1
|
Lalonde R, Strazielle C. Neurochemical Anatomy of Cushing's Syndrome. Neurochem Res 2024; 49:1945-1964. [PMID: 38833089 DOI: 10.1007/s11064-024-04172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
The neurochemical anatomy underlying Cushing's syndrome is examined for regional brain metabolism as well as neurotransmitter levels and receptor binding of biogenic amines and amino acids. Preliminary studies generally indicate that glucose uptake, blood flow, and activation on fMRI scans decreased in neocortical areas and increased in subcortical areas of patients with Cushing's syndrome or disease. Glucocorticoid-mediated increases in hippocampal metabolism occurred despite in vitro evidence of glucocorticoid-induced decreases in glucose uptake or consumption, indicating that in vivo increases are the result of indirect, compensatory, or preliminary responses. In animal studies, glucocorticoid administration decreased 5HT levels and 5HT1A receptor binding in several brain regions while adrenalectomy increased such binding. Region-specific effects were also obtained in regard to the dopaminergic system, with predominant actions of glucocorticoid-induced potentiation of reuptake blockers and releasing agents. More in-depth neuroanatomical analyses are warranted of these and amino acid-related neurotransmission.
Collapse
Affiliation(s)
- Robert Lalonde
- Laboratory of Stress, Immunity, Pathogens (UR SIMPA), University of Lorraine, Campus Santé, Bât A/B 9, avenue de la Forêt de Haye, Vandoeuvre-les-Nancy, 54500, France.
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (UR SIMPA), University of Lorraine, Campus Santé, Bât A/B 9, avenue de la Forêt de Haye, Vandoeuvre-les-Nancy, 54500, France
- CHRU Nancy, Vandoeuvre-les-Nancy, France
| |
Collapse
|
2
|
Qin Y, Chen J, Li J, Wu N. Relationship between hippocampal gene expression and cognitive performance differences in visual discrimination learning task of male rats. Behav Brain Res 2023; 454:114659. [PMID: 37690703 DOI: 10.1016/j.bbr.2023.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Learning to discriminate between environmental visual stimuli is essential to make right decisions and guide appropriate behaviors. Moreover, impairments in visual discrimination learning are observed in several neuropsychiatric disorders. Visual discrimination learning requires perception and memory processing, in which the hippocampus critically involved. To understand the molecular mechanisms underpinning hippocampus function in visual discrimination learning, we examined the hippocampal gene expression profiles of Sprague-Dawley rats with different cognitive performance (high cognition group vs. low cognition group) in the modified visual discrimination learning task, using high-throughput RNA sequencing technology. Compared with the low cognition group, bioinformatics analysis indicated that 319 genes were differentially expressed in the high cognition group with statistical significance, of which 253 genes were down-regulated and 66 genes were up-regulated. The functional enrichment analysis showed that protein translation and energy metabolism were up-regulated pathways, while transforming growth factor beta receptor signaling pathway, bone morphogenetic protein signaling pathway, apoptosis, inflammation response, transport, and glycosaminoglycan metabolism were down-regulated pathways, which were related to good cognitive performance in the visual discrimination learning task. Taken together, our finding reveals the differential gene expression and enrichment biological pathways related to cognitive performance differences in visual discrimination learning of rats, which provides us direct insight into the molecular mechanisms of hippocampus function in visual discrimination learning and may contribute to developing potential treatment strategies for neuropsychiatric disorders accompanied with cognitive impairments.
Collapse
Affiliation(s)
- Yihan Qin
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Jianmin Chen
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| |
Collapse
|
3
|
Akinrinde AS, Fapuro J, Soetan KO. Zinc and ascorbic acid treatment alleviates systemic inflammation and gastrointestinal and renal oxidative stress induced by sodium azide in rats. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00108-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Sodium azide (NaN3) is a chemical of rapidly increasing economic importance but with high toxic attributes. In this study, the effects of zinc (Zn) and ascorbic acid (AsA) supplementation on sodium azide (NaN3)-induced toxicity in the stomach, colon and kidneys were evaluated in Wistar rats. Twenty-eight rats were randomly allocated to four experimental groups as follows: group A (control) given distilled water only; group B (NaN3 only, 20 mg/kg); group C (NaN3 + zinc sulphate, ZnSO4 80 mg/kg); and group D (NaN3 + AsA 200 mg/kg).
Results
NaN3 was found to significantly (p < 0.05) induce increases in serum nitric oxide (NO), advanced oxidation protein products (AOPP), myeloperoxidase (MPO) and total protein levels, along with significant (p < 0.05) increase in gastric, colonic and renal malondialdehyde (MDA) and protein carbonyl (PCO) levels. In addition, NaN3 induced significant (p < 0.05) reduction in superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities in the colon and kidneys. Treatment with Zn or AsA caused significant (p < 0.05) reduction in serum levels of oxidative and inflammatory markers, as well as tissue PCO and MDA levels. Moreover, co-treatment with Zn or AsA significantly (p < 0.05) restored colonic and renal levels of antioxidant enzymes, reduced glutathione and protein thiols.
Conclusions
This study shows that Zn or AsA supplementation alleviated NaN3 toxicity by suppressing systemic inflammation and preventing oxidative damage in the stomach, colon and kidneys of rats.
Collapse
|
4
|
Badmus KA, Idrus Z, Meng GY, Sazili AQ, Mamat-Hamidi K. Telomere Length and Regulatory Genes as Novel Stress Biomarkers and Their Diversities in Broiler Chickens ( Gallus gallus domesticus) Subjected to Corticosterone Feeding. Animals (Basel) 2021; 11:ani11102759. [PMID: 34679783 PMCID: PMC8532957 DOI: 10.3390/ani11102759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Assessment of poultry welfare is very crucial for sustainable production in the tropics. There is a demand for alternatives to plasma corticosterone levels as they have received much criticism as an unsuitable predictor of animal welfare due to inconsistency. In this study, we noticed no effect of age on plasma corticosterone (CORT) although it was altered by CORT treatment. However, growth performances and organ weight were affected by CORT treatment and age. The broad sense evaluation of telomere length in this study revealed that telomere length in the blood, muscle, liver and heart was shortened by chronic stress induced by corticosterone administration. The expression profile of the telomere regulatory genes was altered by chronic stress. This study informed us of the potential of telomere length and its regulatory genes in the assessment of animal welfare in the poultry sector for sustainable production. Abstract This study was designed to characterize telomere length and its regulatory genes and to evaluate their potential as well-being biomarkers. Chickens were fed a diet containing corticosterone (CORT) for 4 weeks and performances, organ weight, plasma CORT levels, telomere lengths and regulatory genes were measured and recorded. Body weights of CORT-fed chickens were significantly suppressed (p < 0.05), and organ weights and circulating CORT plasma levels (p < 0.05) were altered. Interaction effect of CORT and duration was significant (p < 0.05) on heart and liver telomere length. CORT significantly (p < 0.05) shortened the telomere length of the whole blood, muscle, liver and heart. The TRF1, chTERT, TELO2 and HSF1 were significantly (p < 0.05) upregulated in the liver and heart at week 4 although these genes and TERRA were downregulated in the muscles at weeks 2 and 4. Therefore, telomere lengths and their regulators are associated and diverse, so they can be used as novel biomarkers of stress in broiler chickens fed with CORT.
Collapse
Affiliation(s)
- Kazeem Ajasa Badmus
- Department of Animal Science, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia; (K.A.B.); (Z.I.); (A.Q.S.)
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
| | - Zulkifli Idrus
- Department of Animal Science, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia; (K.A.B.); (Z.I.); (A.Q.S.)
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
| | - Goh Yong Meng
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
- Department of Veterinary Pre-Clinical Science, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia
| | - Awis Qurni Sazili
- Department of Animal Science, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia; (K.A.B.); (Z.I.); (A.Q.S.)
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
| | - Kamalludin Mamat-Hamidi
- Department of Animal Science, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia; (K.A.B.); (Z.I.); (A.Q.S.)
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
5
|
Almasri H, Tavares DA, Diogon M, Pioz M, Alamil M, Sené D, Tchamitchian S, Cousin M, Brunet JL, Belzunces LP. Physiological effects of the interaction between Nosema ceranae and sequential and overlapping exposure to glyphosate and difenoconazole in the honey bee Apis mellifera. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112258. [PMID: 33915451 DOI: 10.1016/j.ecoenv.2021.112258] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Pathogens and pollutants, such as pesticides, are potential stressors to all living organisms, including honey bees. Herbicides and fungicides are among the most prevalent pesticides in beehive matrices, and their interaction with Nosema ceranae is not well understood. In this study, the interactions between N. ceranae, the herbicide glyphosate and the fungicide difenoconazole were studied under combined sequential and overlapping exposure to the pesticides at a concentration of 0.1 µg/L in food. In the sequential exposure experiment, newly emerged bees were exposed to the herbicide from day 3 to day 13 after emerging and to the fungicide from day 13 to day 23. In the overlapping exposure experiment, bees were exposed to the herbicide from day 3 to day 13 and to the fungicide from day 7 to day 17. Infection by Nosema in early adult life stages (a few hours post emergence) greatly affected the survival of honey bees and elicited much higher mortality than was induced by pesticides either alone or in combination. Overlapping exposure to both pesticides induced higher mortality than was caused by sequential or individual exposure. Overlapping, but not sequential, exposure to pesticides synergistically increased the adverse effect of N. ceranae on honey bee longevity. The combination of Nosema and pesticides had a strong impact on physiological markers of the nervous system, detoxification, antioxidant defenses and social immunity of honey bees.
Collapse
Affiliation(s)
- Hanine Almasri
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | | | - Marie Diogon
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Maryline Pioz
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | - Maryam Alamil
- INRAE, UR Biostatistiques et Processus Spatiaux, F-84914 Avignon, France
| | - Déborah Sené
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | - Sylvie Tchamitchian
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | - Marianne Cousin
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | - Jean-Luc Brunet
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France
| | - Luc P Belzunces
- INRAE, UR 406 A&E, Laboratoire de Toxicologie Environnementale, F-84000 Avignon, France.
| |
Collapse
|
6
|
Méndez M, Fidalgo C, Arias JL, Arias N. Methylene blue and photobiomodulation recover cognitive impairment in hepatic encephalopathy through different effects on cytochrome c-oxidase. Behav Brain Res 2021; 403:113164. [PMID: 33549685 DOI: 10.1016/j.bbr.2021.113164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/02/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Mitochondrial dysfunction plays a central role in hepatic encephalopathy (HE), due to changes in enzyme cytochrome c-oxidase (CCO), causing a decline in brain metabolism. We used an HE animal model and applied intracranial administration of methylene blue (MB) and transcranial photobiomodulation (PBM), both targeting CCO, to determine their differential effects on recovering cognition. Five groups of rats were used: sham-operated group + saline (SHAM + SAL, n = 6), hepatic encephalopathy + SAL (HE + SAL, n = 7), SHAM + methylene blue (SHAM + MB, n = 7), HE + MB (n = 7), HE + PBM (n = 7). PBM animals were exposed transcranially to 670 +/- 10 nm LED light at a dose of 9 J/cm2 once a day for 7 days, and the MB and SAL groups were injected with 2.2 μg/0.5 μL in the accumbens. Cognitive dysfunction was evaluated on a striatal stimulus-response task using the Morris water maze. Our results showed cognitive improvement in the HE group when treated with MB. This improvement was accompanied by a decrease in CCO activity in the prefrontal cortex, dorsal striatum, and dorsal hippocampus. When comparing MB and PBM, we found that, although both treatments effectively improved the HE-memory deficit, there was a differential effect on CCO. A general decrease in CCO activity was found in the prefrontal and entorhinal cortices, dorsal striatum, and hippocampus when PBM, compared to MB, was applied. Our results suggest that mitochondrial dysfunction and brain metabolic decline in HE might involve CCO alteration and can be improved by administering MB and PBM.
Collapse
Affiliation(s)
- Marta Méndez
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, Oviedo, 33003, Spain; INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Camino Fidalgo
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain; Departamento de Psicología y Sociología, IIS Aragón, Universidad de Zaragoza, Ciudad Escolar s/n, Teruel, 44003, Spain
| | - Jorge L Arias
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, Oviedo, 33003, Spain; INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Natalia Arias
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain; UK Dementia Research Institute, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.
| |
Collapse
|
7
|
Büeler H. Mitochondrial and Autophagic Regulation of Adult Neurogenesis in the Healthy and Diseased Brain. Int J Mol Sci 2021; 22:ijms22073342. [PMID: 33805219 PMCID: PMC8036818 DOI: 10.3390/ijms22073342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Adult neurogenesis is a highly regulated process during which new neurons are generated from neural stem cells in two discrete regions of the adult brain: the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Defects of adult hippocampal neurogenesis have been linked to cognitive decline and dysfunction during natural aging and in neurodegenerative diseases, as well as psychological stress-induced mood disorders. Understanding the mechanisms and pathways that regulate adult neurogenesis is crucial to improving preventative measures and therapies for these conditions. Accumulating evidence shows that mitochondria directly regulate various steps and phases of adult neurogenesis. This review summarizes recent findings on how mitochondrial metabolism, dynamics, and reactive oxygen species control several aspects of adult neural stem cell function and their differentiation to newborn neurons. It also discusses the importance of autophagy for adult neurogenesis, and how mitochondrial and autophagic dysfunction may contribute to cognitive defects and stress-induced mood disorders by compromising adult neurogenesis. Finally, I suggest possible ways to target mitochondrial function as a strategy for stem cell-based interventions and treatments for cognitive and mood disorders.
Collapse
Affiliation(s)
- Hansruedi Büeler
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
8
|
Huang M, Pu Y, Peng Y, Fu Q, Guo L, Wu Y, Zheng Y. Biotin and glucose dual-targeting, ligand-modified liposomes promote breast tumor-specific drug delivery. Bioorg Med Chem Lett 2020; 30:127151. [PMID: 32317211 DOI: 10.1016/j.bmcl.2020.127151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/05/2020] [Accepted: 03/27/2020] [Indexed: 01/08/2023]
Abstract
Breast cancer is the second leading cause of cancer-related deaths in women. Ligand-modified liposomes are used for breast tumor-specific drug delivery to improve the efficacy and reduce the side effects of chemotherapy; however, only a few liposomes with high targeting efficiency have been developed because the mono-targeting, ligand-modified liposomes are generally unable to deliver an adequate therapeutic dose. In this study, we designed biotin-glucose branched ligand-modified, dual-targeting liposomes (Bio-Glu-Lip) and evaluated their potential as a targeted chemotherapy delivery system in vitro and in vivo. When compared with the non-targeting liposome (Lip), Bio-Lip, and Glu-Lip, Bio-Glu-Lip had the highest cell uptake in 4T1 cells (3.00-fold, 1.60-fold, and 1.95-fold higher, respectively) and in MCF-7 cells (2.63-fold, 1.63-fold, and 1.85-fold higher, respectively). The subsequent cytotoxicity and in vivo assays further supported the dual-targeting liposome is a promising drug delivery carrier for the treatment of breast cancer.
Collapse
Affiliation(s)
- Mengyi Huang
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yanchi Pu
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yao Peng
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Qiuyi Fu
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Li Guo
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yong Wu
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yongxiang Zheng
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
9
|
Gashout HA, Guzman-Novoa E, Goodwin PH, Correa-Benítez A. Impact of sublethal exposure to synthetic and natural acaricides on honey bee (Apis mellifera) memory and expression of genes related to memory. JOURNAL OF INSECT PHYSIOLOGY 2020; 121:104014. [PMID: 31923391 DOI: 10.1016/j.jinsphys.2020.104014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Acaricides are used by beekeepers in honey bee (Apis mellifera L.) colonies to control parasitic mites, but may also have adverse effects to honey bees. In this study, five commonly used acaricides were tested for their sublethal effects on memory and expression of neural-related genes in honey bees. Memory measured with the proboscis extension reflex (PER) assay was significantly reduced by topical treatment of bees with a single LD05 dose of formic acid at 2 and 24 h post treatment (hpt). However, tau-fluvalinate, amitraz, coumaphos, and formic acid, but not thymol, resulted in memory loss at 48 hpt. The LD05 doses of the acraricides did not affect expression of neuroligin-1, related to memory, or expression of major royal jelly protein-1, related to both memory and development, although expression of both genes was affected at LD50 doses. The LD05 doses of thymol, formic acid, amitraz and coumaphos increased defensin-1 expression, which is related to both memory and immunity. The effect of thymol, however, may have been due to its impact on the immune response rather than memory. This study demonstrates that acaricides vary in their effects on bee's memory, and that the widely used acaricide, formic acid, is particularly damaging.
Collapse
Affiliation(s)
- Hanan A Gashout
- Plant Protection Dept., Faculty of Agriculture, University of Tripoli, P. O. Box 13538, Tripoli, Libya; School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada.
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada
| | - Paul H Goodwin
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada
| | - Adriana Correa-Benítez
- Departamento de Medicina y Zootecnia en Abejas, FMVZ, UNAM, Cd. Univ., Mexico 04510, Mexico
| |
Collapse
|
10
|
Harlé G, Lalonde R, Fonte C, Ropars A, Frippiat JP, Strazielle C. Repeated corticosterone injections in adult mice alter stress hormonal receptor expression in the cerebellum and motor coordination without affecting spatial learning. Behav Brain Res 2017; 326:121-131. [DOI: 10.1016/j.bbr.2017.02.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
|
11
|
Stress and corticosteroids regulate rat hippocampal mitochondrial DNA gene expression via the glucocorticoid receptor. Proc Natl Acad Sci U S A 2016; 113:9099-104. [PMID: 27457949 DOI: 10.1073/pnas.1602185113] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Glucocorticoids (GCs) are involved in stress and circadian regulation, and produce many actions via the GC receptor (GR), which is classically understood to function as a nuclear transcription factor. However, the nuclear genome is not the only genome in eukaryotic cells. The mitochondria also contain a small circular genome, the mitochondrial DNA (mtDNA), that encodes 13 polypeptides. Recent work has established that, in the brain and other systems, the GR is translocated from the cytosol to the mitochondria and that stress and corticosteroids have a direct influence on mtDNA transcription and mitochondrial physiology. To determine if stress affects mitochondrially transcribed mRNA (mtRNA) expression, we exposed adult male rats to both acute and chronic immobilization stress and examined mtRNA expression using quantitative RT-PCR. We found that acute stress had a main effect on mtRNA expression and that expression of NADH dehydrogenase 1, 3, and 6 (ND-1, ND-3, ND-6) and ATP synthase 6 (ATP-6) genes was significantly down-regulated. Chronic stress induced a significant up-regulation of ND-6 expression. Adrenalectomy abolished acute stress-induced mtRNA regulation, demonstrating GC dependence. ChIP sequencing of GR showed that corticosterone treatment induced a dose-dependent association of the GR with the control region of the mitochondrial genome. These findings demonstrate GR and stress-dependent transcriptional regulation of the mitochondrial genome in vivo and are consistent with previous work linking stress and GCs with changes in the function of brain mitochondria.
Collapse
|
12
|
von Eye A, Schuster C, Rogers WM. Modelling Synergy using Manifest Categorical Variables. INTERNATIONAL JOURNAL OF BEHAVIORAL DEVELOPMENT 2016. [DOI: 10.1080/016502598384261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
This paper discusses methods to model the concept of synergy at the level of manifest categorical variables. First, a classification of concepts of synergy is presented. A dditive and nonadditive concepts of synergy are distinguished. Most prominent among the nonadditive concepts is superadditive synergy. Examples are given from the natural sciences and the social sciences. M delling focuses on the relationship between the agents involved in a synergetic process. These relationships are expressed in form of contrasts, expressed in effect coding vectors in design matrices for nonstandard log-linear models. A method by Schuster is used to transform design matrices such that parameters reflect the proposed relationships. A n example reanalyses data presented by Bishop, Fienberg, and Holland (1975) that describe the development of thromboembolisms in women who differ in their patterns of contraceptive use and smoking. Alternative methods of analysis are com pared. Implications for developmental research are discussed.
Collapse
|
13
|
Neutral red as a mediator for the enhancement of electricity production using a domestic wastewater double chamber microbial fuel cell. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1152-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
14
|
Gabison L, Colloc’h N, Prangé T. Azide inhibition of urate oxidase. Acta Crystallogr F Struct Biol Commun 2014; 70:896-902. [PMID: 25005084 PMCID: PMC4089527 DOI: 10.1107/s2053230x14011753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/21/2014] [Indexed: 02/04/2023] Open
Abstract
The inhibition of urate oxidase (UOX) by azide was investigated by X-ray diffraction techniques and compared with cyanide inhibition. Two well characterized sites for reagents are present in the enzyme: the dioxygen site and the substrate-binding site. To examine the selectivity of these sites towards azide inhibition, several crystallization conditions were developed. UOX was co-crystallized with azide (N3) in the presence or absence of either uric acid (UA, the natural substrate) or 8-azaxanthine (8AZA, a competitive inhibitor). In a second set of experiments, previously grown orthorhombic crystals of the UOX-UA or UOX-8AZA complexes were soaked in sodium azide solutions. In a third set of experiments, orthorhombic crystals of UOX with the exchangeable ligand 8-nitroxanthine (8NXN) were soaked in a solution containing uric acid and azide simultaneously (competitive soaking). In all assays, the soaking periods were either short (a few hours) or long (one or two months). These different experimental conditions showed that one or other of the sites, or the two sites together, could be inhibited. This also demonstrated that azide not only competes with dioxygen as cyanide does but also competes with the substrate for its enzymatic site. A model in agreement with experimental data would be an azide in equilibrium between two sites, kinetically in favour of the dioxygen site and thermodynamically in favour of the substrate-binding site.
Collapse
Affiliation(s)
- Laure Gabison
- Faculty of Pharmacy, UMR 8015 CNRS Laboratoire de Cristallographie et RMN Biologiques, 4 Avenue de l’Observatoire, 75006 Paris, France
| | - Nathalie Colloc’h
- ISTCT, UMR 6301–CNRS–Université de Caen–Normandie Université–CEA, Centre Cyceron, Boulevard Becquerel, 14074 Caen CEDEX, France
| | - Thierry Prangé
- Faculty of Pharmacy, UMR 8015 CNRS Laboratoire de Cristallographie et RMN Biologiques, 4 Avenue de l’Observatoire, 75006 Paris, France
| |
Collapse
|
15
|
Abstract
The link between chronic psychosocial and metabolic stress and the pathogenesis of disease has been extensively documented. Nevertheless, the cellular mechanisms by which stressful life experiences and their associated primary neuroendocrine mediators cause biological damage and increase disease risk remain poorly understood. The allostatic load model of chronic stress focuses on glucocorticoid dysregulation. In this Perspectives, we expand upon the metabolic aspects of this model-particularly glucose imbalance-and propose that mitochondrial dysfunction constitutes an early, modifiable target of chronic stress and stress-related health behaviours. Central to this process is mitochondrial regulation of energy metabolism and cellular signalling. Chronically elevated glucose levels damage both mitochondria and mitochondrial DNA, generating toxic products that can promote systemic inflammation, alter gene expression and hasten cell ageing. Consequently, the concept of 'mitochondrial allostatic load' defines the deleterious structural and functional changes that mitochondria undergo in response to elevated glucose levels and stress-related pathophysiology.
Collapse
Affiliation(s)
- Martin Picard
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and the University of Pennsylvania, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Robert-Paul Juster
- Integrated Program in Neuroscience, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
16
|
Quincozes-Santos A, Bobermin LD, Souza DG, Bellaver B, Gonçalves CA, Souza DO. Guanosine protects C6 astroglial cells against azide-induced oxidative damage: a putative role of heme oxygenase 1. J Neurochem 2014; 130:61-74. [DOI: 10.1111/jnc.12694] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/31/2014] [Accepted: 02/12/2014] [Indexed: 12/17/2022]
Affiliation(s)
- André Quincozes-Santos
- Departamento de Bioquímica; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica; Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | - Larissa Daniele Bobermin
- Departamento de Bioquímica; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica; Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | - Débora Guerini Souza
- Departamento de Bioquímica; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica; Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | - Bruna Bellaver
- Departamento de Bioquímica; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica; Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica; Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica; Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre RS Brazil
| |
Collapse
|
17
|
Beckner ME, Fellows-Mayle W, Zhang Z, Agostino NR, Kant JA, Day BW, Pollack IF. Identification of ATP citrate lyase as a positive regulator of glycolytic function in glioblastomas. Int J Cancer 2010; 126:2282-95. [PMID: 19795461 DOI: 10.1002/ijc.24918] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glioblastomas, the most malignant type of glioma, are more glycolytic than normal brain tissue. Robust migration of glioblastoma cells has been previously demonstrated under glycolytic conditions and their pseudopodia contain increased glycolytic and decreased mitochondrial enzymes. Glycolysis is suppressed by metabolic acids, including citric acid which is excluded from mitochondria during hypoxia. We postulated that glioma cells maintain glycolysis by regulating metabolic acids, especially in their pseudopodia. The enzyme that breaks down cytosolic citric acid is ATP citrate lyase (ACLY). Our identification of increased ACLY in pseudopodia of U87 glioblastoma cells on 1D gels and immunoblots prompted investigation of ACLY gene expression in gliomas for survival data and correlation with expression of ENO1, that encodes enolase 1. Queries of the NIH's REMBRANDT brain tumor database based on Affymetrix data indicated that decreased survival correlated with increased gene expression of ACLY in gliomas. Queries of gliomas and glioblastomas found an association of upregulated ACLY and ENO1 expression by chi square for all probe sets (reporters) combined and correlation for numbers of probe sets indicating shared upregulation of these genes. Real-time quantitative PCR confirmed correlation between ACLY and ENO1 in 21 glioblastomas (p < 0.001). Inhibition of ACLY with hydroxycitrate suppressed (p < 0.05) in vitro glioblastoma cell migration, clonogenicity and brain invasion under glycolytic conditions and enhanced the suppressive effects of a Met inhibitor on cell migration. In summary, gene expression data, proteomics and functional assays support ACLY as a positive regulator of glycolysis in glioblastomas.
Collapse
Affiliation(s)
- Marie E Beckner
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Cytotoxicity of pharmaceutical and cosmetic gel-forming polymers, preservatives and glycerol to primary murine cell cultures. Acta Med Litu 2010. [DOI: 10.2478/v10140-009-0013-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Chalova VI, Lingbeck JM, Kwon YM, Ricke SC. Extracellular antimutagenic activities of selected probiotic Bifidobacterium and Lactobacillus spp. as a function of growth phase. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2008; 43:193-198. [PMID: 18246512 DOI: 10.1080/03601230701795262] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The capabilities of selected strains from genera Lactobacillus and Bifidobacterium to produce extracellular bioactive compounds with antimutagenic properties against benzo[a]pyrene (BaP) and sodium azide (SA) were tested as a function of growth phase. The bacterial supernatants from exponential and stationary phases were characterized with different patterns of antimutagenic activity against the two mutagens. All lactobacilli exhibited either no effect or low antimutagenicity against BaP during exponential growth. Higher antimutagenic activities of lactobacilli supernatants were observed in the stationary phase against SA as well. An exception was Lactobacillus sakei 23K which expressed a relatively low percent of inhibition of mutagenesis (PI = 28.14 +/- 7.41) in the exponential phase and no antimutagenic activity in the stationary phase. Of the bifidobacteria, only Bifidobacterium adoleascentis ATCC 15703 exhibited higher antimutagenecity against BaP in the exponential phase. The same bacterial supernatants however, did not possess any antimutagenicity against SA in either the exponential or stationary phases. B. bifidum ATCC 11863 did not express any significant differences in its activity against either BaP or SA in the exponential or stationary phases. Only B. breve ATCC 15700 expressed a high antimutagenic effect against SA in the stationary phase but exhibited no effect during exponential growth. Overall, bacterial antimutagenic responses were associated with growth phase and type of mutagen.
Collapse
Affiliation(s)
- V I Chalova
- Department of Food Science and Center for Food Safety and Microbiology, University of Arkansas, Fayetteville, Arkansas, USA
| | | | | | | |
Collapse
|
20
|
López L, Aller MA, Miranda R, Sánchez-Patán F, Nava MP, Arias J, Arias JL. Prehepatic portal hypertension induces alterations in cytochrome oxidase activity in the rat adrenal gland. J INVEST SURG 2006; 19:79-86. [PMID: 16531365 DOI: 10.1080/08941930600567096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
One approach to assess neuroendocrine response to portal hypertension in short-term portal vein-stenosed rats consists in studying metabolic and functional activity patterns in adrenal glands using mitochondrial enzyme cytochrome c oxidase (COX) as a histochemical marker. Male Wistar rats were divided into two groups: a control group (Group I; n = 8), in which the animals did not undergo any operative intervention, and a triple calibrated portal vein stenosis group (TPVS) (Group II; n = 7). The sections of suprarenal glands were histochemically stained for COX and the optical densitometry was measured by a computer image analyzer attached to a microscope. In TPVS rats, COX activity in the adrenal gland cortex is lower than in control rats and affects the fascicular (52.30, 47.16-60.98, vs. 67.12, 60.31-73.89, p = .002), glomerular (49.68, 46.19-53.56 vs. 70.47, 64.64-73.51, p < .001), and reticular (47.35, 35.63-54.39, vs. 55.37, 49.76-58.97; p < .05) layers. In contrast, COX activity in the adrenal gland medulla is similar in TPVS rats and in control rats (29.91, 29.54-31.18, vs. 29.67, 28.95-30.23). The changes in adrenocortical COX activity in short-term-TPVS rats could constitute a pathogenic factor for both splanchnic and systemic hyperdynamic circulations, described in this experimental model of prehepatic portal hypertension.
Collapse
Affiliation(s)
- Laudino López
- Psychobiology Laboratory, School of Psychology, University of Oviedo, Principado de Asturias, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Beckner ME, Gobbel GT, Abounader R, Burovic F, Agostino NR, Laterra J, Pollack IF. Glycolytic glioma cells with active glycogen synthase are sensitive to PTEN and inhibitors of PI3K and gluconeogenesis. J Transl Med 2005; 85:1457-70. [PMID: 16170333 DOI: 10.1038/labinvest.3700355] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Increased glycolysis is characteristic of malignancy. Previously, with a mitochondrial inhibitor, we demonstrated that glycolytic ATP production was sufficient to support migration of melanoma cells. Recently, we found that glycolytic enzymes were abundant and some were increased in pseudopodia formed by U87 glioma (astrocytoma) cells. In this study, we examined cell migration, adhesion (a step in migration), and Matrigel invasion of U87 and LN229 glioma cells when their mitochondria were inhibited with sodium azide or limited by 1% O(2). Cell migration, adhesion, and invasion were comparable, with and without mitochondrial inhibition. Upon discovering that glycolysis alone can support glioma cell migration, unique features of glucose metabolism in astrocytic cells were investigated. The ability of astrocytic cells to remove lactate, the inhibitor of glycolysis, via gluconeogenesis and incorporation into glycogen led to consideration of supportive genetic mutations. Loss of phosphatase and tensin homolog (PTEN) releases glycogenesis from constitutive inhibition by glycogen synthase kinase-3 (GSK3). We hypothesize that glycolysis in gliomas can support invasive migration, especially when aided by loss of PTEN's regulation on the phosphatidylinositol-3 kinase (PI3K)/Akt pathway leading to inhibition of GSK3. Migration of PTEN-mutated U87 cells was studied for release of extracellular lactic acid and support by gluconeogenesis, loss of PTEN, and active PI3K. Lactic acid levels plateaued and phosphorylation changes confirmed activation of the PI3K/Akt pathway and glycogen synthase when cells relied only on glycolysis. Glycolytic U87 cell migration and phosphorylation of GSK3 were inhibited by PTEN transfection. Glycolytic migration was also suppressed by inhibiting PI3K and gluconeogenesis with wortmannin and metformin, respectively. These findings confirm that glycolytic glioma cells can migrate invasively and that the loss of PTEN is supportive, with activated glycogenic potential included among the relevant downstream effects.
Collapse
Affiliation(s)
- Marie E Beckner
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Mitochondria, metabolic inhibitors and neurodegeneration. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
23
|
Gonzalez-Lima F, Bruchey AK. Extinction memory improvement by the metabolic enhancer methylene blue. Learn Mem 2005; 11:633-40. [PMID: 15466319 PMCID: PMC523083 DOI: 10.1101/lm.82404] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We investigated whether postextinction administration of methylene blue (MB) could enhance retention of an extinguished conditioned response. MB is a redox compound that at low doses elevates cytochrome oxidase activity, thereby improving brain energy production. Saline or MB (4 mg/kg intraperitoneally) were administered to rats for 5 d following extinction training of tone-footshock conditioning. Postextinction freezing was lower in rats receiving MB compared with saline, suggesting that MB improved retention of the extinction memory. The MB effect was specific to tone-evoked freezing because there were no differences in pretone freezing. Control subjects similarly injected with MB showed no evidence of nonspecific effects on measures of motor activity and fearfulness. MB-treated rats exhibited both greater retention of extinction and greater overall brain metabolic activity. Rats with higher retention of extinction also showed a relative increase in cytochrome oxidase activity in prefrontal cortical regions, especially anterior infralimbic cortex, dorsal and medial frontal cortex, and lateral orbital cortex. These regional metabolic increases were also correlated to the behavioral freezing index used to assess retention of extinction. It was concluded that MB administered postextinction could enhance retention of extinction memory through an increase in brain cytochrome oxidase activity.
Collapse
Affiliation(s)
- F Gonzalez-Lima
- Institute for Neuroscience and Department of Psychology, University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
24
|
Conrad CD. THE RELATIONSHIP BETWEEN ACUTE GLUCOCORTICOID LEVELS AND HIPPOCAMPAL FUNCTION DEPENDS UPON TASK AVERSIVENESS AND MEMORY PROCESSING STAGE. NONLINEARITY IN BIOLOGY, TOXICOLOGY, MEDICINE 2005; 3:57-78. [PMID: 16601824 PMCID: PMC1431575 DOI: 10.1080/15401420490900245] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This review evaluates the effects of glucocorticoids (GCs), the adrenal steroids released in response to stress, on memory functions requiring the hippocampus in animals and humans. The data support the hypothesis that the learning function between GCs and hippocampal-dependent memory is modulated by 1) the aversive nature of the learning paradigm and 2) stage of memory processing (acquisition, consolidation, retrieval). When tasks are minimally aversive, the glucocorticoid receptor (GR) mediates an inverted U-shaped relationship between GC levels and hippocampal function, while the mineralocorticoid receptor (MR) mediates attentional processes and/or reaction to novelty. This inverted U-shaped relationship during minimally aversive training paradigms describes GC-mediated memory processing at both acquisition and consolidation. In contrast, highly aversive paradigms activate the amygdala and elevate GCs as part of the training procedure, revealing a nonlinear inverted U-shaped relationship during acquisition and a positive linear function during consolidation. Thus, highly aversive tasks that activate the amygdala shift the memory function from an inverted U-shaped curve to a linear representation between GC levels and memory consolidation.
Collapse
|
25
|
Conrad CD. THE RELATIONSHIP BETWEEN ACUTE GLUCOCORTICOID LEVELS AND HIPPOCAMPAL FUNCTION DEPENDS UPON TASK AVERSIVENESS AND MEMORY PROCESSING STAGE. NONLINEARITY IN BIOLOGY, TOXICOLOGY, MEDICINE 2005; 3. [PMID: 16601824 PMCID: PMC1431575 DOI: 10.2201/nonlin.003.01.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This review evaluates the effects of glucocorticoids (GCs), the adrenal steroids released in response to stress, on memory functions requiring the hippocampus in animals and humans. The data support the hypothesis that the learning function between GCs and hippocampal-dependent memory is modulated by 1) the aversive nature of the learning paradigm and 2) stage of memory processing (acquisition, consolidation, retrieval). When tasks are minimally aversive, the glucocorticoid receptor (GR) mediates an inverted U-shaped relationship between GC levels and hippocampal function, while the mineralocorticoid receptor (MR) mediates attentional processes and/or reaction to novelty. This inverted U-shaped relationship during minimally aversive training paradigms describes GC-mediated memory processing at both acquisition and consolidation. In contrast, highly aversive paradigms activate the amygdala and elevate GCs as part of the training procedure, revealing a nonlinear inverted U-shaped relationship during acquisition and a positive linear function during consolidation. Thus, highly aversive tasks that activate the amygdala shift the memory function from an inverted U-shaped curve to a linear representation between GC levels and memory consolidation.
Collapse
|
26
|
Callaway NL, Riha PD, Bruchey AK, Munshi Z, Gonzalez-Lima F. Methylene blue improves brain oxidative metabolism and memory retention in rats. Pharmacol Biochem Behav 2004; 77:175-81. [PMID: 14724055 DOI: 10.1016/j.pbb.2003.10.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methylene blue (MB) increases mitochondrial oxygen consumption and restores memory retention in rats metabolically impaired by inhibition of cytochrome c oxidase. This study tested two related hypotheses using biochemical and behavioral techniques: (1) that low-level MB would enhance brain cytochrome c oxidation, as tested in vitro in brain homogenates and after in vivo administration to rats and (2) that corresponding low-dose MB would enhance spatial memory retention in normal rats, as tested 24 h after rats were trained in a baited holeboard maze for 5 days with daily MB posttraining injections. The biochemical in vitro studies showed an increased rate of brain cytochrome c oxidation with the low but not the high MB concentrations tested. The in vivo administration studies showed that the corresponding MB low dose (1 mg/kg) increased brain cytochrome c oxidation 24 h after intraperitoneal injection, but not after 1 or 2 h postinjection. In the behavioral studies, spatial memory retention in probe trials (percentage of visits to training-baited holes compared to total visits) was significantly better for MB-treated than saline control groups (66% vs. 31%). Together the findings suggest that low-dose MB enhances spatial memory retention in normal rats by increasing brain cytochrome c oxidase activity.
Collapse
Affiliation(s)
- Narriman Lee Callaway
- Departments of Psychology, Neuroscience, and Pharmacology, University of Texas at Austin, 1 University Station A8000, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
27
|
Coburn-Litvak PS, Tata DA, Gorby HE, McCloskey DP, Richardson G, Anderson BJ. Chronic corticosterone affects brain weight, and mitochondrial, but not glial volume fraction in hippocampal area CA3. Neuroscience 2004; 124:429-38. [PMID: 14980392 DOI: 10.1016/j.neuroscience.2003.11.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2003] [Indexed: 10/26/2022]
Abstract
Corticosterone (CORT), the predominant glucocorticoid in rodents, is known to damage hippocampal area CA3. Here we investigate how that damage is represented at the cellular and ultrastructural level of analyses. Rats were injected with CORT (26.8 mg/kg, s.c.) or vehicle for 56 days. Cell counts were estimated with the physical disector method. Glial and mitochondrial volume fractions were obtained from electron micrographs. The effectiveness of the CORT dose used was demonstrated in two ways. First, CORT significantly inhibited body weight gain relative to vehicles. Second, CORT significantly reduced adrenal gland, heart and gastrocnemius muscle weight. Both the adrenal and gastrocnemius muscle weight to body weight ratios were also significantly reduced. Although absolute brain weight was reduced, the brain to body weight ratio was higher in the CORT group relative to vehicles, suggesting that the brain is more resistant to the effects of CORT than many peripheral organs and muscles. Consistent with that interpretation, CORT did not alter CA3 cell density, cell layer volume, or apical dendritic neuropil volume. Likewise, CORT did not significantly alter glial volume fraction, but did reduce mitochondrial volume fraction. These findings highlight the need for ultrastructural analyses in addition to cellular level analyses before conclusions can be drawn about the damaging effects of prolonged CORT elevations. The relative reduction in mitochondria may indicate a reduction in bioenergetic capacity that, in turn, could render CA3 vulnerable to metabolic challenges.
Collapse
Affiliation(s)
- P S Coburn-Litvak
- Program in Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | | | | | |
Collapse
|
28
|
Déglise P, Dacher M, Dion E, Gauthier M, Armengaud C. Regional brain variations of cytochrome oxidase staining during olfactory learning in the honeybee (Apis mellifera). Behav Neurosci 2003; 117:540-7. [PMID: 12802882 DOI: 10.1037/0735-7044.117.3.540] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Regional brain variations of cytochrome oxidase (CO) staining were analyzed in the honeybee (Apis mellifera) after olfactory conditioning of the proboscis extension reflex. Identification of brain sites where stimuli converge was done by precise image analysis performed in antennal lobes (AL) and mushroom bodies (MB). In Experiment 1, bees received 5 odorant stimulations that induced a transient decrease of CO activity in the lateral part of the AL. In Experiment 2, bees were trained with 5-trial olfactory conditioning. CO activity transiently increased in the lips of the MB calyces. There was also a delayed increase in the lateral part of the AL. An olfactory stimulus presented alone and an odor paired to a sucrose stimulation are treated by different pathways, including both AL and MB.
Collapse
Affiliation(s)
- Patrice Déglise
- Laboratoire de Neurobiologie de l'Insecte, Université Paul Sabatier Toulouse III, France
| | | | | | | | | |
Collapse
|
29
|
Callaway NL, Riha PD, Wrubel KM, McCollum D, Gonzalez-Lima F. Methylene blue restores spatial memory retention impaired by an inhibitor of cytochrome oxidase in rats. Neurosci Lett 2002; 332:83-6. [PMID: 12384216 DOI: 10.1016/s0304-3940(02)00827-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cytochrome oxidase is the mitochondrial enzyme that catalyzes the utilization of oxygen for the electron transport chain during cellular respiration. Chronic subcutaneous infusion of sodium azide, an inhibitor of cytochrome oxidase, produced a spatial memory retention deficit in rats in a holeboard maze. Methylene blue, which has been shown to increase oxygen consumption in vitro, was used to restore mitochondrial electron transport in order to facilitate memory consolidation. Administration of 1 mg/kg methylene blue after training, during the memory consolidation period, completely restored the memory retention impaired by the inhibitor of cytochrome oxidase. This suggests that methylene blue may compensate for impaired mitochondrial respiration and improve spatial memory retention. Memory retention deficits found in some neurodegenerative diseases may be improved by drugs targeting impaired mitochondrial respiration.
Collapse
Affiliation(s)
- Narriman Lee Callaway
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
30
|
Shin CY, Choi JW, Jang ES, Ryu JH, Kim WK, Kim HC, Ko KH. Glucocorticoids exacerbate peroxynitrite mediated potentiation of glucose deprivation-induced death of rat primary astrocytes. Brain Res 2001; 923:163-71. [PMID: 11743984 DOI: 10.1016/s0006-8993(01)03212-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glucocorticoids have been implicated in the exacerbation of several types of neurotoxicity in various neuropathological situations. In this study, we investigated the effect of a glucocorticoid dexamethasone on glucose deprivation induced cell death of immunostimulated rat primary astrocytes, which is dependent on the production of peroxynitrite from the immunostimulated cells [Choi et al. Glia, 31(2001) 155-164; J. Neuroimmunol. 112 (2001) 55-62]. Glucose deprivation in immunostimulated rat primary astrocytes results in the release of lactate dehydrogenase (LDH) after 5 h and co-treatment with dexamethasone (1-1000 nM) dose-dependently increased LDH release. Treatment of the exogenous peroxynitrite generator SIN-1 (20 microM), plus glucose deprivation, also increased LDH release after 6 h and co-treatment with dexamethasone dose-dependently increased LDH release. A glucocorticoid receptor antagonist, RU-486, reversed the potentiation of cell death by dexamethasone. Glucose deprivation in immunostimulated cells decreased the intracellular ATP levels, which preceded LDH release from the cell, and co-treatment with dexamethasone dose-dependently potentiated the depletion of intracellular ATP levels. In addition, dexamethasone further deteriorated SIN-1 plus glucose deprivation-induced decrease in mitochondrial transmembrane potential in rat primary astrocytes, which was reversed by RU-486. The results from the present study suggest that glucocorticoids may be detrimental to astrocytes in situations where activation of glial cells are observed, including ischemia and Alzheimer's disease, by mechanisms involving depletion of intracellular ATP levels and deterioration of mitochondrial transmembrane potentials.
Collapse
Affiliation(s)
- C Y Shin
- Department of Pharmacology, College of Pharmacy, Seoul National University, San 56-1, Shillim-Dong, Kwanak-Gu, Seoul 151-742, South Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Armengaud C, Aït-Oubah J, Causse N, Gauthier M. Nicotinic acetylcholine receptor ligands differently affect cytochrome oxidase in the Honeybee brain. Neurosci Lett 2001; 304:97-101. [PMID: 11335064 DOI: 10.1016/s0304-3940(01)01735-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to determine if nicotinic receptor antagonists known for their ability to impair memory in the honeybee could induce changes in brain metabolism. We tested the effect of antagonists [hexamethonium, mecamylamine, alpha-bungarotoxin (alpha-BTX)] and agonist (nicotine) brain injections on cytochrome oxidase (CO) histochemistry. Within as little as 30 min following nicotine injection, an increase of the staining was observed in almost all the structures analyzed. The increase was limited to the alpha-lobe after alpha-BTX injection. In contrast, the antagonists hexamethonium and mecamylamine reduced CO staining in this structure that seems to be involved in information retrieval. These results suggest that the decrease of metabolism in the alpha-lobe obtained with hexamethonium and mecamylamine injections could be related to the impairment of retrieval processes previously observed with these drugs.
Collapse
Affiliation(s)
- C Armengaud
- Laboratoire de Neurobiologie de l'Insecte, Université de Toulouse III, 118 route de Narbonne, 31062 Cedex, Toulouse, France.
| | | | | | | |
Collapse
|
32
|
Abstract
Normal ageing and Alzheimer's disease (AD) have many features in common and, in many respects, both conditions only differ by quantitative criteria. A variety of genetic, medical and environmental factors modulate the ageing-related processes leading the brain into the devastation of AD. In accordance with the concept that AD is a metabolic disease, these risk factors deteriorate the homeostasis of the Ca(2+)-energy-redox triangle and disrupt the cerebral reserve capacity under metabolic stress. The major genetic risk factors (APP and presenilin mutations, Down's syndrome, apolipoprotein E4) are associated with a compromise of the homeostatic triangle. The pathophysiological processes leading to this vulnerability remain elusive at present, while mitochondrial mutations can be plausibly integrated into the metabolic scenario. The metabolic leitmotif is particularly evident with medical risk factors which are associated with an impaired cerebral perfusion, such as cerebrovascular diseases including stroke, cardiovascular diseases, hypo- and hypertension. Traumatic brain injury represents another example due to the persistent metabolic stress following the acute event. Thyroid diseases have detrimental sequela for cerebral metabolism as well. Furthermore, major depression and presumably chronic stress endanger susceptible brain areas mediated by a host of hormonal imbalances, particularly the HPA-axis dysregulation. Sociocultural and lifestyle factors like education, physical activity, diet and smoking may also modulate the individual risk affecting both reserve capacity and vulnerability. The pathophysiological relevance of trace metals, including aluminum and iron, is highly controversial; at any rate, they may adversely affect cellular defences, antioxidant competence in particular. The relative contribution of these factors, however, is as individual as the pattern of the factors. In familial AD, the genetic factors clearly drive the sequence of events. A strong interaction of fat metabolism and apoE polymorphism is suggested by intercultural epidemiological findings. In cultures, less plagued by the 'blessings' of the 'cafeteria diet-sedentary' Western lifestyle, apoE4 appears to be not a risk factor for AD. This intriguing evidence suggests that, analogous to cardiovascular diseases, apoE4 requires a hyperlipidaemic lifestyle to manifest as AD risk factor. Overall, the etiology of AD is a key paradigm for a gene-environment interaction. Copyright 2000 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kurt Heininger
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
33
|
Chen YR, Sturgeon BE, Gunther MR, Mason RP. Electron spin resonance investigation of the cyanyl and azidyl radical formation by cytochrome c oxidase. J Biol Chem 1999; 274:24611-6. [PMID: 10455126 DOI: 10.1074/jbc.274.35.24611] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyanide (CN(-)) is a frequently used inhibitor of mitochondrial respiration due to its binding to the ferric heme a(3) of cytochrome c oxidase (CcO). As-isolated CcO oxidized cyanide to the cyanyl radical ((.)CN) that was detected, using the ESR spin-trapping technique, as the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)/(.)CN radical adduct. The enzymatic conversion of cyanide to the cyanyl radical by CcO was time-dependent but not affected by azide (N(3)(-)). The small but variable amounts of compound P present in the as-isolated CcO accounted for this one-electron oxidation of cyanide to the cyanyl radical. In contrast, as-isolated CcO exhibited little ability to catalyze the oxidation of azide, presumably because of azide's lower affinity for the CcO. However, the DMPO/(.)N(3) radical adduct was readily detected when H(2)O(2) was included in the system. The results presented here indicate the need to re-evaluate oxidative stress in mitochondria "chemical hypoxia" induced by cyanide or azide to account for the presence of highly reactive free radicals.
Collapse
Affiliation(s)
- Y R Chen
- Laboratory of Pharmacology and Chemistry, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | |
Collapse
|
34
|
Chapter 9 The Role of Mitochondrial Genome Mutations in Neurodegenerative Disease. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1566-3124(08)60029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
35
|
Williams JM, Thompson VL, Mason-Parker SE, Abraham WC, Tate WP. Synaptic activity-dependent modulation of mitochondrial gene expression in the rat hippocampus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 60:50-6. [PMID: 9748499 DOI: 10.1016/s0169-328x(98)00165-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In order to identify genes that may underlie the maintenance of long-term potentiation (LTP) at perforant path synapses, complementary DNA libraries were synthesised from dentate gyrus total RNA extracts prepared 48 h after the induction of LTP and from control dentate gyrus extracts. Through differential screening of the LTP library we have identified the mitochondrial 12S rRNA (mt12SrRNA) as a transcript that was elevated at this late time. Northern blot analyses showed that the elevation in mt12SrRNA expression began around 8 h and persisted for at least 2 weeks post-tetanus. We then examined the expression patterns of other mitochondrially-encoded genes and demonstrated a similar elevation in their expression. mt12SrRNA levels were also elevated in other hippocampal regions, including areas CA3 and CA1 and were elevated following low-frequency stimulation or in the presence of an N-methyl-D-aspartate receptor antagonist where induction of LTP was precluded. Taken together, these observations suggest that a long-lasting up-regulation of energy production may be triggered by synaptic activity and this activity need not be of sufficient strength to induce LTP, but may be related to the induction of a metaplastic state.
Collapse
Affiliation(s)
- J M Williams
- Department of Biochemistry and Centre for Gene Research, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
36
|
Simon N, Jolliet P, Morin C, Zini R, Urien S, Tillement JP. Glucocorticoids decrease cytochrome c oxidase activity of isolated rat kidney mitochondria. FEBS Lett 1998; 435:25-8. [PMID: 9755852 DOI: 10.1016/s0014-5793(98)01033-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The importance of mitochondria is rising as a target in pathologic processes such as ischemia. We have investigated the effects of hydrocortisone, prednisolone, dexamethasone and triamcinolone on oxidative phosphorylation, Ca2+ fluxes, swelling and membrane potentials in isolated kidney mitochondria. The measurement of respiration state 3 showed a significant decrease in presence of glucocorticoids whereas the other respiration states were not modified. When mitochondria were uncoupled and either the complexes III and IV or the complex IV were stimulated, the O2 consumption was decreased by glucocorticoids. These results suggest the cytochrome c oxidase is a target of the glucocorticoid effect on the respiratory chain. Indeed, the other mitochondrial functions investigated were unchanged, ruling out a direct effect on Ca2+ fluxes or swelling. A regulation of cytochrome c oxidase activity by glucocorticoids will be of particular interest in pathology involving metabolic insult.
Collapse
Affiliation(s)
- N Simon
- Départment de Pharmacologie, Faculté de Médecine de Paris XII, Créteil, France
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
In this review, we have described the function of MR and GR in hippocampal neurons. The balance in actions mediated by the two corticosteroid receptor types in these neurons appears critical for neuronal excitability, stress responsiveness, and behavioral adaptation. Dysregulation of this MR/GR balance brings neurons in a vulnerable state with consequences for regulation of the stress response and enhanced vulnerability to disease in genetically predisposed individuals. The following specific inferences can be made on the basis of the currently available facts. 1. Corticosterone binds with high affinity to MRs predominantly localized in limbic brain (hippocampus) and with a 10-fold lower affinity to GRs that are widely distributed in brain. MRs are close to saturated with low basal concentrations of corticosterone, while high corticosterone concentrations during stress occupy both MRs and GRs. 2. The neuronal effects of corticosterone, mediated by MRs and GRs, are long-lasting, site-specific, and conditional. The action depends on cellular context, which is in part determined by other signals that can activate their own transcription factors interacting with MR and GR. These interactions provide an impressive diversity and complexity to corticosteroid modulation of gene expression. 3. Conditions of predominant MR activation, i.e., at the circadian trough at rest, are associated with the maintenance of excitability so that steady excitatory inputs to the hippocampal CA1 area result in considerable excitatory hippocampal output. By contrast, additional GR activation, e.g., after acute stress, generally depresses the CA1 hippocampal output. A similar effect is seen after adrenalectomy, indicating a U-shaped dose-response dependency of these cellular responses after the exposure to corticosterone. 4. Corticosterone through GR blocks the stress-induced HPA activation in hypothalamic CRH neurons and modulates the activity of the excitatory and inhibitory neural inputs to these neurons. Limbic (e.g., hippocampal) MRs mediate the effect of corticosterone on the maintenance of basal HPA activity and are of relevance for the sensitivity or threshold of the central stress response system. How this control occurs is not known, but it probably involves a steady excitatory hippocampal output, which regulates a GABA-ergic inhibitory tone on PVN neurons. Colocalized hippocampal GRs mediate a counteracting (i.e., disinhibitory) influence. Through GRs in ascending aminergic pathways, corticosterone potentiates the effect of stressors and arousal on HPA activation. The functional interaction between these corticosteroid-responsive inputs at the level of the PVN is probably the key to understanding HPA dysregulation associated with stress-related brain disorders. 5. Fine-tuning of HPA regulation occurs through MR- and GR-mediated effects on the processing of information in higher brain structures. Under healthy conditions, hippocampal MRs are involved in processes underlying integration of sensory information, interpretation of environmental information, and execution of appropriate behavioral reactions. Activation of hippocampal GRs facilitates storage of information and promotes elimination of inadequate behavioral responses. These behavioral effects mediated by MR and GR are linked, but how they influence endocrine regulation is not well understood. 6. Dexamethasone preferentially targets the pituitary in the blockade of stress-induced HPA activation. The brain penetration of this synthetic glucocorticoid is hampered by the mdr1a P-glycoprotein in the blood-brain barrier. Administration of moderate amounts of dexamethasone partially depletes the brain of corticosterone, and this has destabilizing consequences for excitability and information processing. 7. The set points of HPA regulation and MR/GR balance are genetically programmed, but can be reset by early life experiences involving mother-infant interaction. 8. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- E R De Kloet
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, University of Leiden, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Smith TS, Bennett JP. Mitochondrial toxins in models of neurodegenerative diseases. I: In vivo brain hydroxyl radical production during systemic MPTP treatment or following microdialysis infusion of methylpyridinium or azide ions. Brain Res 1997; 765:183-8. [PMID: 9313890 DOI: 10.1016/s0006-8993(97)00429-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mitochondrial electron transport chain (ETC) function is selectively reduced in multiple tissues, including brain, from patients with Parkinson's disease (PD) and Alzheimer's disease (AD). The ETC defects are specific to each illness, involve complex I in PD and complex IV in AD, are transferable with mitochondrial DNA (mtDNA) and lead to increased production of reactive oxygen species (ROS) in mtDNA-deficient clonal neuronal cells hybridized with mtDNA ('cybrids') from PD or AD patients. C57BL/6 mice treated with MPTP developed elevated tissue hydroxyl radical ('OH) levels in striatum and ventral midbrain but not cerebellum. In brain microdialysis in awake rats, striatal 'OH output increased 3-5-fold after infusion of methylpyridinium ion (MPP+), a complex I inhibitor, or sodium azide, a complex IV inhibitor. Elevated 'OH after MPP+ was blocked stereospecifically by infusion of the nitric oxide synthase (NOS) inhibitor nitro-L-arginine or by the NMDA channel blocker MK801. Neither NOS inhibition nor NMDA blockade altered azide-induced 'OH production. ETC inhibition in vivo increases production of toxic 'OH, but the underlying mechanisms vary as a function of which ETC complex is inhibited. These results support the concept of developing oxygen free radical scavengers for both AD and PD and further suggest that inhibition of NOS and blockade of NMDA receptor function may alter progression of idiopathic PD.
Collapse
Affiliation(s)
- T S Smith
- Department of Neurology, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | |
Collapse
|
39
|
Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer's disease. J Neurosci 1997. [PMID: 9169522 DOI: 10.1523/jneurosci.17-12-04612.1997] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is associated with defects in mitochondrial function. Mitochondrial-based disturbances in calcium homeostasis, reactive oxygen species (ROS) generation, and amyloid metabolism have been implicated in the pathophysiology of sporadic AD. The cellular consequences of mitochondrial dysfunction, however, are not known. To examine these consequences, mitochondrially transformed cells (cybrids) were created from AD patients or disease-free controls. Mitochondria from platelets were fused to rho0 cells created by depleting the human neuroblastoma line SH-SY5Y of its mitochondrial DNA (mtDNA). AD cybrids demonstrated a 52% decrease in electron transport chain (ETC) complex IV activity but no difference in complex I activity compared with control cybrids or SH-SY5Y cells. This mitochondrial dysfunction suggests a transferable mtDNA defect associated with AD. ROS generation was elevated in the AD cybrids. AD cybrids also displayed an increased basal cytosolic calcium concentration and enhanced sensitivity to inositol-1,4, 5-triphosphate (InsP3)-mediated release. Furthermore, they recovered more slowly from an elevation in cytosolic calcium induced by the InsP3 agonist carbachol. Mitochondrial calcium buffering plays a major role after this type of perturbation. beta-amyloid (25-35) peptide delayed the initiation of calcium recovery to a carbachol challenge and slowed the recovery rate. Nerve growth factor reduced the carbachol-induced maximum and moderated the recovery kinetics. Succinate increased ETC activity and partially restored the AD cybrid recovery rate. These subtle alterations in calcium homeostasis and ROS generation might lead to increased susceptibility to cell death under circumstances not ordinarily toxic.
Collapse
|
40
|
Sheehan JP, Swerdlow RH, Miller SW, Davis RE, Parks JK, Parker WD, Tuttle JB. Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer's disease. J Neurosci 1997; 17:4612-22. [PMID: 9169522 PMCID: PMC6573324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is associated with defects in mitochondrial function. Mitochondrial-based disturbances in calcium homeostasis, reactive oxygen species (ROS) generation, and amyloid metabolism have been implicated in the pathophysiology of sporadic AD. The cellular consequences of mitochondrial dysfunction, however, are not known. To examine these consequences, mitochondrially transformed cells (cybrids) were created from AD patients or disease-free controls. Mitochondria from platelets were fused to rho0 cells created by depleting the human neuroblastoma line SH-SY5Y of its mitochondrial DNA (mtDNA). AD cybrids demonstrated a 52% decrease in electron transport chain (ETC) complex IV activity but no difference in complex I activity compared with control cybrids or SH-SY5Y cells. This mitochondrial dysfunction suggests a transferable mtDNA defect associated with AD. ROS generation was elevated in the AD cybrids. AD cybrids also displayed an increased basal cytosolic calcium concentration and enhanced sensitivity to inositol-1,4, 5-triphosphate (InsP3)-mediated release. Furthermore, they recovered more slowly from an elevation in cytosolic calcium induced by the InsP3 agonist carbachol. Mitochondrial calcium buffering plays a major role after this type of perturbation. beta-amyloid (25-35) peptide delayed the initiation of calcium recovery to a carbachol challenge and slowed the recovery rate. Nerve growth factor reduced the carbachol-induced maximum and moderated the recovery kinetics. Succinate increased ETC activity and partially restored the AD cybrid recovery rate. These subtle alterations in calcium homeostasis and ROS generation might lead to increased susceptibility to cell death under circumstances not ordinarily toxic.
Collapse
Affiliation(s)
- J P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|