1
|
Yang S, Li Y, Tian M, Deng W, Liu D, Chen C, Zhu Z, Zheng H, Yang G, Li L, Yang M. Hypothalamic P62 (SQSTM1) regulates energy balance by modulating leptin signaling. Theranostics 2024; 14:6605-6624. [PMID: 39479445 PMCID: PMC11519807 DOI: 10.7150/thno.96480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/22/2024] [Indexed: 10/30/2024] Open
Abstract
RATIONALE The multifaceted functions of p62 (SQSTM1) are increasingly recognized, but its role in hypothalamic metabolism-associated neurons for energy balance has yet to be elucidated. METHODS Single-nucleus RNA sequencing (snRNA-Seq) was performed on hypothalamic tissues from db/db and db/m mice to explore p62 expression. Overexpression and knockout of p62 in hypothalamic POMC neurons were performed via AAV-mediated gene delivery and Cre-loxP systems. Metabolic outcomes were assessed under normal chow (NCD) and high-fat diet (HFD) conditions. The co-immunoprecipitation and luciferase reporter assays were used to investigate the interaction between p62 and STAT3. RESULTS The snRNA-Seq analysis found that p62 was ubiquitously expressed in hypothalamic neurons, with significantly higher levels in POMC neurons of db/db mice compared to db/m controls. Under NCD or HFD conditions, the absence of p62 in POMC neurons led to increased body weight, decreased energy expenditure and leptin sensitivity, while its overexpression in POMC neurons produced the opposite phenotype. Mechanistically, p62 interacts with STAT3, facilitating its phosphorylation to initiate POMC transcription and amplify leptin sensitivity. CONCLUSION This study demonstrated the capacity of p62 to monogenically regulate the obesity phenotype and emphasized its dual role in managing energy homeostasis through direct modulation of STAT3/POMC signaling and amplification of leptin sensitivity.
Collapse
Affiliation(s)
- Shan Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yang Li
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mingyuan Tian
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Clinical Biochemistry and the Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wuquan Deng
- Department of Endocrinology and Metabolism, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Jiankang Road, Yuzhong District, Chongqing, China
| | - Dongfang Liu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chen Chen
- Endocrinology, SBMS, Faculty of Medicine, University of Queensland, Brisbane, 4072, Australia
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Hongting Zheng
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Li
- Department of Clinical Biochemistry and the Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Mengliu Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Tang D, Kang R. SQSTM1 is a therapeutic target for infection and sterile inflammation. Cytokine 2023; 169:156317. [PMID: 37542833 DOI: 10.1016/j.cyto.2023.156317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
Inflammation represents a fundamental immune response triggered by various detrimental stimuli, such as infections, tissue damage, toxins, and foreign substances. Protein degradation plays a crucial role in regulating the inflammatory process at multiple levels. The identification of sequestosome 1 (SQSTM1, also known as p62) protein as a binding partner of lymphocyte-specific protein tyrosine kinase in 1995 marked a significant milestone. Subsequent investigations unveiled the activity of SQSTM1 to interact with diverse unstructured substrates, including proteins, organelles, and pathogens, facilitating their delivery to the lysosome for autophagic degradation. In addition to its well-established intracellular functions, emerging studies have reported the active secretion or passive release of SQSTM1 by immune or non-immune cells, orchestrating the inflammatory responses. These distinct characteristics render SQSTM1 a critical therapeutic target in numerous human diseases, including infectious diseases, rheumatoid arthritis, inflammatory bowel disease, pancreatitis, asthma, chronic obstructive pulmonary disease, and cardiovascular diseases. This review provides a comprehensive overview of the structure and modulation of SQSTM1, discusses its intracellular and extracellular roles in inflammation, and highlights its significance in inflammation-related diseases. Future investigations focusing on elucidating the precise localization, structure, post-translational modifications of SQSTM1, as well as the identification of additional interacting partners, hold promise for unravelling further insights into the multifaceted functions of SQSTM1.
Collapse
Affiliation(s)
- Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Khan N, Khan K, Badshah Y, Trembley JH, Ashraf NM, Shabbir M, Danish L, Afsar T, Almajwal A, Justin S, Hasan Z, Razak S. Investigating pathogenic SNP of PKCι in HCV-induced hepatocellular carcinoma. Sci Rep 2023; 13:12504. [PMID: 37532886 PMCID: PMC10397245 DOI: 10.1038/s41598-023-39804-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
Hepatocellular carcinoma is a leading cause of cancer-related deaths due to its complexity in diagnosis, chemo-resistance, and aggressive nature. Identifying pathogenic single nucleotide polymorphism (SNP) in protein kinase C iota (PKCι) can be a potential biomarker in the prognosis and treatment of HCC. This study investigated the association between a SNP in PRKCI and the Pakistani population's hepatocellular carcinoma (HCC) risk. Obtained samples were first evaluated for ALT measurements and viral load quantification through reverse transcriptase-PCR. The PKCι nsSNP rs1199520604 was evaluated computationally by multiple consensus bioinformatics tools for predicting its potential deleterious effects. Its association with hepatitis C virus- (HCV) mediated HCC was then investigated through ARMS-PCR (Amplification Refractory Mutation System Polymerase Chain Reaction). SNP analysis of rs1199520604 was performed in 100 cases and 100 controls. Variant rs1199520604's homozygous T genotype is a risk factor allele for the HCV-induced HCC (odds ratio: 4.13, relative risk: 2.01, P-value < 0.0001). The heterozygous genotype is determined to protect HCV patients from HCC development (P < 0.001). The study highlighted the disease association of variant rs1199520604 with HCV-induced HCC in the Pakistani populations. This variant, after further validation through high-throughput investigation on a larger cohort, has the potential to be translated at the clinical level.
Collapse
Affiliation(s)
- Naila Khan
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Naeem Mahmood Ashraf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Lubna Danish
- Agricultural Research Institute, Tarnab, Peshawar, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saira Justin
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Zafarul Hasan
- College of Nursing, Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
p62 is Negatively Implicated in the TRAF6-BECN1 Signaling Axis for Autophagy Activation and Cancer Progression by Toll-Like Receptor 4 (TLR4). Cells 2020; 9:cells9051142. [PMID: 32384667 PMCID: PMC7290749 DOI: 10.3390/cells9051142] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptors (TLRs) induce the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and autophagy through the TNF (Tumor necrosis factor) receptor-associated factor 6 (TRAF6)-evolutionarily conserved signaling intermediate in Toll pathways (ECSIT) and TRAF6-BECN1 signaling axes, respectively. Having shown that p62 negatively regulates Toll-like receptor 4 (TLR4)-mediated signaling via TRAF6-ECSIT signaling axis, we herein investigated whether p62 is functionally implicated in the TRAF6-BECN1 signaling axis, thereby regulating cancer cell migration and invasion. p62 interacted with TRAF6 and BECN1, to interrupt the functional associations required for TRAF6-BECN1 complex formation, leading to inhibitions of BECN1 ubiquitination and autophagy activation. Importantly, p62-deficient cancer cells, such as p62-knockdown (p62KD) SK-HEP-1, p62KD MDA-MB-231, and p62-knockout (p62KO) A549 cells, showed increased activation of autophagy induced by TLR4 stimulation, suggesting that p62 negatively regulates autophagy activation. Moreover, these p62-deficient cancer cells exhibited marked increases in cell migration and invasion in response to TLR4 stimulation. Collectively, these results suggest that p62 is negatively implicated in the TRAF6-BECN1 signaling axis, thereby inhibiting cancer cell migration and invasion regulated by autophagy activation in response to TLR4 stimulation.
Collapse
|
5
|
The Deubiquitinating Enzyme USP20 Regulates the TNFα-Induced NF-κB Signaling Pathway through Stabilization of p62. Int J Mol Sci 2020; 21:ijms21093116. [PMID: 32354117 PMCID: PMC7247158 DOI: 10.3390/ijms21093116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
p62/sequestosome-1 is a scaffolding protein involved in diverse cellular processes such as autophagy, oxidative stress, cell survival and death. It has been identified to interact with atypical protein kinase Cs (aPKCs), linking these kinases to NF-κB activation by tumor necrosis factor α (TNFα). The diverse functions of p62 are regulated through post-translational modifications of several domains within p62. Among the enzymes that mediate these post-translational modifications, little is known about the deubiquitinating enzymes (DUBs) that remove ubiquitin chains from p62, compared to the E3 ligases involved in p62 ubiquitination. In this study, we first demonstrate a role of ubiquitin-specific protease USP20 in regulating p62 stability in TNFα-mediated NF-κB activation. USP20 specifically binds to p62 and acts as a positive regulator for NF-κB activation by TNFα through deubiquitinating lysine 48 (K48)-linked polyubiquitination, eventually contributing to cell survival. Furthermore, depletion of USP20 disrupts formation of the atypical PKCζ-RIPK1-p62 complex required for TNFα-mediated NF-κB activation and significantly increases the apoptosis induced by TNFα plus cycloheximide or TNFα plus TAK1 inhibitor. These findings strongly suggest that the USP20-p62 axis plays an essential role in NF-κB-mediated cell survival induced by the TNFα-atypical PKCζ signaling pathway.
Collapse
|
6
|
Tao M, Liu T, You Q, Jiang Z. p62 as a therapeutic target for tumor. Eur J Med Chem 2020; 193:112231. [PMID: 32193054 DOI: 10.1016/j.ejmech.2020.112231] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
Abstract
p62/SQSTM1 (hereafter as p62) is a stress-inducible cellular protein, which interacts with various signaling proteins to regulate a variety of cellular functions. Growing lines of evidence supported a critical role of p62 in tumorigenesis, and p62 may become a therapeutic target for tumor. In this review, we summarize biological functions of structural domains of p62, reported bioactive molecules targeting p62, and the relationship between p62 and tumorigenesis.
Collapse
Affiliation(s)
- Mengmin Tao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Geribaldi-Doldán N, Gómez-Oliva R, Domínguez-García S, Nunez-Abades P, Castro C. Protein Kinase C: Targets to Regenerate Brain Injuries? Front Cell Dev Biol 2019; 7:39. [PMID: 30949480 PMCID: PMC6435489 DOI: 10.3389/fcell.2019.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 12/28/2022] Open
Abstract
Acute or chronic injury to the central nervous system (CNS), causes neuronal death and irreversible cognitive deficits or sensory-motor alteration. Despite the capacity of the adult CNS to generate new neurons from neural stem cells (NSC), neuronal replacement following an injury is a restricted process, which does not naturally result in functional regeneration. Therefore, potentiating endogenous neurogenesis is one of the strategies that are currently being under study to regenerate damaged brain tissue. The insignificant neurogenesis that occurs in CNS injuries is a consequence of the gliogenic/non-neurogenic environment that inflammatory signaling molecules create within the injured area. The modification of the extracellular signals to generate a neurogenic environment would facilitate neuronal replacement. However, in order to generate this environment, it is necessary to unearth which molecules promote or impair neurogenesis to introduce the first and/or eliminate the latter. Specific isozymes of the protein kinase C (PKC) family differentially contribute to generate a gliogenic or neurogenic environment in injuries by regulating the ADAM17 mediated release of growth factor receptor ligands. Recent reports describe several non-tumorigenic diterpenes isolated from plants of the Euphorbia genus, which specifically modulate the activity of PKC isozymes promoting neurogenesis. Diterpenes with 12-deoxyphorbol or lathyrane skeleton, increase NPC proliferation in neurogenic niches in the adult mouse brain in a PKCβ dependent manner exerting their effects on transit amplifying cells, whereas PKC inhibition in injuries promotes neurogenesis. Thus, compounds that balance PKC activity in injuries might be of use in the development of new drugs and therapeutic strategies to regenerate brain injuries.
Collapse
Affiliation(s)
- Noelia Geribaldi-Doldán
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| | - Ricardo Gómez-Oliva
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| | - Samuel Domínguez-García
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain.,Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| |
Collapse
|
8
|
Sánchez-Martín P, Komatsu M. p62/SQSTM1 - steering the cell through health and disease. J Cell Sci 2018; 131:131/21/jcs222836. [PMID: 30397181 DOI: 10.1242/jcs.222836] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
SQSTM1 (also known as p62) is a multifunctional stress-inducible scaffold protein involved in diverse cellular processes. Its functions are tightly regulated through an extensive pattern of post-translational modifications, and include the isolation of cargos degraded by autophagy, induction of the antioxidant response by the Keap1-Nrf2 system, as well as the regulation of endosomal trafficking, apoptosis and inflammation. Accordingly, malfunction of SQSTM1 is associated with a wide range of diseases, including bone and muscle disorders, neurodegenerative and metabolic diseases, and multiple forms of cancer. In this Review, we summarize current knowledge regarding regulation, post-translational modifications and functions of SQSTM1, as well as how they are dysregulated in various pathogenic contexts.
Collapse
Affiliation(s)
- Pablo Sánchez-Martín
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8510, Japan
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8510, Japan .,Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
9
|
Ishii T, Warabi E, Mann GE. Circadian control of p75 neurotrophin receptor leads to alternate activation of Nrf2 and c-Rel to reset energy metabolism in astrocytes via brain-derived neurotrophic factor. Free Radic Biol Med 2018; 119:34-44. [PMID: 29374533 DOI: 10.1016/j.freeradbiomed.2018.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
Circadian clock genes regulate energy metabolism partly through neurotrophins in the body. The low affinity neurotrophin receptor p75NTR is a clock component directly regulated by the transcriptional factor Clock:Bmal1 complex. Brain-derived neurotrophic factor (BDNF) is expressed in the brain and plays a key role in coordinating metabolic interactions between neurons and astrocytes. BDNF transduces signals through TrkB and p75NTR receptors. This review highlights a novel molecular mechanism by which BDNF via circadian control of p75NTR leads to daily resetting of glucose and glycogen metabolism in brain astrocytes to accommodate their functional interaction with neurons. Astrocytes store glycogen as an energy reservoir to provide active neurons with the glycolytic metabolite lactate. Astrocytes predominantly express the truncated receptor TrkB.T1 which lacks an intracellular receptor tyrosine kinase domain. TrkB.T1 retains the capacity to regulate cell morphology through regulation of Rho GTPases. In contrast, p75NTR mediates generation of the bioactive lipid ceramide upon stimulation with BDNF and inhibits PKA activation. As ceramide directly activates PKCζ, we discuss the importance of the TrkB.T1-p75NTR-ceramide-PKCζ signaling axis in the stimulation of glycogen and lipid synthesis and activation of RhoA. Ceramide-PKCζ-casein kinase 2 signaling activates Nrf2 to support oxidative phosphorylation via upregulation of antioxidant enzymes. In the absence of p75NTR, TrkB.T1 functionally interacts with adenosine A2AR and dopamine D1R receptors to enhance cAMP-PKA signaling and activate Rac1 and NF-κB c-Rel, favoring glycogen hydrolysis, gluconeogenesis and aerobic glycolysis. Thus, diurnal changes in p75NTR levels in astrocytes resets energy metabolism via BDNF to accommodate their metabolic interaction with neurons.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba Ibaraki 305-0863, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba Ibaraki 305-0863, Japan
| | - Giovanni E Mann
- School of Cardiovascular Medicine and Sciences, King's British Heart Foundation Centre of Excellence, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
10
|
Reina-Campos M, Shelton PM, Diaz-Meco MT, Moscat J. Metabolic reprogramming of the tumor microenvironment by p62 and its partners. Biochim Biophys Acta Rev Cancer 2018; 1870:88-95. [PMID: 29702207 DOI: 10.1016/j.bbcan.2018.04.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/20/2018] [Indexed: 12/30/2022]
Abstract
The concerted metabolic reprogramming across cancer and normal cellular compartments of the tumor microenvironment can favor tumorigenesis by increasing the survival and proliferating capacities of transformed cells. p62 has emerged as a critical signaling adaptor, beyond its role in autophagy, by playing an intricate context-dependent role in metabolic reprogramming of the cell types of the tumor and stroma, which shapes the tumor microenvironment to control tumor progression. Focusing on metabolic adaptations, we review the cellular processes upstream and downstream of p62 that regulate how distinct cell types adapt to the challenging and evolving environmental conditions during tumor initiation and progression. In addition, we describe partners of p62 that, in a collaborative or independent manner, can also rewire cell metabolism. Finally, we discuss the potential therapeutic implications of targeting p62 in cancer, considering its multifaceted roles in diverse cell types of the tumor microenvironment.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Sanford Burnham Prebys Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Phillip M Shelton
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Milton M, Smith PD. It's All about Timing: The Involvement of Kir4.1 Channel Regulation in Acute Ischemic Stroke Pathology. Front Cell Neurosci 2018; 12:36. [PMID: 29503609 PMCID: PMC5820340 DOI: 10.3389/fncel.2018.00036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/30/2018] [Indexed: 01/28/2023] Open
Abstract
An acute ischemic stroke is characterized by the presence of a blood clot that limits blood flow to the brain resulting in subsequent neuronal loss. Acute stroke threatens neuronal survival, which relies heavily upon proper function of astrocytes. Neurons are more susceptible to cell death when an astrocyte is unable to carry out its normal functions in supporting the neuron in the area affected by the stroke (Rossi et al., 2007; Takano et al., 2009). For example, under normal conditions, astrocytes initially swell in response to changes in extracellular osmotic pressure and then reduce their regulatory volume in response to volume-activated potassium (K+) and chloride channels (Vella et al., 2015). This astroglial swelling may be overwhelmed, under ischemic conditions, due to the increased levels of glutamate and extracellular K+ (Lai et al., 2014; Vella et al., 2015). The increase in extracellular K+ contributes to neuronal damage and loss through the initiation of harmful secondary cascades (Nwaobi et al., 2016). Reducing the amount of extracellular K+ could, in theory, limit or prevent neuronal damage and loss resulting in an improved prognosis for individuals following ischemic stroke. Kir4.1, an inwardly rectifying K+ channel, has demonstrated an ability to regulate the rapid reuptake of this ion to return the cell to basal levels allowing it to fire again in rapid transmission (Sibille et al., 2015). Despite growing interest in this area, the underlying mechanism suggesting that neuroprotection could occur through modification of the Kir4.1 channel's activity has yet to be described. The purpose of this review is to examine the current literature and propose potential underlying mechanisms involving Kir4.1, specially the mammalian target of rapamycin (mTOR) and/or autophagic pathways, in the pathogenesis of ischemic stroke. The hope is that this review will instigate further investigation of Kir4.1 as a modulator of stroke pathology.
Collapse
Affiliation(s)
| | - Patrice D. Smith
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
12
|
Islam SMA, Patel R, Acevedo-Duncan M. Protein Kinase C-ζ stimulates colorectal cancer cell carcinogenesis via PKC-ζ/Rac1/Pak1/β-Catenin signaling cascade. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:650-664. [PMID: 29408512 DOI: 10.1016/j.bbamcr.2018.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/22/2018] [Accepted: 02/01/2018] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is the second most common cancer in the world and death from CRC accounts for 8% of all cancer deaths both in men and women in the United States. CRC is life-threatening disease due to therapy resistant cancerous cells. The exact mechanisms of cell growth, survival, metastasis and inter & intracellular signaling pathways involved in CRC is still a significant challenge. Hence, investigating the signaling pathways that lead to colon carcinogenesis may give insight into the therapeutic target. In this study, the role of atypical Protein Kinase C (aPKC) on CRC was investigated by using two inhibitors of that protein class: 1) ζ-Stat (8-hydroxynaphthalene-1,3,6-trisulfonic acid) is a specific inhibitor of PKC-ζ and 2) ICA-I 5-amino-1-(2,3-dihydroxy-4-hydroxymethyl)cyclopentyl)-1H-imidazole-4-carboxamide) is a specific inhibitor of PKC-ι. The cell lines tested were CCD18CO normal colon epithelial and LOVO metastatic CRC cells. The inhibition of aPKCs did not bring any significant toxicity on CCD18CO normal colon cell line. Although PKC-ι is an oncogene in many cancers, we found the overexpression of PKC-ζ and its direct association with Rac1. Our findings suggest that the PKC-ζ may be responsible for the abnormal growth, proliferation, and migration of metastatic LOVO colon cancer cells via PKC-ζ/Rac1/Pak1/β-Catenin pathway. These results suggest the possibility of utilizing PKC-ζ inhibitor to block CRC cells growth, proliferation, and metastasis.
Collapse
Affiliation(s)
- S M Anisul Islam
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, USA
| | - Rekha Patel
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, USA
| | - Mildred Acevedo-Duncan
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, USA.
| |
Collapse
|
13
|
Ruan H, Xu J, Wang L, Zhao Z, Kong L, Lan B, Li X. The prognostic value of p62 in solid tumor patients: a meta-analysis. Oncotarget 2017; 9:4258-4266. [PMID: 29423120 PMCID: PMC5790537 DOI: 10.18632/oncotarget.23101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022] Open
Abstract
p62, as a scaffolding/adaptor protein, is involved in multiple physiological processes include inflammation, autophagy and mitosis. However, the influence of p62 in cancer patients has not been comprehensively investigated. Moreover, the prognostic value of p62 for the survival of patients with solid tumors remains controversial. In this present meta-analysis, twenty suitable articles were identified from PubMed, EMBASE and Web of Science, Nature databases, including 4271 patients. A random-effect or fixed-effect model was adopted to correlate p62 expression with different outcome measured in entire tumors. Combined with results of hazard ratios (HRs) and 95% confidence intervals (CIs), we concluded that higher expression of p62 is associated with poorer overall survival (OS) (HR: 2.22, 95% CI: 1.82–2.71, P < 0.05), disease-free survival (DFS) (HR = 2.48, 95% CI: 1.78–3.46, P < 0.05) and even certain clinicopathological parameters, such as lymph node metastasis (RR = 1.21, 95% CI: 1.06–1.37) and clinical stages (RR = 1.27, 95% CI: 1.12–1.45), in cancer patients. Consequently, our data showed that p62 might be an effective poor prognostic factor for patients with various solid tumors.
Collapse
Affiliation(s)
- Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Jingyue Xu
- Department of Clinical Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Lingling Wang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhenyu Zhao
- Department of Pharmacy, Tianjin Medical University Metabolic Disease Hospital, Tianjin, China
| | - Lingqin Kong
- Jining Tumor Hospital, Jining No.1 People's Hospital North Campus, Shandong, China
| | - Bei Lan
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xichuan Li
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.,School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
14
|
Lin Q, Dai Q, Meng H, Sun A, Wei J, Peng K, Childress C, Chen M, Shao G, Yang W. The HECT E3 ubiquitin ligase NEDD4 interacts with and ubiquitylates SQSTM1 for inclusion body autophagy. J Cell Sci 2017; 130:3839-3850. [PMID: 29021346 DOI: 10.1242/jcs.207068] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/27/2017] [Indexed: 12/29/2022] Open
Abstract
Our previous studies have shown that the HECT E3 ubiquitin ligase NEDD4 interacts with LC3 and is required for starvation and rapamycin-induced activation of autophagy. Here, we report that NEDD4 directly binds to SQSTM1 via its HECT domain and polyubiquitylates SQSTM1. This ubiquitylation is through K63 conjugation and is not involved in proteasomal degradation. Mutational analysis indicates that NEDD4 interacts with and ubiquitylates the PB1 domain of SQSTM1. Depletion of NEDD4 or overexpression of the ligase-defective mutant of NEDD4 induced accumulation of aberrant enlarged SQSTM1-positive inclusion bodies that are co-localized with the endoplasmic reticulum (ER) marker CANX, suggesting that the ubiquitylation functions in the SQSTM1-mediated biogenic process in inclusion body autophagosomes. Taken together, our studies show that NEDD4 is an autophagic E3 ubiquitin ligase that ubiquitylates SQSTM1, facilitating SQSTM1-mediated inclusion body autophagy.
Collapse
Affiliation(s)
- Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Qian Dai
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hongxia Meng
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Aiqin Sun
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jing Wei
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ke Peng
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Chandra Childress
- Department of Biology, Susquehanna University, 514 University Ave, Selinsgrove, PA 17870, USA
| | - Miao Chen
- Department of Pathology, Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China
| | - Genbao Shao
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wannian Yang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
15
|
Saito T, Okada S, Shimoda Y, Tagaya Y, Osaki A, Yamada E, Shibusawa R, Nakajima Y, Ozawa A, Satoh T, Mori M, Yamada M. APPL1 promotes glucose uptake in response to mechanical stretch via the PKCζ-non-muscle myosin IIa pathway in C2C12 myotubes. Cell Signal 2016; 28:1694-702. [DOI: 10.1016/j.cellsig.2016.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/24/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
|
16
|
Haack TB, Ignatius E, Calvo-Garrido J, Iuso A, Isohanni P, Maffezzini C, Lönnqvist T, Suomalainen A, Gorza M, Kremer LS, Graf E, Hartig M, Berutti R, Paucar M, Svenningsson P, Stranneheim H, Brandberg G, Wedell A, Kurian MA, Hayflick SA, Venco P, Tiranti V, Strom TM, Dichgans M, Horvath R, Holinski-Feder E, Freyer C, Meitinger T, Prokisch H, Senderek J, Wredenberg A, Carroll CJ, Klopstock T. Absence of the Autophagy Adaptor SQSTM1/p62 Causes Childhood-Onset Neurodegeneration with Ataxia, Dystonia, and Gaze Palsy. Am J Hum Genet 2016; 99:735-743. [PMID: 27545679 PMCID: PMC5010644 DOI: 10.1016/j.ajhg.2016.06.026] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/27/2016] [Indexed: 11/17/2022] Open
Abstract
SQSTM1 (sequestosome 1; also known as p62) encodes a multidomain scaffolding protein involved in various key cellular processes, including the removal of damaged mitochondria by its function as a selective autophagy receptor. Heterozygous variants in SQSTM1 have been associated with Paget disease of the bone and might contribute to neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Using exome sequencing, we identified three different biallelic loss-of-function variants in SQSTM1 in nine affected individuals from four families with a childhood- or adolescence-onset neurodegenerative disorder characterized by gait abnormalities, ataxia, dysarthria, dystonia, vertical gaze palsy, and cognitive decline. We confirmed absence of the SQSTM1/p62 protein in affected individuals' fibroblasts and found evidence of a defect in the early response to mitochondrial depolarization and autophagosome formation. Our findings expand the SQSTM1-associated phenotypic spectrum and lend further support to the concept of disturbed selective autophagy pathways in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tobias B Haack
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| | - Erika Ignatius
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland; Department of Child Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital, 00029 HUS, Finland
| | - Javier Calvo-Garrido
- Department of Molecular Medicine and Surgery, Science for Life Laboratory, Karolinska Institutet, Stockholm 17176, Sweden
| | - Arcangela Iuso
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Pirjo Isohanni
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland; Department of Child Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital, 00029 HUS, Finland
| | - Camilla Maffezzini
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Tuula Lönnqvist
- Department of Child Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital, 00029 HUS, Finland
| | - Anu Suomalainen
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland
| | - Matteo Gorza
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Laura S Kremer
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Monika Hartig
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Martin Paucar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17176, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17176, Sweden
| | - Henrik Stranneheim
- Department of Molecular Medicine and Surgery, Science for Life Laboratory, Karolinska Institutet, Stockholm 17176, Sweden; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Göran Brandberg
- Department of Pediatrics, Falu lasarett, 79182 Falun, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Science for Life Laboratory, Karolinska Institutet, Stockholm 17176, Sweden; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Manju A Kurian
- Neurosciences Unit, Institute of Child Health, University College London, London WC1N 3BG, UK; Department of Paediatric Neurology, Great Ormond Street Hospital, London WC1N 3BG, UK
| | - Susan A Hayflick
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA; Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Paola Venco
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children, IRCCS Foundation Neurological Institute "C. Besta," 20126 Milan, Italy
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children, IRCCS Foundation Neurological Institute "C. Besta," 20126 Milan, Italy
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany; DZNE - German Center for Neurodegenerative Diseases, 80336 Munich, Germany
| | - Rita Horvath
- MGZ - Medical Genetics Center, 80335 Munich, Germany; Institute of Genetic Medicine, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | | | - Christoph Freyer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Jan Senderek
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Christopher J Carroll
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland
| | - Thomas Klopstock
- Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany; DZNE - German Center for Neurodegenerative Diseases, 80336 Munich, Germany; Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, 80336 Munich, Germany.
| |
Collapse
|
17
|
Taniguchi K, Yamachika S, He F, Karin M. p62/SQSTM1-Dr. Jekyll and Mr. Hyde that prevents oxidative stress but promotes liver cancer. FEBS Lett 2016; 590:2375-97. [PMID: 27404485 DOI: 10.1002/1873-3468.12301] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/08/2016] [Accepted: 07/09/2016] [Indexed: 12/17/2022]
Abstract
p62/SQSTM1 is a multifunctional signaling hub and autophagy adaptor with many binding partners, which allow it to activate mTORC1-dependent nutrient sensing, NF-κB-mediated inflammatory responses, and the NRF2-activated antioxidant defense. p62 recognizes polyubiquitin chains via its C-terminal domain and binds to LC3 via its LIR motif, thereby promoting the autophagic degradation of ubiquitinated cargos. p62 accumulates in many human liver diseases, including nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC), where it is a component of Mallory-Denk bodies and intracellular hyaline bodies. Chronic p62 elevation contributes to HCC development by preventing oncogene-induced senescence and death of cancer-initiating cells and enhancing their proliferation. In this review, we discuss p62-mediated signaling pathways and their roles in liver pathophysiology, especially NASH and HCC.
Collapse
Affiliation(s)
- Koji Taniguchi
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Yamachika
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| | - Feng He
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
18
|
Andersen AN, Landsverk OJ, Simonsen A, Bogen B, Corthay A, Øynebråten I. Coupling of HIV-1 Antigen to the Selective Autophagy Receptor SQSTM1/p62 Promotes T-Cell-Mediated Immunity. Front Immunol 2016; 7:167. [PMID: 27242780 PMCID: PMC4861724 DOI: 10.3389/fimmu.2016.00167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/18/2016] [Indexed: 12/26/2022] Open
Abstract
Vaccines aiming to promote T-cell-mediated immune responses have so far showed limited efficacy, and there is a need for novel strategies. Studies indicate that autophagy plays an inherent role in antigen processing and presentation for CD4+ and CD8+ T cells. Here, we report a novel vaccine strategy based on fusion of antigen to the selective autophagy receptor sequestosome 1 (SQSTM1)/p62. We hypothesized that redirection of vaccine antigen from proteasomal degradation into the autophagy pathway would increase the generation of antigen-specific T cells. A hybrid vaccine construct was designed in which the antigen is fused to the C-terminus of p62, a signaling hub, and a receptor that naturally delivers ubiquitinated cargo for autophagic degradation. Fusion of the human immunodeficiency virus-1 antigen Gagp24 to p62 resulted in efficient antigen delivery into the autophagy pathway. Intradermal immunization of mice revealed that, in comparison to Gagp24 delivered alone, fusion to p62 enhanced the number of Gagp24-specific interferon-γ-producing T cells, including CD8+ T cells. The strategy may also have the potential to modulate the antigenic peptide repertoire. Because p62 and autophagy are highly conserved between species, we anticipate this strategy to be a candidate for the development of T-cell-based vaccines in humans.
Collapse
Affiliation(s)
- Aram Nikolai Andersen
- Tumor Immunology Group, Department of Pathology, Rikshospitalet, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Immunology, Rikshospitalet, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ole Jørgen Landsverk
- Centre for Immune Regulation, University of Oslo, Oslo, Norway; LIIPAT, Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo , Oslo , Norway
| | - Bjarne Bogen
- Department of Immunology, Rikshospitalet, University of Oslo and Oslo University Hospital, Oslo, Norway; Centre for Immune Regulation, University of Oslo, Oslo, Norway; K. G. Jebsen Centre for Influenza Research, University of Oslo, Oslo, Norway
| | - Alexandre Corthay
- Tumor Immunology Group, Department of Pathology, Rikshospitalet, University of Oslo and Oslo University Hospital , Oslo , Norway
| | - Inger Øynebråten
- Tumor Immunology Group, Department of Pathology, Rikshospitalet, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Immunology, Rikshospitalet, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
19
|
Tobias IS, Newton AC. Protein Scaffolds Control Localized Protein Kinase Cζ Activity. J Biol Chem 2016; 291:13809-22. [PMID: 27143478 DOI: 10.1074/jbc.m116.729483] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 11/06/2022] Open
Abstract
Atypical protein kinase C (aPKC) isozymes modulate insulin signaling and cell polarity, but how their activity is controlled in cells is not well understood. These enzymes are constitutively phosphorylated, insensitive to second messengers, and have relatively low activity. Here we show that protein scaffolds not only localize but also differentially control the catalytic activity of the aPKC PKCζ, thus promoting activity toward localized substrates and restricting activity toward global substrates. Using cellular substrate readouts and scaffolded activity reporters in live cell imaging, we show that PKCζ has highly localized and differentially controlled activity on the scaffolds p62 and Par6. Both scaffolds tether aPKC in an active conformation as assessed through pharmacological inhibition of basal activity, monitored using a genetically encoded reporter for PKC activity. However, binding to Par6 is of higher affinity and is more effective in locking PKCζ in an active conformation. FRET-based translocation assays reveal that insulin promotes the association of both p62 and aPKC with the insulin-regulated scaffold IRS-1. Using the aPKC substrate MARK2 as another readout for activity, we show that overexpression of IRS-1 reduces the phosphorylation of MARK2 and enhances its plasma membrane localization, indicating sequestration of aPKC by IRS-1 away from MARK2. These results are consistent with scaffolds serving as allosteric activators of aPKCs, tethering them in an active conformation near specific substrates. Thus, signaling of these intrinsically low activity kinases is kept at a minimum in the absence of scaffolding interactions, which position the enzymes for stoichiometric phosphorylation of substrates co-localized on the same protein scaffold.
Collapse
Affiliation(s)
- Irene S Tobias
- From the Department of Pharmacology and Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California 92093
| | | |
Collapse
|
20
|
Wang L, Ebrahimi KB, Chyn M, Cano M, Handa JT. Biology of p62/sequestosome-1 in Age-Related Macular Degeneration (AMD). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:17-22. [PMID: 26427388 DOI: 10.1007/978-3-319-17121-0_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
p62/sequestosome-1 is a multidimensional protein that interacts with many signaling factors, and regulates a variety of cellular functions including inflammation, apoptosis, and autophagy. Our previous work has revealed in the retinal pigment epithelium (RPE) that p62 promotes autophagy and simultaneously enhances an Nrf2-mediated antioxidant response to protect against acute oxidative stress. Several recent studies demonstrated that p62 contributes to NFkB mediated inflammation and inflammasome activation under certain circumstances, raising the question of whether p62 protects against or contributes to tissue injury. Herein, we will review the general characteristics of p62, focusing on its pro- and anti-cell survival roles within different physiological/pathological contexts, and discuss the potential of p62 as a therapeutic target for AMD.
Collapse
Affiliation(s)
- Lei Wang
- Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 N Broadway, Rm 3001-D, the Smith Building, 21287, Baltimore, MD, USA.
| | - Katayoon B Ebrahimi
- Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 N Broadway, Rm 3001-D, the Smith Building, 21287, Baltimore, MD, USA.
| | - Michelle Chyn
- Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 N Broadway, Rm 3001-D, the Smith Building, 21287, Baltimore, MD, USA.
| | - Marisol Cano
- Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 N Broadway, Rm 3001-D, the Smith Building, 21287, Baltimore, MD, USA.
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 N Broadway, Rm 3001-D, the Smith Building, 21287, Baltimore, MD, USA.
| |
Collapse
|
21
|
Lim PS, Sutton CR, Rao S. Protein kinase C in the immune system: from signalling to chromatin regulation. Immunology 2015; 146:508-22. [PMID: 26194700 DOI: 10.1111/imm.12510] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/29/2015] [Accepted: 07/15/2015] [Indexed: 12/12/2022] Open
Abstract
Protein kinase C (PKC) form a key family of enzymes involved in signalling pathways that specifically phosphorylates substrates at serine/threonine residues. Phosphorylation by PKC is important in regulating a variety of cellular events such as cell proliferation and the regulation of gene expression. In the immune system, PKCs are involved in regulating signal transduction pathways important for both innate and adaptive immunity, ultimately resulting in the expression of key immune genes. PKCs act as mediators during immune cell signalling through the immunological synapse. PKCs are traditionally known to be cytoplasmic signal transducers and are well embedded in the signalling pathways of cells to mediate the cells' response to a stimulus from the plasma membrane to the nucleus. PKCs are also found to transduce signals within the nucleus, a process that is distinct from the cytoplasmic signalling pathway. There is now growing evidence suggesting that PKC can directly regulate gene expression programmes through a non-traditional role as nuclear kinases. In this review, we will focus on the role of PKCs as key cytoplasmic signal transducers in immune cell signalling, as well as its role in nuclear signal transduction. We will also highlight recent evidence for its newly discovered regulatory role in the nucleus as a chromatin-associated kinase.
Collapse
Affiliation(s)
- Pek Siew Lim
- Discipline of Biomedical Sciences, Faculty of Applied Science, University of Canberra, Canberra, ACT, Australia
| | - Christopher Ray Sutton
- Discipline of Biomedical Sciences, Faculty of Applied Science, University of Canberra, Canberra, ACT, Australia
| | - Sudha Rao
- Discipline of Biomedical Sciences, Faculty of Applied Science, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
22
|
Blocking the ZZ domain of sequestosome1/p62 suppresses myeloma growth and osteoclast formation in vitro and induces dramatic bone formation in myeloma-bearing bones in vivo. Leukemia 2015; 30:390-8. [PMID: 26286116 PMCID: PMC4740189 DOI: 10.1038/leu.2015.229] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/17/2015] [Accepted: 07/27/2015] [Indexed: 12/22/2022]
Abstract
We reported that p62 (sequestosome 1) serves as a signaling hub in bone marrow stromal cells (BMSC) for the formation of signaling complexes, including NFκB, p38MAPK, and JNK, that are involved in the increased osteoclastogenesis and multiple myeloma (MM) cell growth induced by BMSC that are key contributors to myeloma bone disease (MMBD), and demonstrated that the ZZ-domain of p62 (p62-ZZ) is required for BMSC enhancement of MMBD. We recently identified a novel p62-ZZ inhibitor, XRK3F2, that inhibits MM cell growth and BMSC growth enhancement of human MM cells. In the current study we evaluate the relative specificity of XRK3F2 for p62-ZZ, characterize XRK3F2’s capacity to inhibit growth of primary MM cells and human MM cell lines, and test the in vivo effects of XRK3F2 in the immunocompetent 5TGM1 MM model. We found that XRK3F2 induces dramatic cortical bone formation that is restricted to MM containing bones and blocked the effects and upregulation of TNFα, an OBL differentiation inhibitor that is increased in the MM bone marrow microenvironment and utilizes signaling complexes formed on p62-ZZ, in BMSC. Interestingly, XRK3F2 had no effect on non-MM bearing bone. These results demonstrate that targeting p62 in MM models has profound effects on MMBD.
Collapse
|
23
|
PKA phosphorylation of p62/SQSTM1 regulates PB1 domain interaction partner binding. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2765-74. [PMID: 25110345 DOI: 10.1016/j.bbamcr.2014.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 11/21/2022]
Abstract
p62, also known as SQSTM1, is a multi-domain signalling scaffold protein involved in numerous critical cellular functions such as autophagy, apoptosis and inflammation. Crucial interactions relevant to these functions are mediated by the N-terminal Phox and Bem1p (PB1) domain, which is divided into two interaction surfaces, one of predominantly acidic and one of basic character. Most known interaction partners, including atypical protein kinase C (aPKC), bind to the basic surface, and acidic-basic interactions at this interface also allow for p62 homopolymerisation. We identify here that the coupling of p62 to the cAMP signalling system is conferred by both the direct binding of cAMP degrading phosphodiesterase-4 (PDE4) to the acidic surface of the p62 PB1 domain and the phosphorylation of the basic surface of this domain by cAMP-dependent protein kinase (PKA). Such phosphorylation is a previously unknown means of regulating PB1 domain interaction partnerships by disrupting the interaction of p62 with basic surface binding partners, such as aPKCs, as well as p62 homopolymerisation. Thus, we uncover a new regulatory mechanism that connects cAMP signalling with the p62 multi-domain signalling scaffold and autophagy cargo receptor protein.
Collapse
|
24
|
Calderilla-Barbosa L, Seibenhener ML, Du Y, Diaz-Meco MT, Moscat J, Yan J, Wooten MW, Wooten MC. Interaction of SQSTM1 with the motor protein dynein--SQSTM1 is required for normal dynein function and trafficking. J Cell Sci 2014; 127:4052-63. [PMID: 25015291 DOI: 10.1242/jcs.152363] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The dynein motor protein complex is required for retrograde transport of vesicular cargo and for transport of aggregated proteins along microtubules for processing and degradation at perinuclear aggresomes. Disruption of this process leads to dysfunctional endosome accumulation and increased protein aggregation in the cell cytoplasm, both pathological features of neurodegenerative diseases. However, the exact mechanism of dynein functionality in these pathways is still being elucidated. Here, we show that the scaffolding protein SQSTM1 directly interacts with dynein through a previously unidentified dynein-binding site. This interaction is independent of HDAC6, a known interacting protein of both SQSTM1 and dynein. However, knockdown of HDAC6 increases the interaction of SQSTM1 with dynein, indicating a possible competitive interaction. Using different dynein cargoes, we show that SQSTM1 is required for proper dynein motility and trafficking along microtubules. Based on our results, we propose a new model of competitive interaction between SQSTM1 and HDAC6 with dynein. In this model, SQSTM1 would not only affect the association of polyubiquitylated protein aggregates and endosomes with dynein, but would also be required for normal dynein function.
Collapse
Affiliation(s)
- Luis Calderilla-Barbosa
- Department of Biological Sciences, 331 Funchess Hall, Auburn University, Auburn, AL 36849, USA
| | - M Lamar Seibenhener
- Department of Biological Sciences, 331 Funchess Hall, Auburn University, Auburn, AL 36849, USA
| | - Yifeng Du
- Department of Biological Sciences, 331 Funchess Hall, Auburn University, Auburn, AL 36849, USA
| | - Maria-Theresa Diaz-Meco
- 10901 North Torrey Pines Road, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Jorge Moscat
- 10901 North Torrey Pines Road, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Jin Yan
- Graduate Center for Toxicology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Marie W Wooten
- Department of Biological Sciences, 331 Funchess Hall, Auburn University, Auburn, AL 36849, USA
| | - Michael C Wooten
- Department of Biological Sciences, 331 Funchess Hall, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
25
|
The "memory kinases": roles of PKC isoforms in signal processing and memory formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:31-59. [PMID: 24484697 DOI: 10.1016/b978-0-12-420170-5.00002-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The protein kinase C (PKC) isoforms, which play an essential role in transmembrane signal conduction, can be viewed as a family of "memory kinases." Evidence is emerging that they are critically involved in memory acquisition and maintenance, in addition to their involvement in other functions of cells. Deficits in PKC signal cascades in neurons are one of the earliest abnormalities in the brains of patients suffering from Alzheimer's disease. Their dysfunction is also involved in several other types of memory impairments, including those related to emotion, mental retardation, brain injury, and vascular dementia/ischemic stroke. Inhibition of PKC activity leads to a reduced capacity of many types of learning and memory, but may have therapeutic values in treating substance abuse or aversive memories. PKC activators, on the other hand, have been shown to possess memory-enhancing and antidementia actions. PKC pharmacology may, therefore, represent an attractive area for developing effective cognitive drugs for the treatment of many types of memory disorders and dementias.
Collapse
|
26
|
Structural and biochemical insights into the homotypic PB1-PB1 complex between PKCζ and p62. SCIENCE CHINA-LIFE SCIENCES 2013; 57:69-80. [PMID: 24369353 DOI: 10.1007/s11427-013-4592-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/22/2013] [Indexed: 01/10/2023]
Abstract
The atypical PKC isoforms (ζ and ı) play essential roles in regulating various cellular processes. Both the hetero-interaction between PKCζ and p62 through their N-terminal PB1 domains and the homo-oligomerization of p62 via its PB1 domain are critical for the activation of NF-κB signaling; however, the molecular mechanisms concerning the formation and regulation of these homotypic complexes remain unclear. Here we determined the crystal structure of PKCζ-PB1 in complex with a monomeric p62-PB1 mutant, where the massive electrostatic interactions between the acidic OPCA motif of PKCζ-PB1 and the basic surface of p62-PB1, as well as additional hydrogen bonds, ensure the formation of a stable and specific complex. The PKCζ-p62 interaction is interfered with the modification of a specific Cys of PKCζ by the antiarthritis drug aurothiomalate, though all four cysteine residues in the PKCζ-PB1 domain can be modified in in vitro assay. In addition, detailed structural and biochemical analyses demonstrate that the PB1 domains of aPKCs belong to the type I group, which can depolymerize the high-molecular-weight p62 aggregates into homo-oligomers of lower order. These data together unravel the molecular mechanisms of the homo-or hetero-interactions between p62 and PKCζ and provide the basis for designing inhibitors of NF-κB signaling.
Collapse
|
27
|
Ishii T, Warabi E, Siow RCM, Mann GE. Sequestosome1/p62: a regulator of redox-sensitive voltage-activated potassium channels, arterial remodeling, inflammation, and neurite outgrowth. Free Radic Biol Med 2013; 65:102-116. [PMID: 23792273 DOI: 10.1016/j.freeradbiomed.2013.06.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 12/14/2022]
Abstract
Sequestosome1/p62 (SQSTM1) is an oxidative stress-inducible protein regulated by the redox-sensitive transcription factor Nrf2. It is not an antioxidant but known as a multifunctional regulator of cell signaling with an ability to modulate targeted or selective degradation of proteins through autophagy. SQSTM1 implements these functions through physical interactions with different types of proteins including atypical PKCs, nonreceptor-type tyrosine kinase p56(Lck) (Lck), polyubiquitin, and autophagosomal factor LC3. One of the notable physiological functions of SQSTM1 is the regulation of redox-sensitive voltage-gated potassium (Kv) channels which are composed of α and β subunits: (Kvα)4 (Kvβ)4. Previous studies have established that SQSTM1 scaffolds PKCζ, enhancing phosphorylation of Kvβ which induces inhibition of pulmonary arterial Kv1.5 channels under acute hypoxia. Recent studies reveal that Lck indirectly interacts with Kv1.3 α subunits and plays a key role in acute hypoxia-induced Kv1.3 channel inhibition in T lymphocytes. Kv1.3 channels provide a signaling platform to modulate the migration and proliferation of arterial smooth muscle cells and activation of T lymphocytes, and hence have been recognized as a therapeutic target for treatment of restenosis and autoimmune diseases. In this review, we focus on the functional interactions of SQSTM1 with Kv channels through two key partners aPKCs and Lck. Furthermore, we provide molecular insights into the functions of SQSTM1 in suppression of proliferation of arterial smooth muscle cells and neointimal hyperplasia following carotid artery ligation, in T lymphocyte differentiation and activation, and in NGF-induced neurite outgrowth in PC12 cells.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
| | - Richard C M Siow
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, London SE1 9NH, UK
| | - Giovanni E Mann
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, London SE1 9NH, UK
| |
Collapse
|
28
|
Yan J, Seibenhener ML, Calderilla-Barbosa L, Diaz-Meco MT, Moscat J, Jiang J, Wooten MW, Wooten MC. SQSTM1/p62 interacts with HDAC6 and regulates deacetylase activity. PLoS One 2013; 8:e76016. [PMID: 24086678 PMCID: PMC3785417 DOI: 10.1371/journal.pone.0076016] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/19/2013] [Indexed: 01/03/2023] Open
Abstract
Protein aggregates can form in the cytoplasm of the cell and are accumulated at aggresomes localized to the microtubule organizing center (MTOC) where they are subsequently degraded by autophagy. In this process, aggregates are engulfed into autophagosomes which subsequently fuse with lysosomes for protein degradation. A member of the class II histone deacetylase family, histone deacetylase 6(HDAC6) has been shown to be involved in both aggresome formation and the fusion of autophagosomes with lysosomes making it an attractive target to regulate protein aggregation. The scaffolding protein sequestosome 1(SQSTM1)/p62 has also been shown to regulate accumulation and autophagic clearance of protein aggregates. Recent studies have revealed colocalization of HDAC6 and p62 to ubiquitinated mitochondria, as well as, ubiquitinated protein aggregates associated with the E3 ubiquitin ligase TRIM50. HDAC6 deacetylase activity is required for aggresome formation and can be regulated by protein interaction with HDAC6. Due to their colocalization at ubiquitinated protein aggregates, we sought to examine if p62 specifically interacted with HDAC6 and if so, if this interaction had any effect on HDAC6 activity and/or the physiological function of cortactin-F-actin assembly. We succeeded in identifying and mapping the direct interaction between HDAC6 and p62. We further show that this interaction regulates HDAC6 deacetylase activity. Data are presented demonstrating that the absence of p62 results in hyperactivation of HDAC6 and deacetylation of α-tubulin and cortactin. Further, upon induction of protein misfolding we show that p62 is required for perinuclear co-localization of cortactin-F-actin assemblies. Thus, our findings indicate that p62 plays a key role in regulating the recruitment of F-actin network assemblies to the MTOC, a critical cellular function that is required for successful autophagic clearance of protein aggregates.
Collapse
Affiliation(s)
- Jin Yan
- Department of Biological Sciences, Cellular and Molecular Biosciences Program, Auburn University, Auburn, Alabama, United States of America
| | - Michael Lamar Seibenhener
- Department of Biological Sciences, Cellular and Molecular Biosciences Program, Auburn University, Auburn, Alabama, United States of America
| | - Luis Calderilla-Barbosa
- Department of Biological Sciences, Cellular and Molecular Biosciences Program, Auburn University, Auburn, Alabama, United States of America
| | | | - Jorge Moscat
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jianxiong Jiang
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Marie W. Wooten
- Department of Biological Sciences, Cellular and Molecular Biosciences Program, Auburn University, Auburn, Alabama, United States of America
| | - Michael C. Wooten
- Department of Biological Sciences, Cellular and Molecular Biosciences Program, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
29
|
Saiz N, Grabarek JB, Sabherwal N, Papalopulu N, Plusa B. Atypical protein kinase C couples cell sorting with primitive endoderm maturation in the mouse blastocyst. Development 2013; 140:4311-22. [PMID: 24067354 PMCID: PMC4007710 DOI: 10.1242/dev.093922] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During mouse pre-implantation development, extra-embryonic primitive endoderm (PrE) and pluripotent epiblast precursors are specified in the inner cell mass (ICM) of the early blastocyst in a ‘salt and pepper’ manner, and are subsequently sorted into two distinct layers. Positional cues provided by the blastocyst cavity are thought to be instrumental for cell sorting; however, the sequence of events and the mechanisms that control this segregation remain unknown. Here, we show that atypical protein kinase C (aPKC), a protein associated with apicobasal polarity, is specifically enriched in PrE precursors in the ICM prior to cell sorting and prior to overt signs of cell polarisation. aPKC adopts a polarised localisation in PrE cells only after they reach the blastocyst cavity and form a mature epithelium, in a process that is dependent on FGF signalling. To assess the role of aPKC in PrE formation, we interfered with its activity using either chemical inhibition or RNAi knockdown. We show that inhibition of aPKC from the mid blastocyst stage not only prevents sorting of PrE precursors into a polarised monolayer but concomitantly affects the maturation of PrE precursors. Our results suggest that the processes of PrE and epiblast segregation, and cell fate progression are interdependent, and place aPKC as a central player in the segregation of epiblast and PrE progenitors in the mouse blastocyst.
Collapse
Affiliation(s)
- Néstor Saiz
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
30
|
Manley S, Williams JA, Ding WX. Role of p62/SQSTM1 in liver physiology and pathogenesis. Exp Biol Med (Maywood) 2013; 238:525-38. [PMID: 23856904 DOI: 10.1177/1535370213489446] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
p62/sequestosome-1/A170/ZIP (hereafter referred to as p62) is a scaffold protein that has multiple functions, such as signal transduction, cell proliferation, cell survival, cell death, inflammation, tumourigenesis and oxidative stress response. While p62 is an autophagy substrate and is degraded by autophagy, p62 serves as an autophagy receptor for selective autophagic clearance of protein aggregates and organelles. Moreover, p62 functions as a signalling hub for various signalling pathways, including NF-κB, Nrf2 and mTOR. In this review, we discuss the pathophysiological role of p62 in the liver, including formation of hepatic inclusion bodies, cholestasis, obesity, insulin resistance, liver cell death and tumourigenesis.
Collapse
Affiliation(s)
- Sharon Manley
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, USA
| | | | | |
Collapse
|
31
|
Harada H, Warabi E, Matsuki T, Yanagawa T, Okada K, Uwayama J, Ikeda A, Nakaso K, Kirii K, Noguchi N, Bukawa H, Siow RCM, Mann GE, Shoda J, Ishii T, Sakurai T. Deficiency of p62/Sequestosome 1 causes hyperphagia due to leptin resistance in the brain. J Neurosci 2013; 33:14767-77. [PMID: 24027277 PMCID: PMC6705174 DOI: 10.1523/jneurosci.2954-12.2013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 01/08/2023] Open
Abstract
The cytoplasmic regulatory protein p62 (Sequestosome 1/A170) is known to modulate various receptor-mediated intracellular signaling pathways. p62 deficiency was shown to result in mature-onset obesity in mice, but the mechanisms underlying this abnormality remained unclear. Here we report that hyperphagia due to central leptin resistance is the cause of obesity in p62(-/-) mice. We found that these mice show hyperphagia. Restriction of food to the amount eaten by wild-type mice prevented excess body weight gain and fat accumulation, suggesting that overfeeding is the primary cause of obesity in p62(-/-) mice. Brain-specific p62 deficiency caused mature-onset obesity to the same extent as in p62(-/-) mice, further supporting a neuronal mechanism as the major cause of obesity in these mice. Immunohistochemical analysis revealed that p62 is highly expressed in hypothalamic neurons, including POMC neurons in the arcuate nucleus. Central leptin resistance was observed even in young preobese p62(-/-) mice. We found a defect in intracellular distribution of the transcription factor Stat3, which is essential for the action of leptin, in p62(-/-) mice. These results indicate that brain p62 plays an important role in bodyweight control by modulating the central leptin-signaling pathway and that lack of p62 in the brain causes leptin resistance, leading to hyperphagia. Thus, p62 could be a clinical target for treating obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Harumi Harada
- Majors of Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Eiji Warabi
- Majors of Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Taizo Matsuki
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
- Center for Behavioral Molecular Genetics, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Toru Yanagawa
- Majors of Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Kosuke Okada
- Majors of Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Junya Uwayama
- Majors of Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Akira Ikeda
- Majors of Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Kazuhiro Nakaso
- Department of Neurology, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8504, Japan
| | - Kyoko Kirii
- Majors of Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Noriko Noguchi
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan, and
| | - Hiroki Bukawa
- Majors of Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Richard C. M. Siow
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, London SE1 9NH, United Kingdom
| | - Giovanni E. Mann
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, London SE1 9NH, United Kingdom
| | - Junichi Shoda
- Majors of Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Tetsuro Ishii
- Majors of Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Takeshi Sakurai
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
32
|
Gao W, Chen Z, Wang W, Stang MT. E1-like activating enzyme Atg7 is preferentially sequestered into p62 aggregates via its interaction with LC3-I. PLoS One 2013; 8:e73229. [PMID: 24023838 PMCID: PMC3762827 DOI: 10.1371/journal.pone.0073229] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/18/2013] [Indexed: 01/07/2023] Open
Abstract
p62 is constitutively degraded by autophagy via its interaction with LC3. However, the interaction of p62 with LC3 species in the context of the LC3 lipidation process is not specified. Further, the p62-mediated protein aggregation's effect on autophagy is unclear. We systemically analyzed the interactions of p62 with all known Atg proteins involved in LC3 lipidation. We find that p62 does not interact with LC3 at the stages when it is being processed by Atg4B or when it is complexed or conjugated with Atg3. p62 does interact with LC3-I and LC3-I:Atg7 complex and is preferentially recruited by LC3-II species under autophagic stimulation. Given that Atg4B, Atg3 and LC3-Atg3 are indispensable for LC3-II conversion, our study reveals a protective mechanism for Atg4B, Atg3 and LC3-Atg3 conjugate from being inappropriately sequestered into p62 aggregates. Our findings imply that p62 could potentially impair autophagy by negatively affecting LC3 lipidation and contribute to the development of protein aggregate diseases.
Collapse
Affiliation(s)
- Wentao Gao
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Zhixia Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Wei Wang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Michael T. Stang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
33
|
Seidl S, Braun U, Roos N, Li S, Lüdtke THW, Kispert A, Leitges M. Phenotypical analysis of atypical PKCs in vivo function display a compensatory system at mouse embryonic day 7.5. PLoS One 2013; 8:e62756. [PMID: 23690951 PMCID: PMC3653893 DOI: 10.1371/journal.pone.0062756] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/25/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The atypical protein kinases C (PKC) isoforms ι/λ and ζ play crucial roles in many cellular processes including development, cell proliferation, differentiation and cell survival. Possible redundancy between the two isoforms has always been an issue since most biochemical tools do not differentiate between the two proteins. Thus, much effort has been made during the last decades to characterize the functions of aPKCs using gene targeting approaches and depletion studies. However, little is known about the specific roles of each isoform in mouse development. METHODOLOGY/PRINCIPAL FINDINGS To evaluate the importance of PKCι in mouse development we designed PKCι deletion mutants using the gene targeting approach. We show that the deletion of PKCι, results in a reduced size of the amniotic cavity at E7.5 and impaired growth of the embryo at E8.5 with subsequent absorption of the embryo. Our data also indicate an impaired localization of ZO-1 and disorganized structure of the epithelial tissue in the embryo. Importantly, using electron microscopy, embryoid body formation and immunofluorescence analysis, we found, that in the absence of PKCι, tight junctions and apico-basal polarity were still established. Finally, our study points to a non-redundant PKCι function at E9.5, since expression of PKCζ is able to rescue the E7.5 phenotype, but could not prevent embryonic lethality at a later time-point (E9.5). CONCLUSION Our data show that PKCι is crucial for mouse embryogenesis but is dispensable for the establishment of polarity and tight junction formation. We present a compensatory function of PKCζ at E7.5, rescuing the phenotype. Furthermore, this study indicates at least one specific, yet unknown, PKCι function that cannot be compensated by the overexpression of PKCζ at E9.5.
Collapse
Affiliation(s)
- Sebastian Seidl
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| | - Ursula Braun
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| | - Norbert Roos
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Shaohua Li
- Department of Surgery, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Timo H.-W. Lüdtke
- Institute for Molecular Biology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andreas Kispert
- Institute for Molecular Biology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Michael Leitges
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| |
Collapse
|
34
|
Schofield AV, Bernard O. Rho-associated coiled-coil kinase (ROCK) signaling and disease. Crit Rev Biochem Mol Biol 2013; 48:301-16. [PMID: 23601011 DOI: 10.3109/10409238.2013.786671] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The small Rho GTPase family of proteins, encompassing the three major G-protein classes Rho, Rac and cell division control protein 42, are key mitogenic signaling molecules that regulate multiple cancer-associated cellular phenotypes including cell proliferation and motility. These proteins are known for their role in the regulation of actin cytoskeletal dynamics, which is achieved through modulating the activity of their downstream effector molecules. The Rho-associated coiled-coil kinase 1 and 2 (ROCK1 and ROCK2) proteins were the first discovered Rho effectors that were primarily established as players in RhoA-mediated stress fiber formation and focal adhesion assembly. It has since been discovered that the ROCK kinases actively phosphorylate a large cohort of actin-binding proteins and intermediate filament proteins to modulate their functions. It is well established that global cellular morphology, as modulated by the three cytoskeletal networks: actin filaments, intermediate filaments and microtubules, is regulated by a variety of accessory proteins whose activities are dependent on their phosphorylation by the Rho-kinases. As a consequence, they regulate many key cellular functions associated with malignancy, including cell proliferation, motility and viability. In this current review, we focus on the role of the ROCK-signaling pathways in disease including cancer.
Collapse
Affiliation(s)
- Alice V Schofield
- St Vincent's Institute of Medical Research, Cytoskeleton and Cancer Unit and Department of Medicine, St Vincent's Hospital, University of Melbourne, Victoria 3065, Australia
| | | |
Collapse
|
35
|
PKCλ is critical in AMPA receptor phosphorylation and synaptic incorporation during LTP. EMBO J 2013; 32:1365-80. [PMID: 23511975 DOI: 10.1038/emboj.2013.60] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 02/13/2013] [Indexed: 01/26/2023] Open
Abstract
Direct phosphorylation of GluA1 by PKC controls α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) receptor (AMPAR) incorporation into active synapses during long-term potentiation (LTP). Numerous signalling molecules that involved in AMPAR incorporation have been identified, but the specific PKC isoform(s) participating in GluA1 phosphorylation and the molecule triggering PKC activation remain largely unknown. Here, we report that the atypical isoform of PKC, PKCλ, is a critical molecule that acts downstream of phosphatidylinositol 3-kinase (PI3K) and is essential for LTP expression. PKCλ activation is required for both GluA1 phosphorylation and increased surface expression of AMPARs during LTP. Moreover, p62 interacts with both PKCλ and GluA1 during LTP and may serve as a scaffolding protein to place PKCλ in close proximity to facilitate GluA1 phosphorylation by PKCλ. Thus, we conclude that PKCλ is the critical signalling molecule responsible for GluA1-containing AMPAR phosphorylation and synaptic incorporation at activated synapses during LTP expression.
Collapse
|
36
|
Spinal atypical protein kinase C activity is necessary to stabilize inactivity-induced phrenic motor facilitation. J Neurosci 2013; 32:16510-20. [PMID: 23152633 DOI: 10.1523/jneurosci.2631-12.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The neural network controlling breathing must establish rhythmic motor output at a level adequate to sustain life. Reduced respiratory neural activity elicits a novel form of plasticity in circuits driving the diaphragm known as inactivity-induced phrenic motor facilitation (iPMF), a rebound increase in phrenic inspiratory output observed once respiratory neural drive is restored. The mechanisms underlying iPMF are unknown. Here, we demonstrate in anesthetized rats that spinal mechanisms give rise to iPMF and that iPMF consists of at least two mechanistically distinct phases: (1) an early, labile phase that requires atypical PKC (PKCζ and/or PKCι/λ) activity to transition to a (2) late, stable phase. Early (but not late) iPMF is associated with increased interactions between PKCζ/ι and the scaffolding protein ZIP (PKCζ-interacting protein)/p62 in spinal regions associated with the phrenic motor pool. Although PKCζ/ι activity is necessary for iPMF, spinal atypical PKC activity is not necessary for phrenic long-term facilitation (pLTF) following acute intermittent hypoxia, an activity-independent form of spinal respiratory plasticity. Thus, while iPMF and pLTF both manifest as prolonged increases in phrenic burst amplitude, they arise from distinct spinal cellular pathways. Our data are consistent with the hypotheses that (1) local mechanisms sense and respond to reduced respiratory-related activity in the phrenic motor pool and (2) inactivity-induced increases in phrenic inspiratory output require local PKCζ/ι activity to stabilize into a long-lasting iPMF. Although the physiological role of iPMF is unknown, we suspect that iPMF represents a compensatory mechanism, assuring adequate motor output in a physiological system in which prolonged inactivity ends life.
Collapse
|
37
|
Müller TD, Lee SJ, Jastroch M, Kabra D, Stemmer K, Aichler M, Abplanalp B, Ananthakrishnan G, Bhardwaj N, Collins S, Divanovic S, Endele M, Finan B, Gao Y, Habegger KM, Hembree J, Heppner KM, Hofmann S, Holland J, Küchler D, Kutschke M, Krishna R, Lehti M, Oelkrug R, Ottaway N, Perez-Tilve D, Raver C, Walch AK, Schriever SC, Speakman J, Tseng YH, Diaz-Meco M, Pfluger PT, Moscat J, Tschöp MH. p62 links β-adrenergic input to mitochondrial function and thermogenesis. J Clin Invest 2012; 123:469-78. [PMID: 23257354 DOI: 10.1172/jci64209] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 11/01/2012] [Indexed: 12/22/2022] Open
Abstract
The scaffold protein p62 (sequestosome 1; SQSTM1) is an emerging key molecular link among the metabolic, immune, and proliferative processes of the cell. Here, we report that adipocyte-specific, but not CNS-, liver-, muscle-, or myeloid-specific p62-deficient mice are obese and exhibit a decreased metabolic rate caused by impaired nonshivering thermogenesis. Our results show that p62 regulates energy metabolism via control of mitochondrial function in brown adipose tissue (BAT). Accordingly, adipocyte-specific p62 deficiency led to impaired mitochondrial function, causing BAT to become unresponsive to β-adrenergic stimuli. Ablation of p62 leads to decreased activation of p38 targets, affecting signaling molecules that control mitochondrial function, such as ATF2, CREB, PGC1α, DIO2, NRF1, CYTC, COX2, ATP5β, and UCP1. p62 ablation in HIB1B and BAT primary cells demonstrated that p62 controls thermogenesis in a cell-autonomous manner, independently of brown adipocyte development or differentiation. Together, our data identify p62 as a novel regulator of mitochondrial function and brown fat thermogenesis.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum Muenchen and Department of Medicine, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim GY, Nigro P, Fujiwara K, Abe JI, Berk BC. p62 binding to protein kinase C ζ regulates tumor necrosis factor α-induced apoptotic pathway in endothelial cells. Arterioscler Thromb Vasc Biol 2012; 32:2974-80. [PMID: 23023376 DOI: 10.1161/atvbaha.112.300054] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Protein kinase C (PKC) ζ is a key pathological mediator of endothelial cell apoptosis. p62 is a scaffold protein that regulates several cell signaling pathways by binding to target proteins. Because PKCζ and p62 contain Phox/Bem1p (PB1) modules that mediate protein-protein interactions, we hypothesized that an interaction between p62 and PKCζ is required for tumor necrosis factor α-induced PKCζ signaling in endothelial cells. METHODS AND RESULTS In human umbilical vein endothelial cell, tumor necrosis factor α (10 ng/mL) enhanced the interaction between p62 and PKCζ. Transfection with p62 small interfering RNA reduced the activation of both PKCζ and its downstream targets JNK and caspase 3, suggesting that p62 is necessary for PKCζ signaling. Overexpression of only the PB1 domain of p62 inhibited p62-PKCζ interaction, showing that binding of these 2 proteins is mediated by their PB1 domains. Furthermore, overexpression of the p62 PB1 domain suppressed tumor necrosis factor α-induced PKCζ activation and subsequent activation of JNK and caspase 3. Finally, transfection of either p62 small interfering RNA or the PB1 domain of p62 inhibited human umbilical vein endothelial cell apoptosis. CONCLUSIONS Our results suggest a novel function of p62 that regulates the activity of PKCζ by binding to PKCζ, thereby activating the PKCζ-JNK-caspase 3 apoptotic pathway in endothelial cells.
Collapse
Affiliation(s)
- Geun-Young Kim
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
From the very early days of nuclear factor-κB (NF-κB) research, it was recognized that different protein kinase C (PKC) isoforms might be involved in the activation of NF-κB. Pharmacological tools and pseudosubstrate inhibitors suggested that these kinases play a role in this important inflammatory and survival pathway; however, it was the analysis of several genetic mouse knockout models that revealed the complexity and interrelations between the different components of the PB1 network in several cellular functions, including T-cell biology, bone homeostasis, inflammation associated with the metabolic syndrome, and cancer. These studies unveiled, for example, the critical role of PKCζ as a positive regulator of NF-κB through the regulation of RelA but also its inflammatory suppressor activities through the regulation of the interleukin-4 signaling cascade. This observation is of relevance in T cells, where p62, PKCζ, PKCλ/ι, and NBR1 establish a mesh of interactions that culminate in the regulation of T-cell effector responses through the modulation of T-cell polarity. Many questions remain to be answered, not just from the point of view of the implication for NF-κB activation but also with regard to the in vivo interplay between these pathways in pathophysiological processes like obesity and cancer.
Collapse
|
40
|
Liu X, Gal J, Zhu H. Sequestosome 1/p62: a multi-domain protein with multi-faceted functions. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1217-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Seidl S, Braun UB, Leitges M. Functional comparison of protein domains within aPKCs involved in nucleocytoplasmic shuttling. Biol Open 2012; 1:436-45. [PMID: 23213435 PMCID: PMC3507206 DOI: 10.1242/bio.2012505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The atypical protein kinases C (PKC) isoforms ι and ζ play crucial roles in regulation of signaling pathways related to proliferation, differentiation and cell survival. Over the years several interaction partners and phosphorylation targets have been identified. However, little is known about the regulation of atypical aPKC isoforms. To address this question, we performed a comparative analysis of atypical aPKCι/λ and ζ in MDCK cells. By using green fluorescence protein (GFP) fusion proteins containing the full-length or truncated proteins, we were able to recognize differences in subcellular localization and nucleocytoplasmic shuttling of both isoforms. We show, that an earlier described nuclear localization sequence (NLS), plays a role in the regulation of atypical aPKCζ but not in aPKCι, despite the fact that it is present in both isoforms. Leptomycin B treatment induces accumulation of GFP-fusion protein of both isoforms in the nucleus. Regardless, the loss of the NLS only decreases shuttling of aPKCζ, while aPKCι remains unaffected. In addition, we identified the hinge region as a potential regulator of localization of atypical PKCs. With a set of chimeric proteins we show that the hinge region of aPKCι mediates nuclear localization. In contrast, the hinge region of aPKCζ causes exclusion from the nucleus, indicating two different mechanisms leading to isoform specific regulation. Taken together, we show for the first time, that the atypical isoforms aPKCι and ζ underly different mechanisms regarding their regulation of subcellular localization and translocation into the nucleus in MDCK cells.
Collapse
Affiliation(s)
- Sebastian Seidl
- Biotechnology Centre of Oslo, University of Oslo , NO-0349, Oslo , Norway
| | | | | |
Collapse
|
42
|
p62: a versatile multitasker takes on cancer. Trends Biochem Sci 2012; 37:230-6. [PMID: 22424619 DOI: 10.1016/j.tibs.2012.02.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/15/2012] [Accepted: 02/21/2012] [Indexed: 11/24/2022]
Abstract
Since its initial discovery as an atypical protein kinase C (PKC)-interacting protein, p62 has emerged as a crucial molecule in a myriad of cellular functions. This multifunctional role of p62 is explained by its ability to interact with several key components of various signaling mechanisms. Not surprisingly, p62 is required for tumor transformation owing to its roles as a key molecule in nutrient sensing, as a regulator and substrate of autophagy, as an inducer of oxidative detoxifying proteins, and as a modulator of mitotic transit and genomic stability; all crucial events in the control of cell growth and cancer.
Collapse
|
43
|
Abstract
Mounting evidence suggests that autophagy is a more selective process than originally anticipated. The discovery and characterization of autophagic adapters, like p62 and NBR1, has provided mechanistic insight into this process. p62 and NBR1 are both selectively degraded by autophagy and able to act as cargo receptors for degradation of ubiquitinated substrates. A direct interaction between these autophagic adapters and the autophagosomal marker protein LC3, mediated by a so-called LIR (LC3-interacting region) motif, their inherent ability to polymerize or aggregate as well as their ability to specifically recognize substrates are required for efficient selective autophagy. These three required features of autophagic cargo receptors are evolutionarily conserved and also employed in the yeast cytoplasm-to-vacuole targeting (Cvt) pathway and in the degradation of P granules in C. elegans. Here, we review the mechanistic basis of selective autophagy in mammalian cells discussing the degradation of misfolded proteins, p62 bodies, aggresomes, mitochondria and invading bacteria. The emerging picture of selective autophagy affecting the regulation of cell signaling with consequences for oxidative stress responses, tumorigenesis and innate immunity is also addressed.
Collapse
Affiliation(s)
- Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, Tromsø, Norway.
| | | |
Collapse
|
44
|
Zou X, Feng Z, Li Y, Wang Y, Wertz K, Weber P, Fu Y, Liu J. Stimulation of GSH synthesis to prevent oxidative stress-induced apoptosis by hydroxytyrosol in human retinal pigment epithelial cells: activation of Nrf2 and JNK-p62/SQSTM1 pathways. J Nutr Biochem 2011; 23:994-1006. [PMID: 21937211 DOI: 10.1016/j.jnutbio.2011.05.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 05/15/2011] [Accepted: 05/16/2011] [Indexed: 12/30/2022]
Abstract
The Nrf2-Keap1 pathway is believed to be a critical regulator of the phase II defense system against oxidative stress. By activation of Nrf2, cytoprotective genes such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase (NQO-1) and γ-glutamyl-cysteine ligase (GCL) are induced. GCL-induced glutathione (GSH) production is believed to affect redox signaling, cell proliferation and death. We here report that tert-butyl hydroperoxide (t-BHP)-induced GSH reduction led to mitochondrial membrane potential loss and apoptosis in cultured human retinal pigment epithelial cells from the ARPE-19 cell line. Hydroxytyrosol (HT), a natural phytochemical from olive leaves and oil, was found to induce phase II enzymes and GSH, thus protect t-BHP-induced mitochondrial dysfunction and apoptosis. Depletion of GSH by buthionine-[S,R]-sulfoximine enhanced t-BHP toxicity and abolished HT protection. Overexpression of Nrf2 increased GSH content and efficiently protected t-BHP-induced mitochondrial membrane potential loss. Meanwhile, HT-induced GSH enhancement and induction of Nrf2 target gene (GCLc, GCLm, HO-1, NQO-1) messenger RNA (mRNA) were inhibited by Nrf2 knockdown, suggesting that HT increases GSH through Nrf2 activation. In addition, we found that HT was able to activate the PI3/Akt and mTOR/p70S6-kinase pathways, both of which contribute to survival signaling in stressed cells. However, the effect of HT was not inhibited by the PI3K inhibitor LY294002. Rather, c-Jun N-terminal kinase (JNK) activation was found to induce p62/SQSTM1 expression, which is involved in Nrf2 activation. Our study demonstrates that Nrf2 activation induced by the JNK pathway plays an essential role in the mechanism behind HT's strengthening of the antiapoptotic actions of the endogenous antioxidant system.
Collapse
Affiliation(s)
- Xuan Zou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Urbanczyk A, Enz R. Spartin recruits PKC-ζ via the PKC-ζ-interacting proteins ZIP1 and ZIP3 to lipid droplets. J Neurochem 2011; 118:737-48. [PMID: 21707618 DOI: 10.1111/j.1471-4159.2011.07367.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Protein kinase C-ζ interacting proteins (ZIP1-3) recruit the enzymatic activity of the atypical protein kinase C isoforms PKC-λ/ι or PKC-ζ to target proteins. In this study, we searched for binding partners of ZIP3 in the CNS and identified spartin, a multifunctional protein that is mutated in spastic paraplegia type 20. In transfected cells, spartin was present on the surface of lipid droplets (LD), whereas ZIP proteins appeared in intracellular speckles. In the presence of spartin, ZIP1 and ZIP3 were translocated to spartin-positive LD. This translocation was mediated by amino acids 196-393 of spartin that interacted with an N-terminal region of ZIP proteins. Furthermore, ZIP proteins interacted simultaneously with spartin and PKC-ζ, resulting in an enrichment of PKC-ζ on spartin/ZIP-labelled LD. Without spartin, neither ZIP proteins nor PKC-ζ were detected on LD. Interestingly, the presence of the spartin/ZIP/PKC-ζ complex increased LD size. This effect was most pronounced upon incorporation of the ZIP3 isoform into the trimer. Finally, we co-localized spartin, ZIP proteins and PKC-ζ in axon terminals of neurons in the mammalian retina. In summary, we describe spartin as new binding partner of the ZIP/PKC-ζ dimer that recruits PKC-ζ to LD and show that the expressed ZIP isoform regulates LD size.
Collapse
Affiliation(s)
- Andreas Urbanczyk
- Institut für Biochemie (Emil-Fischer-Zentrum), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
46
|
Lipp P, Reither G. Protein kinase C: the "masters" of calcium and lipid. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004556. [PMID: 21628429 DOI: 10.1101/cshperspect.a004556] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The coordinated and physiological behavior of living cells in an organism critically depends on their ability to interact with surrounding cells and with the extracellular space. For this, cells have to interpret incoming stimuli, correctly process the signals, and produce meaningful responses. A major part of such signaling mechanisms is the translation of incoming stimuli into intracellularly understandable signals, usually represented by second messengers or second-messenger systems. Two key second messengers, namely the calcium ion and signaling lipids, albeit extremely different in nature, play an important and often synergistic role in such signaling cascades. In this report, we will shed some light on an entire family of protein kinases, the protein kinases C, that are perfectly designed to exactly decode these two second messengers in all of their properties and convey the signaling content to downstream processes within the cell.
Collapse
Affiliation(s)
- Peter Lipp
- Institute for Molecular Cell Biology, Medical Faculty, Saarland University, Homburg/Saar, Germany.
| | | |
Collapse
|
47
|
Gautel M. Cytoskeletal protein kinases: titin and its relations in mechanosensing. Pflugers Arch 2011; 462:119-34. [PMID: 21416260 PMCID: PMC3114093 DOI: 10.1007/s00424-011-0946-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
Titin, the giant elastic ruler protein of striated muscle sarcomeres, contains a catalytic kinase domain related to a family of intrasterically regulated protein kinases. The most extensively studied member of this branch of the human kinome is the Ca(2+)-calmodulin (CaM)-regulated myosin light-chain kinases (MLCK). However, not all kinases of the MLCK branch are functional MLCKs, and about half lack a CaM binding site in their C-terminal autoinhibitory tail (AI). A unifying feature is their association with the cytoskeleton, mostly via actin and myosin filaments. Titin kinase, similar to its invertebrate analogue twitchin kinase and likely other "MLCKs", is not Ca(2+)-calmodulin-activated. Recently, local protein unfolding of the C-terminal AI has emerged as a common mechanism in the activation of CaM kinases. Single-molecule data suggested that opening of the TK active site could also be achieved by mechanical unfolding of the AI. Mechanical modulation of catalytic activity might thus allow cytoskeletal signalling proteins to act as mechanosensors, creating feedback mechanisms between cytoskeletal tension and tension generation or cellular remodelling. Similar to other MLCK-like kinases like DRAK2 and DAPK1, TK is linked to protein turnover regulation via the autophagy/lysosomal system, suggesting the MLCK-like kinases have common functions beyond contraction regulation.
Collapse
Affiliation(s)
- Mathias Gautel
- King's College London BHF Centre of Research Excellence, Cardiovascular Division, London, SE1 1UL, UK.
| |
Collapse
|
48
|
Abstract
The ubiquitin/proteasome pathway is the major proteolytic quality control system in cells. In this review we discuss the impact of a deregulation of this pathway on neuronal function and its causal relationship to the intracellular deposition of ubiquitin protein conjugates in pathological inclusion bodies in all the major chronic neurodegenerative disorders, such as Alzheimer's, Parkinson's and Huntington's diseases as well as amyotrophic lateral sclerosis. We describe the intricate nature of the ubiquitin/proteasome pathway and discuss the paradox of protein aggregation, i.e. its potential toxic/protective effect in neurodegeneration. The relations between some of the dysfunctional components of the pathway and neurodegeneration are presented. We highlight possible ubiquitin/proteasome pathway-targeting therapeutic approaches, such as activating the proteasome, enhancing ubiquitination and promoting SUMOylation that might be important to slow/treat the progression of neurodegeneration. Finally, a model time line is presented for neurodegeneration starting at the initial injurious events up to protein aggregation and cell death, with potential time points for therapeutic intervention.
Collapse
|
49
|
PKCζ-interacting protein ZIP3 is generated by intronic polyadenylation, and is expressed in the brain and retina of the rat. Biochem J 2011; 433:43-50. [PMID: 20979579 DOI: 10.1042/bj20101111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Scaffold proteins contain multiple protein-protein interaction modules that physically assemble functionally related proteins into larger complexes. ZIPs [PKC (protein kinase C) ζ-interacting proteins] link the enzymatic activity of the atypical PKC isoforms PKCλ/ι or PKCζ to target proteins and are associated with neurodegenerative disorders. In the rat, alternative splicing generates three ZIP variants. Previously, we identified the ZIP3 transcript, containing 13 C-terminal amino acids encoded by intron 4, in the rat CNS (central nervous system). In the present study, we identified intronic polyadenylation signals in rat and human ZIP genes [known as SQSTM1 (sequestosome-1) in humans] and detected the corresponding ZIP3-like transcripts. In addition, we generated ZIP3-specific immune sera and observed expression of the protein in the brain and retina of the adult rat. In the retina, ZIP3 is present in nuclear layers where it co-localizes with PKCζ. An immune serum recognizing all three ZIP isoforms labelled the same cells as the newly generated ZIP3-specific antibodies and, in addition, stained both synaptic layers of the retina. There, ZIPs are localized in axon terminals of rod bipolar cells that also contain ZIP-interacting PKCζ and GABA(C) (γ-aminobutyric acid type C) receptors. In summary, we detected ZIP3-like transcripts in rat- and human-derived samples and describe the expression of ZIP3 in the rat CNS.
Collapse
|
50
|
Ogasawara H, Kawato M. The protein kinase Mζ network as a bistable switch to store neuronal memory. BMC SYSTEMS BIOLOGY 2010; 4:181. [PMID: 21194445 PMCID: PMC3022653 DOI: 10.1186/1752-0509-4-181] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 12/31/2010] [Indexed: 11/10/2022]
Abstract
Background Protein kinase Mζ (PKMζ), the brain-specific, atypical protein kinase C isoform, plays a key role in long-term maintenance of memory. This molecule is essential for long-term potentiation of the neuron and various modalities of learning such as spatial memory and fear conditioning. It is unknown, however, how PKMζ stores information for long periods of time despite molecular turnover. Results We hypothesized that PKMζ forms a bistable switch because it appears to constitute a positive feedback loop (PKMζ induces its local synthesis) part of which is ultrasensitive (PKMζ stimulates its synthesis through dual pathways). To examine this hypothesis, we modeled the biochemical network of PKMζ with realistic kinetic parameters. Bifurcation analyses of the model showed that the system maintains either the up state or the down state according to previous inputs. Furthermore, the model was able to reproduce a variety of previous experimental results regarding synaptic plasticity and learning, which suggested that it captures the essential mechanism for neuronal memory. We proposed in vitro and in vivo experiments that would critically examine the validity of the model and illuminate the pivotal role of PKMζ in synaptic plasticity and learning. Conclusions This study revealed bistability of the PKMζ network and supported its pivotal role in long-term storage of memory.
Collapse
Affiliation(s)
- Hideaki Ogasawara
- National Institute of Information and Communications Technology, 2-2-2, Hikaridai, Seika, Kyoto 619-0288, Japan.
| | | |
Collapse
|