1
|
Zhang C, Guo J. Cell cycle disorders in podocytes: an emerging and increasingly recognized phenomenon. Cell Death Discov 2025; 11:182. [PMID: 40246828 PMCID: PMC12006314 DOI: 10.1038/s41420-025-02486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
Proteinuria is observed in various kidney diseases and is frequently associated with a compromised glomerular filtration barrier. Podocytes, as a crucial component of this barrier, play an essential role in preserving the kidney's normal filtration function. Podocytes are terminally differentiated cells that typically do not proliferate. However, certain harmful stimuli can trigger podocytes to re-enter the cell cycle. Due to its unique cytoskeletal structure, podocytes are unable to maintain the structure of the foot process and complete cell division at the same time, eventually form binucleated or multinucleated podocytes. Studies have found that podocytes re-entering the cell cycle are more susceptible to injury, and are prone to detachment from the basement membrane or apoptosis, which are accompanied by the widening of foot processes. This eventually leads to podocyte mitotic catastrophe and the development of proteinuria. Podocyte cell cycle disorders have previously been found mainly in focal segmental glomerulosclerosis and IgA nephropathy. In recent years, this phenomenon has been frequently identified in diabetic kidney disease and lupus nephritis. An expanding body of research has begun to investigate the mechanisms underlying podocyte cell cycle disorders, including cell cycle re-entry, cell cycle arrest, and mitotic catastrophe. This review consolidates the existing literature on podocyte cell cycle disorders in renal diseases and summarizes the molecules that trigger podocyte re-entry into the cell cycle, thereby providing new drug targets for mitigating podocyte damage. This is essential for alleviating podocyte injury, reducing proteinuria, and delaying the progression of kidney diseases.
Collapse
Affiliation(s)
- Chaojie Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jia Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Zhu F, Qiu J, Ye H, Su W, Wang R, Fu Y. The Prognostic Significance of Epidermal Growth Factor Receptor Amplification and Epidermal Growth Factor Receptor Variant III Mutation in Glioblastoma: A Systematic Review and Meta-Analysis with Implications for Targeted Therapy. Int J Mol Sci 2025; 26:3539. [PMID: 40331985 PMCID: PMC12027172 DOI: 10.3390/ijms26083539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Glioblastoma (GBM) is the most aggressive and heterogeneous neoplasm among central nervous system tumors, with a dismal prognosis and a high recurrence rate. Among the various genetic alterations found in GBM, the amplification of epidermal growth factor receptor (EGFR) and the EGFR variant III (EGFRvIII) mutation are among the most common, though their prognostic value remains controversial. This systematic review and meta-analysis aimed to provide a comprehensive evaluation of the diagnostic and prognostic significance of EGFR amplification and the EGFRvIII mutation in GBM patients, incorporating recent studies published in the past few years to offer a more complete and up-to-date analysis. An extensive search of the PubMed, Web of Science, and Scopus databases was conducted, including studies that reported on EGFR and/or the EGFRvIII mutation status with detailed survival data. A total of 32 studies with 4208 GBM patients were included. The results indicated that EGFR amplification significantly correlated with worse OS (Overall survival) (HR = 1.27, 95% CI: 1.03-1.57), suggesting that EGFR amplification is an independent prognostic marker. The prognostic value of EGFRvIII was inconclusive, with a pooled hazard ratio for overall survival of 1.13 (95% CI: 0.94-1.36), indicating no significant effect on survival in the general population. However, a subgroup analysis suggested that EGFRvIII may be associated with poorer outcomes, particularly in recurrent GBM patients, where its prognostic significance became more evident. Furthermore, subgroup analyses based on geographic region revealed significant heterogeneity in the prognostic impact of EGFR amplification across different populations. In American cohorts, EGFR amplification was strongly associated with an increased risk of mortality (HR = 1.53, 95% CI: 1.28-1.84, p = 0.001), suggesting that it serves as a more reliable prognostic marker in this region. In contrast, no significant prognostic impact of EGFR amplification was observed in Asian (HR = 0.64, 95% CI: 0.35-1.17) or European (HR = 0.98, 95% CI: 0.80-1.19) populations. Overall, this study underscores the potential of EGFR amplification as a prognostic marker in GBM, while further research is needed to fully elucidate the role of the EGFRvIII mutation, particularly in specific patient subgroups. Clarifying these associations could offer important insights for targeted treatment strategies, improving patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Renxi Wang
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, Beijing 100069, China; (F.Z.); (J.Q.); (H.Y.); (W.S.)
| | - Yi Fu
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No. 10 Xitoutiao, Beijing 100069, China; (F.Z.); (J.Q.); (H.Y.); (W.S.)
| |
Collapse
|
3
|
Zhai T, Cai L, Jia X, Xia M, Bian H, Gao X, Pan C, Li X, Xia P. IGFBP2 functions as an endogenous protector against hepatic steatosis via suppression of the EGFR-STAT3 pathway. Mol Metab 2024; 89:102026. [PMID: 39299533 PMCID: PMC11474195 DOI: 10.1016/j.molmet.2024.102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/17/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is deemed as an emerging global epidemic, whereas the underlying pathogenic mechanism remains to be clarified. We aimed to systemically analyze all the NAFLD-related gene expression datasets from published human-based studies, by which exploring potential key factors and mechanisms accounting for the pathogenesis of NAFLD. METHODS Robust rank aggregation (RRA) method was used to integrate NAFLD-related gene expression datasets. For fatty liver study, adeno-associated virus (AAV) delivery and genetic knockout mice were used to create IGFBP2 (Insulin-like growth factor binding protein 2) gain- or loss-of function models. Western blot, Co-immunoprecipitation (Co-IP), immunofluorescent (IF) staining, luciferase assay, molecular docking simulation were performed to reveal the IGFBP2-EGFR-STAT3 axis involved. Key axis protein levels in livers from healthy donors and patients with NAFLD were assessed via immunohistochemical staining. RESULTS By using RRA method, the present study identified IGFBP2 being the most significantly down-regulated gene in all NAFLD subjects. The decreased IGFBP2 expression was further confirmed in the liver tissues from patients and animal models of NAFLD. IGFBP2 deficiency aggravated hepatic steatosis and NASH phenotypes and promoted lipogenic gene expression both in vivo and in vitro. Mechanistically, IGFBP2 directly binds to and regulates EGFR, whereas blockage of the IGFBP2-EGFR complex by knockdown of IGFBP2 resulted in the EGFR-STAT3 pathway activation, which in turn promoted the promoter activity of Srebf1. By using molecular docking simulation and protein-protein interaction analysis, the sequence of 233-257 amino acids in IGFBP2 was characterized as a key motif responding for its specific binding to EGFR and the protective effect against hepatic steatosis. CONCLUSIONS The current study has, for the first time, identified IGFBP2 as a novel protector against hepatosteatosis. The protective effect is mediated by its specific interaction with EGFR and thereby suppressing the EGFR-STAT3 pathway. Therefore, pharmaceutically targeting the IGFBP2-EGFR-STAT3 axis may provide a theoretical basis for for the treatment of NAFLD/NASH and the associated diseases.
Collapse
Affiliation(s)
- Tianyu Zhai
- Department of Endocrinology and Metabolism, Zhongshan Hospital, and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China.
| | - Liang Cai
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine (NCRC-IM), China; Institute of Vascular Surgery, Fudan University, Shanghai, China.
| | - Xi Jia
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong S.A.R, China.
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China.
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China.
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China.
| | - Chenling Pan
- Beijing Computing Center, Beijing Academy of Science and Technology, Beijing, China.
| | - Xiaoying Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China.
| | - Pu Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Kundu G, Ghasemi M, Yim S, Rohil A, Xin C, Ren L, Srivastava S, Akinfolarin A, Kumar S, Srivastava GP, Sabbisetti VS, Murugaiyan G, Ajay AK. STAT3 Protein-Protein Interaction Analysis Finds P300 as a Regulator of STAT3 and Histone 3 Lysine 27 Acetylation in Pericytes. Biomedicines 2024; 12:2102. [PMID: 39335615 PMCID: PMC11428717 DOI: 10.3390/biomedicines12092102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) is a member of the cytoplasmic inducible transcription factors and plays an important role in mediating signals from cytokines, chemokines, and growth factors. We and others have found that STAT3 directly regulates pro-fibrotic signaling in the kidney. The STAT3 protein-protein interaction plays an important role in activating its transcriptional activity. It is necessary to identify these interactions to investigate their function in kidney disease. Here, we investigated the protein-protein interaction among three species to find crucial interactions that can be targeted to alleviate kidney disease. METHOD In this study, we examined common protein-protein interactions leading to the activation or downregulation of STAT3 among three different species: humans (Homo sapiens), mice (Mus musculus), and rabbits (Oryctolagus cuniculus). Further, we chose to investigate the P300 and STAT3 interaction and performed studies of the activation of STAT3 using IL-6 and inhibition of the P300 by its specific inhibitor A-485 in pericytes. Next, we performed immunoprecipitation to confirm whether A-485 inhibits the binding of P300 to STAT3. RESULTS Using the STRING application from ExPASy, we found that six proteins, including PIAS3, JAK1, JAK2, EGFR, SRC, and EP300, showed highly confident interactions with STAT3 in humans, mice, and rabbits. We also found that IL-6 treatment increased the acetylation of STAT3 and increased histone 3 lysine acetylation (H3K27ac). Furthermore, we found that the disruption of STAT3 and P300 interaction by the P300 inhibitor A-485 decreased STAT3 acetylation and H3K27ac. Finally, we confirmed that the P300 inhibitor A-485 inhibited the binding of STAT3 with P300, which inhibited its transcriptional activity by reducing the expression of Ccnd1 (Cyclin D1). CONCLUSIONS Targeting the P300 protein interaction with STAT3 may alleviate STAT3-mediated fibrotic signaling in humans and other species.
Collapse
Affiliation(s)
- Gautam Kundu
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- US Military HIV Research Program (MHRP), Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Maryam Ghasemi
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Seungbin Yim
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ayanna Rohil
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Cuiyan Xin
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Leo Ren
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | | - Akinwande Akinfolarin
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Subodh Kumar
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gyan P. Srivastava
- Department of Electrical Engineering & Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Venkata S. Sabbisetti
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amrendra K. Ajay
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Center for Polycystic Kidney Disease, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Mohammedali A, Biernacka K, Barker RM, Holly JMP, Perks CM. The Role of Insulin-like Growth Factor Binding Protein (IGFBP)-2 in DNA Repair and Chemoresistance in Breast Cancer Cells. Cancers (Basel) 2024; 16:2113. [PMID: 38893232 PMCID: PMC11171178 DOI: 10.3390/cancers16112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The role if insulin-like growth factor binding protein-2 (IGFBP-2) in mediating chemoresistance in breast cancer cells has been demonstrated, but the mechanism of action is unclear. This study aimed to further investigate the role of IGFBP-2 in the DNA damage response induced by etoposide in MCF-7, T47D (ER+ve), and MDA-MB-231 (ER-ve) breast cancer cell lines. In the presence or absence of etoposide, IGFBP-2 was silenced using siRNA in the ER-positive cell lines, or exogenous IGFBP-2 was added to the ER-negative MDA-MB-231 cells. Cell number and death were assessed using trypan blue dye exclusion assay, changes in abundance of proteins were monitored using Western blotting of whole cell lysates, and localization and abundance were determined using immunofluorescence and cell fractionation. Results from ER-positive cell lines demonstrated that upon exposure to etoposide, loss of IGFBP-2 enhanced cell death, and this was associated with a reduction in P-DNA-PKcs and an increase in γH2AX. Conversely, with ER-negative cells, the addition of IGFBP-2 in the presence of etoposide resulted in cell survival, an increase in P-DNA-PKcs, and a reduction in γH2AX. In summary, IGFBP-2 is a survival factor for breast cancer cells that is associated with enhancement of the DNA repair mechanism.
Collapse
Affiliation(s)
- Alaa Mohammedali
- Cancer Endocrinology Group, Learning and Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK; (A.M.); (K.B.); (R.M.B.)
| | - Kalina Biernacka
- Cancer Endocrinology Group, Learning and Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK; (A.M.); (K.B.); (R.M.B.)
| | - Rachel M. Barker
- Cancer Endocrinology Group, Learning and Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK; (A.M.); (K.B.); (R.M.B.)
| | - Jeff M. P. Holly
- Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK;
| | - Claire M. Perks
- Cancer Endocrinology Group, Learning and Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK; (A.M.); (K.B.); (R.M.B.)
| |
Collapse
|
6
|
Olson AT, Kang Y, Ladha AM, Zhu S, Lim CB, Nabet B, Lagunoff M, Gujral TS, Geballe AP. Polypharmacology-based kinome screen identifies new regulators of KSHV reactivation. PLoS Pathog 2023; 19:e1011169. [PMID: 37669313 PMCID: PMC10503724 DOI: 10.1371/journal.ppat.1011169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/15/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human diseases including Kaposi's sarcoma (KS), a leading cause of cancer in Africa and in patients with AIDS. KS tumor cells harbor KSHV predominantly in a latent form, while typically <5% contain lytic replicating virus. Because both latent and lytic stages likely contribute to cancer initiation and progression, continued dissection of host regulators of this biological switch will provide insights into fundamental pathways controlling the KSHV life cycle and related disease pathogenesis. Several cellular protein kinases have been reported to promote or restrict KSHV reactivation, but our knowledge of these signaling mediators and pathways is incomplete. We employed a polypharmacology-based kinome screen to identify specific kinases that regulate KSHV reactivation. Those identified by the screen and validated by knockdown experiments included several kinases that enhance lytic reactivation: ERBB2 (HER2 or neu), ERBB3 (HER3), ERBB4 (HER4), MKNK2 (MNK2), ITK, TEC, and DSTYK (RIPK5). Conversely, ERBB1 (EGFR1 or HER1), MKNK1 (MNK1) and FRK (PTK5) were found to promote the maintenance of latency. Mechanistic characterization of ERBB2 pro-lytic functions revealed a signaling connection between ERBB2 and the activation of CREB1, a transcription factor that drives KSHV lytic gene expression. These studies provided a proof-of-principle application of a polypharmacology-based kinome screen for the study of KSHV reactivation and enabled the discovery of both kinase inhibitors and specific kinases that regulate the KSHV latent-to-lytic replication switch.
Collapse
Affiliation(s)
- Annabel T. Olson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Yuqi Kang
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Anushka M. Ladha
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Songli Zhu
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Chuan Bian Lim
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Behnam Nabet
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Michael Lagunoff
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Taranjit S. Gujral
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Adam P. Geballe
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
7
|
Posey TA, Jacob J, Parkhurst A, Subramanian S, Francisco LE, Liang Z, Carmon KS. Loss of LGR5 through Therapy-induced Downregulation or Gene Ablation Is Associated with Resistance and Enhanced MET-STAT3 Signaling in Colorectal Cancer Cells. Mol Cancer Ther 2023; 22:667-678. [PMID: 36921315 PMCID: PMC10164100 DOI: 10.1158/1535-7163.mct-22-0415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/19/2022] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Leucine-rich repeat-containing, G protein-coupled receptor 5 (LGR5) is highly expressed in colorectal cancer and cancer stem cells (CSCs) that play important roles in tumor initiation, progression, and metastasis. Loss of LGR5 has been shown to enhance therapy resistance. However, the molecular mechanisms that mediate this resistance remain elusive. In this study, we demonstrate conversion of LGR5+ colorectal cancer cells to an LGR5- state in response to chemotherapy, LGR5- targeted antibody-drug conjugates (ADCs), or LGR5 gene ablation led to activation of STAT3. Further investigation revealed increased STAT3 activation occurred as a result of increased mesenchymal epithelial transition (MET) factor receptor activity. LGR5 overexpression decreased MET-STAT3 activity and sensitized colorectal cancer cells to therapy. STAT3 inhibition suppressed MET phosphorylation, while constitutively active STAT3 reduced LGR5 levels and increased MET activity, suggesting a potential feedback mechanism. Combination treatment of MET-STAT3 inhibitors with irinotecan or antibody-drug conjugates (ADCs) substantiated synergistic effects in colorectal cancer cells and tumor organoids. In colorectal cancer xenografts, STAT3 inhibition combined with irinotecan enhanced tumor growth suppression and prolonged survival. These findings suggest a mechanism by which drug-resistant LGR5- colorectal cancer cells acquire a survival advantage through activation of MET-STAT3 and provide rationale for new treatment strategies to target colorectal cancer.
Collapse
Affiliation(s)
- Tressie A. Posey
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX
| | - Joan Jacob
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX
| | - Ashlyn Parkhurst
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX
| | - Shraddha Subramanian
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX
| | - Liezl E. Francisco
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX
| | - Zhengdong Liang
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX
| | - Kendra S. Carmon
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
8
|
Bi J, Wu Z, Zhang X, Zeng T, Dai W, Qiu N, Xu M, Qiao Y, Ke L, Zhao J, Cao X, Lin Q, Chen XL, Xie L, Ouyang Z, Guo J, Zheng L, Ma C, Guo S, Chen K, Mo W, Fu G, Zhao TJ, Wang HR. TMEM25 inhibits monomeric EGFR-mediated STAT3 activation in basal state to suppress triple-negative breast cancer progression. Nat Commun 2023; 14:2342. [PMID: 37095176 PMCID: PMC10126118 DOI: 10.1038/s41467-023-38115-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/17/2023] [Indexed: 04/26/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor outcome and lacks of approved targeted therapy. Overexpression of epidermal growth factor receptor (EGFR) is found in more than 50% TNBC and is suggested as a driving force in progression of TNBC; however, targeting EGFR using antibodies to prevent its dimerization and activation shows no significant benefits for TNBC patients. Here we report that EGFR monomer may activate signal transducer activator of transcription-3 (STAT3) in the absence of transmembrane protein TMEM25, whose expression is frequently decreased in human TNBC. Deficiency of TMEM25 allows EGFR monomer to phosphorylate STAT3 independent of ligand binding, and thus enhances basal STAT3 activation to promote TNBC progression in female mice. Moreover, supplying TMEM25 by adeno-associated virus strongly suppresses STAT3 activation and TNBC progression. Hence, our study reveals a role of monomeric-EGFR/STAT3 signaling pathway in TNBC progression and points out a potential targeted therapy for TNBC.
Collapse
Affiliation(s)
- Jing Bi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Zhihui Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Xin Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Taoling Zeng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Wanjun Dai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Ningyuan Qiu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Mingfeng Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Yikai Qiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Lang Ke
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Jiayi Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Xinyu Cao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Qi Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Xiao Lei Chen
- Cancer Research Center of Xiamen University, 361102, Xiamen, Fujian, China
- School of Medicine, Xiamen University, 361102, Fujian, China
| | - Liping Xie
- School of Medicine, Xiamen University, 361102, Fujian, China
| | - Zhong Ouyang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, 361003, Xiamen, Fujian, China
| | - Jujiang Guo
- Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, 361003, Xiamen, Fujian, China
| | - Liangkai Zheng
- Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, 361003, Xiamen, Fujian, China
| | - Chao Ma
- Medical School of Chinese PLA, 100853, Beijing, China
| | - Shiying Guo
- GemPharmatech Co., Ltd., 210000, Nanjing, Jiangsu, China
| | - Kangmei Chen
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Wei Mo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China
| | - Guo Fu
- Cancer Research Center of Xiamen University, 361102, Xiamen, Fujian, China.
- School of Medicine, Xiamen University, 361102, Fujian, China.
- Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, 361003, Xiamen, Fujian, China.
| | - Tong-Jin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, 200438, Shanghai, China.
| | - Hong-Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Fujian, China.
- Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, 361003, Xiamen, Fujian, China.
| |
Collapse
|
9
|
XU JINGYAO, HAO SHUANGLI, HAN KAIYUE, YANG WANXI, DENG HONG. How is the AKT/mTOR pathway involved in cell migration and invasion? BIOCELL 2023. [DOI: 10.32604/biocell.2023.026618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
10
|
Li Z, Zhou Z, Tian S, Zhang K, An G, Zhang Y, Ma R, Sheng B, Wang T, Yang H, Yang L. RPRM deletion preserves hematopoietic regeneration by promoting EGFR-dependent DNA repair and hematopoietic stem cell proliferation post ionizing radiation. Cell Biol Int 2022; 46:2158-2172. [PMID: 36041213 PMCID: PMC9804513 DOI: 10.1002/cbin.11900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 01/05/2023]
Abstract
Reprimo (RPRM), a target gene of p53, is a known tumor suppressor. DNA damage induces RPRM, which triggers p53-dependent G2 arrest by inhibiting cyclin B1/Cdc2 complex activation and promotes DNA damage-induced apoptosis. RPRM negatively regulates ataxia-telangiectasia mutated by promoting its nuclear-cytoplasmic translocation and degradation, thus inhibiting DNA damage. Therefore, RPRM plays a crucial role in DNA damage response. Moreover, the loss of RPRM confers radioresistance in mice, which enables longer survival and less severe intestinal injury after radiation exposure. However, the role of RPRM in radiation-induced hematopoietic system injury remains unknown. Herein, utilizing a RPRM-knockout mouse model, we found that RPRM deletion did not affect steady-state hematopoiesis in mice. However, RPRM knockout significantly alleviated radiation-induced hematopoietic system injury and preserved mouse hematopoietic regeneration in hematopoietic stem cells (HSCs) against radiation-induced DNA damage. Further mechanistic studies showed that RPRM loss significantly increased EGFR expression and phosphorylation in HSCs to activate STAT3 and DNA-PKcs, thus promoting HSC DNA repair and proliferation. These findings reveal the critical role of RPRM in radiation-induced hematopoietic system injury, confirming our hypothesis that RPRM may serve as a novel target for radiation protection.
Collapse
Affiliation(s)
- Zixuan Li
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina,Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Zhou Zhou
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina
| | - Shuaiyu Tian
- Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Kailu Zhang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Gangli An
- Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Yarui Zhang
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina
| | - Renyuxue Ma
- Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Binjie Sheng
- Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Tian Wang
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina,Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Hongying Yang
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina
| | - Lin Yang
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina,Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| |
Collapse
|
11
|
Wong GL, Manore SG, Doheny DL, Lo HW. STAT family of transcription factors in breast cancer: Pathogenesis and therapeutic opportunities and challenges. Semin Cancer Biol 2022; 86:84-106. [PMID: 35995341 PMCID: PMC9714692 DOI: 10.1016/j.semcancer.2022.08.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer and second-leading cause of cancer deaths in women. Breast cancer stem cells (BCSCs) promote metastasis and therapeutic resistance contributing to tumor relapse. Through activating genes important for BCSCs, transcription factors contribute to breast cancer metastasis and therapeutic resistance, including the signal transducer and activator of transcription (STAT) family of transcription factors. The STAT family consists of six major isoforms, STAT1, STAT2, STAT3, STAT4, STAT5, and STAT6. Canonical STAT signaling is activated by the binding of an extracellular ligand to a cell-surface receptor followed by STAT phosphorylation, leading to STAT nuclear translocation and transactivation of target genes. It is important to note that STAT transcription factors exhibit diverse effects in breast cancer; some are either pro- or anti-tumorigenic while others maintain dual, context-dependent roles. Among the STAT transcription factors, STAT3 is the most widely studied STAT protein in breast cancer for its critical roles in promoting BCSCs, breast cancer cell proliferation, invasion, angiogenesis, metastasis, and immune evasion. Consequently, there have been substantial efforts in developing cancer therapeutics to target breast cancer with dysregulated STAT3 signaling. In this comprehensive review, we will summarize the diverse roles that each STAT family member plays in breast cancer pathobiology, as well as, the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators in the context of breast cancer treatment.
Collapse
Affiliation(s)
- Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel L Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
12
|
Ni Y, Low JT, Silke J, O’Reilly LA. Digesting the Role of JAK-STAT and Cytokine Signaling in Oral and Gastric Cancers. Front Immunol 2022; 13:835997. [PMID: 35844493 PMCID: PMC9277720 DOI: 10.3389/fimmu.2022.835997] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
When small proteins such as cytokines bind to their associated receptors on the plasma membrane, they can activate multiple internal signaling cascades allowing information from one cell to affect another. Frequently the signaling cascade leads to a change in gene expression that can affect cell functions such as proliferation, differentiation and homeostasis. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) and the tumor necrosis factor receptor (TNFR) are the pivotal mechanisms employed for such communication. When deregulated, the JAK-STAT and the TNF receptor signaling pathways can induce chronic inflammatory phenotypes by promoting more cytokine production. Furthermore, these signaling pathways can promote replication, survival and metastasis of cancer cells. This review will summarize the essentials of the JAK/STAT and TNF signaling pathways and their regulation and the molecular mechanisms that lead to the dysregulation of the JAK-STAT pathway. The consequences of dysregulation, as ascertained from founding work in haematopoietic malignancies to more recent research in solid oral-gastrointestinal cancers, will also be discussed. Finally, this review will highlight the development and future of therapeutic applications which modulate the JAK-STAT or the TNF signaling pathways in cancers.
Collapse
Affiliation(s)
- Yanhong Ni
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun T. Low
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - John Silke
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lorraine A. O’Reilly
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
13
|
Abstract
Viruses are intracellular pathogen that exploit host cellular machinery for their propagation. Extensive research on virus-host interaction have shed light on an alternative antiviral strategy that targets host cell factors. Epidermal growth factor receptor (EGFR) is a versatile signal transducer that is involved in a range of cellular processes. Numerous studies have revealed how viruses exploit the function of EGFR in different stages of viral life cycle. In general, viruses attach onto the host cell surface and interacts with EGFR to facilitate viral entry, viral replication and spread as well as evasion from host immunosurveillance. Moreover, virus-induced activation of EGFR signalling is associated with mucin expression, tissue damage and carcinogenesis that contribute to serious complications. Herein, we review our current understanding of roles of EGFR in viral infection and its potential as therapeutic target in managing viral infection. We also discuss the available EGFR-targeted therapies and their limitations.
Collapse
Affiliation(s)
- Kah Man Lai
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Wai Leng Lee
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
14
|
Shan DD, Zheng QX, Wang J, Chen Z. Small nucleolar RNA host gene 3 functions as a novel biomarker in liver cancer and other tumour progression. World J Gastroenterol 2022; 28:1641-1655. [PMID: 35581965 PMCID: PMC9048787 DOI: 10.3748/wjg.v28.i16.1641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer has become the most life-threatening disease in the world. Mutations in and aberrant expression of genes encoding proteins and mutations in noncoding RNAs, especially long noncoding RNAs (lncRNAs), have significant effects in human cancers. LncRNAs have no protein-coding ability but function extensively in numerous physiological and pathological processes. Small nucleolar RNA host gene 3 (SNHG3) is a novel lncRNA and has been reported to be differentially expressed in various tumors, such as liver cancer, gastric cancer, and glioma. However, the interaction mechanisms for the regulation between SNHG3 and tumor progression are poorly understood. In this review, we summarize the results of SNHG3 studies in humans, animal models, and cells to underline the expression and role of SNHG3 in cancer. SNHG3 expression is upregulated in most tumors and is detrimental to patient prognosis. SNHG3 expression in lung adenocarcinoma remains controversial. Concurrently, SNHG3 affects oncogenes and tumor suppressor genes through various mechanisms, including competing endogenous RNA effects. A deeper understanding of the contribution of SNHG3 in clinical applications and tumor development may provide a new target for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Dan-Dan Shan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qiu-Xian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
15
|
Wang H, Peng D, Gan M, He Z, Kuang Y. CPEB3 overexpression caused by miR-106b-5p inhibition inhibits esophageal carcinoma in-vitro progression and metastasis. Anticancer Drugs 2022; 33:335-351. [PMID: 35102025 DOI: 10.1097/cad.0000000000001265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study investigates the role of CPEB3 in esophageal cancer (EC) progression. The prognosis of EC patients was shown by survival analysis. CPEB3-targeting microRNAs were predicted by bioinformatics tools and further validated by dual-luciferase assay and RNA immunoprecipitation. CPEB3 expression in EC cell lines and EC tissues was analyzed by quantitative reverse transcription PCR. The viabilities of KYSE150 and EC9706 cells were measured by MTT and Cell Counting Kit-8 assays. The migration, invasion and tube formation of KYSE150 and EC9706 cells were examined by wound healing, Transwell and tube formation assay, respectively. E-cadherin, N-cadherin, fibronectin, vimentin and vascular endothelial growth factor (VEGF), epidermal growth factor receptor (EGFR) [and phosphorylation (p)] and STAT3 levels (and phosphorylation) in KYSE150 and EC9706 cells were determined by western blot analysis or quantitative reverse transcription PCR. In addition, a xenograft tumor model was established through subcutaneously implanting KYSE150 and EC9706 cells transfected with Lv-CPEB3 or Lv-control viruses. CPEB3 expression was downregulated in EC cells and tissues, and its overexpression inhibited viability, migration, invasion and the expressions of N-cadherin, fibronectin, vimentin and VEGF, EGFR, p-EGFR and p-STAT3 levels in KYSE150 cells, but promoted E-cadherin expression. Small interfering RNA (siRNA)-CPEB3 inversely affected these phenotypes and gene expressions in EC9706 cells. miR-106b-5p targeted CPEB3 and negatively regulated CPEB3 expression. miR-106b-5p mimics reversed the effect of CPEB3 overexpression on KYSE150 cells, and miR-106b-5p inhibitor reversed the effect of siRNA-CPEB3 on EC9706 cells. In mice, tumor volumes, weights and Ki-67 expression were lower in mice treated with Lv-CPEB3 than that with Lv-control. CPEB3 overexpressed by miR-106b-5p inhibition suppressed EC progression involved in EGFR and STAT3 signaling.
Collapse
Affiliation(s)
| | | | - Mei Gan
- Intensive Care Medicine, Jiangxi Cancer Hospital, Nanchang, China
| | | | | |
Collapse
|
16
|
Zervopoulos SD, Boukouris AE, Saleme B, Haromy A, Tejay S, Sutendra G, Michelakis ED. MFN2-driven mitochondria-to-nucleus tethering allows a non-canonical nuclear entry pathway of the mitochondrial pyruvate dehydrogenase complex. Mol Cell 2022; 82:1066-1077.e7. [PMID: 35245450 DOI: 10.1016/j.molcel.2022.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/15/2021] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
Abstract
The mitochondrial pyruvate dehydrogenase complex (PDC) translocates into the nucleus, facilitating histone acetylation by producing acetyl-CoA. We describe a noncanonical pathway for nuclear PDC (nPDC) import that does not involve nuclear pore complexes (NPCs). Mitochondria cluster around the nucleus in response to proliferative stimuli and tether onto the nuclear envelope (NE) via mitofusin-2 (MFN2)-enriched contact points. A decrease in nuclear MFN2 levels decreases mitochondria tethering and nPDC levels. Mitochondrial PDC crosses the NE and interacts with lamin A, forming a ring below the NE before crossing through the lamin layer into the nucleoplasm, in areas away from NPCs. Effective blockage of NPC trafficking does not decrease nPDC levels. The PDC-lamin interaction is maintained during cell division, when lamin depolymerizes and disassembles before reforming daughter nuclear envelopes, providing another pathway for nPDC entry during mitosis. Our work provides a different angle to understanding mitochondria-to-nucleus communication and nuclear metabolism.
Collapse
Affiliation(s)
| | | | - Bruno Saleme
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Alois Haromy
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Saymon Tejay
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gopinath Sutendra
- Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| | | |
Collapse
|
17
|
Nasopharyngeal Carcinoma: The Role of the EGFR in Epstein-Barr Virus Infection. Pathogens 2021; 10:pathogens10091113. [PMID: 34578147 PMCID: PMC8470510 DOI: 10.3390/pathogens10091113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/24/2023] Open
Abstract
Epstein-Barr virus (EBV), a type 4 γ herpes virus, is recognized as a causative agent in nasopharyngeal carcinoma (NPC). Incidence of EBV-positive NPC have grown in recent decades along with worse outcomes compared with their EBV-negative counterparts. Latent membrane protein 1 (LMP1), encoded by EBV, induces NPC progression. The epidermal growth factor receptor (EGFR), a member of the ErbB family of receptor tyrosine kinases (RTK), is a driver of tumorigenesis, including for NPC. Little data exist on the relationship between EGFR and EBV-induced NPC. In our initial review, we found that LMP1 promoted the expression of EGFR in NPC in two main ways: the NF-κB pathway and STAT3 activation. On the other hand, EGFR also enhances EBV infection in NPC cells. Moreover, activation of EGFR signalling affects NPC cell proliferation, cell cycle progression, angiogenesis, invasion, and metastasis. Since EGFR promotes tumorigenesis and progression by downstream signalling pathways, causing poor outcomes in NPC patients, EGFR-targeted drugs could be considered a newly developed anti-tumor drug. Here, we summarize the major studies on EBV, EGFR, and LMP1-regulatory EGFR expression and nucleus location in NPC and discuss the clinical efficacy of EGFR-targeted agents in locally advanced NPC (LA NPC) and recurrent or metastatic NPC (R/M NPC) patients.
Collapse
|
18
|
Tesoriere A, Dinarello A, Argenton F. The Roles of Post-Translational Modifications in STAT3 Biological Activities and Functions. Biomedicines 2021; 9:956. [PMID: 34440160 PMCID: PMC8393524 DOI: 10.3390/biomedicines9080956] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
STAT3 is an important transcription factor that regulates cell growth and proliferation by regulating gene transcription of a plethora of genes. This protein also has many roles in cancer progression and several tumors such as prostate, lung, breast, and intestine cancers that are characterized by strong STAT3-dependent transcriptional activity. This protein is post-translationally modified in different ways according to cellular context and stimulus, and the same post-translational modification can have opposite effects in different cellular models. In this review, we describe the studies performed on the main modifications affecting the activity of STAT3: phosphorylation of tyrosine 705 and serine 727; acetylation of lysine 49, 87, 601, 615, 631, 685, 707, and 709; and methylation of lysine 49, 140, and 180. The extensive results obtained by different studies demonstrate that post-translational modifications drastically change STAT3 activities and that we need further analysis to properly elucidate all the functions of this multifaceted transcription factor.
Collapse
Affiliation(s)
| | | | - Francesco Argenton
- Dipartimento di Biologia, Università degli Studi di Padova, 35131 Padova, Italy; (A.T.); (A.D.)
| |
Collapse
|
19
|
Lee B, Lee S, Lee Y, Park Y, Shim J. Emerin Represses STAT3 Signaling through Nuclear Membrane-Based Spatial Control. Int J Mol Sci 2021; 22:ijms22136669. [PMID: 34206382 PMCID: PMC8269395 DOI: 10.3390/ijms22136669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Emerin is the inner nuclear membrane protein involved in maintaining the mechanical integrity of the nuclear membrane. Mutations in EMD encoding emerin cause Emery–Dreifuss muscular dystrophy (EDMD). Evidence is accumulating that emerin regulation of specific gene expression is associated with this disease, but the exact function of emerin has not been fully elucidated. Here, we show that emerin downregulates Signal transducer and activators of transcription 3 (STAT3) signaling, activated exclusively by Janus kinase (JAK). Deletion mutation experiments show that the lamin-binding domain of emerin is essential for the inhibition of STAT3 signaling. Emerin interacts directly and co-localizes with STAT3 in the nuclear membrane. Emerin knockdown induces STAT3 target genes Bcl2 and Survivin to increase cell survival signals and suppress hydrogen peroxide-induced cell death in HeLa cells. Specifically, downregulation of BAF or lamin A/C increases STAT3 signaling, suggesting that correct-localized emerin, by assembling with BAF and lamin A/C, acts as an intrinsic inhibitor against STAT3 signaling. In C2C12 cells, emerin knockdown induces STAT3 target gene, Pax7, and activated abnormal myoblast proliferation associated with muscle wasting in skeletal muscle homeostasis. Our results indicate that emerin downregulates STAT3 signaling by inducing retention of STAT3 and delaying STAT3 signaling in the nuclear membrane. This mechanism provides clues to the etiology of emerin-related muscular dystrophy and may be a new therapeutic target for treatment.
Collapse
|
20
|
Zhou Y, Chen JJ. STAT3 plays an important role in DNA replication by turning on WDHD1. Cell Biosci 2021; 11:10. [PMID: 33413624 PMCID: PMC7792067 DOI: 10.1186/s13578-020-00524-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Signal transducers and activators of transcription 3 (STAT3) is a transcription factor that plays a key role in many cellular processes such as cell growth and cancer. However, the functions and mechanisms by which STAT3 regulates cellular processes are not fully understood. RESULTS Here we describe a novel function of STAT3. We demonstrated that STAT3 plays an important role in DNA replication. Specifically, knockdown of STAT3 reduced DNA replication while activation and ectopic expression of STAT3 promoted DNA replication. We further identified the WD repeat and HMG-box DNA-binding protein 1 (WDHD1), which plays an important role in DNA replication initiation, as a novel STAT3 target gene that mediated the DNA replication function of STAT3. We showed that STAT3 bind the promoter/up regulatory region of WDHD1 gene. CONCLUSIONS These studies identified a novel function of STAT3 that is mediated by its newly identified target gene WDHD1 and have important implications.
Collapse
Affiliation(s)
- Yunying Zhou
- Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Medical Research & Laboratory Diagnostic Center, Central Hospital Affiliated To Shandong First Medical University, Jinan, China.,The Cancer Research Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jason J Chen
- Department of Microbiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. .,The Cancer Research Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
21
|
STAT3 and p53: Dual Target for Cancer Therapy. Biomedicines 2020; 8:biomedicines8120637. [PMID: 33371351 PMCID: PMC7767392 DOI: 10.3390/biomedicines8120637] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor p53 is considered the "guardian of the genome" that can protect cells against cancer by inducing cell cycle arrest followed by cell death. However, STAT3 is constitutively activated in several human cancers and plays crucial roles in promoting cancer cell proliferation and survival. Hence, STAT3 and p53 have opposing roles in cellular pathway regulation, as activation of STAT3 upregulates the survival pathway, whereas p53 triggers the apoptotic pathway. Constitutive activation of STAT3 and gain or loss of p53 function due to mutations are the most frequent events in numerous cancer types. Several studies have reported the association of STAT3 and/or p53 mutations with drug resistance in cancer treatment. This review discusses the relationship between STAT3 and p53 status in cancer, the molecular mechanism underlying the negative regulation of p53 by STAT3, and vice versa. Moreover, it underlines prospective therapies targeting both STAT3 and p53 to enhance chemotherapeutic outcomes.
Collapse
|
22
|
Marku M, Verstraete N, Raynal F, Madrid-Mencía M, Domagala M, Fournié JJ, Ysebaert L, Poupot M, Pancaldi V. Insights on TAM Formation from a Boolean Model of Macrophage Polarization Based on In Vitro Studies. Cancers (Basel) 2020; 12:cancers12123664. [PMID: 33297362 PMCID: PMC7762229 DOI: 10.3390/cancers12123664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The recent success of immunotherapy treatments against cancer relies on helping our own body’s defenses in the fight against tumours, namely reinvigorating the cancer killing action of T cells. Unfortunately, in a large proportion of patients these therapies are ineffective, in part due to the presence of other immune cells, macrophages, which are mis-educated by the cancer cells into promoting tumour growth. Here we start from an existing model of macrophage polarization and extend it to the specific conditions encountered inside a tumour by adding signals, receptors, transcription factors and cytokines that are known to be the key components in establishing the cancer cell-macrophage interaction. Then we use a mathematical Boolean model applied to a gene regulatory network of this biological process to simulate its temporal behaviour and explore scenarios that have not been experimentally tested so far. Additionally, the KO and overexpression simulations successfully reproduce the known experimental results while predicting the potential role of regulators (such as STAT1 and EGF) in preventing the formation of pro-tumoural macrophages, which can be tested experimentally. Abstract The tumour microenvironment is the surrounding of a tumour, including blood vessels, fibroblasts, signaling molecules, the extracellular matrix and immune cells, especially neutrophils and monocyte-derived macrophages. In a tumour setting, macrophages encompass a spectrum between a tumour-suppressive (M1) or tumour-promoting (M2) state. The biology of macrophages found in tumours (Tumour Associated Macrophages) remains unclear, but understanding their impact on tumour progression is highly important. In this paper, we perform a comprehensive analysis of a macrophage polarization network, following two lines of enquiry: (i) we reconstruct the macrophage polarization network based on literature, extending it to include important stimuli in a tumour setting, and (ii) we build a dynamical model able to reproduce macrophage polarization in the presence of different stimuli, including the contact with cancer cells. Our simulations recapitulate the documented macrophage phenotypes and their dependencies on specific receptors and transcription factors, while also unravelling the formation of a special type of tumour associated macrophages in an in vitro model of chronic lymphocytic leukaemia. This model constitutes the first step towards elucidating the cross-talk between immune and cancer cells inside tumours, with the ultimate goal of identifying new therapeutic targets that could control the formation of tumour associated macrophages in patients.
Collapse
Affiliation(s)
- Malvina Marku
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
- Correspondence: (M.M.); (V.P.); Tel.: +33-5-82-74-17-74 (M.M.)
| | - Nina Verstraete
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
| | - Flavien Raynal
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
| | - Miguel Madrid-Mencía
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
| | - Marcin Domagala
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
| | - Jean-Jacques Fournié
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
| | - Loïc Ysebaert
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
- Service d’Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, 31330 Toulouse, France
| | - Mary Poupot
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
| | - Vera Pancaldi
- INSERM, Centre de Recherches en Cancérologie de Toulouse, 2 Avenue Hubert Curien, 31037 Toulouse, France; (N.V.); (F.R.); (M.M.-M.); (M.D.); (J.-J.F.); (L.Y.); (M.P.)
- Université III Toulouse Paul Sabatier, Route de Narbonne, 31330 Toulouse, France
- Barcelona Supercomputing Center, Carrer de Jordi Girona, 29, 31, 08034 Barcelona, Spain
- Correspondence: (M.M.); (V.P.); Tel.: +33-5-82-74-17-74 (M.M.)
| |
Collapse
|
23
|
Yan J, Zhou B, Guo L, Chen Z, Zhang B, Liu S, Zhang W, Yu M, Xu Y, Xiao Y, Zhou J, Fan J, Li H, Ye Q. GOLM1 upregulates expression of PD-L1 through EGFR/STAT3 pathway in hepatocellular carcinoma. Am J Cancer Res 2020; 10:3705-3720. [PMID: 33294262 PMCID: PMC7716143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023] Open
Abstract
GOLM1, a type II transmembrane protein, is associated with tumor progression, metastasis and immunosuppression. However, the relationship between GOLM1 and the immunosuppressive molecule PD-L1 in HCC remains largely unclear. Here, we revealed that GOLM1 acts as a novel positive regulator of PD-L1, whose abnormal expression plays a crucial role in cancer immune evasion and progression. We found that GOLM1 is overexpressed and positively correlated with PD-L1 expression in HCC. Mechanistically, we found that GOLM1 promotes the phosphorylation of STAT3 by enhancing the level of EGFR, which in turn upregulates the transcriptional expression of PD-L1. Taken together, we demonstrated that GOLM1 acts as a positive regulator of PD-L1 expression via the EGFR/STAT3 signaling pathway in human HCC cells. This study provides a new insight into the regulatory mechanism of PD-L1 expression in HCC, which may provide a novel therapeutic target for HCC immunotherapy.
Collapse
Affiliation(s)
- Jiuliang Yan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Binghai Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, People’s Republic of China
| | - Lei Guo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Zheng Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Bo Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Shuang Liu
- Department of Neurosurgery, Zhongshan Hospital, Fudan UniversityShanghai 200032, People’s Republic of China
| | - Wentao Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Mincheng Yu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Yongfeng Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Yongsheng Xiao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Hui Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| | - Qinghai Ye
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of EducationShanghai 200032, People’s Republic of China
| |
Collapse
|
24
|
Li L, Deng L, Meng X, Gu C, Meng L, Li K, Zhang X, Meng Y, Xu W, Zhao L, Chen J, Zhu Z, Huang H. Tumor-targeting anti-EGFR x anti-PD1 bispecific antibody inhibits EGFR-overexpressing tumor growth by combining EGFR blockade and immune activation with direct tumor cell killing. Transl Oncol 2020; 14:100916. [PMID: 33129108 PMCID: PMC7585148 DOI: 10.1016/j.tranon.2020.100916] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/19/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
The anti-PD1 x anti-EGFR bispecific antibody (BsAb) exhibited all in-vitro bioactivities comparable to that of the parental mAbs and showed anti-tumor efficacies of each of the two arms on par with the mAbs in-vivo. The anti-PD1 x anti-EGFR bispecific antibody (BsAb) retained full ADCC towards cancer cells but not to T cells. Thus the BsAb is capable of killing tumor cells via ADCC while sparing T cells for T cell-induced anti-tumor immunity. The anti-PD1 x anti-EGFR bispecific antibody (BsAb) exhibited significantly stronger tumor cell killing effects in the presence of PBMC relative to that of combination of cetuximab with an anti-PD1 mAb, 609A.
We developed a strategy to combine conventional targeted therapy with immune checkpoint blockade using a tumor-targeting bispecific antibody (BsAb) to treat solid tumors. The BsAb was designed to simultaneously engage a tumor-associated antigen, epidermal growth factor receptor (EGFR), and programed cell death protein 1 (PD1). In addition to its direct anti-tumor activity via EGFR inhibition, the BsAb mediated efficient antibody-dependent cellular cytotoxicity (ADCC) and activated T cell antitumor im munity through blockade of PD1 from interacting with its counterpart, programed cell death ligand 1 (PDL1). Further, the BsAb exhibited a potent direct tumor cell killing activity in the presence of PBMC, most likely, via activating and, at the same time, physically engaging T cells with tumor cells. Taken together, we here illustrate a new strategy in the design and production of novel BsAbs with enhanced therapeutic efficacy through both direct tumor growth inhibition and T cell activation via tumor-targeted immune checkpoint blockade.
Collapse
Affiliation(s)
- Li Li
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd. a 3SBio Inc. Company, 399 Libing Road, Shanghai 201203, China
| | - Lan Deng
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd. a 3SBio Inc. Company, 399 Libing Road, Shanghai 201203, China
| | - Xiaoqing Meng
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd. a 3SBio Inc. Company, 399 Libing Road, Shanghai 201203, China
| | - Changling Gu
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd. a 3SBio Inc. Company, 399 Libing Road, Shanghai 201203, China
| | - Li Meng
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd. a 3SBio Inc. Company, 399 Libing Road, Shanghai 201203, China
| | - Kai Li
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd. a 3SBio Inc. Company, 399 Libing Road, Shanghai 201203, China
| | - Xuesai Zhang
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd. a 3SBio Inc. Company, 399 Libing Road, Shanghai 201203, China
| | - Yun Meng
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd. a 3SBio Inc. Company, 399 Libing Road, Shanghai 201203, China
| | - Wei Xu
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd. a 3SBio Inc. Company, 399 Libing Road, Shanghai 201203, China
| | - Le Zhao
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd. a 3SBio Inc. Company, 399 Libing Road, Shanghai 201203, China
| | - Jianhe Chen
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd. a 3SBio Inc. Company, 399 Libing Road, Shanghai 201203, China
| | - Zhenping Zhu
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd. a 3SBio Inc. Company, 399 Libing Road, Shanghai 201203, China.
| | - Haomin Huang
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd. a 3SBio Inc. Company, 399 Libing Road, Shanghai 201203, China.
| |
Collapse
|
25
|
Kim HJ, Kim DY. Present and Future of Anti-Glioblastoma Therapies: A Deep Look into Molecular Dependencies/Features. Molecules 2020; 25:molecules25204641. [PMID: 33053763 PMCID: PMC7587213 DOI: 10.3390/molecules25204641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is aggressive malignant tumor residing within the central nervous system. Although the standard treatment options, consisting of surgical resection followed by combined radiochemotherapy, have long been established for patients with GBM, the prognosis is still poor. Despite recent advances in diagnosis, surgical techniques, and therapeutic approaches, the increased patient survival after such interventions is still sub-optimal. The unique characteristics of GBM, including highly infiltrative nature, hard-to-access location (mainly due to the existence of the blood brain barrier), frequent and rapid recurrence, and multiple drug resistance mechanisms, pose challenges to the development of an effective treatment. To overcome current limitations on GBM therapy and devise ideal therapeutic strategies, efforts should focus on an improved molecular understanding of GBM pathogenesis. In this review, we summarize the molecular basis for the development and progression of GBM as well as some emerging therapeutic approaches.
Collapse
Affiliation(s)
- Hyeon Ji Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41940, Korea
- Correspondence: ; Tel.: +82-53-660-6880
| |
Collapse
|
26
|
A STAT3 of Addiction: Adipose Tissue, Adipocytokine Signalling and STAT3 as Mediators of Metabolic Remodelling in the Tumour Microenvironment. Cells 2020; 9:cells9041043. [PMID: 32331320 PMCID: PMC7226520 DOI: 10.3390/cells9041043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic remodelling of the tumour microenvironment is a major mechanism by which cancer cells survive and resist treatment. The pro-oncogenic inflammatory cascade released by adipose tissue promotes oncogenic transformation, proliferation, angiogenesis, metastasis and evasion of apoptosis. STAT3 has emerged as an important mediator of metabolic remodelling. As a downstream effector of adipocytokines and cytokines, its canonical and non-canonical activities affect mitochondrial functioning and cancer metabolism. In this review, we examine the central role played by the crosstalk between the transcriptional and mitochondrial roles of STAT3 to promote survival and further oncogenesis within the tumour microenvironment with a particular focus on adipose-breast cancer interactions.
Collapse
|
27
|
Morgan EL, Macdonald A. JAK2 Inhibition Impairs Proliferation and Sensitises Cervical Cancer Cells to Cisplatin-Induced Cell Death. Cancers (Basel) 2019; 11:cancers11121934. [PMID: 31817106 PMCID: PMC6966458 DOI: 10.3390/cancers11121934] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022] Open
Abstract
Persistent infection with high-risk human papillomavirus (HPV) is the underlying cause of ~5% of all human cancers, including the majority of cervical carcinomas and many other ano-genital and oral cancers. A major challenge remains to identify key host targets of HPV and to reveal how they contribute to virus-mediated malignancy. The HPV E6 oncoprotein aberrantly activates the signal transducer and activator of transcription 3 (STAT3) transcription factor and this is achieved by a virus-driven increase in the levels of the pro-inflammatory cytokine interleukin-6 (IL-6) in HPV positive cervical cancers cells. Crucially, STAT3 activity is essential for the proliferation and survival of cervical cancer cells, suggesting that targeting STAT3 may have therapeutic potential. Unfortunately, the development of direct STAT3 inhibitors has been problematic in the clinic due to toxicity issues identified in early stage trials. To overcome this issue, we focused on the protein Janus kinase 2 (JAK2), which phosphorylates STAT3 and is essential for STAT3 activation. Here, we demonstrate that inhibiting JAK2 reduces cell proliferation and induces apoptosis in HPV transformed cervical cancer cells. We further establish that this is due to inhibition of phosphorylation of the JAK2 substrates STAT3 and STAT5. Finally, we demonstrate that the clinically available JAK2 inhibitor Ruxolitinib synergises with cisplatin in inducing apoptosis, highlighting JAK2 as a promising therapeutic target in HPV-driven cancers.
Collapse
|
28
|
Hu S, Yao X, Hao Y, Pan A, Zhou X. 8‑Gingerol regulates colorectal cancer cell proliferation and migration through the EGFR/STAT/ERK pathway. Int J Oncol 2019; 56:390-397. [DOI: 10.3892/ijo.2019.4934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/01/2019] [Indexed: 12/24/2022] Open
Affiliation(s)
- Su‑Min Hu
- Sun Yat‑sen University Zhongshan School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Xu‑Hui Yao
- Guangdong Experimental High School, Guangzhou, Guangdong 510080, P.R. China
| | - Yi‑Hai Hao
- Guangdong Experimental High School, Guangzhou, Guangdong 510080, P.R. China
| | - Ai‑Hua Pan
- Sun Yat‑sen University Zhongshan School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| | - Xing‑Wang Zhou
- Sun Yat‑sen University Zhongshan School of Medicine, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
29
|
The Dichotomous Nature of AZ5104 (an EGFR Inhibitor) Towards RORγ and RORγT. Int J Mol Sci 2019; 20:ijms20225780. [PMID: 31744223 PMCID: PMC6887705 DOI: 10.3390/ijms20225780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
The RORC (RAR related orphan receptor C) gene produces two isoforms by alternative promoter usage: RORγ (nuclear receptor ROR-gamma isoform 1) and RORγT (nuclear receptor ROR-gamma isoform 1). Both proteins have distinct tissue distributions and are involved in several physiological processes, including glucose/lipid metabolism and the development of Th17 lymphocytes. Previously, we developed a stably transfected reporter cell line and used it to screen a library of kinase inhibitors. We found that AZ5104 acts as an RORγ agonist at low micromolar concentrations. Molecular docking analysis showed that this compound occupies the ligand binding domain of the receptor with a significant docking score. However, analysis of the biological activity of this compound in Th17 cells revealed that it downregulates RORγT expression and Th17-related cytokine production via inhibition of SRC-ERK-STAT3 (SRC proto-oncogene - extracellular regulated MAP kinase - signal transducer and activator of transcription 3). We thus identified a compound acting as an agonist of RORγ that, due to the inhibition of downstream elements of EGFR (epidermal growth factor receptor) signaling, exerts different biological activity towards a Th17-specific isoform. Additionally, our results may be relevant in the future for the design of treatments targeting signaling pathways that inhibit Th17-related inflammation in certain autoimmune disorders.
Collapse
|
30
|
Lee C, Cheung ST. STAT3: An Emerging Therapeutic Target for Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11111646. [PMID: 31731457 PMCID: PMC6895841 DOI: 10.3390/cancers11111646] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global health problem and its treatment options have been limited. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor important for various cellular processes. Overexpression and constitutive activation of STAT3 have been frequently found in HCC and associated with poor prognosis. Ample evidence has shown that STAT3 plays pivotal roles in the initiation, progression, metastasis and immune suppression of HCC. Thus, STAT3 has attracted attention as a novel therapeutic target in HCC. Clinical trials have investigated STAT3-targeted therapeutics either as monotherapy or in combination with chemotherapeutic agents, immune checkpoint inhibitors and alternative targeted drugs. Some of these studies have yielded encouraging results. Particularly, napabucasin—a cancer stemness inhibitor targeting STAT3-driven gene transcription—has stood out with its promising clinical efficacy and safety profile. Nonetheless, clinical investigations of STAT3-targeted therapies in HCC are limited and more efforts are strongly urged to evaluate their clinical performance in HCC. Here, we provide a comprehensive review of the roles of STAT3 in HCC and follow by comprehensive analysis of STAT3 targeted strategies.
Collapse
Affiliation(s)
- Carol Lee
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China;
| | - Siu Tim Cheung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China;
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +852-3505-1121
| |
Collapse
|
31
|
Peng J, Zuo Y, Huang L, Okada T, Liu S, Zuo G, Zhang G, Tang J, Xia Y, Zhang JH. Activation of GPR30 with G1 attenuates neuronal apoptosis via src/EGFR/stat3 signaling pathway after subarachnoid hemorrhage in male rats. Exp Neurol 2019; 320:113008. [DOI: 10.1016/j.expneurol.2019.113008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/16/2019] [Accepted: 07/05/2019] [Indexed: 12/21/2022]
|
32
|
Wang K, Zhu TN, Zhao RJ. Filamin A regulates EGFR/ERK/Akt signaling and affects colorectal cancer cell growth and migration. Mol Med Rep 2019; 20:3671-3678. [PMID: 31485594 PMCID: PMC6755168 DOI: 10.3892/mmr.2019.10622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023] Open
Abstract
The metastasis and recurrence rate, and the overall prognosis of colorectal cancer (CRC) remain unsatisfactory. Filamin A (FLNa), as an actin-binding protein, can interact with various signaling molecules and membrane receptors to affect cell signal transduction and function. However, whether FLNa is involved in the progression of CRC remains to be elucidated. The aim of the present study was to explore the role of FLNa in CRC cell proliferation and migration, as well as in the regulation of epidermal growth factor receptor (EGFR) signaling. Following transfection with a FLNa-targeting short hairpin RNA plasmid to knockdown expression of FLNa in the EGF-treated SW480 cell line, it was found that decreased expression of FLNa promoted cell proliferation and migration. Additionally, there was a negative correlation between FLNa levels and the activation of EGFR and Akt signaling pathways. Similarly, the expression of FLNa was significantly lower in human CRC tissues compared with adjacent normal tissues and FLNa expression was negatively correlated with the expression of Ki-67 in human CRC tissues. Although there was no significant difference in the Kaplan-Meier estimate of CRC between high expression and low expression of FLNa, there were significant negative associations between FLNa expression and TNM stage. The results suggested that FLNa may participate in EGF-induced cell proliferation and migration in CRC cells. Hence, interventions in the FLNa-mediated signaling pathway could provide attractive therapeutic targets for CRC.
Collapse
Affiliation(s)
- Kun Wang
- Department of Transfusion, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Tie-Nian Zhu
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei 050017, P.R. China
| | - Rui-Jing Zhao
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
33
|
Choi HI, Kim DH, Park JS, Kim IJ, Kim CS, Bae EH, Ma SK, Lee TH, Kim SW. Peroxiredoxin V (PrdxV) negatively regulates EGFR/Stat3-mediated fibrogenesis via a Cys48-dependent interaction between PrdxV and Stat3. Sci Rep 2019; 9:8751. [PMID: 31217524 PMCID: PMC6584630 DOI: 10.1038/s41598-019-45347-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Activation of the epidermal growth factor receptor (EGFR)/signal transducer and activator of transcription 3 (Stat3) signaling pathway has been reported to be associated with renal fibrosis. We have recently demonstrated that peroxiredoxin V (PrdxV) acted as an antifibrotic effector by inhibiting the activity of Stat3 in TGF-β-treated NRK49F cells. However, the underlying mechanism of PrdxV remains poorly understood. To investigate molecular mechanism of PrdxV, we used a transgenic mouse model expressing PrdxV siRNA (PrdxVsi mice) and performed unilateral ureteral obstruction (UUO) for 7 days. 209/MDCT cells were transiently transfected with HA-tagged WT PrdxV and C48S PrdxV. Transgenic PrdxVsi mice displayed an exacerbated epithelial-to-mesenchymal transition (EMT) as well as an increase in oxidative stress induced by UUO. In the UUO kidney of the PrdxVsi mouse, knockdown of PrdxV increased Tyr1068-specific EGFR and Stat3 phosphorylation, whereas overexpression of WT PrdxV in 209/MDCT cells showed the opposite results. Immunoprecipitation revealed the specific interaction between WT PrdxV and Stat3 in the absence or presence of TGF-β stimulation, whereas no PrdxV-EGFR or C48S PrdxV-Stat3 interactions were detected under any conditions. In conclusion, PrdxV is an antifibrotic effector that sustains renal physiology. Direct interaction between PrdxV and Stat3 through Cys48 is a major molecular mechanism.
Collapse
Affiliation(s)
- Hoon-In Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Dong-Hyun Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Jung Sun Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - In Jin Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Tae-Hoon Lee
- Department of Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University and Korea Mouse Phenotype Center, Gwangju, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea.
| |
Collapse
|
34
|
Pace J, Paladugu P, Das B, He JC, Mallipattu SK. Targeting STAT3 signaling in kidney disease. Am J Physiol Renal Physiol 2019; 316:F1151-F1161. [PMID: 30943069 DOI: 10.1152/ajprenal.00034.2019] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway is a multifaceted transduction system that regulates cellular responses to incoming signaling ligands. STAT3 is a central member of the JAK/STAT signaling cascade and has long been recognized for its increased transcriptional activity in cancers and autoimmune disorders but has only recently been in the spotlight for its role in the progression of kidney disease. Although genetic knockout and manipulation studies have demonstrated the salutary benefits of inhibiting STAT3 activity in several kidney disease models, pharmacological inhibition has yet to make it to the clinical forefront. In recent years, significant effort has been aimed at suppressing STAT3 activation for treatment of cancers, which has led to the development of a wide variety of STAT3 inhibitors, but only a handful have been tested in kidney disease models. Here, we review the detrimental role of dysregulated STAT3 activation in a variety of kidney diseases and the current progress in the treatment of kidney diseases with pharmacological inhibition of STAT3 activity.
Collapse
Affiliation(s)
- Jesse Pace
- Division of Nephrology, Department of Medicine, Stony Brook University , Stony Brook, New York
| | - Praharshasai Paladugu
- Division of Nephrology, Department of Medicine, Stony Brook University , Stony Brook, New York
| | - Bhaskar Das
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, New York
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University , Stony Brook, New York.,Renal Section, Northport Veterans Affairs Medical Center, Northport, New York
| |
Collapse
|
35
|
Park M, Lim JW, Kim H. Docoxahexaenoic Acid Induces Apoptosis of Pancreatic Cancer Cells by Suppressing Activation of STAT3 and NF-κB. Nutrients 2018; 10:nu10111621. [PMID: 30400136 PMCID: PMC6267441 DOI: 10.3390/nu10111621] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022] Open
Abstract
The ω3-polyunsaturated fatty acid docosahexenoic acid (DHA) is known to induce apoptosis of cancer cells. In this study, DHA was shown to reduce viability of pancreatic cancer cells (PANC-1) by inducing DNA fragmentation, activating caspase-3, and increasing the ratio of Bax/Bcl-2. To determine the DHA mechanism of action, the impact of DHA on the activation of the key signaling proteins epidermal growth factor receptor (EGFR), signal transducer and activator of transcription factor 3 (STAT3), nuclear transcription factor-κB (NF-κB), and IκBα in PANC-1 cells was probed. The observed DHA suppression of NF-κB DNA-binding activity was found to result from reduced IκBα phosphorylation. The observed DHA-induced suppression of STAT3 activation was found to be the result of suppressed EGFR activation, which derives from the inhibitory effect of DHA on the integrity of localization of EGFR to cell membrane lipid rafts. Since the activation of STAT3 and NF-κB mediates the expression of survival genes cyclin D1 and survivin, DHA induced apoptosis by suppressing the STAT3/NF-κB-cyclin D1/survivin axis. These results support the proposal that DHA-induced apoptosis of pancreatic cells occurs via disruption of key pro-cell survival signaling pathways. We suggest that the consumption of DHA-enriched foods could decrease the incidence of pancreatic cancer.
Collapse
Affiliation(s)
- Mirae Park
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
36
|
Bhat AA, Lu H, Soutto M, Capobianco A, Rai P, Zaika A, El-Rifai W. Exposure of Barrett's and esophageal adenocarcinoma cells to bile acids activates EGFR-STAT3 signaling axis via induction of APE1. Oncogene 2018; 37:6011-6024. [PMID: 29991802 PMCID: PMC6328352 DOI: 10.1038/s41388-018-0388-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023]
Abstract
The development of Barret’s esophagus (BE) and its progression to esophageal adenocarcinoma (EAC) is highly linked to exposure to acidic bile salts due to chronic gastroesophageal reflux disease (GERD). In this study, we investigated the role of Apurinic/apyrimidinic endonuclease 1 /redox effector factor-1 (APE-1/REF-1) in STAT3 activation in response to EAC. Our results indicate that APE1 is constitutively overexpressed in EAC whereas its expression is transiently induced in response to acidic bile salts in non-neoplastic BE. Using overexpression or shRNA knockdown of APE1, we found that APE1 is required for phosphorylation, nuclear localization, and transcription activation of STAT3. By using an APE1 redox-specific mutant (C65A) and APE1 redox inhibitor (E3330), we demonstrate that APE1 activates STAT3 in a redox-dependent manner. By using pharmacologic inhibitors and genetic knockdown systems, we found that EGFR is a required link between APE1 and STAT3. EGFR phosphorylation (Y1068) was directly associated with APE1 levels and redox function. Co-immunoprecipitation and proximity ligation assays indicated that APE-1 coexists and interacts with the EGFR-STAT3 protein complex. Consistent with these findings, we demonstrated a significant induction in mRNA expression levels of STAT3 target genes (IL-6, IL-17A, BCL-xL, Survivin and c-Myc) in BE and EAC cells, following acidic bile salts treatment. ChIP assays indicated that acidic bile salts treatment enhances binding of STAT3 to the promoter of its target genes, Survivin and BCL-xL. Inhibition of APE1/REF-1 redox activity using E3330 abrogated STAT3 DNA binding and transcriptional activity. The induction of APE-1 - STAT3 axis in acidic bile salts conditions provided a survival advantage and promoted cellular proliferation. In summary, our study provides multiple pieces of evidence supporting a critical role for APE1 induction in activating the EGFR-STAT3 signaling axis in response to acidic bile salts, the main risk factors for Barrett’s carcinogenesis.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Mohammed Soutto
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Anthony Capobianco
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Priyamvada Rai
- Department of Medicine, Division of Medical Oncology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alexander Zaika
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA.
| |
Collapse
|
37
|
Du J, Yu Y, Zhan J, Zhang H. Targeted Therapies Against Growth Factor Signaling in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1026:125-146. [PMID: 29282682 DOI: 10.1007/978-981-10-6020-5_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Breast cancer is the most prevalent female malignancy throughout the world. Conventional treatment strategies for breast cancer consist of chemotherapy, radiation, surgery, chemoradiation, hormone therapy, and targeted therapies. Among them, targeted therapies show advantages to reduce cost and toxicity for being possible for individualized treatments based on the intrinsic subtypes of breast cancer. With deeper understanding of key signaling pathways concerning tumor growth and survival, growth factor-controlled signaling pathways are frequently dysregulated in the development and progression of breast cancer. Thus, targeted therapies against growth factor-mediated signaling pathways have been shown to have promising efficacy in both preclinical animal models and human clinical trials. In this chapter, we will briefly introduce inhibitors and monoclonal antibodies that target the main growth factor-modulated scenarios including epidermal growth factor receptor (EGFR), transforming growth factor beta (TGF-β), insulin-like growth factor 1 receptor (IGF1R), and fibroblast growth factor receptor (FGFR) signaling pathways in breast cancer therapy.
Collapse
Affiliation(s)
- Juan Du
- Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yu Yu
- Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jun Zhan
- Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hongquan Zhang
- Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
38
|
Aleksic T, Gray N, Wu X, Rieunier G, Osher E, Mills J, Verrill C, Bryant RJ, Han C, Hutchinson K, Lambert AG, Kumar R, Hamdy FC, Weyer-Czernilofsky U, Sanderson MP, Bogenrieder T, Taylor S, Macaulay VM. Nuclear IGF1R Interacts with Regulatory Regions of Chromatin to Promote RNA Polymerase II Recruitment and Gene Expression Associated with Advanced Tumor Stage. Cancer Res 2018; 78:3497-3509. [PMID: 29735545 PMCID: PMC6031306 DOI: 10.1158/0008-5472.can-17-3498] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/28/2018] [Accepted: 04/26/2018] [Indexed: 01/02/2023]
Abstract
Internalization of ligand-activated type I IGF receptor (IGF1R) is followed by recycling to the plasma membrane, degradation or nuclear translocation. Nuclear IGF1R reportedly associates with clinical response to IGF1R inhibitory drugs, yet its role in the nucleus is poorly characterized. Here, we investigated the significance of nuclear IGF1R in clinical cancers and cell line models. In prostate cancers, IGF1R was predominantly membrane localized in benign glands, while malignant epithelium contained prominent internalized (nuclear/cytoplasmic) IGF1R, and nuclear IGF1R associated significantly with advanced tumor stage. Using ChIP-seq to assess global chromatin occupancy, we identified IGF1R-binding sites at or near transcription start sites of genes including JUN and FAM21, most sites coinciding with occupancy by RNA polymerase II (RNAPol2) and histone marks of active enhancers/promoters. IGF1R was inducibly recruited to chromatin, directly binding DNA and interacting with RNAPol2 to upregulate expression of JUN and FAM21, shown to mediate tumor cell survival and IGF-induced migration. IGF1 also enriched RNAPol2 on promoters containing IGF1R-binding sites. These functions were inhibited by IGF1/II-neutralizing antibody xentuzumab (BI 836845), or by blocking receptor internalization. We detected IGF1R on JUN and FAM21 promoters in fresh prostate cancers that contained abundant nuclear IGF1R, with evidence of correlation between nuclear IGF1R content and JUN expression in malignant prostatic epithelium. Taken together, these data reveal previously unrecognized molecular mechanisms through which IGFs promote tumorigenesis, with implications for therapeutic evaluation of anti-IGF drugs.Significance: These findings reveal a noncanonical nuclear role for IGF1R in tumorigenesis, with implications for therapeutic evaluation of IGF inhibitory drugs. Cancer Res; 78(13); 3497-509. ©2018 AACR.
Collapse
Affiliation(s)
- Tamara Aleksic
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicki Gray
- Computational Biology Research Group, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Xiaoning Wu
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Eliot Osher
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Jack Mills
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Clare Verrill
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Richard J Bryant
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Cheng Han
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, United Kingdom
| | | | - Adam G Lambert
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Rajeev Kumar
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | - Thomas Bogenrieder
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
- Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Marchioninistrasse, Munich, Germany
| | - Stephen Taylor
- Computational Biology Research Group, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Valentine M Macaulay
- Department of Oncology, University of Oxford, Oxford, United Kingdom.
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
39
|
Labreche K, Kinnersley B, Berzero G, Di Stefano AL, Rahimian A, Detrait I, Marie Y, Grenier-Boley B, Hoang-Xuan K, Delattre JY, Idbaih A, Houlston RS, Sanson M. Diffuse gliomas classified by 1p/19q co-deletion, TERT promoter and IDH mutation status are associated with specific genetic risk loci. Acta Neuropathol 2018; 135:743-755. [PMID: 29460007 PMCID: PMC5904227 DOI: 10.1007/s00401-018-1825-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/31/2022]
Abstract
Recent genome-wide association studies of glioma have led to the discovery of single nucleotide polymorphisms (SNPs) at 25 loci influencing risk. Gliomas are heterogeneous, hence to investigate the relationship between risk SNPs and glioma subtype we analysed 1659 tumours profiled for IDH mutation, TERT promoter mutation and 1p/19q co-deletion. These data allowed definition of five molecular subgroups of glioma: triple-positive (IDH mutated, 1p/19q co-deletion, TERT promoter mutated); TERT-IDH (IDH mutated, TERT promoter mutated, 1p/19q-wild-type); IDH-only (IDH mutated, 1p/19q wild-type, TERT promoter wild-type); triple-negative (IDH wild-type, 1p/19q wild-type, TERT promoter wild-type) and TERT-only (TERT promoter mutated, IDH wild-type, 1p/19q wild-type). Most glioma risk loci showed subtype specificity: (1) the 8q24.21 SNP for triple-positive glioma; (2) 5p15.33, 9p21.3, 17p13.1 and 20q13.33 SNPs for TERT-only glioma; (3) 1q44, 2q33.3, 3p14.1, 11q21, 11q23.3, 14q12, and 15q24.2 SNPs for IDH mutated glioma. To link risk SNPs to target candidate genes we analysed Hi-C and gene expression data, highlighting the potential role of IDH1 at 2q33.3, MYC at 8q24.21 and STMN3 at 20q13.33. Our observations provide further insight into the nature of susceptibility to glioma.
Collapse
Affiliation(s)
- Karim Labreche
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, 75013, Paris, France
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Giulia Berzero
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, 75013, Paris, France
- Service de neurologie 2-Mazarin, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- University of Pavia and C. Mondino National Institute of Neurology, Pavia, Italy
| | - Anna Luisa Di Stefano
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, 75013, Paris, France
- Service de neurologie 2-Mazarin, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Amithys Rahimian
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, 75013, Paris, France
| | - Ines Detrait
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, 75013, Paris, France
| | - Yannick Marie
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, 75013, Paris, France
| | - Benjamin Grenier-Boley
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, 59000, Lille, France
| | - Khe Hoang-Xuan
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, 75013, Paris, France
- Service de neurologie 2-Mazarin, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Jean-Yves Delattre
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, 75013, Paris, France
- Service de neurologie 2-Mazarin, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Ahmed Idbaih
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, 75013, Paris, France
- Service de neurologie 2-Mazarin, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK.
| | - Marc Sanson
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, 75013, Paris, France
- Service de neurologie 2-Mazarin, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
40
|
Porcine Epidemic Diarrhea Virus-Induced Epidermal Growth Factor Receptor Activation Impairs the Antiviral Activity of Type I Interferon. J Virol 2018; 92:JVI.02095-17. [PMID: 29386292 DOI: 10.1128/jvi.02095-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/23/2018] [Indexed: 02/07/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes acute and devastating enteric disease in suckling piglets and results in huge economic losses in the pig industry worldwide. To establish productive infection, viruses must first circumvent the host innate immune response. In this study, we found that PEDV infection stimulated epidermal growth factor receptor (EGFR) activation, which has been linked to not only anticancer therapeutics, but also antiviral signaling. Therefore, we determined whether EGFR activation affected PEDV infection by using an activator or overexpression assay. The data showed that EGFR activation enhanced virus replication in both cases. We also found that specific inhibition of EGFR by either inhibitors or small interfering RNA (siRNA) led to a decrease in virus yields. Further analysis revealed that inhibition of EGFR produced augmentation of type I interferon genes. We next observed that the EGFR downstream cascade STAT3 was also activated upon PEDV infection. Similar to the case of EGFR, specific inhibition of STAT3 by either inhibitor or siRNA increased the antiviral activity of interferon and resulted in decreased PEDV RNA levels, and vice versa. The data on STAT3 depletion in combination with EGFR activation suggest that the attenuation of antiviral activity by EGFR activation requires activation of the STAT3 signaling pathway. Taken together, these data demonstrate that PEDV-induced EGFR activation serves as a negative regulator of the type I interferon response and provides a novel therapeutic target for virus infection.IMPORTANCE EGFR is a transmembrane tyrosine receptor that mediates various cellular events, as well as several types of human cancers. In this study, we investigated for the first time the role of EGFR in PEDV infection. We observed that PEDV infection induced EGFR activation. The role of EGFR activation is to impair the antiviral activity of type I interferon, which requires the involvement of the EGFR downstream signaling cascade STAT3. Our findings reveal a new mechanism evolved by PEDV to circumvent the host antiviral response, which might serve as a therapeutic target against virus infection.
Collapse
|
41
|
Binding of galectin-1 to integrin β1 potentiates drug resistance by promoting survivin expression in breast cancer cells. Oncotarget 2018; 8:35804-35823. [PMID: 28415760 PMCID: PMC5482619 DOI: 10.18632/oncotarget.16208] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Galectin-1 is a β-galactoside binding protein secreted by many types of aggressive cancer cells. Although many studies have focused on the role of galectin-1 in cancer progression, relatively little attention has been paid to galectin-1 as an extracellular therapeutic target. To elucidate the molecular mechanisms underlying galectin-1-mediated cancer progression, we established galectin-1 knock-down cells via retroviral delivery of short hairpin RNA (shRNA) against galectin-1 in two triple-negative breast cancer (TNBC) cell lines, MDA-MB-231 and Hs578T. Ablation of galectin-1 expression decreased cell proliferation, migration, invasion, and doxorubicin resistance. We found that these effects were caused by decreased galectin-1-integrin β1 interactions and suppression of the downstream focal adhesion kinase (FAK)/c-Src pathway. We also found that silencing of galectin-1 inhibited extracellular signal-regulated kinase (ERK)/signal transducer and activator of transcription 3 (STAT3) signaling, thereby down-regulating survivin expression. This finding implicates STAT3 as a transcription factor for survivin. Finally, rescue of endogenous galectin-1 knock-down and recombinant galectin-1 treatment both recovered signaling through the FAK/c-Src/ERK/STAT3/survivin pathway. Taken together, these results suggest that extracellular galectin-1 contributes to cancer progression and doxorubicin resistance in TNBC cells. These effects appear to be mediated by galectin-1-induced up-regulation of the integrin β1/FAK/c-Src/ERK/STAT3/survivin pathway. Our results imply that extracellular galectin-1 has potential as a therapeutic target for triple-negative breast cancer.
Collapse
|
42
|
An Z, Aksoy O, Zheng T, Fan QW, Weiss WA. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene 2018; 37:1561-1575. [PMID: 29321659 PMCID: PMC5860944 DOI: 10.1038/s41388-017-0045-7] [Citation(s) in RCA: 429] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/05/2023]
Abstract
Amplification of epidermal growth factor receptor (EGFR) and its active mutant EGFRvIII occurs frequently in glioblastoma (GBM). While EGFR and EGFRvIII play critical roles in pathogenesis, targeted therapy with EGFR-tyrosine kinase inhibitors (TKIs) or antibodies has only shown limited efficacy in patients. Here we discuss signaling pathways mediated by EGFR/EGFRvIII, current therapeutics, and novel strategies to target EGFR/EGFRvIII-amplified GBM.
Collapse
Affiliation(s)
- Zhenyi An
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Ozlem Aksoy
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Tina Zheng
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Qi-Wen Fan
- Department of Neurology, University of California, San Francisco, CA, USA
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
| |
Collapse
|
43
|
Merrouche Y, Fabre J, Cure H, Garbar C, Fuselier C, Bastid J, Antonicelli F, Al-Daccak R, Bensussan A, Giustiniani J. IL-17E synergizes with EGF and confers in vitro resistance to EGFR-targeted therapies in TNBC cells. Oncotarget 2018; 7:53350-53361. [PMID: 27462789 PMCID: PMC5288192 DOI: 10.18632/oncotarget.10804] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022] Open
Abstract
Estrogen receptor-, progesterone receptor- and HER2-negative breast cancers, also known as triple-negative breast cancers (TNBCs), have poor prognoses and are refractory to current therapeutic agents, including epidermal growth factor receptor (EGFR) inhibitors. Resistance to anti-EGFR therapeutic agents is often associated with sustained kinase phosphorylation, which promotes EGFR activation and translocation to the nucleus and prevents these agents from acting on their targets. The mechanisms underlying this resistance have not been fully elucidated. In addition, the IL-17E receptor is overexpressed in TNBC tumors and is associated with a poor prognosis. We have previously reported that IL-17E promotes TNBC resistance to anti-mitotic therapies. Here, we investigated whether IL-17E promotes TNBC resistance to anti-EGFR therapeutic agents by exploring the link between the IL-17E/IL-17E receptor axis and EGF signaling. We found that IL-17E, similarly to EGF, activates the EGFR in TNBC cells that are resistant to EGFR inhibitors. It also activates the PYK-2, Src and STAT3 kinases, which are essential for EGFR activation and nuclear translocation. IL-17E binds its specific receptor, IL-17RA/IL17RB, on these TNBC cells and synergizes with the EGF signaling pathway, thereby inducing Src-dependent EGFR transactivation and pSTAT3 and pEGFR translocation to the nucleus. Collectively, our data indicate that the IL-17E/IL-17E receptor axis may underlie TNBC resistance to EGFR inhibitors and suggest that inhibiting IL-17E or its receptor in combination with EGFR inhibitor administration may improve TNBC management.
Collapse
Affiliation(s)
- Yacine Merrouche
- Institut Jean Godinot, Unicancer, F-51726 Reims, France.,Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51095 Reims, France
| | - Joseph Fabre
- Institut Jean Godinot, Unicancer, F-51726 Reims, France.,Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51095 Reims, France
| | - Herve Cure
- CHU-Grenoble Alpes, CS 10217, 38043 La Tronche, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U823, Centre de Recherche (CRI), Institut Albert Bonniot, 38043 La Tronche, France
| | - Christian Garbar
- Institut Jean Godinot, Unicancer, F-51726 Reims, France.,Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51095 Reims, France
| | - Camille Fuselier
- Institut Jean Godinot, Unicancer, F-51726 Reims, France.,Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51095 Reims, France
| | | | - Frank Antonicelli
- Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51095 Reims, France
| | - Reem Al-Daccak
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 976, Hôpital Saint Louis, 75010 Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Immunologie Dermatologie and Oncologie, UMR-S 976, F-75475, Paris, France
| | - Armand Bensussan
- OREGA Biotech, F-69130 Ecully, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 976, Hôpital Saint Louis, 75010 Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Immunologie Dermatologie and Oncologie, UMR-S 976, F-75475, Paris, France
| | - Jerome Giustiniani
- Institut Jean Godinot, Unicancer, F-51726 Reims, France.,Université Reims-Champagne-Ardenne, DERM-I-C, EA7319, 51095 Reims, France
| |
Collapse
|
44
|
Xue X, Jungles K, Onder G, Samhoun J, Győrffy B, Hardiman KM. HIF-3α1 promotes colorectal tumor cell growth by activation of JAK-STAT3 signaling. Oncotarget 2017; 7:11567-79. [PMID: 26871465 PMCID: PMC4905494 DOI: 10.18632/oncotarget.7272] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 01/17/2016] [Indexed: 01/05/2023] Open
Abstract
Hypoxic environment is critical in colorectal cancer (CRC) development. Most studies have mainly focused on hypoxia-inducible factor (HIF)-1α and HIF-2α as the major hypoxic transcription factors in CRC development and progression. However, the role of HIF-3α in CRC is not clear. Here we found that HIF-3α protein was increased in colorectal tumors from both mouse models and human patients. Moreover, increased HIF-3α expression was correlated with decreased survival. Overexpression of a long isoform of HIF-3α, HIF-3α1, increased cell growth in two CRC cell lines. Surprisingly, overexpressed HIF-3α1 was localized to the cytosol and increased phosphorylated signal transducer and activator of transcription 3 (p-STAT3). STAT3 inhibition effectively reduced p-STAT3 levels and cell growth induced by HIF-3α1. The activation of p-STAT3 was independent of the transcriptional activity of HIF-3α1. However, the inhibition of the upstream regulator Janus kinase (JAK) abolished HIF-3α1-induced p-STAT3 and cell growth. Together, these results demonstrated that HIF-3α1 promotes CRC cell growth by activation of the JAK-STAT3 signaling pathway through non-canonical transcription-independent mechanisms.
Collapse
Affiliation(s)
- Xiang Xue
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Kylie Jungles
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Saint Mary's College, Notre Dame, IN, USA
| | - Gunseli Onder
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Jalal Samhoun
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, MTA-SE Pediatrics and Nephrology Research Group, Semmelweis University 2nd Department of Pediatrics, Budapest, Hungary
| | - Karin M Hardiman
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
45
|
Henique C, Bollée G, Loyer X, Grahammer F, Dhaun N, Camus M, Vernerey J, Guyonnet L, Gaillard F, Lazareth H, Meyer C, Bensaada I, Legrès L, Satoh T, Akira S, Bruneval P, Dimmeler S, Tedgui A, Karras A, Thervet E, Nochy D, Huber TB, Mesnard L, Lenoir O, Tharaux PL. Genetic and pharmacological inhibition of microRNA-92a maintains podocyte cell cycle quiescence and limits crescentic glomerulonephritis. Nat Commun 2017; 8:1829. [PMID: 29184126 PMCID: PMC5705755 DOI: 10.1038/s41467-017-01885-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/23/2017] [Indexed: 01/07/2023] Open
Abstract
Crescentic rapidly progressive glomerulonephritis (RPGN) represents the most aggressive form of acquired glomerular disease. While most therapeutic approaches involve potentially toxic immunosuppressive strategies, the pathophysiology remains incompletely understood. Podocytes are glomerular epithelial cells that are normally growth-arrested because of the expression of cyclin-dependent kinase (CDK) inhibitors. An exception is in RPGN where podocytes undergo a deregulation of their differentiated phenotype and proliferate. Here we demonstrate that microRNA-92a (miR-92a) is enriched in podocytes of patients and mice with RPGN. The CDK inhibitor p57Kip2 is a major target of miR-92a that constitutively safeguards podocyte cell cycle quiescence. Podocyte-specific deletion of miR-92a in mice de-repressed the expression of p57Kip2 and prevented glomerular injury in RPGN. Administration of an anti-miR-92a after disease initiation prevented albuminuria and kidney failure, indicating miR-92a inhibition as a potential therapeutic strategy for RPGN. We demonstrate that miRNA induction in epithelial cells can break glomerular tolerance to immune injury. Crescentic rapidly progressive glomerulonephritis is a severe form of glomerula disease characterized by podocyte proliferation and migration. Here Henique et al. demonstrate that inhibition of miRNA-92a prevents kidney failure by promoting the expression of CDK inhibitor p57Kip2 that regulates podocyte cell cycle.
Collapse
Affiliation(s)
- Carole Henique
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France. .,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France. .,Institut Mondor de Recherche Biomédicale, team 21, Unité Mixte de Recherche (UMR) 955, Institut National de la Santé et de la Recherche Médicale (INSERM), Créteil, 94000, France. .,Université Paris-Est Créteil, Créteil, 94000, France.
| | - Guillaume Bollée
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France.,Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Montréal, H2X 0A9, QC, Canada
| | - Xavier Loyer
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France
| | - Florian Grahammer
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, 20246, Germany.,Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, P.O. Box 79085, Germany.,BIOSS Centre for Biological Signalling Studies and Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, 79104, Germany
| | - Neeraj Dhaun
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,British Heart Foundation Centre of Research Excellence (BHF CoRE), Edinburgh, EH16 4TJ, UK
| | - Marine Camus
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France
| | - Julien Vernerey
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France
| | - Léa Guyonnet
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France
| | - François Gaillard
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France
| | - Hélène Lazareth
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France
| | - Charlotte Meyer
- BIOSS Centre for Biological Signalling Studies and Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, 79104, Germany
| | - Imane Bensaada
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France
| | - Luc Legrès
- Unité Mixte de Recherche (UMR_S) 1165, Institut National de la Santé et de la Recherche Médicale (INSERM), Plateforme MicroLaser Biotech, Paris, 75010, France
| | - Takashi Satoh
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, 565-0871, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, 565-0871, Japan
| | - Patrick Bruneval
- Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France.,Department of Pathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, 75015, France.,Département Hospitalo-Universitaire, Paris Descartes University-Hôpitaux Universitaires Paris Ouest, Paris, 75015, France
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, 60590, Germany
| | - Alain Tedgui
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France
| | - Alexandre Karras
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France.,Département Hospitalo-Universitaire, Paris Descartes University-Hôpitaux Universitaires Paris Ouest, Paris, 75015, France.,Renal Division, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, 75015, France
| | - Eric Thervet
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France.,Département Hospitalo-Universitaire, Paris Descartes University-Hôpitaux Universitaires Paris Ouest, Paris, 75015, France.,Renal Division, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, 75015, France
| | - Dominique Nochy
- Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France.,Department of Pathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, 75015, France.,Département Hospitalo-Universitaire, Paris Descartes University-Hôpitaux Universitaires Paris Ouest, Paris, 75015, France
| | - Tobias B Huber
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, 20246, Germany.,Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, P.O. Box 79085, Germany.,BIOSS Centre for Biological Signalling Studies and Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, 79104, Germany
| | - Laurent Mesnard
- Unité Mixte de Recherche (UMR) 702, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75020, France.,Faculty of Medicine, University Pierre and Marie Curie, Paris, 75020, France
| | - Olivia Lenoir
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Centre-PARCC, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, 75015, France. .,Paris Descartes University, Sorbonne Paris Cité, Paris, 75006, France. .,Renal Division, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, 75015, France.
| |
Collapse
|
46
|
Bartolowits MD, Brown W, Ali R, Pedley AM, Chen Q, Harvey KE, Wendt MK, Davisson VJ. Selective Inhibition of STAT3 Phosphorylation Using a Nuclear-Targeted Kinase Inhibitor. ACS Chem Biol 2017; 12:2371-2378. [PMID: 28787571 DOI: 10.1021/acschembio.7b00341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of compounds that selectively modulate signaling and effector proteins downstream of EGFR could have important implications for understanding specific roles for pathway activation. A complicating factor for receptor tyrosine kinases is their capacity to be translocated to the nucleus upon ligand engagement. Once localized in subcellular compartments like the nucleus, the roles for EGFR take on additional features, many of which are still being revealed. Additionally, nuclear localization of EGFR has been implicated in downstream events that have significance for therapy resistance and disease progression. The challenges to addressing the differential roles for EGFR in the nucleus motivated experimental approaches that can selectively modulate its subcellular function. By adding modifications to the established EGFR kinase inhibitor gefitinib, an approach to small molecule conjugates with a unique nuclear-targeting peptoid sequence was tested in both human and murine breast tumor cell models for their capacity to inhibit EGF-stimulated activation of ERK1/2 and STAT3. While gefitinib alone inhibits both of these downstream effectors, data acquired here indicate that compartmentalization of the gefitinib conjugates allows for pathway specific inhibition of STAT3 while not affecting ERK1/2 signaling. The inhibitor conjugates offered a more direct route to evaluate the role of EGF-stimulated epithelial-to-mesenchymal transition in these breast cancer cell models. These conjugates revealed that STAT3 activation is not involved in EGF-induced EMT, and instead utilization of the cytoplasmic MAP kinase signaling pathway is critical to this process. This is the first example of a conjugate kinase inhibitor capable of partitioning to the nucleus and offers a new approach to enhancing kinase inhibitor specificity.
Collapse
Affiliation(s)
- Matthew D. Bartolowits
- Department of Medicinal Chemistry
and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wells Brown
- Department of Medicinal Chemistry
and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Remah Ali
- Department of Medicinal Chemistry
and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anthony M. Pedley
- Department of Medicinal Chemistry
and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Qingshou Chen
- Department of Medicinal Chemistry
and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kyle E. Harvey
- Department of Medicinal Chemistry
and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael K. Wendt
- Department of Medicinal Chemistry
and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Vincent Jo Davisson
- Department of Medicinal Chemistry
and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
47
|
Mehta A, Ramachandra CJA, Chitre A, Singh P, Lua CH, Shim W. Acetylated Signal Transducer and Activator of Transcription 3 Functions as Molecular Adaptor Independent of Transcriptional Activity During Human Cardiogenesis. Stem Cells 2017; 35:2129-2137. [DOI: 10.1002/stem.2665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/01/2017] [Accepted: 07/02/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Ashish Mehta
- National Heart Research Institute Singapore; Singapore
- Cardiovascular Academic Clinical Program, DUKE-NUS Medical School; Singapore
| | | | - Anuja Chitre
- National Heart Research Institute Singapore; Singapore
| | - Pritpal Singh
- National Heart Research Institute Singapore; Singapore
| | - Chong Hui Lua
- National Heart Research Institute Singapore; Singapore
| | - Winston Shim
- National Heart Research Institute Singapore; Singapore
- Cardiovascular and Metabolic Disorders Program; DUKE-NUS Medical School; Singapore
| |
Collapse
|
48
|
Qiao C, Lang X, Luo L, Geng S, Lv M, Geng J, Li X, Feng J, Shen B, Li Y. Multi-parametric analysis reveals enhanced G2-phase arrest of an optimized anti-HER2 antibody to inhibit breast cancer. Biotechnol Lett 2017; 39:1309-1323. [PMID: 28560579 DOI: 10.1007/s10529-017-2364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/25/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To find a "me-better" antibody by epitope-specific antibody optimization and multi-parametric analysis. RESULTS Using epitope-specific library based on the commercial drug, Pertuzumab/2C4, we screened a novel human anti-HER2 antibody, MIL5, which has slightly higher affinity than the drug. MIL5 and 2C4 share the same epitope to bind HER2; however, MIL5 bound to HER2 His235-His245 more tightly than 2C4, which could be the main reason of its enhanced affinity. In vivo experiments also showed MIL5 had stronger anti-cancer activity than 2C4; however, the classical flow cytometry assays to detect cell apoptosis or cycling did not show convincing evidence of the advantages of MIL5. Thus we introduced the multi-parameter in-cell analysis method to evaluate the superiority of MIL5 to 2C4 in arresting cancer cells in G2-phase to inhibit cell growth and/or proliferation. CONCLUSION Multi-parametric method confirmed stronger arrest of G2 by MIL5 to show better anti-cancer function both in vitro and in vivo than 2C4.
Collapse
Affiliation(s)
- Chunxia Qiao
- Laboratory of Molecular Immunology, Institute of Basic Medical Sciences, P. O. Box 130 (3), Taiping Road #27 Haidian, Beijing, 100850, China
| | - Xiaoling Lang
- Economic-Technological Development Area, Beijing Mabworks Biotech Company Ltd., Beijing, 101111, China
| | - Longlong Luo
- Laboratory of Molecular Immunology, Institute of Basic Medical Sciences, P. O. Box 130 (3), Taiping Road #27 Haidian, Beijing, 100850, China
| | - Shusheng Geng
- Economic-Technological Development Area, Beijing Mabworks Biotech Company Ltd., Beijing, 101111, China
| | - Ming Lv
- Laboratory of Molecular Immunology, Institute of Basic Medical Sciences, P. O. Box 130 (3), Taiping Road #27 Haidian, Beijing, 100850, China
| | - Jing Geng
- Laboratory of Molecular Immunology, Institute of Basic Medical Sciences, P. O. Box 130 (3), Taiping Road #27 Haidian, Beijing, 100850, China
| | - Xinying Li
- Laboratory of Molecular Immunology, Institute of Basic Medical Sciences, P. O. Box 130 (3), Taiping Road #27 Haidian, Beijing, 100850, China
| | - Jiannan Feng
- Laboratory of Molecular Immunology, Institute of Basic Medical Sciences, P. O. Box 130 (3), Taiping Road #27 Haidian, Beijing, 100850, China
| | - Beifen Shen
- Laboratory of Molecular Immunology, Institute of Basic Medical Sciences, P. O. Box 130 (3), Taiping Road #27 Haidian, Beijing, 100850, China
| | - Yan Li
- Laboratory of Molecular Immunology, Institute of Basic Medical Sciences, P. O. Box 130 (3), Taiping Road #27 Haidian, Beijing, 100850, China. .,Economic-Technological Development Area, Beijing Mabworks Biotech Company Ltd., Beijing, 101111, China.
| |
Collapse
|
49
|
Sen M, Johnston PA, Pollock NI, DeGrave K, Joyce SC, Freilino ML, Hua Y, Camarco DP, Close DA, Huryn DM, Wipf P, Grandis JR. Mechanism of action of selective inhibitors of IL-6 induced STAT3 pathway in head and neck cancer cell lines. J Chem Biol 2017; 10:129-141. [PMID: 28684999 DOI: 10.1007/s12154-017-0169-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/06/2017] [Indexed: 12/13/2022] Open
Abstract
Studies indicate that elevated interleukin-6 (IL-6) levels engage IL6Rα-gp130 receptor complexes to activate signal transducer and activator of transcription 3 (STAT3) that is hyperactivated in many cancers including head and neck squamous cell carcinoma (HNSCC). Our previous HCS campaign identified several hits that selectively blocked IL-6-induced STAT3 activation. This study describes our investigation of the mechanism(s) of action of three of the four chemical series that progressed to lead activities: a triazolothiadiazine (864669), amino alcohol (856350), and an oxazole-piperazine (4248543). We demonstrated that all three blocked IL-6-induced upregulation of the cyclin D1 and Bcl-XL STAT3 target genes. None of the compounds exhibited direct binding interactions with STAT3 in surface plasmon resonance (SPR) binding assays; neither did they inhibit the recruitment and binding of a phospho-tyrosine-gp130 peptide to STAT3 in a fluorescence polarization assay. Furthermore, they exhibited little or no inhibition in a panel of 83 cancer-associated in vitro kinase profiling assays, including lack of inhibition of IL-6-induced Janus kinase (JAK 1, 2, and 3) activation. Further, 864669 and 4248543 selectively inhibited IL-6-induced STAT3 activation but not that induced by oncostatin M (OSM). The compounds 864669 and 4248543 abrogated IL-6-induced phosphorylation of the gp130 signaling subunit (phospho-gp130Y905) of the IL-6-receptor complex in HNSCC cell lines which generate docking sites for the SH2 domains of STAT3. Our data indicate that 864669 and 4248543 block IL-6-induced STAT activation by interfering with the recruitment, assembly, or activation of the hexamer-activated IL-6/IL-6Rα/gp130 signaling complex that occurs after IL-6 binding to IL-6Rα subunits.
Collapse
Affiliation(s)
- Malabika Sen
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Netanya I Pollock
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Kara DeGrave
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Sonali C Joyce
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Maria L Freilino
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Yun Hua
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Daniel P Camarco
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - David A Close
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Donna M Huryn
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Peter Wipf
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Jennifer R Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94118 USA.,Clinical and Translational Science Institute, University of California, San Francisco, Box 0558, 550 16th Street, San Francisco, CA 94143 USA
| |
Collapse
|
50
|
EGFR-mediated apoptosis via STAT3. Exp Cell Res 2017; 356:93-103. [PMID: 28433699 DOI: 10.1016/j.yexcr.2017.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 11/20/2022]
Abstract
The Epidermal Growth Factor Receptor (EGFR) is a cell surface receptor with primary implications in cell growth in both normal and malignant tissue. Paradoxically, cell lines that hyperexpress the EGFR have been documented to undergo receptor-mediated apoptosis. The underlying mechanism by which EGF-induced apoptosis occurs however remains inexplicit. In an attempt to identify this mechanism, we assessed downstream effectors of EGFR in MDA-MB-468 cells during conditions of EGF-induced apoptosis. The effector assessment revealed STAT3 as a potential mediator of EGF-induced apoptosis. Alternative strategies for activating STAT3, independent of EGFR stimulation, resulted in the induction of the apoptotic pathways. A reduction in STAT3 expression via RNAi resulted in a significant attenuation of EGF-induced PARP cleavage. Our findings support STAT3 as a positive mediator of EGF-induced apoptosis in MDA-MB-468 cells.
Collapse
|