1
|
Guillet É, Brun É, Ferard C, Hardonnière K, Nabhan M, Legrand FX, Pallardy M, Biola-Vidamment A. Human dendritic cell maturation induced by amorphous silica nanoparticles is Syk-dependent and triggered by lipid raft aggregation. Part Fibre Toxicol 2023; 20:12. [PMID: 37076877 PMCID: PMC10114393 DOI: 10.1186/s12989-023-00527-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Synthetic amorphous silica nanoparticles (SAS-NPs) are widely employed in pharmaceutics, cosmetics, food and concretes. Workers and the general population are exposed daily via diverse routes of exposure. SAS-NPs are generally recognized as safe (GRAS) by the Food and Drug Administration, but because of their nanoscale size and extensive uses, a better assessment of their immunotoxicity is required. In the presence of immune "danger signals", dendritic cells (DCs) undergo a maturation process resulting in their migration to regional lymph nodes where they activate naive T-cells. We have previously shown that fumed silica pyrogenic SAS-NPs promote the two first steps of the adaptative immune response by triggering DC maturation and T-lymphocyte response, suggesting that SAS-NPs could behave as immune "danger signals". The present work aims to identify the mechanism and the signalling pathways involved in DC phenotype modifications provoked by pyrogenic SAS-NPs. As a pivotal intracellular signalling molecule whose phosphorylation is associated with DC maturation, we hypothesized that Spleen tyrosine kinase (Syk) may play a central role in SAS-NPs-induced DC response. RESULTS In human monocyte-derived dendritic cells (moDCs) exposed to SAS-NPs, Syk inhibition prevented the induction of CD83 and CD86 marker expression. A significant decrease in T-cell proliferation and IFN-γ, IL-17F and IL-9 production was found in an allogeneic moDC:T-cell co-culture model. These results suggested that the activation of Syk was necessary for optimal co-stimulation of T-cells. Moreover, Syk phosphorylation, observed 30 min after SAS-NP exposure, occurred upstream of the c-Jun N-terminal kinase (JNK) Mitogen-activated protein kinases (MAPK) and was elicited by the Src family of protein tyrosine kinases. Our results also showed for the first time that SAS-NPs provoked aggregation of lipid rafts in moDCs and that MβCD-mediated raft destabilisation altered Syk activation. CONCLUSIONS We showed that SAS-NPs could act as an immune danger signal in DCs through a Syk-dependent pathway. Our findings revealed an original mechanism whereby the interaction of SAS-NPs with DC membranes promoted aggregation of lipid rafts, leading to a Src kinase-initiated activation loop triggering Syk activation and functional DC maturation.
Collapse
Affiliation(s)
- Éléonore Guillet
- INSERM UMR-996, Inserm, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, 17, Avenue Des Sciences, 91400, Orsay, France
| | - Émilie Brun
- Institut de Chimie Physique, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Céline Ferard
- Institut de Chimie Physique, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Kévin Hardonnière
- INSERM UMR-996, Inserm, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, 17, Avenue Des Sciences, 91400, Orsay, France
| | - Myriam Nabhan
- INSERM UMR-996, Inserm, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, 17, Avenue Des Sciences, 91400, Orsay, France
| | | | - Marc Pallardy
- INSERM UMR-996, Inserm, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, 17, Avenue Des Sciences, 91400, Orsay, France
| | - Armelle Biola-Vidamment
- INSERM UMR-996, Inserm, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, 17, Avenue Des Sciences, 91400, Orsay, France.
| |
Collapse
|
2
|
Muro R, Narita T, Nitta T, Takayanagi H. Spleen tyrosine kinase mediates the γδTCR signaling required for γδT cell commitment and γδT17 differentiation. Front Immunol 2023; 13:1045881. [PMID: 36713401 PMCID: PMC9878111 DOI: 10.3389/fimmu.2022.1045881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
The γδT cells that produce IL-17 (γδT17 cells) play a key role in various pathophysiologic processes in host defense and homeostasis. The development of γδT cells in the thymus requires γδT cell receptor (γδTCR) signaling mediated by the spleen tyrosine kinase (Syk) family proteins, Syk and Zap70. Here, we show a critical role of Syk in the early phase of γδT cell development using mice deficient for Syk specifically in lymphoid lineage cells (Syk-conditional knockout (cKO) mice). The development of γδT cells in the Syk-cKO mice was arrested at the precursor stage where the expression of Rag genes and αβT-lineage-associated genes were retained, indicating that Syk is required for γδT-cell lineage commitment. Loss of Syk in γδT cells weakened TCR signal-induced phosphorylation of Erk and Akt, which is mandatory for the thymic development of γδT17 cells. Syk-cKO mice exhibited a loss of γδT17 cells in the thymus as well as throughout the body, and thereby are protected from γδT17-dependent psoriasis-like skin inflammation. Collectively, our results indicate that Syk is a key player in the lineage commitment of γδT cells and the priming of γδT17 cell differentiation.
Collapse
Affiliation(s)
- Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoya Narita
- Department of Pharmacotherapeutics, Research Institute of Pharmaceutical Sciences and Faculty of Pharmacy, Musashino University, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan,*Correspondence: Takeshi Nitta,
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Damen H, Tebid C, Viens M, Roy DC, Dave VP. Negative Regulation of Zap70 by Lck Forms the Mechanistic Basis of Differential Expression in CD4 and CD8 T Cells. Front Immunol 2022; 13:935367. [PMID: 35860252 PMCID: PMC9289233 DOI: 10.3389/fimmu.2022.935367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Lck and Zap70, two non-receptor tyrosine kinases, play a crucial role in the regulation of membrane proximal TCR signaling critical for thymic selection, CD4/CD8 lineage choice and mature T cell function. Signal initiation upon TCR/CD3 and peptide/MHC interaction induces Lck-mediated phosphorylation of CD3 ITAMs. This is necessary for Zap70 recruitment and its phosphorylation by Lck leading to full Zap70 activation. In its native state Zap70 maintains a closed conformation creating an auto-inhibitory loop, which is relieved by Lck-mediated phosphorylation of Y315/Y319. Zap70 is differentially expressed in thymic subsets and mature T cells with CD8 T cells expressing the highest amount compared to CD4 T cells. However, the mechanistic basis of differential Zap70 expression in thymic subsets and mature T cells is not well understood. Here, we show that Zap70 is degraded relatively faster in DP and mature CD4 T cells compared to CD8 T cells, and inversely correlated with relative level of activated Zap70. Importantly, we found that Zap70 expression is negatively regulated by Lck activity: augmented Lck activity resulting in severe diminution in total Zap70. Moreover, Lck-mediated phosphorylation of Y315/Y319 was essential for Zap70 degradation. Together, these data shed light on the underlying mechanism of Lck-mediated differential modulation of Zap70 expression in thymic subsets and mature T cells.
Collapse
Affiliation(s)
- Hassan Damen
- Institute for Hematology-Oncology, Cell and Gene Therapy, Hopital Maisonneuve-Rosemont Research Center, Montreal, QC, Canada
| | - Christian Tebid
- Institute for Hematology-Oncology, Cell and Gene Therapy, Hopital Maisonneuve-Rosemont Research Center, Montreal, QC, Canada
| | - Melissa Viens
- Institute for Hematology-Oncology, Cell and Gene Therapy, Hopital Maisonneuve-Rosemont Research Center, Montreal, QC, Canada
| | - Denis-Claude Roy
- Institute for Hematology-Oncology, Cell and Gene Therapy, Hopital Maisonneuve-Rosemont Research Center, Montreal, QC, Canada
- Department of Medicine, University of Montreal, Montreal, QC, Canada
- *Correspondence: Denis-Claude Roy, ; Vibhuti P. Dave,
| | - Vibhuti P. Dave
- Institute for Hematology-Oncology, Cell and Gene Therapy, Hopital Maisonneuve-Rosemont Research Center, Montreal, QC, Canada
- *Correspondence: Denis-Claude Roy, ; Vibhuti P. Dave,
| |
Collapse
|
4
|
Huseby ES, Teixeiro E. The perception and response of T cells to a changing environment are based on the law of initial value. Sci Signal 2022; 15:eabj9842. [PMID: 35639856 PMCID: PMC9290192 DOI: 10.1126/scisignal.abj9842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
αβ T cells are critical components of the adaptive immune system and are capable of inducing sterilizing immunity after pathogen infection and eliminating transformed tumor cells. The development and function of T cells are controlled through the T cell antigen receptor, which recognizes peptides displayed on major histocompatibility complex (MHC) molecules. Here, we review how T cells generate the ability to recognize self-peptide-bound MHC molecules and use signals derived from these interactions to instruct cellular development, activation thresholds, and functional specialization in the steady state and during immune responses. We argue that the basic tenants of T cell development and function follow Weber-Fetcher's law of just noticeable differences and Wilder's law of initial value. Together, these laws argue that the ability of a system to respond and the quality of that response are scalable to the basal state of that system. Manifestation of these laws in T cells generates clone-specific activation thresholds that are based on perceivable differences between homeostasis and pathogen encounter (self versus nonself discrimination), as well as poised states for subsequent differentiation into specific effector cell lineages.
Collapse
Affiliation(s)
- Eric S. Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
5
|
Sudo K, Todoroki T, Ka Y, Takahara K. Vγ5Vδ1 TCR signaling is required to different extents for embryonic versus postnatal development of DETCs. Int Immunol 2022; 34:263-276. [PMID: 35031803 DOI: 10.1093/intimm/dxac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
δγ T cells expressing Vγ5Vδ1 TCR originally develop in the embryonic thymus and migrate to the epidermis, forming dendritic epidermal T cells (DETCs) throughout life. It is thought that a TCR signal is essential for their development; e.g., lack of TCR signal-transducer ZAP70 significantly decreases DETC numbers. On the other hand, lack of ZAP70 does not affect Vγ5Vδ1 + T cells in the embryonic thymus; thus, the involvement of TCR signaling remains elusive. Here, we used SKG mice with attenuated TCR signaling rather than gene-knockout mice. In SKG mice, Vγ5 + T cells showed a marked decrease (10% of wild-type) in adult epidermis; however, there was just a moderate decrease (50% of wild-type) in the embryonic thymus. In early postnatal epidermis in SKG mice, substantial numbers of Vγ5 + T cells were observed (50% of wild-type). Their activation markers including CD122, a component of the IL-15 receptor indispensable for DETC proliferation, were comparable to those of WT. However, the Vγ5 + T cells in SKG mice did not proliferate and form DETCs thereafter. Furthermore, in SKG/+ mice, the number of thymic Vγ5Vδ1 + T cells increased, compared to SKG mice; however, the number of DETCs remained significantly lower than in WT, similar to SKG mice. Our results suggest that signaling via Vγ5Vδ1 TCR is indispensable for DETC development, with distinct contributions to embryonic development and postnatal proliferation.
Collapse
Affiliation(s)
- Koichi Sudo
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, Kyoto 606-8501, Japan
| | - Takero Todoroki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, Kyoto 606-8501, Japan
| | - Yuyo Ka
- Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Kazuhiko Takahara
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, Kyoto 606-8501, Japan
| |
Collapse
|
6
|
Travers T, Kanagy WK, Mansbach RA, Jhamba E, Cleyrat C, Goldstein B, Lidke DS, Wilson BS, Gnanakaran S. Combinatorial diversity of Syk recruitment driven by its multivalent engagement with FcεRIγ. Mol Biol Cell 2019; 30:2331-2347. [PMID: 31216232 PMCID: PMC6743456 DOI: 10.1091/mbc.e18-11-0722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/17/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
Syk/Zap70 family kinases are essential for signaling via multichain immune-recognition receptors such as tetrameric (αβγ2) FcεRI. Syk activation is generally attributed to cis binding of its tandem SH2 domains to dual phosphotyrosines within FcεRIγ-ITAMs (immunoreceptor tyrosine-based activation motifs). However, the mechanistic details of Syk docking on γ homodimers are unresolved. Here, we estimate that multivalent interactions for WT Syk improve cis-oriented binding by three orders of magnitude. We applied molecular dynamics (MD), hybrid MD/worm-like chain polymer modeling, and live cell imaging to evaluate relative binding and signaling output for all possible cis and trans Syk-FcεRIγ configurations. Syk binding is likely modulated during signaling by autophosphorylation on Y130 in interdomain A, since a Y130E phosphomimetic form of Syk is predicted to lead to reduced helicity of interdomain A and alter Syk's bias for cis binding. Experiments in reconstituted γ-KO cells, whose γ subunits are linked by disulfide bonds, as well as in cells expressing monomeric ITAM or hemITAM γ-chimeras, support model predictions that short distances between γ ITAM pairs are required for trans docking. We propose that the full range of docking configurations improves signaling efficiency by expanding the combinatorial possibilities for Syk recruitment, particularly under conditions of incomplete ITAM phosphorylation.
Collapse
Affiliation(s)
- Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - William K. Kanagy
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Rachael A. Mansbach
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Elton Jhamba
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Cedric Cleyrat
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Byron Goldstein
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Diane S. Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S. Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| |
Collapse
|
7
|
Abstract
T cells are central to the vertebrate immune system. Two distinct types of T cells, αβT and γδT cells, express different types of T cell antigen receptors (TCRs), αβTCR and γδTCR, respectively, that are composed of different sets of somatically rearranged TCR chains and CD3 subunits. γδT cells have recently attracted considerable attention due to their ability to produce abundant cytokines and versatile roles in host defense, tissue regeneration, inflammation, and autoimmune diseases. Both αβT and γδT cells develop in the thymus. Unlike the development of αβT cells, which depends on αβTCR-mediated positive and negative selection, the development of γδT cells, including the requirement of γδTCR, has been less well understood. αβT cells differentiate into effector cells in the peripheral tissues, whereas γδT cells acquire effector functions during their development in the thymus. In this review, we will discuss the current state of knowledge of the molecular mechanism of TCR signal transduction and its role in the thymic development of γδT cells, particularly highlighting a newly discovered mechanism that controls proinflammatory γδT cell development.
Collapse
|
8
|
Affiliation(s)
- Byron B. Au-Yeung
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Lin Shen
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
- Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| |
Collapse
|
9
|
Muro R, Nitta T, Nakano K, Okamura T, Takayanagi H, Suzuki H. γδTCR recruits the Syk/PI3K axis to drive proinflammatory differentiation program. J Clin Invest 2017; 128:415-426. [PMID: 29202478 DOI: 10.1172/jci95837] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022] Open
Abstract
γδT cells produce inflammatory cytokines and have been implicated in the pathogenesis of cancer, infectious diseases, and autoimmunity. The T cell receptor (TCR) signal transduction that specifically regulates the development of IL-17-producing γδT (γδT17) cells largely remains unclear. Here, we showed that the receptor proximal tyrosine kinase Syk is essential for γδTCR signal transduction and development of γδT17 in the mouse thymus. Zap70, another tyrosine kinase essential for the development of αβT cells, failed to functionally substitute for Syk in the development of γδT17. Syk induced the activation of the PI3K/Akt pathway upon γδTCR stimulation. Mice deficient in PI3K signaling exhibited a complete loss of γδT17, without impaired development of IFN-γ-producing γδT cells. Moreover, γδT17-dependent skin inflammation was ameliorated in mice deficient in RhoH, an adaptor known to recruit Syk. Thus, we deciphered lineage-specific TCR signaling and identified the Syk/PI3K pathway as a critical determinant of proinflammatory γδT cell differentiation.
Collapse
Affiliation(s)
- Ryunosuke Muro
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan.,Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Tadashi Okamura
- Department of Laboratory Animal Medicine, and.,Section of Animal Models, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| |
Collapse
|
10
|
Wiede F, Dudakov JA, Lu KH, Dodd GT, Butt T, Godfrey DI, Strasser A, Boyd RL, Tiganis T. PTPN2 regulates T cell lineage commitment and αβ versus γδ specification. J Exp Med 2017; 214:2733-2758. [PMID: 28798028 PMCID: PMC5584121 DOI: 10.1084/jem.20161903] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 05/26/2017] [Accepted: 06/28/2017] [Indexed: 01/18/2023] Open
Abstract
During early thymocyte development, coordinated JAK/STAT5 and SFK/pre-TCR signaling is critical for T cell lineage commitment and αβ versus γδ specification. Wiede et al. show a role for the tyrosine phosphatase PTPN2 in attenuating SRC family kinase LCK and STAT5 signaling to regulate αβ and γδ T cell development. In the thymus, hematopoietic progenitors commit to the T cell lineage and undergo sequential differentiation to generate diverse T cell subsets, including major histocompatibility complex (MHC)–restricted αβ T cell receptor (TCR) T cells and non–MHC-restricted γδ TCR T cells. The factors controlling precursor commitment and their subsequent maturation and specification into αβ TCR versus γδ TCR T cells remain unclear. Here, we show that the tyrosine phosphatase PTPN2 attenuates STAT5 (signal transducer and activator of transcription 5) signaling to regulate T cell lineage commitment and SRC family kinase LCK and STAT5 signaling to regulate αβ TCR versus γδ TCR T cell development. Our findings identify PTPN2 as an important regulator of critical checkpoints that dictate the commitment of multipotent precursors to the T cell lineage and their subsequent maturation into αβ TCR or γδ TCR T cells.
Collapse
Affiliation(s)
- Florian Wiede
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia .,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Jarrod A Dudakov
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Kun-Hui Lu
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Garron T Dodd
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Tariq Butt
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Dale I Godfrey
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Strasser
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Richard L Boyd
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia .,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Fu G, Yu M, Chen Y, Zheng Y, Zhu W, Newman DK, Wang D, Wen R. Phospholipase Cγ1 is required for pre-TCR signal transduction and pre-T cell development. Eur J Immunol 2016; 47:74-83. [PMID: 27759161 DOI: 10.1002/eji.201646522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/14/2016] [Accepted: 10/17/2016] [Indexed: 12/23/2022]
Abstract
Pre-T cell receptor (TCR) signaling is required for pre-T cell survival, proliferation, and differentiation from the CD4 and CD8 double negative (DN) to the double positive (DP) stage. However, the pre-TCR signal transduction pathway is not fully understood and the signaling molecules involved have not been completely identified. Phospholipase Cγ (PLCγ) 1 is an important signaling molecule that generates two second messengers, diacylglycerol and inositol 1,4,5-trisphosphate, that are important to mediate PKC activation and intracellular Ca2+ flux in many signaling pathways. Previously, we have shown that PLCγ1 is important for TCR-mediated signaling, development and T-cell activation, but the role of PLCγ1 in pre-TCR signal transduction and pre-T cell development is not known. In this study, we demonstrated that PLCγ1 expression level in pre-T cells was comparable to that in mature T cells. Deletion of PLCγ1 prior to the pre-TCR signaling stage partially blocked the DN3 to DN4 transition and reduced thymic cellularity. We also demonstrated that deletion of PLCγ1 impaired pre-T cell proliferation without affecting cell survival. Further study showed that deficiency of PLCγ1 impaired pre-TCR mediated Ca2+ flux and Erk activation. Thus our studies demonstrate that PLCγ1 is important for pre-TCR mediated signal transduction and pre-T cell development.
Collapse
Affiliation(s)
- Guoping Fu
- The Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Mei Yu
- The Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Yuhong Chen
- The Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Yongwei Zheng
- The Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Wen Zhu
- The Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA.,Interdisciplinary Program in Biomedical Science, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Debra K Newman
- The Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Demin Wang
- The Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA.,Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Renren Wen
- The Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
12
|
Das DK, Mallis RJ, Duke-Cohan JS, Hussey RE, Tetteh PW, Hilton M, Wagner G, Lang MJ, Reinherz EL. Pre-T Cell Receptors (Pre-TCRs) Leverage Vβ Complementarity Determining Regions (CDRs) and Hydrophobic Patch in Mechanosensing Thymic Self-ligands. J Biol Chem 2016; 291:25292-25305. [PMID: 27707880 DOI: 10.1074/jbc.m116.752865] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/28/2016] [Indexed: 11/06/2022] Open
Abstract
The pre-T cell receptor (pre-TCR) is a pTα-β heterodimer functioning in early αβ T cell development. Although once thought to be ligand-autonomous, recent studies show that pre-TCRs participate in thymic repertoire formation through recognition of peptides bound to major histocompatibility molecules (pMHC). Using optical tweezers, we probe pre-TCR bonding with pMHC at the single molecule level. Like the αβTCR, the pre-TCR is a mechanosensor undergoing force-based structural transitions that dynamically enhance bond lifetimes and exploiting allosteric control regulated via the Cβ FG loop region. The pre-TCR structural transitions exhibit greater reversibility than TCRαβ and ordered force-bond lifetime curves. Higher piconewton force requires binding through both complementarity determining region loops and hydrophobic Vβ patch apposition. This patch functions in the pre-TCR as a surrogate Vα domain, fostering ligand promiscuity to favor development of β chains with self-reactivity but is occluded by α subunit replacement of pTα upon αβTCR formation. At the double negative 3 thymocyte stage where the pre-TCR is first expressed, pre-TCR interaction with self-pMHC ligands imparts growth and survival advantages as revealed in thymic stromal cultures, imprinting fundamental self-reactivity in the T cell repertoire. Collectively, our data imply the existence of sequential mechanosensor αβTCR repertoire tuning via the pre-TCR.
Collapse
Affiliation(s)
- Dibyendu Kumar Das
- From the Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235
| | - Robert J Mallis
- the Departments of Biological Chemistry and Molecular Pharmacology and
| | - Jonathan S Duke-Cohan
- the Department of Medical Oncology, Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, and.,Medicine, Harvard Medical School, and
| | - Rebecca E Hussey
- the Department of Medical Oncology, Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, and
| | - Paul W Tetteh
- the Department of Medical Oncology, Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, and.,Medicine, Harvard Medical School, and
| | - Mark Hilton
- From the Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235
| | - Gerhard Wagner
- the Departments of Biological Chemistry and Molecular Pharmacology and
| | - Matthew J Lang
- From the Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, .,the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37235
| | - Ellis L Reinherz
- the Department of Medical Oncology, Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, and .,Medicine, Harvard Medical School, and
| |
Collapse
|
13
|
López-Rodríguez C, Aramburu J, Berga-Bolaños R. Transcription factors and target genes of pre-TCR signaling. Cell Mol Life Sci 2015; 72:2305-21. [PMID: 25702312 PMCID: PMC11113633 DOI: 10.1007/s00018-015-1864-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/22/2015] [Accepted: 02/16/2015] [Indexed: 11/27/2022]
Abstract
Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes. This review article focuses on transcription factors and target genes activated by the pre-TCR to drive its different outcomes.
Collapse
Affiliation(s)
- Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences and Barcelona Biomedical Research Park, Universitat Pompeu Fabra, C/Doctor Aiguader Nº88, 08003, Barcelona, Barcelona, Spain,
| | | | | |
Collapse
|
14
|
Naik E, Webster JD, DeVoss J, Liu J, Suriben R, Dixit VM. Regulation of proximal T cell receptor signaling and tolerance induction by deubiquitinase Usp9X. ACTA ACUST UNITED AC 2014; 211:1947-55. [PMID: 25200027 PMCID: PMC4172213 DOI: 10.1084/jem.20140860] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The T cell hyperproliferation and autoimmune phenotypes that manifest in mice lacking E3 ubiquitin ligases such as Cbl, ITCH, or GRAIL highlight the importance of ubiquitination for the maintenance of peripheral T cell tolerance. Less is known, however, about the deubiquitinating enzymes that regulate T cell proliferation and effector function. Here, we define a cell intrinsic role for the deubiquitinase Usp9X during proximal TCR signaling. Usp9X-deficient T cells were hypoproliferative, yet mice with T cell-specific Usp9x deletion had elevated numbers of antigen-experienced T cells and expanded PD-1 and OX40-expressing populations consistent with immune hyperactivity. Aged Usp9x KO mice developed lupus-like autoimmunity and lymphoproliferative disease, indicating that ubiquitin ligases and deubiquitinases maintain the delicate balance between effective immunity and self-tolerance.
Collapse
Affiliation(s)
- Edwina Naik
- Department of Physiological Chemistry, Department of Pathology, Department of Immunology, Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA 94080
| | - Joshua D Webster
- Department of Physiological Chemistry, Department of Pathology, Department of Immunology, Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA 94080
| | - Jason DeVoss
- Department of Physiological Chemistry, Department of Pathology, Department of Immunology, Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA 94080
| | - Jinfeng Liu
- Department of Physiological Chemistry, Department of Pathology, Department of Immunology, Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA 94080
| | - Rowena Suriben
- Department of Physiological Chemistry, Department of Pathology, Department of Immunology, Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA 94080
| | - Vishva M Dixit
- Department of Physiological Chemistry, Department of Pathology, Department of Immunology, Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA 94080
| |
Collapse
|
15
|
Siggs OM, Yates AL, Schlenner S, Liston A, Lesage S, Goodnow CC. A ZAP-70 kinase domain variant prevents thymocyte-positive selection despite signalling CD69 induction. Immunology 2014; 141:587-95. [PMID: 24266404 DOI: 10.1111/imm.12220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/13/2013] [Accepted: 11/19/2013] [Indexed: 12/15/2022] Open
Abstract
Quantitative reductions in T-cell receptor (TCR) signalling are associated with severe immunodeficiency, yet in certain cases can lead to autoimmunity. Mutation of the tyrosine kinase ZAP-70 can cause either of these outcomes, yet the limits of its signal transducing capacity are not well defined. To investigate these limits we have made use of mrtless: a chemically induced mutation of Zap70 associated with T-cell deficiency. Unlike cells devoid of ZAP-70, mrtless thymocytes showed partial induction of CD5 and CD69, and were sensitive to TCR stimulation with a dose-response shifted approximately 10-fold. However, essentially no T cells were able to compensate for the mrtless mutation and mature beyond the CD4⁺ CD8⁺ stage. This outcome contrasts with a ZAP-70 Src Homology 2 domain mutant strain, where high-affinity self-reactive TCR are positively selected rather than deleted. We discuss these data with respect to current models of TCR signalling in thymocyte selection.
Collapse
Affiliation(s)
- Owen M Siggs
- Department of Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Thrombospondin-1 modulates VEGF signaling via CD36 by recruiting SHP-1 to VEGFR2 complex in microvascular endothelial cells. Blood 2013; 122:1822-32. [PMID: 23896411 DOI: 10.1182/blood-2013-01-482315] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Thrombospondin-1 (TSP-1) inhibits growth factor signaling at the receptor level in microvascular endothelial cells (MVEC), and CD36 has been suggested to be involved in this inhibition, but the mechanisms are not known. We hypothesized that CD36-TSP-1 interaction recruits Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 to the vascular endothelial growth factor receptor 2 (VEGFR2) signaling complex and attenuates vascular endothelial growth factor (VEGF) signaling. Western blots of anti-CD36 and anti-VEGFR2 immunoprecipitates from VEGF-treated MVEC showed that exposure of the cells to a recombinant protein containing the CD36 binding domain of thrombospondin-1 (known as the TSR domain) induced association of SHP-1 with the VEGFR2/CD36 signaling complex and thereby suppressed VEGFR2 phosphorylation. SHP-1 phosphatase activity was increased in immunoprecipitated VEGFR2 complexes from TSR-treated cells. Silencing CD36 expression in MVEC by small interfering RNA (siRNA) or genetic deletion of cd36 in mice showed that TSR-induced SHP-1/VEGFR2 complex formation required CD36 in vitro and in vivo. Silencing SHP-1 expression in MVEC by siRNA abrogated TSR-mediated inhibition of VEGFR2 phosphorylation as well as TSR-mediated inhibition of VEGF-induced endothelial cell migration and tube formation. These studies reveal a SHP-1-mediated antiangiogenic pathway induced by CD36-TSP-1 interaction that inhibits VEGFR2 signaling and they provide a novel target to modulate angiogenesis therapeutically.
Collapse
|
17
|
Hu L, Yang L, Lipchik AM, Geahlen RL, Parker LL, Tao WA. A quantitative proteomics-based competition binding assay to characterize pITAM-protein interactions. Anal Chem 2013; 85:5071-7. [PMID: 23611696 PMCID: PMC3715304 DOI: 10.1021/ac400359t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Characterization of ligand-protein binding is of crucial importance in drug discovery. Classical competition binding assays measure the binding of a labeled ligand in the presence of various concentrations of unlabeled ligand and typically use single purified proteins. Here, we introduce a high-throughput approach to study ligand-protein interactions by coupling competition binding assays with mass spectrometry-based quantitative proteomics. With the use of a phosphorylated immunoreceptor tyrosine-based activation motif (pITAM) peptide as a model, we characterized pITAM-interacting partners in human lymphocytes. The shapes of competition binding curves of various interacting partners constructed in a single set of quantitative proteomics experiments reflect relative affinities for the pITAM peptide. This strategy can provide an efficient approach to distinguish specific interacting partners, including two signaling kinases possessing tandem SH2 domains, SYK and ZAP-70, as well as other SH2 domain-containing proteins such as CSK and PI3K, from contaminants and to measure relative binding affinities of multiple proteins in a single experiment.
Collapse
Affiliation(s)
- Lianghai Hu
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907
- College of Life Science, Jilin University, Changchun 130012, PR China
| | - Li Yang
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907
| | - Andrew M. Lipchik
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907
| | - Robert L. Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907
- Purdue Center for Cancer Research, West Lafayette, IN, 47907
| | - Laurie L. Parker
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907
- Purdue Center for Cancer Research, West Lafayette, IN, 47907
| | - W. Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907
- Purdue Center for Cancer Research, West Lafayette, IN, 47907
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
18
|
Xiong J, Parker BL, Dalheimer SL, Yankee TM. Interleukin-7 supports survival of T-cell receptor-β-expressing CD4(-) CD8(-) double-negative thymocytes. Immunology 2013; 138:382-91. [PMID: 23215679 DOI: 10.1111/imm.12050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 11/30/2012] [Accepted: 12/05/2012] [Indexed: 01/17/2023] Open
Abstract
Among the milestones that occur during T-cell development in the thymus is the expression of T-cell receptor-β (TCR-β) and the formation of the pre-TCR complex. Signals emanating from the pre-TCR trigger survival, proliferation and differentiation of T-cell precursors. Although the pre-TCR is essential for these cell outcomes, other receptors, such as Notch and CXCR4, also contribute. Whether interleukin-7 (IL-7) participates in promoting the survival or proliferation of pre-TCR-expressing cells is controversial. We used in vitro and in vivo models of T-cell development to examine the function of IL-7 in TCR-β-expressing thymocytes. Culturing TCR-β-expressing CD4(-) CD8(-) double-negative thymocytes in an in vitro model of T-cell development revealed that IL-7 reduced the frequency of CD4(+) CD8(+) double-positive thymocytes at the time of harvest. The mechanism for this change in the percentage of double-positive cells was that IL-7 promoted the survival of thymocytes that had not yet differentiated. By preserving the double-negative population, IL-7 reduced the frequency of double-positive thymocytes. Interleukin-7 was not required for proliferation in the in vitro system. To follow this observation, we examined mice lacking CD127 (IL-7Rα). In addition to the known effect of CD127 deficiency on T-cell development before TCR-β expression, CD127 deficiency also impaired the development of TCR-β-expressing double-negative thymocytes. Specifically, we found that Bcl-2 expression and cell cycle progression were reduced in TCR-β-expressing double-negative thymocytes in mice lacking CD127. We conclude that IL-7 continues to function after TCR-β is expressed by promoting the survival of TCR-β-expressing double-negative thymocytes.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
19
|
Golec DP, Dower NA, Stone JC, Baldwin TA. RasGRP1, but not RasGRP3, is required for efficient thymic β-selection and ERK activation downstream of CXCR4. PLoS One 2013; 8:e53300. [PMID: 23308188 PMCID: PMC3538756 DOI: 10.1371/journal.pone.0053300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/30/2012] [Indexed: 01/19/2023] Open
Abstract
T cell development is a highly dynamic process that is driven by interactions between developing thymocytes and the thymic microenvironment. Upon entering the thymus, the earliest thymic progenitors, called CD4−CD8− ‘double negative’ (DN) thymocytes, pass through a checkpoint termed “β-selection” before maturing into CD4+CD8+ ‘double positive’ (DP) thymocytes. β-selection is an important developmental checkpoint during thymopoiesis where developing DN thymocytes that successfully express the pre-T cell receptor (TCR) undergo extensive proliferation and differentiation towards the DP stage. Signals transduced through the pre-TCR, chemokine receptor CXCR4 and Notch are thought to drive β-selection. Additionally, it has long been known that ERK is activated during β-selection; however the pathways regulating ERK activation remain unknown. Here, we performed a detailed analysis of the β-selection events in mice lacking RasGRP1, RasGRP3 and RasGRP1 and 3. We report that RasGRP1 KO and RasGRP1/3 DKO deficient thymi show a partial developmental block at the early DN3 stage of development. Furthermore, DN3 thymocytes from RasGRP1 and RasGRP1/3 double knock-out thymi show significantly reduced proliferation, despite expression of the TCRβ chain. As a result of impaired β-selection, the pool of TCRβ+ DN4 is significantly diminished, resulting in inefficient DN to DP development. Also, we report that RasGRP1 is required for ERK activation downstream of CXCR4 signaling, which we hypothesize represents a potential mechanism of RasGRP1 regulation of β-selection. Our results demonstrate that RasGRP1 is an important regulator of proliferation and differentiation at the β-selection checkpoint and functions downstream of CXCR4 to activate the Ras/MAPK pathway.
Collapse
Affiliation(s)
- Dominic P. Golec
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Nancy A. Dower
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - James C. Stone
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Troy A. Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
20
|
Patel ES, Chang LJ. Synergistic effects of interleukin-7 and pre-T cell receptor signaling in human T cell development. J Biol Chem 2012; 287:33826-35. [PMID: 22859301 DOI: 10.1074/jbc.m112.380113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The role of IL-7 in pre-T cell receptor (TCR) signaling during human T cell development is poorly understood. To study this, we engineered Molt3, a T cell progenitor T-acute lymphoblastic leukemia cell line, using lentiviral IL-7 receptor α (IL-7Rα) to serve as a model system. IL-7 promoted pre-TCR activation in IL-7Rα(hi) Molt3 as illustrated by CD25 up-regulation after anti-CD3 stimulation. Anti-CD3 treatment activated Akt and Erk1/2 signaling pathways as proven using specific inhibitors, and IL-7 further enhanced both signaling pathways. The close association of IL-7Rα with CD3ζ in the pre-TCR complex was illustrated through live imaging confocal fluorescence microscopy. These results demonstrate a direct and cooperative role of IL-7 in pre-TCR signaling.
Collapse
Affiliation(s)
- Ekta S Patel
- Department of Molecular Genetics, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | |
Collapse
|
21
|
Königsberger S, Prodöhl J, Stegner D, Weis V, Andreas M, Stehling M, Schumacher T, Böhmer R, Thielmann I, van Eeuwijk JMM, Nieswandt B, Kiefer F. Altered BCR signalling quality predisposes to autoimmune disease and a pre-diabetic state. EMBO J 2012; 31:3363-74. [PMID: 22728826 PMCID: PMC3411075 DOI: 10.1038/emboj.2012.169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/18/2012] [Indexed: 12/31/2022] Open
Abstract
The spleen tyrosine kinase family members Syk and Zap-70 are pivotal signal transducers downstream of antigen receptors and exhibit overlapping expression patterns at early lymphocytic developmental stages. To assess their differential kinase fitness in vivo, we generated mice, which carry a Zap-70 cDNA knock-in controlled by intrinsic Syk promoter elements that disrupts wild-type Syk expression. Kinase replacement severely compromised Erk1/2-mediated survival and proper selection of developing B cells at central and peripheral checkpoints, demonstrating critical dependence on BCR signalling quality. Furthermore, ITAM- and hemITAM-mediated activation of platelets and neutrophils was completely blunted, while surprisingly FcγR-mediated phagocytosis in macrophages was retained. The alteration in BCR signalling quality resulted in preferential development and survival of marginal zone B cells and prominent autoreactivity, causing the generation of anti-insulin antibodies and age-related glomerulonephritis. Development of concomitant fasting glucose intolerance in knock-in mice highlights aberrant B cell selection as a potential risk factor for type 1 diabetes, and suggests altered BCR signalling as a mechanism to cause biased cellular and Ig repertoire selection, ultimately contributing to B cell-mediated autoimmune predisposition.
Collapse
Affiliation(s)
- Sebastian Königsberger
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jan Prodöhl
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - David Stegner
- DFG Research Center for Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Vanessa Weis
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Martin Andreas
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Theresa Schumacher
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ruben Böhmer
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ina Thielmann
- DFG Research Center for Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Judith M M van Eeuwijk
- DFG Research Center for Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- DFG Research Center for Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Friedemann Kiefer
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
22
|
Gaudreau MC, Heyd F, Bastien R, Wilhelm B, Möröy T. Alternative splicing controlled by heterogeneous nuclear ribonucleoprotein L regulates development, proliferation, and migration of thymic pre-T cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:5377-88. [PMID: 22523384 DOI: 10.4049/jimmunol.1103142] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The regulation of posttranscriptional modifications of pre-mRNA by alternative splicing is important for cellular function, development, and immunity. The receptor tyrosine phosphatase CD45, which is expressed on all hematopoietic cells, is known for its role in the development and activation of T cells. CD45 is known to be alternatively spliced, a process that is partially regulated by heterogeneous nuclear ribonucleoprotein (hnRNP) L. To investigate the role of hnRNP L further, we have generated conditional hnRNP L knockout mice and found that LckCre-mediated deletion of hnRNP L results in a decreased thymic cellularity caused by a partial block at the transition stage between double-negative 4 and double-positive cells. In addition, hnRNP L(-/-) thymocytes express aberrant levels of the CD45RA splice isoforms and show high levels of phosphorylated Lck at the activator tyrosine Y394, but lack phosphorylation of the inhibitory tyrosine Y505. This indicated an increased basal Lck activity and correlated with higher proliferation rates of double-negative 4 cells in hnRNP L(-/-) mice. Deletion of hnRNP L also blocked the migration and egress of single-positive thymocytes to peripheral lymphoid organs in response to sphingosine-1-phosphate and the chemokines CCL21 and CXCL12 very likely as a result of aberrant splicing of genes encoding GTPase regulators and proteins affecting cytoskeletal organization. Our results indicate that hnRNP L regulates T cell differentiation and migration by regulating pre-TCR and chemokine receptor signaling.
Collapse
|
23
|
Targeted Sos1 deletion reveals its critical role in early T-cell development. Proc Natl Acad Sci U S A 2011; 108:12407-12. [PMID: 21746917 DOI: 10.1073/pnas.1104295108] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Activation of the small G protein Ras is required for thymocyte differentiation. In thymocytes, Ras is activated by the Ras guanine exchange factors (RasGEFs) Sos1, Sos2, and RasGRP1. We report the development of a floxed allele of sos1 to assess the role of Sos1 during thymocyte development. Sos1 was required for pre-T-cell receptor (pre-TCR)- but not TCR-stimulated developmental signals. Sos1 deletion led to a partial block at the DN-to-DP transition. Sos1-deficient thymocytes showed reduced pre-TCR-stimulated proliferation, differentiation, and ERK phosphorylation. In contrast, TCR-stimulated positive selection, and negative selection under strong stimulatory conditions, remained intact in Sos1-deficient mice. Comparison of RasGEF expression at different developmental stages showed that relative to Sos2 and RasGRP1, Sos1 is most abundant in DN thymocytes, but least abundant in DP thymocytes. These data reveal that Sos1 is uniquely positioned to affect signal transduction early in thymocyte development.
Collapse
|
24
|
Fayard E, Moncayo G, Hemmings BA, Holländer GA. Phosphatidylinositol 3-kinase signaling in thymocytes: the need for stringent control. Sci Signal 2010; 3:re5. [PMID: 20716765 DOI: 10.1126/scisignal.3135re5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The thymus serves as the primary site for the lifelong formation of new T lymphocytes; hence, it is essential for the maintenance of an effective immune system. Although thymocyte development has been widely studied, the mechanisms involved are incompletely defined. A comprehensive understanding of the molecular events that control regular thymocyte development will not only shed light on the physiological control of T cell differentiation but also probably provide insight into the pathophysiology of T cell immunodeficiencies, the molecular basis that underpins autoimmunity, and the mechanisms that instigate the formation of T cell lymphomas. Phosphatidylinositol 3-kinases (PI3Ks) play a critical role in thymocyte development, although not all of their downstream mediators have yet been identified. Here, we discuss experimental evidence that argues for a critical role of the PI3K-phosphoinositide-dependent protein kinase (PDK1)-protein kinase B (PKB) signaling pathway in the development of both normal and malignant thymocytes, and we highlight molecules that can potentially be targeted therapeutically.
Collapse
Affiliation(s)
- Elisabeth Fayard
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | | | | | | |
Collapse
|
25
|
Wang H, Kadlecek TA, Au-Yeung BB, Goodfellow HES, Hsu LY, Freedman TS, Weiss A. ZAP-70: an essential kinase in T-cell signaling. Cold Spring Harb Perspect Biol 2010; 2:a002279. [PMID: 20452964 DOI: 10.1101/cshperspect.a002279] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ZAP-70 is a cytoplasmic protein tyrosine kinase that plays a critical role in the events involved in initiating T-cell responses by the antigen receptor. Here we review the structure of ZAP-70, its regulation, its role in development and in disease. We also describe a model experimental system in which ZAP-70 function can be interrupted by a small chemical inhibitor.
Collapse
Affiliation(s)
- Haopeng Wang
- Howard Hughes Medical Institute, Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Stimulation of the T-cell antigen receptor (TCR) leads to the activation of signaling pathways that are essential for T-cell development and the response of mature T cells to antigens. The TCR has no intrinsic catalytic activity, but TCR engagement results in tyrosine phosphorylation of downstream targets by non-receptor tyrosine kinases. Three families of tyrosine kinases have long been recognized to play critical roles in TCR-dependent signaling. They are the Src, zeta-associated protein of 70 kDa, and Tec families of kinases. More recently, the Abelson (Abl) tyrosine kinases have been shown to be activated by TCR engagement and to be required for maximal TCR signaling. Using T-cell conditional knockout mice deficient for Abl family kinases, Abl (Abl1) and Abl-related gene (Arg) (Abl2), it was recently shown that loss of Abl kinases results in defective T-cell development and a partial block in the transition to the CD4(+)CD8(+) stage. Abl/Arg double null T cells exhibit impaired TCR-induced signaling, proliferation, and cytokine production. Moreover, conditional knockout mice lacking Abl and Arg in T cells exhibit impaired CD8(+) T-cell expansion in vivo upon Listeria monocytogenes infection. Thus, Abl kinase signaling is required for both T-cell development and mature T-cell function.
Collapse
Affiliation(s)
- Jing Jin Gu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
27
|
|
28
|
Oda H, Fujimoto M, Patrick MS, Chida D, Sato Y, Azuma Y, Aoki H, Abe T, Suzuki H, Shirai M. RhoH plays critical roles in Fc epsilon RI-dependent signal transduction in mast cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:957-62. [PMID: 19124738 DOI: 10.4049/jimmunol.182.2.957] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RhoH is an atypical small G protein with defective GTPase activity that is specifically expressed in hematopoietic lineage cells. RhoH has been implicated in regulation of several physiological processes including hematopoiesis, integrin activation, and T cell differentiation and activation. In the present study, we investigated the role of RhoH in mast cells by generating RhoH knockout mice. Despite observing normal development of mast cells in vivo, passive systemic anaphylaxis and histamine release were impaired in these mice. We also observed defective degranulation and cytokine production upon FcepsilonRI ligation in RhoH-deficient bone marrow-derived mast cells. Furthermore, FcepsilonRI-dependent activation of Syk and phosphorylation of its downstream targets, including LAT, SLP76, PLCgamma1, and PLCgamma2 were impaired, however phosphorylation of the gamma-subunit of FcepsilonRI remained intact. We also found RhoH-Syk association that was greatly enhanced by active Fyn. Our results indicate that RhoH regulates FcepsilonRI signaling in mast cells by facilitating Syk activation, possibly as an adaptor molecule for Syk.
Collapse
Affiliation(s)
- Hiroyo Oda
- Department of Pathology, Research Institute, International Medical Center of Japan, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Melendez AJ. Allergy therapy: the therapeutic potential of targeting sphingosine kinase signalling in mast cells. Eur J Immunol 2009; 38:2969-74. [PMID: 18924207 DOI: 10.1002/eji.200838642] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cell activation is a central event in allergic diseases, and investigating the signalling pathways triggered during mast cell activation may lead to the discovery of novel therapeutic targets. Mast cells can be activated by a multitude of stimuli including antibodies/antigen, cytokines/chemokines and neuropeptides, resulting in a variety of responses including the immediate release of potent inflammatory mediators. Moreover, recent data suggest that mast cell-mediated responses are also influenced by the differential sphingolipids/sphingosine to sphingosine-1-phosphate ratio. The importance of sphingolipids as potent biological mediators of both intracellular and extracellular responses is being increasingly recognized and accepted; it is now appreciated that activation of mast cells, via the high-affinity IgE-receptor (FcepsilonRI) leads to the activation of sphingosine kinases (SphK), resulting in increased formation of sphingosine-1-phosphate. Furthermore, FcepsilonRI activates SphK-dependent calcium mobilization in mast cells, leading to degranulation, cytokine, and eicosanoid production, and chemotaxis. In the past two years a critical role for SphK in allergic responses in vivo has emerged. In this review, I focus on the current understanding of the role of sphingosine kinases during mast cell signalling in vitro and their role during hypersensitivity responses in vivo, and discuss the potential of these enzymes as novel therapeutic targets to treat allergic diseases.
Collapse
Affiliation(s)
- Alirio J Melendez
- Division of Immunology, Infection and Inflammation, Faculty of Medicine, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, Scotland, UK.
| |
Collapse
|
30
|
Lai WQ, Irwan AW, Goh HH, Howe HS, Yu DT, Valle-Oñate R, McInnes IB, Melendez AJ, Leung BP. Anti-Inflammatory Effects of Sphingosine Kinase Modulation in Inflammatory Arthritis. THE JOURNAL OF IMMUNOLOGY 2008; 181:8010-7. [DOI: 10.4049/jimmunol.181.11.8010] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Fallah-Arani F, Schweighoffer E, Vanes L, Tybulewicz VLJ. Redundant role for Zap70 in B cell development and activation. Eur J Immunol 2008; 38:1721-33. [PMID: 18465772 DOI: 10.1002/eji.200738026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Expression of the Syk family tyrosine kinase Zap70 is strongly correlated with poor clinical outcome in chronic lymphocytic leukemia, the most common human leukemia characterized by B cell accumulation. The expression of Zap70 may reflect the specific cell of origin of the tumor or may contribute to pathology. Thus, the normal role of Zap70 in B cell physiology is of great interest. While initial studies reported that Zap70 expression in the mouse was limited to T and NK cells, more recent work has shown expression in early B cell progenitors and in splenic B cells, suggesting that the kinase may play a role in the development or activation of B cells. In this study, we show that Zap70 is expressed in all developing subsets of B cells as well as in recirculating B cells, marginal zone B cells and peritoneal B1 cells. Analysis of Zap70-deficient mice shows no unique role for Zap70 in either the development of B cells or in their in vitro and in vivo activation. However, we show that Zap70 can rescue the defective positive selection of immature B cells into the recirculating pool in Syk-deficient mice, demonstrating functional redundancy between these two kinases.
Collapse
Affiliation(s)
- Farnaz Fallah-Arani
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London, UK
| | | | | | | |
Collapse
|
32
|
Suzuki H, Oda H. The atypical small GTPase RhoH : a novel role in T cell development. ACTA ACUST UNITED AC 2008; 31:37-46. [PMID: 18311041 DOI: 10.2177/jsci.31.37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Small GTPases (G-proteins) play important roles in various signal transduction pathways by working as molecular switches. Among them, some of these GTPases don't have functional features of typical GTPases, therefore they are called "atypical GTPases". Recently, these less known atypical Rho GTPases have received increased attention. This review will focus on the novel aspects of biological function of atypical Rho GTPases, especially a newly found function of RhoH on signal transduction in T cell development.
Collapse
Affiliation(s)
- Harumi Suzuki
- Department of Pathology, Research Institute, International Medical Center of Japan
| | | |
Collapse
|
33
|
Ferrera D, Panigada M, Porcellini S, Grassi F. Recombinase-deficient T cell development by selective accumulation of CD3 into lipid rafts. Eur J Immunol 2008; 38:1148-56. [DOI: 10.1002/eji.200737917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Lucas JA, Felices M, Evans JW, Berg LJ. Subtle defects in pre-TCR signaling in the absence of the Tec kinase Itk. THE JOURNAL OF IMMUNOLOGY 2008; 179:7561-7. [PMID: 18025201 DOI: 10.4049/jimmunol.179.11.7561] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
alphabeta T cell development in the thymus is dependent on signaling through the TCR. The first of these signals is mediated by the pre-TCR, which is responsible for promoting pre-T cell proliferation and the differentiation of CD4(-)8(-)3(-) (DN) thymocytes into CD4(+)8(+)3(+) (DP) cells. In many cases, T cell signaling proteins known to be essential for TCR signaling in mature T cells are also required for pre-TCR signaling in DN thymocytes. Therefore, it came as a surprise to discover that mice lacking the Tec kinases Itk and Rlk, enzymes required for efficient activation of phospholipase C-gamma1 in mature T cells, showed no obvious defects in pre-TCR-dependent selection events in the thymus. In this report, we demonstrate that DN thymocytes lacking Itk, or Itk and Rlk, are impaired in their ability to generate normal numbers of DP thymocytes, especially when placed in direct competition with WT DN thymocytes. We also show that Itk is required for maximal pre-TCR signaling in DN thymocytes. These data demonstrate that the Tec kinases Itk and Rlk are involved in, but are not essential for, pre-TCR signaling in the thymus, suggesting that there is an alternative mechanism for activating phospholipase C-gamma1 in DN thymocytes that is not operating in DP thymocytes and mature T cells.
Collapse
Affiliation(s)
- Julie A Lucas
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
35
|
Gu JJ, Zhang N, He YW, Koleske AJ, Pendergast AM. Defective T cell development and function in the absence of Abelson kinases. THE JOURNAL OF IMMUNOLOGY 2008; 179:7334-43. [PMID: 18025176 DOI: 10.4049/jimmunol.179.11.7334] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Thymocyte proliferation, survival, and differentiation are tightly controlled by signaling from the pre-TCR. In this study, we show for the first time that the Abelson (Abl) kinases regulate proximal signaling downstream of the pre-TCR. Conditional deletion of Abl kinases in thymocytes reveals a cell-autonomous role for these proteins in T cell development. The conditional knockout mice have reduced numbers of thymocytes, exhibit an increase in the percentage of the CD4(-)CD8(-) double-negative population, and are partially blocked in the transition to the CD4(+)CD8(+) double-positive stage. Moreover, the total number of T cells is greatly reduced in the Abl mutant mice, and the null T cells exhibit impaired TCR-induced signaling, proliferation, and cytokine production. Notably, Abl mutant mice are compromised in their ability to produce IFN-positive CD8 T cells and exhibit impaired CD8(+) T cell expansion in vivo upon Listeria monocytogenes infection. Furthermore, Ab production in response to T cell-dependent Ag is severely impaired in the Abl mutant mice. Together these findings reveal cell-autonomous roles for the Abl family kinases in both T cell development and mature T cell function, and show that loss of these kinases specifically in T cells results in compromised immunity.
Collapse
Affiliation(s)
- Jing Jin Gu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
36
|
Zeng L, Dalheimer SL, Yankee TM. Gads-/- mice reveal functionally distinct subsets of TCRbeta+ CD4-CD8- double-negative thymocytes. THE JOURNAL OF IMMUNOLOGY 2007; 179:1013-21. [PMID: 17617593 DOI: 10.4049/jimmunol.179.2.1013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCRbeta expression in CD4(-)CD8(-) double-negative (DN) thymocytes induces signaling pathways that promote survival and proliferation, as well as differentiation into CD4(+)CD8(+) double-positive thymocytes. The signaling pathways that regulate survival, proliferation, and differentiation remain unclear. We used Gads-deficient mice to investigate the signaling pathways that regulate these cell fates. During this investigation, we focused on TCRbeta(+) DN thymocytes and found that there are at least three functionally distinct subsets of TCRbeta(+) DN thymocytes: TCRbeta(+) DN3E, TCRbeta(+) DN3L, and TCRbeta(+) DN4. Survival and proliferation of TCRbeta(+) DN3E were independent of Gads, but survival and proliferation of TCRbeta(+) DN3L cells were Gads dependent. Likewise, expression of Bcl-2 in TCRbeta(+) DN3E cells was Gads independent, but Gads was necessary for Bcl-2 expression in TCRbeta(+) DN3L cells. Bcl-2 expression was not dependent on Gads in TCRbeta(+) DN4 cells, but proliferation of TCRbeta(+) DN4 cells was Gads dependent. Gads was not required for the differentiation of DN thymocytes into DP thymocytes. In fact, Gads(-/-) DN3E cells differentiated into DP thymocytes more readily than wild-type cells. We conclude that signaling pathways required to initiate TCRbeta-induced survival and proliferation are distinct from the pathways that maintain survival and proliferation. Furthermore, signaling pathways that promote survival and proliferation may slow differentiation.
Collapse
Affiliation(s)
- Ling Zeng
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
37
|
Mikhailik A, Ford B, Keller J, Chen Y, Nassar N, Carpino N. A phosphatase activity of Sts-1 contributes to the suppression of TCR signaling. Mol Cell 2007; 27:486-97. [PMID: 17679096 PMCID: PMC2709417 DOI: 10.1016/j.molcel.2007.06.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 11/13/2006] [Accepted: 06/12/2007] [Indexed: 11/23/2022]
Abstract
Precise signaling by the T cell receptor (TCR) is crucial for a proper immune response. To ensure that T cells respond appropriately to antigenic stimuli, TCR signaling pathways are subject to multiple levels of regulation. Sts-1 negatively regulates signaling pathways downstream of the TCR by an unknown mechanism(s). Here, we demonstrate that Sts-1 is a phosphatase that can target the tyrosine kinase Zap-70 among other proteins. The X-ray structure of the Sts-1 C terminus reveals that it has homology to members of the phosphoglycerate mutase/acid phosphatase (PGM/AcP) family of enzymes, with residues known to be important for PGM/AcP catalytic activity conserved in nature and position in Sts-1. Point mutations that impair Sts-1 phosphatase activity in vitro also impair the ability of Sts-1 to regulate TCR signaling in T cells. These observations reveal a PGM/AcP-like enzyme activity involved in the control of antigen receptor signaling.
Collapse
Affiliation(s)
- Anatoly Mikhailik
- Department of Molecular Genetics and Microbiology, Room 130, Life Sciences Building, Stony Brook University, Stony Brook, NY 11794-5222
| | - Bradley Ford
- Department of Physiology and Biophysics, Basic Sciences Tower, Stony Brook University, Stony Brook, NY 11794-8661
| | - James Keller
- Department of Molecular Genetics and Microbiology, Room 130, Life Sciences Building, Stony Brook University, Stony Brook, NY 11794-5222
| | - Yunting Chen
- Department of Physiology and Biophysics, Basic Sciences Tower, Stony Brook University, Stony Brook, NY 11794-8661
| | - Nicolas Nassar
- Department of Physiology and Biophysics, Basic Sciences Tower, Stony Brook University, Stony Brook, NY 11794-8661
- *Correspondence to ; Tel: (631) 632-4610/ Fax: (631), 632-9797. Correspondence regarding crystal structure to
| | - Nick Carpino
- Department of Molecular Genetics and Microbiology, Room 130, Life Sciences Building, Stony Brook University, Stony Brook, NY 11794-5222
- *Correspondence to ; Tel: (631) 632-4610/ Fax: (631), 632-9797. Correspondence regarding crystal structure to
| |
Collapse
|
38
|
Melendez AJ. Sphingosine kinase signalling in immune cells: potential as novel therapeutic targets. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:66-75. [PMID: 17913601 DOI: 10.1016/j.bbapap.2007.07.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 07/24/2007] [Accepted: 07/25/2007] [Indexed: 12/17/2022]
Abstract
During the last few years, it has become clear that sphingolipids are sources of important signalling molecules. Particularly, the sphingolipid metabolites, ceramide and S1P, have emerged as a new class of potent bioactive molecules, implicated in a variety of cellular processes such as cell differentiation, apoptosis, and proliferation. Sphingomyelin (SM) is the major membrane sphingolipid and is the precursor for the bioactive products. Ceramide is formed from SM by the action of sphingomyelinases (SMase), however, ceramide can be very rapidly hydrolysed, by ceramidases to yield sphingosine, and sphingosine can be phosphorylated by sphingosine kinase (SphK) to yield S1P. In immune cells, the sphingolipid metabolism is tightly related to the main stages of immune cell development, differentiation, activation, and proliferation, transduced into physiological responses such as survival, calcium mobilization, cytoskeletal reorganization and chemotaxis. Several biological effectors have been shown to promote the synthesis of S1P, including growth factors, cytokines, and antigen and G-protein-coupled receptor agonists. Interest in S1P focused recently on two distinct cellular actions of this lipid, namely its function as an intracellular second messenger, capable of triggering calcium release from internal stores, and as an extracellular ligand activating specific G protein-coupled receptors. Inhibition of SphK stimulation strongly reduced or even prevented cellular events triggered by several proinflammatory agonists, such as receptor-stimulated DNA synthesis, Ca(2+) mobilization, degranulation, chemotaxis and cytokine production. Another very important observation is the direct role played by S1P in chemotaxis, and cellular escape from apoptosis. As an extracellular mediator, several studies have now shown that S1P binds a number of G-protein-coupled receptors (GPCR) encoded by endothelial differentiation genes (EDG), collectively known as the S1P-receptors. Binding of S1P to these receptors trigger an wide range of cellular responses including proliferation, enhanced extracellular matrix assembly, stimulation of adherent junctions, formation of actin stress fibres, and inhibition of apoptosis induced by either ceramide or growth factor withdrawal. Moreover, blocking S1P1-receptor inhibits lymphocyte egress from lymphatic organs. This review summarises the evidence linking SphK signalling pathway to immune-cell activation and based on these data discuss the potential for targeting SphKs to suppress inflammation and other pathological conditions.
Collapse
Affiliation(s)
- Alirio J Melendez
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
39
|
Abstract
The spleen tyrosine kinase (Syk) and ζ-associated protein of 70 kD (ZAP-70) tyrosine kinases are both expressed during early thymocyte development, but their unique thymic functions have remained obscure. No specific role for Syk during β-selection has been established, and no role has been described for ZAP-70 before positive selection. We show that Syk and ZAP-70 provide thymocytes with unique and separable fitness advantages during early development. Syk-deficient, but not ZAP-70–deficient, thymocytes are specifically impaired in initial pre-TCR signaling at the double-negative (DN) 3 β selection stage and show reduced cell-cycle entry. Surprisingly, and despite overlapping expression of both kinases, only ZAP-70 appears to promote sustained pre-TCR/TCR signaling during the DN4, immature single-positive, and double-positive stages of development before thymic selection occurs. ZAP-70 promotes survival and cell-cycle progression of developing thymocytes before positive selection, as also shown by in vivo anti-CD3 treatment of recombinase-activating gene 1–deficient mice. Our results establish a temporal separation of Syk family kinase function during early thymocyte development and a novel role for ZAP-70. We propose that pre-TCR signaling continues during DN4 and later stages, with ZAP-70 dynamically replacing Syk for continued pre-TCR signaling.
Collapse
Affiliation(s)
- Emil H Palacios
- Department of Medicine, the Rosalind Russell Medical Research Center for Arthritis, University of California-San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
40
|
Mao C, Tili EG, Dose M, Haks MC, Bear SE, Maroulakou I, Horie K, Gaitanaris GA, Fidanza V, Ludwig T, Wiest DL, Gounari F, Tsichlis PN. Unequal Contribution of Akt Isoforms in the Double-Negative to Double-Positive Thymocyte Transition. THE JOURNAL OF IMMUNOLOGY 2007; 178:5443-53. [PMID: 17442925 DOI: 10.4049/jimmunol.178.9.5443] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pre-TCR signals regulate the transition of the double-negative (DN) 3 thymocytes to the DN4, and subsequently to the double-positive (DP) stage. In this study, we show that pre-TCR signals activate Akt and that pharmacological inhibition of the PI3K/Akt pathway, or combined ablation of Akt1 and Akt2, and to a lesser extent Akt1 and Akt3, interfere with the differentiation of DN3 and the accumulation of DP thymocytes. Combined ablation of Akt1 and Akt2 inhibits the proliferation of DN4 cells, while combined ablation of all Akt isoforms also inhibits the survival of all the DN thymocytes. Finally, the combined ablation of Akt1 and Akt2 inhibits the survival of DP thymocytes. Constitutively active Lck-Akt1 transgenes had the opposite effects. We conclude that, following their activation by pre-TCR signals, Akt1, Akt2, and, to a lesser extent, Akt3 promote the transition of DN thymocytes to the DP stage, in part by enhancing the proliferation and survival of cells undergoing beta-selection. Akt1 and Akt2 also contribute to the differentiation process by promoting the survival of the DP thymocytes.
Collapse
Affiliation(s)
- Changchuin Mao
- Molecular Oncology Research Institute, Tufts-New England Medical Center, 750 Washington Street, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mansour A, Chang VT, Srinivas S, Harrison J, Raveche E. Correlation of ZAP-70 expression in B cell leukemias to the ex vivo response to a combination of fludarabine/genistein. Cancer Immunol Immunother 2007; 56:501-14. [PMID: 17051411 PMCID: PMC11030053 DOI: 10.1007/s00262-006-0207-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 07/07/2006] [Indexed: 12/16/2022]
Abstract
The role of ZAP-70 expression on the ex vivo response of blood cells from CLL and PLL patients to a combination of fludarabine, a purine analog, and genistein, a tyrosine kinase inhibitor was studied. Patient cells were studied for the expression of ZAP-70 mRNA and its relation to the induction of apoptosis in response to treatment with genistein 15-60 muM and/or fludarabine 3 muM. The combination of genistein and fludarabine resulted in a significantly increased induction of apoptosis relative to the fludarabine alone. The ex vivo patient cells with a high ZAP-70 expression underwent more apoptosis in response to genistein than did patient cells with a low ZAP-70 mRNA expression. In contrast, basal IL-10 mRNA expression correlated negatively with apoptosis induction in response to genistein (P < 0.01). These studies suggest that, in malignant B cells that express elevated levels of the ZAP-70 signaling molecule, genistein may inhibit the ZAP-70 tyrosine kinase activity, resulting in cell death. The ZAP-70 may serve as a target for therapy. In addition, these studies suggest that the IL-10 expression by malignant B cells may not only suppress anti-tumor T cell responses in vivo, but also promote the survival of malignant B cells despite treatment with chemotherapeutic agents.
Collapse
Affiliation(s)
- Amal Mansour
- Department of Pathology, New Jersey Medical School, UMDNJ, Newark, NJ USA
| | - Victor T. Chang
- Department of Pathology, New Jersey Medical School, UMDNJ, Newark, NJ USA
- Section of Hematology/Oncology, VA New Jersey Health Care System, East Orange, NJ USA
- Department of Medicine, New Jersey Medical School, UMDNJ, Newark, NJ USA
| | - Shanti Srinivas
- Department of Pathology, New Jersey Medical School, UMDNJ, Newark, NJ USA
- Section of Hematology/Oncology, VA New Jersey Health Care System, East Orange, NJ USA
- Department of Medicine, New Jersey Medical School, UMDNJ, Newark, NJ USA
| | - Jonathan Harrison
- Department of Pathology, New Jersey Medical School, UMDNJ, Newark, NJ USA
| | - Elizabeth Raveche
- Department of Pathology, New Jersey Medical School, UMDNJ, Newark, NJ USA
- Department of Pathology and Laboratory Medicine, New Jersey Medical School,, UMDNJ, MSB C512, 185 S. Orange Avenue, Newark, NJ 07103 USA
| |
Collapse
|
42
|
Abstract
Since the discovery of gammadelta T cells two decades ago, considerable effort has been made to understand their developmental program, their antigen specificity, and their contribution to the immune response. In this review, we focus on what is known about gammadelta T-cell development and on the advances that have been made in determining which genes are required. In addition, we compare the genetic requirements for alphabeta and gammadelta T-cell development with the hope of gaining a better picture of the signaling pathways that govern the development of gammadelta lineage cells.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Lineage/immunology
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor
- Genes, T-Cell Receptor
- Humans
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Sandra M Hayes
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | | |
Collapse
|
43
|
Yamasaki S, Saito T. Molecular basis for pre-TCR-mediated autonomous signaling. Trends Immunol 2007; 28:39-43. [PMID: 17126602 DOI: 10.1016/j.it.2006.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 10/27/2006] [Accepted: 11/16/2006] [Indexed: 02/05/2023]
Abstract
The pre-T-cell receptor (pre-TCR) is a multimeric complex composed of a nascent TCRbeta chain, an invariant pre-TCRalpha (pTalpha) chain and CD3 molecules, and is crucial for early T-cell development. Despite its structural similarity to the mature alphabetaTCR, which requires MHC-antigen for receptor triggering, the pre-TCR is proposed to initiate signals in a ligand-independent manner. However, the molecular mechanism underlying the autonomous signaling is still unclear. Recent studies have revealed that pTalpha possesses unique characteristics that promote autonomous signaling. In this review, we summarize current data relating to the molecular mechanism underlying the initiation of pre-TCR-mediated autonomous signaling.
Collapse
Affiliation(s)
- Sho Yamasaki
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | | |
Collapse
|
44
|
Nguyen TV, Ke Y, Zhang EE, Feng GS. Conditional deletion of Shp2 tyrosine phosphatase in thymocytes suppresses both pre-TCR and TCR signals. THE JOURNAL OF IMMUNOLOGY 2006; 177:5990-6. [PMID: 17056523 DOI: 10.4049/jimmunol.177.9.5990] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is well known that T cell differentiation and maturation in the thymus is tightly controlled at multiple checkpoints. However, the molecular mechanism for the control of this developmental program is not fully understood. A number of protein tyrosine kinases, such as Zap-70, Lck, and Fyn, have been shown to promote signals required for thymocyte development, whereas a tyrosine phosphatase Src homology domain-containing tyrosine phosphatase (Shp)1 has a negative effect in pre-TCR and TCR signaling. We show in this study that Shp2, a close relative of Shp1, plays a positive role in T cell development and functions. Lck-Cre-mediated deletion of Shp2 in the thymus resulted in a significant block in thymocyte differentiation/proliferation instructed by the pre-TCR at the beta selection step, and reduced expansion of CD4(+) T cells. Furthermore, mature Shp2(-/-) T cells showed decreased TCR signaling in vitro. Mechanistically, Shp2 acts to promote TCR signaling through the ERK pathway, with impaired activation of ERK kinase observed in Shp2(-/-) T cells. Thus, our results provide physiological evidence that Shp2 is a common signal transducer for pre-TCR and TCR in promoting T cell maturation and proliferation.
Collapse
Affiliation(s)
- Thanh V Nguyen
- Programs in Signal Transduction and Stem Cells and Regeneration, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
45
|
Lauritsen JPH, Haks MC, Lefebvre JM, Kappes DJ, Wiest DL. Recent insights into the signals that control alphabeta/gammadelta-lineage fate. Immunol Rev 2006; 209:176-90. [PMID: 16448543 DOI: 10.1111/j.0105-2896.2006.00349.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During thymopoiesis, two major types of mature T cells are generated that can be distinguished by the clonotypic subunits contained within their T-cell receptor (TCR) complexes: alphabeta T cells and gammadelta T cells. Although there is no consensus as to the exact developmental stage where alphabeta and gammadelta T-cell lineages diverge, gammadelta T cells and precursors to the alphabeta T-cell lineage (bearing the pre-TCR) are thought to be derived from a common CD4- CD8- double-negative precursor. The role of the TCR in alphabeta/gammadelta lineage commitment has been controversial, in particular whether different TCR isotypes intrinsically favor adoption of the corresponding lineage. Recent evidence supports a signal strength model of lineage commitment, whereby stronger signals promote gammadelta development and weaker signals promote adoption of the alphabeta fate, irrespective of the TCR isotype from which the signals originate. Moreover, differences in the amplitude of activation of the extracellular signal-regulated kinase- mitogen-activated protein kinase-early growth response pathway appear to play a critical role. These findings will be placed in context of previous analyses in an effort to more precisely define the signals that control T-lineage fate during thymocyte development.
Collapse
Affiliation(s)
- Jens Peter H Lauritsen
- Fox Chase Cancer Center, Division of Basic Sciences, Immunobiology Working Group, Philadelphia, PA 19111, USA
| | | | | | | | | |
Collapse
|
46
|
Liu BA, Jablonowski K, Raina M, Arcé M, Pawson T, Nash PD. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol Cell 2006; 22:851-868. [PMID: 16793553 DOI: 10.1016/j.molcel.2006.06.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 05/19/2006] [Accepted: 06/02/2006] [Indexed: 01/07/2023]
Abstract
SH2 domains are interaction modules uniquely dedicated to the recognition of phosphotyrosine sites and are embedded in proteins that couple protein-tyrosine kinases to intracellular signaling pathways. Here, we report a comprehensive bioinformatics, structural, and functional view of the human and mouse complement of SH2 domain proteins. This information delimits the set of SH2-containing effectors available for PTK signaling and will facilitate the systems-level analysis of pTyr-dependent protein-protein interactions and PTK-mediated signal transduction. The domain-based architecture of SH2-containing proteins is of more general relevance for understanding the large family of protein interaction domains and the modular organization of the majority of human proteins.
Collapse
Affiliation(s)
- Bernard A Liu
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637
| | - Karl Jablonowski
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637
| | - Monica Raina
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Michael Arcé
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637
| | - Tony Pawson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada.
| | - Piers D Nash
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637.
| |
Collapse
|
47
|
Jackson AM, Krangel MS. A role for MAPK in feedback inhibition of Tcrb recombination. THE JOURNAL OF IMMUNOLOGY 2006; 176:6824-30. [PMID: 16709842 DOI: 10.4049/jimmunol.176.11.6824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Tcrb locus is subject to a host of regulatory mechanisms that impart a strict cell and developmental stage-specific order to variable (V), diversity (D), and joining (J) gene segment recombination. The Tcrb locus is also regulated by allelic exclusion mechanisms, which restrict functional rearrangements to a single allele. The production of a functional rearrangement in CD4-CD8- double-negative (DN) thymocytes leads to the assembly of a pre-TCR and initiates signaling cascades that allow for DN to CD4+CD8+ double-positive (DP) differentiation, proliferation, and feedback inhibition of further Vbeta to DJbeta rearrangement. Feedback inhibition is believed to be controlled, in part, by the loss of Vbeta gene segment accessibility during the DN to DP transition. However, the pre-TCR signaling pathways that lead to the inactivation of Vbeta chromatin have not been determined. Because activation of the MAPK pathway is documented to promote DP differentiation in the absence of allelic exclusion, we characterized the properties of Vbeta chromatin within DP thymocytes generated by a constitutively active Raf1 (Raf-CAAX) transgene. Consistent with previous reports, we show that the Raf-CAAX transgene does not inhibit Tcrb recombination in DN thymocytes. Nevertheless, DP thymocytes generated by Raf-CAAX signals display normal down-regulation of Vbeta segment accessibility and normal feedback inhibition of the Vbeta to DJbeta rearrangement. Therefore, our results emphasize the distinct requirements for feedback inhibition in the DN and DP compartments. Although MAPK activation cannot impose feedback in DN thymocytes, it contributes to feedback inhibition through developmental changes that are tightly linked to DN to DP differentiation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Alleles
- Animals
- Chromatin/chemistry
- Chromatin/genetics
- Down-Regulation/genetics
- Down-Regulation/immunology
- Feedback, Physiological/genetics
- Feedback, Physiological/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Humans
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Phosphoproteins/deficiency
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- Protein Prenylation
- Proto-Oncogene Proteins c-raf/genetics
- Proto-Oncogene Proteins c-raf/physiology
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Annette M Jackson
- Department of Immunology, Duke University Medical Center, Durham NC 27710, USA
| | | |
Collapse
|
48
|
Chakraborty G, Rangaswami H, Jain S, Kundu GC. Hypoxia regulates cross-talk between Syk and Lck leading to breast cancer progression and angiogenesis. J Biol Chem 2006; 281:11322-31. [PMID: 16474166 DOI: 10.1074/jbc.m512546200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hypoxia is a key parameter that controls tumor angiogenesis and malignant progression by regulating the expression of several oncogenic molecules. The nonreceptor protein-tyrosine kinases Syk and Lck play crucial roles in the signaling mechanism of various cellular processes. The enhanced expression of Syk in normal breast tissue but not in malignant breast carcinoma has prompted us to investigate its potential role in mammary carcinogenesis. Accordingly, we hypothesized that hypoxia/reoxygenation (H/R) may play an important role in regulating Syk activation, and Lck may be involved in this process. In this study, we have demonstrated that H/R differentially regulates Syk phosphorylation and its subsequent interaction and cross-talk with Lck in MCF-7 cells. Moreover, Syk and Lck play differential roles in regulating Sp1 activation and expressions of melanoma cell adhesion molecule (MelCAM), urokinase-type plasminogen activator (uPA), matrix metalloproteinase-9 (MMP-9), and vascular endothelial growth factor (VEGF) in response to H/R. Overexpression of wild type Syk inhibited the H/R-induced uPA, MMP-9, and VEGF expression but up-regulated MelCAM expression. Our data also indicated that MelCAM acts as a tumor suppressor by negatively regulating H/R-induced uPA secretion and MMP-9 activation. The mice xenograft study showed the cross-talk between Syk and Lck regulated H/R-induced breast tumor progression and further correlated with the expressions of MelCAM, uPA, MMP-9, and VEGF. Human clinical specimen analysis supported the in vitro and in vivo findings. To our knowledge, this is first report that the cross-talk between Syk and Lck regulates H/R-induced breast cancer progression and further suggests that Syk may act as potential therapeutic target for the treatment of breast cancer.
Collapse
|
49
|
Maltzman JS, Kovoor L, Clements JL, Koretzky GA. Conditional deletion reveals a cell-autonomous requirement of SLP-76 for thymocyte selection. ACTA ACUST UNITED AC 2005; 202:893-900. [PMID: 16186188 PMCID: PMC2213170 DOI: 10.1084/jem.20051128] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The SH2 domain containing leukocyte phosphoprotein of 76 kD (SLP-76) is critical for pre-TCR-mediated maturation to the CD4+CD8+ double positive (DP) stage in the thymus. The absolute block in SLP-76null mice at the CD4-CD8-CD44-CD25+ (double-negative 3, DN3) stage has hindered our understanding of the role of this adaptor in alphabeta TCR-mediated signal transduction in primary thymocytes and peripheral T lymphocytes. To evaluate the requirements for SLP-76 in these events, we used a cre-loxP approach to generate mice that conditionally delete SLP-76 after the DN3 checkpoint. These mice develop DP thymocytes that express the alphabeta TCR on the surface, but lack SLP-76 at the genomic DNA and protein levels. The DP compartment has reduced cellularity in young mice and fails to undergo positive selection to CD4+ or CD8+ single positive (SP) cells in vivo or activation-induced cell death in vitro. A small number of CD4+SP thymocytes are generated, but these cells fail to flux calcium in response to an alphabeta TCR-generated signal. Peripheral T cells are reduced in number, lack SLP-76 protein, and have an abnormal surface phenotype. These studies show for the first time that SLP-76 is required for signal transduction through the mature alphabeta TCR in primary cells of the T lineage.
Collapse
Affiliation(s)
- Jonathan S Maltzman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
50
|
Abstract
A plethora of genes involved in murine B and T cell development have been identified, and developmental pathways within the primary lymphoid tissues have been well delineated. The generation of a functional, but non-self reacting lymphocyte repertoire results from the completion of several checkpoints during lymphocyte development and competition for survival factors in the periphery. Improved knowledge of these developmental checkpoints and homeostatic mechanisms is critical for understanding human immunodeficiency, leukaemia/lymphoma and autoimmunity, which are conditions where checkpoints and homeostasis are likely to be deregulated.
Collapse
Affiliation(s)
- Lisa A Miosge
- Immunogenomics Laboratory, Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | |
Collapse
|