1
|
Nowak SM, Sacco R, Mitchell FL, Patel V, Gurzawska-Comis K. The effectiveness of autologous platelet concentrates in prevention and treatment of medication-related osteonecrosis of the jaws: A systematic review. J Craniomaxillofac Surg 2024; 52:671-691. [PMID: 38644092 DOI: 10.1016/j.jcms.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 04/23/2024] Open
Abstract
The systematic review aims to answer the PICOS question: "Are the autologous platelet concentrates (APCs) an effective strategy in prevention and/or treatment of patients at risk of/affected by medication-related osteonecrosis of the jaws (MRONJ)?". A literature search was conducted via PubMed, MEDLINE, EMBASE, and CINAHL (January 2006 - September 2023). 30 articles were included, evaluating preventive (n = 8*) and treatment strategies (n = 23*). The risk of bias and quality of studies were assessed utilising ROB-2, ROBIN-1 and GRADE criteria. Meta-analysis was undertaken for eligible studies. The application of APCs demonstrated a statistically significant effectiveness in prevention of MRONJ in 86.13% (p < 0.001) but failed to achieve the same level of certainty in treatment of established MRONJ in 83.4% (p = 0.08). High levels of bias were identified; thus, the results should be interpreted with caution. More high quality prospective randomised controlled trials are needed to further evaluate the effectiveness of APCs in management of MRONJ.
Collapse
Affiliation(s)
- Sylwia Maria Nowak
- Department of Oral Surgery, Leeds Dental Institute, Leeds University Hospitals Trust, United Kingdom
| | - Roberto Sacco
- Department of Oral Surgery, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, United Kingdom
| | | | - Vinod Patel
- Department of Oral Surgery, Guy's and St Thomas' NHS Foundation Trust, United Kingdom
| | - Katarzyna Gurzawska-Comis
- Department of Oral Surgery, Liverpool University Dental Hospital, United Kingdom; Liverpool Head and Neck Centre, University of Liverpool, United Kingdom.
| |
Collapse
|
2
|
Wei F, Hughes M, Omer M, Ngo C, Pugazhendhi AS, Kolanthai E, Aceto M, Ghattas Y, Razavi M, Kean TJ, Seal S, Coathup M. A Multifunctional Therapeutic Strategy Using P7C3 as A Countermeasure Against Bone Loss and Fragility in An Ovariectomized Rat Model of Postmenopausal Osteoporosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308698. [PMID: 38477537 PMCID: PMC11151083 DOI: 10.1002/advs.202308698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Indexed: 03/14/2024]
Abstract
By 2060, an estimated one in four Americans will be elderly. Consequently, the prevalence of osteoporosis and fragility fractures will also increase. Presently, no available intervention definitively prevents or manages osteoporosis. This study explores whether Pool 7 Compound 3 (P7C3) reduces progressive bone loss and fragility following the onset of ovariectomy (OVX)-induced osteoporosis. Results confirm OVX-induced weakened, osteoporotic bone together with a significant gain in adipogenic body weight. Treatment with P7C3 significantly reduced osteoclastic activity, bone marrow adiposity, whole-body weight gain, and preserved bone area, architecture, and mechanical strength. Analyses reveal significantly upregulated platelet derived growth factor-BB and leukemia inhibitory factor, with downregulation of interleukin-1 R6, and receptor activator of nuclear factor kappa-B (RANK). Together, proteomic data suggest the targeting of several key regulators of inflammation, bone, and adipose turnover, via transforming growth factor-beta/SMAD, and Wingless-related integration site/be-catenin signaling pathways. To the best of the knowledge, this is first evidence of an intervention that drives against bone loss via RANK. Metatranscriptomic analyses of the gut microbiota show P7C3 increased Porphyromonadaceae bacterium, Candidatus Melainabacteria, and Ruminococcaceae bacterium abundance, potentially contributing to the favorable inflammatory, and adipo-osteogenic metabolic regulation observed. The results reveal an undiscovered, and multifunctional therapeutic strategy to prevent the pathological progression of OVX-induced bone loss.
Collapse
Affiliation(s)
- Fei Wei
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
| | - Megan Hughes
- School of BiosciencesCardiff UniversityWalesCF10 3ATUK
| | - Mahmoud Omer
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
| | - Christopher Ngo
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | | | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC)University of Central FloridaOrlandoFL32826USA
| | - Matthew Aceto
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Yasmine Ghattas
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Mehdi Razavi
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Thomas J Kean
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Sudipta Seal
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC)University of Central FloridaOrlandoFL32826USA
| | - Melanie Coathup
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| |
Collapse
|
3
|
Martino G, Bellone F, Vicario CM, Gaudio A, Corica F, Squadrito G, Lund-Jacobsen T, Schwarz P, Lo Coco G, Morabito N, Catalano A. Interrelations between clinical-psychological features and bone mineral density changes in post-menopausal women undergoing anti-osteoporotic treatment: a two-year follow-up. Front Endocrinol (Lausanne) 2023; 14:1151199. [PMID: 37229451 PMCID: PMC10203700 DOI: 10.3389/fendo.2023.1151199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Psychological features have been bidirectionally associated with osteoporosis, but it is still unclear whether patient's anxiety fluctuations during the anti-osteoporotic treatment can have an impact on bone mineral density (BMD) variation. The aim of this study was to investigate the interrelations between psychological distress features, such as anxiety, depression, health-related QoL (HRQoL) and bone health in women receiving anti-osteoporotic treatment. METHODS 192 post-menopausal osteoporotic women were treated with alendronate or risedronate according to the standard procedure. The levels of anxiety, depression, and perceived HRQoL, along with BMD, were assessed at baseline and at a 2-year follow-up. RESULTS At the end of the study, the patients showed a statistically significant increase of both psychic and somatic anxiety (p<0.0001) and exhibited a worsening of depressive symptoms (p<0.0001), whereas HRQoL showed no change. BMD improved and no incident fractures occurred. BMD variation (ΔBMD) at lumbar spine was significantly associated with anxiety levels (r=0.23, p=0.021). Multiple regression analysis showed that both patients' worsening anxiety levels (β = -0.1283, SE=0.06142, p=0.04) and their treatment adherence (β=0.09, SE=0.02, p=0.0006) were independently associated with ΔBMD. DISCUSSION The findings of the current follow-up study suggest that BMD in post-menopausal women undergoing anti-osteoporotic treatment was predicted by treatment adherence and anxiety change over time.
Collapse
Affiliation(s)
- Gabriella Martino
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Federica Bellone
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Carmelo Mario Vicario
- Department of Cognitive Sciences, Psychology, Education and Cultural Studies, University of Messina, Messina, Italy
| | - Agostino Gaudio
- Department of Clinical and Experimental Medicine, University Hospital of Catania, Catania, Italy
| | - Francesco Corica
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Trine Lund-Jacobsen
- Department of Endocrinology, Centre for Cancer and Organ Diseases, The Copenhagen University Hospital, Rigshospitalet and Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schwarz
- Department of Endocrinology, Centre for Cancer and Organ Diseases, The Copenhagen University Hospital, Rigshospitalet and Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gianluca Lo Coco
- Department of Psychology, Educational Science and Human Movement- University of Palermo, Palermo, Italy
| | - Nunziata Morabito
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Antonino Catalano
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| |
Collapse
|
4
|
Protein tyrosine phosphatases in skeletal development and diseases. Bone Res 2022; 10:10. [PMID: 35091552 PMCID: PMC8799702 DOI: 10.1038/s41413-021-00181-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Skeletal development and homeostasis in mammals are modulated by finely coordinated processes of migration, proliferation, differentiation, and death of skeletogenic cells originating from the mesoderm and neural crest. Numerous molecular mechanisms are involved in these regulatory processes, one of which is protein posttranslational modifications, particularly protein tyrosine phosphorylation (PYP). PYP occurs mainly through the action of protein tyrosine kinases (PTKs), modifying protein enzymatic activity, changing its cellular localization, and aiding in the assembly or disassembly of protein signaling complexes. Under physiological conditions, PYP is balanced by the coordinated action of PTKs and protein tyrosine phosphatases (PTPs). Dysregulation of PYP can cause genetic, metabolic, developmental, and oncogenic skeletal diseases. Although PYP is a reversible biochemical process, in contrast to PTKs, little is known about how this equilibrium is modulated by PTPs in the skeletal system. Whole-genome sequencing has revealed a large and diverse superfamily of PTP genes (over 100 members) in humans, which can be further divided into cysteine (Cys)-, aspartic acid (Asp)-, and histidine (His)-based PTPs. Here, we review current knowledge about the functions and regulatory mechanisms of 28 PTPs involved in skeletal development and diseases; 27 of them belong to class I and II Cys-based PTPs, and the other is an Asp-based PTP. Recent progress in analyzing animal models that harbor various mutations in these PTPs and future research directions are also discussed. Our literature review indicates that PTPs are as crucial as PTKs in supporting skeletal development and homeostasis.
Collapse
|
5
|
Common osteoporosis drug associated with increased rates of depression and anxiety. Sci Rep 2021; 11:23956. [PMID: 34907232 PMCID: PMC8671447 DOI: 10.1038/s41598-021-03214-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis affects over 10 million Americans over 50. Bisphosphonate therapy, mainly alendronate, is amongst the most prescribed treatments for the disease. The use of alendronate and other bisphosphonates has been associated with depressive symptoms in recent case reports. In this study we quantified this association by analyzing over 100,000 adverse events reports from the Food and Drug Administration Adverse Events Reporting System (FAERS) and the World Health Organization’s (WHO) global database for adverse drug reactions, ADRs, VigiAccess. We found that alendronate therapy is significantly associated with depression and anxiety when compared to other first-line osteoporosis treatments. The reported risk of depressive ADRs was found to be over 14-fold greater in patients taking alendronate under the age of 65 and over fourfold greater for patients over 65 compared to the control. Several hypotheses concerning the molecular mechanism of the observed association of alendronate and depressive symptoms were discussed.
Collapse
|
6
|
Plumbagin, a Biomolecule with (Anti)Osteoclastic Properties. Int J Mol Sci 2021; 22:ijms22052779. [PMID: 33803472 PMCID: PMC7967158 DOI: 10.3390/ijms22052779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Plumbagin is a plant-derived naphthoquinone that is widely used in traditional Asian medicine due to its anti-inflammatory and anti-microbial properties. Additionally, plumbagin is cytotoxic for cancer cells due to its ability to trigger reactive oxygen species (ROS) formation and subsequent apoptosis. Since it was reported that plumbagin may inhibit the differentiation of bone resorbing osteoclasts in cancer-related models, we wanted to elucidate whether plumbagin interferes with cytokine-induced osteoclastogenesis. Using C57BL/6 mice, we unexpectedly found that plumbagin treatment enhanced osteoclast formation and that this effect was most pronounced when cells were pre-treated for 24 h with plumbagin before subsequent M-CSF/RANKL stimulation. Plumbagin caused a fast induction of NFATc1 signalling and mTOR-dependent activation of p70S6 kinase which resulted in the initiation of protein translation. In line with this finding, we observed an increase in RANK surface expression after Plumbagin stimulation that enhanced the responsiveness for subsequent RANKL treatment. However, in Balb/c mice and Balb/c-derived RAW264.7 macrophages, these findings could not be corroborated and osteoclastogenesis was inhibited. Our results suggest that the effects of plumbagin depend on the model system used and can therefore either trigger or inhibit osteoclast formation.
Collapse
|
7
|
Yang C, Zeng Y, Liao Y, Deng Y, Du X, Wang Q. Integrated GC-MS- and LC-MS-Based Untargeted Metabolomics Studies of the Effect of Vitamin D3 on Pearl Production Traits in Pearl Oyster Pinctada fucata martensii. Front Mol Biosci 2021; 8:614404. [PMID: 33748187 PMCID: PMC7973263 DOI: 10.3389/fmolb.2021.614404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
Pearl oyster Pinctada fucata martensii is widely recognized for biomineralization and has been cultured for high-quality marine pearl production. To ascertain how dietary vitamin D3 (VD3) levels affect the features of pearl production by P. f. martensii and discover the mechanisms regulating this occurrence, five experimental diets with variable levels of VD3 were used with inclusion levels of 0, 500, 1,000, 3,000, and 10,000 IU/kg. The distinct inclusion levels were distributed into five experimental groups (EG1, EG2, EG3, EG4, and EG5). All the experimental groups were reared indoors except the control group (CG) reared at the sea. Pearl oysters, one year and a half old, were used in the grafting operation to culture pearls. During the growing period that lasted 137 days, EG3 had the highest survival rate, retention rate, and high-quality pearl rate. A similar trend was found for EG3 and CG with significantly higher pearl thickness and nacre deposition rates than other groups, but no significant differences were observed between them. A metabolomics profiling using GC–MS and LC–MS of pearl oysters fed with low quantities of dietary VD3 and optimal levels of dietary VD3 revealed 135 statistically differential metabolites (SDMs) (VIP > 1 and p < 0.05). Pathway analysis indicated that SDMs were involved in 32 pathways, such as phenylalanine metabolism, histidine metabolism, glycerophospholipid metabolism, alanine aspartate and glutamate metabolism, arginine and proline metabolism, glycerolipid metabolism, amino sugar and nucleotide sugar metabolism, and tyrosine metabolism. These results provide a theoretical foundation for understanding the impacts of VD3 on pearl production traits in pearl oyster and reinforce forthcoming prospects and application of VD3 in pearl oyster in aquaculture rearing conditions.
Collapse
Affiliation(s)
- Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, China.,Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, China
| | - Yetao Zeng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yongshan Liao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, China.,Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, China.,Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, China
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, China.,Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, China
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, China.,Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, China
| |
Collapse
|
8
|
Effects of Bisphosphonates on Osseointegration of Dental Implants in Rabbit Model. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6689564. [PMID: 33628807 PMCID: PMC7895577 DOI: 10.1155/2021/6689564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/29/2021] [Indexed: 11/18/2022]
Abstract
This study is to investigate the effect of bisphosphonates on the osseointegration of dental implants in a rabbit model. Twenty female New Zealand White rabbits were equally assigned into control and experiment groups which received saline or zoledronic acid treatment 4 weeks prior to surgery. Titanium dental implant was placed on the calvarial bone. Zoledronic acid or saline treatment continued after surgery for 4 weeks (short-term subgroup) or 8 weeks (long-term subgroup) until sacrifice. Three different fluorochrome labeling solutions were administrated for assessing bone growth rates. Samples of the calvarial bone and mandible were subjected to microcomputed tomography (micro-CT), confocal microscope, and histology analysis. Zoledronic acid treatment significantly reduced bone growth rates in the calvarial bone, but had no significant influence in bone mineral density and trabecular microarchitecture. Significantly lower bone-to-implant contact ratios were found in zoledronic acid-treated animals compared to controls at week 4 but not at week 8. Oncologic dose zoledronic acid suppresses the bone growth rates of the calvarial bone; ZA may have an adverse effect on osseointegration of dental implant in short term, but this effect tends to diminish in long term.
Collapse
|
9
|
Ma YS, Hou ZJ, Li Y, Zheng BB, Wang JM, Wang WB. Unveiling the Pharmacological Mechanisms of Eleutheroside E Against Postmenopausal Osteoporosis Through UPLC-Q/TOF-MS-Based Metabolomics. Front Pharmacol 2020; 11:1316. [PMID: 32982736 PMCID: PMC7479840 DOI: 10.3389/fphar.2020.01316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a common metabolic bone disease in postmenopausal women in the Worldwide, and seriously affects the quality of life of middle-aged and elderly women. Therefore, there is an urgent need to discover a highly effective drug for PMOP treatment. In this study, ultra-high performance liquid tandem quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was used to analyze the urine metabolic profiling and potential biomarkers, the relevant metabolic network of PMOP rats, and further to evaluate the intervention effect of Eleutheroside E (EE) against PMOP. Using multivariate statistical analysis combined with UPLC-Q/TOF-MS, a total of 27 biomarkers were identified, which related with 16 metabolic pathways, mainly involving steroidogenesis, beta oxidation of very long chain fatty acids, glutathione metabolism, carnitine synthesis, estrone metabolism, oxidation of branched chain fatty acids, etc. After treatment of EE, these biomarkers were markedly regulated, mainly involving steroid hormone biosynthesis, arachidonic acid metabolism, primary bile acid biosynthesis, indicating that EE had the therapeutic effect on PMOP. This study identified the potential urine metabolic markers and related metabolic pathways of the PMOP, explained the metabolic effect and pharmacological mechanisms of EE against PMOP, and provided a basis for the pharmacological study of EE.
Collapse
Affiliation(s)
- Yong-Sheng Ma
- The Second Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhan-Jiang Hou
- The Emergency Surgery Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - You Li
- The Second Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Beng-Beng Zheng
- The Second Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia-Ming Wang
- The Second Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen-Bo Wang
- The Third Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Doroshow JH, Gaur S. Role of Reactive Oxygen Species in the Cytotoxicity of Arsenic Trioxide and Pamidronate for Human Prostate Cancer Cells. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2020; 9:81-94. [PMID: 32337366 PMCID: PMC7182339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To examine whether combining arsenic trioxide (ARS) and pamidronate (PAM), anticancer drugs that generate reactive oxygen species (ROS), enhanced targeting of redox sensitive growth signals, we studied cloning efficiency, protein tyrosine phosphatase (PTPase) activity, and epidermal growth factor receptor (EGFR) phosphorylation in DU-145 and PC-3 human prostate cancer cells in response to treatment with ARS and/or PAM for 24 h. IC50 concentrations in a clonogenic assay for ARS and PAM were 9 and 20 μM, respectively, in DU-145 cells; and 2 and 12 μM, in PC-3 cells. When combined, ARS and PAM demonstrated additive cytotoxicity in the DU-145 line (combination index [CI] of 1.10) and synergy for PC-3 cells (CI of 0.86). ARS (20 μM for 24 h) inhibited PTPase activity by 36 ± 7 %, p < 0.05 vs. untreated controls, in DU-145 cells; and by 58 ± 8%, p < 0.05, in the PC-3 line. PAM (20 μM for 24 h) decreased PTPase activity by 24 ± 9%, p = 0.06, and 8 ± 1%, p < 0.01, in DU-145 and PC-3 cells, respectively. Combining ARS and PAM significantly inhibited PTPase activity in both cell lines at lower concentrations of each drug. Pretreatment with N-acetyl-L-cysteine reversed ARS- and PAM-induced inhibition of PTPase activity. PTPase inhibition by ARS and/or PAM treatment in both DU-145 and PC-3 cells was associated with prolonged EGFR activation. These experiments demonstrate additive or synergistic cell killing by the ARS/PAM combination in DU-145 or PC-3 cells and suggest that enhanced antitumor activity may be related to alterations in receptor tyrosine kinase signaling that occur, in part, due to ROS-mediated PTPase inhibition.
Collapse
Affiliation(s)
- James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Shikha Gaur
- City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
11
|
Tzschentke TM. Pharmacology of bisphosphonates in pain. Br J Pharmacol 2019; 178:1973-1994. [PMID: 31347149 DOI: 10.1111/bph.14799] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 01/15/2023] Open
Abstract
The treatment of pain, in particular, chronic pain, remains a clinical challenge. This is particularly true for pain associated with severe or rare conditions, such as bone cancer pain, vulvodynia, or complex regional pain syndrome. Over the recent years, there is an increasing interest in the potential of bisphosphonates in the treatment of pain, although there are few papers describing antinociceptive and anti-hypersensitizing effects of bisphosphonates in various animal models of pain. There is also increasing evidence for clinical efficacy of bisphosphonates in chronic pain states, although the number of well-controlled studies is still limited. However, the mechanisms underlying the analgesic effects of bisphosphonates are still largely elusive. This review provides an overview of preclinical and clinical studies of bisphosphonates in pain and discusses various pharmacological mechanisms that have been postulated to explain their analgesic effects. LINKED ARTICLES: This article is part of a themed issue on The molecular pharmacology of bone and cancer-related bone diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.9/issuetoc.
Collapse
|
12
|
Kanellias N, Gavriatopoulou M, Terpos E, Dimopoulos MA. Management of multiple myeloma bone disease: impact of treatment on renal function. Expert Rev Hematol 2018; 11:881-888. [DOI: 10.1080/17474086.2018.1531702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nikolaos Kanellias
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Meletios Athanasios Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra General Hospital, Athens, Greece
| |
Collapse
|
13
|
Li JJ, Pang LN, Wu S, Zeng MD. Advances in the Effect of Heavy Metals in Aquatic Environment on the Health Risks for Bone. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1755-1315/186/3/012057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Pal RP, Mani V, Tripathi D, Kumar R, Kewalramani NJ. Influence of Feeding Inorganic Vanadium on Growth Performance, Endocrine Variables and Biomarkers of Bone Health in Crossbred Calves. Biol Trace Elem Res 2018; 182:248-256. [PMID: 28735384 DOI: 10.1007/s12011-017-1095-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/06/2017] [Indexed: 11/28/2022]
Abstract
The nutritional essentialities of transition element vanadium (V) as micro-nutrient in farm animals have not yet been established, though in rat model, vanadium as vanadate has been reported to exert insulin-mimetic effect and shown to be needed for proper development of bones. The objective of this study was to determine the effect of V supplementation on growth performance, plasma hormones and bone health status in calves. Twenty-four crossbred calves (body weight 72.83 ± 2.5 kg; age 3-9 months) were blocked in four groups and randomly assigned to four treatment groups (n = 6) on body weight and age basis. Experimental animals were kept on similar feeding regimen except that different groups were supplemented with either 0, 3, 6 or 9 ppm inorganic V/kg DM. Effect of supplementation during 150-day experimental period was observed on feed intake, body weight gain, feed efficiency, body measures, endocrine variables, plasma glucose and biomarkers of bone health status. Supplementation of V did not change average daily gain (ADG), dry matter intake (DMI), feed efficiency and body measures during the experimental period. During the post-V supplementation period plasma insulin-like growth factor-1 (IGF-1), triiodothyronine (T3) and thyroxin (T4) concentrations were increased and observed highest in 9 mg V/kg DM fed calves; however, levels of insulin, glucose, parathyroid hormone (PTH) and calcitonin hormones remained similar among calves fed on basal or V-supplemented diets. Bone alkaline phosphatase (Bone-ALP) concentration was increased (P < 0.05); however, plasma protein tyrosine phosphatase (PTP) level decreased (P < 0.05) in 6 and 9 mg V/kg DM supplemented groups. Plasma hydroxyproline (Hyp) and tartrate-resistant acid phosphatase (TRAP) concentration were unchanged by V supplementation. Blood V concentration showed positive correlation with supplemental V levels. These results suggest that V may play a role in modulation of the action of certain endocrine variables and biomarkers of bone health status in growing crossbred calves.
Collapse
Affiliation(s)
- Ravi Prakash Pal
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Veena Mani
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| | - Deepika Tripathi
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Rajesh Kumar
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Neelam J Kewalramani
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| |
Collapse
|
15
|
Abstract
OBJECTIVES Bisphosphonates are widely used as first-line treatment for primary and secondary prevention of fragility fractures. Whilst they have proved effective in this role, there is growing concern over their long-term use, with much evidence linking bisphosphonate-related suppression of bone remodelling to an increased risk of atypical subtrochanteric fractures of the femur (AFFs). The objective of this article is to review this evidence, while presenting the current available strategies for the management of AFFs. METHODS We present an evaluation of current literature relating to the pathogenesis and treatment of AFFs in the context of bisphosphonate use. RESULTS Six broad themes relating to the pathogenesis and management of bisphosphonate-related AFFs are presented. The key themes in fracture pathogenesis are: bone microdamage accumulation; altered bone mineralisation and altered collagen formation. The key themes in fracture management are: medical therapy and surgical therapy. In addition, primary prevention strategies for AFFs are discussed. CONCLUSIONS This article presents current knowledge about the relationship between bisphosphonates and the development of AFFs, and highlights key areas for future research. In particular, studies aimed at identifying at-risk subpopulations and organising surveillance for those on long-term therapy will be crucial in both increasing our understanding of the condition, and improving population outcomes.Cite this article: N. Kharwadkar, B. Mayne, J. E. Lawrence, V. Khanduja. Bisphosphonates and atypical subtrochanteric fractures of the femur. Bone Joint Res 2017;6:144-153. DOI: 10.1302/2046-3758.63.BJR-2016-0125.R1.
Collapse
Affiliation(s)
- N Kharwadkar
- The Heart of England NHS Foundation Trust, Bordesley Green East, Birmingham B9 5SS, UK
| | - B Mayne
- F2, James Cook University Hospital, Marton Rd, Middlesbrough TS4 3BW, UK
| | - J E Lawrence
- Junior Clinical Fellow, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - V Khanduja
- Department of Trauma and Orthopaedics, Addenbrooke's Hospital, Box 37, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
16
|
Xu Z, Chen T, Luo J, Ding S, Gao S, Zhang J. Cartilaginous Metabolomic Study Reveals Potential Mechanisms of Osteophyte Formation in Osteoarthritis. J Proteome Res 2017; 16:1425-1435. [PMID: 28166636 DOI: 10.1021/acs.jproteome.6b00676] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Osteophyte is one of the inevitable consequences of progressive osteoarthritis with the main characteristics of cartilage degeneration and endochondral ossification. The pathogenesis of osteophyte formation is not fully understood to date. In this work, metabolomic approaches were employed to explore potential mechanisms of osteophyte formation by detecting metabolic variations between extracts of osteophyte cartilage tissues (n = 32) and uninvolved control cartilage tissues (n = 34), based on the platform of ultraperformance liquid chromatography tandem quadrupole time-of-flight mass spectrometry, as well as the use of multivariate statistic analysis and univariate statistic analysis. The osteophyte group was significantly separated from the control group by the orthogonal partial least-squares discriminant analysis models, indicating that metabolic state of osteophyte cartilage had been changed. In total, 28 metabolic variations further validated by mass spectrum (MS) match, tandom mass spectrum (MS/MS) match, and standards match mainly included amino acids, sulfonic acids, glycerophospholipids, and fatty acyls. These metabolites were related to some specific physiological or pathological processes (collagen dissolution, boundary layers destroyed, self-restoration triggered, etc.) which might be associated with the procedure of osteophyte formation. Pathway analysis showed phenylalanine metabolism (PI = 0.168, p = 0.004) was highly correlative to this degenerative process. Our findings provided a direction for targeted metabolomic study and an insight into further reveal the molecular mechanisms of ostophyte formation.
Collapse
Affiliation(s)
- Zhongwei Xu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University , Chongqing 400016, China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University , Chongqing 400016, China
| | - Jiao Luo
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University , Chengdu 610041, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University , Chongqing 400016, China
| | - Sichuan Gao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University , Chongqing 400016, China
| | - Jian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University , Chongqing 400016, China
| |
Collapse
|
17
|
Yun H, Ku B, Lee HS, Shin H, Park J, Kim CH, Kim SJ. The Discovery of Novel Protein Tyrosine Phosphatase ε Inhibitors Using a High‐throughput Screening Approach. B KOREAN CHEM SOC 2017; 38:44-53. [DOI: 10.1002/bkcs.11044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein tyrosine phosphatase epsilon (PTPε) is important for signal transduction in osteoclasts, and is considered to be an attractive drug target for the treatment of osteoporosis. We identified 11 potent PTPε inhibitors based on three chemical scaffolds through the high‐throughput screening of a chemical library. As these compounds are structurally diverse with high bioavailability, they warrant further investigation in the near future. The discovery of these inhibitors and the relationship between their structure and inhibitory activity toward PTPε is discussed in detail.
Collapse
Affiliation(s)
- Hye‐Yeoung Yun
- Disease Target Structure Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon 34141 Republic of Korea
- Department of Bio‐Analytical Science University of Science and Technology Daejeon 34113 Republic of Korea
| | - Bonsu Ku
- Disease Target Structure Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon 34141 Republic of Korea
- Department of Bio‐Analytical Science University of Science and Technology Daejeon 34113 Republic of Korea
| | - Hye Seon Lee
- Disease Target Structure Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon 34141 Republic of Korea
| | - Ho‐Chul Shin
- Disease Target Structure Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon 34141 Republic of Korea
| | - Jun‐Beom Park
- Department of Periodontics, Seoul St Mary's Hospital The Catholic University of Korea Seoul 137‐701 Republic of Korea
| | - Chang Hyen Kim
- Department of Oral and Maxillofacial Surgery, Seoul St Mary's Hospital The Catholic University of Korea Seoul 137‐701 Republic of Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon 34141 Republic of Korea
- Department of Bio‐Analytical Science University of Science and Technology Daejeon 34113 Republic of Korea
| |
Collapse
|
18
|
Sztacho M, Segeletz S, Sanchez-Fernandez MA, Czupalla C, Niehage C, Hoflack B. BAR Proteins PSTPIP1/2 Regulate Podosome Dynamics and the Resorption Activity of Osteoclasts. PLoS One 2016; 11:e0164829. [PMID: 27760174 PMCID: PMC5070766 DOI: 10.1371/journal.pone.0164829] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/30/2016] [Indexed: 01/07/2023] Open
Abstract
Bone resorption in vertebrates relies on the ability of osteoclasts to assemble F-actin-rich podosomes that condense into podosomal belts, forming sealing zones. Sealing zones segregate bone-facing ruffled membranes from other membrane domains, and disassemble when osteoclasts migrate to new areas. How podosome/sealing zone dynamics is regulated remains unknown. We illustrate the essential role of the membrane scaffolding F-BAR-Proline-Serine-Threonine Phosphatase Interacting Proteins (PSTPIP) 1 and 2 in this process. Whereas PSTPIP2 regulates podosome assembly, PSTPIP1 regulates their disassembly. PSTPIP1 recruits, through its F-BAR domain, the protein tyrosine phosphatase non-receptor type 6 (PTPN6) that de-phosphophorylates the phosphatidylinositol 5-phosphatases SHIP1/2 bound to the SH3 domain of PSTPIP1. Depletion of any component of this complex prevents sealing zone disassembly and increases osteoclast activity. Thus, our results illustrate the importance of BAR domain proteins in podosome structure and dynamics, and identify a new PSTPIP1/PTPN6/SHIP1/2-dependent negative feedback mechanism that counterbalances Src and PI(3,4,5)P3 signalling to control osteoclast cell polarity and activity during bone resorption.
Collapse
Affiliation(s)
- Martin Sztacho
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47–51, 01307, Dresden, Germany
| | - Sandra Segeletz
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47–51, 01307, Dresden, Germany
| | | | - Cornelia Czupalla
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47–51, 01307, Dresden, Germany
| | - Christian Niehage
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47–51, 01307, Dresden, Germany
| | - Bernard Hoflack
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47–51, 01307, Dresden, Germany
- * E-mail:
| |
Collapse
|
19
|
Yao Y, Tan YH, Light AR, Mao J, Yu ACH, Fu KY. Alendronate Attenuates Spinal Microglial Activation and Neuropathic Pain. THE JOURNAL OF PAIN 2016; 17:889-903. [PMID: 27063783 DOI: 10.1016/j.jpain.2016.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/03/2016] [Accepted: 03/15/2016] [Indexed: 12/27/2022]
Abstract
UNLABELLED Many derivatives of bisphosphonates, which are inhibitors of bone resorption, have been developed as promising agents for painful pathologies in patients with bone resorption-related diseases. The mechanism for pain relief by bisphosphonates remains uncertain. Studies have reported that bisphosphonates could reduce central neurochemical changes involved in the generation and maintenance of bone cancer pain. In this study, we hypothesized that bisphosphonates would inhibit spinal microglial activation and prevent the development of hyperalgesia caused by peripheral tissue injury. We investigated the effects of alendronate (a nitrogen-containing bisphosphonate) on the development of neuropathic pain and its role in modulating microglial activation in vivo and in vitro. Intrathecal and intraperitoneal administration of alendronate relieved neuropathic pain behaviors induced by chronic constriction sciatic nerve injury. Alendronate also significantly attenuated spinal microglial activation and p38 mitogen-activated protein kinase (MAPK) phosphorylation without affecting astrocytes. In vitro, alendronate downregulated phosphorylated p38 and phosphorylated extracellular signal regulated kinase expression in lipopolysaccharide-stimulated primary microglia within 1 hour, and pretreatment with alendronate for 12 and 24 hours decreased the expression of inflammatory cytokines (tumor necrosis factor α, and interleukins 1β and 6). These findings indicate that alendronate could effectively relieve chronic constriction sciatic nerve injury-induced neuropathic pain by at least partially inhibiting the activation of spinal microglia and the p38 MAPK signaling pathway. PERSPECTIVE Alendronate could relieve neuropathic pain behaviors in animals by inhibiting the activation of spinal cord microglia and the p38 MAPK cell signaling pathway. Therapeutic applications of alendronate may be extended beyond bone metabolism-related disease.
Collapse
Affiliation(s)
- Yao Yao
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yong-Hui Tan
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
| | - Alan R Light
- Department of Anesthesiology and Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
| | - Jianren Mao
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Albert Cheung Hoi Yu
- Neuroscience Research Institute, Peking University and Department of Neurobiology, Peking University Health Science Center, Beijing, China
| | - Kai-Yuan Fu
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China.
| |
Collapse
|
20
|
Daguzan C, Moulin M, Kulyk-Barbier H, Davrinche C, Peyrottes S, Champagne E. Aminobisphosphonates Synergize with Human Cytomegalovirus To Activate the Antiviral Activity of Vγ9Vδ2 Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:2219-29. [PMID: 26819204 DOI: 10.4049/jimmunol.1501661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/18/2015] [Indexed: 01/13/2023]
Abstract
Human Vγ9Vδ2 T cells are activated through their TCR by neighboring cells producing phosphoantigens. Zoledronate (ZOL) treatment induces intracellular accumulation of the phosphoantigens isopentenyl pyrophosphate and ApppI. Few attempts have been made to use immunomanipulation of Vγ9Vδ2 lymphocytes in chronic viral infections. Although Vγ9Vδ2 T cells seem to ignore human CMV (HCMV)-infected cells, we examined whether they can sense HCMV when a TCR stimulus is provided with ZOL. Fibroblasts treated with ZOL activate Vγ9Vδ2 T cells to produce IFN-γ but not TNF. Following the same treatment, HCMV-infected fibroblasts stimulate TNF secretion and an increased production of IFN-γ, indicating that Vγ9Vδ2 cells can sense HCMV infection. Increased lymphokine production was observed with most clinical isolates and laboratory HCMV strains, HCMV-permissive astrocytoma, or dendritic cells, as well as "naive" and activated Vγ9Vδ2 cells. Quantification of intracellular isopentenyl pyrophosphate/ApppI following ZOL treatment showed that HCMV infection boosts their accumulation. This was explained by an increased capture of ZOL and by upregulation of HMG-CoA synthase and reductase transcription. Using an experimental setting where infected fibroblasts were cocultured with γδ cells in submicromolar concentrations of ZOL, we show that Vγ9Vδ2 cells suppressed substantially the release of infectious particles while preserving uninfected cells. Vγ9Vδ2 cytotoxicity was decreased by HCMV infection of targets whereas anti-IFN-γ and anti-TNF Abs significantly blocked the antiviral effect. Our experiments indicate that cytokines produced by Vγ9Vδ2 T cells have an antiviral potential in HCMV infection. This should lead to in vivo studies to explore the possible antiviral effect of immunostimulation with ZOL in this context.
Collapse
Affiliation(s)
- Charline Daguzan
- Centre de Physiopathologie de Toulouse Purpan, 31024 Toulouse, France; INSERM, U1043, 31024 Toulouse, France; CNRS, UMR5282, 31024 Toulouse, France; Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Morgane Moulin
- Centre de Physiopathologie de Toulouse Purpan, 31024 Toulouse, France; INSERM, U1043, 31024 Toulouse, France; CNRS, UMR5282, 31024 Toulouse, France; Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Hanna Kulyk-Barbier
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Institut National des Sciences Appliquées, Plateforme MetaToul, UMR Institut National des Sciences Appliquées/CNRS 5504-UMR INSA/Institut National de la Recherche Agronomique 792, 31400 Toulouse, France; and
| | - Christian Davrinche
- Centre de Physiopathologie de Toulouse Purpan, 31024 Toulouse, France; INSERM, U1043, 31024 Toulouse, France; CNRS, UMR5282, 31024 Toulouse, France; Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Suzanne Peyrottes
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier 2-Ecole Nationale Supérieure de Chimie de Montpellier, 34095 Montpellier, France
| | - Eric Champagne
- Centre de Physiopathologie de Toulouse Purpan, 31024 Toulouse, France; INSERM, U1043, 31024 Toulouse, France; CNRS, UMR5282, 31024 Toulouse, France; Université Toulouse III Paul-Sabatier, 31062 Toulouse, France;
| |
Collapse
|
21
|
Liu H, Cui J, Sun J, Du J, Feng W, Sun B, Li J, Han X, Liu B, Yimin, Oda K, Amizuka N, Li M. Histochemical evidence of zoledronate inhibiting c-src expression and interfering with CD44/OPN-mediated osteoclast adhesion in the tibiae of mice. J Mol Histol 2015; 46:313-23. [DOI: 10.1007/s10735-015-9620-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/07/2015] [Indexed: 01/28/2023]
|
22
|
Green DE, Rubin CT. Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors. Bone 2014; 63:87-94. [PMID: 24607941 PMCID: PMC4005928 DOI: 10.1016/j.bone.2014.02.018] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/07/2014] [Accepted: 02/26/2014] [Indexed: 02/06/2023]
Abstract
The rising levels of radiation exposure, specifically for medical treatments and accidental exposures, have added great concern for the long term risks of bone fractures. Both the bone marrow and bone architecture are devastated following radiation exposure. Even sub-lethal doses cause a deficit to the bone marrow microenvironment, including a decline in hematopoietic cells, and this deficit occurs in a dose dependent fashion. Certain cell phenotypes though are more susceptible to radiation damage, with mesenchymal stem cells being more resilient than the hematopoietic stem cells. The decline in total bone marrow hematopoietic cells is accompanied with elevated adipocytes into the marrow cavity, thereby inhibiting hematopoiesis and recovery of the bone marrow microenvironment. Poor bone marrow is also associated with a decline in bone architectural quality. Therefore, the ability to maintain the bone marrow microenvironment would hinder much of the trabecular bone loss caused by radiation exposure, ultimately decreasing some comorbidities in patients exposed to radiation.
Collapse
Affiliation(s)
- Danielle E Green
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA.
| | - Clinton T Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| |
Collapse
|
23
|
O'Neill BJ, O'hEireamhoin S, Morrissey DI, Keogh P. Implant failure caused by non-union of bisphosphonate-associated subtrochanteric femur fracture. BMJ Case Rep 2014; 2014:bcr-2013-203519. [PMID: 24700046 DOI: 10.1136/bcr-2013-203519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Bisphosphonate use has been identified as a contributory factor in atypical subtrochanteric fracture of the femur. These fractures are commonly treated with an intramedullary device. We present a case of implant failure of an intrameduallary device caused by non-union of an atypical subtrochanteric fracture.
Collapse
|
24
|
Osteoblastic protein tyrosine phosphatases inhibition and connexin 43 phosphorylation by alendronate. Exp Cell Res 2014; 324:30-9. [PMID: 24698731 DOI: 10.1016/j.yexcr.2014.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 11/21/2022]
Abstract
Bisphosphonates (BPs), potent inhibitors of bone resorption which inhibit osteoclasts, have also been shown to act on osteocytes and osteoblasts preventing apoptosis via connexin (Cx) 43 hemichannels and activating the extracellular signal regulated kinases ERKs. We previously demonstrated the presence of a saturable, specific and high affinity binding site for alendronate (ALN) in osteoblastic cells which express Cx43. However, cells lacking Cx43 also bound BPs. Herein we show that bound [(3)H]-alendronate is displaced by phosphatase substrates. Moreover, similar to Na3VO4, ALN inhibited the activity of transmembrane and cytoplasmic PTPs, pointing out the catalytic domain of phosphatases as a putative BP target. In addition, anti-phospho-tyrosine immunoblot analysis revealed that ALN stimulates tyrosine phosphorylation of several proteins of whole cell lysates, among which the major targets of the BP could be immunochemically identified as Cx43. Additionally, the transmembrane receptor-like PTPs, RPTPµ and RPTPα, as well as the cytoplasmic PTP1B, are highly expressed in ROS 17/2.8 cells. Furthermore, we evidenced that Cx43 interacts with RPTPµ in ROS 17/2.8 and ALN decreases their association. These results support the hypothesis that BPs bind and inhibit PTPs associated to Cx43 or not, which would lead to the activation of signaling pathways in osteoblasts.
Collapse
|
25
|
Zhang Q, Liu M, Zhou Y, Liu W, Shen J, Shen Y, Liu L. The effect of alendronate on the expression of important cell factors in osteoclasts. Mol Med Rep 2013; 8:1195-203. [PMID: 23942871 DOI: 10.3892/mmr.2013.1630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/24/2013] [Indexed: 11/05/2022] Open
Abstract
This study investigated the effects of alendronate (ALN) on critical cell factors in osteoclasts. RAW 264.7 cells were induced by sRANKL to change to mature osteoclasts. On the sixth day of incubation, the osteoclasts were treated with ALN at various concentrations and for different incubation times. The concentration groups included 10-5 M, 10-6 M and 10-7 M ALN, respectively. The cells were incubated for 0 (control group), 2, 4, 6 and 8 h for each dose group. The mRNA and protein expression of tartrate‑resistant acid phosphatase, carbonic anhydrase II, osteoclast‑associated receptor and FAS/FASL genes in osteoclasts was analyzed. A concentration- and time‑dependent decrease in the mRNA and protein expression levels of the five genes was observed, and no significant difference between the two control groups was observed (P>0.05). Notably, significant differences between any two experimental groups were observed (P<0.05). Thus, ALN significantly decreased the expression of critical factors involved in osteoclast function.
Collapse
Affiliation(s)
- Qinghong Zhang
- Department of Prosthodontics, Stomatology Hospital, College of Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | | | | | | | | | | | | |
Collapse
|
26
|
Nunes-Xavier CE, Martín-Pérez J, Elson A, Pulido R. Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim Biophys Acta Rev Cancer 2013; 1836:211-26. [PMID: 23756181 DOI: 10.1016/j.bbcan.2013.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/01/2013] [Indexed: 02/07/2023]
Abstract
Breast cancer is linked to hyperactivation of protein tyrosine kinases (PTKs), and recent studies have unveiled that selective tyrosine dephosphorylation by protein tyrosine phosphatases (PTPs) of specific substrates, including PTKs, may activate or inactivate oncogenic pathways in human breast cancer cell growth-related processes. Here, we review the current knowledge on the involvement of PTPs in breast cancer, as major regulators of breast cancer therapy-targeted PTKs, such as HER1/EGFR, HER2/Neu, and Src. The functional interplay between PTKs and PTK-activating or -inactivating PTPs, and its implications in novel breast cancer therapies based on targeting of specific PTPs, are discussed.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- BioCruces Health Research Institute, Hospital de Cruces, Plaza Cruces s/n, 48903 Barakaldo, Spain
| | | | | | | |
Collapse
|
27
|
Yoon RS, Hwang JS, Beebe KS. Long-term bisphosphonate usage and subtrochanteric insufficiency fractures: a cause for concern? ACTA ACUST UNITED AC 2011; 93:1289-95. [PMID: 21969423 DOI: 10.1302/0301-620x.93b10.26924] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
For over a decade, bisphosphonate administration has evolved and become the cornerstone of the prevention and treatment of fragility fractures. Millions of post-menopausal women have relied on, and continue to depend on, the long-acting, bone density-maintaining pharmaceutical drug to prevent low-energy fractures. In return, we have seen the number of fragility fractures decrease, along with associated costs and emotional benefits. However, with any drug, there are often concerns with side effects and complications, and this unique drug class is seeing one such complication in atypical subtrochanteric femoral fracture, counterproductive to that which it was designed to prevent. This has created concern over long-term bisphosphonate administration and its potential link to these atypical fractures. There is controversial evidence surrounding such a definitive link, and no protocol for managing these fractures. This review offers the latest information regarding this rare but increasingly controversial adverse effect and its potential connection to one of the most successful forms of treatment that is available for the management of fragility fractures.
Collapse
Affiliation(s)
- R S Yoon
- NYU Hospital for Joint Diseases, Department of Orthopaedic Surgery, 301 East 17th Street, New York, New York 10003, USA
| | | | | |
Collapse
|
28
|
Short-term effects of zoledronate on the histomorphology of osteoclast in young albino rats. Ann Anat 2011; 193:509-15. [PMID: 21530208 DOI: 10.1016/j.aanat.2011.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 03/19/2011] [Accepted: 03/20/2011] [Indexed: 11/22/2022]
Abstract
The present study was conducted to histomorphometrically evaluate the effects of short-term administration of zoledronate, a third generation bisphosphonate, on the metaphysis of the proximal end of tibia in twenty day old male albino rats. Zoledronate (2.8 μg/kg body weight), was daily given subcutaneously for eleven days. The animals were sacrificed; tibiae were dissected out and decalcified in EDTA. Seven micron thick, serial longitudinal paraffin sections were stained with haematoxylin and eosin and examined under a Zeiss light microscope and Image Pro-Express Analyzer. In zoledronate treated rats, a significant increase (p<0.05) in the number of osteoclasts was observed both in the regions of primary spongiosa (zoledronate treated: 6.41 ± 0.30/mm(2), control: 2.90 ± 0.28/mm(2)) and secondary spongiosa (zoledronate treated: 49.58 ± 0.84/mm(2), control: 31.81 ± 2.02/mm(2)) along with a significant increase (p<0.05) in the length of the metaphyseal region as compared to the control group. The number of nuclei per osteoclast and area of the osteoclast also showed a significant increase (p<0.001; p<0.05 respectively) following the uptake of zoledronate. The findings in the present study, suggest that the osteoclasts are the primary sites of action of zoledronate resulting in decreased osteoclastic activity, which would account for the great increase in the number and size of inactive osteoclasts resulting in marked cancellous bone formation.
Collapse
|
29
|
Gordon KE, Dooley JM, Sheppard KM, MacSween J, Esser MJ. Impact of bisphosphonates on survival for patients with Duchenne muscular dystrophy. Pediatrics 2011; 127:e353-8. [PMID: 21242224 DOI: 10.1542/peds.2010-1666] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE In this article we describe the association of bisphosphonate therapy on survival within a regional cohort of patients with Duchenne muscular dystrophy (DMD) who received steroid therapy and were managed in a single center. PATIENTS AND METHODS The records of all patients with confirmed DMD who were born between 1963 and 2006 and who had received at least 1 year of steroid therapy were reviewed from birth until they reached the study end points (death, loss to follow-up, or the last follow-up was in 2009). A survival analysis was used to account for the variable follow-up duration within this cohort. RESULTS Forty-four boys from this cohort with DMD were exposed to continuous steroid use. Bisphosphonate therapy was initiated for 16 patients (36%) between 1997 and 2007 at a median age of 12.5 years (range: 7-23 years). At the time of the last follow-up in 2009, 13 patients had died (30%) at a median age of 16 years (range: 14-27 years). Survival curves demonstrate that the prescription of bisphosphonates was associated with a significant improvement in survival rate (P = .005, log-rank test). Furthermore, a possible therapy-duration effect could be shown for bisphosphonate use (P = .007, log-rank test). CONCLUSIONS The treatment of patients with DMD with steroids and bisphosphonates seems to be associated with significantly improved survival compared with treatment with steroids alone.
Collapse
Affiliation(s)
- Kevin E Gordon
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
30
|
Clézardin P. Bisphosphonates' antitumor activity: an unravelled side of a multifaceted drug class. Bone 2011; 48:71-9. [PMID: 20655399 DOI: 10.1016/j.bone.2010.07.016] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 07/11/2010] [Accepted: 07/12/2010] [Indexed: 12/13/2022]
Abstract
Bisphosphonates, especially nitrogen-containing bisphosphonates (N-BPs), are widely used to preserve and improve bone health in patients with cancer because they inhibit osteoclast-mediated bone resorption. In addition to their effects on bone, preclinical evidence strongly suggests that N-BPs exert anticancer activity without the involvement of osteoclasts by interacting with macrophages, endothelial cells and tumor cells, and by stimulating the cytotoxicity of γδ T cells, a subset of human T cells. This review examines the current insights and fronts of ongoing preclinical research on N-BPs' antitumor activity.
Collapse
Affiliation(s)
- Philippe Clézardin
- INSERM, Research Unit U664, University of Lyon-1, Faculty of Medicine Lyon-Est (domaine Laennec), rue Guillaume Paradin, 69372 Lyon Cedex 08, France.
| |
Collapse
|
31
|
Protein phosphatases: possible bisphosphonate binding sites mediating stimulation of osteoblast proliferation. Arch Biochem Biophys 2010; 507:248-53. [PMID: 21167123 DOI: 10.1016/j.abb.2010.12.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 11/24/2022]
Abstract
We investigated the existence of a bisphosphonate (BP) target site in osteoblasts. Binding assays using [³H]-olpadronate ([³H]OPD) in whole cells showed the presence of specific, saturable and high affinity binding for OPD (K(d)=1.39 ± 0.33 μM) in osteoblasts. [³H]OPD was displaced from its binding site by micromolar concentrations of lidadronate, alendronate and etidronate (K(d)=1.42 ± 0.15 μM, 2.00 ± 0.2 μM and 2.4 ± 0.4 μM, respectively), and by millimolar concentrations of the non-permeant protein phosphatase (PP) substrates p-nitrophenylphosphate and α-naphtylphosphate. PP inhibitors orthovanadate, NaF or vpb(bipy) did not displace [³H]OPD. As expected, specific OPD binding was detected in the plasma membrane of ROS 17/2.8 cells, although significant BP binding was also found intracellularly. Moreover, OPD increased DNA synthesis in these cells with a temporal profile similar to the protein tyrosine phosphatase (PTP) inhibitors, Na₃VO₄ and vpb(bipy); but different from a general PP inhibitor (NaF). The stimulatory effect of OPD and PTP inhibitors on osteoblast proliferation was inhibited by the protein tyrosine kinase inhibitors genistein and geldanamycin. These results provide new evidence on the existence of a BP target in osteoblastic cells, presumably a PTP, which may be involved in the stimulatory action of BPs on osteoblast proliferation.
Collapse
|
32
|
How do bisphosphonates inhibit bone metastasis in vivo? Neoplasia 2010; 12:571-8. [PMID: 20651986 DOI: 10.1593/neo.10282] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 02/15/2010] [Accepted: 04/23/2010] [Indexed: 01/06/2023] Open
Abstract
Bisphosphonates are potent inhibitors of osteoclast-mediated bone resorption and have demonstrated clinical utility in the treatment of patients with osteolytic bone metastases. They also exhibit direct antitumor activity in vitro and can reduce skeletal tumor burden and inhibit the formation of bone metastases in vivo. However, whether such effects are caused by a direct action of bisphosphonates on tumor cells or indirectly through inhibition of bone resorption remains unclear. To address this question, we used here a structural analog of the bisphosphonate risedronate, NE-58051, which has a bone mineral affinity similar to that of risedronate, but a 3000-fold lower bone antiresorptive activity. In vitro, risedronate and NE-58051 inhibited proliferation of breast cancer and melanoma cell lines. In vivo, risedronate and NE-58051 did not inhibit the growth of subcutaneous B02 breast tumor xenografts or the formation of B16F10 melanoma lung metastasis. In contrast to NE-58051, risedronate did inhibit B02 breast cancer bone metastasis formation by reducing both bone destruction and skeletal tumor burden, indicating that the antitumor effect of bisphosphonates is achieved mainly through inhibition of osteoclast-mediated bone resorption.
Collapse
|
33
|
Enhanced IL-12p40 production by phenylarsine oxide is mediated by cAMP response element in macrophages. Arch Pharm Res 2010; 33:745-51. [PMID: 20512473 DOI: 10.1007/s12272-010-0514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 02/23/2010] [Accepted: 03/03/2010] [Indexed: 11/25/2022]
Abstract
Phenylarsine oxide (PAO), a membrane-permeable trivalent arsenical, is widely used as an inhibitor of protein tyrosine phosphatases. It reacts with vicinal sulfhydryl groups of proteins to form stable ring structures. Here we show the regulatory function of PAO in immune responses from macrophages. PAO significantly induced the secretion of interleukin (IL)-12p40 in lipopolysaccharide-stimulated macrophages. The mRNA expression and the gene promoter activity of IL-12p40 were enhanced by PAO. These results suggest that PAO may enhance IL-12p40 production at the transcriptional level. Furthermore, the effects of PAO on several signaling molecules regulating IL-12p40 expression were investigated. PAO attenuated the induced binding activity of cAMP response element (CRE), but not of NF-kappaB. Moreover, CRE promoter activity was dose-dependently inhibited by PAO and the increased secretion of IL-12p40 by PAO was reduced by forskolin, a cAMP activator. These results suggest that PAO enhances IL-12p40 production by inhibiting CRE activity.
Collapse
|
34
|
Kim HK, Kim JH, Abbas AA, Yoon TR. Alendronate enhances osteogenic differentiation of bone marrow stromal cells: a preliminary study. Clin Orthop Relat Res 2009; 467:3121-8. [PMID: 18665432 PMCID: PMC2772902 DOI: 10.1007/s11999-008-0409-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 07/08/2008] [Indexed: 01/31/2023]
Abstract
Alendronate inhibits osteoclastic activity. However, some studies suggest alendronate also has effects on osteoblast activity. We hypothesized alendronate would enhance osteoblastic differentiation without causing cytotoxicity of the osteoblasts. We evaluated the effect of alendronate on the osteogenic differentiation of mouse mesenchymal stem cells. D1 cells (multipotent mouse mesenchymal stem cells) were cultured in osteogenic differentiation medium for 7 days and then treated with alendronate for 2 days before being subjected to various tests using MTT assays, Alizarin Red, enzyme-linked immunosorbent assay, energy-dispersive xray spectrophotometry, reverse transcriptase-polymerase chain reaction, confocal microscopy, and flow cytometric analysis. D1 cells differentiated into osteoblasts in the presence of osteogenic differentiation medium as confirmed by positive Alizarin Red S staining, increased alkaline phosphatase activity and osteocalcin mRNA expression, a calcium peak by energy-dispersive xray spectrophotometry, and by positive immunofluorescence staining against CD44. Osteogenic differentiation was enhanced after treatment with alendronate as confirmed by Alizarin Red S staining, elevated alkaline phosphatase activity and osteocalcin mRNA expression, a greater calcium peak by energy-dispersive xray spectrophotometry, and by immunofluorescence staining against CD44 by flow cytometric analysis. These data suggest alendronate enhances osteogenic differentiation when treated with mouse mesenchymal stem cells in osteogenic differentiation medium.
Collapse
Affiliation(s)
- Hyung Keun Kim
- Department of Orthopaedics, Chonnam National University Hwasun Hospital, Jeonnam, Korea
- Cardiovascular Research Institute, Chonnam National University, Gwangju, Korea
| | - Ji Hyun Kim
- Department of Orthopaedics, Chonnam National University Hwasun Hospital, Jeonnam, Korea
- Cardiovascular Research Institute, Chonnam National University, Gwangju, Korea
| | - Azlina Amir Abbas
- Department of Orthopaedics, Chonnam National University Hwasun Hospital, Jeonnam, Korea
| | - Taek Rim Yoon
- Department of Orthopaedics, Chonnam National University Hwasun Hospital, Jeonnam, Korea
- Cardiovascular Research Institute, Chonnam National University, Gwangju, Korea
- Center for Joint Disease, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasuneup, Hwasungun, 519-809 Jeonnam, Korea
| |
Collapse
|
35
|
Chellaiah MA, Schaller MD. Activation of Src kinase by protein-tyrosine phosphatase-PEST in osteoclasts: comparative analysis of the effects of bisphosphonate and protein-tyrosine phosphatase inhibitor on Src activation in vitro. J Cell Physiol 2009; 220:382-93. [PMID: 19350555 DOI: 10.1002/jcp.21777] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PTP-PEST is involved in the regulation of sealing ring formation in osteoclasts. In this article, we have shown a regulatory role for PTP-PEST on dephosphorylation of c-Src at Y527 and phosphorylation at Y418 in the catalytic site. Activation of Src in osteoclasts by over-expression of PTP-PEST resulted in the phosphorylation of cortactin at Y421 and WASP at Y294. Also enhanced as a result, is the interaction of Src, cortactin, and Arp2 with WASP. Moreover, the number of osteoclasts displaying sealing ring and bone resorbing activity was increased in response to PTP-PEST over-expression as compared with control osteoclasts. Cells expressing constitutively active-Src (527YDeltaF) simulate the effects mediated by PTP-PEST. Treatment of osteoclasts with a bisphosphonate alendronate or a potent PTP inhibitor PAO decreased the activity and phosphorylation of Src at Y418 due to reduced dephosphorylation state at Y527. Therefore, Src-mediated phosphorylation of cortactin and WASP as well as the formation of WASP.cortactin.Arp2 complex and sealing ring were reduced in these osteoclasts. Similar effects were observed in osteoclasts treated with an Src inhibitor PP2. We have shown that bisphosphonates could modulate the function of osteoclasts by inhibiting downstream signaling mediated by PTP-PEST/Src, in addition to its effect on the inhibition of the post-translational modification of small GTP-binding proteins such as Rab, Rho, and Rac as shown by others. The promising effects of the inhibitors PP2 and PAO on osteoclast function suggest a therapeutic approach for patients with bone metastases and osteoporosis as an alternative to bisphosphonates.
Collapse
Affiliation(s)
- Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, MD, USA.
| | | |
Collapse
|
36
|
Abstract
Osteoclasts, the primary cell type mediating bone resorption, are multinucleated, giant cells derived from hematopoietic cells of monocyte-macrophage lineage. Osteoclast activity is, in a large part, regulated by protein-tyrosine phosphorylation. While information about functional roles of several protein-tyrosine kinases (PTK), including c-Src, in osteoclastic resorption has been accumulated, little is known about the roles of protein-tyrosine phosphatases (PTPs) in regulation of osteoclast activity. Recent evidence implicates important regulatory roles for four PTPs (SHP-1, cyt-PTP-epsilon, PTP-PEST, and PTPoc) in osteoclasts. Cyt-PTP-epsilon, PTP-PEST, and PTP-oc are positive regulators of osteoclast activity, while SHP-1 is a negative regulator. Of these PTPs in osteoclasts, only PTP-oc is a positive regulator of c-Src PTK through dephosphorylation of the inhibitory phosphotyrosine-527 residue. Although some information about mechanisms of action of these PTPs to regulate osteoclast activity is reviewed in this article, much additional work is required to provide more comprehensive details about their functions in osteoclasts.
Collapse
Affiliation(s)
- M. H.-C. Sheng
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, 11201 Benton Street, Loma Linda, CA 92357 USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
| | - K.-H. W. Lau
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, 11201 Benton Street, Loma Linda, CA 92357 USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
- Department of Biochemistry, Loma Linda University, Loma Linda, CA 92350 USA
| |
Collapse
|
37
|
Bromberg N, Justo GZ, Haun M, Durán N, Ferreira CV. Violacein cytotoxicity on human blood lymphocytes and effect on phosphatases. J Enzyme Inhib Med Chem 2008; 20:449-54. [PMID: 16335052 DOI: 10.1080/14756360500273052] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Given the importance of protein phosphorylation in the context of cellular functions, abnormal protein phosphatase activity has been implicated in several diseases, including cancer. These critical roles of protein phosphatases qualify them as potential targets for the development of medicinal compounds that possess distinct modes of action such as violacein. In this work, studies with this natural indolic pigment at a concentration of 10.0 micromol L(-1) demonstrated a 20% activation of total protein phosphatase extracted from human lymphocytes. Although no alteration was observed on protein tyrosine phosphatase (CD45), 30% of inhibition was achieved in cytoplasmatic protein phosphatase activity after incubation with 10.0 micromol L(-1) violacein. Additionally, 5.0 micromol L(-1) of violacein inhibited by 50% the serum tartrate-resistant acid phosphatase activity. Violacein presented toxic effect on lymphocytes with IC50 values of 3 and 10 micromol L(-1) for protein content and protein phosphatase activity, respectively. These findings suggest an important role for protein phosphatases in the mechanisms controlling proliferation and cell death.
Collapse
Affiliation(s)
- N Bromberg
- Biological Chemistry Laboratory, Instituto de Química, Universidade Estadual de Campinas (UNICAMP), C.P.6154, CEP 13083-970, Campinas- S.P., Brazil
| | | | | | | | | |
Collapse
|
38
|
Differential expression of LAR tyrosine phosphatase in the rat developing molar tooth germ. Arch Oral Biol 2008; 53:947-53. [DOI: 10.1016/j.archoralbio.2008.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 05/01/2008] [Accepted: 05/06/2008] [Indexed: 11/24/2022]
|
39
|
Liu J, Xu K, Wen G, Guo H, Li S, Wu X, Dai R, Sheng Z, Liao E. Comparison of the effects of genistein and zoledronic acid on the bone loss in OPG-deficient mice. Bone 2008; 42:950-9. [PMID: 18337202 DOI: 10.1016/j.bone.2008.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 12/19/2007] [Accepted: 01/15/2008] [Indexed: 11/20/2022]
Abstract
UNLABELLED Using osteoprotegerin (OPG)-knockout mice, we demonstrated that in vivo the effects of both genistein and 17beta-estradiol (E2) on bone metabolism were completely abolished. In contrast, zoledronic acid could effectively suppress bone resorption and prevent bone loss. INTRODUCTION The anti-resorptive effects of E2 on bone metabolism are considered to be mediated via modulation of the osteoblast-derived paracrine factor OPG. Recently, the phytoestrogen genistein was found to suppress bone resorption by enhancing osteoblastic production of OPG. However, the mechanism underlying the in vivo effects of E2 and genistein on bone is not entirely understood, and a central question in this regard is whether E2 regulates bone metabolism via an OPG-dependent pathway. METHODS After mating heterozygous (OPG+/-) mice, homozygous (OPG-/-) and wild-type (WT) with a mixed C57BL/6J x 129/SV background were obtained. The study involved 6-week-old female OPG-/- (n=40) and WT mice (n=8). The OPG-/- mice were randomly divided into 5 groups (n=8 per group) as follows: (1) genistein-treated mice (Gen) that were subcutaneously injected with genistein at a maximal dose (0.8 mg/day); (2) E2-treated mice (E2) that were subcutaneously injected with E2 at a dose (0.03 microg/day); (3) DMSO control mice (DMSO) that were subcutaneously injected with a mixture of dimethylsulfoxide (DMSO) and polyethyleneglycol-300; (4) zoledronic acid-treated mice (Zol) that were subcutaneously injected with zoledronic acid at a dose of (150 microg/kg) twice per week; and (5) H2O control mice that were subcutaneously injected with sterilized water twice per week. The doses of genistein, estrogen and zoledronic acid were selected based on the results of dose-response effect of agents on bone versus uterus in OPG-/- mice. The mice were sacrificed 6 weeks after this intervention. The microarchitecture of the trabecular and cortical bone was assessed by performing microcomputed tomography (micro-CT) for the right proximal tibia. The bone mineral density (BMD) of the left femur was measured by dual-energy X-ray absorptiometry (DXA). The biomechanical parameters of the right femur were determined by a three-point bend testing. Serum levels of bone alkaline phosphatase (B-ALP), tartarate-resistant acid phosphatase-5b (TRACP-5b), and receptor activator of nuclear factor kappaB ligand (RANKL) were determined by performing ELISA. RESULTS DXA analysis revealed that the total BMD of the femur was not significantly altered in the Gen, E2, H2O, and DMSO groups. The three-point bending test revealed no significant differences in the biomechanical parameters, including ultimate loading, ultimate stress, stiff index, and elastic modulus, and micro-CT analysis revealed that the microarchitectural parameters of the trabecular bone (vBMD, tBMD, BVF, BSF, SMI, Tb.N, Conn.D, Tb.Sp, and Tb.Th) and cortical bone (Ct.Th, Mm, In.Pm, Ot.Pm, Ma.Ar, Ct.Ar, Tt.Ar, Ct.BMD, and Ct.BMC) did not differ among the groups. Genistein and E2 treatment did not alter the serum TRACP-5b, B-ALP, or RANKL levels. However, in addition to increasing the bone mass, zoledronic acid could effectively improve biomechanical parameters and could completely prevent deterioration of the bone architecture in the OPG-/- mice. CONCLUSIONS The effects of genistein and E2 on bone metabolism in vivo were lost completely in OPG-deficient mice, suggesting that the effect of these agents on bone metabolism seems to be entirely dependent on OPG. In contrast, zoledronic acid could effectively suppress bone resorption and completely prevent the bone loss in the OPG-/- mice--an effect that is likely to be independent of the OPG pathway.
Collapse
Affiliation(s)
- Jianghua Liu
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Graham R, Russell G. The Bisphosphonate Odyssey. A Journey from Chemistry to the Clinic. PHOSPHORUS SULFUR 2008. [DOI: 10.1080/10426509908546364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- R. Graham
- a Division of Biochemical and Musculoskeletal Metabolism, Human Metabolism and Clinical Biochemistry, University of Sheffield Medical School , Sheffield S10 2RX, UK
- b Division of Biochemical and Musculoskeletal Metabolism, Human Metabolism and Clinical Biochemistry, University of Sheffield Medical School , Sheffield S10 2RX, UK
| | - G. Russell
- a Division of Biochemical and Musculoskeletal Metabolism, Human Metabolism and Clinical Biochemistry, University of Sheffield Medical School , Sheffield S10 2RX, UK
- b Division of Biochemical and Musculoskeletal Metabolism, Human Metabolism and Clinical Biochemistry, University of Sheffield Medical School , Sheffield S10 2RX, UK
| |
Collapse
|
41
|
Granot-Attas S, Elson A. Protein tyrosine phosphatases in osteoclast differentiation, adhesion, and bone resorption. Eur J Cell Biol 2008; 87:479-90. [PMID: 18342392 DOI: 10.1016/j.ejcb.2008.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/16/2008] [Accepted: 01/16/2008] [Indexed: 01/06/2023] Open
Abstract
Osteoclasts are large cells derived from the monocyte-macrophage hematopoietic cell lineage. Their primary function is to degrade bone in various physiological contexts. Osteoclasts adhere to bone via podosomes, specialized adhesion structures whose structure and subcellular organization are affected by mechanical contact of the cell with bone matrix. Ample evidence indicates that reversible tyrosine phosphorylation of podosomal proteins plays a major role in determining the organization and dynamics of podosomes. Although roles of several tyrosine kinases are known in detail in this respect, little is known concerning the roles of protein tyrosine phosphatases (PTPs) in regulating osteoclast adhesion. Here we summarize available information concerning the known and hypothesized roles of the best-researched PTPs in osteoclasts - PTPRO, PTP epsilon, SHP-1, and PTP-PEST. Of these, PTPRO, PTP epsilon, and PTP-PEST appear to support osteoclast activity while SHP-1 inhibits it. Additional studies are required to provide full molecular details of the roles of these PTPs in regulating osteoclast adhesion, and to uncover additional PTPs that participate in this process.
Collapse
Affiliation(s)
- Shira Granot-Attas
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
42
|
Schinke T, Gebauer M, Schilling AF, Lamprianou S, Priemel M, Mueldner C, Neunaber C, Streichert T, Ignatius A, Harroch S, Amling M. The protein tyrosine phosphatase Rptpzeta is expressed in differentiated osteoblasts and affects bone formation in mice. Bone 2008; 42:524-34. [PMID: 18178537 DOI: 10.1016/j.bone.2007.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 09/14/2007] [Accepted: 11/07/2007] [Indexed: 01/07/2023]
Abstract
Tyrosine phosphorylation of intracellular substrates is one mechanism to regulate cellular proliferation and differentiation. Protein tyrosine phosphatases (PTPs) act by dephosphorylation of substrates and thereby counteract the activity of tyrosine kinases. Few PTPs have been suggested to play a role in bone remodeling, one of them being Rptpzeta, since it has been shown to be suppressed by pleiotrophin, a heparin-binding molecule affecting bone formation, when over-expressed in transgenic mice. In a genome-wide expression analysis approach we found that Ptprz1, the gene encoding Rptpzeta, is strongly induced upon terminal differentiation of murine primary calvarial osteoblasts. Using RT-PCR and Western Blotting we further demonstrated that differentiated osteoblasts, in contrast to neuronal cells, specifically express the short transmembrane isoform of Rptpzeta. To uncover a potential role of Rptpzeta in bone remodeling we next analyzed the skeletal phenotype of a Rptpzeta-deficient mouse model using non-decalcified histology and histomorphometry. Compared to wildtype littermates, the Rptpzeta-deficient mice display a decreased trabecular bone volume at the age of 50 weeks, caused by a reduced bone formation rate. Likewise, Rptpzeta-deficient calvarial osteoblasts analyzed ex vivo display decreased expression of osteoblast markers, indicating a cell-autonomous defect. This was confirmed by the finding that Rptpzeta-deficient osteoblasts had a diminished potential to form osteocyte-like cellular extensions on Matrigel-coated surfaces. Taken together, these data provide the first evidence for a physiological role of Rptpzeta in bone remodeling, and thus identify Rptpzeta as the first PTP regulating bone formation in vivo.
Collapse
Affiliation(s)
- T Schinke
- Department of Trauma, Hand, and Reconstructive Surgery, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Han X, Kawai T, Taubman MA. Interference with immune-cell-mediated bone resorption in periodontal disease. Periodontol 2000 2007; 45:76-94. [PMID: 17850450 DOI: 10.1111/j.1600-0757.2007.00215.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaozhe Han
- Department of Immunology, The Forsyth Institute, Harvard Medical School, Harvard School of Dental Medicine, Boston, MA, USA
| | | | | |
Collapse
|
44
|
Feng Y, Carroll AR, Addepalli R, Fechner GA, Avery VM, Quinn RJ. Vanillic acid derivatives from the green algae Cladophora socialis as potent protein tyrosine phosphatase 1B inhibitors. JOURNAL OF NATURAL PRODUCTS 2007; 70:1790-1792. [PMID: 17949055 DOI: 10.1021/np070225o] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A novel vanillic acid derivative (1) and its sulfate adduct (2) were isolated from a green algae, Cladophora socialis. The structures of 1 and 2 were elucidated from NMR and HRESIMS experiments. Both compounds showed potent inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), an enzyme involved in the regulation of insulin cell signaling. Compounds 1 and 2 had IC50 values of 3.7 and 1.7 microM, respectively.
Collapse
Affiliation(s)
- Yunjiang Feng
- Natural Product Discovery, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Qld 4111, Australia
| | | | | | | | | | | |
Collapse
|
45
|
Valenti MT, Dalle Carbonare L, Bertoldo F, Donatelli L, Lo Cascio V. The effects on hTERT gene expression is an additional mechanism of amino-bisphosphonates in prostatic cancer cells. Eur J Pharmacol 2007; 580:36-42. [PMID: 18037402 DOI: 10.1016/j.ejphar.2007.10.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/15/2007] [Accepted: 10/18/2007] [Indexed: 10/22/2022]
Abstract
Many studies have demonstrated various effects of bisphosphonates on several cancer cells and it is accepted that their anti-tumor activity is related to interference with the mevalonate pathway. In addition, it is well known that gene expression of hTERT, the catalytic subunit of the telomerase, is elevated in prostatic cancer. In the prostate cancer cell lines we investigated the effects on hTERT gene expression of several bisphosphonates. We also evaluated whether the observed levels of expression were affected by the exposure to an analogue of the geranylgeranylpyrophosphate, the geranylgeraniol used to recover the mevalonate pathway. Our results showed that the amino-bisphosphonates down-regulate hTERT gene expression and that combined treatment with geranylgeraniol and zoledronate was able to revert only partially the effects on viability; on the contrary, hTERT gene down-regulation was not affected by the restoration of the mevalonate pathway. These results support the hypothesis that prostatic cancer cells are targeted by amino-bisphosphonates also through a different mechanism from the mevalonate pathway.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Department of Biomedical and Surgical Sciences, Clinic of Internal Medicine D-University of Verona, Italy
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Abstract
Patients with advanced breast cancer frequently develop metastasis to bone. Bone metastasis results in intractable pain and a high risk of fractures due to tumor-driven bone loss (osteolysis), which is caused by increased osteoclast activity. Osteolysis releases bone-bound growth factors including transforming growth factor beta (TGF-beta). The widely accepted model of osteolytic bone metastasis in breast cancer is based on the hypothesis that the TGF-beta released during osteolytic lesion development stimulates tumor cell parathyroid hormone related protein (PTHrP), causing stromal cells to secrete receptor activator of NFkappaB ligand (RANKL), thus increasing osteoclast differentiation. Elevated osteoclast numbers results in increased bone resorption, leading to more TGF-beta being released from bone. This interaction between tumor cells and the bone microenvironment results in a vicious cycle of bone destruction and tumor growth. Bisphosphonates are commonly prescribed small molecule therapeutics that target tumor-driven osteoclastic activity in osteolytic breast cancers. In addition to bisphosphonate therapies, steroidal and non-steroidal antiestrogen and adjuvant therapies with aromatase inhibitors are additional small molecule therapies that may add to the arsenal for treatment of osteolytic breast cancer. This review focuses on a brief discussion of tumor-driven osteolysis and the effects of small molecule therapies in reducing osteolytic tumor progression.
Collapse
Affiliation(s)
- Muzaffer Cicek
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, MN 55901, USA.
| | | |
Collapse
|
48
|
Abstract
The profound effects of the bisphosphonates on calcium metabolism were discovered over 30 years ago, and they are now well established as the major drugs used for the treatment of bone diseases associated with excessive resorption. Their principal uses are for Paget disease of bone, myeloma, bone metastases, and osteoporosis in adults, but there has been increasing and successful application in pediatric bone diseases, notably osteogenesis imperfecta. Bisphosphonates are structural analogues of inorganic pyrophosphate but are resistant to enzymatic and chemical breakdown. Bisphosphonates inhibit bone resorption by selective adsorption to mineral surfaces and subsequent internalization by bone-resorbing osteoclasts where they interfere with various biochemical processes. The simpler, non-nitrogen-containing bisphosphonates (eg, clodronate and etidronate) can be metabolically incorporated into nonhydrolysable analogues of adenosine triphosphate (ATP) that may inhibit ATP-dependent intracellular enzymes. In contrast, the more potent, nitrogen-containing bisphosphonates (eg, pamidronate, alendronate, risedronate, ibandronate, and zoledronate) inhibit a key enzyme, farnesyl pyrophosphate synthase, in the mevalonate pathway, thereby preventing the biosynthesis of isoprenoid compounds that are essential for the posttranslational modification of small guanosine triphosphate (GTP)-binding proteins (which are also GTPases) such as Rab, Rho, and Rac. The inhibition of protein prenylation and the disruption of the function of these key regulatory proteins explains the loss of osteoclast activity. The recently elucidated crystal structure of farnesyl diphosphate reveals how bisphosphonates bind to and inhibit at the active site via their critical nitrogen atoms. Although bisphosphonates are now established as an important class of drugs for the treatment of many bone diseases, there is new knowledge about how they work and the subtle but potentially important differences that exist between individual bisphosphonates. Understanding these may help to explain differences in potency, onset and duration of action, and clinical effectiveness.
Collapse
Affiliation(s)
- R Graham G Russell
- Botnar Research Centre, Oxford University Institute of Musculoskeletal Sciences, Oxford, United Kingdom.
| |
Collapse
|
49
|
Molinuevo MS, Bruzzone L, Cortizo AM. Alendronate induces anti-migratory effects and inhibition of neutral phosphatases in UMR106 osteosarcoma cells. Eur J Pharmacol 2007; 562:28-33. [PMID: 17341419 DOI: 10.1016/j.ejphar.2007.01.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/14/2007] [Accepted: 01/17/2007] [Indexed: 10/24/2022]
Abstract
Bisphosphonates are nonhydrolysable pyrophosphate analogues that prevent bone loss in several types of cancer. However, the mechanisms of anticancer action of bisphosphonates are not completely known. We have previously shown that nitrogen-containing bisphosphonates directly inhibit alkaline phosphatase of UMR106 rat osteosarcoma cells. In this study, we evaluated the effects of alendronate on the migration of UMR106 osteosarcoma using a model of multicellular cell spheroids, as well as the alendronate effect on neutral phosphatases. Alendronate significantly inhibited the migration of osteoblasts in a dose-dependent manner (10(-6)-10(-4) M). This effect was also dependent on calcium availability. The spheroid morphology and distribution of actin fibers were also affected by alendronate treatment. Alendronate dose-dependently inhibited neutral phosphatase activity in cell-free osteoblastic extracts as well as in osteoblasts in culture. Our results show that alendronate inhibits cell migration through mechanisms dependent on calcium, and that seem to involve inhibition of phosphotyrosine-neutral-phosphatases and disassembly of actin stress fibers.
Collapse
Affiliation(s)
- M Silvina Molinuevo
- Bioquímica Patológica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 (1900) La Plata, Argentina
| | | | | |
Collapse
|
50
|
Pandha H, Birchall L, Meyer B, Wilson N, Relph K, Anderson C, Harrington K. Antitumor Effects of Aminobisphosphonates on Renal Cell Carcinoma Cell Lines. J Urol 2006; 176:2255-61. [PMID: 17070308 DOI: 10.1016/j.juro.2006.07.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Indexed: 01/06/2023]
Abstract
PURPOSE Bisphosphonates are established as a supportive therapy for a number of malignancies that metastasize to bone. Previous reports have also suggested potent antitumor and anti-angiogenic properties. We investigated the in vitro activity of the 2 aminobisphosphonates pamidronate (Faulding Pharmaceuticals, Paramus, New Jersey) and zoledronic acid (Novartis, Basel, Switzerland) on the growth and survival of the 3 renal cell carcinoma cell lines Caki-2, 769-P (American Type Culture Collection, Manassas, Virginia) and D69581. MATERIALS AND METHODS Cell lines were exposed to bisphosphonates in vitro and evaluated by MTS (3-(4,5-dimethylahiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay and cell cycle analysis. Mechanisms of apoptotic cell death were investigated by ApoDIRECT assay (BioVision, Mountain View, California) and Kinetworks analysis. RESULTS Zoledronic acid was consistently more potent than pamidronate for inducing apoptotic cell death. Zoledronic acid was capable of overcoming resistance to pamidronate in 1 cell line. Although it was ultimately less potent, the inhibitory effects of pamidronate appeared earlier than those of zoledronic acid. The pro-apoptotic effect of zoledronic acid was achieved through nonmitochondrial pathways and it was associated with the activation of caspase 6 and 3, and poly adenosine diphosphate-ribosyltransferase polymerase cleavage. Furthermore, we observed a marked decrease in and intracellular distribution of MSH2, a protein involved in DNA mismatch repair, as well as evidence of a greater cellular response to zoledronic acid as increased expression of superoxide dismutase. CONCLUSIONS These findings add further support to the clinical use of aminobisphosphonates, particularly zoledronic acid, in patients with renal cell carcinoma with disease metastatic to bone.
Collapse
Affiliation(s)
- Hardev Pandha
- Department of Oncology, St. George's, University of London and Targeted Therapy Laboratory, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|