules and scanning of the individual clones for mutations (e.g., by sequencing). Currently, the majority of such cloning is performed using PCR fragments. However, post-PCR cloning may result in various PCR artifacts - PCR errors and jumping PCR - and preferential amplification of certain mutations. This review argues that single-molecule PCR is a simple alternative that promises to evade the disadvantages inherent to post-PCR cloning and enhance mutational analysis in the future.
Collapse
Affiliation(s)
- Yevgenya Kraytsberg
- Beth Israel Deaconess Medical Center & Harvard Medical School, 21-27 Burlington Avenue, Boston, MA 02215, USA.
| | | |
Collapse
|
47
|
Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443:787-95. [PMID: 17051205 DOI: 10.1038/nature05292] [Citation(s) in RCA: 4718] [Impact Index Per Article: 248.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. Mitochondria are critical regulators of cell death, a key feature of neurodegeneration. Mutations in mitochondrial DNA and oxidative stress both contribute to ageing, which is the greatest risk factor for neurodegenerative diseases. In all major examples of these diseases there is strong evidence that mitochondrial dysfunction occurs early and acts causally in disease pathogenesis. Moreover, an impressive number of disease-specific proteins interact with mitochondria. Thus, therapies targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria, hold great promise.
Collapse
Affiliation(s)
- Michael T Lin
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, Room F-610, 525 East 68th Street, New York 10021, USA
| | | |
Collapse
|
48
|
Thèves C, Keyser-Tracqui C, Crubézy E, Salles JP, Ludes B, Telmon N. Detection and quantification of the age-related point mutation A189G in the human mitochondrial DNA. J Forensic Sci 2006; 51:865-73. [PMID: 16882231 DOI: 10.1111/j.1556-4029.2006.00163.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mutation analysis in the mitochondrial DNA (mtDNA) control region is widely used in population genetic studies as well as in forensic medicine. Among the difficulties linked to the mtDNA analysis, one can find the detection of heteroplasmy, which can be inherited or somatic. Recently, age-related point mutation A189G was described in mtDNA and shown to accumulate with age in muscles. We carried out the detection of this 189 heteroplasmic point mutation using three technologies: automated DNA sequencing, Southern blot hybridization using a digoxigenin-labeled oligonucleotide probe, and peptide nucleic acid (PNA)/real-time PCR combined method on different biological samples. Our results give additional information on the increase in mutation frequency with age in muscle tissue and revealed that the PNA/real-time PCR is a largely more sensitive method than DNA sequencing for heteroplasmy detection. These investigations could be of interest in the detection and interpretation of mtDNA heteroplasmy in anthropological and forensic studies.
Collapse
Affiliation(s)
- Catherine Thèves
- INSERM, U563 Bat C, Purpan University Hospital, Place du Dr Baylac, 31059 Toulouse, France.
| | | | | | | | | | | |
Collapse
|
49
|
Shin MG, Levin BC, Kim HJ, Kim HR, Lee IK, Cho D, Kee SJ, Shin JH, Suh SP, Ryang DW. Profiling of length heteroplasmies in the human mitochondrial DNA control regions from blood cells in the Korean population. Electrophoresis 2006; 27:1331-40. [PMID: 16502464 DOI: 10.1002/elps.200500551] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The length heteroplasmies in the hypervariable (HV) regions of mitochondrial DNA (mtDNA) from blood cells were examined in 57 healthy Korean donors. Interestingly, all the healthy Korean subjects displayed length heteroplasmies in both the HV1 and HV2 regions. Closer examination of the HV2 length heteroplasmies indicated that most of these donors (84%) exhibited a minimal 303-315 homopolymeric C (poly-C) tract frameshift of 1 bp (mixture of one major and minor mtDNA type). Sixteen percent of the donors however had poly-C tract frameshifts of 2 bp or more. The donor group with major length variants (two or more frameshifts) had about a two-fold decrease in mtDNA copy number compared with the group exhibiting only a 1 bp frameshift. This result supports the possibility that a severe frameshift in the 303-315 poly-C tract may also cause the impairment of mtDNA replication in hematopoietic tissue.
Collapse
Affiliation(s)
- Myung-Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, South Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Saxena R, de Bakker PIW, Singer K, Mootha V, Burtt N, Hirschhorn JN, Gaudet D, Isomaa B, Daly MJ, Groop L, Ardlie KG, Altshuler D. Comprehensive association testing of common mitochondrial DNA variation in metabolic disease. Am J Hum Genet 2006; 79:54-61. [PMID: 16773565 PMCID: PMC1474138 DOI: 10.1086/504926] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 03/24/2006] [Indexed: 12/13/2022] Open
Abstract
Many lines of evidence implicate mitochondria in phenotypic variation: (a) rare mutations in mitochondrial proteins cause metabolic, neurological, and muscular disorders; (b) alterations in oxidative phosphorylation are characteristic of type 2 diabetes, Parkinson disease, Huntington disease, and other diseases; and (c) common missense variants in the mitochondrial genome (mtDNA) have been implicated as having been subject to natural selection for adaptation to cold climates and contributing to "energy deficiency" diseases today. To test the hypothesis that common mtDNA variation influences human physiology and disease, we identified all 144 variants with frequency >1% in Europeans from >900 publicly available European mtDNA sequences and selected 64 tagging single-nucleotide polymorphisms that efficiently capture all common variation (except the hypervariable D-loop). Next, we evaluated the complete set of common mtDNA variants for association with type 2 diabetes in a sample of 3,304 diabetics and 3,304 matched nondiabetic individuals. Association of mtDNA variants with other metabolic traits (body mass index, measures of insulin secretion and action, blood pressure, and cholesterol) was also tested in subsets of this sample. We did not find a significant association of common mtDNA variants with these metabolic phenotypes. Moreover, we failed to identify any physiological effect of alleles that were previously proposed to have been adaptive for energy metabolism in human evolution. More generally, this comprehensive association-testing framework can readily be applied to other diseases for which mitochondrial dysfunction has been implicated.
Collapse
Affiliation(s)
- Richa Saxena
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|