1
|
Nakhe AY, Dadi PK, Kim J, Dickerson MT, Behera S, Dobson JR, Shrestha S, Cartailler JP, Sampson L, Magnuson MA, Jacobson DA. The MODY-associated KCNK16 L114P mutation increases islet glucagon secretion and limits insulin secretion resulting in transient neonatal diabetes and glucose dyshomeostasis in adults. eLife 2024; 12:RP89967. [PMID: 38700926 PMCID: PMC11068355 DOI: 10.7554/elife.89967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and β-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell β-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.
Collapse
Affiliation(s)
- Arya Y Nakhe
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Jinsun Kim
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Soma Behera
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Jordyn R Dobson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Shristi Shrestha
- Center for Stem Cell Biology, Vanderbilt UniversityNashvilleUnited States
| | | | - Leesa Sampson
- Center for Stem Cell Biology, Vanderbilt UniversityNashvilleUnited States
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
- Center for Stem Cell Biology, Vanderbilt UniversityNashvilleUnited States
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| |
Collapse
|
2
|
Bohuslavova R, Fabriciova V, Smolik O, Lebrón-Mora L, Abaffy P, Benesova S, Zucha D, Valihrach L, Berkova Z, Saudek F, Pavlinkova G. NEUROD1 reinforces endocrine cell fate acquisition in pancreatic development. Nat Commun 2023; 14:5554. [PMID: 37689751 PMCID: PMC10492842 DOI: 10.1038/s41467-023-41306-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
NEUROD1 is a transcription factor that helps maintain a mature phenotype of pancreatic β cells. Disruption of Neurod1 during pancreatic development causes severe neonatal diabetes; however, the exact role of NEUROD1 in the differentiation programs of endocrine cells is unknown. Here, we report a crucial role of the NEUROD1 regulatory network in endocrine lineage commitment and differentiation. Mechanistically, transcriptome and chromatin landscape analyses demonstrate that Neurod1 inactivation triggers a downregulation of endocrine differentiation transcription factors and upregulation of non-endocrine genes within the Neurod1-deficient endocrine cell population, disturbing endocrine identity acquisition. Neurod1 deficiency altered the H3K27me3 histone modification pattern in promoter regions of differentially expressed genes, which resulted in gene regulatory network changes in the differentiation pathway of endocrine cells, compromising endocrine cell potential, differentiation, and functional properties.
Collapse
Affiliation(s)
- Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Ondrej Smolik
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Laura Lebrón-Mora
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Zuzana Berkova
- Diabetes Centre, Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Frantisek Saudek
- Diabetes Centre, Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia.
| |
Collapse
|
3
|
Manea T, Nelson JK, Garrone CM, Hansson K, Evans I, Behrens A, Sancho R. USP7 controls NGN3 stability and pancreatic endocrine lineage development. Nat Commun 2023; 14:2457. [PMID: 37117185 PMCID: PMC10147604 DOI: 10.1038/s41467-023-38146-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 04/18/2023] [Indexed: 04/30/2023] Open
Abstract
Understanding the factors and mechanisms involved in beta-cell development will guide therapeutic efforts to generate fully functional beta cells for diabetes. Neurogenin 3 (NGN3) is the key transcription factor that marks endocrine progenitors and drives beta-cell differentiation. Here we screen for binding partners of NGN3 and identify the deubiquitylating enzyme USP7 as a key regulator of NGN3 stability. Mechanistically, USP7 interacts with, deubiquitinates and stabilizes NGN3. In vivo, conditional knockout of Usp7 in the mouse embryonic pancreas causes a dramatic reduction in islet formation and hyperglycemia in adult mice, due to impaired NGN3-mediated endocrine specification during pancreatic development. Furthermore, pharmacological inhibition of USP7 during endocrine specification in human iPSC models of beta-cell differentiation decreases NGN3 expressing progenitor cell numbers and impairs beta cell differentiation. Thus, the USP7-NGN3 axis is an essential mechanism for driving endocrine development and beta-cell differentiation, which can be therapeutically exploited.
Collapse
Affiliation(s)
- Teodora Manea
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Jessica Kristine Nelson
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | | | - Karin Hansson
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Ian Evans
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
- Imperial College, Division of Cancer, Department of Surgery and Cancer, Imperial College, Exhibition Road, London, SW7 2AZ, UK
- Convergence Science Centre, Imperial College, Exhibition Road, London, SW7 2BU, UK
| | - Rocio Sancho
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK.
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
4
|
Iker Etchegaray J, Kelley S, Penberthy K, Karvelyte L, Nagasaka Y, Gasperino S, Paul S, Seshadri V, Raymond M, Marco AR, Pinney J, Stremska M, Barron B, Lucas C, Wase N, Fan Y, Unanue E, Kundu B, Burstyn-Cohen T, Perry J, Ambati J, Ravichandran KS. Phagocytosis in the retina promotes local insulin production in the eye. Nat Metab 2023; 5:207-218. [PMID: 36732622 PMCID: PMC10457724 DOI: 10.1038/s42255-022-00728-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/16/2022] [Indexed: 02/04/2023]
Abstract
The retina is highly metabolically active, relying on glucose uptake and aerobic glycolysis. Situated in close contact to photoreceptors, a key function of cells in the retinal pigment epithelium (RPE) is phagocytosis of damaged photoreceptor outer segments (POS). Here we identify RPE as a local source of insulin in the eye that is stimulated by POS phagocytosis. We show that Ins2 messenger RNA and insulin protein are produced by RPE cells and that this production correlates with RPE phagocytosis of POS. Genetic deletion of phagocytic receptors ('loss of function') reduces Ins2, whereas increasing the levels of the phagocytic receptor MerTK ('gain of function') increases Ins2 production in male mice. Contrary to pancreas-derived systemic insulin, RPE-derived local insulin is stimulated during starvation, which also increases RPE phagocytosis. Global or RPE-specific Ins2 gene deletion decreases retinal glucose uptake in starved male mice, dysregulates retinal physiology, causes defects in phototransduction and exacerbates photoreceptor loss in a mouse model of retinitis pigmentosa. Collectively, these data identify RPE cells as a phagocytosis-induced local source of insulin in the retina, with the potential to influence retinal physiology and disease.
Collapse
Affiliation(s)
- J Iker Etchegaray
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shannon Kelley
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristen Penberthy
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Laura Karvelyte
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yosuke Nagasaka
- Center for Advanced Vision Science, University of Virginia, Charlottesville, VA, USA
| | - Sofia Gasperino
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Soumen Paul
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Vikram Seshadri
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Michael Raymond
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Ana Royo Marco
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Jonathan Pinney
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Marta Stremska
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brady Barron
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher Lucas
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- University of Edinburgh, Edinburgh, UK
| | - Nishikant Wase
- Biomolecular Analysis Facility, University of Virginia, Charlottesville, VA, USA
| | - Yong Fan
- Drexel University, Philadelphia, PA, USA
| | - Emil Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bijoy Kundu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Tal Burstyn-Cohen
- Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Justin Perry
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia, Charlottesville, VA, USA
- Ophthalmology, University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
- Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel.
- VIB/UGent Inflammation Research Centre, and Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
CRISPR/Cas9-mediated knockin of IRES-tdTomato at Ins2 locus reveals no RFP-positive cells in mouse islets. Funct Integr Genomics 2023; 23:42. [PMID: 36652148 PMCID: PMC9849276 DOI: 10.1007/s10142-023-00960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Using the CRISPR/Cas9 genomic editing technology, we constructed a transgenic mouse model to express specific fluorescent protein in pancreatic β cells, which harbor tdTomato exogenous gene downstream of the Ins2 promoter in C57BL/6 J mice. The Ins2-specific single-guide RNA-targeted exon2 was designed for the CRISPR/Cas9 system and Donor vector was constructed at the same time. Then Cas9, sgRNA, and Donor vector were microinjected in vitro into the mouse zygotes that were implanted into pseudo-pregnant mice. We obtained homozygotes through mating heterozygotes, and verified the knockin effect through genotype identification, in vivo imaging, and frozen section. Six F0 mice and stable inherited Ins2-IRES-tdTomato F1 were obtained. Genome sequencing results showed that the knockin group had no change in the Ins2 exon compared with the control group, while only the base sequence of tdTomato was added and no base mutation occurred. However, in vivo imaging and frozen section did not observe the expression of red fluorescent protein (RFP), and the protein expression of knockin gene tdTomato was negative. As a result, the expressions of tdTomato protein and fluorescence intensity were low and the detection threshold was not reached. In the CRISP/Cas9 technique, the exogenous fragment of IRES connection would affect the transcription level of the preceding gene, which in turn would lead to low-level expression of the downstream gene and affect the effect of gene insertion.
Collapse
|
6
|
Eksi YE, Bisgin A, Sanlioglu AD, Azizoglu RO, Balci MK, Griffith TS, Sanlioglu S. Generation of a Beta-Cell Transplant Animal Model of Diabetes Using CRISPR Technology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:145-159. [PMID: 36289162 DOI: 10.1007/5584_2022_746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Since insulin deficiency results from pancreatic beta-cell destruction, all type 1 and most type 2 diabetes patients eventually require life-long insulin injections. Insulin gene synthesis could also be impaired due to insulin gene mutations as observed in diabetic patients with MODY 10. At this point, insulin gene therapy could be very effective to recompense insulin deficiency under these circumstances. For this reason, an HIV-based lentiviral vector carrying the insulin gene under the control of insulin promoter (LentiINS) was generated, and its therapeutic efficacy was tested in a beta-cell transplant model lacking insulin produced by CRISPR/Cas9-mediated genetically engineered pancreatic beta cells. To generate an insulin knockout beta-cell transplant animal model of diabetes, a dual gene knockout plasmid system involving CRISPR/Cas9 was transfected into a mouse pancreatic beta cell line (Min6). Fluorescence microscopy and antibiotic selection were utilized to select the insulin gene knockout clones. Transplantation of the genetically engineered pancreatic beta cells under the kidney capsule of STZ-induced diabetic rats revealed LentiINS- but not LentiLacZ-infected Ins2KO cells transiently reduced hyperglycemia similar to that of MIN6 in diabetic animals. These results suggest LentiINS has the potential to functionally restore insulin production in an insulin knockout beta-cell transplant animal model of diabetes.
Collapse
Affiliation(s)
- Yunus Emre Eksi
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Atil Bisgin
- Department of Medical Genetics, Cukurova University, Faculty of Medicine, Adana, Turkey
| | - Ahter D Sanlioglu
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Reha Onur Azizoglu
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Mustafa Kemal Balci
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, School of Medicine, Minneapolis, MN, USA
| | - Salih Sanlioglu
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya, Turkey.
| |
Collapse
|
7
|
Rashbrook VS, Brash JT, Ruhrberg C. Cre toxicity in mouse models of cardiovascular physiology and disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:806-816. [PMID: 37692772 PMCID: PMC7615056 DOI: 10.1038/s44161-022-00125-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/27/2022] [Indexed: 09/12/2023]
Abstract
The Cre-LoxP system provides a widely used method for studying gene requirements in the mouse as the main mammalian genetic model organism. To define the molecular and cellular mechanisms that underlie cardiovascular development, function and disease, various mouse strains have been engineered that allow Cre-LoxP-mediated gene targeting within specific cell types of the cardiovascular system. Despite the usefulness of this system, evidence is accumulating that Cre activity can have toxic effects in cells, independently of its ability to recombine pairs of engineered LoxP sites in target genes. Here, we have gathered published evidence for Cre toxicity in cells and tissues relevant to cardiovascular biology and provide an overview of mechanisms proposed to underlie Cre toxicity. Based on this knowledge, we propose that each study utilising the Cre-LoxP system to investigate gene function in the cardiovascular system should incorporate appropriate controls to account for Cre toxicity.
Collapse
Affiliation(s)
- Victoria S. Rashbrook
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - James T. Brash
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
8
|
Meier DT, Rachid L, Wiedemann SJ, Traub S, Trimigliozzi K, Stawiski M, Sauteur L, Winter DV, Le Foll C, Brégère C, Guzman R, Odermatt A, Böni-Schnetzler M, Donath MY. Prohormone convertase 1/3 deficiency causes obesity due to impaired proinsulin processing. Nat Commun 2022; 13:4761. [PMID: 35963866 PMCID: PMC9376086 DOI: 10.1038/s41467-022-32509-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022] Open
Abstract
Defective insulin processing is associated with obesity and diabetes. Prohormone convertase 1/3 (PC1/3) is an endopeptidase required for the processing of neurotransmitters and hormones. PC1/3 deficiency and genome-wide association studies relate PC1/3 with early onset obesity. Here, we find that deletion of PC1/3 in obesity-related neuronal cells expressing proopiomelanocortin mildly and transiently change body weight and fail to produce a phenotype when targeted to Agouti-related peptide- or nestin-expressing tissues. In contrast, pancreatic β cell-specific PC1/3 ablation induces hyperphagia with consecutive obesity despite uncontrolled diabetes with glucosuria. Obesity develops not due to impaired pro-islet amyloid polypeptide processing but due to impaired insulin maturation. Proinsulin crosses the blood-brain-barrier but does not induce central satiety. Accordingly, insulin therapy prevents hyperphagia. Further, islet PC1/3 expression levels negatively correlate with body mass index in humans. In this work, we show that impaired PC1/3-mediated proinsulin processing, as observed in human prediabetes, promotes hyperphagic obesity. Defective insulin secretion is observed early in the development of diabetes. Here the authors report that β cell-specific deficiency of the insulin prohormone convertase 1/3 (PC1/3) leads not only to hyperglycemia, but also to hyperphagic obesity in mice.
Collapse
Affiliation(s)
- Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland. .,Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Leila Rachid
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sophia J Wiedemann
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Shuyang Traub
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Kelly Trimigliozzi
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Stawiski
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Loïc Sauteur
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Denise V Winter
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, 8057, Zurich, Switzerland
| | - Catherine Brégère
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Neurosurgery, University of Basel, Basel, Switzerland
| | - Raphael Guzman
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Neurosurgery, University of Basel, Basel, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Marianne Böni-Schnetzler
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Ramzy A, Edeer N, Baker RK, O’Dwyer S, Mojibian M, Verchere CB, Kieffer TJ. Insulin Null β-cells Have a Prohormone Processing Defect That Is Not Reversed by AAV Rescue of Proinsulin Expression. Endocrinology 2022; 163:6569864. [PMID: 35435956 PMCID: PMC9119694 DOI: 10.1210/endocr/bqac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Indexed: 11/19/2022]
Abstract
Up to 6% of diabetes has a monogenic cause including mutations in the insulin gene, and patients are candidates for a gene therapy. Using a mouse model of permanent neonatal diabetes, we assessed the efficacy of an adeno-associated virus (AAV)-mediated gene therapy. We used AAVs with a rat insulin 1 promoter (Ins1) regulating a human insulin gene (INS; AAV Ins1-INS) or native mouse insulin 1 (Ins1; AAV Ins-Ins1) to deliver an insulin gene to β-cells of constitutive insulin null mice (Ins1-/-Ins2-/-) and adult inducible insulin-deficient mice [Ins1-/-Ins2f/f PdxCreER and Ins1-/-Ins2f/f mice administered AAV Ins1-Cre)]. Although AAV Ins1-INS could successfully infect and confer insulin expression to β-cells, insulin null β-cells had a prohormone processing defect. Secretion of abundant proinsulin transiently reversed diabetes. We reattempted therapy with AAV Ins1-Ins1, but Ins1-/-Ins2-/- β-cells still had a processing defect of both replaced Ins1 and pro-islet amyloid polypeptide (proIAPP). In adult inducible models, β-cells that lost insulin expression developed a processing defect that resulted in impaired proIAPP processing and elevated circulating proIAPP, and cells infected with AAV Ins1-Ins1 to rescue insulin expression secreted proinsulin. We assessed the subcellular localization of prohormone convertase 1/3 (PC1/3) and detected defective sorting of PC1/3 to glycogen-containing vacuoles and retention in the endoplasmic reticulum as a potential mechanism underlying defective processing. We provide evidence that persistent production of endogenous proinsulin within β-cells is necessary for β-cells to be able to properly store and process proinsulin.
Collapse
Affiliation(s)
- Adam Ramzy
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Nazde Edeer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Robert K Baker
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Shannon O’Dwyer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Majid Mojibian
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - C Bruce Verchere
- Department of Pathology and Laboratory Medicine, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Correspondence: Timothy J. Kieffer, PhD, Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
10
|
Conflict and the evolution of viviparity in vertebrates. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Metabolites and Genes behind Cardiac Metabolic Remodeling in Mice with Type 1 Diabetes Mellitus. Int J Mol Sci 2022; 23:ijms23031392. [PMID: 35163316 PMCID: PMC8835796 DOI: 10.3390/ijms23031392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 11/21/2022] Open
Abstract
Metabolic remodeling is at the heart of diabetic cardiomyopathy. High glycemic fluctuations increase metabolic stress in the type 1 diabetes mellitus (T1DM) heart. There is a lack of understanding on how metabolites and genes affect metabolic remodeling in the T1DM heart. We hypothesize that differential expression of metabolic genes and metabolites synergistically influence metabolic remodeling preceding T1DM cardiomyopathy. To test our hypothesis, we conducted high throughput analysis of hearts from adult male hyperglycemic Ins2+/− (Akita) and littermate normoglycemic Ins2+/+ (WT) mice. The Akita mouse is a spontaneous, genetic model of T1DM that develops increased levels of consistent glycemic variability without the off-target cardiotoxic effects present in chemically- induced models of T1DM. After validating the presence of a T1DM phenotype, we conducted metabolomics via LC-MS analysis and genomics via next-generation sequencing in left ventricle tissue from the Akita heart. Ingenuity Pathway Analyses revealed that 108 and 30 metabolic pathways were disrupted within the metabolomics and genomics datasets, respectively. Notably, a comparison between the two analyses showed 15 commonly disrupted pathways, including ketogenesis, ketolysis, cholesterol biosynthesis, acetyl CoA hydrolysis, and fatty acid biosynthesis and beta-oxidation. These identified metabolic pathways predicted by the differential expression of metabolites and genes provide the foundation for understanding metabolic remodeling in the T1DM heart. By limited experiment, we revealed a predicted disruption in the metabolites and genes behind T1DM cardiac metabolic derangement. Future studies targeting these genes and metabolites will unravel novel therapies to prevent/improve metabolic remodeling in the T1DM heart.
Collapse
|
12
|
He J, Li X, Yu M. The correlation of serum/plasma IGF-1 concentrations with obstructive sleep apnea hypopnea syndrome: A meta-analysis and meta-regression. Front Endocrinol (Lausanne) 2022; 13:922229. [PMID: 36120463 PMCID: PMC9471370 DOI: 10.3389/fendo.2022.922229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Obstructive sleep apnea hypopnea syndrome (OSAHS) is a common disease that has serious cardiovascular and metabolic effects. Insulin-like growth factor 1 (IGF-1) levels are reportedly reduced in patients with OSAHS; however, this is still a matter of debate. Therefore, we investigated the association between serum/plasma IGF-1 levels and OSAHS in this meta-analysis. METHODS Wan Fang, Excerpta Medica dataBASE, Web of Science, China National Knowledge Infrastructure, VIP, PubMed, and other databases were searched for materials published in any language before April 2, 2022. Two researchers analyzed the studies for quality according to the Newcastle-Ottawa Scale. The acquired data were analyzed using Stata 11.0 and R 3.6.1 software. The effect size was estimated and calculated using standard mean differences and correlation coefficients. Moreover, a combined analysis was conducted using either a random- or fixed-effects model. RESULTS Ultimately, 34 studies met our inclusion criteria. Our findings revealed that the plasma/serum IGF-1 concentrations in patients with OSAHS was significantly reduced compared with those in healthy subjects. Subgroup analyses were performed according to OSAHS severity, ethnicity, age, body mass index, specimen testing method, and study design. The outcomes suggested that nearly all subgroups of patients with OSAHS had reduced serum IGF-1 levels. Disease severity and differences in ethnicity were identified as possible influencing factors of serum IGF-1 levels in patients with OSAHS in the meta-regression analysis, and no other factors were found to alter plasma/serum IGF-1 concentrations. Moreover, plasma/serum IGF-1 concentrations were negatively correlated with apnea-hypopnea index and oxygen desaturation index scores and positively associated with minimum oxygen saturation. CONCLUSION Serum/plasma IGF-1 concentrations in patients with OSAHS were greatly reduced compared with those of patients in the control group, and were negatively correlated with apnea-hypopnea index and oxygen desaturation index scores and positively correlated with minimum oxygen saturation. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022322738.
Collapse
Affiliation(s)
- Jie He
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- *Correspondence: Jie He,
| | - Xiaoyan Li
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Mi Yu
- Clinical Medical College of Chengdu Medical College, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
13
|
Watada H. Inceptor intercepts insulin signaling in pancreatic β-cells. J Diabetes Investig 2021; 12:1540-1541. [PMID: 34008908 PMCID: PMC8409865 DOI: 10.1111/jdi.13596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Hirotaka Watada
- Department of Metabolism and EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
| |
Collapse
|
14
|
Bohuslavova R, Smolik O, Malfatti J, Berkova Z, Novakova Z, Saudek F, Pavlinkova G. NEUROD1 Is Required for the Early α and β Endocrine Differentiation in the Pancreas. Int J Mol Sci 2021; 22:6713. [PMID: 34201511 PMCID: PMC8268837 DOI: 10.3390/ijms22136713] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
Diabetes is a metabolic disease that involves the death or dysfunction of the insulin-secreting β cells in the pancreas. Consequently, most diabetes research is aimed at understanding the molecular and cellular bases of pancreatic development, islet formation, β-cell survival, and insulin secretion. Complex interactions of signaling pathways and transcription factor networks regulate the specification, growth, and differentiation of cell types in the developing pancreas. Many of the same regulators continue to modulate gene expression and cell fate of the adult pancreas. The transcription factor NEUROD1 is essential for the maturation of β cells and the expansion of the pancreatic islet cell mass. Mutations of the Neurod1 gene cause diabetes in humans and mice. However, the different aspects of the requirement of NEUROD1 for pancreas development are not fully understood. In this study, we investigated the role of NEUROD1 during the primary and secondary transitions of mouse pancreas development. We determined that the elimination of Neurod1 impairs the expression of key transcription factors for α- and β-cell differentiation, β-cell proliferation, insulin production, and islets of Langerhans formation. These findings demonstrate that the Neurod1 deletion altered the properties of α and β endocrine cells, resulting in severe neonatal diabetes, and thus, NEUROD1 is required for proper activation of the transcriptional network and differentiation of functional α and β cells.
Collapse
Affiliation(s)
- Romana Bohuslavova
- Institute of Biotechnology CAS, 25250 Vestec, Czech Republic; (R.B.); (O.S.); (J.M.); (Z.N.)
| | - Ondrej Smolik
- Institute of Biotechnology CAS, 25250 Vestec, Czech Republic; (R.B.); (O.S.); (J.M.); (Z.N.)
- Department of Cell Biology, Faculty of Science, Charles University, 12843 Prague, Czech Republic
| | - Jessica Malfatti
- Institute of Biotechnology CAS, 25250 Vestec, Czech Republic; (R.B.); (O.S.); (J.M.); (Z.N.)
- Department of Cell Biology, Faculty of Science, Charles University, 12843 Prague, Czech Republic
| | - Zuzana Berkova
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (Z.B.); (F.S.)
| | - Zaneta Novakova
- Institute of Biotechnology CAS, 25250 Vestec, Czech Republic; (R.B.); (O.S.); (J.M.); (Z.N.)
| | - Frantisek Saudek
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (Z.B.); (F.S.)
| | - Gabriela Pavlinkova
- Institute of Biotechnology CAS, 25250 Vestec, Czech Republic; (R.B.); (O.S.); (J.M.); (Z.N.)
| |
Collapse
|
15
|
Zhang AM, Wellberg EA, Kopp JL, Johnson JD. Hyperinsulinemia in Obesity, Inflammation, and Cancer. Diabetes Metab J 2021; 45:285-311. [PMID: 33775061 PMCID: PMC8164941 DOI: 10.4093/dmj.2020.0250] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
The relative insufficiency of insulin secretion and/or insulin action causes diabetes. However, obesity and type 2 diabetes mellitus can be associated with an absolute increase in circulating insulin, a state known as hyperinsulinemia. Studies are beginning to elucidate the cause-effect relationships between hyperinsulinemia and numerous consequences of metabolic dysfunctions. Here, we review recent evidence demonstrating that hyperinsulinemia may play a role in inflammation, aging and development of cancers. In this review, we will focus on the consequences and mechanisms of excess insulin production and action, placing recent findings that have challenged dogma in the context of the existing body of literature. Where relevant, we elaborate on the role of specific signal transduction components in the actions of insulin and consequences of chronic hyperinsulinemia. By discussing the involvement of hyperinsulinemia in various metabolic and other chronic diseases, we may identify more effective therapeutics or lifestyle interventions for preventing or treating obesity, diabetes and cancer. We also seek to identify pertinent questions that are ripe for future investigation.
Collapse
Affiliation(s)
- Anni M.Y. Zhang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth A. Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| | - Janel L. Kopp
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Akerman I, Maestro MA, De Franco E, Grau V, Flanagan S, García-Hurtado J, Mittler G, Ravassard P, Piemonti L, Ellard S, Hattersley AT, Ferrer J. Neonatal diabetes mutations disrupt a chromatin pioneering function that activates the human insulin gene. Cell Rep 2021; 35:108981. [PMID: 33852861 PMCID: PMC8052186 DOI: 10.1016/j.celrep.2021.108981] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/04/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
Despite the central role of chromosomal context in gene transcription, human noncoding DNA variants are generally studied outside of their genomic location. This limits our understanding of disease-causing regulatory variants. INS promoter mutations cause recessive neonatal diabetes. We show that all INS promoter point mutations in 60 patients disrupt a CC dinucleotide, whereas none affect other elements important for episomal promoter function. To model CC mutations, we humanized an ∼3.1-kb region of the mouse Ins2 gene. This recapitulated developmental chromatin states and cell-specific transcription. A CC mutant allele, however, abrogated active chromatin formation during pancreas development. A search for transcription factors acting through this element revealed that another neonatal diabetes gene product, GLIS3, has a pioneer-like ability to derepress INS chromatin, which is hampered by the CC mutation. Our in vivo analysis, therefore, connects two human genetic defects in an essential mechanism for developmental activation of the INS gene.
Collapse
Affiliation(s)
- Ildem Akerman
- Institute of Metabolism and Systems Research (IMSR), Medical School, University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham, UK.
| | - Miguel Angel Maestro
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Vanessa Grau
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Sarah Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Javier García-Hurtado
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Gerhard Mittler
- Max-Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Philippe Ravassard
- INSERM, CNRS, Paris Brain Institute - Hôpital Pitié-Salpêtrière, Paris, France
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, Milan, Italy
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK; Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jorge Ferrer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Centro de Investigación Biomédica en red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain; Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
17
|
Sandovici I, Hammerle CM, Virtue S, Vivas-Garcia Y, Izquierdo-Lahuerta A, Ozanne SE, Vidal-Puig A, Medina-Gómez G, Constância M. Autocrine IGF2 programmes β-cell plasticity under conditions of increased metabolic demand. Sci Rep 2021; 11:7717. [PMID: 33833312 PMCID: PMC8032793 DOI: 10.1038/s41598-021-87292-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
When exposed to nutrient excess and insulin resistance, pancreatic β-cells undergo adaptive changes in order to maintain glucose homeostasis. The role that growth control genes, highly expressed in early pancreas development, might exert in programming β-cell plasticity in later life is a poorly studied area. The imprinted Igf2 (insulin-like growth factor 2) gene is highly transcribed during early life and has been identified in recent genome-wide association studies as a type 2 diabetes susceptibility gene in humans. Hence, here we investigate the long-term phenotypic metabolic consequences of conditional Igf2 deletion in pancreatic β-cells (Igf2βKO) in mice. We show that autocrine actions of IGF2 are not critical for β-cell development, or for the early post-natal wave of β-cell remodelling. Additionally, adult Igf2βKO mice maintain glucose homeostasis when fed a chow diet. However, pregnant Igf2βKO females become hyperglycemic and hyperinsulinemic, and their conceptuses exhibit hyperinsulinemia and placentomegalia. Insulin resistance induced by congenital leptin deficiency also renders Igf2βKO females more hyperglycaemic compared to leptin-deficient controls. Upon high-fat diet feeding, Igf2βKO females are less susceptible to develop insulin resistance. Based on these findings, we conclude that in female mice, autocrine actions of β-cell IGF2 during early development determine their adaptive capacity in adult life.
Collapse
Affiliation(s)
- Ionel Sandovici
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Department of Obstetrics and Gynaecology and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Constanze M Hammerle
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Department of Obstetrics and Gynaecology and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK.
- Novo Nordisk A/S, 2880, Bagsværd, Denmark.
| | - Sam Virtue
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Yurena Vivas-Garcia
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922, Alcorcón, Madrid, Spain
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Adriana Izquierdo-Lahuerta
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922, Alcorcón, Madrid, Spain
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
- Welcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
- Cambridge University Nanjing Centre of Technology and Innovation, Jiangbei Area, Nanjing, People's Republic of China
| | - Gema Medina-Gómez
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922, Alcorcón, Madrid, Spain
| | - Miguel Constância
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Department of Obstetrics and Gynaecology and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.
| |
Collapse
|
18
|
Diwekar-Joshi M, Watve M. Driver versus navigator causation in biology: the case of insulin and fasting glucose. PeerJ 2020; 8:e10396. [PMID: 33365205 PMCID: PMC7735078 DOI: 10.7717/peerj.10396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In biomedicine, inferring causal relation from experimental intervention or perturbation is believed to be a more reliable approach than inferring causation from cross-sectional correlation. However, we point out here that even in interventional inference there are logical traps. In homeostatic systems, causality in a steady state can be qualitatively different from that in a perturbed state. On a broader scale there is a need to differentiate driver causality from navigator causality. A driver is essential for reaching a destination but may not have any role in deciding the destination. A navigator on the other hand has a role in deciding the destination and the path but may not be able to drive the system to the destination. The failure to differentiate between types of causalities is likely to have resulted into many misinterpretations in physiology and biomedicine. METHODS We illustrate this by critically re-examining a specific case of the causal role of insulin in glucose homeostasis using five different approaches (1) Systematic review of tissue specific insulin receptor knock-outs, (2) Systematic review of insulin suppression and insulin enhancement experiments, (3) Differentiating steady state and post-meal state glucose levels in streptozotocin treated rats in primary experiments, (4) Mathematical and theoretical considerations and (5) Glucose-insulin relationship in human epidemiological data. RESULTS All the approaches converge on the inference that although insulin action hastens the return to a steady state after a glucose load, there is no evidence that insulin action determines the steady state level of glucose. Insulin, unlike the popular belief in medicine, appears to be a driver but not a navigator for steady state glucose level. It is quite likely therefore that the current line of clinical action in the field of type 2 diabetes has limited success largely because it is based on a misinterpretation of glucose-insulin relationship. The insulin-glucose example suggests that we may have to carefully re-examine causal inferences from perturbation experiments and set up revised norms for experimental design for causal inference.
Collapse
Affiliation(s)
- Manawa Diwekar-Joshi
- Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Milind Watve
- Deenanath Mangeshkar Hospital and Research Centre, Pune, Maharashtra, India
| |
Collapse
|
19
|
Lee J, Kim K, Cho JH, Bae JY, O'Leary TP, Johnson JD, Bae YC, Kim EK. Insulin synthesized in the paraventricular nucleus of the hypothalamus regulates pituitary growth hormone production. JCI Insight 2020; 5:135412. [PMID: 32644973 PMCID: PMC7455129 DOI: 10.1172/jci.insight.135412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/02/2020] [Indexed: 01/11/2023] Open
Abstract
Evidence has mounted that insulin can be synthesized in various brain regions, including the hypothalamus. However, the distribution and functions of insulin-expressing cells in the hypothalamus remain elusive. Herein, we show that in the mouse hypothalamus, the perikarya of insulin-positive neurons are located in the paraventricular nucleus (PVN) and their axons project to the median eminence; these findings define parvocellular neurosecretory PVN insulin neurons. Contrary to corticotropin-releasing hormone expression, insulin expression in the PVN was inhibited by restraint stress (RS) in both adult and young mice. Acute RS–induced inhibition of PVN insulin expression in adult mice decreased both pituitary growth hormone (Gh) mRNA level and serum GH concentration, which were attenuated by overexpression of PVN insulin. Notably, PVN insulin knockdown or chronic RS in young mice hindered normal growth via the downregulation of GH gene expression and secretion, whereas PVN insulin overexpression in young mice prevented chronic RS–induced growth retardation by elevating GH production. Our results suggest that in both normal and stressful conditions, insulin synthesized in the parvocellular PVN neurons plays an important role in the regulation of pituitary GH production and body length, unveiling a physiological function of brain-derived insulin. Insulin produced in the paraventricular nucleus regulates body length by modulating pituitary growth hormone expression and secretion under both normal and stress conditions.
Collapse
Affiliation(s)
- Jaemeun Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Kyungchan Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jae Hyun Cho
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jin Young Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Timothy P O'Leary
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eun-Kyoung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea.,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
20
|
In utero exposure to dexamethasone programs the development of the pancreatic β- and α-cells during early postnatal life. Life Sci 2020; 255:117810. [DOI: 10.1016/j.lfs.2020.117810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 01/11/2023]
|
21
|
Ramzy A, Tudurí E, Glavas MM, Baker RK, Mojibian M, Fox JK, O'Dwyer SM, Dai D, Hu X, Denroche HC, Edeer N, Gray SL, Verchere CB, Johnson JD, Kieffer TJ. AAV8 Ins1-Cre can produce efficient β-cell recombination but requires consideration of off-target effects. Sci Rep 2020; 10:10518. [PMID: 32601405 PMCID: PMC7324556 DOI: 10.1038/s41598-020-67136-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
In vivo genetic manipulation is used to study the impact of gene deletion or re-expression on β-cell function and organism physiology. Cre-LoxP is a system wherein LoxP sites flanking a gene are recognized by Cre recombinase. Cre transgenic mice are the most prevalent technology used to deliver Cre but many models have caveats of off-target recombination, impaired β-cell function, and high cost of animal production. Inducible estrogen receptor conjugated Cre models face leaky recombination and confounding effects of tamoxifen. As an alternative, we characterize an adeno associated virus (AAV) with a rat insulin 1 promoter driving Cre recombinase (AAV8 Ins1-Cre) that is economical and rapid to implement, and has limited caveats. Intraperitoneal AAV8 Ins1-Cre produced efficient β-cell recombination, alongside some hepatic, exocrine pancreas, α-cell, δ-cell, and hypothalamic recombination. Delivery of lower doses via the pancreatic duct retained good rates of β-cell recombination and limited rates of off-target recombination. Unlike inducible Cre in transgenic mice, AAV8 Ins1-Cre required no tamoxifen and premature recombination was avoided. We demonstrate the utility of this technology by inducing hyperglycemia in inducible insulin knockout mice (Ins1−/−;Ins2f/f). AAV-mediated expression of Cre in β-cells provides an effective alternative to transgenic approaches for inducible knockout studies.
Collapse
Affiliation(s)
- Adam Ramzy
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eva Tudurí
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Instituto de Investigación, Desarrollo e innovación en Biotecnología Sanitaria de Elche (IDiBE), Elche, Spain
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert K Baker
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Majid Mojibian
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica K Fox
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shannon M O'Dwyer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Derek Dai
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaoke Hu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Heather C Denroche
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nazde Edeer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah L Gray
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Cameron B Verchere
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada. .,Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
22
|
Bettini M, Scavuzzo MA, Liu B, Kolawole E, Guo L, Evavold BD, Borowiak M, Bettini ML. A Critical Insulin TCR Contact Residue Selects High-Affinity and Pathogenic Insulin-Specific T Cells. Diabetes 2020; 69:392-400. [PMID: 31836691 PMCID: PMC7034183 DOI: 10.2337/db19-0821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/08/2019] [Indexed: 02/05/2023]
Abstract
Type 1 diabetes is an autoimmune-mediated disease that culminates in the targeted destruction of insulin-producing β-cells. CD4 responses in NOD mice are dominated by insulin epitope B:9-23 (InsB9-23) specificity, and mutation of the key T-cell receptor (TCR) contact residue within the epitope prevents diabetes development. However, it is not clear how insulin self-antigen controls the selection of autoimmune and regulatory T cells (Tregs). Here we demonstrate that mutation of insulin epitope results in escape of highly pathogenic T cells. We observe an increase in antigen reactivity, clonality, and pathogenicity of insulin-specific T cells that develop in the absence of cognate antigen. Using a single TCR system, we demonstrate that Treg development is greatly diminished in mice with the Y16A mutant epitope. Collectively, these results suggest that the tyrosine residue at position 16 is necessary to constrain TCR reactivity for InsB9-23 by both limiting the development of pathogenic T cells and supporting the selection of Tregs.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Forkhead Transcription Factors/metabolism
- Insulin/genetics
- Insulin/immunology
- Mice
- Mice, Inbred NOD
- Mutation
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Maria Bettini
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- McNair Medical Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX
| | - Baoyu Liu
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Elizabeth Kolawole
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Lin Guo
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Malgorzata Borowiak
- McNair Medical Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Matthew L Bettini
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- McNair Medical Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| |
Collapse
|
23
|
Duvillié B, Kourdoughli R, Druillennec S, Eychène A, Pouponnot C. Interplay Between Diabetes and Pancreatic Ductal Adenocarcinoma and Insulinoma: The Role of Aging, Genetic Factors, and Obesity. Front Endocrinol (Lausanne) 2020; 11:563267. [PMID: 33101198 PMCID: PMC7556217 DOI: 10.3389/fendo.2020.563267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Epidemiologic analyses have shed light on an association between type 2 diabetes (T2D) and pancreatic ductal adenocarcinoma (PDAC). Recent data also suggest a potential relationship between T2D and insulinoma. Under rare circumstances, type 1 diabetes (T1D) can also be implicated in tumorigenesis. The biological mechanisms underlying such relationships are extremely complex. Some genetic factors contributing to the development of T2D are shared with pancreatic exocrine and endocrine tumors. Obesity and overweight can also contribute to the initiation and severity of T2D, while aging may influence both endocrine and exocrine tumors. Finally, pharmacological treatments of T2D may have an impact on PDAC. On the other hand, some treatments for insulinoma can trigger diabetes. In the present minireview, we discuss the cellular and molecular mechanisms that could explain these interactions. This analysis may help to define new potential therapeutic strategies.
Collapse
Affiliation(s)
- Bertrand Duvillié
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- *Correspondence: Bertrand Duvillié,
| | - Rayane Kourdoughli
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
| | - Sabine Druillennec
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
| | - Alain Eychène
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
| | - Celio Pouponnot
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
| |
Collapse
|
24
|
Millership SJ, Van de Pette M, Withers DJ. Genomic imprinting and its effects on postnatal growth and adult metabolism. Cell Mol Life Sci 2019; 76:4009-4021. [PMID: 31270580 PMCID: PMC6785587 DOI: 10.1007/s00018-019-03197-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
Abstract
Imprinted genes display parent-of-origin-specific expression with this epigenetic system of regulation found exclusively in therian mammals. Historically, defined imprinted gene functions were almost solely focused on pregnancy and the influence on the growth parameters of the developing embryo and placenta. More recently, a number of postnatal functions have been identified which converge on resource allocation, both for animals in the nest and in adults. While many of the prenatal functions of imprinted genes that have so far been described adhere to the "parental conflict" hypothesis, no clear picture has yet emerged on the functional role of imprints on postnatal metabolism. As these roles are uncovered, interest in the potential for these genes to influence postnatal metabolism and associated adult-onset disease outcomes when dysregulated has gathered pace. Here, we review the published data on imprinted genes and their influence on postnatal metabolism, starting in the nest, and then progressing through to adulthood. When observing the functional effects of these genes on adult metabolism, we must always be careful to acknowledge the influence both of direct expression in the relevant metabolic tissue, but also indirect metabolic programming effects caused by their modulation of both in utero and postnatal growth trajectories.
Collapse
Affiliation(s)
- Steven J Millership
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Mathew Van de Pette
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
25
|
Nakamura S, Sato Y, Kobayashi T, Oike T, Kaneko Y, Miyamoto K, Funayama A, Oya A, Nishiwaki T, Matsumoto M, Nakamura M, Kanaji A, Miyamoto T. Insulin-like growth factor-I is required to maintain muscle volume in adult mice. J Bone Miner Metab 2019; 37:627-635. [PMID: 30324536 DOI: 10.1007/s00774-018-0964-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/25/2018] [Indexed: 12/20/2022]
Abstract
Insulin-like growth factor-I (IGF-I) is a peptide with diverse functions, among them regulation of embryonic development and bone homeostasis. Serum IGF-I levels decline in the elderly; however, IGF-I function in adults has not been clearly defined. Here, we show that IGF-I is required to maintain muscle mass in adults. We crossed Igf-I flox'd and Mx1 Cre mice to yield Mx1 Cre/Igf-Iflox/flox (IGF-I cKO) mice, and deleted Igf-I in adult mice by polyIpolyC injection. We demonstrate that, although serum IGF-I levels significantly decreased after polyIpolyC injection relative to (Igf-Iflox/flox) controls, serum glucose levels were unchanged. However, muscle mass decreased significantly after IGF-I down-regulation, while bone mass remained the same. In IGF-I cKO muscle, expression of anabolic factors such as Eif4e and p70S6K significantly decreased, while expression of catabolic factors MuRF1 and Atrogin-1 was normal and down-regulated, respectively, suggesting that observed muscle mass reduction was due to perturbed muscle metabolism. Our data demonstrate a specific role for IGF-I in maintaining muscle homeostasis in adults.
Collapse
Affiliation(s)
- Satoshi Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuiko Sato
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Advanced Therapy for Musculoskeletal Disorders, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tami Kobayashi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takatsugu Oike
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yosuke Kaneko
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kana Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Atsushi Funayama
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Akihito Oya
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Toru Nishiwaki
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Arihiko Kanaji
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
26
|
Arunagiri A, Haataja L, Pottekat A, Pamenan F, Kim S, Zeltser LM, Paton AW, Paton JC, Tsai B, Itkin-Ansari P, Kaufman RJ, Liu M, Arvan P. Proinsulin misfolding is an early event in the progression to type 2 diabetes. eLife 2019; 8:44532. [PMID: 31184302 PMCID: PMC6559786 DOI: 10.7554/elife.44532] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Biosynthesis of insulin – critical to metabolic homeostasis – begins with folding of the proinsulin precursor, including formation of three evolutionarily conserved intramolecular disulfide bonds. Remarkably, normal pancreatic islets contain a subset of proinsulin molecules bearing at least one free cysteine thiol. In human (or rodent) islets with a perturbed endoplasmic reticulum folding environment, non-native proinsulin enters intermolecular disulfide-linked complexes. In genetically obese mice with otherwise wild-type islets, disulfide-linked complexes of proinsulin are more abundant, and leptin receptor-deficient mice, the further increase of such complexes tracks with the onset of islet insulin deficiency and diabetes. Proinsulin-Cys(B19) and Cys(A20) are necessary and sufficient for the formation of proinsulin disulfide-linked complexes; indeed, proinsulin Cys(B19)-Cys(B19) covalent homodimers resist reductive dissociation, highlighting a structural basis for aberrant proinsulin complex formation. We conclude that increased proinsulin misfolding via disulfide-linked complexes is an early event associated with prediabetes that worsens with ß-cell dysfunction in type two diabetes. Our body fine-tunes the amount of sugar in our blood thanks to specialized ‘beta cells’ in the pancreas, which can release a hormone called insulin. To produce insulin, the beta cells first need to build an early version of the molecule – known as proinsulin – inside a cellular compartment called the endoplasmic reticulum. This process involves the formation of internal staples that keep the molecule of proinsulin folded correctly. Individuals developing type 2 diabetes have spikes of sugar in their blood, and so their bodies often respond by trying to make large amounts of insulin. After a while, the beta cells can fail to keep up, which brings on the full-blown disease. However, scientists have discovered that early in type 2 diabetes, the endoplasmic reticulum of beta cells can already show signs of stress; yet, the exact causes of this early damage are still unknown. To investigate this, Arunagiri et al. looked into whether proinsulin folds correctly during the earliest stages of type 2 diabetes. Biochemical experiments showed that even healthy beta cells contained some misfolded proinsulin molecules, where the molecular staples that should fold proinsulin internally were instead abnormally linking proinsulin molecules together. Further work revealed that the misfolded proinsulin was accumulating inside the endoplasmic reticulum. Finally, obese mice that were in the earliest stages of type 2 diabetes had the highest levels of abnormal proinsulin in their beta cells. Overall, the work by Arunagiri et al. suggests that large amounts of proinsulin molecules stapling themselves to each other in the endoplasmic reticulum of beta cells could be an early hallmark of the disease, and could make it get worse. A separate study by Jang et al. also shows that a protein that limits the misfolding of proinsulin is key to maintain successful insulin production in animals eating a Western-style, high fat diet. Hundreds of millions of people around the world have type 2 diabetes, and this number is rising quickly. Detecting and then fixing early problems associated with the condition may help to stop the disease in its track.
Collapse
Affiliation(s)
- Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, United States
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, United States
| | - Anita Pottekat
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Fawnnie Pamenan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, United States
| | - Soohyun Kim
- Department of Biomedical Science and Technology, Konkuk University, Gwangjin-gu, Republic of Korea
| | - Lori M Zeltser
- Department of Pathology and Cell Biology, Naomi Berrie Diabetes Center, Columbia University, New York, United States
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Pamela Itkin-Ansari
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Ming Liu
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, United States.,Department of Endocrinology and Metabolism, Tianjin Medical University, Tianjin, China
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
27
|
Abstract
The pancreas plays important roles in the regulation of blood glucose, and is a well-studied organ in mammals because its dysfunction causes serious disorders, such as diabetes mellitus. However, mammals have the limited capacity for tissue regeneration in their organs, including pancreas. Fish may be an attractive model for regeneration studies, as fish exhibit a greater capacity for regeneration than do mammals. To elucidate the regenerative capacity of pancreatic β cells in medaka, we generated transgenic lines, in which β cells can be specifically ablated using the nitroreductase (NTR)/metronidazole (Mtz) system. We examined β-cell regeneration at embryonic-larval stages after specific ablation of β cells, and found that medaka rapidly regenerate β cells. Furthermore, we found that teleost-specific secondary islet have a unique feature in that their size increases in response to β-cell ablation in principal islets.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Takeda
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,2 CREST, Japan Science and Technology Agency
| |
Collapse
|
28
|
Transgenic substitution with Greater Amberjack Seriola dumerili fish insulin 2 in NOD mice reduces beta cell immunogenicity. Sci Rep 2019; 9:4965. [PMID: 30899071 PMCID: PMC6428854 DOI: 10.1038/s41598-019-40768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/14/2019] [Indexed: 11/08/2022] Open
Abstract
Type I diabetes (T1D) is caused by immune-mediated destruction of pancreatic beta cells. This process is triggered, in part, by specific (aa 9–23) epitopes of the insulin Β chain. Previously, fish insulins were used clinically in patients allergic to bovine or porcine insulin. Fish and human insulin differ by two amino acids in the critical immunogenic region (aa 9–23) of the B chain. We hypothesized that β cells synthesizing fish insulin would be less immunogenic in a mouse model of T1D. Transgenic NOD mice in which Greater Amberjack fish (Seriola dumerili) insulin was substituted for the insulin 2 gene were generated (mouse Ins1−/− mouse Ins2−/− fish Ins2+/+). In these mice, pancreatic islets remained free of autoimmune attack. To determine whether such reduction in immunogenicity is sufficient to protect β cells from autoimmunity upon transplantation, we transplanted fish Ins2 transgenic (expressing solely Seriola dumerili Ins2), NOD, or B16:A-dKO islets under the kidney capsules of 5 weeks old female NOD wildtype mice. The B:Y16A Β chain substitution has been previously shown to be protective of T1D in NOD mice. NOD mice receiving Seriola dumerili transgenic islet transplants showed a significant (p = 0.004) prolongation of their euglycemic period (by 6 weeks; up to 18 weeks of age) compared to un-manipulated female NOD (diabetes onset at 12 weeks of age) and those receiving B16:A-dKO islet transplants (diabetes onset at 12 weeks of age). These data support the concept that specific amino acid sequence modifications can reduce insulin immunogenicity. Additionally, our study shows that alteration of a single epitope is not sufficient to halt an ongoing autoimmune response. Which, and how many, T cell epitopes are required and suffice to perpetuate autoimmunity is currently unknown. Such studies may be useful to achieve host tolerance to β cells by inactivating key immunogenic epitopes of stem cell-derived β cells intended for transplantation.
Collapse
|
29
|
Mullapudi ST, Helker CS, Boezio GL, Maischein HM, Sokol AM, Guenther S, Matsuda H, Kubicek S, Graumann J, Yang YHC, Stainier DY. Screening for insulin-independent pathways that modulate glucose homeostasis identifies androgen receptor antagonists. eLife 2018; 7:42209. [PMID: 30520733 PMCID: PMC6300353 DOI: 10.7554/elife.42209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Pathways modulating glucose homeostasis independently of insulin would open new avenues to combat insulin resistance and diabetes. Here, we report the establishment, characterization, and use of a vertebrate ‘insulin-free’ model to identify insulin-independent modulators of glucose metabolism. insulin knockout zebrafish recapitulate core characteristics of diabetes and survive only up to larval stages. Utilizing a highly efficient endoderm transplant technique, we generated viable chimeric adults that provide the large numbers of insulin mutant larvae required for our screening platform. Using glucose as a disease-relevant readout, we screened 2233 molecules and identified three that consistently reduced glucose levels in insulin mutants. Most significantly, we uncovered an insulin-independent beneficial role for androgen receptor antagonism in hyperglycemia, mostly by reducing fasting glucose levels. Our study proposes therapeutic roles for androgen signaling in diabetes and, more broadly, offers a novel in vivo model for rapid screening and decoupling of insulin-dependent and -independent mechanisms. Diabetes is a disease that affects the ability of the body to control the level of sugar in the blood. Individuals with diabetes are unable to make a hormone called insulin – which normally stimulates certain cells to absorb sugar from the blood – or their cells are less able to respond to this hormone. Most treatments for diabetes involve replacing the lost insulin or boosting the hormone’s activity in the body. However, these treatments can also cause individuals to gain weight or become more resistant to insulin, making it harder to control blood sugar levels. In addition to insulin, several other factors regulate the levels of sugar in the blood and some of them may operate independently of insulin. However, little is known about such factors because it is impractical to carry out large-scale screens to identify drugs that target them in humans or mice, which are often used as experimental models for human biology. To overcome this challenge, Mullapudi et al. turned to another animal known as the zebrafish and generated mutant fish that lack insulin. The mutant zebrafish had similar problems with regulating sugar levels as those observed in humans and mice with diabetes. This observation suggests that insulin is just as important in zebrafish as it is in humans and other mammals. The mutant zebrafish did not survive into adulthood, and so Mullapudi et al. transplanted healthy tissue into the zebrafish to allow them to produce enough insulin to survive. These adult zebrafish produced many offspring that still carried the insulin mutation. Mullapudi et al. used these mutant offspring to screen over 2,000 drugs for their ability to decrease blood sugar levels in the absence of insulin. The screen identified three promising candidate drugs, including a molecule that interferes with a receptor for a signal known as androgen. These findings will help researchers investigate new ways to treat diabetes. In the future, the screening approach developed by Mullapudi et al. could be adapted to search for new drugs to treat other human metabolic conditions.
Collapse
Affiliation(s)
- Sri Teja Mullapudi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Christian Sm Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Giulia Lm Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hans-Martin Maischein
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Anna M Sokol
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Guenther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hiroki Matsuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,German Centre for Cardiovascular Research, Berlin, Germany
| | - Yu Hsuan Carol Yang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
30
|
Millership SJ, Tunster SJ, Van de Pette M, Choudhury AI, Irvine EE, Christian M, Fisher AG, John RM, Scott J, Withers DJ. Neuronatin deletion causes postnatal growth restriction and adult obesity in 129S2/Sv mice. Mol Metab 2018; 18:97-106. [PMID: 30279096 PMCID: PMC6308027 DOI: 10.1016/j.molmet.2018.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE Imprinted genes are crucial for the growth and development of fetal and juvenile mammals. Altered imprinted gene dosage causes a variety of human disorders, with growth and development during these crucial early stages strongly linked with future metabolic health in adulthood. Neuronatin (Nnat) is a paternally expressed imprinted gene found in neuroendocrine systems and white adipose tissue and is regulated by the diet and leptin. Neuronatin expression is downregulated in obese children and has been associated with stochastic obesity in C57BL/6 mice. However, our recent studies of Nnat null mice on this genetic background failed to display any body weight or feeding phenotypes but revealed a defect in glucose-stimulated insulin secretion due to the ability of neuronatin to potentiate signal peptidase cleavage of preproinsulin. Nnat deficiency in beta cells therefore caused a lack of appropriate storage and secretion of mature insulin. METHODS To further explore the potential role of Nnat in the regulation of body weight and adiposity, we studied classical imprinting-related phenotypes such as placental, fetal, and postnatal growth trajectory patterns that may impact upon subsequent adult metabolic phenotypes. RESULTS Here we find that, in contrast to the lack of any body weight or feeding phenotypes on the C57BL/6J background, deletion of Nnat in mice on 129S2/Sv background causes a postnatal growth restriction with reduced adipose tissue accumulation, followed by catch up growth after weaning. This was in the absence of any effect on fetal growth or placental development. In adult 129S2/Sv mice, Nnat deletion was associated with hyperphagia, reduced energy expenditure, and partial leptin resistance. Lack of neuronatin also potentiated obesity caused by either aging or high fat diet feeding. CONCLUSIONS The imprinted gene Nnat plays a key role in postnatal growth, adult energy homeostasis, and the pathogenesis of obesity via catch up growth effects, but this role is dependent upon genetic background.
Collapse
Affiliation(s)
- Steven J Millership
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Simon J Tunster
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | | | | | - Elaine E Irvine
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Mark Christian
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Amanda G Fisher
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Rosalind M John
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - James Scott
- National Heart and Lung Institute, Department of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
31
|
Mendes-da-Cruz DA, Lemos JP, Passos GA, Savino W. Abnormal T-Cell Development in the Thymus of Non-obese Diabetic Mice: Possible Relationship With the Pathogenesis of Type 1 Autoimmune Diabetes. Front Endocrinol (Lausanne) 2018; 9:381. [PMID: 30050502 PMCID: PMC6052664 DOI: 10.3389/fendo.2018.00381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of insulin-producing cells in the pancreas, by direct interactions with autoreactive pancreas infiltrating T lymphocytes (PILs). One of the most important animal models for this disease is the non-obese diabetic (NOD) mouse. Alterations in the NOD mouse thymus during the pathogenesis of the disease have been reported. From the initial migratory disturbances to the accumulation of mature thymocytes, including regulatory Foxp3+ T cells, important mechanisms seem to regulate the repertoire of T cells that leave the thymus to settle in peripheral lymphoid organs. A significant modulation of the expression of extracellular matrix and soluble chemoattractant molecules, in addition to integrins and chemokine receptors, may contribute to the progressive accumulation of mature thymocytes and consequent formation of giant perivascular spaces (PVS) that are observed in the NOD mouse thymus. Comparative large-scale transcriptional expression and network analyses involving mRNAs and miRNAs of thymocytes, peripheral T CD3+ cells and PILs provided evidence that in PILs chemokine receptors and mRNAs are post-transcriptionally regulated by miR-202-3p resulting in decreased activity of these molecules during the onset of T1D in NOD mice. In this review, we discuss the abnormal T-cell development in NOD mice in the context of intrathymic expression of different migration-related molecules, peptides belonging to the family of insulin and insulin-like growth factors as well as the participation of miRNAs as post-transcriptional regulators and their possible influence on the onset of aggressive autoimmunity during the pathogenesis of T1D.
Collapse
Affiliation(s)
- Daniella A. Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Julia P. Lemos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Geraldo A. Passos
- Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Medical School, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Cho B, Kim SJ, Lee EJ, Ahn SM, Lee JS, Ji DY, Lee K, Kang JT. Generation of insulin-deficient piglets by disrupting INS gene using CRISPR/Cas9 system. Transgenic Res 2018; 27:289-300. [PMID: 29691708 DOI: 10.1007/s11248-018-0074-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/17/2018] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a chronic disease with accompanying severe complications. Various animal models, mostly rodents due to availability of genetically modified lines, have been used to investigate the pathophysiology of diabetes. Using pigs for diabetic research can be beneficial because of their similarity in size, pathogenesis pathway, physiology, and metabolism with human. However, the use of pigs for diabetes research has been hampered due to only few pig models presenting diabetes symptoms. In this study, we have successfully generated insulin-deficient pigs by generating the indels of the porcine INS gene in somatic cells using CRISPR/Cas9 system followed by somatic cell nuclear transfer. First, somatic cells carrying a modified INS gene were generated using CRISPR/Cas9 system and their genotypes were confirmed by T7E1 assay; targeting efficiency was 40.4% (21/52). After embryo transfer, three live and five stillborn piglets were born. As expected, INS knockout piglets presented high blood glucose levels and glucose was detected in the urine. The level of insulin and c-peptide in the blood serum of INS knockout piglets were constant after feeding and the expression of insulin in the pancreas was absent in those piglets. This study demonstrates effectiveness of CRISPR/Cas9 system in generating novel pig models. We expect that these insulin-deficient pigs can be used in diabetes research to test the efficacy and safety of new drugs and the recipient of islet transplantation to investigate optimal transplantation strategies.
Collapse
Affiliation(s)
- Bumrae Cho
- Biotechnology Research Institute, Mgenplus Co., Ltd., Seoul, Korea
| | - Su Jin Kim
- Biotechnology Research Institute, Mgenplus Co., Ltd., Seoul, Korea
| | - Eun-Jin Lee
- Biotechnology Research Institute, Mgenplus Co., Ltd., Seoul, Korea
| | - Sun Mi Ahn
- Biotechnology Research Institute, Mgenplus Co., Ltd., Seoul, Korea
| | - Jin Seok Lee
- Biotechnology Research Institute, Mgenplus Co., Ltd., Seoul, Korea
| | - Dal-Young Ji
- Biotechnology Research Institute, Mgenplus Co., Ltd., Seoul, Korea
| | - Kiho Lee
- Department of Animal and Poultry Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Jung-Taek Kang
- Biotechnology Research Institute, Mgenplus Co., Ltd., Seoul, Korea.
| |
Collapse
|
33
|
Templeman NM, Flibotte S, Chik JHL, Sinha S, Lim GE, Foster LJ, Nislow C, Johnson JD. Reduced Circulating Insulin Enhances Insulin Sensitivity in Old Mice and Extends Lifespan. Cell Rep 2018; 20:451-463. [PMID: 28700945 DOI: 10.1016/j.celrep.2017.06.048] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/01/2017] [Accepted: 06/19/2017] [Indexed: 12/20/2022] Open
Abstract
The causal relationships between insulin levels, insulin resistance, and longevity are not fully elucidated. Genetic downregulation of insulin/insulin-like growth factor 1 (Igf1) signaling components can extend invertebrate and mammalian lifespan, but insulin resistance, a natural form of decreased insulin signaling, is associated with greater risk of age-related disease in mammals. We compared Ins2+/- mice to Ins2+/+ littermate controls, on a genetically stable Ins1 null background. Proteomic and transcriptomic analyses of livers from 25-week-old mice suggested potential for healthier aging and altered insulin sensitivity in Ins2+/- mice. Halving Ins2 lowered circulating insulin by 25%-34% in aged female mice, without altering Igf1 or circulating Igf1. Remarkably, decreased insulin led to lower fasting glucose and improved insulin sensitivity in aged mice. Moreover, lowered insulin caused significant lifespan extension, observed across two diverse diets. Our study indicates that elevated insulin contributes to age-dependent insulin resistance and that limiting basal insulin levels can extend lifespan.
Collapse
Affiliation(s)
- Nicole M Templeman
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Stephane Flibotte
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jenny H L Chik
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sunita Sinha
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Gareth E Lim
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
34
|
Dommerholt MB, Dionne DA, Hutchinson DF, Kruit JK, Johnson JD. Metabolic effects of short-term caloric restriction in mice with reduced insulin gene dosage. J Endocrinol 2018; 237:59-71. [PMID: 29439088 DOI: 10.1530/joe-17-0505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 11/08/2022]
Abstract
Caloric restriction (CR) is the only environmental intervention with robust evidence that it extends lifespan and delays the symptoms of aging, but its mechanisms are incompletely understood. Based on the prolonged longevity of knockout models, it was hypothesized that the insulin-IGF pathway could be a target for developing a CR mimic. This study aimed to test whether CR has additive effects on glucose homeostasis and beta-cell function in mice with reduced insulin gene dosage. To study models with a range of basal insulin levels, wild-type C57BL/6J and mice on an Ins2-/- background, were put on 8 weeks of 40% CR at various ages. Both male and female mice rapidly lost weight due to a reduced WAT mass. Glucose tolerance was improved and fasting glucose levels were reduced by CR in both wild type and 45- and 70-week-old Ins2-/- mice. The effects of CR and reduced insulin on glucose tolerance were non-additive in 20-week-old mice. Interestingly, mice on CR generally exhibited an inability to further depress blood glucose after insulin injection, pointing to possible alterations in insulin sensitivity. In conclusion, our results demonstrate that CR can cause weight loss in the context of reduced insulin production, but that CR-improved glucose homeostasis does not occur near the 'insulin floor' in young mice. Collectively, these data shed further light on the relationships between CR, insulin and glucose homeostasis.
Collapse
Affiliation(s)
- Marleen B Dommerholt
- Department of Cellular and Physiological SciencesUniversity of British Columbia, Vancouver, Canada
- Department of PediatricsUniversity Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Derek A Dionne
- Department of Cellular and Physiological SciencesUniversity of British Columbia, Vancouver, Canada
| | - Daria F Hutchinson
- Department of Cellular and Physiological SciencesUniversity of British Columbia, Vancouver, Canada
| | - Janine K Kruit
- Department of PediatricsUniversity Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - James D Johnson
- Department of Cellular and Physiological SciencesUniversity of British Columbia, Vancouver, Canada
| |
Collapse
|
35
|
Page MM, Skovsø S, Cen H, Chiu AP, Dionne DA, Hutchinson DF, Lim GE, Szabat M, Flibotte S, Sinha S, Nislow C, Rodrigues B, Johnson JD. Reducing insulin via conditional partial gene ablation in adults reverses diet-induced weight gain. FASEB J 2018; 32:1196-1206. [PMID: 29122848 PMCID: PMC5892722 DOI: 10.1096/fj.201700518r] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Excess circulating insulin is associated with obesity in humans and in animal models. However, the physiologic causality of hyperinsulinemia in adult obesity has rightfully been questioned because of the absence of clear evidence that weight loss can be induced by acutely reversing diet-induced hyperinsulinemia. Herein, we describe the consequences of inducible, partial insulin gene deletion in a mouse model in which animals have already been made obese by consuming a high-fat diet. A modest reduction in insulin production/secretion was sufficient to cause significant weight loss within 5 wk, with a specific effect on visceral adipose tissue. This result was associated with a reduction in the protein abundance of the lipodystrophy gene polymerase I and transcript release factor ( Ptrf; Cavin) in gonadal adipose tissue. RNAseq analysis showed that reduced insulin and weight loss also associated with a signature of reduced innate immunity. This study demonstrates that changes in circulating insulin that are too fine to adversely affect glucose homeostasis nonetheless exert control over adiposity.-Page, M. M., Skovsø, S., Cen, H., Chiu, A. P., Dionne, D. A., Hutchinson, D. F., Lim, G. E., Szabat, M., Flibotte, S., Sinha, S., Nislow, C., Rodrigues, B., Johnson, J. D. Reducing insulin via conditional partial gene ablation in adults reverses diet-induced weight gain.
Collapse
Affiliation(s)
- Melissa M Page
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Søs Skovsø
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haoning Cen
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy P Chiu
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Derek A Dionne
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daria F Hutchinson
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gareth E Lim
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marta Szabat
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephane Flibotte
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sunita Sinha
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Corey Nislow
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Rodrigues
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
36
|
Ramzy A, Mojibian M, Kieffer TJ. Insulin-Deficient Mouse β-Cells Do Not Fully Mature but Can Be Remedied Through Insulin Replacement by Islet Transplantation. Endocrinology 2018; 159:83-102. [PMID: 29029025 DOI: 10.1210/en.2017-00263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/22/2017] [Indexed: 12/17/2022]
Abstract
Insulin receptor (IR) insufficiency in β-cells leads to impaired insulin secretion and reduced β-cell hyperplasia in response to hyperglycemia. Selective IR deficiency in β-cells in later embryological development may lead to compensatory β-cell hyperplasia. Although these findings suggest insulin signaling on the β-cell is important for β-cell function, they are confounded by loss of signaling by the insulinlike growth factors through the IR. To determine whether insulin itself is necessary for β-cell development and maturation, we performed a characterization of pancreatic islets in mice with deletions of both nonallelic insulin genes (Ins1-/-Ins2-/-). We immunostained neonatal Ins1-/-Ins2-/- and Ins1+/+Ins2+/+ pancreata and performed quantitative polymerase chain reaction on isolated neonatal islets. Insulin-deficient islets had reduced expression of factors normally expressed in maturing β-cells, including muscoloaponeurotic fibrosarcoma oncogene homolog A, homeodomain transcription factor 6.1, and glucose transporter 2. Ins1-/-Ins2-/-β-cells expressed progenitor factors associated with stem cells or dedifferentiated β-cells, including v-myc avian myolocytomatosis viral oncogene lung carcinoma derived and homeobox protein NANOG. We replaced insulin by injection or islet transplantation to keep mice alive into adulthood to determine whether insulin replacement was sufficient for the completed maturation of insulin-deficient β-cells. Short-term insulin glargine (Lantus®) injections partially rescued the β-cell phenotype, whereas long-term replacement of insulin by isogenic islet transplantation supported the formation of more mature β-cells. Our findings suggest that tightly regulated glycemia, insulin species, or other islet factors are necessary for β-cell maturation.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Majid Mojibian
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
Drosophila Models to Investigate Insulin Action and Mechanisms Underlying Human Diabetes Mellitus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:235-256. [DOI: 10.1007/978-981-13-0529-0_13] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
P.V. J, Nair SV, Kamalasanan K. Current trend in drug delivery considerations for subcutaneous insulin depots to treat diabetes. Colloids Surf B Biointerfaces 2017; 153:123-131. [DOI: 10.1016/j.colsurfb.2017.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 02/01/2017] [Accepted: 02/13/2017] [Indexed: 02/07/2023]
|
39
|
Bone and adipose tissue formation. Z Rheumatol 2017. [DOI: 10.1007/s00393-016-0143-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Ding L, Yin Y, Han L, Li Y, Zhao J, Zhang W. TSC1-mTOR signaling determines the differentiation of islet cells. J Endocrinol 2017; 232:59-70. [PMID: 27754935 DOI: 10.1530/joe-16-0276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 11/08/2022]
Abstract
Neurogenin3-driven deletion of tuberous sclerosis complex 1 (Tsc1) activated mechanistic target of rapamycin complex 1 (mTORC1) measured by the upregulation of mTOR and S6 phosphorylation in islet cells. Neurogenin3-Tsc1-/- mice demonstrated a significant increase in average islet size and mean area of individual islet cell. Insulin mRNA and plasma insulin levels increased significantly after weaning. Glucagon mRNA and plasma levels increased in neonate followed by modest reduction in adult. Somatostatin mRNA and plasma levels markedly increased. Neurogenin3-Tsc1-/- mice fed standard chow demonstrated a significant improvement in glucose tolerance and no alteration in insulin sensitivity. In Neurogenin3-Tsc1-/- mice fed 45% high-fat diets, both glucose tolerance and insulin sensitivity were significantly impaired. Rapamycin reversed the activation of mTORC1, attenuated β cells hypertrophy and abolished the improvement of glucose tolerance. TSC1-mTORC1 signaling plays an important role in the development of pancreatic endocrine cells and in the regulation of glucose metabolism.
Collapse
Affiliation(s)
- Li Ding
- Department of Physiology and PathophysiologyPeking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yue Yin
- Department of Physiology and PathophysiologyPeking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Lingling Han
- Department of Physiology and PathophysiologyPeking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yin Li
- Department of Physiology and PathophysiologyPeking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jing Zhao
- Department of Physiology and PathophysiologyPeking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Weizhen Zhang
- Department of Physiology and PathophysiologyPeking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Department of SurgeryUniversity of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
41
|
Kleinridders A. Deciphering Brain Insulin Receptor and Insulin-Like Growth Factor 1 Receptor Signalling. J Neuroendocrinol 2016; 28:10.1111/jne.12433. [PMID: 27631195 PMCID: PMC5129466 DOI: 10.1111/jne.12433] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022]
Abstract
Insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) are highly conserved receptor tyrosine kinases that share signalling proteins and are ubiquitously expressed in the brain. Central application of insulin or IGF1 exerts several similar physiological outcomes, varying in strength, whereas disruption of the corresponding receptors in the brain leads to remarkably different effects on brain size and physiology, thus highlighting the unique effects of the corresponding hormone receptors. Central insulin/IGF1 resistance impacts upon various levels of the IR/IGF1R signalling pathways and is a feature of the metabolic syndrome and neurodegenerative diseases such as Alzheimer's disease. The intricacy of brain insulin and IGF1 signalling represents a challenge for the identification of specific IR and IGF1R signalling differences in pathophysiological conditions. The present perspective sheds light on signalling differences and methodologies for specifically deciphering brain IR and IGF1R signalling.
Collapse
Affiliation(s)
- A. Kleinridders
- German Institute of Human Nutrition Potsdam‐RehbrueckeCentral Regulation of MetabolismNuthetalGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| |
Collapse
|
42
|
Abstract
Leptin has been described to have a crucial role in bone homeostasis by systemic as well as local action. Systemically, leptin seems to inhibit bone formation controlled by a feedback loop including osteocalcin and insulin. Even though the action seems to be bone site specific, as well as gender- and time-dependent, the results showing the interaction of these three factors are in part still inconsistent. In this article the complex effects of leptin, insulin, and osteocalcin on bone and fat metabolism are summarized.
Collapse
|
43
|
Abstract
Despite the importance of insulin signaling pathways in human disease, initial concerns that insect physiology and sugar metabolism differ enough from humans that flies would not model human disease hampered research in this area. However, during the past 10-15 years, evidence has accumulated that flies can indeed model various aspects of diabetes and related human disorders. This cluster of diseases impact insulin and insulin signaling pathways, fields which have been discussed in many excellent review articles in recent years. In this chapter, we restrict our focus to specific examples of diabetes-related disease models in Drosophila, discussing the advantages and limitations of these models in light of physiological similarities and differences between insects and mammals. We discuss features of metabolism and sugar regulation that are shared between flies and mammals, and specific Drosophila models for Type 1 and Type 2 diabetes, Metabolic syndrome, and related abnormalities including insulin resistance and heart disease. We conclude that fly models for diabetes and related disorders enhance our ability to identify genes and discern functional interactions that can be exploited for disease intervention.
Collapse
Affiliation(s)
- P Graham
- University of Maryland, College Park, MD, United States
| | - L Pick
- University of Maryland, College Park, MD, United States.
| |
Collapse
|
44
|
Dionne DA, Skovsø S, Templeman NM, Clee SM, Johnson JD. Caloric Restriction Paradoxically Increases Adiposity in Mice With Genetically Reduced Insulin. Endocrinology 2016; 157:2724-34. [PMID: 27145011 DOI: 10.1210/en.2016-1102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Antiadiposity effects of caloric restriction (CR) are associated with reduced insulin/IGF-1 signaling, but it is unclear whether the effects of CR would be additive to genetically reducing circulating insulin. To address this question, we examined female Ins1(+/-):Ins2(-/-) mice and Ins1(+/+):Ins2(-/-) littermate controls on either an ad libitum or 60% CR diet. Although Igf1 levels declined as expected, CR was unable to reduce plasma insulin levels in either genotype below their ad libitum-fed littermate controls. In fact, 53-week-old Ins1(+/-):Ins2(-/-) mice exhibited a paradoxical increase in circulating insulin in the CR group compared with the ad libitum-fed Ins1(+/-):Ins2(-/-) mice. Regardless of insulin gene dosage, CR mice had lower fasting glucose and improved glucose tolerance. Although body mass and lean mass predictably fell after CR initiation, we observed a significant and unexpected increase in fat mass in the CR Ins1(+/-):Ins2(-/-) mice. Specifically, inguinal fat was significantly increased by CR at 66 weeks and 106 weeks. By 106 weeks, brown adipose tissue mass was also significantly increased by CR in both Ins1(+/-):Ins2(-/-) and Ins1(+/+):Ins2(-/-) mice. Interestingly, we observed a clear whitening of brown adipose tissue in the CR groups. Mice in the CR group had altered daily energy expenditure and respiratory exchange ratio circadian rhythms in both genotypes. Multiplexed analysis of circulating hormones revealed that CR was associated with increased fasting and fed levels of the obesogenic hormone, glucose-dependent insulinotropic polypeptide. Collectively these data demonstrate CR has paradoxical effects on adipose tissue growth in the context of genetically reduced insulin.
Collapse
Affiliation(s)
- Derek A Dionne
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia l, Vancouver, British Columbia, Canada V6T 1Z3
| | - Søs Skovsø
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia l, Vancouver, British Columbia, Canada V6T 1Z3
| | - Nicole M Templeman
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia l, Vancouver, British Columbia, Canada V6T 1Z3
| | - Susanne M Clee
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia l, Vancouver, British Columbia, Canada V6T 1Z3
| | - James D Johnson
- Diabetes Research Group, Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia l, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
45
|
Wang G, Li R, Yang Y, Cai L, Ding S, Xu T, Han M, Wu X. Disruption of the Golgi protein Otg1 gene causes defective hormone secretion and aberrant glucose homeostasis in mice. Cell Biosci 2016; 6:41. [PMID: 27293546 PMCID: PMC4902905 DOI: 10.1186/s13578-016-0108-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/02/2016] [Indexed: 11/13/2022] Open
Abstract
Background Concerted hormone secretion is essential for glucose homeostasis and growth. The oocyte testis gene 1 (Otg1) has limited information in mammals before. Human OTG1 has been identified as an antigen associated with cutaneous T cell lymphoma, while worm Otg1 is recently reported to be a vesicle trafficking regulator in neurons. To understand the physiological role of Otg1 and its potential relation to hormone secretion, we characterized a mutation caused by the piggyBac transposon (PB) insertion in mice. Results Oocyte testis gene 1 encodes a Golgi localized protein that is expressed with a broad tissue distribution in mice. The PB insertion effectively blocks Otg1 expression, which results in postnatal lethality, growth retardation, hypoglycemia and improved insulin sensitivity in mice. Otg1 mutants exhibit decreased levels of insulin, leptin and growth hormone in the circulation and reduced hepatic IGF-1 expression. Decreased expression of Otg1 in pituitary GH3 cells causes reduced grow hormone expression and secretion, as well as the traffic of the VSVG protein marker. Conclusions Our data support the hypothesis that Otg1 impacts hormone secretion by regulating vesicle trafficking. These results revealed a previously unknown and important role of Otg1 in hormone secretion and glucose homeostasis in mammals. Electronic supplementary material The online version of this article (doi:10.1186/s13578-016-0108-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangxue Wang
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Rongbo Li
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Ying Yang
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Liang Cai
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Sheng Ding
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, New Haven, CT 06536 USA
| | - Tian Xu
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433 China.,Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, New Haven, CT 06536 USA
| | - Min Han
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433 China.,Howard Hughes Medical Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309 USA
| | - Xiaohui Wu
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433 China
| |
Collapse
|
46
|
Neumann UH, Ho JSS, Mojibian M, Covey SD, Charron MJ, Kieffer TJ. Glucagon receptor gene deletion in insulin knockout mice modestly reduces blood glucose and ketones but does not promote survival. Mol Metab 2016; 5:731-736. [PMID: 27656411 PMCID: PMC5021664 DOI: 10.1016/j.molmet.2016.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE It has been thought that the depletion of insulin is responsible for the catabolic consequences of diabetes; however, evidence suggests that glucagon also plays a role in diabetes pathogenesis. Glucagon suppression by glucagon receptor (Gcgr) gene deletion, glucagon immunoneutralization, or Gcgr antagonist can reverse or prevent type 1 diabetes in rodents suggesting that dysregulated glucagon is also required for development of diabetic symptoms. However, the models used in these studies were rendered diabetic by chemical- or immune-mediated β-cell destruction, in which insulin depletion is incomplete. Therefore, it is unclear whether glucagon suppression could overcome the consequence of the complete lack of insulin. METHODS To directly test this we characterized mice that lack the Gcgr and both insulin genes (GcgrKO/InsKO). RESULTS In both P1 pups and mice that were kept alive to young adulthood using insulin therapy, blood glucose and plasma ketones were modestly normalized; however, mice survived for only up to 6 days, similar to GcgrHet/InsKO controls. In addition, Gcgr gene deletion was unable to normalize plasma leptin levels, triglycerides, fatty acids, or hepatic cholesterol accumulation compared to GcgrHet/InsKO controls. CONCLUSION Therefore, the metabolic manifestations associated with a complete lack of insulin cannot be overcome by glucagon receptor gene inactivation.
Collapse
Affiliation(s)
- Ursula H Neumann
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Jessica S S Ho
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Majid Mojibian
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Maureen J Charron
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada; Department of Surgery, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
47
|
Templeman NM, Mehran AE, Johnson JD. Hyper-Variability in Circulating Insulin, High Fat Feeding Outcomes, and Effects of Reducing Ins2 Dosage in Male Ins1-Null Mice in a Specific Pathogen-Free Facility. PLoS One 2016; 11:e0153280. [PMID: 27055260 PMCID: PMC4824531 DOI: 10.1371/journal.pone.0153280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/25/2016] [Indexed: 12/31/2022] Open
Abstract
Insulin is an essential hormone with key roles in energy homeostasis and body composition. Mice and rats, unlike other mammals, have two insulin genes: the rodent-specific Ins1 gene and the ancestral Ins2 gene. The relationships between insulin gene dosage and obesity has previously been explored in male and female Ins2-/- mice with full or reduced Ins1 dosage, as well as in female Ins1-/- mice with full or partial Ins2 dosage. We report herein unexpected hyper-variability in Ins1-null male mice, with respect to their circulating insulin levels and to the physiological effects of modulating Ins2 gene dosage. Two large cohorts of Ins1-/-:Ins2+/- mice and their Ins1-/-:Ins2+/+ littermates were fed chow diet or high fat diet (HFD) from weaning, and housed in specific pathogen-free conditions. Cohort A and cohort B were studied one year apart. Contrary to female mice from the same litters, inactivating one Ins2 allele on the complete Ins1-null background did not consistently cause a reduction of circulating insulin in male mice, on either diet. In cohort A, all HFD-fed males showed an equivalent degree of insulin hypersecretion and weight gain, regardless of Ins2 dosage. In cohort B the effects of HFD appeared generally diminished, and cohort B Ins1-/-:Ins2+/- males showed decreased insulin levels and body mass compared to Ins1-/-:Ins2+/+ littermates, on both diets. Although experimental conditions were consistent between cohorts, we found that HFD-fed Ins1-/-:Ins2+/- mice with lower insulin levels had increased corticosterone. Collectively, these observations highlight the phenotypic characteristics that change in association with differences in circulating insulin and Ins2 gene dosage, particularly in male mice.
Collapse
Affiliation(s)
- Nicole M Templeman
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arya E Mehran
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
48
|
O'Hare EA, Yerges-Armstrong LM, Perry JA, Shuldiner AR, Zaghloul NA. Assignment of Functional Relevance to Genes at Type 2 Diabetes-Associated Loci Through Investigation of β-Cell Mass Deficits. Mol Endocrinol 2016; 30:429-45. [PMID: 26963759 DOI: 10.1210/me.2015-1243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes (T2D) has been associated with a large number of genomic loci, many of which encompass multiple genes without a definitive causal gene. This complexity has hindered efforts to clearly identify functional candidate genes and interpret their role in mediating susceptibility to disease. Here we examined the relevance of individual genes found at T2D-associated loci by assessing their potential contribution to a phenotype relevant to the disease state: production and maintenance of β-cell mass. Using transgenic zebrafish in which β-cell mass could be rapidly visualized in vivo, we systematically suppressed the expression of orthologs of genes found at T2D-associated genomic loci. Overall, we tested 67 orthologs, many of which had no known relevance to β-cell mass, at 62 human T2D-associated loci, including eight loci with multiple candidate genes. In total we identified 25 genes that were necessary for proper β-cell mass, providing functional evidence for their role in a physiological phenotype directly related to T2D. Of these, 16 had not previously been implicated in the regulation of β-cell mass. Strikingly, we identified single functional candidate genes at the majority of the loci for which multiple genes were analyzed. Further investigation into the contribution of the 25 genes to the adaptive capacity of β-cells suggested that the majority of genes were not required for glucose-induced expansion of β-cell mass but were significantly necessary for the regeneration of β-cells. These findings suggest that genetically programmed deficiencies in β-cell mass may be related to impaired maintenance. Finally, we investigated the relevance of our findings to human T2D onset in diabetic individuals from the Old Order Amish and found that risk alleles in β-cell mass genes were associated with significantly younger age of onset and lower body mass index. Taken together, our study offers a functional approach to assign relevance to genes at T2D-associated loci and offers experimental evidence for the defining role of β-cell mass maintenance in genetic susceptibility to T2D onset.
Collapse
Affiliation(s)
- Elizabeth A O'Hare
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Laura M Yerges-Armstrong
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - James A Perry
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Alan R Shuldiner
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Norann A Zaghloul
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
49
|
Neumann UH, Denroche HC, Mojibian M, Covey SD, Kieffer TJ. Insulin Knockout Mice Have Extended Survival but Volatile Blood Glucose Levels on Leptin Therapy. Endocrinology 2016; 157:1007-12. [PMID: 26696124 DOI: 10.1210/en.2015-1890] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Leptin can reverse hyperglycemia in rodent models of type 1 diabetes. However, these models have used chemical or immune mediated β-cell destruction where insulin depletion is incomplete. Thus it is unknown which actions of leptin are entirely insulin independent, versus those which require insulin. To directly assess this we maximized blockage of insulin action using an insulin receptor antagonist in combination with streptozotocin-diabetic mice; leptin treatment was still able to reduce blood glucose. Next, we leptin-treated adult insulin knockout (InsKO) mice. Remarkably, leptin-treated InsKO mice were viable for up to 3 weeks without insulin therapy. Leptin treatment reduced plasma corticosterone, glucagon, β-hydroxybutyrate, triglycerides, cholesterol, fatty acids and glycerol. However, leptin-treated InsKO mice exhibited overt fed hyperglycemia and severe fasting hypoglycemia. Therefore, leptin can normalize many metabolic parameters in the complete absence of insulin, but blood glucose levels are volatile and the length of survival finite.
Collapse
Affiliation(s)
- Ursula H Neumann
- Departments of Cellular and Physiological Sciences (U.H.N., H.C.D., M.M., T.J.K.), Biochemistry and Molecular Biology (S.D.C.), and Surgery (T.J.K.), Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Heather C Denroche
- Departments of Cellular and Physiological Sciences (U.H.N., H.C.D., M.M., T.J.K.), Biochemistry and Molecular Biology (S.D.C.), and Surgery (T.J.K.), Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Majid Mojibian
- Departments of Cellular and Physiological Sciences (U.H.N., H.C.D., M.M., T.J.K.), Biochemistry and Molecular Biology (S.D.C.), and Surgery (T.J.K.), Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Scott D Covey
- Departments of Cellular and Physiological Sciences (U.H.N., H.C.D., M.M., T.J.K.), Biochemistry and Molecular Biology (S.D.C.), and Surgery (T.J.K.), Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Timothy J Kieffer
- Departments of Cellular and Physiological Sciences (U.H.N., H.C.D., M.M., T.J.K.), Biochemistry and Molecular Biology (S.D.C.), and Surgery (T.J.K.), Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
50
|
Farino ZJ, Morgenstern TJ, Vallaghe J, Gregor N, Donthamsetti P, Harris PE, Pierre N, Freyberg R, Charrier-Savournin F, Javitch JA, Freyberg Z. Development of a Rapid Insulin Assay by Homogenous Time-Resolved Fluorescence. PLoS One 2016; 11:e0148684. [PMID: 26849707 PMCID: PMC4743966 DOI: 10.1371/journal.pone.0148684] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/20/2016] [Indexed: 11/29/2022] Open
Abstract
Direct measurement of insulin is critical for basic and clinical studies of insulin secretion. However, current methods are expensive and time-consuming. We developed an insulin assay based on homogenous time-resolved fluorescence that is significantly more rapid and cost-effective than current commonly used approaches. This assay was applied effectively to an insulin secreting cell line, INS-1E cells, as well as pancreatic islets, allowing us to validate the assay by elucidating mechanisms by which dopamine regulates insulin release. We found that dopamine functioned as a significant negative modulator of glucose-stimulated insulin secretion. Further, we showed that bromocriptine, a known dopamine D2/D3 receptor agonist and newly approved drug used for treatment of type II diabetes mellitus, also decreased glucose-stimulated insulin secretion in islets to levels comparable to those caused by dopamine treatment.
Collapse
Affiliation(s)
- Zachary J. Farino
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, United States of America
| | - Travis J. Morgenstern
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, United States of America
| | | | | | - Prashant Donthamsetti
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, United States of America
- Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
| | - Paul E. Harris
- Division of Endocrinology, Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
| | | | - Robin Freyberg
- Department of Psychology, Stern College for Women, Yeshiva University, New York, New York, United States of America
| | | | - Jonathan A. Javitch
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, United States of America
- Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
| | - Zachary Freyberg
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, United States of America
- * E-mail:
| |
Collapse
|