1
|
Chen J, Chitrakar R, Baugh LR. DAF-18/PTEN protects LIN-35/Rb from CLP-1/CAPN-mediated cleavage to promote starvation resistance. Life Sci Alliance 2025; 8:e202403147. [PMID: 40199585 PMCID: PMC11979363 DOI: 10.26508/lsa.202403147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
Starvation resistance is a fundamental trait with profound influence on fitness and disease risk. DAF-18, the Caenorhabditis elegans ortholog of the tumor suppressor PTEN, promotes starvation resistance. PTEN is a dual phosphatase, and DAF-18 promotes starvation resistance as a lipid phosphatase by antagonizing insulin/IGF and PI3K signaling, activating the tumor suppressor DAF-16/FoxO. However, if or how DAF-18/PTEN protein-phosphatase activity promotes starvation resistance is unknown. Using genetic, genomic, bioinformatic, and biochemical approaches, we identified the C. elegans retinoblastoma/RB protein homolog, LIN-35/Rb, as a critical mediator of the effect of DAF-18/PTEN on starvation resistance. We show that DAF-18/PTEN protects LIN-35/Rb from cleavage by the μ-Calpain homolog CLP-1/CAPN, and that LIN-35/Rb together with the repressive DREAM complex promotes starvation resistance. We conclude that the tumor suppressors DAF-18/PTEN and LIN-35/Rb function in a linear pathway, with LIN-35/Rb and the rest of the DREAM complex functioning as a transcriptional effector of DAF-18/PTEN protein-phosphatase activity resulting in repression of germline gene expression. This work is significant for revealing a network of tumor suppressors that promote survival during cellular and developmental quiescence.
Collapse
Affiliation(s)
- Jingxian Chen
- Department of Biology, Duke University, Durham, NC, USA
| | | | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Meeker MO, McColl LF, Malhotra PS. Spontaneous tonsillar hemorrhage in a patient with PTEN mutation: A case report and systematic literature review. Int J Pediatr Otorhinolaryngol 2025; 192:112315. [PMID: 40120468 DOI: 10.1016/j.ijporl.2025.112315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Phosphatase and tensin homolog hamartoma tumor syndrome (PTEN Syndrome), an autosomal dominant group of disorders caused by PTEN dysregulation, predisposes patients to hamartomas, lipomas, vascular tumors/malformations, and potential malignancies. A link between PTEN syndrome and early onset enlargement of tonsillar tissue has been described. Presented is the case of a child with PTEN syndrome who experienced spontaneous tonsillar hemorrhage (STH), followed by a systematic review of the literature. CASE DESCRIPTION A 9-year-old female with PTEN syndrome presented with sore throat, globus sensation, and oral bleeding. After a positive rapid-streptococcus swab, and exam demonstrating an exophytic, highly irregular left tonsil with hemorrhagic changes, a diagnosis of STH was made. Computed-tomography-angiography (CTA) of the neck showed no major vascular malformations, with extravasation from a small vessel of the left tonsil, and she subsequently underwent bilateral total tonsillectomy. A systematic review was performed and yielded 41 total cases of STH, none involving PTEN syndrome. DISCUSSION STH is a rare phenomenon commonly associated with acute or chronic tonsilitis. The presented patient had group A streptococcus pharyngitis but also evidence of arterial bleeding on CTA, suggesting contribution of PTEN syndrome. Within the systematic review, tonsillar pathologies in PTEN syndrome such as early tonsil enlargement were identified, but this is the first case of STH reported. Further, PTEN syndrome may lead to vascular anomalies, but their role in the presented case remains unknown. Further investigation is required to determine whether vascular anomalies and early tonsil enlargement associated with PTEN syndrome increase the risk of STH.
Collapse
Affiliation(s)
- Molly O Meeker
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Logan F McColl
- Department of Otolaryngology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Otolaryngology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Prashant S Malhotra
- Department of Otolaryngology, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
3
|
Venegas JA, Onur OE, Kang SC, Hitomi M, Eng C. Divergent PTEN-p53 interaction upon DNA damage in a human thyroid organoid model with germline PTEN mutations. Endocr Relat Cancer 2025; 32:e240216. [PMID: 39970536 PMCID: PMC11906015 DOI: 10.1530/erc-24-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/08/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Germline mutations in the tumor suppressor phosphatase and tensin homolog (PTEN) cause PTEN hamartoma tumor syndrome (PHTS). PHTS is characterized by an elevated lifetime risk of differentiated thyroid cancer (DTC), 30 times higher than the general population. However, only 1 in 3 PHTS patients develop DTC, and it remains unknown whether specific PTEN variants are associated with an increased risk of DTC. PTEN antagonizes the phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway, a frequently affected pathway in sporadic DTC. PTEN also acts as a guardian of the genome by interacting with other tumor suppressors. Here, we report how ionizing radiation, an environmental tumorigenic contributor, modifies the DNA damage response based on the type of germline PTEN variants. We hypothesized that certain PTEN variants associated with DTC create a pro-oncogenic molecular signature upon radiation-induced DNA damage. DTC-associated (PTEN M134R ) or DTC-non-associated (PTEN G132D ) germline PTEN mutant alleles were introduced into a human induced pluripotent cell (hiPSC) line derived from a healthy donor utilizing CRISPR-Cas9 gene editing technology. We determined radiation-induced transcriptomic changes in functional thyroid organoids induced from wild-type and both heterozygous PTEN mutant hiPSCs. Both bulk and single-cell RNA sequencing data indicated that radiation upregulated the p53 network more potently in the thyroid organoids with PTEN WT/G132D than those with PTEN WT/M134R , which could be mediated by AKT-dependent MDM2 inactivation and PTEN-p53 physical interaction. Our data suggest that the lack of p53 pathway activation through PTEN-p53 network interactions explains why PTEN M134R is a DTC-susceptible variant.
Collapse
Affiliation(s)
- Juan Andres Venegas
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Omer Enes Onur
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shin Chung Kang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Masahiro Hitomi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Yang X, Liu T, Cheng H. PTEN: a new dawn in Parkinson's disease treatment. Front Cell Neurosci 2025; 19:1497555. [PMID: 40129459 PMCID: PMC11931041 DOI: 10.3389/fncel.2025.1497555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/26/2025] [Indexed: 03/26/2025] Open
Abstract
In recent years, the study of phosphatase and tension homolog (PTEN) has gradually become a research hotspot. As an important oncogene, the role of PTEN in cancer has long been widely recognized and intensively studied, but it has been relatively less studied in other diseases. Parkinson's disease (PD) is a neurodegenerative refractory disease commonly observed in middle-aged and elderly individuals. The etiology and pathogenesis of PD are numerous, complex, and incompletely understood. With the continuous deepening of research, numerous studies have proven that PTEN is related to the occurrence of PD. In this review, we discuss the relationship between PTEN and PD through the phosphorylation and ubiquitination of PTEN and other possible regulatory mechanisms, including the role of RNA molecules, exosomes, transcriptional regulation, chemical modification, and subtype variation, with the aim of clarifying the regulatory role of PTEN in PD and better elucidating its pathogenesis. Finally, we summarize the shortcomings of PTEN in PD research and highlight the great potential of its future application in PD clinical treatment. These findings provide research ideas and new perspectives for the possible use of PTEN as a PD therapeutic target for targeted drug development and clinical application in the future.
Collapse
Affiliation(s)
| | - Tianqi Liu
- Medical College, Yangzhou University, Yangzhou, China
| | - Hong Cheng
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Chen J, Chitrakar R, Baugh LR. DAF-18/PTEN protects LIN-35/Rb from CLP-1/CAPN-mediated cleavage to promote starvation resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638677. [PMID: 40027768 PMCID: PMC11870551 DOI: 10.1101/2025.02.17.638677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Starvation resistance is a fundamental trait with profound influence on fitness and disease risk. DAF-18, the C. elegans ortholog of the tumor suppressor PTEN, promotes starvation resistance. PTEN is a dual phosphatase, and DAF-18 promotes starvation resistance as a lipid phosphatase by antagonizing insulin/IGF and PI3K signaling, activating the tumor suppressor DAF-16/FoxO. However, if or how DAF-18/PTEN protein-phosphatase activity promotes starvation resistance is unknown. Using genetic, genomic, bioinformatic, and biochemical approaches, we identified the C. elegans retinoblastoma/RB protein homolog, LIN-35/Rb, as a critical mediator of the effect of DAF-18/PTEN on starvation resistance. We show that DAF-18/PTEN protects LIN-35/Rb from cleavage by the μ-Calpain homolog CLP-1/CAPN, and that LIN-35/Rb together with the repressive DREAM complex promote starvation resistance. We conclude that the tumor suppressors DAF-18/PTEN and LIN-35/Rb function in a linear pathway, with LIN-35/Rb and the rest of the DREAM complex functioning as a transcriptional effector of DAF-18/PTEN protein-phosphatase activity resulting in repression of germline gene expression. This work is significant for revealing a network of tumor suppressors that promote survival during cellular and developmental quiescence.
Collapse
|
6
|
Tavakolian S, Eshkiki ZS, Akbari A, Faghihloo E, Tabaeian SP. PTEN regulation in virus-associated cancers. Pathol Res Pract 2025; 266:155749. [PMID: 39642806 DOI: 10.1016/j.prp.2024.155749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/10/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Despite advancements in science, researchers still face challenges in curing patients with malignancies. This health issue is linked to various risk factors, including alcohol consumption, age, sex, and infectious diseases. Among these, viral agents play a significant role in cancer-related health problems and are currently a subject of ongoing research. In this review, we summarize how several viruses-such as herpesviruses, human papillomavirus, hepatitis B virus, hepatitis C virus, and adenovirus-impact cancer signaling pathways through their effects on the tumor suppressor PTEN.
Collapse
Affiliation(s)
- Shaian Tavakolian
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Zahra Shokati Eshkiki
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Rademacher S, Preußner M, Rehm MC, Fuchs J, Heyd F, Eickholt BJ. PTEN controls alternative splicing of autism spectrum disorder-associated transcripts in primary neurons. Brain 2025; 148:47-54. [PMID: 39323327 DOI: 10.1093/brain/awae306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
Phosphatase and tensin homologue (PTEN) is the main antagonist of the phosphatidylinositol-3-kinase (PI3K)/AKT/mTOR signalling pathway and mutated in 10%-20% of individuals with autism spectrum disorder (ASD) exhibiting macrocephaly. Hyperactive mTOR signalling is responsible for some aspects during PTEN-ASD progression, e.g. neuronal hypertrophy and -excitability, but PI3K/mTOR-independent processes have additionally been described. There is emerging evidence that PTEN regulates gene transcription, spliceosome formation and pre-mRNA splicing independently of PI3K/mTOR. Altered splicing is a hallmark of brains from individuals with idiopathic and PTEN-ASD, however, molecular mechanisms are yet to be identified. We performed RNA-sequencing (RNA-Seq), followed by analysis of altered transcript splicing in Pten-deficient primary cortical mouse neurons, which we compared with published data from PTEN-deficient human neuronal stem cells. This analysis identified that transcripts were globally mis-spliced in a developmentally regulated fashion and cluster in synaptic and gene expression regulatory processes. Strikingly, splicing defects following Pten-deficiency represent a significant number of other known ASD-susceptibility genes. Furthermore, we show that exons with strong 3' splice sites are more frequently mis-spliced under Pten-deficient conditions. Our study indicates that PTEN-ASD is a multifactorial condition involving the dysregulation of other known ASD-susceptibility genes.
Collapse
Affiliation(s)
- Sebastian Rademacher
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Molecular Biology and Biochemistry, Berlin 10117, Germany
| | - Marco Preußner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Berlin 14195, Germany
| | - Marie C Rehm
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Molecular Biology and Biochemistry, Berlin 10117, Germany
| | - Joachim Fuchs
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Molecular Biology and Biochemistry, Berlin 10117, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Berlin 14195, Germany
| | - Britta J Eickholt
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Molecular Biology and Biochemistry, Berlin 10117, Germany
| |
Collapse
|
8
|
Tian D, Zhang W, Wang L, Qi J, Xu T, Zuo M, Han B, Li X, Zhao K. Proteo-transcriptomic profiles reveal genetic mechanisms underlying primary hair follicle development in coarse sheep fetal skin. J Proteomics 2025; 310:105327. [PMID: 39395776 DOI: 10.1016/j.jprot.2024.105327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Long hair trait represents a valuable genetic asset in Qinghai Tibetan sheep, with its quality and yield being contingent upon the characteristics of hair follicles (HFs). This study aims to elucidate the genetic mechanism underlying primary hair follicles (PFs) formation through an integrated analysis of proteomics and transcriptomics. Samples were collected at key stages of fetal HF formation (E65 and E85) for histological observation, revealing significant alterations in the microstructure of PF (E65) during the developmental process. In this study, a comprehensive analysis revealed a total of 217 overlapping genes that exhibited concordant expression patterns at both the proteomic and transcriptomic levels. Furthermore, to ensure the reliability of our findings, we employed parallel response monitoring (PRM) to validate the obtained proteomic data. The protein-protein interaction (PPI) network diagram highlights five hub core proteins (TTN, IGTA2, F2, EGFR, and MYH14). These differentially expressed proteins (DEPs) play crucial roles in metabolic processes, cell adhesion, and diverse biological processes. The potential synergy between transcriptional regulation and post-translational modifications plays a pivotal role in governing the initiation PF development. The findings presented in this study offer innovative insights into the molecular mechanisms underlying HFs generation and establish a robust foundation for targeted breeding strategies aimed at augmenting wool traits in sheep. SIGNIFICANCE: The composition of coarse hair primarily consists of long, myelinated fibers originating from primary hair follicles. Sheep fetal skin initiates the formation of primary hair follicles around E65, followed by the development of secondary hair follicles around E85. Conducting differential proteomic and transcriptomic analyses during these developmental stages enhances our understanding of the molecular mechanisms underlying primary hair follicle development and offers valuable insights for sustainable utilization of high-quality germplasm resources.
Collapse
Affiliation(s)
- Dehong Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenkui Zhang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Lei Wang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Junying Qi
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Teng Xu
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Mingxing Zuo
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Buying Han
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Li
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China.
| |
Collapse
|
9
|
Margot H, Jones N, Matis T, Bonneau D, Busa T, Bonnet F, Conrad S, Crivelli L, Monin P, Fert-Ferrer S, Mortemousque I, Raad S, Lacombe D, Caux F, Sevenet N, Bubien V, Longy M. Classification of PTEN germline non-truncating variants: a new approach to interpretation. J Med Genet 2024; 61:1071-1079. [PMID: 39358013 DOI: 10.1136/jmg-2024-109982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND PTEN hamartoma tumour syndrome (PHTS) encompasses distinct syndromes, including Cowden syndrome resulting from PTEN pathogenic variants. Missense variants account for 30% of PHTS cases, but their classification remains challenging. To address these difficulties, guidelines were published by the Clinical Genome Resource PTEN Variant Curation Expert Panel. METHODS Between 2010 and 2020, the Bergonie Institute reference laboratory identified 76 different non-truncating PTEN variants in 166 patients, 17 of which have not previously been reported. Variants were initially classified following the current guidelines. Subsequently, a new classification method was developed based on four main criteria: functional exploration, phenotypic features and familial segregation, in silico modelling, and allelic frequency. RESULTS This new method of classification is more discriminative and reclassifies 25 variants, including 8 variants of unknown significance. CONCLUSION This report proposes a revision of the current PTEN variant classification criteria which at present rely on functional tests evaluating only the phosphatase activity of PTEN and apply a particularly stringent clinical PHTS score.The classification of non-truncating variants of PTEN is facilitated by taking into consideration protein stability for variants with intact phosphatase activity, clinical and segregation criteria adapted to the phenotypic variability of PHTS and by specifying the allelic frequency of variants in the general population. This novel method of classification remains to be validated in a prospective cohort.
Collapse
Affiliation(s)
- Henri Margot
- Medical Genetics Departement, CHU de Bordeaux, Bordeaux, Nouvelle-Aquitaine, France
| | - Natalie Jones
- Cancer Genetics Unit, Institut Bergonié, Bordeaux, Aquitaine, France
| | - Thibaut Matis
- Cancer Genetics Unit, Institut Bergonié, Bordeaux, Aquitaine, France
| | - Dominique Bonneau
- U771-CNRS6214, UMR INSERM, Angers, France
- School of Medicine, University of Angers, Angers, France
| | - Tiffany Busa
- Medical Genetics Departement, Marseille Public University Hospital System, Marseille, France
| | - Françoise Bonnet
- Cancer Genetics Unit, Institut Bergonié, Bordeaux, Aquitaine, France
| | - Solene Conrad
- Medical Genetics Departement, University Hospital Centre Nantes, Nantes, Pays de la Loire, France
| | - Louise Crivelli
- Department of Oncogenetics, Centre Eugene Marquis, Rennes, Bretagne, France
| | - Pauline Monin
- Medical Genetics Departement, Centre Hospitalier Universitaire de Lyon, Lyon, Rhône-Alpes, France
| | - Sandra Fert-Ferrer
- Medical Genetics Departement, Centre Hospitalier Métropole Savoie, Chambery, France
| | - Isabelle Mortemousque
- Cancer Genetics Unit, Centre Hospitalier Régional Universitaire de Tours, Tours, Centre-Val de Loire, France
| | - Sabine Raad
- Cancer Genetics Unit, Institut Bergonié, Bordeaux, Aquitaine, France
| | - Didier Lacombe
- Department of Medical Genetics, CHU Bordeaux GH Pellegrin, Bordeaux, Aquitaine, France
- MRGM INSERM U1211, Universite de Bordeaux College Sciences de la Sante, Bordeaux, Nouvelle-Aquitaine, France
| | - Frédéric Caux
- Hospital Avicenne Internal Medicine Service, Bobigny, Île-de-France, France
| | - Nicolas Sevenet
- Cancer Genetics Unit, Institut Bergonié, Bordeaux, Aquitaine, France
- UMR1312, INSERM, BoRdeaux Institute of onCology, Bordeaux, France
| | - Virginie Bubien
- Cancer Genetics Unit, Institut Bergonié, Bordeaux, Aquitaine, France
| | - Michel Longy
- Cancer Genetics Unit, Institut Bergonié, Bordeaux, Aquitaine, France
- UMR1312, INSERM, BoRdeaux Institute of onCology, Bordeaux, France
| |
Collapse
|
10
|
Xing S, Xiong Z, Wang M, Li Y, Shi J, Qian Y, Lei J, Jia J, Zeng W, Huang Z, Jiang Y. Sophocarpine inhibits the progression of glioblastoma via PTEN/PI3K/Akt signaling pathway. Am J Cancer Res 2024; 14:3757-3772. [PMID: 39267674 PMCID: PMC11387860 DOI: 10.62347/sqjb1901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most fatal primary brain tumor which lacks effective treatment drugs. Alkaloids are known as a class of potential anti-tumor agents. Sophocarpine, a tetracyclic quinazoline alkaloid derived from Sophora alopecuroides L., possesses several pharmacological effects including anti-tumor effects in some malignancies. However, the effect and mechanism of sophocarpine on GBM remains to be explored. In this study, based on in vitro experiments, we found that sophocarpine significantly inhibited the viability, proliferation and migration of GBM cells including U251 and C6 cells in a dose- and time-dependent manner. Besides, sophocarpine arrested GBM cell cycle in G0/G1 phase and induced their apoptosis. Subsequently, we found that sophocarpine upregulated the expression of PTEN, a GBM tumor suppressor, and downregulated PI3K/Akt signaling in GBM cells. Moreover, inactivating of PTEN with bpV(phen) trihydrate partially restored the anti-GBM effects of sophocarpine via PI3K/Akt signaling. Finally, sophocarpine significantly inhibited the growth of tumor both in subcutaneous and orthotopic U251 xenograft GBM model in nude mice via PTEN/PI3K/Akt axis. Taken together, these results suggested that sophocarpine impeded GBM progression via PTEN/PI3K/Akt axis both in vitro and in vivo, providing with a promising therapy for treating GBM.
Collapse
Affiliation(s)
- Shuqiao Xing
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Zhenrong Xiong
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Mengmeng Wang
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Yifan Li
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- School of Medicine, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Jiali Shi
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Yiming Qian
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Jia Lei
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Jiamei Jia
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Weiquan Zeng
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| | - Yuanyuan Jiang
- School of Pharmacy, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou 311121, Zhejiang, China
| |
Collapse
|
11
|
Huang X, Zhang C, Shang X, Chen Y, Xiao Q, Wei Z, Wang G, Zhen X, Xu G, Min J, Shen S, Liu Y. The NTE domain of PTENα/β promotes cancer progression by interacting with WDR5 via its SSSRRSS motif. Cell Death Dis 2024; 15:335. [PMID: 38744853 PMCID: PMC11094138 DOI: 10.1038/s41419-024-06714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
PTENα/β, two variants of PTEN, play a key role in promoting tumor growth by interacting with WDR5 through their N-terminal extensions (NTEs). This interaction facilitates the recruitment of the SET1/MLL methyltransferase complex, resulting in histone H3K4 trimethylation and upregulation of oncogenes such as NOTCH3, which in turn promotes tumor growth. However, the molecular mechanism underlying this interaction has remained elusive. In this study, we determined the first crystal structure of PTENα-NTE in complex with WDR5, which reveals that PTENα utilizes a unique binding motif of a sequence SSSRRSS found in the NTE domain of PTENα/β to specifically bind to the WIN site of WDR5. Disruption of this interaction significantly impedes cell proliferation and tumor growth, highlighting the potential of the WIN site inhibitors of WDR5 as a way of therapeutic intervention of the PTENα/β associated cancers. These findings not only shed light on the important role of the PTENα/β-WDR5 interaction in carcinogenesis, but also present a promising avenue for developing cancer treatments that target this pathway.
Collapse
Affiliation(s)
- Xiaolei Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Cheng Zhang
- Institute of Aging & Tissue Regeneration, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200127, Shanghai, China
| | - Xinci Shang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Yichang Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Qin Xiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Zhengguo Wei
- School of Biology and Basic Medical Science, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Guanghui Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Shaoming Shen
- Institute of Aging & Tissue Regeneration, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200127, Shanghai, China.
| | - Yanli Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, Jiangsu, China.
| |
Collapse
|
12
|
Gambini D, Ferrero S, Bulfamante G, Pisani L, Corbo M, Kuhn E. Cerebellar phenotypes in germline PTEN mutation carriers. Neuropathol Appl Neurobiol 2024; 50:e12970. [PMID: 38504418 DOI: 10.1111/nan.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024]
Abstract
PTEN hamartoma tumour syndrome (PHTS) comprises different hereditary conditions caused by germline PTEN mutations, predisposing to the development of multiple hamartomas in many body tissues and also increasing the risk of some types of cancer. Cerebellar involvement in PHTS patients has been long known due to the development of a pathognomonic cerebellar hamartoma (known as dysplastic gangliocytoma of the cerebellum or Lhermitte-Duclos disease). Recently, a crucial role of the cerebellum has been highlighted in the pathogenesis of autism spectrum disorders, now recognised as a phenotype expressed in a variable percentage of PHTS children. In addition, rare PTEN variants are indeed identified in medulloblastoma as well, even if they are less frequent than other germline gene mutations. The importance of PTEN and its downstream signalling enzymatic pathways, PI3K/AKT/mTOR, has been studied at different levels in both human clinical settings and animal models, not only leading to a better understanding of the pathogenesis of different disorders but, most importantly, to identify potential targets for specific therapies. In particular, PTEN integrity makes an important contribution to the normal development of tissue architecture in the nervous system, including the cerebellum. Thus, in patients with PTEN germline mutations, the cerebellum is an affected organ that is increasingly recognised in different disorders, whereas, in animal models, cerebellar Pten loss causes a variety of functional and histological alterations. In this review, we summarise the range of cerebellar involvement observed in PHTS and its relationships with germline PTEN mutations, along with the phenotypes expressed by murine models with PTEN deficiency in cerebellar tissue.
Collapse
Affiliation(s)
- Donatella Gambini
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Stefano Ferrero
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gaetano Bulfamante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Human Pathology and Molecular Pathology Unit, TOMA Advanced Biomedical Assays, Busto Arsizio, Italy
| | - Luigi Pisani
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Elisabetta Kuhn
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
13
|
Geng K, Merino LG, Veiga RG, Sommerauer C, Epperlein J, Brinkman EK, Kutter C. Intrinsic deletion at 10q23.31, including the PTEN gene locus, is aggravated upon CRISPR-Cas9-mediated genome engineering in HAP1 cells mimicking cancer profiles. Life Sci Alliance 2024; 7:e202302128. [PMID: 37984988 PMCID: PMC10662290 DOI: 10.26508/lsa.202302128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
The CRISPR-Cas9 system is a powerful tool for studying gene functions and holds potential for disease treatment. However, precise genome editing requires thorough assessments to minimize unintended on- and off-target effects. Here, we report an unexpected 283-kb deletion on Chromosome 10 (10q23.31) in chronic myelogenous leukemia-derived HAP1 cells, which are frequently used in CRISPR screens. The deleted region encodes regulatory genes, including PAPSS2, ATAD1, KLLN, and PTEN We found that this deletion was not a direct consequence of CRISPR-Cas9 off-targeting but rather occurred frequently during the generation of CRISPR-Cas9-modified cells. The deletion was associated with global changes in histone acetylation and gene expression, affecting fundamental cellular processes such as cell cycle and DNA replication. We detected this deletion in cancer patient genomes. As in HAP1 cells, the deletion contributed to similar gene expression patterns among cancer patients despite interindividual differences. Our findings suggest that the unintended deletion of 10q23.31 can confound CRISPR-Cas9 studies and underscore the importance to assess unintended genomic changes in CRISPR-Cas9-modified cells, which could impact cancer research.
Collapse
Affiliation(s)
- Keyi Geng
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Lara G Merino
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Raül G Veiga
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Christian Sommerauer
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Janine Epperlein
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Eva K Brinkman
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor, and Cell Biology, Science for Life Laboratory, Karolinska Institute, Solna, Sweden
| |
Collapse
|
14
|
Xu X, Bok I, Jasani N, Wang K, Chadourne M, Mecozzi N, Deng O, Welsh EA, Kinose F, Rix U, Karreth FA. PTEN Lipid Phosphatase Activity Suppresses Melanoma Formation by Opposing an AKT/mTOR/FRA1 Signaling Axis. Cancer Res 2024; 84:388-404. [PMID: 38193852 PMCID: PMC10842853 DOI: 10.1158/0008-5472.can-23-1730] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/27/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024]
Abstract
Inactivating mutations in PTEN are prevalent in melanoma and are thought to support tumor development by hyperactivating the AKT/mTOR pathway. Conversely, activating mutations in AKT are relatively rare in melanoma, and therapies targeting AKT or mTOR have shown disappointing outcomes in preclinical models and clinical trials of melanoma. This has led to the speculation that PTEN suppresses melanoma by opposing AKT-independent pathways, potentially through noncanonical functions beyond its lipid phosphatase activity. In this study, we examined the mechanisms of PTEN-mediated suppression of melanoma formation through the restoration of various PTEN functions in PTEN-deficient cells or mouse models. PTEN lipid phosphatase activity predominantly inhibited melanoma cell proliferation, invasion, and tumor growth, with minimal contribution from its protein phosphatase and scaffold functions. A drug screen underscored the exquisite dependence of PTEN-deficient melanoma cells on the AKT/mTOR pathway. Furthermore, activation of AKT alone was sufficient to counteract several aspects of PTEN-mediated melanoma suppression, particularly invasion and the growth of allograft tumors. Phosphoproteomics analysis of the lipid phosphatase activity of PTEN validated its potent inhibition of AKT and many of its known targets, while also identifying the AP-1 transcription factor FRA1 as a downstream effector. The restoration of PTEN dampened FRA1 translation by inhibiting AKT/mTOR signaling, and FRA1 overexpression negated aspects of PTEN-mediated melanoma suppression akin to AKT. This study supports AKT as the key mediator of PTEN inactivation in melanoma and identifies an AKT/mTOR/FRA1 axis as a driver of melanomagenesis. SIGNIFICANCE PTEN suppresses melanoma predominantly through its lipid phosphatase function, which when lost, elevates FRA1 levels through AKT/mTOR signaling to promote several aspects of melanomagenesis.
Collapse
Affiliation(s)
- Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ilah Bok
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology PhD program, University of South Florida, Tampa, Florida
| | - Neel Jasani
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology PhD program, University of South Florida, Tampa, Florida
| | - Kaizhen Wang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology PhD program, University of South Florida, Tampa, Florida
| | - Manon Chadourne
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nicol Mecozzi
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology PhD program, University of South Florida, Tampa, Florida
| | - Ou Deng
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Eric A. Welsh
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida
| | - Florian A. Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida
| |
Collapse
|
15
|
Yasuta Y, Kaminaka R, Nagai S, Mouri S, Ishida K, Tanaka A, Zhou Y, Sakurai H, Yokoyama S. Cooperative function of oncogenic MAPK signaling and the loss of Pten for melanoma migration through the formation of lamellipodia. Sci Rep 2024; 14:1525. [PMID: 38233537 PMCID: PMC10794247 DOI: 10.1038/s41598-024-52020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024] Open
Abstract
The combination of oncogenes and tumor suppressors is involved in cancer development; however, it is still unknown whether their combination plays a critical role in cancer metastasis. We herein investigated whether genetic combinations affected cell migration ability by establishing the immortalized melanocytes, melan-a cells, with an oncogene, either BRAFV600E or GNA11Q209L, and the loss of mouse Pten. The loss of mouse Pten or human PTEN increased the cell migration ability of our established cells and human melanoma cell lines with oncogenic MAPK signaling and the BRAFV600E or NRASQ61R background, but not with the GNA11Q209L background or no oncogenes. Although increased migration was not related to PI3K-AKT activation, those migration is regulated by the induction of some components in the WAVE regulatory complex, resulting in a higher rate of the formation of lamellipodia. On the other hand, BRAFV600E induced EphA2 phosphorylation at serine 897 through RSK and was also required for cell migration and the formation of lamellipodia. Therefore, the oncogenic MAPK pathway and loss of Pten in melanoma were important for cell migration through the formation of lamellipodia, suggesting the significance of an appropriate combination of genetic alterations not only in cancer development, but also cancer metastasis.
Collapse
Affiliation(s)
- Yutaka Yasuta
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ryuya Kaminaka
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shutaro Nagai
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shuto Mouri
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Katsuya Ishida
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Akihiro Tanaka
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yue Zhou
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Satoru Yokoyama
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
16
|
Li YM, He HW, Zhang N. Targeting Protein Phosphatases for the Treatment of Chronic Liver Disease. Curr Drug Targets 2024; 25:171-189. [PMID: 38213163 DOI: 10.2174/0113894501278886231221092522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
There exists a huge number of patients suffering from chronic liver disease worldwide. As a disease with high incidence and mortality worldwide, strengthening the research on the pathogenesis of chronic liver disease and the development of novel drugs is an important issue related to the health of all human beings. Phosphorylation modification of proteins plays a crucial role in cellular signal transduction, and phosphatases are involved in the development of liver diseases. Therefore, this article summarized the important role of protein phosphatases in chronic liver disease with the aim of facilitating the development of drugs targeting protein phosphatases for the treatment of chronic liver disease.
Collapse
Affiliation(s)
- Yi-Ming Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hong-Wei He
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Na Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
17
|
Ertay A, Ewing RM, Wang Y. Synthetic lethal approaches to target cancers with loss of PTEN function. Genes Dis 2023; 10:2511-2527. [PMID: 37533462 PMCID: PMC7614861 DOI: 10.1016/j.gendis.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/05/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumour suppressor gene and has a role in inhibiting the oncogenic AKT signalling pathway by dephosphorylating phosphatidylinositol 3,4,5-triphosphate (PIP3) into phosphatidylinositol 4,5-bisphosphate (PIP2). The function of PTEN is regulated by different mechanisms and inactive PTEN results in aggressive tumour phenotype and tumorigenesis. Identifying targeted therapies for inactive tumour suppressor genes such as PTEN has been challenging as it is difficult to restore the tumour suppressor functions. Therefore, focusing on the downstream signalling pathways to discover a targeted therapy for inactive tumour suppressor genes has highlighted the importance of synthetic lethality studies. This review focuses on the potential synthetic lethality genes discovered in PTEN-inactive cancer types. These discovered genes could be potential targeted therapies for PTEN-inactive cancer types and may improve the treatment response rates for aggressive types of cancer.
Collapse
Affiliation(s)
- Ayse Ertay
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rob M. Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
18
|
Tonks NK. Protein Tyrosine Phosphatases: Mighty oaks from little acorns grow. IUBMB Life 2023; 75:337-352. [PMID: 36971473 PMCID: PMC10254075 DOI: 10.1002/iub.2716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/23/2023] [Indexed: 03/29/2023]
Abstract
In October 2020, we were finally able to gather for a celebration of Eddy Fischer's 100th birthday. As with many other events, COVID had disrupted and restricted preparations for the gathering, which ultimately was held via ZOOM. Nevertheless, it was a wonderful opportunity to share a day with Eddy, an exceptional scientist and true renaissance man, and to appreciate his stellar contributions to science. Eddy Fischer, together with Ed Krebs, was responsible for the discovery of reversible protein phosphorylation, which launched the entire field of signal transduction. The importance of this seminal work is now being felt throughout the biotechnology industry with the development of drugs that target protein kinases, which have transformed the treatment of a wide array of cancers. I was privileged to have worked with Eddy both as a postdoc and a junior faculty member, during which time we laid the foundations for our current understanding of the protein tyrosine phosphatase (PTP) family of enzymes and their importance as critical regulators of signal transduction. This tribute to Eddy is based upon the talk I presented at the event, giving a personal perspective on Eddy's influence on my career, our early research efforts together in this area, and how the field has developed since then.
Collapse
Affiliation(s)
- Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| |
Collapse
|
19
|
Jiang TY, Shi YY, Cui XW, Pan YF, Lin YK, Feng XF, Ding ZW, Yang C, Tan YX, Dong LW, Wang HY. PTEN Deficiency Facilitates Exosome Secretion and Metastasis in Cholangiocarcinoma by Impairing TFEB-mediated Lysosome Biogenesis. Gastroenterology 2023; 164:424-438. [PMID: 36436593 DOI: 10.1053/j.gastro.2022.11.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/24/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND & AIMS In eukaryotes, the ubiquitin-proteasome system and the autophagy-lysosome pathway are essential for maintaining cellular proteostasis and associated with cancer progression. Our previous studies have demonstrated that phosphatase and tensin homolog (PTEN), one of the most frequently mutated genes in human cancers, limits proteasome abundance and determines chemosensitivity to proteasome inhibitors in cholangiocarcinoma (CCA). However, whether PTEN regulates the lysosome pathway remains unclear. METHODS We tested the effects of PTEN on lysosome biogenesis and exosome secretion using loss- and gain-of-function strategies in CCA cell lines. Using in vitro dephosphorylation assays, we explored the regulatory mechanism between PTEN and the key regulator of lysosome biogenesis, transcription factor EB (TFEB). Using the migration assays, invasion assays, and trans-splenic liver metastasis mouse models, we evaluated the function of PTEN deficiency, TFEB-mediated lysosome biogenesis, and exosome secretion on tumor metastasis. Moreover, we investigated the clinical significance of PTEN expression and exosome secretion by retrospective analysis. RESULTS PTEN facilitated lysosome biogenesis and acidification through its protein phosphatase activity to dephosphorylate TFEB at Ser211. Notably, PTEN deficiency increased exosome secretion by reducing lysosome-mediated degradation of multi-vesicular bodies, which further facilitated the proliferation and invasion of CCA. TFEB agonist curcumin analog C1 restrained the metastatic phenotype caused by PTEN deficiency in mouse models, and we highlighted the correlation between PTEN deficiency and exosome secretion in clinical cohorts. CONCLUSIONS In CCA, PTEN deficiency impairs lysosome biogenesis to facilitate exosome secretion and cancer metastasis in a TFEB phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Tian-Yi Jiang
- National Center for Liver Cancer, the Third Affiliated Hospital of Naval Medical University, Shanghai, China; International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai, China
| | - Yuan-Yuan Shi
- National Center for Liver Cancer, the Third Affiliated Hospital of Naval Medical University, Shanghai, China; The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiao-Wen Cui
- National Center for Liver Cancer, the Third Affiliated Hospital of Naval Medical University, Shanghai, China; Department of Oncology, Eastern Hepatobiliary Surgery Hospital, the Naval Military Medical University, Shanghai, China
| | - Yu-Fei Pan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai, China
| | - Yun-Kai Lin
- National Center for Liver Cancer, the Third Affiliated Hospital of Naval Medical University, Shanghai, China; International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai, China
| | - Xiao-Fan Feng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai, China
| | - Zhi-Wen Ding
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, the Naval Medical University, Shanghai, China
| | - Chun Yang
- Children's Hospital of Soochow University, Suzhou, P. R. China
| | - Ye-Xiong Tan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai, China; Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, the Naval Medical University and Ministry of Education, Shanghai, China
| | - Li-Wei Dong
- National Center for Liver Cancer, the Third Affiliated Hospital of Naval Medical University, Shanghai, China; Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, the Naval Medical University and Ministry of Education, Shanghai, China.
| | - Hong-Yang Wang
- National Center for Liver Cancer, the Third Affiliated Hospital of Naval Medical University, Shanghai, China; International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai, China; Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, the Naval Medical University and Ministry of Education, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, China.
| |
Collapse
|
20
|
Unraveling the Impact of Intratumoral Heterogeneity on EGFR Tyrosine Kinase Inhibitor Resistance in EGFR-Mutated NSCLC. Int J Mol Sci 2023; 24:ijms24044126. [PMID: 36835536 PMCID: PMC9964908 DOI: 10.3390/ijms24044126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The advent of tyrosine kinase inhibitors (TKIs) for treating epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC) has been a game changer in lung cancer therapy. However, patients often develop resistance to the drugs within a few years. Despite numerous studies that have explored resistance mechanisms, particularly in regards to collateral signal pathway activation, the underlying biology of resistance remains largely unknown. This review focuses on the resistance mechanisms of EGFR-mutated NSCLC from the standpoint of intratumoral heterogeneity, as the biological mechanisms behind resistance are diverse and largely unclear. There exist various subclonal tumor populations in an individual tumor. For lung cancer patients, drug-tolerant persister (DTP) cell populations may have a pivotal role in accelerating the evolution of tumor resistance to treatment through neutral selection. Cancer cells undergo various changes to adapt to the new tumor microenvironment caused by drug exposure. DTP cells may play a crucial role in this adaptation and may be fundamental in mechanisms of resistance. Intratumoral heterogeneity may also be precipitated by DNA gains and losses through chromosomal instability, and the role of extrachromosomal DNA (ecDNA) may play an important role. Significantly, ecDNA can increase oncogene copy number alterations and enhance intratumoral heterogeneity more effectively than chromosomal instability. Additionally, advances in comprehensive genomic profiling have given us insights into various mutations and concurrent genetic alterations other than EGFR mutations, inducing primary resistance in the context of tumor heterogeneity. Understanding the mechanisms of resistance is clinically crucial since these molecular interlayers in cancer-resistance mechanisms may help to devise novel and individualized anticancer therapeutic approaches.
Collapse
|
21
|
PTEN phosphatase inhibits metastasis by negatively regulating the Entpd5/IGF1R pathway through ATF6. iScience 2023; 26:106070. [PMID: 36824269 PMCID: PMC9942123 DOI: 10.1016/j.isci.2023.106070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/01/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
PTEN encodes a tumor suppressor with lipid and protein phosphatase activities whose dysfunction has been implicated in melanomagenesis; less is known about how its phosphatases regulate melanoma metastasis. We demonstrate that PTEN expression negatively correlates with metastatic progression in human melanoma samples and a PTEN-deficient mouse melanoma model. Wildtype PTEN expression inhibited melanoma cell invasiveness and metastasis in a dose-dependent manner, behaviors that specifically required PTEN protein phosphatase activity. PTEN phosphatase activity regulated metastasis through Entpd5. Entpd5 knockdown reduced metastasis and IGF1R levels while promoting ER stress. In contrast, Entpd5 overexpression promoted metastasis and enhanced IGF1R levels while reducing ER stress. Moreover, Entpd5 expression was regulated by the ER stress sensor ATF6. Altogether, our data indicate that PTEN phosphatase activity inhibits metastasis by negatively regulating the Entpd5/IGF1R pathway through ATF6, thereby identifying novel candidate therapeutic targets for the treatment of PTEN mutant melanoma.
Collapse
|
22
|
Smith IN, Dawson JE, Eng C. Comparative Protein Structural Network Analysis Reveals C-Terminal Tail Phosphorylation Structural Communication Fingerprint in PTEN-Associated Mutations in Autism and Cancer. J Phys Chem B 2023; 127:634-647. [PMID: 36626331 PMCID: PMC9885960 DOI: 10.1021/acs.jpcb.2c06776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/24/2022] [Indexed: 01/11/2023]
Abstract
PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a tightly regulated dual-specificity phosphatase and key regulator of the PI3K/AKT/mTOR signaling pathway. PTEN phosphorylation at its carboxy-terminal tail (CTT) serine/threonine cluster negatively regulates its tumor suppressor function by inducing a stable, closed, and inactive conformation. Germline PTEN mutations predispose individuals to PTEN hamartoma tumor syndrome (PHTS), a rare inherited cancer syndrome and, intriguingly, one of the most common causes of autism spectrum disorder (ASD). However, the mechanistic details that govern phosphorylated CTT catalytic conformational dynamics in the context of PHTS-associated mutations are unknown. Here, we utilized a comparative protein structure network (PSN)-based approach to investigate PTEN CTT phosphorylation-induced conformational dynamics specific to PTEN-ASD compared to PTEN-cancer phenotypes. Results from our study show differences in structural flexibility, inter-residue contacts, and allosteric communication patterns mediated by CTT phosphorylation, differentiating PTEN-ASD and PTEN-cancer phenotypes. Further, we identified perturbations among global metapaths and community network connections within the active site and inter-domain regions, indicating the significance of these regions in transmitting information across the PSN. Together, our studies provide a mechanistic underpinning of allosteric regulation through the coupled interplay of CTT phosphorylation conformational dynamics in PTEN-ASD and PTEN-cancer mutations. Importantly, the detailed atomistic interactions and structural consequences of PTEN variants reveal potential allosteric druggable target sites as a viable and currently unexplored treatment approach for individuals with different PHTS-associated mutations.
Collapse
Affiliation(s)
- Iris N. Smith
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio44195, United States
| | - Jennifer E. Dawson
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio44195, United States
| | - Charis Eng
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio44195, United States
- Cleveland
Clinic Lerner College of Medicine, Case
Western Reserve University, 9500 Euclid Avenue, Cleveland, Ohio44195, United
States
- Case
Comprehensive Cancer Center, Case Western
Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio44106, United States
- Taussig
Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio44195, United States
- Department
of Genetics and Genome Sciences, Case Western
Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio44106, United States
| |
Collapse
|
23
|
Nguyen Huu T, Park J, Zhang Y, Duong Thanh H, Park I, Choi JM, Yoon HJ, Park SC, Woo HA, Lee SR. The Role of Oxidative Inactivation of Phosphatase PTEN and TCPTP in Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12010120. [PMID: 36670982 PMCID: PMC9854873 DOI: 10.3390/antiox12010120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are becoming increasingly prevalent worldwide. Despite the different etiologies, their spectra and histological feature are similar, from simple steatosis to more advanced stages such as steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Studies including peroxiredoxin knockout models revealed that oxidative stress is crucial in these diseases, which present as consequences of redox imbalance. Protein tyrosine phosphatases (PTPs) are a superfamily of enzymes that are major targets of reactive oxygen species (ROS) because of an oxidation-susceptible nucleophilic cysteine in their active site. Herein, we review the oxidative inactivation of two tumor suppressor PTPs, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and T-cell protein tyrosine phosphatase (TCPTP), and their contribution to the pathogenicity of ALD and NAFLD, respectively. This review might provide a better understanding of the pathogenic mechanisms of these diseases and help develop new therapeutic strategies to treat fatty liver disease.
Collapse
Affiliation(s)
- Thang Nguyen Huu
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun 58 128, Republic of Korea
| | - Jiyoung Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Ying Zhang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hien Duong Thanh
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun 58 128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Iha Park
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jin Myung Choi
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hyun Joong Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Sang Chul Park
- The Future Life and Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- Correspondence: ; Tel.: +82-61-379-2775; Fax: +82-61-379-2782
| |
Collapse
|
24
|
Li Q, Li Z, Luo T, Shi H. Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. MOLECULAR BIOMEDICINE 2022; 3:47. [PMID: 36539659 PMCID: PMC9768098 DOI: 10.1186/s43556-022-00110-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
The PI3K/AKT/mTOR and RAF/MEK/ERK pathways are commonly activated by mutations and chromosomal translocation in vital targets. The PI3K/AKT/mTOR signaling pathway is dysregulated in nearly all kinds of neoplasms, with the component in this pathway alternations. RAF/MEK/ERK signaling cascades are used to conduct signaling from the cell surface to the nucleus to mediate gene expression, cell cycle processes and apoptosis. RAS, B-Raf, PI3K, and PTEN are frequent upstream alternative sites. These mutations resulted in activated cell growth and downregulated cell apoptosis. The two pathways interact with each other to participate in tumorigenesis. PTEN alterations suppress RAF/MEK/ERK pathway activity via AKT phosphorylation and RAS inhibition. Several inhibitors targeting major components of these two pathways have been supported by the FDA. Dozens of agents in these two pathways have attracted great attention and have been assessed in clinical trials. The combination of small molecular inhibitors with traditional regimens has also been explored. Furthermore, dual inhibitors provide new insight into antitumor activity. This review will further comprehensively describe the genetic alterations in normal patients and tumor patients and discuss the role of targeted inhibitors in malignant neoplasm therapy. We hope this review will promote a comprehensive understanding of the role of the PI3K/AKT/mTOR and RAF/MEK/ERK signaling pathways in facilitating tumors and will help direct drug selection for tumor therapy.
Collapse
Affiliation(s)
- Qingfang Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, China
| | - Zhihui Li
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, PR China
| | - Ting Luo
- Department of Breast, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| |
Collapse
|
25
|
The equilibrium of tumor suppression: DUBs as active regulators of PTEN. Exp Mol Med 2022; 54:1814-1821. [PMID: 36385557 PMCID: PMC9723170 DOI: 10.1038/s12276-022-00887-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
PTEN is among the most commonly lost or mutated tumor suppressor genes in human cancer. PTEN, a bona fide lipid phosphatase that antagonizes the highly oncogenic PI3K-AKT-mTOR pathway, is considered a major dose-dependent tumor suppressor. Although PTEN function can be compromised by genetic mutations in inherited syndromes and cancers, posttranslational modifications of PTEN may also play key roles in the dynamic regulation of its function. Notably, deregulated ubiquitination and deubiquitination lead to detrimental impacts on PTEN levels and subcellular partitioning, promoting tumorigenesis. While PTEN can be targeted by HECT-type E3 ubiquitin ligases for nuclear import and proteasomal degradation, studies have shown that several deubiquitinating enzymes, including HAUSP/USP7, USP10, USP11, USP13, OTUD3 and Ataxin-3, can remove ubiquitin from ubiquitinated PTEN in cancer-specific contexts and thus reverse ubiquitination-mediated PTEN regulation. Researchers continue to reveal the precise molecular mechanisms by which cancer-specific deubiquitinases of PTEN regulate its roles in the pathobiology of cancer, and new methods of pharmacologically for modulating PTEN deubiquitinases are critical areas of investigation for cancer treatment and prevention. Here, we assess the mechanisms and functions of deubiquitination as a recently appreciated mode of PTEN regulation and review the link between deubiquitinases and PTEN reactivation and its implications for therapeutic strategies.
Collapse
|
26
|
Wise HM, Harris A, Kriplani N, Schofield A, Caldwell H, Arends MJ, Overton IM, Leslie NR. PTEN Protein Phosphatase Activity Is Not Required for Tumour Suppression in the Mouse Prostate. Biomolecules 2022; 12:1511. [PMID: 36291720 PMCID: PMC9599176 DOI: 10.3390/biom12101511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Loss PTEN function is one of the most common events driving aggressive prostate cancers and biochemically, PTEN is a lipid phosphatase which opposes the activation of the oncogenic PI3K-AKT signalling network. However, PTEN also has additional potential mechanisms of action, including protein phosphatase activity. Using a mutant enzyme, PTEN Y138L, which selectively lacks protein phosphatase activity, we characterised genetically modified mice lacking either the full function of PTEN in the prostate gland or only lacking protein phosphatase activity. The phenotypes of mice carrying a single allele of either wild-type Pten or PtenY138L in the prostate were similar, with common prostatic intraepithelial neoplasia (PIN) and similar gene expression profiles. However, the latter group, lacking PTEN protein phosphatase activity additionally showed lymphocyte infiltration around PIN and an increased immune cell gene expression signature. Prostate adenocarcinoma, elevated proliferation and AKT activation were only frequently observed when PTEN was fully deleted. We also identify a common gene expression signature of PTEN loss conserved in other studies (including Nkx3.1, Tnf and Cd44). We provide further insight into tumour development in the prostate driven by loss of PTEN function and show that PTEN protein phosphatase activity is not required for tumour suppression.
Collapse
Affiliation(s)
- Helen M. Wise
- Institute of Biological Chemistry, Biophysics and Bioengineering, Riccarton Campus, Heriot Watt University, Nasmyth Building, Edinburgh EH14 4AS, UK
| | - Adam Harris
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Nisha Kriplani
- Institute of Biological Chemistry, Biophysics and Bioengineering, Riccarton Campus, Heriot Watt University, Nasmyth Building, Edinburgh EH14 4AS, UK
| | - Adam Schofield
- Institute of Biological Chemistry, Biophysics and Bioengineering, Riccarton Campus, Heriot Watt University, Nasmyth Building, Edinburgh EH14 4AS, UK
| | - Helen Caldwell
- Edinburgh Pathology, Cancer Research UK Edinburgh Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Mark J. Arends
- Edinburgh Pathology, Cancer Research UK Edinburgh Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Ian M. Overton
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Nick R. Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, Riccarton Campus, Heriot Watt University, Nasmyth Building, Edinburgh EH14 4AS, UK
| |
Collapse
|
27
|
Song MS, Pandolfi PP. The HECT family of E3 ubiquitin ligases and PTEN. Semin Cancer Biol 2022; 85:43-51. [PMID: 34129913 PMCID: PMC8665946 DOI: 10.1016/j.semcancer.2021.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022]
Abstract
Members of the HECT family of E3 ubiquitin ligases have emerged as prominent regulators of PTEN function, subcellular localization and levels. In turn this unfolding regulatory network is allowing for the identification of genes directly involved in both tumorigenesis at large and cancer susceptibility syndromes. While the complexity of this regulatory network is still being unraveled, these new findings are paving the way for novel therapeutic modalities for cancer prevention and therapy as well as for other diseases. Here we will review the signal transduction and therapeutic implications of the cross-talk between HECT family members and PTEN.
Collapse
Affiliation(s)
- Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA.
| | - Pier Paolo Pandolfi
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV89502, USA.
| |
Collapse
|
28
|
Smith IN, Dawson JE, Krieger J, Thacker S, Bahar I, Eng C. Structural and Dynamic Effects of PTEN C-Terminal Tail Phosphorylation. J Chem Inf Model 2022; 62:4175-4190. [PMID: 36001481 PMCID: PMC9472802 DOI: 10.1021/acs.jcim.2c00441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 11/28/2022]
Abstract
The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor gene encodes a tightly regulated dual-specificity phosphatase that serves as the master regulator of PI3K/AKT/mTOR signaling. The carboxy-terminal tail (CTT) is key to regulation and harbors multiple phosphorylation sites (Ser/Thr residues 380-385). CTT phosphorylation suppresses the phosphatase activity by inducing a stable, closed conformation. However, little is known about the mechanisms of phosphorylation-induced CTT-deactivation dynamics. Using explicit solvent microsecond molecular dynamics simulations, we show that CTT phosphorylation leads to a partially collapsed conformation, which alters the secondary structure of PTEN and induces long-range conformational rearrangements that encompass the active site. The active site rearrangements prevent localization of PTEN to the membrane, precluding lipid phosphatase activity. Notably, we have identified phosphorylation-induced allosteric coupling between the interdomain region and a hydrophobic site neighboring the active site in the phosphatase domain. Collectively, the results provide a mechanistic understanding of CTT phosphorylation dynamics and reveal potential druggable allosteric sites in a previously believed clinically undruggable protein.
Collapse
Affiliation(s)
- Iris N. Smith
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio 44195, United States
| | - Jennifer E. Dawson
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio 44195, United States
| | - James Krieger
- Department
of Computational and Systems Biology, University
of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Stetson Thacker
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio 44195, United States
- Cleveland
Clinic Lerner College of Medicine, Case
Western Reserve University, 9500 Euclid Avenue, Cleveland, Ohio 44195, United
States
| | - Ivet Bahar
- Department
of Computational and Systems Biology, University
of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Charis Eng
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio 44195, United States
- Cleveland
Clinic Lerner College of Medicine, Case
Western Reserve University, 9500 Euclid Avenue, Cleveland, Ohio 44195, United
States
- Case
Comprehensive Cancer Center, Case Western
Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Taussig
Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, United States
- Department
of Genetics and Genome Sciences, Case Western
Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
29
|
Abstract
Pten is one of the most frequently mutated tumour suppressor gene in cancer. PTEN is generally altered in invasive cancers such as glioblastomas, but its function in collective cell migration and invasion is not fully characterised. Herein, we report that the loss of PTEN increases cell speed during collective migration of non-tumourous cells both in vitro and in vivo. We further show that loss of PTEN promotes LKB1-dependent phosphorylation and activation of the major metabolic regulator AMPK. In turn AMPK increases VASP phosphorylation, reduces VASP localisation at cell-cell junctions and decreases the interjunctional transverse actin arcs at the leading front, provoking a weakening of cell-cell contacts and increasing migration speed. Targeting AMPK activity not only slows down PTEN-depleted cells, it also limits PTEN-null glioblastoma cell invasion, opening new opportunities to treat glioblastoma lethal invasiveness. Pten is a tumour suppressor gene that is associated with highly invasive cancers such as glioblastoma. Here the authors show that PTEN loss results in increased migratory behaviour, which can be countered by targeting AMPK activity.
Collapse
|
30
|
Takasawa S, Makino M, Uchiyama T, Yamauchi A, Sakuramoto-Tsuchida S, Itaya-Hironaka A, Takeda Y, Asai K, Shobatake R, Ota H. Downregulation of the Cd38-Cyclic ADP-Ribose Signaling in Cardiomyocytes by Intermittent Hypoxia via Pten Upregulation. Int J Mol Sci 2022; 23:ijms23158782. [PMID: 35955916 PMCID: PMC9368863 DOI: 10.3390/ijms23158782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/03/2022] [Accepted: 08/05/2022] [Indexed: 12/11/2022] Open
Abstract
Sleep apnea syndrome (SAS) is characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia, IH), and it is a risk factor for cardiovascular disease (CVD) and insulin resistance/type 2 diabetes. However, the mechanisms linking IH stress and CVD remain elusive. We exposed rat H9c2 and mouse P19.CL6 cardiomyocytes to experimental IH or normoxia for 24 h to analyze the mRNA expression of the components of Cd38-cyclic ADP-ribose (cADPR) signaling. We found that the mRNA levels of cluster of differentiation 38 (Cd38), type 2 ryanodine receptor (Ryr2), and FK506-binding protein 12.6 (Fkbp12.6) in H9c2 and P19.CL6 cardiomyocytes were significantly decreased by IH, whereas the promoter activities of these genes were not decreased. By contrast, the expression of phosphatase and tensin homolog deleted from chromosome 10 (Pten) was upregulated in IH-treated cells. The small interfering RNA for Pten (siPten) and a non-specific control RNA were introduced into the H9c2 cells. The IH-induced downregulation of Cd38, Ryr2, and Fkbp12.6 was abolished by the introduction of the siPten, but not by the control RNA. These results indicate that IH stress upregulated the Pten in cardiomyocytes, resulting in the decreased mRNA levels of Cd38, Ryr2, and Fkbp12.6, leading to the inhibition of cardiomyocyte functions in SAS patients.
Collapse
Affiliation(s)
- Shin Takasawa
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
- Correspondence: ; Tel.: +81-74-422-3051 (ext. 2227); Fax: +81-744-24-9525
| | - Mai Makino
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Tomoko Uchiyama
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
- Department of Diagnostic Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Akiyo Yamauchi
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | | | - Asako Itaya-Hironaka
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Yoshinori Takeda
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Keito Asai
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Ryogo Shobatake
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
- Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Hiroyo Ota
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
- Department of Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| |
Collapse
|
31
|
Zhou H, Wang L, Liu S, Wang W. The role of phosphoinositide 3-kinases in immune-inflammatory responses: potential therapeutic targets for abdominal aortic aneurysm. Cell Cycle 2022; 21:2339-2364. [PMID: 35792922 DOI: 10.1080/15384101.2022.2094577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of abdominal aortic aneurysm (AAA) includes inflammatory responses, matrix metalloproteinases (MMPs) degradation, VSMC apoptosis, oxidative stress, and angiogenesis, among which the inflammatory response plays a key role. At present, surgery is the only curing treatment, and no effective drug can delay AAA progression in clinical practice. Therefore, searching for a signaling pathway related to the immune-inflammatory response is an essential direction for developing drugs targeting AAA. Recent studies have confirmed that the PI3K family plays an important role in many inflammatory diseases and is involved in regulating various cellular functions, especially in the immune-inflammatory response. This review focuses on the role of each isoform of PI3K in each stage of AAA immune-inflammatory response, making available explorations for a deeper understanding of the mechanism of inflammation and immune response during the formation and development of AAA.
Collapse
Affiliation(s)
- Haiyang Zhou
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Liu
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Ceyhan Y, Zhang M, Sandoval CG, Agoulnik AI, Agoulnik IU. Expression pattern and the roles of phosphatidylinositol phosphatases in testis. Biol Reprod 2022; 107:902-915. [PMID: 35766372 DOI: 10.1093/biolre/ioac132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphoinositides (PIs) are relatively rare lipid components of the cellular membranes. Their homeostasis is tightly controlled by specific PI kinases and phosphatases. PIs play essential roles in cellular signaling, cytoskeletal organization, and secretory processes in various diseases and normal physiology. Gene targeting experiments strongly suggest that in mice with deficiency of several PI phosphatases such as Pten, Mtmrs, Inpp4b, and Inpp5b, spermatogenesis is affected, resulting in partial or complete infertility. Similarly, in men, loss of several of the PIP phosphatases is observed in infertility characterized by the lack of mature sperm. Using available gene expression databases, we compare expression of known PI phosphatases in various testicular cell types, infertility patients, and mouse age-dependent testicular gene expression, and discuss their potential roles in testis physiology and spermatogenesis.
Collapse
Affiliation(s)
- Yasemin Ceyhan
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Manqi Zhang
- Department of Medicine, Duke University, Durham, NC, USA
| | - Carlos G Sandoval
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,New York University Grossman School of Medicine, New York, NY, USA
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Irina U Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
33
|
Wittes J, Greenwald I. Genetic analysis of DAF-18/PTEN missense mutants for the ability to maintain quiescence of the somatic gonad and germ line in Caenorhabditis elegans dauer larvae. G3 (BETHESDA, MD.) 2022; 12:jkac093. [PMID: 35451467 PMCID: PMC9157151 DOI: 10.1093/g3journal/jkac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022]
Abstract
The mammalian tumor suppressor PTEN has well-established lipid phosphatase and protein phosphatase activities. DAF-18, the Caenorhabditis elegans ortholog of PTEN, has a high degree of conservation in the catalytic domain, and human PTEN complements a null allele of daf-18, suggesting conserved protein function. Insights gleaned from studies of mammalian PTEN have been applied to studies of DAF-18 in C. elegans, including predicted enzymatic properties of mutants. Here, we characterize DAF-18 missense mutants previously treated as selectively disrupting either protein or lipid phosphatase activity in genetic assays to connect distinct phenotypes to specific enzymatic activities of DAF-18/PTEN. We analyze the ability of these mutants to maintain quiescence of the somatic gonad and germ line in dauer larvae, a state of diapause during which development is suspended. We show that transgenes expressing either the putative lipid phosphatase-deficient or putative protein phosphatase-deficient form fail to complement a daf-18 null allele, and that the corresponding homozygous endogenous missense mutant alleles fail to maintain developmental quiescence. We also show that the endogenous daf-18 missense alleles fail to complement each other, suggesting that one or both of the missense forms are not activity-selective. Furthermore, homozygous daf-18 missense mutants have a more severe phenotype than a daf-18 null mutant, suggesting the presence of functionally compromised mutant DAF-18 is more deleterious than the absence of DAF-18. We discuss how these genetic properties complicate the interpretation of genetic assays to associate specific enzymatic activities with specific phenotypes.
Collapse
Affiliation(s)
- Julia Wittes
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
34
|
Chen J, Tang LY, Powell ME, Jordan JM, Baugh LR. Genetic analysis of daf-18/PTEN missense mutants for starvation resistance and developmental regulation during Caenorhabditis elegans L1 arrest. G3 (BETHESDA, MD.) 2022; 12:jkac092. [PMID: 35451480 PMCID: PMC9157142 DOI: 10.1093/g3journal/jkac092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
Mutations in the well-known tumor suppressor PTEN are observed in many cancers. PTEN is a dual-specificity phosphatase that harbors lipid and protein-phosphatase activities. The Caenorhabditis elegans PTEN ortholog is daf-18, which has pleiotropic effects on dauer formation, aging, starvation resistance, and development. Function of 3 daf-18 point-mutants, G174E, D137A, and C169S, had previously been investigated using high-copy transgenes in a daf-18 null background. These alleles were generated based on their mammalian counterparts and were treated as though they specifically disrupt lipid or protein-phosphatase activity, or both, respectively. Here, we investigated these alleles using genome editing of endogenous daf-18. We assayed 3 traits relevant to L1 starvation resistance, and we show that each point mutant is essentially as starvation-sensitive as a daf-18 null mutant. Furthermore, we show that G174E and D137A do not complement each other, suggesting overlapping effects on lipid and protein-phosphatase activity. We also show that each allele has strong effects on nucleocytoplasmic localization of DAF-16/FoxO and dauer formation, both of which are regulated by PI3K signaling, similar to a daf-18 null allele. In addition, each allele also disrupts M-cell quiescence during L1 starvation, though D137A has a weaker effect than the other alleles, including the null. Our results confirm that daf-18/PTEN is important for promoting starvation resistance and developmental arrest and that it is a potent regulator of PI3K signaling, and they highlight challenges of using genetic analysis to link specific DAF-18/PTEN enzymatic activities to particular phenotypes.
Collapse
Affiliation(s)
- Jingxian Chen
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Linda Y Tang
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Maya E Powell
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - James M Jordan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC 27708, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
35
|
Abstract
Ge et al. (2022) describes an inhibitory, post-translational modification of PTEN at C211 by fumarate, which offers new insight into the integration of PI3K signaling and metabolism via a potential feedforward regulatory mechanism involving a PI3K-glucose-fumarate-PTEN axis.
Collapse
Affiliation(s)
- Sally E Claridge
- Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | - Benjamin D Hopkins
- Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
36
|
Han Y, Cai X, Pan M, Gong J, Cai W, Lu D, Xu C. MicroRNA-21-5p acts via the PTEN/Akt/FOXO3a signaling pathway to prevent cardiomyocyte injury caused by high glucose/high fat conditions. Exp Ther Med 2022; 23:230. [PMID: 35222707 PMCID: PMC8815051 DOI: 10.3892/etm.2022.11154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/15/2021] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) play important roles in cardiovascular disease. miR-21-5p is known to be involved in the regulation of cardiomyocyte injury under high glucose and high fat (HG-HF) conditions, but its mechanism of action remains unclear. In the present study, a cardiomyocyte cell line, H9c2, was treated with 33 mM glucose and 250 µM sodium palmitate for 24, 48, and 72 h to produce HG-HF injury. After treatment, miR-21-5p expression was detected by reverse transcription-quantitative PCR. A miR-21-5p mimic was then constructed and transfected into the cells and the potential molecular mechanism was investigated using Cell Counting Kit-8, TUNEL, flow cytometry and western blot assays. Expression of miR-21-5p was significantly downregulated by HG-HF treatment of H9c2 cells for 24, 48, and 72 h. In subsequent experiments, cells were treated for an intermediate period (48 h). Compared with the control group, HG-HF treatment significantly inhibited H9c2 proliferation and promoted apoptosis, while these effects were significantly reduced in the miR-21-5p mimic. Compared with the control group, HG-HF treatment significantly increased reactive oxygen species, while miR-21-5p mimic significantly reduced this effect. Compared with the control group, HG-HF treatment significantly increased the expression of the pro-apoptotic proteins Bax and phosphorylated (p)-Akt and decreased the expression of the anti-apoptotic proteins Bcl-2, p-PTEN, and p-FOXO3a, while overexpression of miR-21-5p significantly reduced these effects. The results revealed that miR-21-5p inhibited apoptosis and oxidative stress in H9c2 cells induced by HG-HF, likely through the PTEN/Akt/FOXO3a signaling pathway.
Collapse
Affiliation(s)
- Ying Han
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Institute of Hypertension, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Xiaoqi Cai
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Institute of Hypertension, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Min Pan
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Institute of Hypertension, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Jin Gong
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Institute of Hypertension, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Wenqin Cai
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Institute of Hypertension, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Dan Lu
- Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Changsheng Xu
- Fujian Institute of Hypertension, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
37
|
Papa A, Pandolfi PP. PTEN in Immunity. Curr Top Microbiol Immunol 2022; 436:95-115. [DOI: 10.1007/978-3-031-06566-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
The Novel Phosphatase Domain Mutations Q171R and Y65S Switch PTEN from Tumor Suppressor to Oncogene. Cells 2021; 10:cells10123423. [PMID: 34943931 PMCID: PMC8700245 DOI: 10.3390/cells10123423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10, or PTEN, is a well-characterized tumor suppressor with both lipid and protein phosphatase activities. PTEN is often downregulated by epigenetic mechanisms such as hypermethylation, which leads to constitutive activation of the PI3K-Akt pathway. Large datasets from next-generation sequencing, however, revealed that mutations in PTEN may not only hamper protein function but may also affect interactions with downstream effectors, leading to variable oncogenic readouts. Here, two novel PTEN mutations, Q171R and Y65S, identified in Filipino colorectal cancer patients, were phenotypically characterized in NIH3T3 and HCT116 cells, alongside the C124S canonical mutant and wild-type controls. The novel mutants increased cellular proliferation, resistance to apoptosis and migratory capacity. They induced gross morphological changes including cytoplasmic shrinkage, increased cellular protrusions and extensive cytoskeletal reorganization. The mutants also induced a modest increase in Akt phosphorylation. Further mechanistic studies will help determine the differential oncogenic potencies of these mutants, and resolve whether the structural constraints imposed by the mutations may have altered associations with downstream effectors.
Collapse
|
39
|
Turdo A, D'Accardo C, Glaviano A, Porcelli G, Colarossi C, Colarossi L, Mare M, Faldetta N, Modica C, Pistone G, Bongiorno MR, Todaro M, Stassi G. Targeting Phosphatases and Kinases: How to Checkmate Cancer. Front Cell Dev Biol 2021; 9:690306. [PMID: 34778245 PMCID: PMC8581442 DOI: 10.3389/fcell.2021.690306] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
Metastatic disease represents the major cause of death in oncologic patients worldwide. Accumulating evidence have highlighted the relevance of a small population of cancer cells, named cancer stem cells (CSCs), in the resistance to therapies, as well as cancer recurrence and metastasis. Standard anti-cancer treatments are not always conclusively curative, posing an urgent need to discover new targets for an effective therapy. Kinases and phosphatases are implicated in many cellular processes, such as proliferation, differentiation and oncogenic transformation. These proteins are crucial regulators of intracellular signaling pathways mediating multiple cellular activities. Therefore, alterations in kinases and phosphatases functionality is a hallmark of cancer. Notwithstanding the role of kinases and phosphatases in cancer has been widely investigated, their aberrant activation in the compartment of CSCs is nowadays being explored as new potential Achille's heel to strike. Here, we provide a comprehensive overview of the major protein kinases and phosphatases pathways by which CSCs can evade normal physiological constraints on survival, growth, and invasion. Moreover, we discuss the potential of inhibitors of these proteins in counteracting CSCs expansion during cancer development and progression.
Collapse
Affiliation(s)
- Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Antonino Glaviano
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Lorenzo Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Marzia Mare
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | | | - Chiara Modica
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Giuseppe Pistone
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Maria Rita Bongiorno
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy.,Azienda Ospedaliera Universitaria Policlinico (AOUP), Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
40
|
Myint ZW, Allison DB, Ellis CS. A Case Report of Metastatic Castration-Resistant Prostate Cancer Harboring a PTEN Loss. Front Oncol 2021; 11:731002. [PMID: 34631559 PMCID: PMC8495426 DOI: 10.3389/fonc.2021.731002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022] Open
Abstract
The treatment landscape of metastatic castration-resistant prostate cancer (mCRPC) has dramatically improved over the last decade; however, patients with visceral metastases are still faced with poor outcomes. Phosphatase and tensin homolog (PTEN) loss is observed in 40%–60% of mCRPC patients and is also associated with a poor prognosis. Several PI3K/AKT/mTOR pathway inhibitors have been studied, with disappointing anti-tumor activity. Here, we present a case of a patient with heavily treated mCRPC who had a modest tumor response to concurrent carboplatin, abiraterone acetate/prednisone, and liver-directed radiation therapy. We discuss the potential rationale supporting the use of this combination therapy and its safety in mCRPC. While the underlying basic mechanism of our patient’s anti-tumor response remains uncertain, we suggest that further prospective studies are warranted to evaluate whether this combination therapy is effective in this population of patients with pre-treated mCRPC and PTEN loss.
Collapse
Affiliation(s)
- Zin W Myint
- Department of Internal Medicine, Division of Medical Oncology, University of Kentucky, Lexington, KY, United States.,Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Derek B Allison
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States.,Department of Urology, University of Kentucky, Lexington, KY, United States.,Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, United States
| | - Carleton S Ellis
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States.,Department of Pharmacy, University of Kentucky, Lexington KY, United States
| |
Collapse
|
41
|
Park HEH, Hwang W, Ham S, Kim E, Altintas O, Park S, Son HG, Lee Y, Lee D, Heo WD, Lee SJV. A PTEN variant uncouples longevity from impaired fitness in Caenorhabditis elegans with reduced insulin/IGF-1 signaling. Nat Commun 2021; 12:5631. [PMID: 34561453 PMCID: PMC8463539 DOI: 10.1038/s41467-021-25920-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/24/2021] [Indexed: 01/04/2023] Open
Abstract
Insulin/IGF-1 signaling (IIS) regulates various physiological aspects in numerous species. In Caenorhabditis elegans, mutations in the daf-2/insulin/IGF-1 receptor dramatically increase lifespan and immunity, but generally impair motility, growth, and reproduction. Whether these pleiotropic effects can be dissociated at a specific step in insulin/IGF-1 signaling pathway remains unknown. Through performing a mutagenesis screen, we identified a missense mutation daf-18(yh1) that alters a cysteine to tyrosine in DAF-18/PTEN phosphatase, which maintained the long lifespan and enhanced immunity, while improving the reduced motility in adult daf-2 mutants. We showed that the daf-18(yh1) mutation decreased the lipid phosphatase activity of DAF-18/PTEN, while retaining a partial protein tyrosine phosphatase activity. We found that daf-18(yh1) maintained the partial activity of DAF-16/FOXO but restricted the detrimental upregulation of SKN-1/NRF2, contributing to beneficial physiological traits in daf-2 mutants. Our work provides important insights into how one evolutionarily conserved component, PTEN, can coordinate animal health and longevity.
Collapse
Affiliation(s)
- Hae-Eun H Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Wooseon Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Seokjin Ham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Eunah Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Ozlem Altintas
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Sangsoon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Heehwa G Son
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Yujin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
42
|
Abbas A, Padmanabhan R, Eng C. Metabolic stress regulates genome-wide transcription in a PTEN-dependent manner. Hum Mol Genet 2021; 29:2736-2745. [PMID: 32744308 DOI: 10.1093/hmg/ddaa168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/19/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022] Open
Abstract
PTEN is implicated in a wide variety of pathophysiological conditions and traditionally studied in the context of the PIK3-AKT-mTOR axis. Recent studies from our group and others have reported a novel role of PTEN in the regulation of transcription at the genome-wide scale. This emerging role of PTEN on global transcriptional regulation is providing a better understanding of various diseases, including cancer. Because cancer progression is an energy-demanding process and PTEN is known to regulate metabolic processes, we sought to understand the role of PTEN in transcriptional regulation under metabolic stress, a condition often developing in the tumor microenvironment. In the present study, we demonstrate that PTEN modulates genome-wide RNA Polymerase II occupancy in cells undergoing glucose deprivation. The glucose-deprived PTEN null cells were found to continue global gene transcription, which may activate a survival mode. However, cells with constitutive PTEN expression slow transcription, an evolutionary mechanism that may save cellular energy and activate programmed cell death pathways, in the absence of glucose. Interestingly, alternative exon usage by PTEN null cells is increased under metabolic stress in contrast to PTEN-expressing cells. Overall, our study demonstrates distinct mechanisms involved in PTEN-dependent genome-wide transcriptional control under metabolic stress. Our findings provide a new insight in understanding tumor pathology and how PTEN loss of function, whether by genetic or non-genetic mechanisms, can contribute to a favorable transcriptional program employed by tumor cells to escape apoptosis, hence developing more aggressive and metastatic phenotypes.
Collapse
Affiliation(s)
- Ata Abbas
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44116, USA
| | - Roshan Padmanabhan
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Genetics and Genome Sciences.,Germline High Risk Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44116, USA
| |
Collapse
|
43
|
Negative regulators of TGF-β1 signaling in renal fibrosis; pathological mechanisms and novel therapeutic opportunities. Clin Sci (Lond) 2021; 135:275-303. [PMID: 33480423 DOI: 10.1042/cs20201213] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Elevated expression of the multifunctional cytokine transforming growth factor β1 (TGF-β1) is causatively linked to kidney fibrosis progression initiated by diabetic, hypertensive, obstructive, ischemic and toxin-induced injury. Therapeutically relevant approaches to directly target the TGF-β1 pathway (e.g., neutralizing antibodies against TGF-β1), however, remain elusive in humans. TGF-β1 signaling is subjected to extensive negative control at the level of TGF-β1 receptor, SMAD2/3 activation, complex assembly and promoter engagement due to its critical role in tissue homeostasis and numerous pathologies. Progressive kidney injury is accompanied by the deregulation (loss or gain of expression) of several negative regulators of the TGF-β1 signaling cascade by mechanisms involving protein and mRNA stability or epigenetic silencing, further amplifying TGF-β1/SMAD3 signaling and fibrosis. Expression of bone morphogenetic proteins 6 and 7 (BMP6/7), SMAD7, Sloan-Kettering Institute proto-oncogene (Ski) and Ski-related novel gene (SnoN), phosphate tensin homolog on chromosome 10 (PTEN), protein phosphatase magnesium/manganese dependent 1A (PPM1A) and Klotho are dramatically decreased in various nephropathies in animals and humans albeit with different kinetics while the expression of Smurf1/2 E3 ligases are increased. Such deregulations frequently initiate maladaptive renal repair including renal epithelial cell dedifferentiation and growth arrest, fibrotic factor (connective tissue growth factor (CTGF/CCN2), plasminogen activator inhibitor type-1 (PAI-1), TGF-β1) synthesis/secretion, fibroproliferative responses and inflammation. This review addresses how loss of these negative regulators of TGF-β1 pathway exacerbates renal lesion formation and discusses the therapeutic value in restoring the expression of these molecules in ameliorating fibrosis, thus, presenting novel approaches to suppress TGF-β1 hyperactivation during chronic kidney disease (CKD) progression.
Collapse
|
44
|
Liang T, Gao F, Chen J. Role of PTEN-less in cardiac injury, hypertrophy and regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:25. [PMID: 34337686 PMCID: PMC8326232 DOI: 10.1186/s13619-021-00087-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Cardiomyocytes are capable of coordinated contractions, which are mainly responsible for pumping blood. When cardiac stress occurs, cardiomyocytes undergo transition from physiological homeostasis to hypertrophic growth, proliferation, or apoptosis. During these processes, many cellular factors and signaling pathways participate. PTEN is a ubiquitous dual-specificity phosphatase and functions by dephosphorylating target proteins or lipids, such as PIP3, a second messenger in the PI3K/AKT signaling pathway. Downregulation of PTEN expression or inhibiting its biologic activity improves heart function, promotes cardiomyocytes proliferation, reduces cardiac fibrosis as well as dilation, and inhibits apoptosis following ischemic stress such as myocardial infarction. Inactivation of PTEN exhibits a potentially beneficial therapeutic effects against cardiac diseases. In this review, we summarize various strategies for PTEN inactivation and highlight the roles of PTEN-less in regulating cardiomyocytes during cardiac development and stress responses.
Collapse
Affiliation(s)
- Tian Liang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Feng Gao
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jinghai Chen
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China. .,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
45
|
Condello V, Nikitski AV, Foulkes WD, Nikiforov YE. Letter to the Editor: Prevalence of WWP1 Gene Mutations in Patients with Thyroid Nodules. Thyroid 2021; 31:1147-1148. [PMID: 33375877 DOI: 10.1089/thy.2020.0919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Vincenzo Condello
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Yuri E Nikiforov
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
46
|
Mattei AM, Smailys JD, Hepworth EMW, Hinton SD. The Roles of Pseudophosphatases in Disease. Int J Mol Sci 2021; 22:ijms22136924. [PMID: 34203203 PMCID: PMC8269279 DOI: 10.3390/ijms22136924] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023] Open
Abstract
The pseudophosphatases, atypical members of the protein tyrosine phosphatase family, have emerged as bona fide signaling regulators within the past two decades. Their roles as regulators have led to a renaissance of the pseudophosphatase and pseudoenyme fields, catapulting interest from a mere curiosity to intriguing and relevant proteins to investigate. Pseudophosphatases make up approximately fourteen percent of the phosphatase family, and are conserved throughout evolution. Pseudophosphatases, along with pseudokinases, are important players in physiology and pathophysiology. These atypical members of the protein tyrosine phosphatase and protein tyrosine kinase superfamily, respectively, are rendered catalytically inactive through mutations within their catalytic active signature motif and/or other important domains required for catalysis. This new interest in the pursuit of the relevant functions of these proteins has resulted in an elucidation of their roles in signaling cascades and diseases. There is a rapid accumulation of knowledge of diseases linked to their dysregulation, such as neuropathies and various cancers. This review analyzes the involvement of pseudophosphatases in diseases, highlighting the function of various role(s) of pseudophosphatases involvement in pathologies, and thus providing a platform to strongly consider them as key therapeutic drug targets.
Collapse
|
47
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 326] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
48
|
Portelli S, Barr L, de Sá AG, Pires DE, Ascher DB. Distinguishing between PTEN clinical phenotypes through mutation analysis. Comput Struct Biotechnol J 2021; 19:3097-3109. [PMID: 34141133 PMCID: PMC8180946 DOI: 10.1016/j.csbj.2021.05.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
Phosphate and tensin homolog on chromosome ten (PTEN) germline mutations are associated with an overarching condition known as PTEN hamartoma tumor syndrome. Clinical phenotypes associated with this syndrome range from macrocephaly and autism spectrum disorder to Cowden syndrome, which manifests as multiple noncancerous tumor-like growths (hamartomas), and an increased predisposition to certain cancers. It is unclear, however, the basis by which mutations might lead to these very diverse phenotypic outcomes. Here we show that, by considering the molecular consequences of mutations in PTEN on protein structure and function, we can accurately distinguish PTEN mutations exhibiting different phenotypes. Changes in phosphatase activity, protein stability, and intramolecular interactions appeared to be major drivers of clinical phenotype, with cancer-associated variants leading to the most drastic changes, while ASD and non-pathogenic variants associated with more mild and neutral changes, respectively. Importantly, we show via saturation mutagenesis that more than half of variants of unknown significance could be associated with disease phenotypes, while over half of Cowden syndrome mutations likely lead to cancer. These insights can assist in exploring potentially important clinical outcomes delineated by PTEN variation.
Collapse
Affiliation(s)
- Stephanie Portelli
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Melbourne, Victoria, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Lucy Barr
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Melbourne, Victoria, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Alex G.C. de Sá
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Melbourne, Victoria, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Douglas E.V. Pires
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Melbourne, Victoria, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - David B. Ascher
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Melbourne, Victoria, Australia
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry, University of Cambridge, 80 Tennis Ct Rd, Cambridge CB2 1GA, United States
| |
Collapse
|
49
|
Abstract
In over two decades since the discovery of phosphatase and tensin homologue deleted on chromosome 10 (PTEN), nearly 18,000 publications have attempted to elucidate its functions and roles in normal physiology and disease. The frequent disruption of PTEN in cancer cells was a strong indication that it had critical roles in tumour suppression. Germline PTEN mutations have been identified in patients with heterogeneous tumour syndromic diseases, known as PTEN hamartoma tumour syndrome (PHTS), and in some individuals with autism spectrum disorders (ASD). Today we know that by limiting oncogenic signalling through the phosphoinositide 3-kinase (PI3K) pathway, PTEN governs a number of processes including survival, proliferation, energy metabolism, and cellular architecture. Some of the most exciting recent advances in the understanding of PTEN biology and signalling have revisited its unappreciated roles as a protein phosphatase, identified non-enzymatic scaffold functions, and unravelled its nuclear function. These discoveries are certain to provide a new perspective on its full tumour suppressor potential, and knowledge from this work will lead to new anti-cancer strategies that exploit PTEN biology. In this review, we will highlight some outstanding questions and some of the very latest advances in the understanding of the tumour suppressor PTEN.
Collapse
Affiliation(s)
- Jonathan Tak-Sum Chow
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Nikhil K, Kamra M, Raza A, Shah K. Negative cross talk between LIMK2 and PTEN promotes castration resistant prostate cancer pathogenesis in cells and in vivo. Cancer Lett 2021; 498:1-18. [PMID: 32931887 PMCID: PMC8633979 DOI: 10.1016/j.canlet.2020.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/17/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022]
Abstract
Androgen deprivation therapy (ADT) and androgen receptor (AR) signaling inhibitors are front-line treatments for highly aggressive prostate cancer. However, prolonged inhibition of AR triggers a compensatory activation of PI3K pathway, most often due to the genomic loss of tumor suppressor PTEN, driving progression to the castration-resistant prostate cancer (CRPC) stage, which has very poor prognosis. We uncovered a novel mechanism of PTEN downregulation triggered by LIMK2, which contributes significantly to CRPC pathogenesis. LIMK2 is a CRPC-specific target. Its depletion fully reverses tumorigenesis in vivo. LIMK2 phosphorylates PTEN at five sites, degrading and inhibiting its activity, thereby driving highly aggressive oncogenic phenotypes in cells and in vivo. PTEN also degrades LIMK2 in a feedback loop, which was confirmed in prostates from PTEN-/- and PTEN+/+ mice. LIMK2 is also the missing link between hypoxia and PTEN degradation in CRPC. This is the first study to show a feedback loop between PTEN and its regulator. Uncovering the LIMK2-PTEN loop provides a powerful therapeutic opportunity to retain the activity and stability of PTEN protein by inhibiting LIMK2, thereby halting the progression to CRPC, ADT-resistance and drug-resistance.
Collapse
Affiliation(s)
- Kumar Nikhil
- Department of Chemistry and Purdue University Center for Cancer Research 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Mohini Kamra
- Department of Chemistry and Purdue University Center for Cancer Research 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Asif Raza
- Department of Chemistry and Purdue University Center for Cancer Research 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|