1
|
Wang X, Lv Y, Xie J, Li B, Zhou T, Chen Y, Chen Y, Song J. Brain regions of marine medaka activated by acute and short-term ocean acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137279. [PMID: 32145610 DOI: 10.1016/j.scitotenv.2020.137279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 05/28/2023]
Abstract
Altered behaviors have been reported in many marine fish following exposure to high CO2 concentrations. However, the mechanistic link between elevated CO2 and activation of brain regions in fish is unknown. Herein, we examined the relative quantification and location of c-Fos expression in marine medaka following acute (360 min) and short-term (7 d) exposure to CO2-enriched water (1000 ppm and 1800 ppm CO2). In the control and two treatment groups, pH was stable at 8.21, 7.92 and 7.64, respectively. After acute exposure to seawater acidified by enrichment with CO2, there was a clear upregulation of c-Fos protein in the medaka brain (P < 0.05). c-Fos protein expression peaked after 120 min exposure in the two treatment groups and thereafter began to decline. There were marked increases in c-Fos-labeling in the ventricular and periventricular zones of the cerebral hemispheres and the medulla oblongata. After 1800 ppm CO2 exposure for 7 d, medaka showed significant preference for dark zones during the initial 2 min period. c-Fos protein expression in the ventricular and periventricular zones of the diencephalon in medaka exposed to 1000 ppm and 1800 ppm CO2 were 0.51 ± 0.10 and 1.34 ± 0.30, respectively, which were significantly higher than controls (P < 0.05). Highest doublecortin protein expression occurred in theventricular zones of the diencephalon and mesencephalon. These findings suggest that the ventricular and periventricular zones of the cerebral hemispheres and the medulla oblongata of marine medaka are involved in rapid acid-base regulation. Prolonged ocean acidification may induce cell mitosis and differentiation in the adult medaka brain.
Collapse
Affiliation(s)
- Xiaojie Wang
- Institute for Marine Biosystem and Neurosciences, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| | - Yutao Lv
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China
| | - Jinling Xie
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China
| | - Baolin Li
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China
| | - Tangjian Zhou
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China
| | - Yaqi Chen
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China
| | - Yi Chen
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China
| | - Jiakun Song
- Institute for Marine Biosystem and Neurosciences, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| |
Collapse
|
2
|
Abstract
High resolution fiber-Fluorescence in situ hybridization (FISH) is an advanced FISH technology that can effectively bridge the resolution gap between probe hybridizing on DNA molecules and chromosomal regions. Since various types of DNA and chromatin fibers can be generated reflecting different degrees of DNA/chromatin packaging status, fiber-FISH technology has been successfully used in diverse molecular cytogenetic/cytogenomic studies. Following a brief review of this technology, including its major development and increasing applications, typical protocols to generate DNA/chromatin fiber will be described, coupled with rationales, as well as technical tips. These released DNA/chromatin fibers are suitable for an array of cytogenetic/cytogenomic analyses.
Collapse
Affiliation(s)
- Christine J Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, 3226 Scott Hall, 540 E, Detroit, MI, 48201, USA.
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Karmanos Cancer Institute, Detroit, MI, 48201, USA.
| |
Collapse
|
3
|
Montero D, Terova G, Rimoldi S, Tort L, Negrin D, Zamorano MJ, Izquierdo M. Modulation of adrenocorticotrophin hormone (ACTH)-induced expression of stress-related genes by PUFA in inter-renal cells from European sea bass (Dicentrarchus labrax). J Nutr Sci 2015; 4:e16. [PMID: 26090096 PMCID: PMC4463938 DOI: 10.1017/jns.2015.6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 09/11/2014] [Accepted: 01/05/2015] [Indexed: 01/29/2023] Open
Abstract
Dietary fatty acids have been shown to exert a clear effect on the stress response, modulating the release of cortisol. The role of fatty acids on the expression of steroidogenic genes has been described in mammals, but little is known in fish. The effect of different fatty acids on the release of cortisol and expression of stress-related genes of European sea bass (Dicentrarchus labrax) head kidney, induced by a pulse of adenocorticotrophin hormone (ACTH), was studied. Tissue was maintained in superfusion with 60 min of incubation with EPA, DHA, arachidonic acid (ARA), linoleic acid or α-linolenic acid (ALA) during 490 min. Cortisol was measured by RIA. The quantification of stress-related genes transcripts was conducted by One-Step TaqMan real-time RT-PCR. There was an effect of the type of fatty acid on the ACTH-induced release of cortisol, values from ALA treatment being elevated within all of the experimental period. The expression of some steroidogenic genes, such as the steroidogenic acute regulatory protein (StAR) and c-fos, were affected by fatty acids, ALA increasing the expression of StAR after 1 h of ACTH stimulation whereas DHA, ARA and ALA increased the expression of c-fos after 20 min. ARA increased expression of the 11β-hydroxylase gene. Expression of heat shock protein 70 (HSP70) was increased in all the experimental treatments except for ARA. Results corroborate previous studies of the effect of different fatty acids on the release of cortisol in marine fish and demonstrate that those effects are mediated by alteration of the expression of steroidogenic genes.
Collapse
Key Words
- ACTH, adrenocorticotrophin hormone
- ALA, α-linolenic acid
- ARA, arachidonic acid
- Adrenocorticotrophin hormone-induced stress response
- COX, cyclo-oxygenase
- CYP11b, cytochrome P450 11β
- Dicentrarchus labrax
- Fatty acids
- GR, glucocorticoid receptor
- HSP, heat shock protein
- LA, linoleic acid
- LOX, lipo-oxygenase
- Nutritional modulation of steroidogenesis
- PKA, protein kinase A
- PLA2, phospholipase A2
- StAR, steroidogenic acute regulatory protein
- Stress-related gene expression
Collapse
Affiliation(s)
- Daniel Montero
- Universidad de Las Palmas de Gran Canaria
(ULPGC), Grupo de Investigación en acuicultura (GIA),
Instituto Universitario de Sanidad Animal y Seguridad Alimentaria
(IUSA), c/ Transmontaña, s/n,
35413, Arucas, Las
Palmas, Canary Islands, Spain
| | - Genciana Terova
- University of Insubria,
Department of Biotechnology and Life Sciences, Via
Dunant, 3-21100 Varese, Italy
| | - Simona Rimoldi
- University of Insubria,
Department of Biotechnology and Life Sciences, Via
Dunant, 3-21100 Varese, Italy
| | - Lluis Tort
- Universitat Autonoma de Barcelona,
Department de Biologia Cel.lular, Fisiologia i
immunologia, Edifici M. 08193,
Bellaterra, Cerdanyola del Vallès,
Barcelona, Spain
| | - Davinia Negrin
- Universidad de Las Palmas de Gran Canaria
(ULPGC), Grupo de Investigación en acuicultura (GIA),
Instituto Universitario de Sanidad Animal y Seguridad Alimentaria
(IUSA), c/ Transmontaña, s/n,
35413, Arucas, Las
Palmas, Canary Islands, Spain
| | - María Jesús Zamorano
- Universidad de Las Palmas de Gran Canaria
(ULPGC), Grupo de Investigación en acuicultura (GIA),
Instituto Universitario de Sanidad Animal y Seguridad Alimentaria
(IUSA), c/ Transmontaña, s/n,
35413, Arucas, Las
Palmas, Canary Islands, Spain
| | - Marisol Izquierdo
- Universidad de Las Palmas de Gran Canaria
(ULPGC), Grupo de Investigación en acuicultura (GIA),
Instituto Universitario de Sanidad Animal y Seguridad Alimentaria
(IUSA), c/ Transmontaña, s/n,
35413, Arucas, Las
Palmas, Canary Islands, Spain
| |
Collapse
|
4
|
Heng HHQ, Windle B, Tsui LC. High-resolution FISH analysis. CURRENT PROTOCOLS IN HUMAN GENETICS 2008; Chapter 4:Unit 4.5. [PMID: 18428380 DOI: 10.1002/0471142905.hg0405s44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Map order, orientation, and gap or overlap distance of closely linked DNA probes may be determined using fluorescent hybridization to decondensed DNA. The linear arrangement of released chromatin fibers not only simplifies the task of gene ordering, but also provides higher resolution with probes separated by greater distances than can be achieved in FISH with intact interphase nuclei. The Basic Protocol 1 of this unit describes an alkaline lysis procedure for generating free chromatin from cultured cells for FISH analysis. A support protocol describes an empirical approach to optimize conditions for preparation of free chromatin. An Alternate Protocol 1 provides a method for producing free chromatin from cultured lymphocytes with drug treatment. The Basic Protocol 2, high-resolution FISH mapping with free chromatin, is a modification of the method used for FISH mapping of interphase nuclei.
Collapse
Affiliation(s)
- Henry H Q Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | |
Collapse
|
5
|
Chen F, Hasegawa H, Schmitt-Ulms G, Kawarai T, Bohm C, Katayama T, Gu Y, Sanjo N, Glista M, Rogaeva E, Wakutani Y, Pardossi-Piquard R, Ruan X, Tandon A, Checler F, Marambaud P, Hansen K, Westaway D, St George-Hyslop P, Fraser P. TMP21 is a presenilin complex component that modulates gamma-secretase but not epsilon-secretase activity. Nature 2006; 440:1208-12. [PMID: 16641999 DOI: 10.1038/nature04667] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Accepted: 02/21/2006] [Indexed: 11/09/2022]
Abstract
The presenilin proteins (PS1 and PS2) and their interacting partners nicastrin, aph-1 (refs 4, 5) and pen-2 (ref. 5) form a series of high-molecular-mass, membrane-bound protein complexes that are necessary for gamma-secretase and epsilon-secretase cleavage of selected type 1 transmembrane proteins, including the amyloid precursor protein, Notch and cadherins. Modest cleavage activity can be generated by reconstituting these four proteins in yeast and Spodoptera frugiperda (sf9) cells. However, a critical but unanswered question about the biology of the presenilin complexes is how their activity is modulated in terms of substrate specificity and/or relative activities at the gamma and epsilon sites. A corollary to this question is whether additional proteins in the presenilin complexes might subsume these putative regulatory functions. The hypothesis that additional proteins might exist in the presenilin complexes is supported by the fact that enzymatically active complexes have a mass that is much greater than predicted for a 1:1:1:1 stoichiometric complex (at least 650 kDa observed, compared with about 220 kDa predicted). To address these questions we undertook a search for presenilin-interacting proteins that differentially affected gamma- and epsilon-site cleavage events. Here we report that TMP21, a member of the p24 cargo protein family, is a component of presenilin complexes and differentially regulates gamma-secretase cleavage without affecting epsilon-secretase activity.
Collapse
Affiliation(s)
- Fusheng Chen
- Department of Medicine, and Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada M5S 3H2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Balesaria S, Hogstrand C. Identification, cloning and characterization of a plasma membrane zinc efflux transporter, TrZnT-1, from fugu pufferfish (Takifugu rubripes). Biochem J 2006; 394:485-93. [PMID: 16212555 PMCID: PMC1408679 DOI: 10.1042/bj20050627] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An orthologue of the mammalian ZnT-1 (zinc transporter-1) gene was cloned from the intestine of the torafugu pufferfish (Takifugu rubripes), demonstrating that this gene predates the evolution of land-living vertebrates. TrZnT-1 (T. rubripes ZnT-1) shares overall topology with other members of the ZnT-1 family of zinc transporters, with six TMs (transmembrane domains) including a large histidine-rich intracellular loop between TM IV and V and intracellular C- and N-termini. Expression of TrZnT-1 in a metallothionein acquiescent cell line suggested that this protein reduces intracellular Zn2+ levels. Manipulation of the transporting media showed that several externally applied hydrominerals had no effect on TrZnT-1 activity. However, addition of N-ethylmaleimide increased TrZnT-1-mediated transport, possibly by increasing intracellular free Zn2+ levels by Zn2+ release from carrier proteins. Generation of a specific antibody and subsequent immunocytochemistry on fixed cells overexpressing TrZnT-1 indicated that the protein is localized to the plasma membrane in these cells. The genomic organization of TrZnT-1 is the same as that in mammals with two exons. The upstream regulatory region of the TrZnT-1 gene contains several putative cis-acting elements, including metal-response elements and an Sp1 site. Analysis of the DNA contigs surrounding the TrZnT-1 gene reveal limited synteny between corresponding regions in the rat, mouse and human; however, this was very low, with only two syntenic genes, ZnT-1 and NEK2 (never in mitosis gene A-related kinase).
Collapse
Affiliation(s)
- Sara Balesaria
- King's College London, Nutritional Sciences Research Division, Department of Biochemistry, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Christer Hogstrand
- King's College London, Nutritional Sciences Research Division, Department of Biochemistry, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
7
|
Cottage AJ, Edwards YJK, Elgar G. AP1 genes in Fugu indicate a divergent transcriptional control to that of mammals. Mamm Genome 2003; 14:514-25. [PMID: 12925884 DOI: 10.1007/s00335-002-3067-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2002] [Accepted: 04/10/2003] [Indexed: 10/26/2022]
Abstract
The draft genomic sequence of the Japanese puffer fish, Fugu rubripes, has now been announced. This is the first complete sequence of a teleost fish and the second available vertebrate sequence, the first being that of human. For the first time, whole-genome comparisons between two vertebrates can be undertaken. Early analysis has suggested that there may be surprising differences in gene regulation between human and fish. In mammals, a gene commonly has several functions, and this may not always be the case in fish. Many gene families comprise more members in fish than they do in mammals, possibly because each fish gene has evolved an individual function. Complexities of gene regulation in mammals has hampered studies of all biological processes from cell proliferation to cell death. Determining the activities of the AP1 transcription factor proteins has been non-trivial. The AP1 complex typically comprises two proteins, a Jun (c-Jun, JunB, and JunD) and a Fos (c-Fos, FosB, Fra1, and Fra2). These proteins can form both homodimers and heterodimers among-themselves and can interact with additional proteins; thus, dissecting their individual roles has been difficult. We have determined that Fugu has more Jun and Fos genes than mammals, and if each proves to have a separate function, then addressing the roles of the individual AP1 proteins in Fugu may be simpler than in human.
Collapse
Affiliation(s)
- Amanda J Cottage
- Medical Research Council, UK Human Genome Mapping Project Resource Centre, Hinxton, Cambridge, CB 10 1SB, UK
| | | | | |
Collapse
|
8
|
Montpetit A, Wilson MD, Chevrette M, Koop BF, Sinnett D. Analysis of the conservation of synteny between Fugu and human chromosome 12. BMC Genomics 2003; 4:30. [PMID: 12877756 PMCID: PMC179898 DOI: 10.1186/1471-2164-4-30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Accepted: 07/23/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pufferfish Fugu rubripes (Fugu) with its compact genome is increasingly recognized as an important vertebrate model for comparative genomic studies. In particular, large regions of conserved synteny between human and Fugu genomes indicate its utility to identify disease-causing genes. The human chromosome 12p12 is frequently deleted in various hematological malignancies and solid tumors, but the actual tumor suppressor gene remains unidentified. RESULTS We investigated approximately 200 kb of the genomic region surrounding the ETV6 locus in Fugu (fETV6) in order to find conserved functional features, such as genes or regulatory regions, that could give insight into the nature of the genes targeted by deletions in human cancer cells. Seven genes were identified near the fETV6 locus. We found that the synteny with human chromosome 12 was conserved, but extensive genomic rearrangements occurred between the Fugu and human ETV6 loci. CONCLUSION This comparative analysis led to the identification of previously uncharacterized genes in the human genome and some potentially important regulatory sequences as well. This is a good indication that the analysis of the compact Fugu genome will be valuable to identify functional features that have been conserved throughout the evolution of vertebrates.
Collapse
Affiliation(s)
- Alexandre Montpetit
- Division of Hematology-Oncology, Charles-Bruneau Cancer Center, Research Center, Sainte-Justine Hospital, 3175 Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Biochemistry, University of Montreal, Montreal, QC, Canada
| | - Michael D Wilson
- Centre for Biomedical Research, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Mario Chevrette
- The Research Institute of the McGill University Health Centre and Department of Surgery, McGill University, Montreal, QC, H3G 1A4, Canada
| | - Ben F Koop
- Centre for Biomedical Research, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Daniel Sinnett
- Division of Hematology-Oncology, Charles-Bruneau Cancer Center, Research Center, Sainte-Justine Hospital, 3175 Côte Ste-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Biochemistry, University of Montreal, Montreal, QC, Canada
- Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
9
|
Mandrioli M, Manicardi GC. Cytogenetic and molecular analysis of the pufferfish Tetraodon fluviatilis (Osteichthyes). Genetica 2002; 111:433-8. [PMID: 11841187 DOI: 10.1023/a:1013787230829] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In view of their compact genome, pufferfish (Tetraodontiformes) have been proposed as model animal for the study of the vertebrate genome. Despite such interest, cytogenetic information about puffers is still scanty. To fill this gap, a cytogenetic analysis of T. fluviatilis has been performed using both classical and molecular techniques. C-banding, followed by DAPI staining, evidenced that in T. fluviatilis, like all other puffer species so far examined, heterochromatin is essentially AT-rich and it is located at centromeres, whereas staining with CMA3, silver staining and FISH with a 28S ribosomal RNA gene DNA probe showed 2-4 nucleolar organizing regions (NORs) located in heterochromatic regions in the considered puffer species. FISH with the 5S probe put in evidence both in T. fluviatilis and in T. nigroviridis only a 5S cluster per haploid genome that is physically unlinked with the major ribosomal RNA genes including the 28S rRNA genes. Hybridization with the (TTAGGG)n probe showed in all the puffers brightly fluorescent signals uniform both in size and intensity at the end of all the chromosomes. Finally, mariner-like elements (MLEs) have been identified in T. fluviatilis and they have located into the NOR-associated heterochromatin.
Collapse
Affiliation(s)
- M Mandrioli
- Dipartimento di Biologia Animale, Università degli Studi di Modena e Reggio Emilia, Modena, Italy.
| | | |
Collapse
|
10
|
Zhang X, Yang H, Yu J, Chen C, Zhang G, Bao J, Du Y, Kibukawa M, Li Z, Wang J, Hu S, Dong W, Wang J, Gregersen N, Niebuhr E, Bolund L. Genomic organization, transcript variants and comparative analysis of the human nucleoporin 155 (NUP155) gene. Gene 2002; 288:9-18. [PMID: 12034489 DOI: 10.1016/s0378-1119(02)00470-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nucleoporin 155 (Nup155) is a major component of the nuclear pore complex (NPC) involved in cellular nucleo-cytoplasmic transport. We have acquired the complete sequence and interpreted the genomic organization of the Nup155 orthologos from human (Homo sapiens) and pufferfish (Fugu rubripes), which are approximately 80 and 8 kb in length, respectively. The human gene is ubiquitously expressed in many tissues analyzed and has two major transcript variants, resulted from an alternative usage of the 5' cryptic or consensus splice donor in intron 1 and two polyadenylation signals. We have also cloned DNA complementary to RNAs of the Nup155 orthologs from Fugu and mouse. Comparative analysis of the Nup155 orthologs in many species, including H. sapiens, Mus musculus, Rattus norvegicus, F. rubripes, Arabidopsis thaliana, Drosophila melanogaster, and Saccharomyces cerevisiae, has revealed two paralogs in S. cerevisiae but only a single gene with increasing number of introns in more complex organisms. The amino acid sequences of the Nup155 orthologos are highly conserved in the evolution of eukaryotes. Different gene orders in the human and Fugu genomic regions harboring the Nup155 orthologs advocate cautious interpretation of synteny in comparative genomic analysis even within the vertebrate lineage.
Collapse
Affiliation(s)
- Xiuqing Zhang
- Human Genome Center, Institute of Genetics, Chinese Academy of Sciences, Datun Road, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bouchireb N, Grützner F, Haaf T, Stephens RJ, Elgar G, Green AJ, Clark MS. Comparative mapping of the human 9q34 region in Fugu rubripes. Cytogenet Genome Res 2002; 94:173-9. [PMID: 11856876 DOI: 10.1159/000048811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Twenty-seven genes have been cloned and mapped in Fugu which have orthologues within the human chromosome 9q34 region. The genes are arranged into five cosmid and BAC contigs which physically map to two different Fugu chromosomes. Considering the gene content of these contigs, it is more probable that a translocation event took place early in the Fugu lineage to split the ancestral 9q34 region onto two chromosomes rather than the alternative hypothesis of a large-scale duplication of the region into two chromosomes with subsequent rapid and dramatic gene loss. There are considerable differences in gene order between the two species, which would appear to be the result of a series of complex chromosome inversions; thus suggesting that there have been no positional constraints on this particular gene set.
Collapse
Affiliation(s)
- N Bouchireb
- MRC-HGMP Resource Centre, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Alzheimer's disease (AD) is a genetically complex disorder associated with multiple genetic defects either mutational or of susceptibility. Current AD genetics does not explain in full the etiopathogenesis of AD, suggesting that environmental factors and/or epigenetic phenomena may also contribute to AD pathology and phenotypic expression of dementia. The genomics of AD is still in its infancy, but is helping us to understand novel aspects of the disease including genetic epidemiology, multifactorial risk factors, pathogenic mechanisms associated with genetic networks and genetically-regulated metabolic cascades. AD genomics is also fostering new strategies in pharmacogenomic research and prevention. Functional genomics, proteomics, pharmacogenomics, high-throughput methods, combinatorial chemistry and modern bioinformatics will greatly contribute to accelerating drug development for AD and other complex disorders. The multifactorial genetic dysfunction in AD includes mutational loci (APP, PS1, PS2) and diverse susceptibility loci (APOE, A2M, AACT, LRP1, IL1A, TNF, ACE, BACE, BCHE, CST3, MTHFR, GSK3B, NOS3) distributed across the human genome, probably converging in common pathogenic mechanisms that lead to premature neuronal death. Genomic associations integrate polygenic matrix models to elucidate the genomic organization of AD in comparison to the control population. Using APOE-related monogenic models it has been demonstrated that the therapeutic response to drugs (e.g., cholinesterase inhibitors, non-cholinergic compounds) in AD is genotype-specific. A multifactorial therapy combining three different drugs yielded positive results during 6-12 months in approximately 60% of the patients. With this therapeutic strategy, APOE-4/4 carriers were the worst responders and patients with the APOE-3/4 genotype were the best responders. Other polymorphic variants (PS1, PS2) also influence the therapeutic response to different drugs in AD patients, suggesting that the final pharmacological outcome is the result of multiple genomic interactions, including AD-related genes and genes associated with drug metabolism, disposition, and elimination. The pharmacogenomics of AD may contribute in the future to optimise drug development and therapeutics, increasing efficacy and safety, and reducing side-effects and unnecessary costs.
Collapse
Affiliation(s)
- Ramón Cacabelos
- From the EuroEspes Biomedical Research Center, Institute for CNS Disorders, Bergondo, La Coruña, Spain.
| |
Collapse
|
13
|
Brunner B, Hornung U, Shan Z, Nanda I, Kondo M, Zend-Ajusch E, Haaf T, Ropers HH, Shima A, Schmid M, Kalscheuer VM, Schartl M. Genomic organization and expression of the doublesex-related gene cluster in vertebrates and detection of putative regulatory regions for DMRT1. Genomics 2001; 77:8-17. [PMID: 11543627 DOI: 10.1006/geno.2001.6615] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Genes related to the Drosophila melanogaster doublesex and Caenorhabditis elegans mab-3 genes are conserved in human. They are identified by a DNA-binding homology motif, the DM domain, and constitute a gene family (DMRTs). Unlike the invertebrate genes, whose role in the sex-determination process is essentially understood, the function of the different vertebrate DMRT genes is not as clear. Evidence has accumulated for the involvement of DMRT1 in male sex determination and differentiation. DMRT2 (known as terra in zebrafish) seems to be a critical factor for somitogenesis. To contribute to a better understanding of the function of this important gene family, we have analyzed DMRT1, DMRT2, and DMRT3 from the genome model organism Fugu rubripes and the medakafish, a complementary model organism for genetics and functional studies. We found conservation of synteny of human chromosome 9 in F. rubripes and an identical gene cluster organization of the DMRTs in both fish. Although expression analysis and gene linkage mapping in medaka exclude a function for any of the three genes in the primary step of male sex determination, comparison of F. rubripes and human sequences uncovered three putative regulatory regions that might have a role in more downstream events of sex determination and human XY sex reversal.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chromosome Mapping
- Chromosomes/genetics
- Chromosomes, Human, Pair 9/genetics
- Conserved Sequence
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins
- Exons
- Female
- Fishes/embryology
- Fishes/genetics
- Gene Expression
- Gene Expression Regulation, Developmental
- Genes/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Introns
- Male
- Molecular Sequence Data
- Multigene Family/genetics
- Oryzias/embryology
- Oryzias/genetics
- Protein Isoforms/genetics
- RNA/genetics
- RNA/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Tissue Distribution
- Transcription Factors/genetics
- Zebrafish Proteins
Collapse
Affiliation(s)
- B Brunner
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Greg Elgar
- United Kingdom Human Genome Mapping Project Resource Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | | |
Collapse
|
15
|
Abstract
The human SART1 gene was initially identified in a screen for proteins recognised by IgE, which may be implicated in atopic disease. We have examined the genomic structure and cDNA sequence of the SART1 gene in the compact genomes of the pufferfish Fugu rubripes and Tetraodon nigroviridis. The entire coding regions of both the Fugu and Tetraodon SART1 genes are contained within single exons. The Fugu gene contains only one intron located in the 5' untranslated region. Southern blot hybridisation of Fugu genomic DNA confirmed the SART1 gene to be single copy. Partial genomic structures were also determined for the human, mouse, Drosophila and C. elegans SART1 homologues. The human and mouse genes both contain many introns in the coding region, the human gene possessing at least 20 exons. The Drosophila and C. elegans homologues contain 6 and 12 exons, respectively. This is only the second time such a difference in the organization of homologous Fugu and human genes has been reported. The Fugu and Tetraodon SART1 genes encode putative proteins of 772 and 774 aa, respectively, each having 65% amino acid identity to human SART1. Leucine zipper and basic motifs are conserved in the predicted Fugu and Tetraodon proteins.
Collapse
Affiliation(s)
- D J Bolland
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | | |
Collapse
|
16
|
Perez S, Vial E, van Dam H, Castellazzi M. Transcription factor ATF3 partially transforms chick embryo fibroblasts by promoting growth factor-independent proliferation. Oncogene 2001; 20:1135-41. [PMID: 11314051 DOI: 10.1038/sj.onc.1204200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2000] [Revised: 12/07/2000] [Accepted: 12/19/2000] [Indexed: 11/08/2022]
Abstract
Activating Transcription Factor 3 (ATF3) is a member of the bZip family of transcription factors. Previous studies in mammalian cells suggested that like other bZip family members e.g. Jun and Fos, ATF3 might play a role in the control of cell proliferation and participate in oncogenic transformation. To investigate this putative ATF3 function directly, the rat ATF3 protein was compared with v-Jun for its ability to transform primary cultures of chick embryo fibroblasts (CEFs). Like CEFs accumulating v-Jun, CEFs accumulating the ATF3 protein displayed a typical, fusiform morphology, associated with an enhanced capacity to grow in medium with reduced amount of serum. However, in contrast to v-Jun-transformed CEFs, the ATF3 overexpressing cells could not promote colony formation from single cells in agar. Partial transformation induced by ATF3 was found to be associated with repression of multiple cellular genes that are also down-regulated by v-Jun, including those coding for the extracellular components fibronectin, decorin, thrombospondin 2, and the pro-apoptotic protein Par-4. These data demonstrate that, at least in primary avian cells, rat ATF3 possesses an intrinsic oncogenic potential. Moreover, the results suggest that ATF3 might induce growth factor independence by down-regulating a subset of the genes repressed by v-Jun.
Collapse
Affiliation(s)
- S Perez
- Unité de Virologie Humaine, Institut National de la Santé et de la Recherche Médicale (INSERM-U412), Ecole Normale Supérieure, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | |
Collapse
|
17
|
Brunner B, Grützner F, Yaspo ML, Ropers HH, Haaf T, Kalscheuer VM. Molecular cloning and characterization of the Fugu rubripes MEST/COPG2 imprinting cluster and chromosomal localization in Fugu and Tetraodon nigroviridis. Chromosome Res 2001; 8:465-76. [PMID: 11032317 DOI: 10.1023/a:1009263504671] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We isolated Fugu genomic clones using the human MEST (Mesoderm-Specific Transcript) cDNA as probe. Sequence analysis revealed the presence of MEST and three additional genes which show homology to plant DNBP (DNA-Binding Protein), vertebrate COPG2 (Coat Protein Gamma 2), as well as to human and mouse UCN (Urocortin). Structures of Fugu and human MEST, COPG2 and UCN genes are very similar. Since MEST and COPG2 are neighboring genes on human chromosome 7q32, we can conclude that we identified their orthologs and that linkage of these genes is evolutionarily conserved in vertebrates. Unlike human MEST which underlies isoform-specific imprinting and is methylated in a parent-of-origin-specific fashion, the CpG island of the Fugu ortholog is completely methylated. The translation start of Fugu MEST is identical to the non-imprinted human isoform which is in good agreement with the assumption that genomic imprinting is restricted to mammals. Comparative mapping of these genes by fluorescence in-situ hybridization to metaphase chromosomes of Fugu rubripes and Tetraodon nigroviridis showed clear signals on one of the smallest acrocentric chromosomal pairs, which in Fugu, can be easily classified by its unique triangular shape.
Collapse
Affiliation(s)
- B Brunner
- Human Genetics, University Hospital Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Davidson H, Taylor MS, Doherty A, Boyd AC, Porteous DJ. Genomic sequence analysis of Fugu rubripes CFTR and flanking genes in a 60 kb region conserving synteny with 800 kb of human chromosome 7. Genome Res 2000; 10:1194-203. [PMID: 10958637 PMCID: PMC310914 DOI: 10.1101/gr.10.8.1194] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2000] [Accepted: 06/02/2000] [Indexed: 12/13/2022]
Abstract
To define control elements that regulate tissue-specific expression of the cystic fibrosis transmembrane regulator (CFTR), we have sequenced 60 kb of genomic DNA from the puffer fish Fugu rubripes (Fugu) that includes the CFTR gene. This region of the Fugu genome shows conservation of synteny with 800-kb sequence of the human genome encompassing the WNT2, CFTR, Z43555, and CBP90 genes. Additionally, the genomic structure of each gene is conserved. In a multiple sequence alignment of human, mouse, and Fugu, the putative WNT2 promoter sequence is shown to contain highly conserved elements that may be transcription factor or other regulatory binding sites. We have found two putative ankyrin repeat-containing genes that flank the CFTR gene. Overall sequence analysis suggests conservation of intron/exon boundaries between Fugu and human CFTR and revealed extensive homology between functional protein domains. However, the immediate 5' regions of human and Fugu CFTR are highly divergent with few conserved sequences apart from those resembling diminished cAMP response elements (CRE) and CAAT box elements. Interestingly, the polymorphic polyT tract located upstream of exon 9 is present in human and Fugu but absent in mouse. Similarly, an intron 1 and intron 9 element common to human and Fugu is absent in mouse. The euryhaline killifish CFTR coding sequence is highly homologous to the Fugu sequence, suggesting that upregulation of CFTR in that species in response to salinity may be regulated transcriptionally.
Collapse
Affiliation(s)
- H Davidson
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK.
| | | | | | | | | |
Collapse
|
19
|
Abstract
At 400 Mb, the Japanese pufferfish, Fugu rubripes, has the smallest vertebrate genome but has a similar gene repertoire to other vertebrates. Its genes are densely packed with short intergenic and intronic sequences devoid of repetitive elements. It likely has a mutational bias towards DNA elimination and is probably close to a 'minimal' vertebrate genome. As such it is a useful reference genome for gene discovery and gene validation in other vertebrates. Its usefulness in the discovery of conserved regulatory elements has already been demonstrated. The Fugu genome sequence is a good complement to genetic studies in other vertebrates.
Collapse
Affiliation(s)
- B Venkatesh
- Institute of Molecular and Cell Biology, National University of Singapore, 30 Medical Drive, 117609, Singapore
| | | | | |
Collapse
|
20
|
Kehrer-Sawatzki H, Moschgath E, Maier C, Legius E, Elgar G, Krone W. Characterization of the Fugu rubripes NLK and FN5 genes flanking the NF1 (Neurofibromatosis type 1) gene in the 5' direction and mapping of the human counterparts. Gene 2000; 251:63-71. [PMID: 10863097 DOI: 10.1016/s0378-1119(00)00188-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To complete the analysis of the Neurofibromatosis type 1 (NF1) gene region in Fugu rubripes, we characterized the upstream flanking region of the NF1 gene and identified the FN5 (flanking the Fugu NF1 gene in 5' direction) gene and the NLK (Nemo-like kinase) gene as its flanking genes. The FN5 gene spans 3807bp and encompasses four exons, three of which belong to the expanded 5' UTR. Only 11% of the FN5 transcript is protein-coding. The function of the FN5 protein spanning 59 amino acids is unknown. We also characterized the human and the mouse FN5 transcripts and found 85% and 83% similarity of deduced amino acid sequences compared with Fugu. Two copies of the human FN5 gene were identified, one on chromosome 17q21.3-q22 several megabases distal to the NF1 gene at 17q11.2. The second copy of the FN5 gene was mapped to 11q13.3-q23.3. In Fugu, the FN5 gene is flanked by the NLK gene, which spans 4513bp from the translation start to the stop codon and encompasses 11 exons. Comparing the deduced amino acid sequences, 82% overall similarity was observed between Fugu and mouse or human NLK and 67% similarity between the Fugu NLK and the highly related LIT-1 kinase of Caenorhabditis elegans, which has been shown, like the vertebrate counterpart, to be involved in the Wnt signalling pathway. We mapped the human NLK gene to 17q11.2 between markers D17S935 and D17S120, more than 1Mb proximal to the NF1 gene. The characterization of the 5' flanking region presented here, together with that of the 3' region, demonstrates the profound differences between Fugu and human considering the gene content within the region flanking the NF1 gene.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Chromosome Mapping
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 17/genetics
- DNA/chemistry
- DNA/genetics
- Female
- Fishes/genetics
- Genes/genetics
- Humans
- Hybrid Cells
- In Situ Hybridization, Fluorescence
- Intracellular Signaling Peptides and Proteins
- Male
- Mice
- Mitogen-Activated Protein Kinases/genetics
- Molecular Sequence Data
- Nerve Tissue Proteins/genetics
- Neurofibromin 1
- Protein Serine-Threonine Kinases
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Transcription, Genetic
Collapse
|
21
|
McLysaght A, Enright AJ, Skrabanek L, Wolfe KH. Estimation of synteny conservation and genome compaction between pufferfish (Fugu) and human. Yeast 2000. [PMID: 10797599 DOI: 10.1002/(sici)1097-0061(200004)17:1<22::aid-yea5>3.3.co;2-j] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Knowledge of the amount of gene order and synteny conservation between two species gives insights to the extent and mechanisms of divergence. The vertebrate Fugu rubripes (pufferfish) has a small genome with little repetitive sequence which makes it attractive as a model genome. Genome compaction and synteny conservation between human and Fugu were studied using data from public databases. METHODS Intron length and map positions of human and Fugu orthologues were compared to analyse relative genome compaction and synteny conservation respectively. The divergence of these two genomes by genome rearrangement was simulated and the results were compared to the real data. RESULTS Analysis of 199 introns in 22 orthologous genes showed an eight-fold average size reduction in Fugu, consistent with the ratio of total genome sizes. There was no consistent pattern relating the size reduction in individual introns or genes to gene base composition in either species. For genes that are neighbours in Fugu (genes from the same cosmid or GenBank entry), 40-50% have conserved synteny with a human chromosome. This figure may be underestimated by as much as two-fold, due to problems caused by incomplete human genome sequence data and the existence of dispersed gene families. Some genes that are neighbours in Fugu have human orthologues that are several megabases and tens of genes apart. This is probably caused by small inversions or other intrachromosomal rearrangements. CONCLUSIONS Comparison of observed data to computer simulations suggests that 4000-16 000 chromosomal rearrangements have occurred since Fugu and human shared a common ancestor, implying a faster rate of rearrangement than seen in human/mouse comparisons.
Collapse
Affiliation(s)
- A McLysaght
- Department of Genetics, University of Dublin, Trinity College, Ireland
| | | | | | | |
Collapse
|
22
|
Grützner F, Lütjens G, Rovira C, Barnes DW, Ropers HH, Haaf T. Classical and molecular cytogenetics of the pufferfish Tetraodon nigroviridis. Chromosome Res 2000; 7:655-62. [PMID: 10628667 DOI: 10.1023/a:1009292220760] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Because of its highly compact genome, the pufferfish has become an important animal model in genome research. Although the small chromosome size renders chromosome analysis difficult, we have established both classical and molecular cytogenetics in the freshwater pufferfish Tetraodon nigroviridis (TNI). The karyotype of T. nigroviridis consists of 2n = 42 biarmed chromosomes, in contrast to the known 2n = 44 chromosomes of the Japanese pufferfish Fugu rubripes (FRU). RBA banding can identify homologous chromosomes in both species. TNI 1 corresponds to two smaller FRU chromosomes, explaining the difference in chromosome number. TNI 2 is homologous to FRU 1. Fluorescence in-situ hybridization (FISH) allows one to map single-copy sequences, i.e. the Huntingtin gene, on chromosomes of the species of origin and also on chromosomes of the heterologous pufferfish species. Hybridization of total genomic DNA shows large blocks of (species-specific) repetitive sequences in the pericentromeric region of all TNI and FRU chromosomes. Hybridization with cloned human rDNA and classical silver staining reveal two large and actively transcribed rRNA gene clusters. Similar to the situation in mammals, the highly compact pufferfish genome is endowed with considerable amounts of localized repeat DNAs.
Collapse
Affiliation(s)
- F Grützner
- Max-Planck-Institute of Molecular Genetics, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
23
|
McLysaght A, Enright AJ, Skrabanek L, Wolfe KH. Estimation of synteny conservation and genome compaction between pufferfish (Fugu) and human. Yeast 2000. [PMID: 10797599 PMCID: PMC2447035 DOI: 10.1002/(sici)1097-0061(200004)17:1<22::aid-yea5>3.0.co;2-s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Knowledge of the amount of gene order and synteny conservation between two species gives insights to the extent and mechanisms of divergence. The vertebrate Fugu rubripes (pufferfish) has a small genome with little repetitive sequence which makes it attractive as a model genome. Genome compaction and synteny conservation between human and Fugu were studied using data from public databases. METHODS Intron length and map positions of human and Fugu orthologues were compared to analyse relative genome compaction and synteny conservation respectively. The divergence of these two genomes by genome rearrangement was simulated and the results were compared to the real data. RESULTS Analysis of 199 introns in 22 orthologous genes showed an eight-fold average size reduction in Fugu, consistent with the ratio of total genome sizes. There was no consistent pattern relating the size reduction in individual introns or genes to gene base composition in either species. For genes that are neighbours in Fugu (genes from the same cosmid or GenBank entry), 40-50% have conserved synteny with a human chromosome. This figure may be underestimated by as much as two-fold, due to problems caused by incomplete human genome sequence data and the existence of dispersed gene families. Some genes that are neighbours in Fugu have human orthologues that are several megabases and tens of genes apart. This is probably caused by small inversions or other intrachromosomal rearrangements. CONCLUSIONS Comparison of observed data to computer simulations suggests that 4000-16 000 chromosomal rearrangements have occurred since Fugu and human shared a common ancestor, implying a faster rate of rearrangement than seen in human/mouse comparisons.
Collapse
Affiliation(s)
- Aoife McLysaght
- Department of GeneticsUniversity of DublinTrinity CollegeDublin 2Ireland
| | - Anton J. Enright
- Department of GeneticsUniversity of DublinTrinity CollegeDublin 2Ireland,Computational Genomics Group Research ProgrammeThe European Bioinformatics InstituteEMBL Cambridge OutstationCambridgeCB10 1SDUK
| | - Lucy Skrabanek
- Department of GeneticsUniversity of DublinTrinity CollegeDublin 2Ireland
| | - Kenneth H. Wolfe
- Department of GeneticsUniversity of DublinTrinity CollegeDublin 2Ireland
| |
Collapse
|
24
|
McLysaght A, Enright AJ, Skrabanek L, Wolfe KH. Estimation of synteny conservation and genome compaction between pufferfish (Fugu) and human. Yeast 2000; 17:22-36. [PMID: 10797599 PMCID: PMC2447035 DOI: 10.1002/(sici)1097-0061(200004)17:1<22::aid-yea5>3.0.co;2-s] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Knowledge of the amount of gene order and synteny conservation between two species gives insights to the extent and mechanisms of divergence. The vertebrate Fugu rubripes (pufferfish) has a small genome with little repetitive sequence which makes it attractive as a model genome. Genome compaction and synteny conservation between human and Fugu were studied using data from public databases. METHODS Intron length and map positions of human and Fugu orthologues were compared to analyse relative genome compaction and synteny conservation respectively. The divergence of these two genomes by genome rearrangement was simulated and the results were compared to the real data. RESULTS Analysis of 199 introns in 22 orthologous genes showed an eight-fold average size reduction in Fugu, consistent with the ratio of total genome sizes. There was no consistent pattern relating the size reduction in individual introns or genes to gene base composition in either species. For genes that are neighbours in Fugu (genes from the same cosmid or GenBank entry), 40-50% have conserved synteny with a human chromosome. This figure may be underestimated by as much as two-fold, due to problems caused by incomplete human genome sequence data and the existence of dispersed gene families. Some genes that are neighbours in Fugu have human orthologues that are several megabases and tens of genes apart. This is probably caused by small inversions or other intrachromosomal rearrangements. CONCLUSIONS Comparison of observed data to computer simulations suggests that 4000-16 000 chromosomal rearrangements have occurred since Fugu and human shared a common ancestor, implying a faster rate of rearrangement than seen in human/mouse comparisons.
Collapse
Affiliation(s)
- Aoife McLysaght
- Department of GeneticsUniversity of DublinTrinity CollegeDublin 2Ireland
| | - Anton J. Enright
- Department of GeneticsUniversity of DublinTrinity CollegeDublin 2Ireland
- Computational Genomics Group Research ProgrammeThe European Bioinformatics InstituteEMBL Cambridge OutstationCambridgeCB10 1SDUK
| | - Lucy Skrabanek
- Department of GeneticsUniversity of DublinTrinity CollegeDublin 2Ireland
| | - Kenneth H. Wolfe
- Department of GeneticsUniversity of DublinTrinity CollegeDublin 2Ireland
| |
Collapse
|
25
|
Schummer M, Ng WV, Bumgarner RE, Nelson PS, Schummer B, Bednarski DW, Hassell L, Baldwin RL, Karlan BY, Hood L. Comparative hybridization of an array of 21,500 ovarian cDNAs for the discovery of genes overexpressed in ovarian carcinomas. Gene 1999; 238:375-85. [PMID: 10570965 DOI: 10.1016/s0378-1119(99)00342-x] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Comparative hybridization of cDNA arrays is a powerful tool for the measurement of differences in gene expression between two or more tissues. We optimized this technique and employed it to discover genes with potential for the diagnosis of ovarian cancer. This cancer is rarely identified in time for a good prognosis after diagnosis. An array of 21,500 unknown ovarian cDNAs was hybridized with labeled first-strand cDNA from 10 ovarian tumors and six normal tissues. One hundred and thirty-four clones are overexpressed in at least five of the 10 tumors. These cDNAs were sequenced and compared to public sequence databases. One of these, the gene HE4, was found to be expressed primarily in some ovarian cancers, and is thus a potential marker of ovarian carcinoma.
Collapse
Affiliation(s)
- M Schummer
- Department of Molecular Biotechnology, University of Washington, Seattle 98195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Elgar G, Clark MS, Meek S, Smith S, Warner S, Edwards YJ, Bouchireb N, Cottage A, Yeo GS, Umrania Y, Williams G, Brenner S. Generation and analysis of 25 Mb of genomic DNA from the pufferfish Fugu rubripes by sequence scanning. Genome Res 1999; 9:960-71. [PMID: 10523524 PMCID: PMC310822 DOI: 10.1101/gr.9.10.960] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have generated and analyzed >50,000 shotgun clones from 1059 Fugu cosmid clones. All sequences have been minimally edited and searched against protein and DNA databases. These data are all displayed on a searchable, publicly available web site at. With an average of 50 reads per cosmid, this is virtually nonredundant sequence skimming, covering 30%-50% of each clone. This essentially random data set covers nearly 25 Mb (>6%) of the Fugu genome and forms the basis of a series of whole genome analyses which address questions regarding gene density and distribution in the Fugu genome and the similarity between Fugu and mammalian genes. The Fugu genome, with eight times less DNA but a similar gene repertoire, is ideally suited to this type of study because most cosmids contain more than one identifiable gene. General features of the genome are also discussed. We have made some estimation of the syntenic relationship between mammals and Fugu and looked at the efficacy of ORF prediction from short, unedited Fugu genomic sequences. Comparative DNA sequence analyses are an essential tool in the functional interpretation of complex vertebrate genomes. This project highlights the utility of using the Fugu genome in this kind of study.
Collapse
Affiliation(s)
- G Elgar
- UK Human Genome Mapping Project (HGMP) Resource Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SB, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kehrer-Sawatzki H, Maier C, Moschgath E, Elgar G, Krone W. Characterization of three genes, AKAP84, BAW and WSB1, located 3' to the neurofibromatosis type 1 locus in Fugu rubripes. Gene 1999; 235:1-11. [PMID: 10415327 DOI: 10.1016/s0378-1119(99)00222-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sequence analysis of cosmid clones was instrumental to identify three genes in the region flanking the Fugu rubripes NF1 gene in the 3' direction: the AKAP84 gene (A-kinase anchor protein 84), the WSB1 gene (WD-40-repeat protein with a SOCS box) and the BAW gene of yet unknown function located between the AKAP84 and the WSB1 genes. The human homologues of these genes are not located in the immediate vicinity of the NF1 gene at 17q11.2. Although synteny of the NF1, AKAP84, BAW and WSB1 genes is conserved between Fugu and human, the gene order is not conserved, and more than a simple inversion would have been necessary to explain the difference in gene order. The mammalian homologue of the Fugu BAW gene or protein has not yet been characterized. As deduced from the respective cDNAs, the Fugu AKAP84, WSB1 and BAW proteins vary concerning the overall degree of similarity to their mammalian counterparts. Whereas the overall similarity of AKAP84 between Fugu and mouse is low, three regions of known functional importance show considerable conservation. These are the N-terminal anchoring domain mediating the insertion of AKAP84 in the outer mitochondrial membrane, the binding site of the regulatory subunit (RI or RII) of protein kinase A, and the C-terminal domain present in the alternatively spliced isoform AKAP121 with an hnRNP K homology domain involved in RNA binding. A higher overall similarity of deduced protein sequences between Fugu and mouse was observed comparing the BAW gene products (74.1%) and the WSB1 proteins (77.2%).
Collapse
Affiliation(s)
- H Kehrer-Sawatzki
- Department of Human Genetics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | | | | | | | | |
Collapse
|
28
|
Brunner B, Todt T, Lenzner S, Stout K, Schulz U, Ropers HH, Kalscheuer VM. Genomic Structure and Comparative Analysis of Nine Fugu Genes: Conservation of Synteny with Human Chromosome Xp22.2–p22.1. Genome Res 1999. [DOI: 10.1101/gr.9.5.437] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The pufferfish Fugu rubripes has a compact 400-Mb genome that is ∼7.5 times smaller than the human genome but contains a similar number of genes. Focusing on the distal short arm of the human X chromosome, we have studied the evolutionary conservation of gene orders in Fugu and man. Sequencing of 68 kb of Fugugenomic DNA identified nine genes in the following order: (SCML2)-STK9, XLRS1, PPEF-1, KELCH2, KELCH1, PHKA2, AP19, and U2AF1-RS2. Apart from an evolutionary inversion separatingAP19 and U2AF1-RS2 from PHKA2, gene orders are identical in Fugu and man, and all nine human homologs map to the Xp22 band. All Fugu genes were found to be smaller than their human counterparts, but gene structures were mostly identical. These data suggest that genomic sequencing in Fugu is a powerful and economical strategy to predict gene orders in the human genome and to elucidate the structure of human genes.[Sequence data for this article were deposited with the EMBL/GenBank data libraries under accession nos. AJ011381 and AF094327.]
Collapse
|
29
|
Brunner B, Todt T, Lenzner S, Stout K, Schulz U, Ropers HH, Kalscheuer VM. Genomic structure and comparative analysis of nine Fugu genes: conservation of synteny with human chromosome Xp22.2-p22.1. Genome Res 1999; 9:437-48. [PMID: 10330123 PMCID: PMC310778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The pufferfish Fugu rubripes has a compact 400-Mb genome that is approximately 7.5 times smaller than the human genome but contains a similar number of genes. Focusing on the distal short arm of the human X chromosome, we have studied the evolutionary conservation of gene orders in Fugu and man. Sequencing of 68 kb of Fugu genomic DNA identified nine genes in the following order: (SCML2)-STK9, XLRS1, PPEF-1, KELCH2, KELCH1, PHKA2, AP19, and U2AF1-RS2. Apart from an evolutionary inversion separating AP19 and U2AF1-RS2 from PHKA2, gene orders are identical in Fugu and man, and all nine human homologs map to the Xp22 band. All Fugu genes were found to be smaller than their human counterparts, but gene structures were mostly identical. These data suggest that genomic sequencing in Fugu is a powerful and economical strategy to predict gene orders in the human genome and to elucidate the structure of human genes.
Collapse
Affiliation(s)
- B Brunner
- Max-Planck-Institute for Molecular Genetics, D-14195 Berlin-Dahlem, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Gellner K, Brenner S. Analysis of 148 kb of genomic DNA around the wnt1 locus of Fugu rubripes. Genome Res 1999; 9:251-8. [PMID: 10077531 PMCID: PMC310722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/1998] [Accepted: 01/19/1999] [Indexed: 02/11/2023]
Abstract
The analysis of the sequence of approximately 150 kb of a genomic region corresponding to the wnt1 gene of the Japanese pufferfish Fugu rubripes confirms the compact structure of the genome. Fifteen genes were found in this region, and 26.6% of the analyzed sequence is coding sequence. With an average intergenic distance of <5 kb, this gene density is comparable to that of Caenorhabditis elegans. The compactness of this region corresponds to the reduction of the overall size of the genome, consistent with the conclusion that the gene number in Fugu and human genomes is approximately the same. Eight of the genes have been mapped in the human genome and all of them are found in the chromosomal band 12q13, indicating a high degree of synteny in both species, Fugu and human. Comparative sequence analysis allows us to identify potential regulatory elements for wnt1 and ARF3, which are common to fish and mammals.
Collapse
Affiliation(s)
- K Gellner
- Molecular Sciences Institute, Berkeley, California 94704 USA.
| | | |
Collapse
|
31
|
Gellner K, Brenner S. Analysis of 148 kb of Genomic DNA Around the wnt1 Locus of Fugu rubripes. Genome Res 1999. [DOI: 10.1101/gr.9.3.251] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The analysis of the sequence of ∼150 kb of a genomic region corresponding to the wnt1 gene of the Japanese pufferfishFugu rubripes confirms the compact structure of the genome. Fifteen genes were found in this region, and 26.6% of the analyzed sequence is coding sequence. With an average intergenic distance of <5 kb, this gene density is comparable to that ofCaenorhabditis elegans. The compactness of this region corresponds to the reduction of the overall size of the genome, consistent with the conclusion that the gene number in Fuguand human genomes is approximately the same. Eight of the genes have been mapped in the human genome and all of them are found in the chromosomal band 12q13, indicating a high degree of synteny in both species, Fugu and human. Comparative sequence analysis allows us to identify potential regulatory elements for wnt1 andARF3, which are common to fish and mammals.[The sequence data described in this paper have been submitted to GenBank under accession no. AF056116.]
Collapse
|
32
|
Auf der Maur A, Belser T, Elgar G, Georgiev O, Schaffner W. Characterization of the transcription factor MTF-1 from the Japanese pufferfish (Fugu rubripes) reveals evolutionary conservation of heavy metal stress response. Biol Chem 1999; 380:175-85. [PMID: 10195425 DOI: 10.1515/bc.1999.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The pufferfish Fugu rubripes was recently introduced as a new model organism for genomic studies, since it contains a full set of vertebrate genes but only 13% as much DNA as a mammal. Fugu genes tend to be smaller and densely spaced due to shortening of introns and intergenic spacers. We isolated the Fugu gene for the metal-responsive transcription factor MTF-1 (MTF1), a mediator of heavy metal regulation and oxidative stress response previously characterized in mammals. In addition, most of the cDNA sequence was also determined. The 780 amino acid MTF-1 protein of Fugu is very similar to that of mouse and human, with 90% amino acid identity in the DNA binding zinc finger domain and 57% overall identity. Expression of the pufferfish cDNA in mammalian cells shows that Fugu MTF-1 has the same DNA binding specificity as its mammalian counterpart and also induces transcription in response to zinc and cadmium. The protein-coding part of the Fugu MTF-1 gene spans 6.4 kb and consists of 11 exons. Upstream region and first exon constitute a CpG island. The distance between stop codon and polyadenylation motifs is >2 kb, suggesting a very long 3' untranslated mRNA region, followed by another CpG island which may represent the promoter of the next gene downstream. Part of the MTF-1 genomic structure was also determined in the mouse, and some striking similarities were found: for example, the upstream adjacent gene in both species is INPP5P, encoding a phosphatase. The mouse MTF-1 promoter is also embedded in a CpG island, which however shares no sequence similarity to the one of Fugu. The Fugu CpG island is shorter than the one of the mouse and has no elevated [G+C] content; these and other data indicate that CpG islands of fish may represent a primordial stage of CpG island evolution.
Collapse
Affiliation(s)
- A Auf der Maur
- Institut für Molekularbiologie der Universität Zürich, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Tassone F, Villard L, Clancy K, Gardiner K. Structures, sequence characteristics, and synteny relationships of the transcription factor E4TF1, the splicing factor U2AF35 and the cystathionine beta synthetase genes from Fugu rubripes. Gene X 1999; 226:211-23. [PMID: 9931491 DOI: 10.1016/s0378-1119(98)00559-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
A cosmid containing the beta-amyloid precursor protein (APP) from Fugu rubripes has been completely sequenced. In addition to APP, the cosmid contains the E4TF1-60 transcription factor, the U2AF35 pre-mRNA splicing factor, and the cystathionine beta synthetase (CBS) gene. The human homologues of all four genes map to human chromosome 21 but are not clustered; APP and E4TF1-60 map within 21q21, whereas U2AF35 and CBS map approximately 20Mb distal in 21q22. 3. The protein sequences of the Fugu genes vary in their overall level of similarity to their mammalian homologues, but several regions of functional importance are almost identical. As expected, the intron/exon structures of the homologous pairs of genes are highly conserved, but there are significant differences in the compaction ratios. The introns of APP and E4TF1-60 are 49- and 24-fold smaller in Fugu than in human, and the intergenic distance is compressed at least 100-fold. For U2AF35 and CBS, the introns are compressed only five- to eightfold. These size differences were compared with those for a number of previously reported Fugu genes; in general, levels of compaction of Fugu genes are consistent with the isochore locations of the human homologues.
Collapse
Affiliation(s)
- F Tassone
- Eleanor Roosevelt Institute, 1899 Gaylord Street, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
34
|
Kehrer-Sawatzki H, Maier C, Moschgath E, Elgar G, Krone W. Genomic characterization of the Neurofibromatosis Type 1 gene of Fugu rubripes. Gene X 1998; 222:145-53. [PMID: 9813292 DOI: 10.1016/s0378-1119(98)00495-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The genomic structure of the Neurofibromatosis Type1 (NF1) gene of Fugu rubripes was investigated by sequence analysis of two overlapping cosmids. The Fugu NF1 gene spans 27 kb and is 13 times smaller than the human counterpart owing primarily to reduced intron size. The predicted amino acid sequence is highly related to that of human neurofibromin, exhibiting an overall similarity of 91.5%. Nearly all exons described for the human NF1 gene could be identified, except exon 12b and the alternatively spliced exons 9br and 48a. With the exception of the splice acceptor site in front of exon 16, all splice sites are in identical positions to those found in the human gene. Intron 1, which is 100-140 kb long in humans, spans 2575 bp in the Fugu NF1 gene. Another large intron of the human NF1 gene, intron 27b (45-50 kb), is 3942 bp of size in Fugu. Sequences related to the OMgp gene (Oligodendrocyte-Myelin-glycoprotein) or the EVI2A gene (ecotropic viral integration site), which are inserted into human NF1 intron 27b, were not detected in the corresponding Fugu intron. However, a single exon gene with similarity to the human EVI2B gene has been found on the reverse strand of Fugu intron 27b. This suggests that the human EVI2B gene and the Fugu gene in intron 27b have a common ancestor. We found the expression of this inserted gene in liver and kidney, but not in brain tissue of Fugu rubripes.
Collapse
Affiliation(s)
- H Kehrer-Sawatzki
- Abteilung Humangenetik, Universität Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | | | | | | | | |
Collapse
|
35
|
Miles C, Elgar G, Coles E, Kleinjan DJ, van Heyningen V, Hastie N. Complete sequencing of the Fugu WAGR region from WT1 to PAX6: dramatic compaction and conservation of synteny with human chromosome 11p13. Proc Natl Acad Sci U S A 1998; 95:13068-72. [PMID: 9789042 PMCID: PMC23712 DOI: 10.1073/pnas.95.22.13068] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pufferfish Fugu rubripes has a genome approximately 7.5 times smaller than that of mammals but with a similar number of genes. Although conserved synteny has been demonstrated between pufferfish and mammals across some regions of the genome, there is some controversy as to what extent Fugu will be a useful model for the human genome, e.g., [Gilley, J., Armes, N. & Fried, M. (1997) Nature (London) 385, 305-306]. We report extensive conservation of synteny between a 1.5-Mb region of human chromosome 11 and <100 kb of the Fugu genome in three overlapping cosmids. Our findings support the idea that the majority of DNA in the region of human chromosome 11p13 is intergenic. Comparative analysis of three unrelated genes with quite different roles, WT1, RCN1, and PAX6, has revealed differences in their structural evolution. Whereas the human WT1 gene can generate 16 protein isoforms via a combination of alternative splicing, RNA editing, and alternative start site usage, our data predict that Fugu WT1 is capable of generating only two isoforms. This raises the question of the extent to which the evolution of WT1 isoforms is related to the evolution of the mammalian genitourinary system. In addition, this region of the Fugu genome shows a much greater overall compaction than usual but with significant noncoding homology observed at the PAX6 locus, implying that comparative genomics has identified regulatory elements associated with this gene.
Collapse
Affiliation(s)
- C Miles
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- M Angrist
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio 44106-4955 USA.
| |
Collapse
|
37
|
Abstract
High resolution chromatin/DNA fiber fluorescent in situ hybridisation (FISH) is a powerful system for physical mapping and genome research. With direct visualisation of molecular probes along released chromatin or DNA fiber, fiber FISH has become the method of choice to order genes or DNA markers within chromosomal regions of interest. Combined with DNA-protein in situ codetection fiber FISH shall play a more important role for analysis of genome function. In this paper the concept and technical developments of fiber FISH are reviewed with the emphasis of comparison on the various protocols. Future challenges are also discussed along with the highlights of the successful applications achieved by fiber FISH methodology.
Collapse
Affiliation(s)
- H H Heng
- Department of Genetics, Hospital for Sick Children, Toronto, Ontario, Canada.
| | | |
Collapse
|
38
|
Coutelle O, Nyakatura G, Taudien S, Elgar G, Brenner S, Platzer M, Drescher B, Jouet M, Kenwrick S, Rosenthal A. The neural cell adhesion molecule L1: genomic organisation and differential splicing is conserved between man and the pufferfish Fugu. Gene 1998; 208:7-15. [PMID: 9479034 DOI: 10.1016/s0378-1119(97)00614-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human gene for the neural cell adhesion molecule L1 is located on Xq28 between the ALD and MeCP2 loci. Mutations in the L1 gene are associated with four related neurological disorders, X-linked hydrocephalus, spastic paraplegia (SPG1), MASA syndrome, and X-linked corpus callosum agenesis. The clinical relevance of L1 has led us to sequence the L1 gene in human and to investigate its conservation in the vertebrate model genome of the pufferfish, Fugu rubripes (Fugu), a species with a compact genome of around 40Mb. For this purpose we have sequenced a human and a Fugu cosmid clone containing the corresponding L1 genes. For comparison, we have also amplified and sequenced the complete Fugu L1 cDNA. We find that the genomic structure of L1 is conserved. The human and Fugu L1 gene both have 28 exons of nearly identical size. Differential splicing of exons 2 and 27 is conserved over 430 million years, the evolutionary time span between the teleost Fugu and the human L1 gene. In contrast to previously published Fugu genes, many introns are larger in the Fugu L1 gene, making it slightly larger in size despite the compact nature of the Fugu genome. Homology at the amino acid and the nucleotide level with 40% and 51%, respectively, is lower than that of any previously reported Fugu gene. At the level of protein structure, both human and Fugu L1 molecules are composed of six immunoglobulin (Ig)-like domains and five fibronectin (Fn) type III domains, followed by a transmembrane domain and a short cytoplasmic domain. Only the transmembrane and the cytoplasmic domains are significantly conserved in Fugu, supporting their proposed function in intracellular signalling and interaction with cytoskeletal elements in the process of neurite outgrowth and fascicle formation. Our results show that the cytoplasmic domain can be further subdivided into a conserved and a variable region, which may correspond to different functions. Most pathological missense mutations in human L1 affect conserved residues. Fifteen out of 22 reported missense mutations alter amino acids that are identical in both species.
Collapse
Affiliation(s)
- O Coutelle
- Institute of Molecular Biotechnology, Department of Genome Analysis, Beutenbergstrasse 11, 07745, Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Göttgens B, Gilbert JG, Barton LM, Aparicio S, Hawker K, Mistry S, Vaudin M, King A, Bentley D, Elgar G, Green AR. The pufferfish SLP-1 gene, a new member of the SCL/TAL-1 family of transcription factors. Genomics 1998; 48:52-62. [PMID: 9503016 DOI: 10.1006/geno.1997.5162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The SCL/TAL-1 gene encodes a basic helix-loop-helix (bHLH) transcription factor essential for the development of all hemopoietic lineages and also acts as a T-cell oncogene. Four related genes have been described in mammals (LYL-1, TAL-2, NSCL1, and NSCL2), all of which exhibit a high degree of sequence similarity to SCL/TAL-1 in the bHLH domain and two of which (LYL-1 and TAL-2) have also been implicated in the pathogenesis of T-cell acute lymphoblastic leukemia. In this study we describe the identification and characterization of a pufferfish gene termed SLP-1, which represents a new member of this gene family. The genomic structure and sequence of SLP-1 suggests that it forms a subfamily with SCL/TAL-1 and LYL-1 and is most closely related to SCL/TAL-1. However, unlike SCL/TAL-1, SLP-1 is widely expressed. Sequence analysis of a whole cosmid containing SLP-1 shows that SLP-1 is flanked upstream by a zinc finger gene and a fork-head-domain gene and downstream by a heme-oxygenase and a RING finger gene.
Collapse
Affiliation(s)
- B Göttgens
- Department of Haematology, MRC Centre, University of Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
After genetic mapping and physical representation of a particular genomic region containing the gene underlying a particular Mendelian trait, a successful positional cloning strategy depends on the efficient detection and analysis of genes in the critical interval. Several gene detection strategies are presently available to compile an inventory of genes from large genomic regions. Here, the principle of these methods is briefly reviewed and their relative value for positional cloning projects compared.
Collapse
Affiliation(s)
- T Boehm
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| |
Collapse
|
41
|
Leu JH, Chang MS, Yao CW, Chou CK, Chen ST, Huang CJ. Genomic organization and characterization of the promoter region of the round-spotted pufferfish (Tetraodon fluviatilis) JAK1 kinase gene. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1395:50-6. [PMID: 9434151 DOI: 10.1016/s0167-4781(97)00137-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Seventeen kilobases of genomic DNA containing the promoter and the coding region of the round-spotted pufferfish JAK1 gene was isolated and completely sequenced. This gene consists of 25 exons and 24 introns spanning about 13.5 kb, compared to > 30kb in carp JAK1 gene. Primer extension analysis revealed one transcription initiation site which was 376 bp upstream of the translation initiation site. The sequence of the 2.9 kb region upstream of the transcription initiation site contains numerous potential binding sites for transcription factors including HNF-5, GCF, Sp1, CRE, AP2, GATA, GAGA, E2A, p53, and NF-IL6. When this region was placed upstream of the chloramphenicol acetyltransferase (CAT) reporter gene and transfected into a carp CF cell line, it could drive the synthesis of CAT enzyme three times more efficiently than could the common carp JAK1 promoter.
Collapse
Affiliation(s)
- J H Leu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
42
|
Yao CW, Leu JH, Chin C, Chou CK, Huang CJ. Round-spotted pufferfish (Tetraodon fluviatilis) snf5 gene is oriented in a tail-to-tail manner with the set gene which encodes an inhibitor of protein phosphatase 2A. DNA Cell Biol 1998; 17:69-82. [PMID: 9468224 DOI: 10.1089/dna.1998.17.69] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The round-spotted pufferfish Tetraodon fluviatilis has a genome size of 380 Mb which is slightly smaller than that of another pufferfish Fugu rubripes rubripes (Fugu). Due to its compact genome and small introns, Fugu has been introduced as a model for genome studies. Recently, the round-spotted pufferfish has also been proposed as a new model for genome studies because of the ease in obtaining material and high-sequence homology to that of Fugu. In this study, we have cloned and characterized the snf5 and set genes from the round-spotted pufferfish. The snf5 gene is composed of 9 exons spanning about 2.9 kb whereas the set gene consists of 8 exons spanning about 2.7 kb. They are linked in a tail-to-tail manner with an intergenic region of about 6.5 kb. So far, the genomic structures of human snf5 and set genes are unknown. Based on our data, the pufferfish SNF5 and SET display high amino acid sequence identity (>90%) with the respective human genes. By primer extension and sequence analysis, we found that putative promoter region of the snf5 gene contains a typical TATA box and numerous potential binding sites for transcription factors including AP1, AP2, AP3, c-Myb, HNF-5, and NF-IL6. As for the set gene, its promoter region does not have any TATA or CCAAT motif and contains a few potential binding sites for transcriptional factors such as c-Myb and gamma-IRE. When these promoter regions were placed upstream of the CAT reporter gene and transfected into a carp CF cell line, the 5'-upstream 1.6-kb DNA fragment of the snf5 gene displayed stronger promoter activity, approximately three-fold higher than that of the 5'-upstream 1.3 kb DNA fragment of the set gene. By transient expression and immunofluorescent staining, we also showed that the pufferfish SNF5 and SET are nuclear proteins, consistent with their postulated roles as transcriptional factors.
Collapse
Affiliation(s)
- C W Yao
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
43
|
Venkatesh B, Si-Hoe SL, Murphy D, Brenner S. Transgenic rats reveal functional conservation of regulatory controls between the Fugu isotocin and rat oxytocin genes. Proc Natl Acad Sci U S A 1997; 94:12462-6. [PMID: 9356472 PMCID: PMC25001 DOI: 10.1073/pnas.94.23.12462] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have asked whether comparative genome analysis and rat transgenesis can be used to identify functional regulatory domains in the gene locus encoding the hypothalamic neuropeptides oxytocin (OT) and vasopressin. Isotocin (IT) and vasotocin (VT) are the teleost homologues of these genes. A contiguous stretch of 46 kb spanning the Fugu IT-VT locus has been sequenced, and nine putative genes were found. Unlike the OT and vasopressin genes, which are closely linked in the mammalian genome in a tail-to-tail orientation, Fugu IT and VT genes are linked head to tail and are separated by five genes. When a cosmid containing the Fugu IT-VT locus was introduced into the rat genome, we found that the Fugu IT gene was specifically expressed in rat hypothalamic oxytocinergic neurons and mimicked the response of the endogenous OT gene to an osmotic stimulus. These data show that cis-acting elements and trans-acting factors mediating the cell-specific and physiological regulation of the OT and IT genes are conserved between mammals and fish. The combination of Fugu genome analysis and transgenesis in a mammal is a powerful tool for identifying and analyzing conserved vertebrate regulatory elements.
Collapse
Affiliation(s)
- B Venkatesh
- Molecular Genetics Laboratory, Institute of Molecular and Cell Biology, National University of Singapore, 15, Lower Kent Ridge Road, Singapore 119076, USA.
| | | | | | | |
Collapse
|
44
|
Yeo GS, Elgar G, Sandford R, Brenner S. Cloning and sequencing of complement component C9 and its linkage to DOC-2 in the pufferfish Fugu rubripes. Gene 1997; 200:203-11. [PMID: 9373156 DOI: 10.1016/s0378-1119(97)00423-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Japanese pufferfish Fugu rubripes has a 400 Mb genome with high gene density and minimal non-coding complexity, and is therefore an ideal vertebrate model for sequence comparison. The identification of regions of conserved synteny between Fugu and humans would greatly accelerate the mapping and ordering of genes. Fugu C9 was cloned and sequenced as a first step in an attempt to characterize the region in Fugu homologous to human chromosome 5p13. The 11 exons of the Fugu C9 gene share 33% identity with human C9 and span 2.9 kb of genomic DNA. By comparison, human C9 spans 90 kb, representing a 30-fold difference in size. We have also determined by cosmid sequence scanning that DOC-2, a tumour suppresser gene which also maps to human 5p13, lies 6-7 kb from C9 in a head-to-head or 5' to 5' orientation. These results demonstrate that the Fugu C9/DOC-2 locus is a region of conserved synteny. Sequence scanning of overlapping cosmids has identified two other genes, GAS-1 and FBP, both of which map to human chromosome 9q22, and lie adjacent to the Fugu C9/DOC-2 locus, indicating the boundary between two syntenic regions.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Amino Acid Sequence
- Animals
- Apoptosis Regulatory Proteins
- Base Sequence
- Chromosome Mapping
- Chromosomes, Human, Pair 5
- Chromosomes, Human, Pair 9
- Cloning, Molecular
- Complement C9/biosynthesis
- Complement C9/chemistry
- Complement C9/genetics
- Conserved Sequence
- Cosmids
- Exons
- Fishes/genetics
- Genes, Tumor Suppressor
- Genetic Linkage
- Humans
- Introns
- Molecular Sequence Data
- Protein Biosynthesis
- Proteins/chemistry
- Proteins/genetics
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Sequence Alignment
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- G S Yeo
- Molecular Genetics, University of Cambridge Department of Medicine, Addenbrookes Hospital, UK.
| | | | | | | |
Collapse
|
45
|
Schofield JP, Elgar G, Greystrong J, Lye G, Deadman R, Micklem G, King A, Brenner S, Vaudin M. Regions of human chromosome 2 (2q32-q35) and mouse chromosome 1 show synteny with the pufferfish genome (Fugu rubripes). Genomics 1997; 45:158-67. [PMID: 9339372 DOI: 10.1006/geno.1997.4913] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have isolated and sequenced a cosmid clone from the compact genome of the Japanese pufferfish (Fugu rubripes) containing portions of three genes that have the same order as in human. The gene order is microtubule-associated protein (MAP-2), myosin light chain (MYL-1), and carbamoyl phosphate synthetase (CPS III). The intron-exon organization of Fugu CPS III is identical with that of rat CPS I, although the equivalent genomic fragments of rat and Fugu CPS span 87.9 and 21 kb, respectively. This is the first report of a piscine CPS III genomic structure and predicts a close evolutionary link between CPS III and CPS I. The 8-kb intergenic region between MYL-1 and CPS gave no clear areas of transcription factor-binding sites by pairwise comparison with shark or rat CPS promoter regions. However, there was a match with the rat myosin light chain 2 (MLC-2) gene promoter and a MyoD transcription factor-binding site 874 bp upstream of the MYL-1 gene.
Collapse
Affiliation(s)
- J P Schofield
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Abstract
Fluorescent in situ hybridization technology is one of the most exciting and versatile research tools to be developed in recent years. It has enabled research to progress at a phenomenal rate in diverse areas of basic research as well as in clinical medicine. Fluorescent in situ hybridization has applications in physical mapping, the study of nuclear architecture and chromatin packaging, and the investigation of fundamental principles of biology such as DNA replication, RNA processing, gene amplification, gene integration and chromatin elimination. This review highlights some of these areas and provides source material for the reader who seeks more information on a specific field.
Collapse
Affiliation(s)
- H H Heng
- Department of Biology, York University, Downsview, Ontario, Canada
| | | | | |
Collapse
|
48
|
How GF, Venkatesh B, Brenner S. Conserved linkage between the puffer fish (Fugu rubripes) and human genes for platelet-derived growth factor receptor and macrophage colony-stimulating factor receptor. Genome Res 1996; 6:1185-91. [PMID: 8973913 DOI: 10.1101/gr.6.12.1185] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have cloned and sequenced the teleost homologs of the human genes encoding platelet-derived growth factor receptor-beta (PDGFR beta) and macrophage colony-stimulating factor 1 receptor (CSFIR) from the puffer fish Fugu rubripes. The Fugu PDGFR beta and CSFIR genes each consist of 21 coding exons similar to the human CSFI gene, but are considerably smaller than their human counterparts because of the smaller introns. Furthermore, the two Fugu genes are linked tandemly in a head-to-tail array similar to their human homologs with 2.2 kb of intergenic sequence. Amino acid sequences of the Fugu and human PDGFR beta and CSFIR genes show an overall homology of 45% and 39%, respectively, with the kinase domains showing a much higher degree of conservation. Dot-matrix analysis revealed several short stretches of conserved sequences in the 3' untranslated regions of the PDGFR beta genes and the adjacent promoter regions of the CSFIR genes. These conserved sequences may have a role in the regulation of expression of either or both of these closely linked genes.
Collapse
Affiliation(s)
- G F How
- Institute of Molecular and Cell Biology, National University of Singapore, Singapore
| | | | | |
Collapse
|
49
|
Abstract
The genome of the pufferfish, Fugu rubripes (Fugu) is compact. With a similar gene complement to mammals and a genome size of just 400 Mb, gene density is high averaging one every 6-7 kb. Initial characterization of this genome has shown that although genes are much smaller and more densely spaced, their intron/exon structure is conserved with the resulting introns being small. There is little repetitive DNA in the genome and this greatly facilitates comparative genomic studies. The coding content of genes is highly conserved as are critical regulatory elements of some genes. Other DNA is not, however, and this allows the identification of homologous coding sequence between Fugu and mammalian genes. Although the genome of Fugu is 7.5 times smaller than the human genome, not all genes are reduced proportionately. Some regions of the genome show conserved synteny with mammalian genomes, although at the present time only short physical distances have been examined. The structure of the genome is also being studied. Initial data suggest that this may be different to that found in mammals. It is not clear that the same kind of isochore structure is present in this early vertebrate genome. Patterns of methylation may be different resulting in a different distribution of CpG islands. An attempt is being made to centralize both resources and data from the genome of Fugu so that everything may be integrated into a single, publicly accessible database which in turn, may be integrated with databases from other organisms.
Collapse
Affiliation(s)
- G Elgar
- Dept. of Medicine, University of Cambridge, Addenbrookes' Hospital, Cambridge, UK
| |
Collapse
|
50
|
Koop BF, Nadeau JH. Pufferfish and new paradigm for comparative genome analysis. Proc Natl Acad Sci U S A 1996; 93:1363-5. [PMID: 8643636 PMCID: PMC39942 DOI: 10.1073/pnas.93.4.1363] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- B F Koop
- Center for Environmental Health, University of Victoria, Sidney, Canada
| | | |
Collapse
|