1
|
Omelyanchuk NA, Lavrekha VV, Bogomolov AG, Dolgikh VA, Sidorenko AD, Zemlyanskaya EV. Computational Reconstruction of the Transcription Factor Regulatory Network Induced by Auxin in Arabidopsis thaliana L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1905. [PMID: 39065433 PMCID: PMC11280061 DOI: 10.3390/plants13141905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
In plant hormone signaling, transcription factor regulatory networks (TFRNs), which link the master transcription factors to the biological processes under their control, remain insufficiently characterized despite their crucial function. Here, we identify a TFRN involved in the response to the key plant hormone auxin and define its impact on auxin-driven biological processes. To reconstruct the TFRN, we developed a three-step procedure, which is based on the integrated analysis of differentially expressed gene lists and a representative collection of transcription factor binding profiles. Its implementation is available as a part of the CisCross web server. With the new method, we distinguished two transcription factor subnetworks. The first operates before auxin treatment and is switched off upon hormone application, the second is switched on by the hormone. Moreover, we characterized the functioning of the auxin-regulated TFRN in control of chlorophyll and lignin biosynthesis, abscisic acid signaling, and ribosome biogenesis.
Collapse
Affiliation(s)
- Nadya A. Omelyanchuk
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
| | - Viktoriya V. Lavrekha
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Anton G. Bogomolov
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
| | - Vladislav A. Dolgikh
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aleksandra D. Sidorenko
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena V. Zemlyanskaya
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Petitpas M, Lapous R, Le Duc M, Lariagon C, Lemoine J, Langrume C, Manzanares-Dauleux MJ, Jubault M. Environmental conditions modulate the effect of epigenetic factors controlling the response of Arabidopsis thaliana to Plasmodiophora brassicae. FRONTIERS IN PLANT SCIENCE 2024; 15:1245545. [PMID: 38872892 PMCID: PMC11171141 DOI: 10.3389/fpls.2024.1245545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/26/2024] [Indexed: 06/15/2024]
Abstract
The resistance of Arabidopsis thaliana to clubroot, a major disease of Brassicaceae caused by the obligate protist Plasmodiophora brassicae, is controlled in part by epigenetic factors. The detection of some of these epigenetic quantitative trait loci (QTLepi) has been shown to depend on experimental conditions. The aim of the present study was to assess whether and how temperature and/or soil water availability influenced both the detection and the extent of the effect of response QTLepi. The epigenetic recombinant inbred line (epiRIL) population, derived from the cross between ddm1-2 and Col-0 (partially resistant and susceptible to clubroot, respectively), was phenotyped for response to P. brassicae under four abiotic conditions including standard conditions, a 5°C temperature increase, drought, and flooding. The abiotic constraints tested had a significant impact on both the leaf growth of the epiRIL population and the outcome of the epiRIL-pathogen interaction. Linkage analysis led to the detection of a total of 31 QTLepi, 18 of which were specific to one abiotic condition and 13 common to at least two environments. EpiRIL showed significant plasticity under epigenetic control, which appeared to be specific to the traits evaluated and to the abiotic conditions. These results highlight that the environment can affect the epigenetic architecture of plant growth and immune responses and advance our understanding of the epigenetic factors underlying plasticity in response to climate change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mélanie Jubault
- IGEPP, Institut Agro Rennes-Angers – INRAE – Université de Rennes, Le Rheu, France
| |
Collapse
|
3
|
Kakoulidou I, Johannes F. DNA methylation remodeling in F1 hybrids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:671-681. [PMID: 36752648 DOI: 10.1111/tpj.16137] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
F1 hybrids derived from a cross between two inbred parental lines often display widespread changes in DNA methylation patterns relative to their parents. To which extent these changes drive non-additive gene expression levels and phenotypic heterosis in F1 individuals is not fully resolved. Current mechanistic models propose that DNA methylation remodeling in hybrids is the result of epigenetic interactions between parental alleles via small interfering RNA (sRNA). These models have strong empirical support but are limited to genomic regions where the two parental lines differ in DNA methylation status. However, most remodeling events occur in parental regions with similar methylation patterns, and seem to be strongly conditioned by distally acting factors, even in isogenic hybrid systems. The molecular basis of these distal interactions is currently unknown, and will likely emerge as an active area of research in the future. Despite these gaps in our molecular understanding, parental DNA methylation states are statistically associated with heterosis, independent of genetic information, and may serve as biomarkers in crop breeding.
Collapse
Affiliation(s)
- Ioanna Kakoulidou
- Plant Epigenomics, Technical University of Munich, Emil-Ramman-Str. 4, 85354, Freising, Germany
| | - Frank Johannes
- Plant Epigenomics, Technical University of Munich, Emil-Ramman-Str. 4, 85354, Freising, Germany
| |
Collapse
|
4
|
Singh VK, Ahmed S, Saini DK, Gahlaut V, Chauhan S, Khandare K, Kumar A, Sharma PK, Kumar J. Manipulating epigenetic diversity in crop plants: Techniques, challenges and opportunities. Biochim Biophys Acta Gen Subj 2024; 1868:130544. [PMID: 38104668 DOI: 10.1016/j.bbagen.2023.130544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Epigenetic modifications act as conductors of inheritable alterations in gene expression, all while keeping the DNA sequence intact, thereby playing a pivotal role in shaping plant growth and development. This review article presents an overview of techniques employed to investigate and manipulate epigenetic diversity in crop plants, focusing on both naturally occurring and artificially induced epialleles. The significance of epigenetic modifications in facilitating adaptive responses is explored through the examination of how various biotic and abiotic stresses impact them. Further, environmental chemicals are explored for their role in inducing epigenetic changes, particularly focusing on inhibitors of DNA methylation like 5-AzaC and zebularine, as well as inhibitors of histone deacetylation including trichostatin A and sodium butyrate. The review delves into various approaches for generating epialleles, including tissue culture techniques, mutagenesis, and grafting, elucidating their potential to induce heritable epigenetic modifications in plants. In addition, the ground breaking CRISPR/Cas is emphasized for its accuracy in targeting specific epigenetic changes. This presents a potent tools for deciphering the intricacies of epigenetic mechanisms. Furthermore, the intricate relationship between epigenetic modifications and non-coding RNA expression, including siRNAs and miRNAs, is investigated. The emerging role of exo-RNAi in epigenetic regulation is also introduced, unveiling its promising potential for future applications. The article concludes by addressing the opportunities and challenges presented by these techniques, emphasizing their implications for crop improvement. Conclusively, this extensive review provides valuable insights into the intricate realm of epigenetic changes, illuminating their significance in phenotypic plasticity and their potential in advancing crop improvement.
Collapse
Affiliation(s)
| | - Shoeb Ahmed
- Ch. Charan Singh University, Meerut 250004, India
| | - Dinesh Kumar Saini
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Vijay Gahlaut
- University Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
| | | | - Kiran Khandare
- Center of Innovative and Applied Bioprocessing, Mohali 140308, Punjab, India
| | - Ashutosh Kumar
- Center of Innovative and Applied Bioprocessing, Mohali 140308, Punjab, India
| | - Pradeep Kumar Sharma
- Ch. Charan Singh University, Meerut 250004, India; Maharaja Suhel Dev State University, Azamgarh 276404, U.P., India
| | - Jitendra Kumar
- National Agri-Food Biotechnology Institute, Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
5
|
Laanen P, Cuypers A, Saenen E, Horemans N. Flowering under enhanced ionising radiation conditions and its regulation through epigenetic mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:246-259. [PMID: 36731286 DOI: 10.1016/j.plaphy.2023.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
As sessile organisms, plants have to deal with unfavourable conditions by acclimating or adapting in order to survive. Regulation of flower induction is one such mechanism to ensure reproduction and species survival. Flowering is a tightly regulated process under the control of a network of genes, which can be affected by environmental cues and stress. The effects of ionising radiation (IR) on flowering, however, have been poorly studied. Understanding the effects of ionising radiation on flowering, including the timing, gene pathways, and epigenetics involved, is crucial in the continuing effort of environmental radiation protection. The review shows that plants alter their flowering pattern in response to IR, with various flowering related genes (eg. FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT), CONSTANS (CO), GIGANTEA (GI), APETALA1 (AP1), LEAFY (LFY)) and epigenetic processes (DNA methylation, and miRNA expression eg. miRNA169, miR156, miR172) being affected. Thereby, showing a hypothetical IR-induced flowering mechanism. Further research on the interaction between IR and flowering in plants is, however, needed to elucidate the mechanisms behind the stress-induced flowering response.
Collapse
Affiliation(s)
- Pol Laanen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| | - Ann Cuypers
- Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| | - Eline Saenen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium.
| | - Nele Horemans
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| |
Collapse
|
6
|
Lyons DB, Briffa A, He S, Choi J, Hollwey E, Colicchio J, Anderson I, Feng X, Howard M, Zilberman D. Extensive de novo activity stabilizes epigenetic inheritance of CG methylation in Arabidopsis transposons. Cell Rep 2023; 42:112132. [PMID: 36827183 DOI: 10.1016/j.celrep.2023.112132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Cytosine methylation within CG dinucleotides (mCG) can be epigenetically inherited over many generations. Such inheritance is thought to be mediated by a semiconservative mechanism that produces binary present/absent methylation patterns. However, we show here that, in Arabidopsis thaliana h1ddm1 mutants, intermediate heterochromatic mCG is stably inherited across many generations and is quantitatively associated with transposon expression. We develop a mathematical model that estimates the rates of semiconservative maintenance failure and de novo methylation at each transposon, demonstrating that mCG can be stably inherited at any level via a dynamic balance of these activities. We find that DRM2-the core methyltransferase of the RNA-directed DNA methylation pathway-catalyzes most of the heterochromatic de novo mCG, with de novo rates orders of magnitude higher than previously thought, whereas chromomethylases make smaller contributions. Our results demonstrate that stable epigenetic inheritance of mCG in plant heterochromatin is enabled by extensive de novo methylation.
Collapse
Affiliation(s)
| | | | | | | | - Elizabeth Hollwey
- John Innes Centre, Norwich NR4 7UH, UK; Institute of Science and Technology, 3400 Klosterneuburg, Austria
| | - Jack Colicchio
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ian Anderson
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiaoqi Feng
- John Innes Centre, Norwich NR4 7UH, UK; Institute of Science and Technology, 3400 Klosterneuburg, Austria
| | | | - Daniel Zilberman
- John Innes Centre, Norwich NR4 7UH, UK; Institute of Science and Technology, 3400 Klosterneuburg, Austria.
| |
Collapse
|
7
|
Berger F, Muegge K, Richards EJ. Seminars in cell and development biology on histone variants remodelers of H2A variants associated with heterochromatin. Semin Cell Dev Biol 2023; 135:93-101. [PMID: 35249811 PMCID: PMC9440159 DOI: 10.1016/j.semcdb.2022.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/04/2023]
Abstract
Variants of the histone H2A occupy distinct locations in the genome. There is relatively little known about the mechanisms responsible for deposition of specific H2A variants. Notable exceptions are chromatin remodelers that control the dynamics of H2A.Z at promoters. Here we review the steps that identified the role of a specific class of chromatin remodelers, including LSH and DDM1 that deposit the variants macroH2A in mammals and H2A.W in plants, respectively. The function of these remodelers in heterochromatin is discussed together with their multiple roles in genome stability.
Collapse
Affiliation(s)
- Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| | - Kathrin Muegge
- Epigenetics Section, Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA.
| | | |
Collapse
|
8
|
Akinmusola RY, Wilkins CA, Doughty J. DDM1-Mediated TE Silencing in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:437. [PMID: 36771522 PMCID: PMC9919755 DOI: 10.3390/plants12030437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Epigenetic modifications are indispensable for regulating gene bodies and TE silencing. DECREASE IN DNA METHYLATION 1 (DDM1) is a chromatin remodeller involved in histone modifications and DNA methylation. Apart from maintaining the epigenome, DDM1 also maintains key plant traits such as flowering time and heterosis. The role of DDM1 in epigenetic regulation is best characterised in plants, especially arabidopsis, rice, maize and tomato. The epigenetic changes induced by DDM1 establish the stable inheritance of many plant traits for at least eight generations, yet DDM1 does not methylate protein-coding genes. The DDM1 TE silencing mechanism is distinct and has evolved independently of other silencing pathways. Unlike the RNA-directed DNA Methylation (RdDM) pathway, DDM1 does not depend on siRNAs to enforce the heterochromatic state of TEs. Here, we review DDM1 TE silencing activity in the RdDM and non-RdDM contexts. The DDM1 TE silencing machinery is strongly associated with the histone linker H1 and histone H2A.W. While the linker histone H1 excludes the RdDM factors from methylating the heterochromatin, the histone H2A.W variant prevents TE mobility. The DDM1-H2A.W strategy alone silences nearly all the mobile TEs in the arabidopsis genome. Thus, the DDM1-directed TE silencing essentially preserves heterochromatic features and abolishes mobile threats to genome stability.
Collapse
|
9
|
Shimizu-Inatsugi R, Morishima A, Mourato B, Shimizu KK, Sato Y. Phenotypic variation of a new synthetic allotetraploid Arabidopsis kamchatica enhanced in natural environment. FRONTIERS IN PLANT SCIENCE 2023; 13:1058522. [PMID: 36684772 PMCID: PMC9846130 DOI: 10.3389/fpls.2022.1058522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The phenotypic variation of vegetative organs and reproductive organs of newly synthesized and natural Arabidopsis kamchatica genotypes was investigated in both a controlled environment and a natural environment in an experimental garden. When we compared the variation of their leaf shape as a vegetative organ, the synthetic A. kamchatica individuals grown in the garden showed larger variation compared with the individuals incubated in a growth chamber, suggesting enhanced phenotypic variation in a natural fluctuating environment. In contrast, the natural A. kamchatica genotypes did not show significant change in variation by growth condition. The phenotypic variation of floral organs by growth condition was much smaller in both synthetic and natural A. kamchatica genotypes, and the difference in variation width between the growth chamber and the garden was not significant in each genotype as well as among genotypes. The higher phenotypic variation in synthetic leaf may imply flexible transcriptomic regulation of a newly synthesized polyploid compared with a natural polyploid.
Collapse
Affiliation(s)
- Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Aki Morishima
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Beatriz Mourato
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Yasuhiro Sato
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Griess O, Domb K, Katz A, Harris KD, Heskiau KG, Ohad N, Zemach A. Knockout of DDM1 in Physcomitrium patens disrupts DNA methylation with a minute effect on transposon regulation and development. PLoS One 2023; 18:e0279688. [PMID: 36888585 PMCID: PMC9994747 DOI: 10.1371/journal.pone.0279688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/13/2022] [Indexed: 03/09/2023] Open
Abstract
The Snf2 chromatin remodeler, DECREASE IN DNA METHYLATION 1 (DDM1) facilitates DNA methylation. In flowering plants, DDM1 mediates methylation in heterochromatin, which is targeted primarily by MET1 and CMT methylases and is necessary for silencing transposons and for proper development. DNA methylation mechanisms evolved throughout plant evolution, whereas the role of DDM1 in early terrestrial plants remains elusive. Here, we studied the function of DDM1 in the moss, Physcomitrium (Physcomitrella) patens, which has robust DNA methylation that suppresses transposons and is mediated by a MET1, a CMT, and a DNMT3 methylases. To elucidate the role of DDM1 in P. patens, we have generated a knockout mutant and found DNA methylation to be strongly disrupted at any of its sequence contexts. Symmetric CG and CHG sequences were affected stronger than asymmetric CHH sites. Furthermore, despite their separate targeting mechanisms, CG (MET) and CHG (CMT) methylation were similarly depleted by about 75%. CHH (DNMT3) methylation was overall reduced by about 25%, with an evident hyper-methylation activity within lowly-methylated euchromatic transposon sequences. Despite the strong hypomethylation effect, only a minute number of transposons were transcriptionally activated in Ppddm1. Finally, Ppddm1 was found to develop normally throughout the plant life cycle. These results demonstrate that DNA methylation is strongly dependent on DDM1 in a non-flowering plant; that DDM1 is required for plant-DNMT3 (CHH) methylases, though to a lower extent than for MET1 and CMT enzymes; and that distinct and separate methylation pathways (e.g. MET1-CG and CMT-CHG), can be equally regulated by the chromatin and that DDM1 plays a role in it. Finally, our data suggest that the biological significance of DDM1 in terms of transposon regulation and plant development, is species dependent.
Collapse
Affiliation(s)
- Ofir Griess
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel- Aviv, Israel
| | - Katherine Domb
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel- Aviv, Israel
| | - Aviva Katz
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel- Aviv, Israel
| | - Keith D. Harris
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel- Aviv, Israel
| | - Karina G. Heskiau
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel- Aviv, Israel
| | - Nir Ohad
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel- Aviv, Israel
- * E-mail: (AZ); (NO)
| | - Assaf Zemach
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel- Aviv, Israel
- * E-mail: (AZ); (NO)
| |
Collapse
|
11
|
Ramakrishnan M, Papolu PK, Mullasseri S, Zhou M, Sharma A, Ahmad Z, Satheesh V, Kalendar R, Wei Q. The role of LTR retrotransposons in plant genetic engineering: how to control their transposition in the genome. PLANT CELL REPORTS 2023; 42:3-15. [PMID: 36401648 DOI: 10.1007/s00299-022-02945-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
We briefly discuss that the similarity of LTR retrotransposons to retroviruses is a great opportunity for the development of a genetic engineering tool that exploits intragenic elements in the plant genome for plant genetic improvement. Long terminal repeat (LTR) retrotransposons are very similar to retroviruses but do not have the property of being infectious. While spreading between its host cells, a retrovirus inserts a DNA copy of its genome into the cells. The ability of retroviruses to cause infection with genome integration allows genes to be delivered to cells and tissues. Retrovirus vectors are, however, only specific to animals and insects, and, thus, are not relevant to plant genetic engineering. However, the similarity of LTR retrotransposons to retroviruses is an opportunity to explore the former as a tool for genetic engineering. Although recent long-read sequencing technologies have advanced the knowledge about transposable elements (TEs), the integration of TEs is still unable either to control them or to direct them to specific genomic locations. The use of existing intragenic elements to achieve the desired genome composition is better than using artificial constructs like vectors, but it is not yet clear how to control the process. Moreover, most LTR retrotransposons are inactive and unable to produce complete proteins. They are also highly mutable. In addition, it is impossible to find a full active copy of a LTR retrotransposon out of thousands of its own copies. Theoretically, if these elements were directly controlled and turned on or off using certain epigenetic mechanisms (inducing by stress or infection), LTR retrotransposons could be a great opportunity to develop a genetic engineering tool using intragenic elements in the plant genome. In this review, the recent developments in uncovering the nature of LTR retrotransposons and the possibility of using these intragenic elements as a tool for plant genetic engineering are briefly discussed.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Pradeep K Papolu
- State Key Laboratory of Subtropical Silviculture, Institute of Bamboo Research, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Sileesh Mullasseri
- Department of Zoology, St. Albert's College (Autonomous), Kochi, 682018, Kerala, India
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Institute of Bamboo Research, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Institute of Bamboo Research, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, University of Helsinki, Biocenter 3, Viikinkaari 1, F1-00014, Helsinki, Finland.
- Institute of Plant Biology and Biotechnology (IPBB), Timiryazev Street 45, 050040, Almaty, Kazakhstan.
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
12
|
Lv S, Yang Y, Yu G, Peng L, Zheng S, Singh SK, Vílchez JI, Kaushal R, Zi H, Yi D, Wang Y, Luo S, Wu X, Zuo Z, Huang W, Liu R, Du J, Macho AP, Tang K, Zhang H. Dysfunction of histone demethylase IBM1 in Arabidopsis causes autoimmunity and reshapes the root microbiome. THE ISME JOURNAL 2022; 16:2513-2524. [PMID: 35908110 PMCID: PMC9561531 DOI: 10.1038/s41396-022-01297-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022]
Abstract
Root microbiota is important for plant growth and fitness. Little is known about whether and how the assembly of root microbiota may be controlled by epigenetic regulation, which is crucial for gene transcription and genome stability. Here we show that dysfunction of the histone demethylase IBM1 (INCREASE IN BONSAI METHYLATION 1) in Arabidopsis thaliana substantially reshaped the root microbiota, with the majority of the significant amplicon sequence variants (ASVs) being decreased. Transcriptome analyses of plants grown in soil and in sterile growth medium jointly disclosed salicylic acid (SA)-mediated autoimmunity and production of the defense metabolite camalexin in the ibm1 mutants. Analyses of genome-wide histone modifications and DNA methylation highlighted epigenetic modifications permissive for transcription at several important defense regulators. Consistently, ibm1 mutants showed increased resistance to the pathogen Pseudomonas syringae DC3000 with stronger immune responses. In addition, ibm1 showed substantially impaired plant growth promotion in response to beneficial bacteria; the impairment was partially mimicked by exogenous application of SA to wild-type plants, and by a null mutation of AGP19 that is important for cell expansion and that is repressed with DNA hypermethylation in ibm1. IBM1-dependent epigenetic regulation imposes strong and broad impacts on plant-microbe interactions and thereby shapes the assembly of root microbiota.
Collapse
|
13
|
Maldonado-Taipe N, Barbier F, Schmid K, Jung C, Emrani N. High-Density Mapping of Quantitative Trait Loci Controlling Agronomically Important Traits in Quinoa ( Chenopodium quinoa Willd.). FRONTIERS IN PLANT SCIENCE 2022; 13:916067. [PMID: 35812962 PMCID: PMC9261497 DOI: 10.3389/fpls.2022.916067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Quinoa is a pseudocereal originating from the Andean regions. Despite quinoa's long cultivation history, genetic analysis of this crop is still in its infancy. We aimed to localize quantitative trait loci (QTL) contributing to the phenotypic variation of agronomically important traits. We crossed the Chilean accession PI-614889 and the Peruvian accession CHEN-109, which depicted significant differences in days to flowering, days to maturity, plant height, panicle length, and thousand kernel weight (TKW), saponin content, and mildew susceptibility. We observed sizeable phenotypic variation across F2 plants and F3 families grown in the greenhouse and the field, respectively. We used Skim-seq to genotype the F2 population and constructed a high-density genetic map with 133,923 single nucleotide polymorphism (SNPs). Fifteen QTL were found for ten traits. Two significant QTL, common in F2 and F3 generations, depicted pleiotropy for days to flowering, plant height, and TKW. The pleiotropic QTL harbored several putative candidate genes involved in photoperiod response and flowering time regulation. This study presents the first high-density genetic map of quinoa that incorporates QTL for several important agronomical traits. The pleiotropic loci can facilitate marker-assisted selection in quinoa breeding programs.
Collapse
Affiliation(s)
| | - Federico Barbier
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Karl Schmid
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Nazgol Emrani
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
14
|
Guo X, Zhao J, Chen Z, Qiao J, Zhang Y, Shen H, Hu Z. CRISPR/Cas9-targeted mutagenesis of SlCMT4 causes changes in plant architecture and reproductive organs in tomato. HORTICULTURE RESEARCH 2022; 9:uhac081. [PMID: 35769614 PMCID: PMC9233168 DOI: 10.1093/hr/uhac081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 06/12/2023]
Abstract
DNA methylation participates widely in the regulation of gene expression in plants. To date, the regulation and function of DNA methylation is still unknown in tomato plants. Here, we generated SlCMT4 mutants using the CRISPR-Cas9 gene editing system. We observed severe developmental defects in CRISPR-Cas9-mediated SlCMT4 mutants, including small and thick leaves, increased lateral buds, defective stamens and pistils, small fruit size with reduced setting rate, and defective seed development. The alterations at hormonal levels (IAA, tZR, strigol) were consistent with the multibranching phenotype in SlCMT4 mutant plants. CRISPR-Cas9-mediated knockout of SlCMT4 induced the expression of two pollen-specific genes (PMEI and PRALF) that suppressed the development of pollen wall and pollen tube elongation, which is responsible for irregular and defective pollen. The small-sized fruit phenotype is probably associated with upregulated expression of the IMA gene and reduced seeds in the mutant lines. Furthermore, we performed whole-genome bisulfite sequencing (WGBS) of fruits and found that SlCMT4 knockout reduced genome-wide cytosine methylation. A reduction of methylation was also observed in a 2-kp region of the IMA and LOXB promoters in the SlCMT4-mutant fruits, indicating that the hypermethylation status of the CHH context is critical for the inhibition of IMA and LOXB promoter activity. Our results show that SlCMT4 is required for normal development of tomato vegetative and reproductive organs. This study illuminates the function of SlCMT4 and sheds light on the molecular regulatory mechanism of tomato plant architecture and fruit development and ripening.
Collapse
Affiliation(s)
| | - Jianguo Zhao
- Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China
| | - Zhiwen Chen
- Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China
| | - Jun Qiao
- Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China
| | - Yongfang Zhang
- School of Life Sciences, Shanxi Datong University, Datong 037009, China
| | - Hong Shen
- School of Life Sciences, Shanxi Datong University, Datong 037009, China
| | | |
Collapse
|
15
|
Guo M, Zhang W, Mohammadi MA, He Z, She Z, Yan M, Shi C, Lin L, Wang A, Liu J, Tian D, Zhao H, Qin Y. OsDDM1b Controls Grain Size by Influencing Cell Cycling and Regulating Homeostasis and Signaling of Brassinosteroid in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:873993. [PMID: 35463416 PMCID: PMC9024357 DOI: 10.3389/fpls.2022.873993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Snf2 family proteins are the crucial subunits of chromatin-remodeling complexes (CRCs), which contributes to the biological processes of transcription, replication, and DNA repair using ATP as energy. Some CRC subunits have been confirmed to be the critical regulators in various aspects of plant growth and development and in epigenetic mechanisms such as histone modification, DNA methylation, and histone variants. However, the functions of Snf2 family genes in rice were poorly investigated. In this study, the relative expression profile of 40 members of Snf2 family in rice was studied at certain developmental stages of seed. Our results revealed that OsCHR741/OsDDM1b (Decrease in DNA methylation 1) was accumulated highly in the early developmental stage of seeds. We further analyzed the OsDDM1b T-DNA insertion loss-of-function of mutant, which exhibited dwarfism, smaller organ size, and shorter and wider grain size than the wild type (Hwayoung, HY), yet no difference in 1,000-grain weight. Consistent with the grain size, the outer parenchyma cell layers of lemma in osddm1b developed more cells with decreased size. OsDDM1b encoded a nucleus, membrane-localized protein and was distributed predominately in young spikelets and seeds, asserting its role in grain size. Meanwhile, the osddm1b was less sensitive to brassinosteroids (BRs) while the endogenous BR levels increased. We detected changes in the expression levels of the BR signaling pathway and feedback-inhibited genes with and without exogenous BR application, and the alterations of expression were also observed in grain size-related genes in the osddm1b. Altogether, our results suggest that OsDDM1b plays a crucial role in grain size via influencing cell proliferation and regulating BR signaling and homeostasis.
Collapse
Affiliation(s)
- Mingliang Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenchao Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammad Aqa Mohammadi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Zhimei He
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zeyuan She
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Maokai Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Chao Shi
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lingwei Lin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Aqiong Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jindian Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dagang Tian
- Biotechnology Research Institute, Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Heming Zhao
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Yuan Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Hazarika RR, Serra M, Zhang Z, Zhang Y, Schmitz RJ, Johannes F. Molecular properties of epimutation hotspots. NATURE PLANTS 2022; 8:146-156. [PMID: 35087209 PMCID: PMC8866225 DOI: 10.1038/s41477-021-01086-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Mistakes in the maintenance of CG methylation are a source of heritable epimutations in plants. Multigenerational surveys indicate that the rate of these stochastic events varies substantially across the genome, with some regions harbouring localized 'epimutation hotspots'. Using Arabidopsis as a model, we show that epimutation hotspots are indexed by a specific set of chromatin states that map to subregions of gene body methylation genes. Although these regions comprise only ~12% of all CGs in the genome, they account for ~63% of all epimutation events per unit time. Molecular profiling revealed that these regions contain unique sequence features, harbour steady-state intermediate methylation levels and act as putative targets of antagonistic DNA methylation pathways. We further demonstrate that experimentally induced shifts in steady-state methylation in these hotspot regions are sufficient to significantly alter local epimutation intensities. Our work lays the foundation for dissecting the molecular mechanisms and evolutionary consequences of epimutation hotspots in plants.
Collapse
Affiliation(s)
- Rashmi R Hazarika
- Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
- TUM Institute for Advanced Study, Garching, Germany
| | - Michele Serra
- Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
| | - Zhilin Zhang
- Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
| | - Yinwen Zhang
- Department of Genetics, The University of Georgia, Athens, GA, USA
| | - Robert J Schmitz
- TUM Institute for Advanced Study, Garching, Germany.
- Department of Genetics, The University of Georgia, Athens, GA, USA.
| | - Frank Johannes
- Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany.
- TUM Institute for Advanced Study, Garching, Germany.
| |
Collapse
|
17
|
Inagaki S. Silencing and anti-silencing mechanisms that shape the epigenome in plants. Genes Genet Syst 2021; 96:217-228. [PMID: 34719532 DOI: 10.1266/ggs.21-00041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Epigenome information mediates genome function and maintenance by regulating gene expression and chromatin organization. Because the epigenome pattern can change in response to internal and external environments, it may underlie an adaptive genome response that modulates phenotypes during development and in changing environments. Here I summarize recent progress in our understanding of how epigenome patterns are shaped and modulated by concerted actions of silencing and anti-silencing factors mainly in Arabidopsis thaliana. I discuss the dynamic nature of epigenome regulation, which is realized by cooperation and counteraction among silencing and anti-silencing factors, and how the dynamic epigenome mediates robust and plastic responses of plants to fluctuating environments.
Collapse
Affiliation(s)
- Soichi Inagaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo.,PRESTO, Japan Science and Technology Agency
| |
Collapse
|
18
|
Kanojia A, Shrestha DK, Dijkwel PP. Primary metabolic processes as drivers of leaf ageing. Cell Mol Life Sci 2021; 78:6351-6364. [PMID: 34279698 PMCID: PMC8558203 DOI: 10.1007/s00018-021-03896-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022]
Abstract
Ageing in plants is a highly coordinated and complex process that starts with the birth of the plant or plant organ and ends with its death. A vivid manifestation of the final stage of leaf ageing is exemplified by the autumn colours of deciduous trees. Over the past decades, technological advances have allowed plant ageing to be studied on a systems biology level, by means of multi-omics approaches. Here, we review some of these studies and argue that these provide strong support for basic metabolic processes as drivers for ageing. In particular, core cellular processes that control the metabolism of chlorophyll, amino acids, sugars, DNA and reactive oxygen species correlate with leaf ageing. However, while multi-omics studies excel at identifying correlative processes and pathways, molecular genetic approaches can provide proof that such processes and pathways control ageing, by means of knock-out and ectopic expression of predicted regulatory genes. Therefore, we also review historic and current molecular evidence to directly test the hypotheses unveiled by the systems biology approaches. We found that the molecular genetic approaches, by and large, confirm the multi-omics-derived hypotheses with notable exceptions, where there is scant evidence that chlorophyll and DNA metabolism are important drivers of leaf ageing. We present a model that summarises the core cellular processes that drive leaf ageing and propose that developmental processes are tightly linked to primary metabolism to inevitably lead to ageing and death.
Collapse
Affiliation(s)
- Aakansha Kanojia
- Center of Plant Systems Biology and Biotechnology, Ruski 139 Blvd., Plovdiv, 4000, Bulgaria
| | - Deny K Shrestha
- School of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Paul P Dijkwel
- School of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| |
Collapse
|
19
|
Chen Y, Liu X, Liu X, Cui L, He Z, Gao Z, Liu L, Li Z, Wan Z, Yu Z. Correlation between TGF-β2/3 promoter DNA methylation and Smad signaling during palatal fusion induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Exp Biol Med (Maywood) 2021; 246:2019-2028. [PMID: 34053232 PMCID: PMC8474981 DOI: 10.1177/15353702211012288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/28/2021] [Indexed: 01/10/2023] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent organic pollutant that is strongly associated with a number of human diseases and birth defects, including cleft palate. Transforming growth factor (TGF) plays a significant role during mammalian palatogenesis. However, the epigenetic mechanism of transforming growth factors in the process of TCDD-induced cleft palate is unclear. The purpose of this research was to investigate the relationship and potential mechanism between TGF-β2/3 promoter DNA methylation and Smad signaling during TCDD-induced cleft palate. Pregnant C57BL/6N mice were exposed to 64 µg/kg TCDD on gestational day 10 (GD10) to establish the cleft palate model and palatal tissues of embryos were collected on GD13, GD14, and GD15 for subsequent experiments. TGF-β2/3 mRNA expression, TGF-β2/3 promoter methylation, and Smad signaling molecules expression were assessed in the palate of the two groups. The results showed that the incidence of cleft palate was 94.7% in the TCDD-treated group whereas no cleft palate was found in the control group. TCDD-treated group altered specific CpG sites of TGF-β2/3 promoter methylation. Compared to the control group, the proliferation of mouse embryonic palate mesenchymal stromal cells (MEPM), the expressions of TGF-β2/3, p-Smad2, and Smad4 were all reduced, while the expression of Smad7 was significantly increased in the atAR group. Smad signaling was downregulated by TCDD. Therefore, we suggest that TGF-β2/3 promoter methylation and Smad signaling may be involved in TCDD-induced cleft palate formation in fetal mice.
Collapse
Affiliation(s)
- Yao Chen
- School of Public Health, Xinxiang Medical University, Xinxiang
453003, China
- School of Public Health, Zhengzhou University, Zhengzhou 450001,
China
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial
People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003,
China
- Department of Immunology, Medical College of Henan University of
Science and Technology, Luoyang 471003, China
| | - Xinxin Liu
- School of Public Health, Zhengzhou University, Zhengzhou 450001,
China
| | - Lingling Cui
- School of Public Health, Zhengzhou University, Zhengzhou 450001,
China
| | - Zhidong He
- School of Public Health, Zhengzhou University, Zhengzhou 450001,
China
| | - Zhan Gao
- The Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou
450052, China
| | - Limin Liu
- School of Public Health, Zhengzhou University, Zhengzhou 450001,
China
| | - Zhitao Li
- Department of Immunology, Medical College of Henan University of
Science and Technology, Luoyang 471003, China
| | - Zhongxiao Wan
- School of Public Health, Zhengzhou University, Zhengzhou 450001,
China
| | - Zengli Yu
- School of Public Health, Xinxiang Medical University, Xinxiang
453003, China
- School of Public Health, Zhengzhou University, Zhengzhou 450001,
China
| |
Collapse
|
20
|
Pathway conversion enables a double-lock mechanism to maintain DNA methylation and genome stability. Proc Natl Acad Sci U S A 2021; 118:2107320118. [PMID: 34453006 DOI: 10.1073/pnas.2107320118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The CMT2 and RNA-directed DNA methylation (RdDM) pathways have been proposed to separately maintain CHH methylation in specific regions of the Arabidopsis thaliana genome. Here, we show that dysfunction of the chromatin remodeler DDM1 causes hundreds of genomic regions to switch from CMT2 dependency to RdDM dependency in DNA methylation. These converted loci are enriched at the edge regions of long transposable elements (TEs). Furthermore, we found that dysfunction in both DDM1 and RdDM causes strong reactivation of TEs and a burst of TE transposition in the first generation of mutant plants, indicating that the DDM1 and RdDM pathways together are critical to maintaining TE repression and protecting genomic stability. Our findings reveal the existence of a pathway conversion-based backup mechanism to guarantee the maintenance of DNA methylation and genome integrity.
Collapse
|
21
|
Long J, Liu J, Xia A, Springer NM, He Y. Maize decrease in DNA methylation 1 targets RNA-directed DNA methylation on active chromatin. THE PLANT CELL 2021; 33:2183-2196. [PMID: 33779761 PMCID: PMC8364229 DOI: 10.1093/plcell/koab098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/25/2021] [Indexed: 06/01/2023]
Abstract
DNA methylation plays vital roles in repressing transposable element activity and regulating gene expression. The chromatin-remodeling factor Decrease in DNA methylation 1 (DDM1) is crucial for maintaining DNA methylation across diverse plant species, and is required for RNA-directed DNA methylation (RdDM) to maintain mCHH islands in maize (Zea mays). However, the mechanisms by which DDM1 is involved in RdDM are not well understood. In this work, we used chromatin immunoprecipitation coupled with high-throughput sequencing to ascertain the genome-wide occupancy of ZmDDM1 in the maize genome. The results revealed that ZmDDM1 recognized an 8-bp-long GC-rich degenerate DNA sequence motif, which is enriched in transcription start sites and other euchromatic regions. Meanwhile, 24-nucleotide siRNAs and CHH methylation were delineated at the edge of ZmDDM1-occupied sites. ZmDDM1 co-purified with Argonaute 4 (ZmAGO4) proteins, providing further evidence that ZmDDM1 is a component of RdDM complexes in planta. Consistent with this, the vast majority of ZmDDM1-targeted regions co-localized with ZmAGO4-bound genomic sites. Overall, our results suggest a model that ZmDDM1 may be recruited to euchromatic regions via recognition of a GC-rich motif, thereby remodeling chromatin to provide access for RdDM activities in maize.
Collapse
Affiliation(s)
- Jincheng Long
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Jinghan Liu
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Aiai Xia
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Nathan M. Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| |
Collapse
|
22
|
Kakoulidou I, Avramidou EV, Baránek M, Brunel-Muguet S, Farrona S, Johannes F, Kaiserli E, Lieberman-Lazarovich M, Martinelli F, Mladenov V, Testillano PS, Vassileva V, Maury S. Epigenetics for Crop Improvement in Times of Global Change. BIOLOGY 2021; 10:766. [PMID: 34439998 PMCID: PMC8389687 DOI: 10.3390/biology10080766] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Epigenetics has emerged as an important research field for crop improvement under the on-going climatic changes. Heritable epigenetic changes can arise independently of DNA sequence alterations and have been associated with altered gene expression and transmitted phenotypic variation. By modulating plant development and physiological responses to environmental conditions, epigenetic diversity-naturally, genetically, chemically, or environmentally induced-can help optimise crop traits in an era challenged by global climate change. Beyond DNA sequence variation, the epigenetic modifications may contribute to breeding by providing useful markers and allowing the use of epigenome diversity to predict plant performance and increase final crop production. Given the difficulties in transferring the knowledge of the epigenetic mechanisms from model plants to crops, various strategies have emerged. Among those strategies are modelling frameworks dedicated to predicting epigenetically controlled-adaptive traits, the use of epigenetics for in vitro regeneration to accelerate crop breeding, and changes of specific epigenetic marks that modulate gene expression of traits of interest. The key challenge that agriculture faces in the 21st century is to increase crop production by speeding up the breeding of resilient crop species. Therefore, epigenetics provides fundamental molecular information with potential direct applications in crop enhancement, tolerance, and adaptation within the context of climate change.
Collapse
Affiliation(s)
- Ioanna Kakoulidou
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
| | - Evangelia V. Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-Dimitra (ELGO-DIMITRA), 11528 Athens, Greece;
| | - Miroslav Baránek
- Faculty of Horticulture, Mendeleum—Institute of Genetics, Mendel University in Brno, Valtická 334, 69144 Lednice, Czech Republic;
| | - Sophie Brunel-Muguet
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, UNICAEN, INRAE, Normandie Université, CEDEX, F-14032 Caen, France;
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, National University of Ireland (NUI) Galway, H91 TK33 Galway, Ireland;
| | - Frank Johannes
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
- Institute for Advanced Study, Technical University of Munich, Lichtenberg Str. 2a, 85748 Garching, Germany
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Pilar S. Testillano
- Pollen Biotechnology of Crop Plants Group, Centro de Investigaciones Biológicas Margarita Salas-(CIB-CSIC), Ramiro Maeztu 9, 28040 Madrid, Spain;
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria;
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE, EA1207 USC1328, Université d’Orléans, F-45067 Orléans, France
| |
Collapse
|
23
|
Han T, Wang F, Song Q, Ye W, Liu T, Wang L, Chen ZJ. An epigenetic basis of inbreeding depression in maize. SCIENCE ADVANCES 2021; 7:7/35/eabg5442. [PMID: 34452913 PMCID: PMC8397266 DOI: 10.1126/sciadv.abg5442] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/07/2021] [Indexed: 05/12/2023]
Abstract
Inbreeding depression is widespread across plant and animal kingdoms and may arise from the exposure of deleterious alleles and/or loss of overdominant alleles resulting from increased homozygosity, but these genetic models cannot fully explain the phenomenon. Here, we report epigenetic links to inbreeding depression in maize. Teosinte branched1/cycloidea/proliferating cell factor (TCP) transcription factors control plant development. During successive inbreeding among inbred lines, thousands of genomic regions across TCP-binding sites (TBS) are hypermethylated through the H3K9me2-mediated pathway. These hypermethylated regions are accompanied by decreased chromatin accessibility, increased levels of the repressive histone marks H3K27me2 and H3K27me3, and reduced binding affinity of maize TCP-proteins to TBS. Consequently, hundreds of TCP-target genes involved in mitochondrion, chloroplast, and ribosome functions are down-regulated, leading to reduced growth vigor. Conversely, random mating can reverse corresponding hypermethylation sites and TCP-target gene expression, restoring growth vigor. These results support a unique role of reversible epigenetic modifications in inbreeding depression.
Collapse
Affiliation(s)
- Tongwen Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Fang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Tieshan Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Liming Wang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
24
|
Casati P, Gomez MS. Chromatin dynamics during DNA damage and repair in plants: new roles for old players. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4119-4131. [PMID: 33206978 DOI: 10.1093/jxb/eraa551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
The genome of plants is organized into chromatin. The chromatin structure regulates the rates of DNA metabolic processes such as replication, transcription, DNA recombination, and repair. Different aspects of plant growth and development are regulated by changes in chromatin status by the action of chromatin-remodeling activities. Recent data have also shown that many of these chromatin-associated proteins participate in different aspects of the DNA damage response, regulating DNA damage and repair, cell cycle progression, programmed cell death, and entry into the endocycle. In this review, we present different examples of proteins and chromatin-modifying enzymes with roles during DNA damage responses, demonstrating that rapid changes in chromatin structure are essential to maintain genome stability.
Collapse
Affiliation(s)
- Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha, Rosario, Argentina
| | - Maria Sol Gomez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera, Cantoblanco, Madrid, Spain
| |
Collapse
|
25
|
Perspectives for epigenetic editing in crops. Transgenic Res 2021; 30:381-400. [PMID: 33891288 DOI: 10.1007/s11248-021-00252-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/29/2021] [Indexed: 01/10/2023]
Abstract
Site-specific nucleases (SSNs) have drawn much attention in plant biotechnology due to their ability to drive precision mutagenesis, gene targeting or allele replacement. However, when devoid of its nuclease activity, the underlying DNA-binding activity of SSNs can be used to bring other protein functional domains close to specific genomic sites, thus expanding further the range of applications of the technology. In particular, the addition of functional domains encoding epigenetic effectors and chromatin modifiers to the CRISPR/Cas ribonucleoprotein complex opens the possibility to introduce targeted epigenomic modifications in plants in an easily programmable manner. Here we examine some of the most important agronomic traits known to be controlled epigenetically and review the best studied epigenetic catalytic effectors in plants, such as DNA methylases/demethylases or histone acetylases/deacetylases and their associated marks. We also review the most efficient strategies developed to date to functionalize Cas proteins with both catalytic and non-catalytic epigenetic effectors, and the ability of these domains to influence the expression of endogenous genes in a regulatable manner. Based on these new technical developments, we discuss the possibilities offered by epigenetic editing tools in plant biotechnology and their implications in crop breeding.
Collapse
|
26
|
Baduel P, Colot V. The epiallelic potential of transposable elements and its evolutionary significance in plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200123. [PMID: 33866816 PMCID: PMC8059525 DOI: 10.1098/rstb.2020.0123] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DNA provides the fundamental framework for heritability, yet heritable trait variation need not be completely ‘hard-wired’ into the DNA sequence. In plants, the epigenetic machinery that controls transposable element (TE) activity, and which includes DNA methylation, underpins most known cases of inherited trait variants that are independent of DNA sequence changes. Here, we review our current knowledge of the extent, mechanisms and potential adaptive contribution of epiallelic variation at TE-containing alleles in this group of species. For the purpose of this review, we focus mainly on DNA methylation, as it provides an easily quantifiable readout of such variation. The picture that emerges is complex. On the one hand, pronounced differences in DNA methylation at TE sequences can either occur spontaneously or be induced experimentally en masse across the genome through genetic means. Many of these epivariants are stably inherited over multiple sexual generations, thus leading to transgenerational epigenetic inheritance. Functional consequences can be significant, yet they are typically of limited magnitude and although the same epivariants can be found in nature, the factors involved in their generation in this setting remain to be determined. On the other hand, moderate DNA methylation variation at TE-containing alleles can be reproducibly induced by the environment, again usually with mild effects, and most of this variation tends to be lost across generations. Based on these considerations, we argue that TE-containing alleles, rather than their inherited epiallelic variants, are the main targets of natural selection. Thus, we propose that the adaptive contribution of TE-associated epivariation, whether stable or not, lies predominantly in its capacity to modulate TE mobilization in response to the environment, hence providing hard-wired opportunities for the flexible exploration of the phenotypic space. This article is part of the theme issue ‘How does epigenetics influence the course of evolution?’
Collapse
Affiliation(s)
- Pierre Baduel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Normale Supérieure, PSL Research University, 75005 Paris, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Normale Supérieure, PSL Research University, 75005 Paris, France
| |
Collapse
|
27
|
Liu X, Zhang Y, Shen L, He Z, Chen Y, Li N, Zhang X, Zhang T, Gao S, Yue H, Li Z, Yu Z. LncRNA Meg3-mediated regulation of the Smad pathway in atRA-induced cleft palate. Toxicol Lett 2021; 341:51-58. [PMID: 33493612 DOI: 10.1016/j.toxlet.2021.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022]
Abstract
Palatal mesenchymal cell proliferation is essential to the process of palatogenesis, and the proliferation of mouse embryonic palate mesenchymal (MEPM) cells is impacted by both all-trans retinoic acid (atRA) and the TGF-β/Smad signaling pathway. The long non-coding RNA (lncRNA) MEG3 has been shown to activate TGF-β/Smad signaling and to thereby regulate cell proliferation, differentiation, and related processes. Herein, we found that atRA treatment (100 mg/kg) promoted Meg3 upregulation in MEPM cells, and that such upregulation was linked to the suppression of MEPM cell proliferation in the context of secondary palate fusion on gestational day (GD) 13 and 14. Moreover, the demethylation of specific CpG sites within the lncRNA Meg3 promoter was detected in atRA-treated MEPM cells, likely explaining the observed upregulation of this lncRNA. Smad signaling was also suppressed by atRA treatment in these cells, and RNA immunoprecipitation analyses revealed that Smad2 can directly interact with Meg3 in MEPM cells following atRA treatment. Therefore, we propose a model wherein Meg3 is involved in the suppression of MEPM cell proliferation, functioning at least in part via interacting with the Smad2 protein and thereby suppressing Smad signaling in the context of atRA-induced cleft palate.
Collapse
Affiliation(s)
- Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuwei Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lijun Shen
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhidong He
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yao Chen
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ning Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiuli Zhang
- Division of Blood Vessel Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tingting Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Suhua Gao
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haodi Yue
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhitao Li
- Medical College of Henan University of Science and Technology, Luoyang, Henan, China
| | - Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China; School of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
28
|
Ma M, Chen X, Yin Y, Fan R, Li B, Zhan Y, Zeng F. DNA Methylation Silences Exogenous Gene Expression in Transgenic Birch Progeny. FRONTIERS IN PLANT SCIENCE 2020; 11:523748. [PMID: 33414793 PMCID: PMC7783445 DOI: 10.3389/fpls.2020.523748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/28/2020] [Indexed: 05/04/2023]
Abstract
The genetic stability of exogenous genes in the progeny of transgenic trees is extremely important in forest breeding; however, it remains largely unclear. We selected transgenic birch (Betula platyphylla) and its hybrid F1 progeny to investigate the expression stability and silencing mechanism of exogenous genes. We found that the exogenous genes of transgenic birch could be transmitted to their offspring through sexual reproduction. The exogenous genes were segregated during genetic transmission. The hybrid progeny of transgenic birch WT1×TP22 (184) and WT1×TP23 (212) showed higher Bgt expression and greater insect resistance than their parents. However, the hybrid progeny of transgenic birch TP23×TP49 (196) showed much lower Bgt expression, which was only 13.5% of the expression in its parents. To elucidate the mechanism underlying the variation in gene expression between the parents and progeny, we analyzed the methylation rates of Bgt in its promoter and coding regions. The hybrid progeny with normally expressed exogenous genes showed much lower methylation rates (0-29%) than the hybrid progeny with silenced exogenous genes (32.35-45.95%). These results suggest that transgene silencing in the progeny is mainly due to DNA methylation at cytosine residues. We further demonstrated that methylation in the promoter region, rather than in the coding region, leads to gene silencing. We also investigated the relative expression levels of three methyltransferase genes: BpCMT, BpDRM, and BpMET. The transgenic birch line 196 with a silenced Gus gene showed, respectively, 2.54, 9.92, and 4.54 times higher expression levels of BpCMT, BpDRM, and BpMET than its parents. These trends are consistent with and corroborate the high methylation levels of exogenous genes in the transgenic birch line 196. Therefore, our study suggests that DNA methylation in the promoter region leads to silencing of exogenous genes in transgenic progeny of birch.
Collapse
Affiliation(s)
- Minghao Ma
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xiaohui Chen
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yibo Yin
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Ruixin Fan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Bo Li
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yaguang Zhan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Fansuo Zeng
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
29
|
Antunez-Sanchez J, Naish M, Ramirez-Prado JS, Ohno S, Huang Y, Dawson A, Opassathian K, Manza-Mianza D, Ariel F, Raynaud C, Wibowo A, Daron J, Ueda M, Latrasse D, Slotkin RK, Weigel D, Benhamed M, Gutierrez-Marcos J. A new role for histone demethylases in the maintenance of plant genome integrity. eLife 2020. [PMID: 33107825 DOI: 10.7554/elife.58533.sa2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Histone modifications deposited by the Polycomb repressive complex 2 (PRC2) play a critical role in the control of growth, development, and adaptation to environmental fluctuations of most multicellular eukaryotes. The catalytic activity of PRC2 is counteracted by Jumonji-type (JMJ) histone demethylases, which shapes the genomic distribution of H3K27me3. Here, we show that two JMJ histone demethylases in Arabidopsis, EARLY FLOWERING 6 (ELF6) and RELATIVE OF EARLY FLOWERING 6 (REF6), play distinct roles in H3K27me3 and H3K27me1 homeostasis. We show that failure to reset these chromatin marks during sexual reproduction results in the transgenerational inheritance of histone marks, which cause a loss of DNA methylation at heterochromatic loci and transposon activation. Thus, Jumonji-type histone demethylases play a dual role in plants by helping to maintain transcriptional states through development and safeguard genome integrity during sexual reproduction.
Collapse
Affiliation(s)
| | - Matthew Naish
- School of Life Science, University of Warwick, Coventry, United Kingdom
| | | | - Sho Ohno
- School of Life Science, University of Warwick, Coventry, United Kingdom
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Ying Huang
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Alexander Dawson
- School of Life Science, University of Warwick, Coventry, United Kingdom
| | | | - Deborah Manza-Mianza
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Federico Ariel
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Cecile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Anjar Wibowo
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Josquin Daron
- Department of Molecular Genetics, The Ohio State University, Columbus, United States
| | - Minako Ueda
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - David Latrasse
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, United States
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), F-75006, Paris, France
| | | |
Collapse
|
30
|
Antunez-Sanchez J, Naish M, Ramirez-Prado JS, Ohno S, Huang Y, Dawson A, Opassathian K, Manza-Mianza D, Ariel F, Raynaud C, Wibowo A, Daron J, Ueda M, Latrasse D, Slotkin RK, Weigel D, Benhamed M, Gutierrez-Marcos J. A new role for histone demethylases in the maintenance of plant genome integrity. eLife 2020; 9:e58533. [PMID: 33107825 PMCID: PMC7671693 DOI: 10.7554/elife.58533] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
Histone modifications deposited by the Polycomb repressive complex 2 (PRC2) play a critical role in the control of growth, development, and adaptation to environmental fluctuations of most multicellular eukaryotes. The catalytic activity of PRC2 is counteracted by Jumonji-type (JMJ) histone demethylases, which shapes the genomic distribution of H3K27me3. Here, we show that two JMJ histone demethylases in Arabidopsis, EARLY FLOWERING 6 (ELF6) and RELATIVE OF EARLY FLOWERING 6 (REF6), play distinct roles in H3K27me3 and H3K27me1 homeostasis. We show that failure to reset these chromatin marks during sexual reproduction results in the transgenerational inheritance of histone marks, which cause a loss of DNA methylation at heterochromatic loci and transposon activation. Thus, Jumonji-type histone demethylases play a dual role in plants by helping to maintain transcriptional states through development and safeguard genome integrity during sexual reproduction.
Collapse
Affiliation(s)
| | - Matthew Naish
- School of Life Science, University of WarwickCoventryUnited Kingdom
| | | | - Sho Ohno
- School of Life Science, University of WarwickCoventryUnited Kingdom
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-kuKyotoJapan
| | - Ying Huang
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2)OrsayFrance
| | - Alexander Dawson
- School of Life Science, University of WarwickCoventryUnited Kingdom
| | | | - Deborah Manza-Mianza
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2)OrsayFrance
| | - Federico Ariel
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2)OrsayFrance
| | - Cecile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2)OrsayFrance
| | - Anjar Wibowo
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingenGermany
| | - Josquin Daron
- Department of Molecular Genetics, The Ohio State UniversityColumbusUnited States
| | - Minako Ueda
- Institute of Transformative Bio-Molecules, Nagoya UniversityNagoyaJapan
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - David Latrasse
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2)OrsayFrance
| | - R Keith Slotkin
- Donald Danforth Plant Science CenterSt. LouisUnited States
- Division of Biological Sciences, University of MissouriColumbiaUnited States
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingenGermany
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2)OrsayFrance
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), F-75006ParisFrance
| | | |
Collapse
|
31
|
The Interplay between Toxic and Essential Metals for Their Uptake and Translocation Is Likely Governed by DNA Methylation and Histone Deacetylation in Maize. Int J Mol Sci 2020; 21:ijms21186959. [PMID: 32971934 PMCID: PMC7555519 DOI: 10.3390/ijms21186959] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
The persistent nature of lead (Pb) and cadmium (Cd) in the environment severely affects plant growth and yield. Conversely, plants acquire zinc (Zn) from the soil for their vital physiological and biochemical functions. However, the interplay and coordination between essential and toxic metals for their uptake and translocation and the putative underlying epigenetic mechanisms have not yet been investigated in maize. Here, we report that the presence of Zn facilitates the accumulation and transport of Pb and Cd in the aerial parts of the maize plants. Moreover, the Zn, Pb, and Cd interplay specifically interferes with the uptake and translocation of other divalent metals, such as calcium and magnesium. Zn, Pb, and Cd, individually and in combinations, differentially regulate the expression of DNA methyltransferases, thus alter the DNA methylation levels at the promoter of Zinc-regulated transporters, Iron-regulated transporter-like Protein (ZIP) genes to regulate their expression. Furthermore, the expression of histone deacetylases (HDACs) varies greatly in response to individual and combined metals, and HDACs expression showed a negative correlation with ZIP transporters. Our study highlights the implication of DNA methylation and histone acetylation in regulating the metal stress tolerance dynamics through Zn transporters and warns against the excessive use of Zn fertilizers in metal contaminated soils.
Collapse
|
32
|
Negin B, Moshelion M. Remember where you came from: ABA insensitivity is epigenetically inherited in mesophyll, but not seeds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 295:110455. [PMID: 32534619 DOI: 10.1016/j.plantsci.2020.110455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/10/2020] [Accepted: 02/16/2020] [Indexed: 05/11/2023]
Abstract
Plants transmit their experiences of environmental conditions to their progeny through epigenetic inheritance, improving their progeny's fitness under prevailing conditions. Though ABA is known to regulate epigenetic-modification genes, no strong phenotypic link between those genes and intergenerational "memory" has been shown. Previously, we demonstrated that mesophyll insensitivity to ABA (FBPase::abi1-1{fa} transgenic plants) results in a range of developmental phenotypes, including early growth vigor and early flowering (i.e., stress-escape behavior). Here, we show that null plants, used as controls (segregates of FBPase::abi1 that are homozygote descendants of a heterozygous transgenic plant, but do not contain the transformed abi1-1 gene) phenotypically resembled their FBPase::abi1-1 parents. However, in germination and early seedling development assays, null segregants resembled WT plants. These FBPase::abi1-1 null segregants mesophyll-related phenotypes were reproducible and stable for at least three generations. These results suggest that the heritability of stress response is linked to ABA's epigenetic regulatory effect through ABI1 and mesophyll-related traits. The discrepancy between the epigenetic heritability of seed and mesophyll-related traits is an example of the complexity of epigenetic regulation, which is both gene and process-specific, and may be attributed to the fine-tuning of tradeoffs between flowering time, growth rate and levels of risk that allow annual plants to optimize their fitness in uncertain environments.
Collapse
Affiliation(s)
- Boaz Negin
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Menachem Moshelion
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel.
| |
Collapse
|
33
|
Azizi P, Hanafi MM, Sahebi M, Harikrishna JA, Taheri S, Yassoralipour A, Nasehi A. Epigenetic changes and their relationship to somaclonal variation: a need to monitor the micropropagation of plantation crops. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:508-523. [PMID: 32349860 DOI: 10.1071/fp19077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/23/2020] [Indexed: 06/11/2023]
Abstract
Chromatin modulation plays important roles in gene expression regulation and genome activities. In plants, epigenetic changes, including variations in histone modification and DNA methylation, are linked to alterations in gene expression. Despite the significance and potential of in vitro cell and tissue culture systems in fundamental research and marketable applications, these systems threaten the genetic and epigenetic networks of intact plant organs and tissues. Cell and tissue culture applications can lead to DNA variations, methylation alterations, transposon activation, and finally, somaclonal variations. In this review, we discuss the status of the current understanding of epigenomic changes that occur under in vitro conditions in plantation crops, including coconut, oil palm, rubber, cotton, coffee and tea. It is hoped that comprehensive knowledge of the molecular basis of these epigenomic variations will help researchers develop strategies to enhance the totipotent and embryogenic capabilities of tissue culture systems for plantation crops.
Collapse
Affiliation(s)
- Parisa Azizi
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; and Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohamed M Hanafi
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; and Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; and Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; and Corresponding author.
| | - Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Jennifer A Harikrishna
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sima Taheri
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ali Yassoralipour
- Department of Agricultural and Food Science, Faculty of Science (Kampar Campus), Universiti Tunku Abdul Rahman (UTAR), Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Abbas Nasehi
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
34
|
Espinas NA, Tu LN, Furci L, Shimajiri Y, Harukawa Y, Miura S, Takuno S, Saze H. Transcriptional regulation of genes bearing intronic heterochromatin in the rice genome. PLoS Genet 2020; 16:e1008637. [PMID: 32187179 PMCID: PMC7145194 DOI: 10.1371/journal.pgen.1008637] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 04/09/2020] [Accepted: 01/28/2020] [Indexed: 11/18/2022] Open
Abstract
Intronic regions of eukaryotic genomes accumulate many Transposable Elements (TEs). Intronic TEs often trigger the formation of transcriptionally repressive heterochromatin, even within transcription-permissive chromatin environments. Although TE-bearing introns are widely observed in eukaryotic genomes, their epigenetic states, impacts on gene regulation and function, and their contributions to genetic diversity and evolution, remain poorly understood. In this study, we investigated the genome-wide distribution of intronic TEs and their epigenetic states in the Oryza sativa genome, where TEs comprise 35% of the genome. We found that over 10% of rice genes contain intronic heterochromatin, most of which are associated with TEs and repetitive sequences. These heterochromatic introns are longer and highly enriched in promoter-proximal positions. On the other hand, introns also accumulate hypomethylated short TEs. Genes with heterochromatic introns are implicated in various biological functions. Transcription of genes bearing intronic heterochromatin is regulated by an epigenetic mechanism involving the conserved factor OsIBM2, mutation of which results in severe developmental and reproductive defects. Furthermore, we found that heterochromatic introns evolve rapidly compared to non-heterochromatic introns. Our study demonstrates that heterochromatin is a common epigenetic feature associated with actively transcribed genes in the rice genome.
Collapse
Affiliation(s)
- Nino A. Espinas
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama city, Kanagawa, Japan
| | - Le Ngoc Tu
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Leonardo Furci
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Yasuka Shimajiri
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- EditForce, Fukuoka, Japan
| | - Yoshiko Harukawa
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Saori Miura
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Shohei Takuno
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| |
Collapse
|
35
|
Natural variation in DNA methylation homeostasis and the emergence of epialleles. Proc Natl Acad Sci U S A 2020; 117:4874-4884. [PMID: 32071208 DOI: 10.1073/pnas.1918172117] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In plants and mammals, DNA methylation plays a critical role in transcriptional silencing by delineating heterochromatin from transcriptionally active euchromatin. A homeostatic balance between heterochromatin and euchromatin is essential to genomic stability. This is evident in many diseases and mutants for heterochromatin maintenance, which are characterized by global losses of DNA methylation coupled with localized ectopic gains of DNA methylation that alter transcription. Furthermore, we have shown that genome-wide methylation patterns in Arabidopsis thaliana are highly stable over generations, with the exception of rare epialleles. However, the extent to which natural variation in the robustness of targeting DNA methylation to heterochromatin exists, and the phenotypic consequences of such variation, remain to be fully explored. Here we describe the finding that heterochromatin and genic DNA methylation are highly variable among 725 A. thaliana accessions. We found that genic DNA methylation is inversely correlated with that in heterochromatin, suggesting that certain methylation pathway(s) may be redirected to genes upon the loss of heterochromatin. This redistribution likely involves a feedback loop involving the DNA methyltransferase, CHROMOMETHYLASE 3 (CMT3), H3K9me2, and histone turnover, as highly expressed, long genes with a high density of CMT3-preferred CWG sites are more likely to be methylated. Importantly, although the presence of CG methylation in genes alone may not affect transcription, genes containing CG methylation are more likely to become methylated at non-CG sites and silenced. These findings are consistent with the hypothesis that natural variation in DNA methylation homeostasis may underlie the evolution of epialleles that alter phenotypes.
Collapse
|
36
|
Hu L, Li N, Zhang Z, Meng X, Dong Q, Xu C, Gong L, Liu B. CG hypomethylation leads to complex changes in DNA methylation and transpositional burst of diverse transposable elements in callus cultures of rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:188-203. [PMID: 31529551 DOI: 10.1111/tpj.14531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
CG methylation (m CG) is essential for preserving genome stability in mammals, but this link remains obscure in plants. OsMET1-2, a major rice DNA methyltransferase, plays critical roles in maintaining m CG in rice. Null mutation of OsMET1-2 causes massive CG hypomethylation, rendering the mutant suitable to address the role of m CG in maintaining genome integrity in plants. Here, we analyzed m CG dynamics and genome stability in tissue cultures of OsMET1-2 homozygous (-/-) and heterozygous (+/-) mutants, and isogenic wild-type (WT). We found m CG levels in cultures of -/- were substantially lower than in those of WT and +/-, as expected. Unexpectedly, m CG levels in 1- and 3-year cultures of -/- were 77.6% and 48.7% higher, respectively, than in shoot, from which the cultures were initiated, suggesting substantial regain of m CG in -/- cultures, which contrasts to the general trend of m CG loss in all WT plant tissue cultures hitherto studied. Transpositional burst of diverse transposable elements (TEs) occurred only in -/- cultures, although no elevation of genome-wide mutation rate in the form of single nucleotide polymorphisms was detected. Altogether, our results establish an essential role of m CG in retaining TE immobility and hence genome stability in rice and likely in plants in general.
Collapse
Affiliation(s)
- Lanjuan Hu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- College of Plant Sciences, Faculty of Agriculture, Jilin University, Changchun, 130062, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xinchao Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Qianli Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
37
|
Long JC, Xia AA, Liu JH, Jing JL, Wang YZ, Qi CY, He Y. Decrease in DNA methylation 1 (DDM1) is required for the formation of m CHH islands in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:749-764. [PMID: 30387549 DOI: 10.1111/jipb.12733] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/23/2018] [Indexed: 05/26/2023]
Abstract
DNA methylation plays a crucial role in suppressing mobilization of transposable elements and regulation of gene expression. A number of studies have indicated that DNA methylation pathways and patterns exhibit distinct properties in different species, including Arabidopsis, rice, and maize. Here, we characterized the function of DDM1 in regulating genome-wide DNA methylation in maize. Two homologs of ZmDDM1 are abundantly expressed in the embryo and their simultaneous disruption caused embryo lethality with abnormalities in cell proliferation from the early stage of kernel development. We establish that ZmDDM1 is critical for DNA methylation, at CHG sites, and to a lesser extent at CG sites, in heterochromatic regions, and unexpectedly, it is required for the formation of m CHH islands. In addition, ZmDDM1 is indispensable for the presence of 24-nt siRNA, suggesting its involvement in the RdDM pathway. Our results provide novel insight into the role of ZmDDM1 in regulating the formation of m CHH islands, via the RdDM pathway maize, suggesting that, in comparison to Arabidopsis, maize may have adopted distinct mechanisms for regulating m CHH.
Collapse
Affiliation(s)
- Jin Cheng Long
- National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Ai Ai Xia
- National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Jing Han Liu
- National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Ju Li Jing
- National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Ya Zhong Wang
- National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Chuang Ye Qi
- National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Yan He
- National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| |
Collapse
|
38
|
Liégard B, Baillet V, Etcheverry M, Joseph E, Lariagon C, Lemoine J, Evrard A, Colot V, Gravot A, Manzanares‐Dauleux MJ, Jubault M. Quantitative resistance to clubroot infection mediated by transgenerational epigenetic variation in Arabidopsis. THE NEW PHYTOLOGIST 2019; 222:468-479. [PMID: 30393890 PMCID: PMC6587750 DOI: 10.1111/nph.15579] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/26/2018] [Indexed: 05/02/2023]
Abstract
Quantitative disease resistance, often influenced by environmental factors, is thought to be the result of DNA sequence variants segregating at multiple loci. However, heritable differences in DNA methylation, so-called transgenerational epigenetic variants, also could contribute to quantitative traits. Here, we tested this possibility using the well-characterized quantitative resistance of Arabidopsis to clubroot, a Brassica major disease caused by Plasmodiophora brassicae. For that, we used the epigenetic recombinant inbred lines (epiRIL) derived from the cross ddm1-2 × Col-0, which show extensive epigenetic variation but limited DNA sequence variation. Quantitative loci under epigenetic control (QTLepi ) mapping was carried out on 123 epiRIL infected with P. brassicae and using various disease-related traits. EpiRIL displayed a wide range of continuous phenotypic responses. Twenty QTLepi were detected across the five chromosomes, with a bona fide epigenetic origin for 16 of them. The effect of five QTLepi was dependent on temperature conditions. Six QTLepi co-localized with previously identified clubroot resistance genes and QTL in Arabidopsis. Co-localization of clubroot resistance QTLepi with previously detected DNA-based QTL reveals a complex model in which a combination of allelic and epiallelic variations interacts with the environment to lead to variation in clubroot quantitative resistance.
Collapse
Affiliation(s)
- Benjamin Liégard
- IGEPPINRAAGROCAMPUS OUESTUniversité de RennesF‐35000RennesFrance
| | - Victoire Baillet
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Ecole Normale SupérieureCentre National de la Recherche Scientifique (CNRS)Institut National de la Santé et de la Recherche Médicale (INSERM)F‐75005ParisFrance
| | - Mathilde Etcheverry
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Ecole Normale SupérieureCentre National de la Recherche Scientifique (CNRS)Institut National de la Santé et de la Recherche Médicale (INSERM)F‐75005ParisFrance
| | - Evens Joseph
- IGEPPINRAAGROCAMPUS OUESTUniversité de RennesF‐35000RennesFrance
| | | | - Jocelyne Lemoine
- IGEPPINRAAGROCAMPUS OUESTUniversité de RennesF‐35000RennesFrance
| | - Aurélie Evrard
- IGEPPINRAAGROCAMPUS OUESTUniversité de RennesF‐35000RennesFrance
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Ecole Normale SupérieureCentre National de la Recherche Scientifique (CNRS)Institut National de la Santé et de la Recherche Médicale (INSERM)F‐75005ParisFrance
| | - Antoine Gravot
- IGEPPINRAAGROCAMPUS OUESTUniversité de RennesF‐35000RennesFrance
| | | | - Mélanie Jubault
- IGEPPINRAAGROCAMPUS OUESTUniversité de RennesF‐35000RennesFrance
| |
Collapse
|
39
|
Abstract
Circadian rhythms in transcription ultimately result in oscillations of key biological processes. Understanding how transcriptional rhythms are generated in plants provides an opportunity for fine-tuning growth, development, and responses to the environment. Here, we present a succinct description of the plant circadian clock, briefly reviewing a number of recent studies but mostly emphasizing the components and mechanisms connecting chromatin remodeling with transcriptional regulation by the clock. The possibility that intergenomic interactions govern hybrid vigor through epigenetic changes at clock loci and the function of epialleles controlling clock output traits during crop domestication are also discussed.
Collapse
Affiliation(s)
- Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.,Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Paloma Mas
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain. .,Consejo Superior de Investigaciones Científicas, 08028, Barcelona, Spain.
| |
Collapse
|
40
|
Furci L, Jain R, Stassen J, Berkowitz O, Whelan J, Roquis D, Baillet V, Colot V, Johannes F, Ton J. Identification and characterisation of hypomethylated DNA loci controlling quantitative resistance in Arabidopsis. eLife 2019; 8:40655. [PMID: 30608232 PMCID: PMC6342528 DOI: 10.7554/elife.40655] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
Variation in DNA methylation enables plants to inherit traits independently of changes to DNA sequence. Here, we have screened an Arabidopsis population of epigenetic recombinant inbred lines (epiRILs) for resistance against Hyaloperonospora arabidopsidis (Hpa). These lines share the same genetic background, but show variation in heritable patterns of DNA methylation. We identified four epigenetic quantitative trait loci (epiQTLs) that provide quantitative resistance without reducing plant growth or resistance to other (a)biotic stresses. Phenotypic characterisation and RNA-sequencing analysis revealed that Hpa-resistant epiRILs are primed to activate defence responses at the relatively early stages of infection. Collectively, our results show that hypomethylation at selected pericentromeric regions is sufficient to provide quantitative disease resistance, which is associated with genome-wide priming of defence-related genes. Based on comparisons of global gene expression and DNA methylation between the wild-type and resistant epiRILs, we discuss mechanisms by which the pericentromeric epiQTLs could regulate the defence-related transcriptome. In plants, animals and microbes genetic information is encoded by DNA, which are made up of sequences of building blocks, called nucleotide bases. These sequences can be separated into sections known as genes that each encode specific traits. It was previously thought that only changes to the sequence of bases in a DNA molecule could alter the traits passed on to future generations. However, it has recently become clear that some traits can also be inherited through modifications to the DNA that do not alter its sequence. One such modification is to attach a tag, known as a methyl group, to a nucleotide base known as cytosine. These methyl tags can be added to, or removed from, DNA to create different patterns of methylation. Previous studies have shown that plants whose DNA is less methylated than normal (‘hypo-methylated’) are more resistant to plant diseases. However, the location and identity of the hypo-methylated DNA regions controlling this resistance remained unknown. To address this problem, Furci, Jain et al. studied how DNA methylation in a small weed known as Arabidopsis thaliana affects how well the plants can resist a disease known as downy mildew. Furci, Jain et al. studied a population of over 100 A. thaliana lines that have the same DNA sequences but different patterns of DNA methylation. The experiments identified four DNA locations that were less methylated in lines with enhanced resistance to downy mildew. Importantly, this form of resistance did not appear to reduce how well the plants grew, or make them less able to resist other diseases or environmental stresses. The results of further experiments suggested that reduced methylation at the four DNA regions prime the plant’s immune system, enabling a faster and stronger activation of a multitude of defence genes across the genome after attack by downy mildew. The next steps following on from this work are to investigate exactly how the four DNA regions with reduced methylation can prime so many different defence genes in the plant. Further research is also needed to determine whether it is possible to breed crop plants with lower levels of methylation at specific DNA locations to improve disease resistance, but without decreasing the amount and quality of food produced.
Collapse
Affiliation(s)
- Leonardo Furci
- P3 Centre for Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Ritushree Jain
- P3 Centre for Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Joost Stassen
- P3 Centre for Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Melbourne, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Melbourne, Australia
| | - David Roquis
- Department of Plant Sciences, Technical University of Munich, Freising, Germany.,Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Victoire Baillet
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Frank Johannes
- Department of Plant Sciences, Technical University of Munich, Freising, Germany.,Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Jurriaan Ton
- P3 Centre for Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
41
|
Tedeschi F, Rizzo P, Huong BTM, Czihal A, Rutten T, Altschmied L, Scharfenberg S, Grosse I, Becker C, Weigel D, Bäumlein H, Kuhlmann M. EFFECTOR OF TRANSCRIPTION factors are novel plant-specific regulators associated with genomic DNA methylation in Arabidopsis. THE NEW PHYTOLOGIST 2019; 221:261-278. [PMID: 30252137 PMCID: PMC6585611 DOI: 10.1111/nph.15439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/01/2018] [Indexed: 05/02/2023]
Abstract
Plant-specific EFFECTORS OF TRANSCRIPTION (ET) are characterised by a variable number of highly conserved ET repeats, which are involved in zinc and DNA binding. In addition, ETs share a GIY-YIG domain, involved in DNA nicking activity. It was hypothesised that ETs might act as epigenetic regulators. Here, methylome, transcriptome and phenotypic analyses were performed to investigate the role of ET factors and their involvement in DNA methylation in Arabidopsis thaliana. Comparative DNA methylation and transcriptome analyses in flowers and seedlings of et mutants revealed ET-specific differentially expressed genes and mostly independently characteristic, ET-specific differentially methylated regions. Loss of ET function results in pleiotropic developmental defects. The accumulation of cyclobutane pyrimidine dimers after ultraviolet stress in et mutants suggests an ET function in DNA repair.
Collapse
Affiliation(s)
- Francesca Tedeschi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| | - Paride Rizzo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| | - Bui Thi Mai Huong
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| | - Andreas Czihal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| | - Lothar Altschmied
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| | | | - Ivo Grosse
- Department of BioinformaticsMartin‐Luther‐University06120HalleGermany
| | - Claude Becker
- Department of Molecular BiologyMax Planck Institute for Developmental Biology72076TübingenGermany
- Gregor Mendel Institute of Molecular Plant Biology1030ViennaAustria
| | - Detlef Weigel
- Department of Molecular BiologyMax Planck Institute for Developmental Biology72076TübingenGermany
| | - Helmut Bäumlein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| | - Markus Kuhlmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| |
Collapse
|
42
|
Mozgova I, Wildhaber T, Trejo-Arellano MS, Fajkus J, Roszak P, Köhler C, Hennig L. Transgenerational phenotype aggravation in CAF-1 mutants reveals parent-of-origin specific epigenetic inheritance. THE NEW PHYTOLOGIST 2018; 220:908-921. [PMID: 29573427 DOI: 10.1111/nph.15082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/05/2018] [Indexed: 05/23/2023]
Abstract
Chromatin is assembled by histone chaperones such as chromatin assembly factor CAF-1. We had noticed that vigor of Arabidopsis thaliana CAF-1 mutants decreased over several generations. Because changes in mutant phenotype severity over generations are unusual, we asked how repeated selfing of Arabidopsis CAF-1 mutants affects phenotype severity. CAF-1 mutant plants of various generations were grown, and developmental phenotypes, transcriptomes and DNA cytosine-methylation profiles were compared quantitatively. Shoot- and root-related growth phenotypes were progressively more affected in successive generations of CAF-1 mutants. Early and late generations of the fasciata (fas)2-4 CAF-1 mutant displayed only limited changes in gene expression, of which increasing upregulation of plant defense-related genes reflects the transgenerational phenotype aggravation. Likewise, global DNA methylation in the sequence context CHG but not CG or CHH (where H = A, T or C) changed over generations in fas2-4. Crossing early and late generation fas2-4 plants established that the maternal contribution to the phenotype severity exceeds the paternal contribution. Together, epigenetic rather than genetic mechanisms underlie the progressive developmental phenotype aggravation in the Arabidopsis CAF-1 mutants and preferred maternal transmission reveals a more efficient reprogramming of epigenetic information in the male than the female germline.
Collapse
Affiliation(s)
- Iva Mozgova
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, CZ-37981, Třeboň, Czech Republic
| | - Thomas Wildhaber
- Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Minerva S Trejo-Arellano
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
| | - Jiri Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-61137, Brno, Czech Republic
| | - Pawel Roszak
- Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
| |
Collapse
|
43
|
Dynamic DNA Methylation in Plant Growth and Development. Int J Mol Sci 2018; 19:ijms19072144. [PMID: 30041459 PMCID: PMC6073778 DOI: 10.3390/ijms19072144] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is an epigenetic modification required for transposable element (TE) silencing, genome stability, and genomic imprinting. Although DNA methylation has been intensively studied, the dynamic nature of methylation among different species has just begun to be understood. Here we summarize the recent progress in research on the wide variation of DNA methylation in different plants, organs, tissues, and cells; dynamic changes of methylation are also reported during plant growth and development as well as changes in response to environmental stresses. Overall DNA methylation is quite diverse among species, and it occurs in CG, CHG, and CHH (H = A, C, or T) contexts of genes and TEs in angiosperms. Moderately expressed genes are most likely methylated in gene bodies. Methylation levels decrease significantly just upstream of the transcription start site and around transcription termination sites; its levels in the promoter are inversely correlated with the expression of some genes in plants. Methylation can be altered by different environmental stimuli such as pathogens and abiotic stresses. It is likely that methylation existed in the common eukaryotic ancestor before fungi, plants and animals diverged during evolution. In summary, DNA methylation patterns in angiosperms are complex, dynamic, and an integral part of genome diversity after millions of years of evolution.
Collapse
|
44
|
Corem S, Doron-Faigenboim A, Jouffroy O, Maumus F, Arazi T, Bouché N. Redistribution of CHH Methylation and Small Interfering RNAs across the Genome of Tomato ddm1 Mutants. THE PLANT CELL 2018; 30:1628-1644. [PMID: 29875274 PMCID: PMC6096599 DOI: 10.1105/tpc.18.00167] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/01/2018] [Accepted: 05/31/2018] [Indexed: 05/18/2023]
Abstract
In plants, cytosine methylation, an epigenetic mark critical for transposon silencing, is maintained over generations by key enzymes that directly methylate DNA and is facilitated by chromatin remodelers, like DECREASE IN DNA METHYLATION1 (DDM1). Short-interfering RNAs (siRNAs) also mediate transposon DNA methylation through a process called RNA-directed DNA methylation (RdDM). In tomato (Solanum lycopersicum), siRNAs are primarily mapped to gene-rich chromosome arms, and not to pericentromeric regions as in Arabidopsis thaliana Tomato encodes two DDM1 genes. To better understand their functions and interaction with the RdDM pathway, we targeted the corresponding genes via the CRISPR/Cas9 technology, resulting in the isolation of Slddm1a and Slddm1b knockout mutants. Unlike the single mutants, Slddm1a Slddm1b double mutant plants display pleiotropic vegetative and reproductive phenotypes, associated with severe hypomethylation of the heterochromatic transposons in both the CG and CHG methylation contexts. The methylation in the CHH context increased for some heterochromatic transposons and conversely decreased for others localized in euchromatin. We found that the number of heterochromatin-associated siRNAs, including RdDM-specific small RNAs, increased significantly, likely limiting the transcriptional reactivation of transposons in Slddm1a Slddm1b Taken together, we propose that the global production of siRNAs and the CHH methylation mediated by the RdDM pathway are restricted to chromosome arms in tomato. Our data suggest that both pathways are greatly enhanced in heterochromatin when DDM1 functions are lost, at the expense of silencing mechanisms normally occurring in euchromatin.
Collapse
Affiliation(s)
- Shira Corem
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Adi Doron-Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | | | - Florian Maumus
- URGI, INRA, Université Paris-Saclay, 78000 Versailles, France
| | - Tzahi Arazi
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Nicolas Bouché
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
45
|
Xie X, Shippen DE. DDM1 guards against telomere truncation in Arabidopsis. PLANT CELL REPORTS 2018; 37:501-513. [PMID: 29392401 PMCID: PMC5880217 DOI: 10.1007/s00299-017-2245-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/26/2017] [Indexed: 05/20/2023]
Abstract
Prolonged hypomethylation of DNA leads to telomere truncation correlated with increased telomere recombination, transposon mobilization and stem cell death. Epigenetic pathways, including DNA methylation, are crucial for telomere maintenance. Deficient in DNA Methylation 1 (DDM1) encodes a nucleosome remodeling protein, required to maintain DNA methylation in Arabidopsis thaliana. Plants lacking DDM1 can be self-propagated, but in the sixth generation (G6) hypomethylation leads to rampant transposon activation and infertility. Here we examine the role of DDM1 in telomere length homeostasis through a longitudinal study of successive generations of ddm1-2 mutants. We report that bulk telomere length remains within the wild-type range for the first five generations (G1-G5), and then precipitously drops in G6. While telomerase activity becomes more variable in later generation ddm1-2 mutants, there is no correlation between enzyme activity and telomere length. Plants lacking DDM1 also exhibit no dysregulation of several known telomere-associated transcripts, including TERRA. Instead, telomere shortening coincides with increased G-overhangs and extra-chromosomal circles, consistent with deletional recombination. Telomere shortening also correlates with transcriptional activation of retrotransposons, and a hypersensitive DNA damage response in root apical meristems. Since abiotic stresses, including DNA damage, stimulate homologous recombination, we hypothesize that telomere deletion in G6 ddm1-2 mutants is a by-product of elevated genome-wide recombination in response to transposon mobilization. Further, we speculate that telomere truncation may be beneficial in adverse environmental conditions by accelerating the elimination of stem cells with aberrant genomes.
Collapse
Affiliation(s)
- Xiaoyuan Xie
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843-2128, USA
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843-2128, USA.
| |
Collapse
|
46
|
Brocklehurst S, Watson M, Carr IM, Out S, Heidmann I, Meyer P. Induction of epigenetic variation in Arabidopsis by over-expression of DNA METHYLTRANSFERASE1 (MET1). PLoS One 2018; 13:e0192170. [PMID: 29466369 PMCID: PMC5821449 DOI: 10.1371/journal.pone.0192170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/17/2018] [Indexed: 11/18/2022] Open
Abstract
Epigenetic marks such as DNA methylation and histone modification can vary among plant accessions creating epi-alleles with different levels of expression competence. Mutations in epigenetic pathway functions are powerful tools to induce epigenetic variation. As an alternative approach, we investigated the potential of over-expressing an epigenetic function, using DNA METHYLTRANSFERASE1 (MET1) for proof-of-concept. In Arabidopsis thaliana, MET1 controls maintenance of cytosine methylation at symmetrical CG positions. At some loci, which contain dense DNA methylation in CG- and non-CG context, loss of MET1 causes joint loss of all cytosines methylation marks. We find that over-expression of both catalytically active and inactive versions of MET1 stochastically generates new epi-alleles at loci encoding transposable elements, non-coding RNAs and proteins, which results for most loci in an increase in expression. Individual transformants share some common phenotypes and genes with altered gene expression. Altered expression states can be transmitted to the next generation, which does not require the continuous presence of the MET1 transgene. Long-term stability and epigenetic features differ for individual loci. Our data show that over-expression of MET1, and potentially of other genes encoding epigenetic factors, offers an alternative strategy to identify epigenetic target genes and to create novel epi-alleles.
Collapse
Affiliation(s)
| | - Michael Watson
- Center for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Ian M. Carr
- School of Medicine Institute of Biomed. & Clin. Sciences (LIBACS), University of Leeds, Leeds, United Kingdom
| | - Suzan Out
- Enza Zaden Research and Development B.V., Enkhuizen, NL
| | - Iris Heidmann
- Enza Zaden Research and Development B.V., Enkhuizen, NL
| | - Peter Meyer
- Center for Plant Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Subbanna S, Nagre NN, Shivakumar M, Joshi V, Psychoyos D, Kutlar A, Umapathy NS, Basavarajappa BS. CB1R-Mediated Activation of Caspase-3 Causes Epigenetic and Neurobehavioral Abnormalities in Postnatal Ethanol-Exposed Mice. Front Mol Neurosci 2018; 11:45. [PMID: 29515368 PMCID: PMC5826222 DOI: 10.3389/fnmol.2018.00045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/02/2018] [Indexed: 12/15/2022] Open
Abstract
Alcohol exposure can affect brain development, leading to long-lasting behavioral problems, including cognitive impairment, which together is defined as fetal alcohol spectrum disorder (FASD). However, the fundamental mechanisms through which this occurs are largely unknown. In this study, we report that the exposure of postnatal day 7 (P7) mice to ethanol activates caspase-3 via cannabinoid receptor type-1 (CB1R) in neonatal mice and causes a reduction in methylated DNA binding protein (MeCP2) levels. The developmental expression of MeCP2 in mice is closely correlated with synaptogenesis and neuronal maturation. It was shown that ethanol treatment of P7 mice enhanced Mecp2 mRNA levels but reduced protein levels. The genetic deletion of CB1R prevented, and administration of a CB1R antagonist before ethanol treatment of P7 mice inhibited caspase-3 activation. Additionally, it reversed the loss of MeCP2 protein, cAMP response element binding protein (CREB) activation, and activity-regulated cytoskeleton-associated protein (Arc) expression. The inhibition of caspase-3 activity prior to ethanol administration prevented ethanol-induced loss of MeCP2, CREB activation, epigenetic regulation of Arc expression, long-term potentiation (LTP), spatial memory deficits and activity-dependent impairment of several signaling molecules, including MeCP2, in adult mice. Collectively, these results reveal that the ethanol-induced CB1R-mediated activation of caspase-3 degrades the MeCP2 protein in the P7 mouse brain and causes long-lasting neurobehavioral deficits in adult mice. This CB1R-mediated instability of MeCP2 during active synaptic maturation may disrupt synaptic circuit maturation and lead to neurobehavioral abnormalities, as observed in this animal model of FASD.
Collapse
Affiliation(s)
- Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, New York, NY, United States
| | - Nagaraja N. Nagre
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, New York, NY, United States
| | - Madhu Shivakumar
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, New York, NY, United States
| | - Vikram Joshi
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, New York, NY, United States
| | - Delphine Psychoyos
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Abdullah Kutlar
- Center for Blood Disorders, Augusta University, Augusta, GA, United States
| | | | - Balapal S. Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, United States
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, United States
| |
Collapse
|
48
|
Itabashi E, Osabe K, Fujimoto R, Kakizaki T. Epigenetic regulation of agronomical traits in Brassicaceae. PLANT CELL REPORTS 2018; 37:87-101. [PMID: 29058037 DOI: 10.1007/s00299-017-2223-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/05/2017] [Indexed: 05/08/2023]
Abstract
Epigenetic regulation, covalent modification of DNA and changes in histone proteins are closely linked to plant development and stress response through flexibly altering the chromatin structure to regulate gene expression. In this review, we will illustrate the importance of epigenetic influences by discussing three agriculturally important traits of Brassicaceae. (1) Vernalization, an acceleration of flowering by prolonged cold exposure regulated through epigenetic silencing of a central floral repressor, FLOWERING LOCUS C. This is associated with cold-dependent repressive histone mark accumulation, which confers competency of consequence vegetative-to-reproductive phase transition. (2) Hybrid vigor, in which an F1 hybrid shows superior performance to the parental lines. Combination of distinct epigenomes with different DNA methylation states between parental lines is important for increase in growth rate in a hybrid progeny. This is independent of siRNA-directed DNA methylation but dependent on the chromatin remodeler DDM1. (3) Self-incompatibility, a reproductive mating system to prevent self-fertilization. This is controlled by the S-locus consisting of SP11 and SRK which are responsible for self/non-self recognition. Because self-incompatibility in Brassicaceae is sporophytically controlled, there are dominance relationships between S haplotypes in the stigma and pollen. The dominance relationships in the pollen rely on de novo DNA methylation at the promoter region of a recessive allele, which is triggered by siRNA production from a flanking region of a dominant allele.
Collapse
Affiliation(s)
- Etsuko Itabashi
- Institute of Vegetable and Floriculture Science, NARO, Kusawa, Ano, Tsu, Mie, 514-2392, Japan.
| | - Kenji Osabe
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami, Okinawa, 904-0495, Japan
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Tomohiro Kakizaki
- Institute of Vegetable and Floriculture Science, NARO, Kusawa, Ano, Tsu, Mie, 514-2392, Japan
| |
Collapse
|
49
|
Abstract
While DNA sequence variation is known to be a major driver of phenotypic divergence, epigenetic variation has long been disregarded. One reason for that was the lack of suitable tools. The creation of epigenetically divergent but otherwise largely isogenic Arabidopsis populations has now alleviated some of these constraints. Epigenetic recombinant inbred line (epiRIL) populations allow for examining the effects of epigenetic variation on phenotypes. In addition, epiRILs enabled the development of epigenetic quantitative trait locus (QTLepi) mapping, an approach to identify causal epigenetic factors. Here, we describe the successive steps of QTLepi mapping in a broad sense, from the creation of epigenetically divergent populations to the identification of causal genes underlying particular phenotypes in Arabidopsis.
Collapse
Affiliation(s)
- Kathrin Lauss
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| |
Collapse
|
50
|
Wang Y, Tsukamoto T, Noble JA, Liu X, Mosher RA, Palanivelu R. Arabidopsis LORELEI, a Maternally Expressed Imprinted Gene, Promotes Early Seed Development. PLANT PHYSIOLOGY 2017; 175:758-773. [PMID: 28811333 PMCID: PMC5619890 DOI: 10.1104/pp.17.00427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/13/2017] [Indexed: 05/29/2023]
Abstract
In flowering plants, the female gametophyte controls pollen tube reception immediately before fertilization and regulates seed development immediately after fertilization, although the controlling mechanisms remain poorly understood. Previously, we showed that LORELEI (LRE), which encodes a putative glycosylphosphatidylinositol-anchored membrane protein, is critical for pollen tube reception by the female gametophyte before fertilization and the initiation of seed development after fertilization. Here, we show that LRE is expressed in the synergid, egg, and central cells of the female gametophyte and in the zygote and proliferating endosperm of the Arabidopsis (Arabidopsis thaliana) seed. Interestingly, LRE expression in the developing seeds was primarily from the matrigenic LRE allele, indicating that LRE expression is imprinted. However, LRE was biallelically expressed in 8-d-old seedlings, indicating that the patrigenic allele does not remain silenced throughout the sporophytic generation. Regulation of imprinted LRE expression is likely novel, as LRE was not expressed in pollen or pollen tubes of mutants defective for MET1, DDM1, RNA-dependent DNA methylation, or MSI-dependent histone methylation. Additionally, the patrigenic LRE allele inherited from these mutants was not expressed in seeds. Surprisingly, and contrary to the predictions of the parental conflict hypothesis, LRE promotes growth in seeds, as loss of the matrigenic but not the patrigenic LRE allele caused delayed initiation of seed development. Our results showed that LRE is a rare imprinted gene that functions immediately after double fertilization and supported the model that a passage through the female gametophyte establishes monoalleleic expression of LRE in seeds and controls early seed development.
Collapse
Affiliation(s)
- Yanbing Wang
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Tatsuya Tsukamoto
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Jennifer A Noble
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Xunliang Liu
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Rebecca A Mosher
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | | |
Collapse
|