1
|
Ghorbani M, Namazi S, Dehghani M, Razi F, Khalvati B, Dehshahri A. Identifying the potential mediators of pathological complete response to neoadjuvant chemotherapy among TACR1 gene polymorphisms: a study on breast cancer patients. Breast Cancer Res Treat 2025; 211:617-626. [PMID: 40080356 DOI: 10.1007/s10549-025-07674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
PURPOSE Recent studies have shown that the truncated isoform of the neurokinin-1 receptor (NK-1R) and its ligand, substance P (SP), are overexpressed in tumor cells playing a crucial role in chemoresistance, leading to proliferation, angiogenesis, and metastasis. Hence, this study aims to assess if the polymorphisms of the NK-1R-encoding gene influence the truncated NK-1R level, chemoresistance, and pathological complete response (pCR) achievement in breast cancer patients. METHODS The real-time PCR-HRMA was performed to genotype TACR1 eighteen tag SNPs in 153 neoadjuvant chemotherapy-receiving breast cancer patients. Univariate analysis was performed to assess the association of baseline and tumor characteristics with pCR achievement. The association of each variant and pCR achievement was assessed by executing logistic regression while adjusting for covariates and correcting for multiple tests using permutation. RESULTS The probability of pCR to neoadjuvant chemotherapy is higher for patients with tumor grade-III as well as stage-I. Assuming the additive, dominant, or recessive models, rs17010664, rs6715729, and rs3771869 were significantly associated with pCR achievement. CONCLUSION Positioned close to the truncation-occurring region, belonging to an exon-splicing enhancer motif, the rs17010664 C allele seems to play a crucial role in enhancing the TACR1 last exon splicing leading to increased truncated NK-1R production, chemoresistance, and decreased pCR achievement. Accordingly, The SP/truncated NK-1R axis blockade by NK-1R antagonists seems to be a therapeutic approach to overcoming chemoresistance and achieving pCR in the rs17010664 risk-allele-bearing patients. Hence, conducting further studies to determine the required dose of NK-1R antagonists, repurposed as an antitumor agent, is favored.
Collapse
Affiliation(s)
- Marziyeh Ghorbani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Karafarin St., Shiraz, 7146864685, Iran
| | - Soha Namazi
- Research Center for Rational Use of Drugs, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mehdi Dehghani
- Hematology Research Center, Department of Hematology and Medical Oncology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Khalvati
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Biological Mass Spectrometry Center, Stony Brook Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Karafarin St., Shiraz, 7146864685, Iran.
| |
Collapse
|
2
|
Muñoz M, Rosso M. Radiotherapy Plus the Neurokinin-1 Receptor Antagonist Aprepitant: A Potent Therapeutic Strategy for the Treatment of Diffuse Intrinsic Pontine Glioma. Cancers (Basel) 2025; 17:520. [PMID: 39941886 PMCID: PMC11816061 DOI: 10.3390/cancers17030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Diffuse intrinsic pontine glioma (DIPG) is a devastating childhood brainstem tumor. The median survival of DIPG is 16-24 months independent of the treatment received. Therefore, new therapeutic strategies against DIPG are urgently needed. Substance P (SP) peptide, through the neurokinin neurokinin-1 receptor (NK-1R), is involved in glioma progression. It induces glioma cell proliferation by activating MAPKs (p38 MAPK, ERK1/2, and JNK), c-Myc, AP-1, and NF-κB and induces antiapoptotic effects via PI3K/Akt/mTOR in glioma cells. SP favors glycogen breakdown that is essential for glycolysis. The SP/NK-1R system also regulates the migration and invasion of glioma cells, stimulates angiogenesis, and triggers inflammation which contributes to glioma progression. Moreover, all glioma cells express NK-1R, and NK-1R is essential for the viability of glioma cells and not of normal cells. In contrast, in glioma, NK-1R antagonists, such as the drug aprepitant, penetrate the brain and reach therapeutic concentrations, thereby inhibiting mitogenesis, inducing apoptosis, and inhibiting the breakdown of glycogen in glioma cells. In addition, they inhibit angiogenesis and exert antimetastatic and anti-inflammatory effects. The combination of radiotherapy with NK-1R antagonists produces radiosensitization and radioneuroprotection, reduces both peritumoral- and radiation-induced inflammation, and also provides antinausea and antivomiting effects. Objective: This review updates the involvement of the SP/NK-1R system in glioma promotion and progression and the potential clinical application of NK-1R antagonist drugs in DIPG therapy. Conclusions: NK-1R plays a crucial role in glioma progression and NK-1R antagonists such as aprepitant could be used in combination with radiotherapy as a potent therapeutic strategy for the treatment of patients with DIPG.
Collapse
Affiliation(s)
- Miguel Muñoz
- Research Laboratory on Neuropeptides, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain;
| | | |
Collapse
|
3
|
Mao RT, Guo SQ, Zhang G, Li YD, Xu JP, Wang HY, Fu P, Liu CP, Wu SQ, Chen P, Mei YS, Jin QC, Liu CY, Zhang YCF, Ding XY, Liu WJ, Romanova EV, Zhou HB, Cropper EC, Checco JW, Sweedler JV, Jing J. Two C-terminal isoforms of Aplysia tachykinin-related peptide receptors exhibit phosphorylation-dependent and phosphorylation-independent desensitization mechanisms. J Biol Chem 2024; 300:107556. [PMID: 39002683 PMCID: PMC11365428 DOI: 10.1016/j.jbc.2024.107556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024] Open
Abstract
Diversity, a hallmark of G protein-coupled receptor (GPCR) signaling, partly stems from alternative splicing of a single gene generating more than one isoform for a receptor. Additionally, receptor responses to ligands can be attenuated by desensitization upon prolonged or repeated ligand exposure. Both phenomena have been demonstrated and exemplified by the deuterostome tachykinin signaling system, although the role of phosphorylation in desensitization remains a subject of debate. Here, we describe the signaling system for tachykinin-related peptides (TKRPs) in a protostome, mollusk Aplysia. We cloned the Aplysia TKRP precursor, which encodes three TKRPs (apTKRP-1, apTKRP-2a, and apTKRP-2b) containing the FXGXR-amide motif. In situ hybridization and immunohistochemistry showed predominant expression of TKRP mRNA and peptide in the cerebral ganglia. TKRPs and their posttranslational modifications were observed in extracts of central nervous system ganglia using mass spectrometry. We identified two Aplysia TKRP receptors (apTKRPRs), named apTKRPR-A and apTKRPR-B. These receptors are two isoforms generated through alternative splicing of the same gene and differ only in their intracellular C termini. Structure-activity relationship analysis of apTKRP-2b revealed that both C-terminal amidation and conserved residues of the ligand are critical for receptor activation. C-terminal truncates and mutants of apTKRPRs suggested that there is a C-terminal phosphorylation-independent desensitization for both receptors. Moreover, apTKRPR-B also exhibits phosphorylation-dependent desensitization through the phosphorylation of C-terminal Ser/Thr residues. This comprehensive characterization of the Aplysia TKRP signaling system underscores the evolutionary conservation of the TKRP and TK signaling systems, while highlighting the intricacies of receptor regulation through alternative splicing and differential desensitization mechanisms.
Collapse
Affiliation(s)
- Rui-Ting Mao
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Shi-Qi Guo
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Guo Zhang
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.
| | - Ya-Dong Li
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ju-Ping Xu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Hui-Ying Wang
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ping Fu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Cui-Ping Liu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Shao-Qian Wu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ping Chen
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yu-Shuo Mei
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Qing-Chun Jin
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Cheng-Yi Liu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yan-Chu-Fei Zhang
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xue-Ying Ding
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Wei-Jia Liu
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hai-Bo Zhou
- School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, China; Peng Cheng Laboratory, Shenzhen, China.
| | - Elizabeth C Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - James W Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jian Jing
- Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China; Peng Cheng Laboratory, Shenzhen, China; Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
4
|
Rodriguez FD, Covenas R. Association of Neurokinin-1 Receptor Signaling Pathways with Cancer. Curr Med Chem 2024; 31:6460-6486. [PMID: 37594106 DOI: 10.2174/0929867331666230818110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/14/2023] [Accepted: 07/01/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Numerous biochemical reactions leading to altered cell proliferation cause tumorigenesis and cancer treatment resistance. The mechanisms implicated include genetic and epigenetic changes, modified intracellular signaling, and failure of control mechanisms caused by intrinsic and extrinsic factors alone or combined. No unique biochemical events are responsible; entangled molecular reactions conduct the resident cells in a tissue to display uncontrolled growth and abnormal migration. Copious experimental research supports the etiological responsibility of NK-1R (neurokinin-1 receptor) activation, alone or cooperating with other mechanisms, in cancer appearance in different tissues. Consequently, a profound study of this receptor system in the context of malignant processes is essential to design new treatments targeting NK-1R-deviated activity. METHODS This study reviews and discusses recent literature that analyzes the main signaling pathways influenced by the activation of neurokinin 1 full and truncated receptor variants. Also, the involvement of NK-1R in cancer development is discussed. CONCLUSION NK-1R can signal through numerous pathways and cross-talk with other receptor systems. The participation of override or malfunctioning NK-1R in malignant processes needs a more precise definition in different types of cancers to apply satisfactory and effective treatments. A long way has already been traveled: the current disposal of selective and effective NK-1R antagonists and the capacity to develop new drugs with biased agonistic properties based on the receptor's structural states with functional significance opens immediate research action and clinical application.
Collapse
Affiliation(s)
- Francisco David Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
| | - Rafael Covenas
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
5
|
Safwat A, Helmy A, Gupta A. The Role of Substance P Within Traumatic Brain Injury and Implications for Therapy. J Neurotrauma 2023; 40:1567-1583. [PMID: 37132595 DOI: 10.1089/neu.2022.0510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
This review examines the role of the neuropeptide substance P within the neuroinflammation that follows traumatic brain injury. It examines it in reference to its preferential receptor, the neurokinin-1 receptor, and explores the evidence for antagonism of this receptor in traumatic brain injury with therapeutic intent. Expression of substance P increases following traumatic brain injury. Subsequent binding to the neurokinin-1 receptor results in neurogenic inflammation, a cause of deleterious secondary effects that include an increased intracranial pressure and poor clinical outcome. In several animal models of TBI, neurokinin-1 receptor antagonism has been shown to reduce brain edema and the resultant rise in intracranial pressure. A brief overview of the history of substance P is presented, alongside an exploration into the chemistry of the neuropeptide with a relevance to its functions within the central nervous system. This review summarizes the scientific and clinical rationale for substance P antagonism as a promising therapy for human TBI.
Collapse
Affiliation(s)
- Adam Safwat
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Adel Helmy
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Arun Gupta
- Neurosciences Critical Care Unit, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
6
|
Wang HY, Yu K, Liu WJ, Jiang HM, Guo SQ, Xu JP, Li YD, Chen P, Ding XY, Fu P, Zhang YCF, Mei YS, Zhang G, Zhou HB, Jing J. Molecular Characterization of Two Wamide Neuropeptide Signaling Systems in Mollusk Aplysia. ACS Chem Neurosci 2023. [PMID: 37339428 DOI: 10.1021/acschemneuro.3c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
Neuropeptides with the C-terminal Wamide (Trp-NH2) are one of the last common ancestors of peptide families of eumetazoans and play various physiological roles. In this study, we sought to characterize the ancient Wamide peptides signaling systems in the marine mollusk Aplysia californica, i.e., APGWamide (APGWa) and myoinhibitory peptide (MIP)/Allatostatin B (AST-B) signaling systems. A common feature of protostome APGWa and MIP/AST-B peptides is the presence of a conserved Wamide motif in the C-terminus. Although orthologs of the APGWa and MIP signaling systems have been studied to various extents in annelids or other protostomes, no complete signaling systems have yet been characterized in mollusks. Here, through bioinformatics, molecular and cellular biology, we identified three receptors for APGWa, namely, APGWa-R1, APGWa-R2, and APGWa-R3. The EC50 values for APGWa-R1, APGWa-R2, and APGWa-R3 are 45, 2100, and 2600 nM, respectively. For the MIP signaling system, we predicted 13 forms of peptides, i.e., MIP1-13 that could be generated from the precursor identified in our study, with MIP5 (WKQMAVWa) having the largest number of copies (4 copies). Then, a complete MIP receptor (MIPR) was identified and the MIP1-13 peptides activated the MIPR in a dose-dependent manner, with EC50 values ranging from 40 to 3000 nM. Peptide analogs with alanine substitution experiments demonstrated that the Wamide motif at the C-terminus is necessary for receptor activity in both the APGWa and MIP systems. Moreover, cross-activity between the two signaling systems showed that MIP1, 4, 7, and 8 ligands could activate APGWa-R1 with a low potency (EC50 values: 2800-22,000 nM), which further supported that the APGWa and MIP signaling systems are somewhat related. In summary, our successful characterization of Aplysia APGWa and MIP signaling systems represents the first example in mollusks and provides an important basis for further functional studies in this and other protostome species. Moreover, this study may be useful for elucidating and clarifying the evolutionary relationship between the two Wamide signaling systems (i.e., APGWa and MIP systems) and their other extended neuropeptide signaling systems.
Collapse
Affiliation(s)
- Hui-Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ke Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wei-Jia Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hui-Min Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shi-Qi Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ju-Ping Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ya-Dong Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ping Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xue-Ying Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ping Fu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan-Chu-Fei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yu-Shuo Mei
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Guo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hai-Bo Zhou
- Peng Cheng Laboratory, Shenzhen 518000, China
- School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Peng Cheng Laboratory, Shenzhen 518000, China
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
7
|
Li Q, Jiang B, Zhang Z, Huang Y, Xu Z, Chen X, Huang Y, Jian J. SP protects Nile tilapia (Oreochromis niloticus) against acute Streptococcus agalatiae infection. FISH & SHELLFISH IMMUNOLOGY 2022; 123:218-228. [PMID: 35257891 DOI: 10.1016/j.fsi.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Substance P (SP) is a neuropeptide that involves in a wide variety of physiological and pathological events, mainly exerts its roles by neurokinin 1 receptor (NK1R), also modulates immune function. However, the roles of SP during immune response to acute bacterial infection of Nile tilapia (Oreochromis niloticus) remain unclear. In this study, the gene of SP precursor (tachykinin precursor 1, TAC1) and the gene of SP receptor (NK1R) from Nile tilapia were identified, and the roles of SP during an acute bacterial infection in a warm water environment were investigated. On-TAC1(Oreochromis niloticus-TAC1) contains conservative SP & NKA peptide sequences and On-NK1R contains seven conservative transmembrane domains. Their transcriptional levels were most abundant in brain and the On-TAC1 transcripts can be induced in the tilapia challenged with Streptococcus agalactiae. Furthermore, the experimental results revealed that On-SP could promote pyroptosis, suppress inflammation, and improve survival rate during acute bacterial infection. The present data lays a theoretical foundation to further elucidate the mechanism of SP protecting fish against pathogens.
Collapse
Affiliation(s)
- Qi Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhou Xu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Xinjin Chen
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| |
Collapse
|
8
|
Zuo C, Lyu L, Zou W, Wen H, Li Y, Qi X. TAC3/TACR3 System Function in the Catadromous Migration Teleost, Anguilla japonica. Front Endocrinol (Lausanne) 2022; 13:848808. [PMID: 35937808 PMCID: PMC9355281 DOI: 10.3389/fendo.2022.848808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Neurokinin B (NKB), a member of the tachykinin (TAC) family, plays important roles in mammalian neuropeptide secretion in related to reproduction. However, its potential role in spawning migration teleost is less clear. In the present study, Japanese eel (Anguilla japonica) was employed to study the performance of NKB in regulating reproduction. Results showed that two tac3 and one tacr3 genes were identified in Japanese eel. Sequence analysis showed that two tac3 transcripts, tac3a and tac3b, encode four NKBs: NKBa-13, NKBa-10, NKBb-13, and NKBb-10. However, compared with other species, a mutation caused early termination of TACR3 protein was confirmed, leading to the loss of the 35 amino acid (aa) C-terminal of the receptor. Expression analysis in different tissues showed that both tac3a and tac3b mRNAs were highly expressed in the brain. In situ hybridization localized both tac3a and tac3b mRNAs to several brain regions, mainly in the telencephalon and hypothalamus. Because of the mutation in TACR3 of Japanese eel, we further analyzed whether it could activate the downstream signaling pathway. Luciferase assay results showed the negative regulation of cAMP Response Element (CRE) and Sterol Response Element (SRE) signal pathways by Japanese eel NKBs. Intraperitoneal injection of four different NKB mature peptides at 100 ng/g had negative effect on either gnrh or gth gene expression. However, the high concentration of NKBa-10 and NKBb-13 (1,000 ng/g) upregulated mgnrh and fshb or lhb expression level significantly, which may be mediated by other receptors. In general, the NKBs/NK3Rs system has important functions in regulating eel puberty onset.
Collapse
Affiliation(s)
- Chenpeng Zuo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Wenhui Zou
- College of Ocean, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- *Correspondence: Xin Qi,
| |
Collapse
|
9
|
Neurokinin receptors and their implications in various autoimmune diseases. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:66-78. [PMID: 35492389 PMCID: PMC9040085 DOI: 10.1016/j.crimmu.2021.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Neurokinin receptors belong to the GPCRs family and are ubiquitously expressed throughout the nervous and immune systems. Neurokinin receptors in coordination with neurokinins playing an important role in many physiological processes, including smooth muscle contraction, secretion, proliferation, and nociception. They also contribute to various disease conditions such as inflammatory bowel disease, rheumatoid arthritis, multiple sclerosis, psoriasis, and cancer. Neurokinin receptors antagonist are potent and highly selective and showing success in treating chemotherapy-induced nausea and vomiting. In this review, discuss the various neurokinin receptor expression on immune cells and their importance in various inflammatory and autoimmune diseases and their therapeutic importance. The Neurokinin receptor is an important regulatory mechanism to control the neuronal and immune systems. Various neurokinin receptors (NK1R, NK2R, and NK3R) are expressed in neurons and cells of the immune system. Substance P (SP) controls the differentiation and function of immune cells. SP-NK1R receptor signaling shows substantial cross-talk between neuronal and immune systems in inflammation and autoimmunity.
Collapse
|
10
|
Ugan RA, Un H, Kose D, Cadirci E, Bal Tastan T, Yayla M, Halici Z. Can aprepitant used for nausea and vomiting be good gastrointestinal complaints? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2463-2472. [PMID: 32743741 DOI: 10.1007/s00210-020-01956-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Aprepitant is a selective SP/NK-1 receptor antagonist and used in postoperative and chemotherapeutics induced emesis and vomiting. The aim of our study is to show aprepitant may have beneficial effects on gastrointestinal complaints in cancer patients undergoing chemotherapeutics by indomethacin-induced gastric ulcer model. A total of 48 rats were fasted 24 h for ulcer experiment. Aprepitant doses of 5, 10, 20, and 40 mg/kg were evaluated for their antiulcer activity. Omeprazole (20 mg/kg) was used as a positive control group. Six hours after 25 mg/kg indomethacin administration, all stomachs were dissected out. After macroscopic analyses, tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), COX-1, and COX-2 mRNA levels and SOD activity, and GSH and MDA levels of stomachs were determined. Histopathological examinations were evaluated. Aprepitant administration exerted 48.14%, 49.62%, 65.92%, and 76.77% ulcer inhibition effects at 5, 10, 20, and 40 mg/kg, respectively. Aprepitant administration decreased oxidative stress and inflammatory parameters in stomach tissues dose dependently. Aprepitant administration increased stomach COX-2 mRNA levels at 20 and 40 mg/kg doses. Although aprepitant appears to be disadvantageous in terms of treating gastric ulcer due to COX enzyme inhibition according to the previous studies, aprepitant has been shown to have ulcer healing effect in our study. When aprepitant is given as an anti-nausea and vomiting drug to cancer patients undergoing chemotherapy, we can argue that it will not be necessary to add a new gastric protective agent as it also shows beneficial effects in gastrointestinal complaints.
Collapse
Affiliation(s)
- Rustem Anil Ugan
- Department of Pharmacology, Faculty of Pharmacy, Ataturk University, 25240, Erzurum, Turkey.
| | - Harun Un
- Department of Biochemistry, Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri, Turkey
| | - Duygu Kose
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Elif Cadirci
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| | - Tugba Bal Tastan
- Department of Histology and Embryology, Faculty of Medicine, Erzincan Binali Yidirim University, Erzincan, Turkey
| | - Muhammed Yayla
- Department of Pharmacology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Zekai Halici
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| |
Collapse
|
11
|
Petrosino S, Schiano Moriello A, Verde R, Allarà M, Imperatore R, Ligresti A, Mahmoud AM, Peritore AF, Iannotti FA, Di Marzo V. Palmitoylethanolamide counteracts substance P-induced mast cell activation in vitro by stimulating diacylglycerol lipase activity. J Neuroinflammation 2019; 16:274. [PMID: 31878942 PMCID: PMC6933707 DOI: 10.1186/s12974-019-1671-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/09/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Palmitoylethanolamide (PEA) is a pleiotropic endogenous lipid mediator currently used as a "dietary food for special medical purposes" against neuropathic pain and neuro-inflammatory conditions. Several mechanisms underlie PEA actions, among which the "entourage" effect, consisting of PEA potentiation of endocannabinoid signaling at either cannabinoid receptors or transient receptor potential vanilloid type-1 (TRPV1) channels. Here, we report novel molecular mechanisms through which PEA controls mast cell degranulation and substance P (SP)-induced histamine release in rat basophilic leukemia (RBL-2H3) cells, a mast cell model. METHODS RBL-2H3 cells stimulated with SP were treated with PEA in the presence and absence of a cannabinoid type-2 (CB2) receptor antagonist (AM630), or a diacylglycerol lipase (DAGL) enzyme inhibitor (OMDM188) to inhibit the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). The release of histamine was measured by ELISA and β-hexosaminidase release and toluidine blue staining were used as indices of degranulation. 2-AG levels were measured by LC-MS. The mRNA expression of proposed PEA targets (Cnr1, Cnr2, Trpv1, Ppara and Gpr55), and of PEA and endocannabinoid biosynthetic (Napepld, Dagla and Daglb) and catabolic (Faah, Naaa and Mgl) enzymes were also measured. The effects of PEA on the activity of DAGL-α or -β enzymes were assessed in COS-7 cells overexpressing the human recombinant enzyme or in RBL-2H3 cells, respectively. RESULTS SP increased the number of degranulated RBL-2H3 cells and triggered the release of histamine. PEA counteracted these effects in a manner antagonized by AM630. PEA concomitantly increased the levels of 2-AG in SP-stimulated RBL-2H3 cells, and this effect was reversed by OMDM188. PEA significantly stimulated DAGL-α and -β activity and, consequently, 2-AG biosynthesis in cell-free systems. Co-treatment with PEA and 2-AG at per se ineffective concentrations downmodulated SP-induced release of histamine and degranulation, and this effect was reversed by OMDM188. CONCLUSIONS Activation of CB2 underlies the inhibitory effects on SP-induced RBL-2H3 cell degranulation by PEA alone. We demonstrate for the first time that the effects in RBL-2H3 cells of PEA are due to the stimulation of 2-AG biosynthesis by DAGLs.
Collapse
Affiliation(s)
- Stefania Petrosino
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy.
- Epitech Group SpA, Via Einaudi 13, 35030, Saccolongo (Padova), Italy.
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
- Epitech Group SpA, Via Einaudi 13, 35030, Saccolongo (Padova), Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Marco Allarà
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
- Epitech Group SpA, Via Einaudi 13, 35030, Saccolongo (Padova), Italy
| | - Roberta Imperatore
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Alessia Ligresti
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Ali Mokhtar Mahmoud
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Alessio Filippo Peritore
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and INAF, Faculties of Medicine and Agriculture and Food Sciences, Université Laval, Quebéc City, Canada.
| |
Collapse
|
12
|
Neurokinin-1 Receptor Antagonists against Hepatoblastoma. Cancers (Basel) 2019; 11:cancers11091258. [PMID: 31466222 PMCID: PMC6770178 DOI: 10.3390/cancers11091258] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/03/2019] [Accepted: 08/21/2019] [Indexed: 12/30/2022] Open
Abstract
Hepatoblastoma (HB) is the most common malignant liver tumor that occurs during childhood. The prognosis of children with HB is favorable when a complete surgical resection of the tumor is possible, but for high-risk patients, the prognosis is much worse. New anti-HB strategies must be urgently developed. The undecapeptide substance P (SP) after binding to the neurokinin-1 receptor (NK-1R), regulates cancer cell proliferation, exerts an antiapoptotic effect, induces cell migration for invasion/metastasis, and triggers endothelial cell proliferation for neoangiogenesis. HB samples and cell lines overexpress NK-1R (the truncated form) and SP elicits HB cell proliferation. One of these strategies could be the use of non-peptide NK-1R antagonists. These antagonists exert, in a concentration-dependent manner, an antiproliferative action against HB cells (inhibit cell proliferation and induce the death of HB cells by apoptosis). NK-1R antagonists exerted a dual effect in HB: Decreased both tumor volume and angiogenic activity. Thus, the SP/NK-1R system is an important target in the HB treatment and NK-1R antagonists could act as specific drugs against HB cells. In this review, we update and discuss the use of NK-1R antagonists in the treatment of HB.
Collapse
|
13
|
Liu X, Zhang L, Tong Y, Yu M, Wang M, Dong D, Shao J, Zhang F, Niu R, Zhou Y. MicroRNA-22 inhibits proliferation, invasion and metastasis of breast cancer cells through targeting truncated neurokinin-1 receptor and ERα. Life Sci 2018; 217:57-69. [PMID: 30502362 DOI: 10.1016/j.lfs.2018.11.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022]
Abstract
HEADING AIMS This topic aims to clarify whether miR-22 directly targets and downregulates the expression of ERα and NK1R-Tr to inhibit the malignant behaviors of breast cancer cells. MATERIALS AND METHODS RT-PCR and Western Blotting were used to detect the expression profile of miR-22, NK1R-Tr and ERα. Luciferase reporter assay and CHIP experiment were conducted to investigate the regulation network between miR-22, NK1R-Tr and ERα. MCF-7-ERαI and MDA-MB-231-ERα cell lines were constructed to study the biological behaviors. The SP-NK1R-ERK1/2 signaling pathway was analyzed using Western Blotting. The subcutaneous and metastases tumor models were employed to study the effects of miR-22 on cell proliferation and metastasis of breast cancer cells in vivo. KEY FINDINGS MiR-22 expression level was significantly lower in breast cancerous tissues and cell lines than the adjacent normality, while that of NK1R-Tr increased. The ERα could positively regulate NK1R-Tr expression at DNA level. The descent degree of NK1R-Tr in MCF-7-ERαI cells was far less than that in wild MCF-7 cells, while the findings in MDA-MB-231-ERα cells was more apparent than wild MDA-MB-231 cells. The malignant phenotype was decreased in miR-22 overexpressing cells compared with the wild type. The peak of ERK1/2 phosphorylation was delayed and weakened in miR-22 overexpressing MCF-7 cells, which was agreed with the findings using NK1R-Tr antagonist. The size and number of metastatic tumors declined compared to the controls. SIGNIFICANCE MiR-22 downregulated the expression of NK1R-Tr and ERα to delay and weaken phosphorylation of ERK1/2 to inhibit proliferation and metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Xiaobin Liu
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, Tianjin's Clinical Research Center for Cancer, China; Department of Clinical Laboratory, Beijing Huaxin Hospital, First Hospital of TsingHua University, Beijing, China
| | - Lufang Zhang
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, Tianjin's Clinical Research Center for Cancer, China
| | - Yingna Tong
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, Tianjin's Clinical Research Center for Cancer, China; Department of Clinical Laboratory, Tianjin Children's Hospital, Tianjin, China
| | - Man Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Meng Wang
- Department of Clinical Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Dong Dong
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, Tianjin's Clinical Research Center for Cancer, China
| | - Jie Shao
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, Tianjin's Clinical Research Center for Cancer, China
| | - Fei Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ruifang Niu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yunli Zhou
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, Tianjin's Clinical Research Center for Cancer, China.
| |
Collapse
|
14
|
Spitsin S, Pappa V, Douglas SD. Truncation of neurokinin-1 receptor-Negative regulation of substance P signaling. J Leukoc Biol 2018; 103:1043-1051. [PMID: 29345372 DOI: 10.1002/jlb.3mir0817-348r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/22/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022] Open
Abstract
Substance P (SP) is a tachykinin peptide, which triggers intracellular signaling in the nervous and immune systems, as well as, other local and systemic events. The interaction between SP and its receptor, neurokinin-1 receptor (NK1R), results in major downstream cellular actions, which include changes in calcium fluxes, ERK, and p21-activated kinase phosphorylation and NFκB activation. Two naturally occurring variants of the NK1R, the full-length, 407 aa receptor (NK1R-F) and the truncated, 311 aa isoform (NK1R-T), mediate the actions of SP. Receptor truncation partially disrupts signaling motifs of the carboxyl tail, a critical site for mediating NK1R signaling, resulting in a "less-efficient" receptor. Although NK1R-F is the predominant isoform in the central and peripheral nervous systems, NK1R-T is expressed in several tissues and cells, which include monocytes, NK cells, and T-cells. The SP binding domain is not affected by truncation and this site is identical in both NK1R receptor isoforms. However, while cells expressing NK1R-F respond to nanomolar concentrations of SP, monocyte and macrophage activation, mediated through NK1R-T, requires micromolar concentrations of SP in order to elicit signaling responses. Elevated plasma levels of SP are associated with increased inflammatory responses and NK1R antagonists reduce inflammation and cytokine production in vivo. This mini review presents and discusses the novel hypothesis that the expression of NK1R-T on immune system cells prevents immune activation in a milieu, which usually contains low concentrations of SP and, thus, maintains immune homeostasis. In contrast, in the activated neuronal microenvironment, when SP levels reach the threshold at tissue sites, SP promotes immune activation and modulates monocyte/macrophage polarization.
Collapse
Affiliation(s)
- Sergei Spitsin
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Vasiliki Pappa
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Steven D Douglas
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Suvas S. Role of Substance P Neuropeptide in Inflammation, Wound Healing, and Tissue Homeostasis. THE JOURNAL OF IMMUNOLOGY 2017; 199:1543-1552. [PMID: 28827386 DOI: 10.4049/jimmunol.1601751] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/13/2017] [Indexed: 11/19/2022]
Abstract
Substance P (SP) is an undecapeptide present in the CNS and the peripheral nervous system. SP released from the peripheral nerves exerts its biological and immunological activity via high-affinity neurokinin 1 receptor (NK1R). SP is also produced by immune cells and acts as an autocrine or paracrine fashion to regulate the function of immune cells. In addition to its proinflammatory role, SP and its metabolites in combination with insulin-like growth factor-1 are shown to promote the corneal epithelial wound healing. Recently, we showed an altered ocular surface homeostasis in unmanipulated NK1R-/- mice, suggesting the role of SP-NK1R signaling in ocular surface homeostasis under steady-state. This review summarizes the immunobiology of SP and its effect on immune cells and immunity to microbial infection. In addition, the effect of SP in inflammation, wound healing, and corneal epithelial homeostasis in the eye is discussed.
Collapse
Affiliation(s)
- Susmit Suvas
- Department of Ophthalmology/Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI 48201; .,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201; and .,Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
16
|
Gao X, Wang Z. Difference in expression of two neurokinin-1 receptors in adenoma and carcinoma from patients that underwent radical surgery for colorectal carcinoma. Oncol Lett 2017; 14:3729-3733. [DOI: 10.3892/ol.2017.6588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/03/2017] [Indexed: 11/05/2022] Open
|
17
|
Widiapradja A, Chunduri P, Levick SP. The role of neuropeptides in adverse myocardial remodeling and heart failure. Cell Mol Life Sci 2017; 74:2019-2038. [PMID: 28097372 PMCID: PMC6339818 DOI: 10.1007/s00018-017-2452-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/05/2016] [Accepted: 01/02/2017] [Indexed: 12/25/2022]
Abstract
In addition to traditional neurotransmitters of the sympathetic and parasympathetic nervous systems, the heart also contains numerous neuropeptides. These neuropeptides not only modulate the effects of neurotransmitters, but also have independent effects on cardiac function. While in most cases the physiological actions of these neuropeptides are well defined, their contributions to cardiac pathology are less appreciated. Some neuropeptides are cardioprotective, some promote adverse cardiac remodeling and heart failure, and in the case of others their functions are unclear. Some have both cardioprotective and adverse effects depending on the specific cardiac pathology and progression of that pathology. In this review, we briefly describe the actions of several neuropeptides on normal cardiac physiology, before describing in more detail their role in adverse cardiac remodeling and heart failure. It is our goal to bring more focus toward understanding the contribution of neuropeptides to the pathogenesis of heart failure, and to consider them as potential therapeutic targets.
Collapse
Affiliation(s)
- Alexander Widiapradja
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Prasad Chunduri
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Scott P Levick
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
18
|
Chi G, Huang Z, Li X, Zhang K, Li G. Substance P Regulation in Epilepsy. Curr Neuropharmacol 2017; 16:43-50. [PMID: 28474564 PMCID: PMC5771382 DOI: 10.2174/1570159x15666170504122410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/19/2017] [Accepted: 04/27/2017] [Indexed: 11/25/2022] Open
Abstract
Background: Epilepsy is a common neurological disease characterized by abnormal temporary discharge of neurons in the central nervous system. In recent years, studies have revealed the localization and changes in the density of neuropeptides, such as substance P (SP) in the pathogenesis of epilepsy. This review is a concise overview of SP and their physiologic and pathologic functions on regulating epilepsy, and the underline mechanisms. Methods: We research and collect relative online content for reviewing the effects of SP in Epilepsy. Results: The SP/NK-1 receptor system may induce seizures and play an important role in status epilepticus and in experimental animal models of epilepsy. Newest studies show that several mechanisms may explain the excitatory effects of the SP/NK-1 receptor signaling pathway in epilepsy. By binding to the NK-1 receptor, NK-1 receptor antagonists may block the pathophysiological effects of SP, and further studies are needed to confirm the possible anti-epileptic activity of NK-1 receptor antagonists. Conclusion: SP plays crucial roles on through binding with NK-1 receptor during epilepsy pathologic processing, and the NK-1 receptor is receiving a great attention as a therapeutic target for treating epilepsy. Thus, the use of NK-1 receptor antagonists for the treatment of epilepsy should be investigated in further studies.
Collapse
Affiliation(s)
- Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, Jilin, China
| | - Zhehao Huang
- China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin, China
| | - Xianglan Li
- China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin, China
| | - Kun Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| |
Collapse
|
19
|
Mistrova E, Kruzliak P, Chottova Dvorakova M. Role of substance P in the cardiovascular system. Neuropeptides 2016; 58:41-51. [PMID: 26706184 DOI: 10.1016/j.npep.2015.12.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 01/03/2023]
Abstract
This article provides an overview of the structure and function of substance P signalling system and its involvement in the cardiovascular regulation. Substance P is an undecapeptide originating from TAC1 gen and belonging to the tachykinin family. The biological actions of substance P are mainly mediated through neurokinin receptor 1 since substance P is the ligand with the highest affinity to neurokinin receptor 1. Substance P is widely distributed within the central and peripheral nervous systems as well as in the cardiovascular system. Substance P is involved in the regulation of heart frequency, blood pressure and in the stretching of vessels. Substance P plays an important role in ischemia and reperfusion and cardiovascular response to stress. Additionally, it has been also implicated in angiogenesis, pain transmission and inflammation. The substance P/neurokinin receptor 1 receptor system is involved in the molecular bases of many human pathological processes. Antagonists of neurokinin receptor 1 receptor could provide clinical solutions for a variety of diseases. Neurokinin receptor 1 antagonists are already used in the prevention of chemotherapy induced nausea and vomiting.
Collapse
Affiliation(s)
- Eliska Mistrova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Peter Kruzliak
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic; 2(nd) Department of Internal Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Magdalena Chottova Dvorakova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| |
Collapse
|
20
|
Grobman M, Graham A, Outi H, Dodam JR, Reinero CR. Chronic neurokinin-1 receptor antagonism fails to ameliorate clinical signs, airway hyper-responsiveness or airway eosinophilia in an experimental model of feline asthma. J Feline Med Surg 2016; 18:273-9. [PMID: 25964466 PMCID: PMC11112248 DOI: 10.1177/1098612x15581406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Feline allergic asthma is a common chronic lower airway disease characterized by clinical signs attributed to eosinophilic inflammation, airway hyper-responsiveness (AHR) and airway remodeling. Tachykinins released from sensory nerves and immune cells bind neurokinin-1 (NK-1) receptors in the lung. The resultant neurogenic airway inflammation has been implicated in asthma pathogenesis. In mouse models and spontaneous human asthma, NK receptor antagonists reduce bronchospasm and inflammation. We hypothesized that chronic administration of maropitant, an NK-1 receptor antagonist, would decrease clinical signs of asthma, AHR and eosinophilic inflammation in experimentally asthmatic cats. METHODS Cats (n = 6) induced to have asthma using Bermuda grass allergen (BGA) were enrolled in a randomized, prospective, placebo-controlled crossover design study. Cats received either oral maropitant (2 mg/kg) or placebo q48h for 4 weeks; following a 2 week washout, cats were crossed-over to the alternate treatment. Study endpoints included subjective clinical scoring systems after BGA challenge, ventilator-acquired pulmonary mechanics to assess AHR after bronchoprovocation with methacholine, and collection of bronchoalveolar lavage fluid to quantify airway eosinophilia. Statistical analysis was performed using a Mann-Whitney rank sum test with P <0.05 considered significant. RESULTS Administration of maropitant for 1 month in experimentally asthmatic cats produced no significant difference in clinical scoring scheme (P = 0.589 and P = 1.0), AHR (P = 0.818) or airway eosinophilia (P = 0.669) compared with placebo. CONCLUSIONS AND RELEVANCE Chronic administration of maropitant was ineffective at blunting clinical signs, AHR and airway eosinophilia in experimental feline asthma and thus cannot be recommended as a novel treatment for this disorder.
Collapse
Affiliation(s)
- Megan Grobman
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Amber Graham
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Hilton Outi
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - John R Dodam
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Carol R Reinero
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
21
|
Corsetti M, Akyuz F, Tack J. Targeting tachykinin receptors for the treatment of functional gastrointestinal disorders with a focus on irritable bowel syndrome. Neurogastroenterol Motil 2015; 27:1354-70. [PMID: 26088804 DOI: 10.1111/nmo.12616] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/13/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tachykinins (TKs) are a family of endogenous peptides widely expressed in the central and in the peripheral nervous systems as well as in the gastrointestinal (GI) tract. They act as full agonists at three different membrane receptors neurokinin (NK) 1, NK2, and NK3, which are G protein-coupled receptors and in the GI tract are expressed both on neurons and effector cells. PURPOSE This article reviews the literature concerning the role of TKs in the GI tract function in physiological and pathological conditions and their potential relevance in the treatment of functional GI disorders with particular reference to irritable bowel syndrome (IBS). The efficacy of NK1 antagonists in chemotherapy-induced and postoperative nausea and vomiting is well established. While pharmacodynamic studies have reported conflicting and negative results concerning the effects of NK1 and of NK3 antagonists, respectively, on the GI tract function in humans, clinical studies applying the NK3 antagonist talnetant in IBS-D were negative. Pharmacodynamic studies applying NK2 antagonists have suggested a role for antagonism of NK2 receptors in modulation of GI chemical-induced altered motility and of stress-induced altered bowel habits. Clinical studies and in particular a recently completed Phase 2 study have reported that the NK2 antagonist ibodutant is effective and safe in treating symptoms of D-IBS, especially in females.
Collapse
Affiliation(s)
- M Corsetti
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - F Akyuz
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - J Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Biological and Pharmacological Aspects of the NK1-Receptor. BIOMED RESEARCH INTERNATIONAL 2015; 2015:495704. [PMID: 26421291 PMCID: PMC4573218 DOI: 10.1155/2015/495704] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/19/2015] [Accepted: 04/25/2015] [Indexed: 12/11/2022]
Abstract
The neurokinin 1 receptor (NK-1R) is the main receptor for the tachykinin family of peptides. Substance P (SP) is the major mammalian ligand and the one with the highest affinity. SP is associated with multiple processes: hematopoiesis, wound healing, microvasculature permeability, neurogenic inflammation, leukocyte trafficking, and cell survival. It is also considered a mitogen, and it has been associated with tumorigenesis and metastasis. Tachykinins and their receptors are widely expressed in various human systems such as the nervous, cardiovascular, genitourinary, and immune system. Particularly, NK-1R is found in the nervous system and in peripheral tissues and are involved in cellular responses such as pain transmission, endocrine and paracrine secretion, vasodilation, and modulation of cell proliferation. It also acts as a neuromodulator contributing to brain homeostasis and to sensory neuronal transmission associated with depression, stress, anxiety, and emesis. NK-1R and SP are present in brain regions involved in the vomiting reflex (the nucleus tractus solitarius and the area postrema). This anatomical localization has led to the successful clinical development of antagonists against NK-1R in the treatment of chemotherapy-induced nausea and vomiting (CINV). The first of these antagonists, aprepitant (oral administration) and fosaprepitant (intravenous administration), are prescribed for high and moderate emesis.
Collapse
|
23
|
Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 2014; 94:265-301. [PMID: 24382888 DOI: 10.1152/physrev.00031.2013] [Citation(s) in RCA: 457] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The tachykinins, exemplified by substance P, are one of the most intensively studied neuropeptide families. They comprise a series of structurally related peptides that derive from alternate processing of three Tac genes and are expressed throughout the nervous and immune systems. Tachykinins interact with three neurokinin G protein-coupled receptors. The signaling, trafficking, and regulation of neurokinin receptors have also been topics of intense study. Tachykinins participate in important physiological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems, including inflammation, nociception, smooth muscle contractility, epithelial secretion, and proliferation. They contribute to multiple diseases processes, including acute and chronic inflammation and pain, fibrosis, affective and addictive disorders, functional disorders of the intestine and urinary bladder, infection, and cancer. Neurokinin receptor antagonists are selective, potent, and show efficacy in models of disease. In clinical trials there is a singular success: neurokinin 1 receptor antagonists to treat nausea and vomiting. New information about the involvement of tachykinins in infection, fibrosis, and pruritus justifies further trials. A deeper understanding of disease mechanisms is required for the development of more predictive experimental models, and for the design and interpretation of clinical trials. Knowledge of neurokinin receptor structure, and the development of targeting strategies to disrupt disease-relevant subcellular signaling of neurokinin receptors, may refine the next generation of neurokinin receptor antagonists.
Collapse
|
24
|
Spitsin S, Stevens KE, Douglas SD. Expression of substance P, neurokinin-1 receptor and immune markers in the brains of individuals with HIV-associated neuropathology. J Neurol Sci 2013; 334:18-23. [PMID: 23916293 DOI: 10.1016/j.jns.2013.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
Abstract
The tachykinin neuropeptide substance P (SP) has an important signaling role in both the nervous and the immune systems. Two naturally occurring variants of the neurokinin-1 receptor (NK1R) mediate the effects of SP, full-length receptor (NK1R-F) and a truncated form (NK1R-T) that lacks 96 amino acid residues at the C-terminus. We previously reported decreased expression of the NK1R-F in the CNS of HIV-positive individuals in comparison to HIV-negative control subjects. There were no differences in the expression of the NK1R-T in the same groups. In the current study, we quantified the expressions of SP precursor mRNA preprotachykinin (TAC1), NK1R (full and truncated forms), viral load (HIV-gag) and several proinflammatory and immune markers (CD4, CCR5, CXCR4, fractalkine, IL-6, IL-10, CCL2, CCL20 and CD163) in the frontal cortex of autopsied brains from HIV-1-positive individuals with or without HIV-associated neuropathology. The expressions of SP and, to lesser extent, NK1R-F were decreased while the expressions of CXCR4, CCR5 and CCL2 were increased in CNS of individuals with HIV-associated neuropathology. There was no change in HIV loads associated with neuropathology; however, we found a positive correlation between viral loads and the expression of haptoglobin-hemoglobin scavenger receptor CD163. An analysis of CSF from corresponding samples demonstrated an increase in proinflammatory markers (CCL2 MIP-1α and MIP-1β) associated with neuropathology. Although our data confirm the overall inflammatory nature of HIV-associated neuropathology, we observed a decrease in the expression of SP and NK1R-F, which is also associated with other forms of neuroinflammation.
Collapse
Affiliation(s)
- Sergei Spitsin
- Division of Allergy and Immunology, Research Institute, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | |
Collapse
|
25
|
Roles of full-length and truncated neurokinin-1 receptors on tumor progression and distant metastasis in human breast cancer. Breast Cancer Res Treat 2013; 140:49-61. [DOI: 10.1007/s10549-013-2599-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/06/2013] [Indexed: 12/15/2022]
|
26
|
Activation of neurokinin-1 receptor by substance P inhibits melanogenesis in B16-F10 melanoma cells. Int J Biochem Cell Biol 2012; 44:2342-8. [PMID: 23041339 DOI: 10.1016/j.biocel.2012.09.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/20/2012] [Accepted: 09/26/2012] [Indexed: 01/17/2023]
Abstract
Skin pigmentation plays a number of valuable roles and its regulation is a complex process that is controlled by different factors. Substance P (SP) regulates many biological functions, including neurogenic inflammation, pain, and stress. However, to date, the regulatory role of SP in the control of melanogenesis has not been elucidated. The present study was designed to investigate the effects of SP on melanogenesis and to elucidate its underlying mechanism(s). After treatment for 48 h in mouse B16-F10 melanoma cells, SP (1 and 10nM) significantly down-regulated tyrosinase activity and melanin content. Importantly, western blot analysis revealed the presence of neurokinin-1 receptor (NK-1 R) in B16-F10 cells and the activation of it after SP treatment. It was also found that preincubation with NK-1 receptor antagonist Spantide I could partially reversed SP-induced down-regulations of tyrosinase activity, melanin content and the expression of tyrosinase and tyrosinase-related protein 1. Furthermore, SP could remarkably inhibit the expressions of microphtalmia-associated transcription factor (MITF) and p-p38 MAPK and stimulated p-p70 S6K1. These effects could also be partially reversed by the pretreatment with Spantide I. These results collectively suggested that SP inhibited melanogenesis in B16-F10 cells, which might be attributed to the fact that SP induces the activation of NK-1 receptor, stimulates the phosphorylation of p70 S6K1 and inhibits that of p38 MAPK, decreases the tyrosinase and tyrosinase-related protein 1 expression through MITF, finally resulting in the suppression of melanogenesis. These observations in vitro indicated that the regulation of the SP/NK-1 receptor system might be a useful novel management for skin pigmentation.
Collapse
|
27
|
Truncated neurokinin-1 receptor is increased in colonic epithelial cells from patients with colitis-associated cancer. Proc Natl Acad Sci U S A 2011; 108:17420-5. [PMID: 21969570 DOI: 10.1073/pnas.1114275108] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Patients with chronic ulcerative colitis (UC) are at high risk for developing colorectal cancer. In this study, archival formalin-fixed paraffin-embedded colonic tissue from patients with UC who developed carcinoma (CA) or high-grade dysplasia (HGD) was examined for changes in expression of the proinflammatory and mitogenic neurokinin-1 receptor (NK-1R). Laser capture microscopy was used to microdissect epithelia from areas of colons that showed histologic evidence of CA, HGD, and epithelia that were not dysplastic or cancerous but did contain evidence of prior inflammation (quiescent colitis). mRNA was extracted from the dissected tissue, and PCR array analysis was performed on extracted mRNA. Two antibodies were necessary to separately estimate the protein levels of the truncated (tr-NK-1R) and full-length (fl-NK-1R) receptors by immunohistochemistry. mRNA expression of tr-NK-1R increased 14-fold (P = 0.02) when comparing the HGD and CA groups. In contrast, the fl-NK-1R transcript showed no significant differences among groups. The protein levels of the total NK-1R increased by 40% (P = 0.02) in HGD and 80% (P = 0.0007) in CA compared with quiescent colitis. There were no significant changes in protein levels of the fl-NK-1R. We conclude that the increase in total NK-1R protein in HGD and CA is attributable to an increase in tr-NK-1R, suggesting there may be a functional role for tr-NK-1R in malignant transformation in colitis-associated cancer. The tr-NK-1R could prove useful as a diagnostic marker to identify patients at risk for neoplasia and may serve as a useful therapeutic target in the treatment of colitis-associated cancer.
Collapse
|
28
|
Douglas SD, Leeman SE. Neurokinin-1 receptor: functional significance in the immune system in reference to selected infections and inflammation. Ann N Y Acad Sci 2011; 1217:83-95. [PMID: 21091716 PMCID: PMC3058850 DOI: 10.1111/j.1749-6632.2010.05826.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The G protein-coupled receptor (GPCR), neurokinin-1 receptor (NK1R), and its preferred ligand, substance P (SP), are reviewed in relationship to the immune system and selected infections. NK1R and SP are ubiquitous throughout the animal kingdom. This important pathway has unique functions in numerous cells and tissues. The interaction of SP with its preferred receptor, NK1R, leads to the activation of nuclear factor-kappa B (NF-κB) and proinflammatory cytokines. NK1R has two isoforms, both a full-length and a truncated form. These isoforms have different functional significances and differ in cell signaling capability. The proinflammatory signals modulated by SP are important in bacterial, viral, fungal, and parasitic diseases, as well as in immune system function. The SP-NK1R system is a major class 1, rhodopsin-like GPCR ligand-receptor interaction.
Collapse
Affiliation(s)
- Steven D Douglas
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
29
|
Fornelli L, Schmid AW, Grasso L, Vogel H, Tsybin YO. Deamidation and transamidation of substance P by tissue transglutaminase revealed by electron-capture dissociation fourier transform mass spectrometry. Chemistry 2010; 17:486-97. [PMID: 21207565 DOI: 10.1002/chem.201002483] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Indexed: 11/07/2022]
Abstract
Tissue transglutaminase (tTGase) catalyzes both deamidation and transamidation of peptides and proteins by using a peptidyl glutamine as primary substrate. A precise consensus sequence for the enzyme is unknown and the ratio between deamidated and transamidated (or cross-linked) reaction products is highly substrate-dependent. Due to its overlapping body distribution with tTGase and ease of manipulation with tandem mass spectrometry, we used the neuropeptide substance P as a model to investigate the associated enzymatic kinetics and reaction products. Online liquid-chromatography Fourier-transform ion-cyclotron-resonance mass spectrometry (FT-ICR MS) combined with electron-capture dissociation (ECD) was employed to study the tTGase-induced modifications of substance P. A particular strength of ECD for peptide-enzyme reaction product monitoring is its ability to distinguish isomeric amino acids, for example, Glu and iso-Glu, by signature product ions. Our studies show that the primary reaction observed is deamidation, with the two consecutive glutamine residues converted sequentially into glutamate: first Gln(5) , and subsequently Gln(6) . We then applied ECD FT-ICR MS to identify the transamidation site on an enzymatically cross-linked peptide, which turned out to correspond to Gln(5) . Three populations of substance-P dimers were detected that differed by the number of deamidated Gln residues. The higher reactivity of Gln(5) over Gln(6) was further confirmed by cross-linking SP with monodansylcadaverine (MDC). Overall, our approach described herein is of a general importance for mapping both enzymatically induced post-translational protein modifications and cross-linking. Finally, in vitro Ca-signaling assays revealed that the main tTGase reaction product, the singly deamidated SP (RPKPEQFFGLM-NH(2) ), has increased agonist potency towards its natural receptor, thus confirming the biologically relevant role of deamidation.
Collapse
Affiliation(s)
- Luca Fornelli
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Tuluc F, Lai JP, Kilpatrick LE, Evans DL, Douglas SD. Neurokinin 1 receptor isoforms and the control of innate immunity. Trends Immunol 2009; 30:271-6. [DOI: 10.1016/j.it.2009.03.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 10/20/2022]
|
31
|
Akazawa T, Kwatra SG, Goldsmith LE, Richardson MD, Cox EA, Sampson JH, Kwatra MM. A constitutively active form of neurokinin 1 receptor and neurokinin 1 receptor-mediated apoptosis in glioblastomas. J Neurochem 2009; 109:1079-86. [PMID: 19519779 PMCID: PMC2696067 DOI: 10.1111/j.1471-4159.2009.06032.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Previous studies have shown that neurokinin 1 receptor (NK1R) occurs naturally in human glioblastomas and its stimulation causes cell proliferation. In the present study we show that stimulation of NK1R in human U373 glioblastoma cells by substance P increases Akt phosphorylation by 2.5-fold, with an EC(50) of 57 nM. Blockade of NK1R lowers basal phosphorylation of Akt, indicating the presence of a constitutively active form of NK1R; similar results are seen in U251 MG and DBTRG-05 glioblastoma cells. Linkage of NK1R to Akt implicates NK1R in apoptosis of glioblastoma cells. Indeed, treatment of serum-starved U373 cells with substance P reduces apoptosis by 53 +/- 1% (p < 0.05), and treatment with NK1R antagonist L-733,060 increases apoptosis by 64 +/- 16% (p < 0.01). Further, the blockade of NK1R in human glioblastoma cells with L-733,060 causes cleavage of Caspase-3 and proteolysis of poly (ADP-ribose) polymerase. Experiments designed to elucidate the mechanism of NK1R-mediated Akt phosphorylation revealed total involvement of non-receptor tyrosine kinase Src and phosphatidyl-3-kinase, a partial involvement of epidermal growth factor receptor, and no involvement of mitogen-activated protein/extracellular signal-related kinase. Taken together, the results of the present study indicate a key role for NK1R in glioblastoma apoptosis.
Collapse
Affiliation(s)
- Toshimasa Akazawa
- Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | - Shawn G. Kwatra
- Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | - Laura E. Goldsmith
- Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | - Mark D. Richardson
- Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | - Elizabeth A. Cox
- Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | - John H. Sampson
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Madan M. Kwatra
- Department of Anesthesiology, Duke University Medical Center, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC
| |
Collapse
|
32
|
Douglas SD, Lai JP, Tuluc F, Schwartz L, Kilpatrick LE. Neurokinin-1 receptor expression and function in human macrophages and brain: perspective on the role in HIV neuropathogenesis. Ann N Y Acad Sci 2009; 1144:90-6. [PMID: 19076368 DOI: 10.1196/annals.1418.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Substance P (SP) is upregulated in HIV infection in adult men and women, as determined by increased plasma levels. There is a reciprocal and bidirectional relationship between substance P and HIV in HIV-infected monocyte-derived macrophages and cell lines (e.g., THP-1). Substance P up-regulates HIV and HIV up-regulates SP protein expression. Neurokinin-1 receptor (NK1R) antagonists inhibit HIV infectivity through downregulation of the chemokine receptor, CCR5, and downregulation of HIV LTR. Neurokinin-1 receptor is expressed in full-length and truncated forms. The full-length NK1R is capable of signaling, whereas the truncated NK1R primes the chemokine receptor CCR5. Both full-length and truncated NK1R are expressed in several brain regions in human autopsy brains. SP-NK1R interactions have regulatory roles in inflammation and infection. The differential expression of truncated and full-length NK1R has important biological consequences. These include receptor-receptor interaction (e.g., NK1R-CCR5); changes in expression during cell differentiation (e.g., THP-1 cells); and differences in regional tissue distribution (e.g., differences in different brain regions). NK1R-SP receptor pathways are important cell regulatory pathways.
Collapse
Affiliation(s)
- Steven D Douglas
- Division of Allergy and Immunology, Joseph Stokes Jr Research Institute at the Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
33
|
Expression of the tachykinin receptor mRNAs in healthy human colon. Eur J Pharmacol 2008; 599:121-5. [DOI: 10.1016/j.ejphar.2008.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 09/03/2008] [Accepted: 09/18/2008] [Indexed: 11/20/2022]
|
34
|
Shafer AM, Nakaie CR, Deupi X, Bennett VJ, Voss JC. Characterization of a conformationally sensitive TOAC spin-labeled substance P. Peptides 2008; 29:1919-29. [PMID: 18775458 DOI: 10.1016/j.peptides.2008.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/31/2008] [Accepted: 08/01/2008] [Indexed: 11/23/2022]
Abstract
To probe the binding of a peptide agonist to a G-protein coupled receptor in native membranes, the spin-labeled amino acid analogue 4-amino-4-carboxy-2,2,6,6-tetramethylpiperidino-1-oxyl (TOAC) was substituted at either position 4 or 9 within the substance P peptide (RPKPQQFFGLM-NH2), a potent agonist of the neurokinin-1 receptor. The affinity of the 4-TOAC analog is comparable to the native peptide while the affinity of the 9-TOAC derivative is approximately 250-fold lower. Both peptides activate receptor signaling, though the potency of the 9-TOAC peptide is substantially lower. The utility of these modified ligands for reporting conformational dynamics during the neurokinin-1 receptor activation was explored using EPR spectroscopy, which can determine the real-time dynamics of the TOAC nitroxides in solution. While the binding of both the 4-TOAC substance P and 9-TOAC substance P peptides to isolated cell membranes containing the neurokinin-1 receptor is detected, a bound signal for the 9-TOAC peptide is only obtained under conditions that maintain the receptor in its high-affinity binding state. In contrast, 4-TOAC substance P binding is observed by solution EPR under both low- and high-affinity receptor states, with evidence of a more strongly immobilized peptide in the presence of GDP. In addition, to better understand the conformational consequences of TOAC substitution into substance P as it relates to receptor binding and activation, atomistic models for both the 4- and 9-TOAC versions of the peptide were constructed, and the molecular dynamics calculated via simulated annealing to explore the influence of the TOAC substitutions on backbone structure.
Collapse
Affiliation(s)
- Aaron M Shafer
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, United States
| | | | | | | | | |
Collapse
|
35
|
Chernova I, Lai JP, Li H, Schwartz L, Tuluc F, Korchak HM, Douglas SD, Kilpatrick LE. Substance P (SP) enhances CCL5-induced chemotaxis and intracellular signaling in human monocytes, which express the truncated neurokinin-1 receptor (NK1R). J Leukoc Biol 2008; 85:154-64. [PMID: 18835883 DOI: 10.1189/jlb.0408260] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Substance P (SP) is a potent modulator of monocyte/macrophage function. The SP-preferring receptor neurokinin-1 receptor (NK1R) has two forms: a full-length NK1R (NK1R-F) isoform and a truncated NK1R (NK1R-T) isoform, which lacks the terminal cytoplasmic 96-aa residues. The distribution of these receptor isoforms in human monocytes is not known. We previously identified an interaction among SP, NK1R, and HIV viral strains that use the chemokine receptor CCR5 as a coreceptor, suggesting crosstalk between NK1R and CCR5. The purpose of this study was to determine which form(s) of NK1R are expressed in human peripheral blood monocytes and to determine whether SP affects proinflammatory cellular responses mediated through the CCR5 receptor. Human peripheral blood monocytes were found to express NK1R-T but not NK1R-F. SP interactions with NK1R-T did not mobilize calcium (Ca2+), but SP mobilized Ca2+ when the NK1R-F was transfected into monocytes. However, the NK1R-T was functional in monocytes, as SP enhanced the CCR5 ligand CCL5-elicited Ca2+ mobilization, a response inhibited by the NK1R antagonist aprepitant. SP interactions with the NK1R-T also enhanced CCL5-mediated chemotaxis, which was ERK1/2-dependent. NK1R-T selectively activated ERK2 but increased ERK1 and ERK2 activation by CCL5. Activation of NK1R-T elicited serine phosphorylation of CCR5, indicating that crosstalk between CCL5 and SP may occur at the level of the receptor. Thus, NK1R-T is functional in human monocytes and activates select signaling pathways, and the NK1R-T-mediated enhancement of CCL5 responses does not require the NK1R terminal cytoplasmic domain.
Collapse
Affiliation(s)
- Irene Chernova
- Department of Pediatrics, University of Pennsylvania School of Medicine and the Joseph Stokes Jr. Research Institute, Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Douglas SD, Lynch KG, Lai JP. Neurokinin-1 receptor mRNA expression differences in brains of HIV-infected individuals. J Neurol Sci 2008; 272:174-7. [PMID: 18572194 PMCID: PMC2551749 DOI: 10.1016/j.jns.2008.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/17/2008] [Accepted: 04/28/2008] [Indexed: 11/22/2022]
Abstract
The neurokinin-1 receptor, a G-protein coupled receptor, is present in cells of the nervous system and the immune system. Utilizing our recently developed SYBR green-based RT-PCR, we quantified full-length and truncated NK1R mRNA expression in the cingulate cortex and cerebellum of autopsy brains from HIV-negative and -positive individuals. In the cingulate cortex, the expression of the full-length NK1R was greater in HIV-negative individuals (n=3) in comparison to HIV-positive individuals (n=21; p-value=0.026). There were no observed differences in expression of the truncated NK1R in the cingulate cortex between HIV-positive and -negative individuals. The expression of NK1R isoforms, both truncated and full-length, was similar between HIV-negative and -positive individuals in the cerebellum. It was not possible to directly relate the magnitude of NK1R expression to impairment in neuropsychological impairment in this small cohort and none of the subjects had HIV encephalopathy. These preliminary data support the concept that the full-length form of NK1R may have important significance in cognitive functions and deficiency of this isoform may be relevant in neurologic and psychiatric manifestations of neuroAIDS.
Collapse
Affiliation(s)
- Steven D Douglas
- Division of Allergy and Immunology, Joseph Stokes Jr. Research Institute at the Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania School of Medicine, USA.
| | | | | |
Collapse
|
37
|
Le Gall C, Ianotto JC, Hardy E, Ugo V, Eveillard JR, Ngo-Sack F, Bourquard P, Morice P, Berthou C. Inhibitory effect of the substance P and its derivative on erythropoietin-independent growth of erythroid progenitors in polycythemia vera. Leuk Res 2008; 32:743-54. [DOI: 10.1016/j.leukres.2007.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 08/08/2007] [Accepted: 09/20/2007] [Indexed: 11/25/2022]
|
38
|
Lai JP, Cnaan A, Zhao H, Douglas SD. Detection of full-length and truncated neurokinin-1 receptor mRNA expression in human brain regions. J Neurosci Methods 2008; 168:127-33. [PMID: 18035424 PMCID: PMC2243260 DOI: 10.1016/j.jneumeth.2007.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/03/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
Abstract
We have applied a newly developed SYBR green-based real-time RT-PCR assay for quantification of full-length and truncated neurokinin-1 receptor (NK1R) mRNA expression in nine regions of human brain tissues obtained from 23 subjects who died with no evidence of neurological or neurodegenerative disease. The following brain regions were examined: cingulate cortex, cerebellum, nucleus accumbens, caudate nucleus, putamen, pons, hippocampus, locus coeruleus, and basal ganglia. The SYBR green-based real-time PCR was more sensitive than TaqMan probe-based real-time PCR in amplifying both full-length and truncated NK1R mRNA. The real-time RT-PCR assay had excellent specificity and sensitivity, with a dynamic range of detection between 100 and 1,000,000 copies of the NK1R cDNA per reaction. The truncated NK1R mRNA levels were more abundant than those of the full-length NK1R in most of the regions examined and there was no significant difference in the truncated NK1R mRNA levels among the nine regions studied. There was, however, a significant difference in the expression of full-length NK1R mRNA levels among the nine regions (P=0.0024), and the putamen region expressed the highest full-length NK1R mRNA. Further studies are needed in order to examine the differences between full-length and truncated NK1R in signal transduction and functional consequences in order to delineate the significance of the co-presence of the two forms of NK1R in the human brain.
Collapse
Affiliation(s)
- Jian-Ping Lai
- Division of Allergy and Immunology, Joseph Stokes Jr. Research Institute at the Children’s Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA
| | - Avital Cnaan
- Division of Biostatistics and Epidemiology, Joseph Stokes Jr. Research Institute at the Children’s Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA
| | - Huaqing Zhao
- Division of Biostatistics and Epidemiology, Joseph Stokes Jr. Research Institute at the Children’s Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA
| | - Steven D. Douglas
- Division of Allergy and Immunology, Joseph Stokes Jr. Research Institute at the Children’s Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA
| |
Collapse
|
39
|
Crowder EA, Saha MS, Pace RW, Zhang H, Prestwich GD, Del Negro CA. Phosphatidylinositol 4,5-bisphosphate regulates inspiratory burst activity in the neonatal mouse preBötzinger complex. J Physiol 2007; 582:1047-58. [PMID: 17599963 PMCID: PMC2075248 DOI: 10.1113/jphysiol.2007.134577] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neurons of the preBötzinger complex (preBötC) form local excitatory networks and synchronously discharge bursts of action potentials during the inspiratory phase of respiratory network activity. Synaptic input periodically evokes a Ca(2+)-activated non-specific cation current (I(CAN)) postsynaptically to generate 10-30 mV transient depolarizations, dubbed inspiratory drive potentials, which underlie inspiratory bursts. The molecular identity of I(CAN) and its regulation by intracellular signalling mechanisms during inspiratory drive potential generation remains unknown. Here we show that mRNAs coding for two members of the transient receptor potential (TRP) family of ion channels, namely TRPM4 and TRPM5, are expressed within the preBötC region of neonatal mice. Hypothesizing that the phosphoinositides maintaining TRPM4 and TRPM5 channel sensitivity to Ca(2+) may similarly influence I(CAN) and thus regulate inspiratory drive potentials, we manipulated intracellular phosphatidylinositol 4,5-bisphosphate (PIP(2)) and measured its effect on preBötC neurons in the context of ongoing respiratory-related rhythms in slice preparations. Consistent with the involvement of TRPM4 and TRPM5, excess PIP(2) augmented the inspiratory drive potential and diminution of PIP(2) reduced it; sensitivity to flufenamic acid (FFA) suggested that these effects of PIP(2) were I(CAN) mediated. Inositol 1,4,5-trisphosphate (IP(3)), the product of PIP(2) hydrolysis, ordinarily causes IP(3) receptor-mediated I(CAN) activation. Simultaneously increasing PIP(2) while blocking IP(3) receptors intracellularly counteracted the reduction in the inspiratory drive potential that normally resulted from IP(3) receptor blockade. We propose that PIP(2) protects I(CAN) from rundown by interacting directly with underlying ion channels and preventing desensitization, which may enhance the robustness of respiratory rhythm.
Collapse
Affiliation(s)
- Erin A Crowder
- Department of Applied Science, McGlothlin-Street Hall, The College of William and Mary, Williamsburg, VA 23187-8795, USA
| | | | | | | | | | | |
Collapse
|
40
|
Michalski CW, Autschbach F, Selvaggi F, Shi X, Di Mola FF, Roggo A, Müller MW, Di Sebastiano P, Büchler MW, Giese T, Friess H. Increase in substance P precursor mRNA in noninflamed small-bowel sections in patients with Crohn's disease. Am J Surg 2007; 193:476-81. [PMID: 17368292 DOI: 10.1016/j.amjsurg.2006.08.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 08/31/2006] [Accepted: 08/31/2006] [Indexed: 11/20/2022]
Abstract
BACKGROUND Neuropeptides, such as substance P (SP), are mediators of neurogenic inflammation and play an important role in inflammatory disorders. To further investigate the role of the SP pathway in inflammatory bowel disease (IBD), we analyzed the following in normal intestinal tissue specimens and in tissue specimens from patients with Crohn's disease (CD) and ulcerative colitis (UC): neurokinin receptor-1 (NK-1R); its isoforms (NK-1R-L and NK-1R-S); its ligand SP, encoded by preprotachykinin-A (PPT-A); and the SP-degradation enzyme, neutral endopeptidase (NEP). METHODS Real-time quantitative reverse transcription-polymerase chain reaction was used to simultaneously determine the expression of NK-1R-L, NK-1R-S, and PPT-A. Protein levels of NK-1R and NEP were determined by immunoblot analysis. RESULTS In noninflamed small-bowel tissue samples of CD patients, PPT-A mRNA expression was significantly increased, whereas there was no difference between inflamed or noninflamed UC and normal intestinal tissue samples. Examining subgroups of diverse intestinal segments from CD and UC samples with various levels of inflammation revealed no differences in NK-1R-L and NK-1R-S mRNA expression, whereas there was a tendency toward overall lower NK-1R-S mRNA copy numbers. Immunoblot analysis showed upregulation of NK-1R protein levels in cases of IBD, with more pronounced enhancement in cases of CD than in UC. For NEP, there were no differences in protein levels in normal, CD, and UC intestinal tissues. COMMENTS These observations suggest a contribution of SP and its receptor, NK-1R, in the local inflammatory reaction in IBD and particularly in ileal CD. Moreover, significant upregulation of PPT-A mRNA in the noninflamed ileum of these patients suggests an influence of inflamed intestines on their healthy counterparts.
Collapse
Affiliation(s)
- Christoph W Michalski
- Department of General Surgery, University of Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Page NM. Characterization of the gene structures, precursor processing and pharmacology of the endokinin peptides. Vascul Pharmacol 2006; 45:200-8. [PMID: 16931167 DOI: 10.1016/j.vph.2005.08.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/01/2005] [Indexed: 11/25/2022]
Abstract
The endokinins represent several species-divergent and peripherally located mammalian tachykinins (hemokinin-1 in mouse and rat, endokinin-1 in rabbit and endokinins A and B in humans) and also the tachykinin gene-related peptides. These peptides are all encoded on the preprotachykinin 4 (TAC4) gene. Their complementary DNA sequences, gene structures and expression profiles have been determined from a number of different mammalian species. They are all flanked by adjacent upstream and downstream dibasic cleavage sites in their respective precursor proteins, except for human EKA/B that instead possesses a N-terminal monobasic cleavage site. Evidence for differential processing in the periphery at the N-terminal cleavage site of the tachykinins could explain why in humans the evolutionary pressure to maintain the N-terminal dibasic cleavage site of EKA/B has been lost. Furthermore, the TAC4 encoded tachykinins all exhibit a remarkable selectivity and potency for the highly species conserved tachykinin NK(1) receptor, similar to that of substance P. Particular consideration is also given to the potential interactions of the endokinins with the short NK(1) receptor isoform and to speculation of whether there could be an "endokinin-sensitive" NK(1) binding site.
Collapse
Affiliation(s)
- Nigel M Page
- School of Life Sciences, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, London.
| |
Collapse
|
42
|
Cottrell GS, Padilla B, Pikios S, Roosterman D, Steinhoff M, Gehringer D, Grady EF, Bunnett NW. Ubiquitin-dependent down-regulation of the neurokinin-1 receptor. J Biol Chem 2006; 281:27773-83. [PMID: 16849335 DOI: 10.1074/jbc.m603369200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transient stimulation with substance P (SP) induces endocytosis and recycling of the neurokinin-1 receptor (NK(1)R). The effects of sustained stimulation by high concentrations of SP on NK(1)R trafficking and Ca(2+) signaling, as may occur during chronic inflammation and pain, are unknown. Chronic exposure to SP (100 nm, 3 h) completely desensitized Ca(2+) signaling by wild-type NK(1)R (NK(1)Rwt). Resensitization occurred after 16 h, and cycloheximide prevented resensitization, implicating new receptor synthesis. Lysine ubiquitination of G-protein-coupled receptors is a signal for their trafficking and degradation. Lysine-deficient mutant receptors (NK(1)RDelta5K/R, C-terminal tail lysines; and NK(1)RDelta10K/R, all intracellular lysines) were expressed at the plasma membrane and were functional because they responded to SP by endocytosis and by mobilization of Ca(2+) ions. SP desensitized NK(1)Rwt, NK(1)RDelta5K/R, and NK(1)RDelta10K/R. However, NK(1)RDelta5K/R and NK(1)RDelta10K/R resensitized 4-8-fold faster than NK(1)Rwt by cycloheximide-independent mechanisms. NK(1)RDelta325 (a naturally occurring truncated variant) showed incomplete desensitization, followed by a marked sensitization of signaling. Upon labeling receptors in living cells using antibodies to extracellular epitopes, we observed that SP induced endocytosis of NK(1)Rwt, NK(1)RDelta5K/R, and NK(1)RDelta10K/R. After 4 h in SP-free medium, NK(1)RDelta5K/R and NK(1)RDelta10K/R recycled to the plasma membrane, whereas NK(1)Rwt remained internalized. SP induced ubiquitination of NK(1)Rwt and NK(1)RDelta5K/R as determined by immunoprecipitation under nondenaturing and denaturing conditions and detected with antibodies for mono- and polyubiquitin. NK(1)RDelta10K/R was not ubiquitinated. Whereas SP induced degradation of NK(1)Rwt, NK(1)RDelta5K/R and NK(1)RDelta10K/R showed approximately 50% diminished degradation. Thus, chronic stimulation with SP induces ubiquitination of the NK(1)R, which mediates its degradation and down-regulation.
Collapse
Affiliation(s)
- Graeme S Cottrell
- Departments of Surgery and Physiology, University of California, San Francisco, 94143-0660, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Lai JP, Ho WZ, Kilpatrick LE, Wang X, Tuluc F, Korchak HM, Douglas SD. Full-length and truncated neurokinin-1 receptor expression and function during monocyte/macrophage differentiation. Proc Natl Acad Sci U S A 2006; 103:7771-6. [PMID: 16675550 PMCID: PMC1457089 DOI: 10.1073/pnas.0602563103] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The substance P (SP)-preferring receptor neurokinin-1 receptor (NK-1R) has two forms: a full-length receptor consisting of 407 aa and a truncated receptor consisting of 311 aa. These two receptors differ in the length of the C terminus of NK-1R. We studied the undifferentiated and phorbol myristate acetate (PMA)-differentiated human monocyte/macrophage cell line THP-1 to investigate the expression and function of NK-1R. The expression of full-length and truncated NK-1R in this cell line was determined by using real-time PCR and immunofluorescence staining. Undifferentiated THP-1 cells expressed only truncated NK-1R. The differentiation of THP-1 cells with PMA to a macrophage-like phenotype resulted in the expression of full-length NK-1R, which was functionally accompanied by an SP (10(-6) M)-induced Ca2+ increase. In contrast, the addition of SP (10(-6) M) did not trigger Ca2+ response in undifferentiated THP-1 cells; however, SP did enhance the CCR5-preferring ligand RANTES (CCL5)-mediated Ca2+ increase. When a plasmid containing the full-length NK-1R was introduced into undifferentiated THP-1 cells, exposure to SP triggered Ca2+ increase, demonstrating that the full-length NK-1R is required for SP-induced Ca2+ increase. The NK-1R antagonist aprepitant (Emend, Merck) inhibited both the SP-induced Ca2+ increase in PMA-differentiated THP-1 cells and the SP priming effect on the CCL5-mediated Ca2+ increase, indicating that these effects are mediated through the full-length and truncated NK-1R, respectively. Taken together, these observations demonstrate that there are unique characteristics of NK-1R expression and NK-1R-mediated signaling between undifferentiated THP-1 cells and THP-1 cells differentiated to the macrophage phenotype.
Collapse
Affiliation(s)
- J.-P. Lai
- Division of Allergy and Immunology, The Joseph Stokes Jr. Research Institute, Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA 19104
| | - W. Z. Ho
- Division of Allergy and Immunology, The Joseph Stokes Jr. Research Institute, Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA 19104
| | - L. E. Kilpatrick
- Division of Allergy and Immunology, The Joseph Stokes Jr. Research Institute, Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA 19104
| | - X. Wang
- Division of Allergy and Immunology, The Joseph Stokes Jr. Research Institute, Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA 19104
| | - F. Tuluc
- Division of Allergy and Immunology, The Joseph Stokes Jr. Research Institute, Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA 19104
| | - H. M. Korchak
- Division of Allergy and Immunology, The Joseph Stokes Jr. Research Institute, Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA 19104
| | - S. D. Douglas
- Division of Allergy and Immunology, The Joseph Stokes Jr. Research Institute, Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Medical School, Philadelphia, PA 19104
- *To whom correspondence should be addressed at:
Division of Allergy and Immunology, Children’s Hospital of Philadelphia, 34th and Civic Center Boulevard, Philadelphia, PA 19104. E-mail:
| |
Collapse
|
44
|
Lecci A, Capriati A, Altamura M, Maggi CA. Tachykinins and tachykinin receptors in the gut, with special reference to NK2 receptors in human. Auton Neurosci 2006; 126-127:232-49. [PMID: 16616700 DOI: 10.1016/j.autneu.2006.02.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 02/21/2006] [Accepted: 02/27/2006] [Indexed: 12/12/2022]
Abstract
Tachykinins (TKs), substance P (SP), neurokinin A (NKA) and B (NKB) are important peptide modulators of intestinal motility in animal species studied so far, including humans. Modulation of motility by TKs can occur at various levels, since these peptides are expressed in cholinergic excitatory motor neurons projecting to both circular and longitudinal muscle, interneurons, and intramural and extramural sensory neurons. The effects of SP, NKA and NKB are preferentially mediated through the stimulation of NK1, NK2 and NK3 receptors, respectively; however, the selectivity of natural TKs for their preferred receptors is relative. In addition, SP and NKA are expressed in similar quantities in the human intestine and adequate stimuli can release similar amount of these TKs from enteric nerves. Furthermore, a single anatomical substrate can express more than one TK receptor type, so that the blockade of a single receptor type may not reveal functional effects in integrated models of motility. In isolated human small intestine and colon circular muscle strips, both NK1 and NK2 receptors mediate contractile effects. Indeed, in the human small intestine, smooth muscle electrical and motor events induced by electrical field stimulation (EFS) can involve either or both NK1 and NK2 receptors or these latter receptors predominantly, depending on the experimental conditions. In contrast, in the human colonic smooth muscle, only the NK2 receptor-mediated component of the response to EFS is prominent and some evidence would suggest that this component is the main excitatory motor mechanism at this level. Furthermore, a NK2 receptor-mediated secretory component in the human colonic mucosa has been recently demonstrated. Thus, it could be speculated that the blockade of both NK1 and NK2 receptors will be necessary to antagonise motor effects induced by exogenous administration or endogenous release of TKs in the small intestine, whereas the blockade of the NK2 receptors would be sufficient to disrupt physiological motor and, possibly, secretory activity at the colonic level. Available evidence indicates that, in healthy volunteers, the infusion of NKA (25 pmol/kg/min i.v.) stimulated small intestine motility and precipitated a series of intestinal and non-intestinal adverse events. Nepadutant (8 mg i.v.), a selective NK2 receptor antagonist, antagonised small intestine motility induced by NKA and prevented associated intestinal adverse events. In another study, the same dose of nepadutant increased colo-rectal compliance during isobaric balloon distension in healthy volunteers pretreated with a glycerol enema, disclosing a NK2 receptor-mediated component in the regulation of colonic smooth muscle tone. However, the prolonged blockade of NK2 receptors by nepadutant (16 mg i.v. b.i.d. for 8 days) did not affect bowel habits, neither in term of movements nor of stool consistency. Altogether, these results indicate that, even when there is a significant redundance in the effects of TKs and in the role of their receptors, the selective blockade of tachykinin NK2 receptors can have functional consequences on human intestinal motility and perception, but this can occur without the disruption of the physiological functions.
Collapse
Affiliation(s)
- Alessandro Lecci
- Clinical Research Department, Menarini Ricerche, via Sette Santi 1, 50131 Firenze, Italy.
| | | | | | | |
Collapse
|
45
|
Tian JB, Shan X, Bishop GA, King JS. Presynaptic localization of a truncated isoform of the type 2 corticotropin releasing factor receptor in the cerebellum. Neuroscience 2006; 138:691-702. [PMID: 16413121 DOI: 10.1016/j.neuroscience.2005.11.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 11/01/2005] [Accepted: 11/20/2005] [Indexed: 11/17/2022]
Abstract
It is now well established that corticotropin releasing factor is present in two major excitatory afferent systems to the cerebellum, namely climbing fibers and mossy fibers. Two major classes of corticotropin releasing factor receptors, each with unique binding characteristics, have been identified as type 1 and type 2. In this study we used an antibody made to the n-terminus of the type 2 corticotropin releasing factor receptor. Characterization of this antibody showed that it strongly labeled a protein with a molecular weight of 16-32 kDa and only faintly labels a 62-83 kDa protein. The lower molecular weight protein corresponds to the weight of a recently described truncated isoform of this receptor that is designated corticotropin releasing factor-type 2alpha-truncated isoform. We carried out transfection paradigms using corticotropin releasing factor-type 2alpha-truncated isoform constructs and confirmed that the antibody recognized the truncated isoform of the type 2 corticotropin releasing factor receptor. Further, light and electron microscopic studies were carried out in mice and rats to define the distribution of the truncated receptor. Immunoreactivity is evident in the basal region of many, but not all Purkinje cell bodies and their initial axonal segments, as well as the initial axonal segments of isolated Golgi cells, and cerebellar nuclear neurons. In addition, punctate elements in the molecular layer were immunolabeled. The localization of the receptor to the initial segment of Purkinje cells was confirmed with electron microscopy. Further, the punctate labeling in the molecular layer was localized to parallel fibers and their terminals. In conclusion, evidence has been presented to show that distinct isoforms of the corticotropin releasing factor receptor are present in the cerebellum. The complex interactions between corticotropin releasing factor and other members of the corticotropin releasing factor family of peptides with both pre- and postsynaptic receptors support a growing concept that corticotropin releasing factor plays an important role in modulating activity in cerebellar circuits and ultimately in controlling motor behavior.
Collapse
Affiliation(s)
- J B Tian
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
46
|
Bardelli C, Gunella G, Varsaldi F, Balbo P, Del Boca E, Bernardone IS, Amoruso A, Brunelleschi S. Expression of functional NK1 receptors in human alveolar macrophages: superoxide anion production, cytokine release and involvement of NF-kappaB pathway. Br J Pharmacol 2006; 145:385-96. [PMID: 15778738 PMCID: PMC1576149 DOI: 10.1038/sj.bjp.0706198] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1 Substance P (SP) is deeply involved in lung pathophysiology and plays a key role in the modulation of inflammatory-immune processes. We previously demonstrated that SP activates guinea-pig alveolar macrophages (AMs) and human monocytes, but a careful examination of its effects on human AMs is still scarce. 2 This study was undertaken to establish the role of SP in human AM isolated from healthy smokers and non-smokers, by evaluating the presence of tachykinin NK(1) receptors (NK-1R) and SP's ability to induce superoxide anion (O(2)(-)) production and cytokine release, as well as activation of the nuclear factor-kappaB (NF-kappaB) pathway. 3 By Western blot analysis and immunofluorescence, we demonstrate that authentic NK-1R are present on human AMs, a three-fold enhanced expression being observed in healthy smokers. These NK-1R are functional, as SP and NK(1) agonists dose-dependently induce O(2)(-) production and cytokine release. In AMs from healthy smokers, SP evokes an enhanced respiratory burst and a significantly increased release of tumor necrosis factor-alpha as compared to healthy non-smokers, but has inconsistent effects on IL-10 release. The NK(1) selective antagonist CP 96,345 ((2S,3S)-cis-2-diphenylmethyl-N[(2-methoxyphenyl)-methyl]-1-azabicyclo-octan-3-amine)) competitively antagonized SP-induced effects. 4 SP activates the transcription factor NF-kappaB, a three-fold increased nuclear translocation being observed in AMs from healthy smokers. This effect is receptor-mediated, as it is reproduced by the NK(1) selective agonist [Sar(9)Met(O(2))(11)]SP and reverted by CP 96,345. 5 These results clearly indicate that human AMs possess functional NK-1R on their surface, which are upregulated in healthy smokers, providing new insights on the mechanisms involved in tobacco smoke toxicity.
Collapse
Affiliation(s)
- Claudio Bardelli
- Department of Medical Sciences, School of Medicine, University of Piemonte Orientale ‘A. Avogadro', Via Solaroli, 17, 28100 Novara, Italy
| | - Gabriele Gunella
- Department of Medical Sciences, School of Medicine, University of Piemonte Orientale ‘A. Avogadro', Via Solaroli, 17, 28100 Novara, Italy
| | - Federica Varsaldi
- Department of Chemistry, Food, Pharmaceutical and Pharmacological Science (DISCAFF), University of Piemonte Orientale ‘A. Avogadro', Novara, Italy
| | - Pietro Balbo
- Azienda Ospedaliera ‘Maggiore della Carità', Novara, Italy
| | - Elisa Del Boca
- Department of Medical Sciences, School of Medicine, University of Piemonte Orientale ‘A. Avogadro', Via Solaroli, 17, 28100 Novara, Italy
| | - Ilaria Seren Bernardone
- Department of Medical Sciences, School of Medicine, University of Piemonte Orientale ‘A. Avogadro', Via Solaroli, 17, 28100 Novara, Italy
| | - Angela Amoruso
- Department of Medical Sciences, School of Medicine, University of Piemonte Orientale ‘A. Avogadro', Via Solaroli, 17, 28100 Novara, Italy
| | - Sandra Brunelleschi
- Department of Medical Sciences, School of Medicine, University of Piemonte Orientale ‘A. Avogadro', Via Solaroli, 17, 28100 Novara, Italy
- IRCAD (Interdisciplinary Research Center on Autoimmune Diseases), University of Piemonte Orientale ‘A. Avogadro', Novara, Italy
- Author for correspondence:
| |
Collapse
|
47
|
Patel HJ, Ramkissoon SH, Patel PS, Rameshwar P. Transformation of breast cells by truncated neurokinin-1 receptor is secondary to activation by preprotachykinin-A peptides. Proc Natl Acad Sci U S A 2005; 102:17436-41. [PMID: 16291810 PMCID: PMC1297665 DOI: 10.1073/pnas.0506351102] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Breast cancer remains the cancer with the highest mortality among women in the United States. Peptides derived from the oncogenic Tac1 gene (full transcript: betaPPT-A) stimulate the proliferation of breast cancer cells (BCCs) via seven-transmembrane G protein-coupled neurokinin 1 (NK1) and NK2 receptors. The NK1 gene could generate full-length (NK1-FL) and truncated (NK1-Tr) transcripts. NK1-Tr lacks 100 residues in their cytoplasmic end, could couple to G proteins, and shows reduced efficiency with respect to internalization and desensitization. This study reports on a role of NK1-Tr in the transformation of nontumorigenic breast cells, and investigates whether Tac1 expression is linked to the generation of NK1-Tr. Western blots and Northern analyses showed coexpressions of NK1-Tr and NK1-FL in BCCs (cell lines and primary cells from patients with different stages of breast cancer). Stable transfections of betaPPT-A or NK1-Tr expression vectors in nontumorigenic cells showed each induces the expression of the other, consequently resulting in a transformed phenotype. Analyses with microarrays indicate similar patterns of cytokine production by NK1-Tr transfectants and BCCs, but not NK1-FL transfectants. These observations indicate tumor-promoting properties by NK1-Tr, but not NK1-FL. Overall, the oncogenic property of Tac1 in breast cells involves concomitant expression of NK1-Tr and vice versa, consequently leading to the production of cytokines with growth promoting functions.
Collapse
Affiliation(s)
- Hiral J Patel
- Department of Medicine and Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
48
|
Endo D, Ikeda T, Ishida Y, Yoshioka D, Nishimori T. Effect of intrathecal administration of hemokinin-1 on the withdrawal response to noxious thermal stimulation of the rat hind paw. Neurosci Lett 2005; 392:114-7. [PMID: 16229945 DOI: 10.1016/j.neulet.2005.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 09/02/2005] [Accepted: 09/02/2005] [Indexed: 11/25/2022]
Abstract
Hemokinin-1 (HK-1) is a new peptide described as a member of the tachykinin family. HK-1 has biological effects similar to substance P (SP), a representative of the tachykinin family, following central administration. However, the biological function of HK-1 at the spinal level has not been well characterized. Thus, we investigated the effect of intrathecal administration of HK-1 by comparing it with that of SP. Intrathecal administration of HK-1 as well as SP at 10(-3) M caused pain-related behavior such as scratching. The scratching by HK-1 administration was inhibited by pretreatment with an antagonist of substance P receptor. In addition, SP (10(-8)-10(-6) M) decreased the latency of the withdrawal response of the hind paw to noxious thermal stimulation 20-30 min after intrathecal administration, whereas administration of HK-1 had little effect on this response. These results suggest that there may exist a proper receptor related to HK-1.
Collapse
Affiliation(s)
- Daisuke Endo
- Division of Neurobiology, Miyazaki Medical College, University of Miyazaki, Kiyotake, Japan
| | | | | | | | | |
Collapse
|
49
|
Makeham JM, Goodchild AK, Pilowsky PM. NK1 receptor activation in rat rostral ventrolateral medulla selectively attenuates somato-sympathetic reflex while antagonism attenuates sympathetic chemoreflex. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1707-15. [PMID: 15731401 DOI: 10.1152/ajpregu.00537.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of activation and blockade of the neurokinin 1 (NK1) receptor in the rostral ventrolateral medulla (RVLM) on arterial blood pressure (ABP), splanchnic sympathetic nerve activity (sSNA), phrenic nerve activity, the somato-sympathetic reflex, baroreflex, and chemoreflex were studied in urethane-anesthetized and artificially ventilated Sprague-Dawley rats. Bilateral microinjection of either the stable substance P analog (pGlu5, MePhe8, Sar9)SP(5–11) (DiMe-SP) or the highly selective NK1 agonist [Sar9, Met (O2)11]SP into the RVLM resulted in an increase in ABP, sSNA, and heart rate and an abolition of phrenic nerve activity. The effects of [Sar9, Met (O2)11]SP were blocked by the selective nonpeptide NK1 receptor antagonist WIN 51708. NK1 receptor activation also dramatically attenuated the somato-sympathetic reflex elicited by tibial nerve stimulation, while leaving the baroreflex and chemoreflex unaffected. This effect was again blocked by WIN 51708. NK1 receptor antagonism in the RVLM, with WIN 51708 significantly attenuated the sympathoexcitatory response to hypoxia but had no effect on baseline respiratory function. Our findings suggest that substance P and the NK1 receptor play a significant role in the cardiorespiratory reflexes integrated within the RVLM.
Collapse
Affiliation(s)
- John M Makeham
- Hypertension and Stroke Research Laboratory, Department of Physiology, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
50
|
O'Connor TM, O'Connell J, O'Brien DI, Goode T, Bredin CP, Shanahan F. The role of substance P in inflammatory disease. J Cell Physiol 2004; 201:167-80. [PMID: 15334652 DOI: 10.1002/jcp.20061] [Citation(s) in RCA: 562] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The diffuse neuroendocrine system consists of specialised endocrine cells and peptidergic nerves and is present in all organs of the body. Substance P (SP) is secreted by nerves and inflammatory cells such as macrophages, eosinophils, lymphocytes, and dendritic cells and acts by binding to the neurokinin-1 receptor (NK-1R). SP has proinflammatory effects in immune and epithelial cells and participates in inflammatory diseases of the respiratory, gastrointestinal, and musculoskeletal systems. Many substances induce neuropeptide release from sensory nerves in the lung, including allergen, histamine, prostaglandins, and leukotrienes. Patients with asthma are hyperresponsive to SP and NK-1R expression is increased in their bronchi. Neurogenic inflammation also participates in virus-associated respiratory infection, non-productive cough, allergic rhinitis, and sarcoidosis. SP regulates smooth muscle contractility, epithelial ion transport, vascular permeability, and immune function in the gastrointestinal tract. Elevated levels of SP and upregulated NK-1R expression have been reported in the rectum and colon of patients with inflammatory bowel disease (IBD), and correlate with disease activity. Increased levels of SP are found in the synovial fluid and serum of patients with rheumatoid arthritis (RA) and NK-1R mRNA is upregulated in RA synoviocytes. Glucocorticoids may attenuate neurogenic inflammation by decreasing NK-1R expression in epithelial and inflammatory cells and increasing production of neutral endopeptidase (NEP), an enzyme that degrades SP. Preventing the proinflammatory effects of SP using tachykinin receptor antagonists may have therapeutic potential in inflammatory diseases such as asthma, sarcoidosis, chronic bronchitis, IBD, and RA. In this paper, we review the role that SP plays in inflammatory disease.
Collapse
|