1
|
Sparvoli D, Delabre J, Penarete‐Vargas DM, Kumar Mageswaran S, Tsypin LM, Heckendorn J, Theveny L, Maynadier M, Mendonça Cova M, Berry‐Sterkers L, Guérin A, Dubremetz J, Urbach S, Striepen B, Turkewitz AP, Chang Y, Lebrun M. An apical membrane complex for triggering rhoptry exocytosis and invasion in Toxoplasma. EMBO J 2022; 41:e111158. [PMID: 36245278 PMCID: PMC9670195 DOI: 10.15252/embj.2022111158] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 01/13/2023] Open
Abstract
Apicomplexan parasites possess secretory organelles called rhoptries that undergo regulated exocytosis upon contact with the host. This process is essential for the parasitic lifestyle of these pathogens and relies on an exocytic machinery sharing structural features and molecular components with free-living ciliates. However, how the parasites coordinate exocytosis with host interaction is unknown. Here, we performed a Tetrahymena-based transcriptomic screen to uncover novel exocytic factors in Ciliata and conserved in Apicomplexa. We identified membrane-bound proteins, named CRMPs, forming part of a large complex essential for rhoptry secretion and invasion in Toxoplasma. Using cutting-edge imaging tools, including expansion microscopy and cryo-electron tomography, we show that, unlike previously described rhoptry exocytic factors, TgCRMPs are not required for the assembly of the rhoptry secretion machinery and only transiently associate with the exocytic site-prior to the invasion. CRMPs and their partners contain putative host cell-binding domains, and CRMPa shares similarities with GPCR proteins. Collectively our data imply that the CRMP complex acts as a host-molecular sensor to ensure that rhoptry exocytosis occurs when the parasite contacts the host cell.
Collapse
Affiliation(s)
- Daniela Sparvoli
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Jason Delabre
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | | | - Shrawan Kumar Mageswaran
- Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Lev M Tsypin
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoILUSA
- Present address:
Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Justine Heckendorn
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Liam Theveny
- Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Marjorie Maynadier
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Marta Mendonça Cova
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Laurence Berry‐Sterkers
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Amandine Guérin
- Department of Pathobiology, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jean‐François Dubremetz
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Serge Urbach
- IGFUniversité de Montpellier, CNRS, INSERMMontpellierFrance
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoILUSA
| | - Yi‐Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Maryse Lebrun
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| |
Collapse
|
2
|
Plattner H. Ciliate Research. From Myth to Trendsetting Science. J Eukaryot Microbiol 2022; 69:e12926. [PMID: 35608570 DOI: 10.1111/jeu.12926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
Abstract
This special issue of the Journal of Eukaryotic Microbiology (JEM) summarizes achievements obtained by generations of researchers with ciliates in widely different disciplines. In fact, ciliates range among the first cells seen under the microscope centuries ago. Their beauty made them an object of scientia amabilis and their manifold reactions made them attractive for college experiments and finally challenged causal analyses at the cellular level. Some of this work was honored by a Nobel Prize. Some observations yielded a baseline for additional novel discoveries, occasionally facilitated by specific properties of some ciliates. This also offers some advantage in the exploration of closely related parasites (malaria). Articles contributed here by colleagues from all over the world encompass a broad spectrum of ciliate life, from genetics to evolution, from molecular cell biology to ecology, from intercellular signaling to epigenetics etc. This introductory chapter, largely based on my personal perception, aims at integrating work presented in this special issue of JEM into a broader historical context up to current research.
Collapse
|
3
|
Plattner H. Signalling in ciliates: long- and short-range signals and molecular determinants for cellular dynamics. Biol Rev Camb Philos Soc 2015; 92:60-107. [PMID: 26487631 DOI: 10.1111/brv.12218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/28/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
In ciliates, unicellular representatives of the bikont branch of evolution, inter- and intracellular signalling pathways have been analysed mainly in Paramecium tetraurelia, Paramecium multimicronucleatum and Tetrahymena thermophila and in part also in Euplotes raikovi. Electrophysiology of ciliary activity in Paramecium spp. is a most successful example. Established signalling mechanisms include plasmalemmal ion channels, recently established intracellular Ca2+ -release channels, as well as signalling by cyclic nucleotides and Ca2+ . Ca2+ -binding proteins (calmodulin, centrin) and Ca2+ -activated enzymes (kinases, phosphatases) are involved. Many organelles are endowed with specific molecules cooperating in signalling for intracellular transport and targeted delivery. Among them are recently specified soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), monomeric GTPases, H+ -ATPase/pump, actin, etc. Little specification is available for some key signal transducers including mechanosensitive Ca2+ -channels, exocyst complexes and Ca2+ -sensor proteins for vesicle-vesicle/membrane interactions. The existence of heterotrimeric G-proteins and of G-protein-coupled receptors is still under considerable debate. Serine/threonine kinases dominate by far over tyrosine kinases (some predicted by phosphoproteomic analyses). Besides short-range signalling, long-range signalling also exists, e.g. as firmly installed microtubular transport rails within epigenetically determined patterns, thus facilitating targeted vesicle delivery. By envisaging widely different phenomena of signalling and subcellular dynamics, it will be shown (i) that important pathways of signalling and cellular dynamics are established already in ciliates, (ii) that some mechanisms diverge from higher eukaryotes and (iii) that considerable uncertainties still exist about some essential aspects of signalling.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, PO Box M625, 78457, Konstanz, Germany
| |
Collapse
|
4
|
Plattner H, Verkhratsky A. The ancient roots of calcium signalling evolutionary tree. Cell Calcium 2015; 57:123-32. [DOI: 10.1016/j.ceca.2014.12.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 12/26/2022]
|
5
|
Simon M, Plattner H. Unicellular Eukaryotes as Models in Cell and Molecular Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:141-98. [DOI: 10.1016/b978-0-12-800255-1.00003-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Briguglio JS, Kumar S, Turkewitz AP. Lysosomal sorting receptors are essential for secretory granule biogenesis in Tetrahymena. ACTA ACUST UNITED AC 2013; 203:537-50. [PMID: 24189272 PMCID: PMC3824020 DOI: 10.1083/jcb.201305086] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The delivery of nonaggregated cargo proteins to Tetrahymena secretory granules requires receptors of the sortilin/VPS10 family, proteins classically associated with lysosome biogenesis. Secretory granules, such as neuronal dense core vesicles, are specialized for storing cargo at high concentration and releasing it via regulated exocytosis in response to extracellular stimuli. Here, we used expression profiling to identify new components of the machinery for sorting proteins into mucocysts, secretory granule-like vesicles in the ciliate Tetrahymena thermophila. We show that assembly of mucocysts depends on proteins classically associated with lysosome biogenesis. In particular, the delivery of nonaggregated, but not aggregated, cargo proteins requires classical receptors of the sortilin/VPS10 family, which indicates that dual mechanisms are involved in sorting to this secretory compartment. In addition, sortilins are required for delivery of a key protease involved in T. thermophila mucocyst maturation. Our results suggest potential similarities in the formation of regulated secretory organelles between even very distantly related eukaryotes.
Collapse
Affiliation(s)
- Joseph S Briguglio
- Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | | | | |
Collapse
|
7
|
Plattner H. Calcium regulation in the protozoan model, Paramecium tetraurelia. J Eukaryot Microbiol 2013; 61:95-114. [PMID: 24001309 DOI: 10.1111/jeu.12070] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/21/2013] [Accepted: 06/28/2013] [Indexed: 01/24/2023]
Abstract
Early in eukaryotic evolution, the cell has evolved a considerable inventory of proteins engaged in the regulation of intracellular Ca(2+) concentrations, not only to avoid toxic effects but beyond that to exploit the signaling capacity of Ca(2+) by small changes in local concentration. Among protozoa, the ciliate Paramecium may now be one of the best analyzed models. Ciliary activity and exo-/endocytosis are governed by Ca(2+) , the latter by Ca(2+) mobilization from alveolar sacs and a superimposed store-operated Ca(2+) -influx. Paramecium cells possess plasma membrane- and endoplasmic reticulum-resident Ca(2+) -ATPases/pumps (PMCA, SERCA), a variety of Ca(2+) influx channels, including mechanosensitive and voltage-dependent channels in the plasma membrane, furthermore a plethora of Ca(2+) -release channels (CRC) of the inositol 1,4,5-trisphosphate and ryanodine receptor type in different compartments, notably the contractile vacuole complex and the alveolar sacs, as well as in vesicles participating in vesicular trafficking. Additional types of CRC probably also occur but they have not been identified at a molecular level as yet, as is the equivalent of synaptotagmin as a Ca(2+) sensor for exocytosis. Among established targets and sensors of Ca(2+) in Paramecium are calmodulin, calcineurin, as well as Ca(2+) /calmodulin-dependent protein kinases, all with multiple functions. Thus, basic elements of Ca(2+) signaling are available for Paramecium.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P.O. Box 5544, 78457, Konstanz, Germany
| |
Collapse
|
8
|
Plattner H, Sehring IM, Mohamed IK, Miranda K, De Souza W, Billington R, Genazzani A, Ladenburger EM. Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma). Cell Calcium 2012; 51:351-82. [PMID: 22387010 DOI: 10.1016/j.ceca.2012.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 12/20/2022]
Abstract
The importance of Ca2+-signaling for many subcellular processes is well established in higher eukaryotes, whereas information about protozoa is restricted. Recent genome analyses have stimulated such work also with Alveolates, such as ciliates (Paramecium, Tetrahymena) and their pathogenic close relatives, the Apicomplexa (Plasmodium, Toxoplasma). Here we compare Ca2+ signaling in the two closely related groups. Acidic Ca2+ stores have been characterized in detail in Apicomplexa, but hardly in ciliates. Two-pore channels engaged in Ca2+-release from acidic stores in higher eukaryotes have not been stingently characterized in either group. Both groups are endowed with plasma membrane- and endoplasmic reticulum-type Ca2+-ATPases (PMCA, SERCA), respectively. Only recently was it possible to identify in Paramecium a number of homologs of ryanodine and inositol 1,3,4-trisphosphate receptors (RyR, IP3R) and to localize them to widely different organelles participating in vesicle trafficking. For Apicomplexa, physiological experiments suggest the presence of related channels although their identity remains elusive. In Paramecium, IP3Rs are constitutively active in the contractile vacuole complex; RyR-related channels in alveolar sacs are activated during exocytosis stimulation, whereas in the parasites the homologous structure (inner membrane complex) may no longer function as a Ca2+ store. Scrutinized comparison of the two closely related protozoan phyla may stimulate further work and elucidate adaptation to parasitic life. See also "Conclusions" section.
Collapse
Affiliation(s)
- H Plattner
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Cassidy-Hanley DM. Tetrahymena in the laboratory: strain resources, methods for culture, maintenance, and storage. Methods Cell Biol 2012; 109:237-76. [PMID: 22444147 PMCID: PMC3608402 DOI: 10.1016/b978-0-12-385967-9.00008-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The ciliated protozoan Tetrahymena thermophila has been an important model system for biological research for many years. During that time, a variety of useful strains, including highly inbred stocks, a collection of diverse mutant strains, and wild cultivars from a variety of geographical locations have been identified. In addition, thanks to the efforts of many different laboratories, optimal conditions for growth, maintenance, and storage of Tetrahymena have been worked out. To facilitate the efficient use of Tetrahymena, especially by those new to the system, this chapter presents a brief description of many available Tetrahymena strains and lists possible resources for obtaining viable cultures of T. thermophila and other Tetrahymena species. Descriptions of commonly used media, methods for cell culture and maintenance, and protocols for short- and long-term storage are also presented.
Collapse
Affiliation(s)
- Donna M Cassidy-Hanley
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
10
|
Bartholomew J, Reichart J, Mundy R, Recktenwald J, Keyser S, Riddle M, Kuruvilla H. GTP avoidance in Tetrahymena thermophila requires tyrosine kinase activity, intracellular calcium, NOS, and guanylyl cyclase. Purinergic Signal 2007; 4:171-81. [PMID: 18368528 PMCID: PMC2377316 DOI: 10.1007/s11302-007-9052-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 02/02/2007] [Indexed: 10/27/2022] Open
Abstract
Guanosine 5'-triphosphate (GTP) is a chemorepellent in Tetrahymena thermophila that has been shown to stimulate cell division as well as ciliary reversal. Previous studies have proposed that GTP avoidance is linked to a receptor-mediated, calcium-based depolarization. However, the intracellular mechanisms involved in GTP avoidance have not been previously documented. In this study, we examine the hypothesis that GTP signals through a tyrosine kinase pathway in T. thermophila. Using behavioral assays, enzyme immunosorbent assays, Western blotting, and immunofluorescence, we present data that implicate a tyrosine kinase, phospholipase C, intracellular calcium, nitric oxide synthase (NOS) and guanylyl cyclase in GTP signaling. The tyrosine kinase inhibitor genistein eliminates GTP avoidance in Tetrahymena in behavioral assays. Similarly, pharmacological inhibitors of phospholipase C, NOS, and guanylyl cyclase all eliminated Tetrahymena avoidance to GTP. Immunofluorescence data shows evidence of tyrosine kinase activity in the cilia, suggesting that this enzyme activity could be directly involved in ciliary reversal.
Collapse
Affiliation(s)
- Janine Bartholomew
- Department of Science and Mathematics, Cedarville University, Cedarville, OH, 45314, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Borgonovo B, Ouwendijk J, Solimena M. Biogenesis of secretory granules. Curr Opin Cell Biol 2006; 18:365-70. [PMID: 16806882 DOI: 10.1016/j.ceb.2006.06.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 06/08/2006] [Indexed: 11/22/2022]
Abstract
Secretory granules of neuroendocrine cells store and release peptide hormones and neuropeptides in response to various stimuli. Generation of granules from the Golgi complex involves the aggregation of cargo proteins and their sorting from non-regulated secretory molecules. Recent findings on knockout mice lacking individual granule constituents have challenged the hypothesis that an 'essential' protein for the assembly of these organelles exists, while studies on polypyrimidine tract-binding protein and ICA512/IA-2 have provided insight into the mechanisms for adjusting granule production in relation to stimulation and secretory activity.
Collapse
Affiliation(s)
- Barbara Borgonovo
- Experimental Diabetology, Carl Gustav Carus Medical School, Dresden University of Technology, Fetscherstrasse 74, 01307 Dresden, Germany
| | | | | |
Collapse
|
12
|
Bowman GR, Elde NC, Morgan G, Winey M, Turkewitz AP. Core formation and the acquisition of fusion competence are linked during secretory granule maturation in Tetrahymena. Traffic 2005; 6:303-23. [PMID: 15752136 PMCID: PMC4708285 DOI: 10.1111/j.1600-0854.2005.00273.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The formation of dense core secretory granules is a multistage process beginning in the trans Golgi network and continuing during a period of granule maturation. Direct interactions between proteins in the membrane and those in the forming dense core may be important for sorting during this process, as well as for organizing membrane proteins in mature granules. We have isolated two mutants in dense core granule formation in the ciliate Tetrahymena thermophila, an organism in which this pathway is genetically accessible. The mutants lie in two distinct genes but have similar phenotypes, marked by accumulation of a set of granule cargo markers in intracellular vesicles resembling immature secretory granules. Sorting to these vesicles appears specific, since they do not contain detectable levels of an extraneous secretory marker. The mutants were initially identified on the basis of aberrant proprotein processing, but also showed defects in the docking of the immature granules. These defects, in core assembly and docking, were similarly conditional with respect to growth conditions, and therefore are likely to be tightly linked. In starved cells, the processing defect was less severe, and the immature granules could dock but still did not undergo stimulated exocytosis. We identified a lumenal protein that localizes to the docking-competent end of wildtype granules, but which is delocalized in the mutants. Our results suggest that dense cores have functionally distinct domains that may be important for organizing membrane proteins involved in docking and fusion.
Collapse
Affiliation(s)
- Grant R Bowman
- Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
The release of polypeptides in response to extracellular cues is a notable feature of endocrine, exocrine and neuronal cells, and is based on regulated exocytosis via dense-core secretory granules. There is interest in this mode of secretion because of its importance in human physiology and also because regulated exocytosis reflects a complex pathway of membrane traffic that includes compartment-specific reversible macromolecular assembly, coat-independent vesicle budding, maturation/remodeling of both lumenal and membrane constituents, and stimulus-dependent membrane fusion. Secretory granules are absent in most unicellular model organisms but are highly developed in the Ciliates, which therefore offer attractive systems to study these phenomena. In Tetrahymena thermophila, biochemical and genetic approaches have begun yielding insights into issues ranging from control of granule core assembly, based on reverse genetic analysis of granule cargo, to questions about factors involved in granule biogenesis, based on random mutational approaches.
Collapse
Affiliation(s)
- Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 E 58th Street, Chicago IL 60637, USA.
| |
Collapse
|
14
|
Smith JJ, Cole ES, Romero DP. Transcriptional control of RAD51 expression in the ciliate Tetrahymena thermophila. Nucleic Acids Res 2004; 32:4313-21. [PMID: 15304567 PMCID: PMC514391 DOI: 10.1093/nar/gkh771] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 07/27/2004] [Accepted: 07/27/2004] [Indexed: 11/15/2022] Open
Abstract
The expression of Rad51p, a DNA repair protein that mediates homologous recombination, is induced by DNA damage and during both meiosis and exconjugant development in the ciliate Tetrahymena thermophila. To completely investigate the transcriptional regulation of Tetrahymena RAD51 expression, reporter genes consisting of the RAD51 5' non-translated sequence (5' NTS) positioned upstream of either the firefly luciferase or green fluorescent protein coding sequences have been targeted for recombination at the macronuclear btu1-1 (K350M) locus of T. thermophila strain CU522. Expression from RAD51-luciferase reporter constructs has been directly quantified from transformant whole cell lysates. Luciferase is induced to maximum levels in transformants harboring the full-length RAD51-luciferase reporter gene following exposure to DNA damaging UV irradiation. A series of truncations, deletions, insertions, substitutions and inversions of the RAD51 5' NTS have led to the identification of three distinct transcriptional promoter elements. The first of these sequence elements is required for basal levels of transcription. The second modulates expression in the absence of DNA damage, whereas the third ensures increased RAD51 transcription in response to DNA damage and during meiosis. Tetrahymena RAD51 is tightly regulated through these transcriptional elements to produce the appropriate expression during conjugation, and in response to DNA damage.
Collapse
Affiliation(s)
- Joshua J Smith
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
15
|
Liu S, Hard R, Rankin S, Hennessey T, Pennock DG. Disruption of genes encoding predicted inner arm dynein heavy chains causes motility phenotypes in Tetrahymena. ACTA ACUST UNITED AC 2004; 59:201-14. [PMID: 15468164 DOI: 10.1002/cm.20034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The multi-dynein hypothesis [Asai, 1995: Cell Motil Cytoskeleton 32:129-132] states: (1) there are many different dynein HC isoforms; (2) each isoform is encoded by a different gene; (3) different isoforms have different functions. Many studies provide evidence in support of the first two statements [Piperno et al., 1990: J Cell Biol 110:379-389; Kagami and Kamiya, 1992: J Cell Sci 103:653-664; Gibbons, 1995: Cell Motil Cytoskeleton 32:136-144; Porter et al., 1996: Genetics 144:569-585; Xu et al., 1999: J Eukaryot Microbiol 46:606-611] and there is evidence that outer arms and inner arms play different roles in flagellar beating [Brokaw and Kamiya, 1987: Cell Motil. Cytoskeleton 8:68-75]. However, there are few studies rigorously testing in vivo whether inner arm dyneins, especially the 1-headed inner arm dyneins, play unique roles. This study tested the third tenet of the multi-dynein hypothesis by introducing mutations into three inner arm dynein HC genes (DYH8, 9 and 12) that are thought to encode HCs associated with 1-headed inner arm dyneins. Southern blots, Northern blots, and RT-PCR analyses indicate that all three mutants (KO-8, 9, and 12) are complete knockouts. Each mutant swims slower than the wild-type cells. The beat frequency of KO-8 cells is lower than that of the wild-type cells while the beat frequencies of KO-9 and KO-12 are not different from that of wild-type cells. Our results suggest that each inner arm dynein HC is essential for normal cell motility and cannot be replaced functionally by other dynein HCs and that not all of the 1-headed inner arm dyneins play the same role in ciliary motility. Thus, the results of our study support the multi-dynein hypothesis [Asai, 1995: Cell Motil Cytoskeleton 32:129-132].
Collapse
Affiliation(s)
- Siming Liu
- Department of Zoology, Miami University, Oxford, OH 45056, USA
| | | | | | | | | |
Collapse
|
16
|
Brown JM, Fine NA, Pandiyan G, Thazhath R, Gaertig J. Hypoxia regulates assembly of cilia in suppressors of Tetrahymena lacking an intraflagellar transport subunit gene. Mol Biol Cell 2003; 14:3192-207. [PMID: 12925756 PMCID: PMC181560 DOI: 10.1091/mbc.e03-03-0166] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We cloned a Tetrahymena thermophila gene, IFT52, encoding a homolog of the Chlamydomonas intraflagellar transport protein, IFT52. Disruption of IFT52 led to loss of cilia and incomplete cytokinesis, a phenotype indistinguishable from that of mutants lacking kinesin-II, a known ciliary assembly transporter. The cytokinesis failures seem to result from lack of cell movement rather than from direct involvement of ciliary assembly pathway components in cytokinesis. Spontaneous partial suppressors of the IFT52 null mutants occurred, which assembled cilia at high cell density and resorbed cilia at low cell density. The stimulating effect of high cell density on cilia formation is based on the creation of pericellular hypoxia. Thus, at least under certain conditions, ciliary assembly is affected by an extracellular signal and the Ift52p function may be integrated into signaling pathways that regulate ciliogenesis.
Collapse
Affiliation(s)
- Jason M Brown
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
17
|
Lipschutz JH, Lingappa VR, Mostov KE. The exocyst affects protein synthesis by acting on the translocation machinery of the endoplasmic reticulum. J Biol Chem 2003; 278:20954-60. [PMID: 12665531 DOI: 10.1074/jbc.m213210200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously showed that the exocyst complex specifically affected the synthesis and delivery of secretory and basolateral plasma membrane proteins. Significantly, the entire spectrum of secreted proteins was increased when the hSec10 (human Sec10) component of the exocyst complex was overexpressed, suggestive of post-transcriptional regulation (Lipschutz, J. H., Guo, W., O'Brien, L. E., Nguyen, Y. H., Novick, P., and Mostov, K. E. (2000) Mol. Biol. Cell 11, 4259-4275). Here, using an exogenously transfected basolateral protein, the polymeric immunoglobulin receptor (pIgR), and a secretory protein, gp80, we show that pIgR and gp80 protein synthesis and delivery are increased in cells overexpressing Sec10 despite the fact that mRNA levels are unchanged, which is highly indicative of post-transcriptional regulation. To test specificity, we also examined the synthesis and delivery of an exogenous apical protein, CNT1 (concentrative nucleoside transporter 1), and found no increase in CNT1 protein synthesis, delivery, or mRNA levels in cells overexpressing Sec10. Sec10-GFP-overexpressing cell lines were created, and staining was seen in the endoplasmic reticulum. It was demonstrated previously in yeast that high levels of expression of SEB1, the Sec61beta homologue, suppressed sec15-1, an exocyst mutant (Toikkanen, J., Gatti, E., Takei, K., Saloheimo, M., Olkkonen, V. M., Soderlund, H., De Camilli, P., and Keranen, S. (1996) Yeast 12, 425-438). Sec61beta is a member of the Sec61 heterotrimer, which is the main component of the endoplasmic reticulum translocon. By co-immunoprecipitation we show that Sec10, which forms an exocyst subcomplex with Sec15, specifically associates with the Sec61beta component of the translocon and that Sec10 overexpression increases the association of other exocyst complex members with Sec61beta. Proteosome inhibition does not appear to be the mechanism by which increased protein synthesis occurs in the face of equivalent amounts of mRNA. Although the exact mechanism remains to be elucidated, the exocyst/Sec61beta interaction represents an important link between the cellular membrane trafficking and protein synthetic machinery.
Collapse
Affiliation(s)
- Joshua H Lipschutz
- Department of Medicine and the Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
18
|
Haddad A, Bowman GR, Turkewitz AP. New class of cargo protein in Tetrahymena thermophila dense core secretory granules. EUKARYOTIC CELL 2002; 1:583-93. [PMID: 12456006 PMCID: PMC117993 DOI: 10.1128/ec.1.4.583-593.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regulated exocytosis of dense core secretory granules releases biologically active proteins in a stimulus-dependent fashion. The packaging of the cargo within newly forming granules involves a transition: soluble polypeptides condense to form water-insoluble aggregates that constitute the granule cores. Following exocytosis, the cores generally disassemble to diffuse in the cell environment. The ciliates Tetrahymena thermophila and Paramecium tetraurelia have been advanced as genetically manipulatable systems for studying exocytosis via dense core granules. However, all of the known granule proteins in these organisms condense to form the architectural units of lattices that are insoluble both before and after exocytosis. Using an approach designed to detect new granule proteins, we have now identified Igr1p (induced during granule regeneration). By structural criteria, it is unrelated to the previously characterized lattice-forming proteins. It is distinct in that it is capable of dissociating from the insoluble lattice following secretion and therefore represents the first diffusible protein identified in ciliate granules.
Collapse
Affiliation(s)
- Alex Haddad
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
19
|
Fillingham JS, Chilcoat ND, Turkewitz AP, Orias E, Reith M, Pearlman RE. Analysis of expressed sequence tags (ESTs) in the ciliated protozoan Tetrahymena thermophila. J Eukaryot Microbiol 2002; 49:99-107. [PMID: 12043965 DOI: 10.1111/j.1550-7408.2002.tb00350.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To assess the utility of expressed sequence tag (EST) sequencing as a method of gene discovery in the ciliated protozoan Tetrahymena thermophila, we have sequenced either the 5' or 3' ends of 157 clones chosen at random from two cDNA libraries constructed from the mRNA of vegetatively growing cultures. Of 116 total non-redundant clones, 8.6% represented genes previously cloned in Tetrahymena. Fifty-two percent had significant identity to genes from other organisms represented in GenBank, of which 92% matched human proteins. Intriguing matches include an opioid-regulated protein, a glutamate-binding protein for an NMDA-receptor, and a stem-cell maintenance protein. Eleven-percent of the non-Tetrahymena specific matches were to genes present in humans and other mammals but not found in other model unicellular eukaryotes, including the completely sequenced Saccharomyces cerevisiae. Our data reinforce the fact that Tetrahymena is an excellent unicellular model system for studying many aspects of animal biology and is poised to become an important model system for genome-scale gene discovery and functional analysis.
Collapse
|
20
|
Vazquez-Martinez R, Shorte SL, Faught WJ, Leaumont DC, Frawley LS, Boockfor FR. Pulsatile exocytosis is functionally associated with GnRH gene expression in immortalized GnRH-expressing cells. Endocrinology 2001; 142:5364-70. [PMID: 11713236 DOI: 10.1210/endo.142.12.8551] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pulsatile release of GnRH is essential for proper reproductive function, but little information is available on the molecular processes underlying this intermittent activity. Recently, GnRH gene expression (GnRH-GE) episodes and exocytotic pulses have been identified separately in individual GnRH-expressing cells, raising the exciting possibility that both activities are linked functionally and are fundamental to the pulsatile process. To explore this, we monitored GnRH-GE (using a GnRH promoter-driven luciferase reporter) and exocytosis (by FM1-43 fluorescence) in the same, living GT1-7 cells. Our results revealed a strong temporal association between exocytotic pulses and GnRH-GE episodes. To determine whether a functional link existed, we blocked one process and evaluated the other. Transcriptional inhibition with actinomycin D had only a modest influence on exocytosis, suggesting that exocytotic pulse activity was not dictated acutely by episodes of gene expression. In contrast, blockage of exocytosis with anti-SNAP-25 (which obstructs secretory granule fusion) abolished GnRH-GE pulse activity, indicating that part of the exocytotic process is responsible for triggering episodes of GnRH-GE. When taken together, our findings suggest that a careful balance is maintained between release and biosynthesis in GT1-7 cells. Such a property may be important in the hypothalamus to ensure that GnRH neurons are in a constant state of readiness to respond to changes in reproductive function.
Collapse
Affiliation(s)
- R Vazquez-Martinez
- Laboratory of Molecular Dynamics, Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
21
|
Harthoorn LF, Oudejans RC, Diederen JH, Van de Wijngaart DJ, Van der Horst DJ. Absence of coupling between release and biosynthesis of peptide hormones in insect neuroendocrine cells. Eur J Cell Biol 2001; 80:451-7. [PMID: 11499787 DOI: 10.1078/0171-9335-00183] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adipokinetic hormone (AKH)-producing cells in the corpus cardiacum of the insect Locusta migratoria represent a neuroendocrine system containing large quantities of stored secretory peptides. In the present study we address the question whether the release of AKHs from these cells induces a concomitant enhancement of their biosynthesis. The effects of hormone release in vivo (by flight activity) and in vitro (using crustacean cardioactive peptide, locustamyoinhibiting peptide, and activation of protein kinase A and C) on the biosynthetic activity for AKHs were measured. The intracellular levels of prepro-AKH mRNAs, the intracellular levels of pro-AKHs, and the rate of synthesis of (pro-)AKHs were used as parameters for biosynthetic activity. The effectiveness of in vitro treatment was assessed from the amounts of AKHs released. Neither flight activity as the natural stimulus for AKH release, nor in vitro treatment with the regulatory peptides or signal transduction activators appeared to affect the biosynthetic activity for AKHs. This points to an absence of coupling between release and biosynthesis of AKHs. The strategy of the AKH-producing cells to cope with variations in secretory stimulation seems to rely on a pool of secretory material that is readily releasable and continuously replenished by a process of steady biosynthesis.
Collapse
Affiliation(s)
- L F Harthoorn
- Department of Biochemical Physiology, Utrecht University, The Netherlands.
| | | | | | | | | |
Collapse
|
22
|
Angus SP, Edelmann RE, Pennock DG. Targeted gene knockout of inner arm 1 in Tetrahymena thermophila. Eur J Cell Biol 2001; 80:486-97. [PMID: 11499791 DOI: 10.1078/0171-9335-00178] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cilia and flagella contain at least eight different types of dynein arms. It is not entirely clear how the different types of arms are organized along the axoneme. In addition, the role each different type of dynein plays in ciliary or flagellar motility is not known. To initiate studies of dynein organization and function in cilia, we have introduced a mutation into one dynein heavy chain gene (DYH6) in Tetrahymena themophila by targeted gene knockout. We have generated mutant cells that lack wild-type copies of the DYH6 gene. We have shown that the DYH6 gene encodes one heavy chain (HC2) of Tetrahymena 18S dynein and that 18S dynein occupies the I1 position in the ciliary axoneme. We have also shown that Tetrahymena I1 is required for normal motility, normal feeding and normal doubling rate.
Collapse
Affiliation(s)
- S P Angus
- Department of Zoology, Miami University, Oxford, OH 45056, USA
| | | | | |
Collapse
|
23
|
Lipschutz JH, Guo W, O'Brien LE, Nguyen YH, Novick P, Mostov KE. Exocyst is involved in cystogenesis and tubulogenesis and acts by modulating synthesis and delivery of basolateral plasma membrane and secretory proteins. Mol Biol Cell 2000; 11:4259-75. [PMID: 11102522 PMCID: PMC15071 DOI: 10.1091/mbc.11.12.4259] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Epithelial cyst and tubule formation are critical processes that involve transient, highly choreographed changes in cell polarity. Factors controlling these changes in polarity are largely unknown. One candidate factor is the highly conserved eight-member protein complex called the exocyst. We show that during tubulogenesis in an in vitro model system the exocyst relocalized along growing tubules consistent with changes in cell polarity. In yeast, the exocyst subunit Sec10p is a crucial component linking polarized exocytic vesicles with the rest of the exocyst complex and, ultimately, the plasma membrane. When the exocyst subunit human Sec10 was exogenously expressed in epithelial Madin-Darby canine kidney cells, there was a selective increase in the synthesis and delivery of apical and basolateral secretory proteins and a basolateral plasma membrane protein, but not an apical plasma membrane protein. Overexpression of human Sec10 resulted in more efficient and rapid cyst formation and increased tubule formation upon stimulation with hepatocyte growth factor. We conclude that the exocyst plays a central role in the development of epithelial cysts and tubules.
Collapse
Affiliation(s)
- J H Lipschutz
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94143-0452, USA
| | | | | | | | | | | |
Collapse
|
24
|
Galvani A, Sperling L. Regulation of secretory protein gene expression in paramecium role of the cortical exocytotic sites. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3226-34. [PMID: 10824107 DOI: 10.1046/j.1432-1327.2000.01341.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In cells that possess a regulated secretory pathway, exocytosis can lead to transcriptional activation of genes encoding products stored in secretory granules as well as genes required for granule biogenesis. With the objective of understanding this response, we have examined the expression of Paramecium secretory protein genes in different physiological and genetic contexts. The genes belong to the trichocyst matrix protein (TMP) multigene family, encoding polypeptides that form the crystalline matrix of the secretory granules, known as trichocysts. Approximately 1000 trichocysts per cell are docked at pre-formed cortical exocytotic sites. Their rapid and synchronous exocytosis can be triggered by vital secretagogues such as aminoethyldextran without harming the cells. Using this exocytotic trigger, we found that the transcription of TMP genes undergoes rapid, transient and co-ordinate 10-fold activation in response to massive exocytosis, leading to a 2.5-fold increase in the pool of TMP mRNA. Experiments with exocytosis-deficient mutants show that the secretagogue-induced increase in intracellular free calcium implicated in stimulus/secretion coupling is not sufficient to activate TMP gene expression. We present evidence that the state of occupation of the cortical exocytotic sites can affect TMP gene expression and suggest that these sites play a role in gene activation in response to exocytosis.
Collapse
Affiliation(s)
- A Galvani
- Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette, France
| | | |
Collapse
|
25
|
Leondaritis G, Galanopoulou D. Characterization of inositol phospholipids and identification of a mastoparan-induced polyphosphoinositide response in Tetrahymena pyriformis. Lipids 2000; 35:525-32. [PMID: 10907787 DOI: 10.1007/s11745-000-552-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The unicellular eukaryote Tetrahymena is a popular model for the study of lipid metabolism. Less attention, however, has been given to the inositol phospholipids of the cell, although it is known that this class of lipids plays an important role in eukaryotic cell signaling. Tetrahymena pyriformis phosphatidylinositol was isolated, purified, and characterized by proton nuclear magnetic resonance analysis and [2-(3)H]myoinositol labeling. Labeling was also used for polyphosphoinositide (phosphatidylinositol phosphate and phosphatidylinositol bisphosphate) identification. Tetrahymena inositol phospholipids were found to belong to the diacylglycerol group, although major Tetrahymena phospholipids, phosphatidylcholine and aminoethylphosphonoglycerides, have been found to be mainly alkylacylglyceroderivatives. Further characterization of Tetrahymena phosphatidylinositol by gas chromatographic analysis indicated that 80% of fatty acids were myristic acid and palmitic acid. This is also in contrast to the fatty acid profile of Tetrahymena phosphatidylcholine and phosphatidylethanolamine, with respect both to the fatty acid length and degree of unsaturation, and may indicate that specific diacylglycerol species are connected with the phosphatidylinositol metabolism in this cell. Treatment of [3H]inositol-labeled Tetrahymena cells with mastoparan, a G-protein-activating peptide, induced changes in the polyphosphoinositide levels, suggesting that inositol phospholipids may form in Tetrahymena a functional signaling system similar to that of higher eukaryotes. Addition of 10 microM mastoparan resulted in a rapid and transient increase in [3H]phosphatidylinositol phosphate followed by a decrease in [3H]phosphatidylinositol bisphosphate. Similar changes in lipids have been reported when phosphoinositide-phospholipase C pathway is activated in both animal and plant cells.
Collapse
Affiliation(s)
- G Leondaritis
- Department of Chemistry, University of Athens, Greece
| | | |
Collapse
|
26
|
Abstract
Paramecium is a unicell in which cellular processes are amenable to genetic dissection. Regulated secretion, which designates a secretory pathway where secretory products are first stored in intracellular granules and then released by exocytotic membrane fusion upon external trigger, is an important function in Paramecium, involved in defensive response through the release of organelles called trichocysts. In this review, we focus on recent advances in the molecular genetics of two major aspects of the regulated pathway in Paramecium, the biogenesis of the secretory organelles and their exocytosis.
Collapse
Affiliation(s)
- L Vayssié
- Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
27
|
Brown JM, Marsala C, Kosoy R, Gaertig J. Kinesin-II is preferentially targeted to assembling cilia and is required for ciliogenesis and normal cytokinesis in Tetrahymena. Mol Biol Cell 1999; 10:3081-96. [PMID: 10512852 PMCID: PMC25561 DOI: 10.1091/mbc.10.10.3081] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We cloned two genes, KIN1 and KIN2, encoding kinesin-II homologues from the ciliate Tetrahymena thermophila and constructed strains lacking either KIN1 or KIN2 or both genes. Cells with a single disruption of either gene showed partly overlapping sets of defects in cell growth, motility, ciliary assembly, and thermoresistance. Deletion of both genes resulted in loss of cilia and arrests in cytokinesis. Mutant cells were unable to assemble new cilia or to maintain preexisting cilia. Double knockout cells were not viable on a standard medium but could be grown on a modified medium on which growth does not depend on phagocytosis. Double knockout cells could be rescued by transformation with a gene encoding an epitope-tagged Kin1p. In growing cells, epitope-tagged Kin1p preferentially accumulated in cilia undergoing active assembly. Kin1p was also detected in the cell body but did not show any association with the cleavage furrow. The cell division arrests observed in kinesin-II knockout cells appear to be induced by the loss of cilia and resulting cell paralysis.
Collapse
Affiliation(s)
- J M Brown
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602-2607, USA
| | | | | | | |
Collapse
|
28
|
Turkewitz AP, Chilcoat ND, Haddad A, Verbsky JW. Regulated protein secretion in Tetrahymena thermophila. Methods Cell Biol 1999; 62:347-62. [PMID: 10503203 DOI: 10.1016/s0091-679x(08)61542-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- A P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
29
|
Gaertig J, Kapler G. Transient and stable DNA transformation of Tetrahymena thermophila by electroporation. Methods Cell Biol 1999; 62:485-500. [PMID: 10503213 DOI: 10.1016/s0091-679x(08)61552-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J Gaertig
- Department of Cellular Biology, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
30
|
Affiliation(s)
- L Yu
- Department of Biology, University of Rochester, New York 14627, USA
| | | |
Collapse
|
31
|
Affiliation(s)
- J Frankel
- Department of Biological Sciences, University of Iowa, Iowa City 52242, USA
| |
Collapse
|
32
|
Campbell C, Romero DP. Identification and characterization of the RAD51 gene from the ciliate Tetrahymena thermophila. Nucleic Acids Res 1998; 26:3165-72. [PMID: 9628914 PMCID: PMC147671 DOI: 10.1093/nar/26.13.3165] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The RAD51 gene is a eukaryotic homolog of rec A, a critical component in homologous recombination and DNA repair pathways in Escherichia coli . We have cloned the RAD51 homolog from Tetrahymena thermophila , a ciliated protozoan. Tetrahymena thermophila RAD51 encodes a 36.3 kDa protein whose amino acid sequence is highly similar to representative Rad51 homologs from other eukaryotic taxa. Recombinant Rad51 protein was purified to near homogeneity following overproduction in a bacterial expression system. The purified protein binds to both single- and double-stranded DNA, possesses a DNA-dependent ATPase activity and promotes intermolecular ligation of linearized plasmid DNA. While steady-state levels of Rad51 mRNA are low in normally growing cells, treatment with UV light resulted in a >100-fold increase in mRNA levels. This increase in mRNA was time dependent, but relatively independent of UV dose over a range of 1400-5200 J/m2. Western blot analysis confirmed that Rad51 protein levels increase upon UV irradiation. Exposure to the alkylating agent methyl methane sulfonate also resulted in substantially elevated Rad51 protein levels in treated cells, with pronounced localization in the macronucleus. These data are consistent with the hypothesis that ciliates such as T.thermophila utilize a Rad51-dependent pathway to repair damaged DNA.
Collapse
Affiliation(s)
- C Campbell
- Department of Pharmacology, Medical School, University of Minnesota, 3-249 Millard Hall, 435 Delaware Street SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
33
|
Arvan P, Castle D. Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J 1998; 332 ( Pt 3):593-610. [PMID: 9620860 PMCID: PMC1219518 DOI: 10.1042/bj3320593] [Citation(s) in RCA: 415] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Secretory granules are specialized intracellular organelles that serve as a storage pool for selected secretory products. The exocytosis of secretory granules is markedly amplified under physiologically stimulated conditions. While granules have been recognized as post-Golgi carriers for almost 40 years, the molecular mechanisms involved in their formation from the trans-Golgi network are only beginning to be defined. This review summarizes and evaluates current information about how secretory proteins are thought to be sorted for the regulated secretory pathway and how these activities are positioned with respect to other post-Golgi sorting events that must occur in parallel. In the first half of the review, the emerging role of immature secretory granules in protein sorting is highlighted. The second half of the review summarizes what is known about the composition of granule membranes. The numerous similarities and relatively limited differences identified between granule membranes and other vesicular carriers that convey products to and from the plasmalemma, serve as a basis for examining how granule membrane composition might be established and how its unique functions interface with general post-Golgi membrane traffic. Studies of granule formation in vitro offer additional new insights, but also important challenges for future efforts to understand how regulated secretory pathways are constructed and maintained.
Collapse
Affiliation(s)
- P Arvan
- Division of Endocrinology and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
34
|
Verbsky JW, Turkewitz AP. Proteolytic processing and Ca2+-binding activity of dense-core vesicle polypeptides in Tetrahymena. Mol Biol Cell 1998; 9:497-511. [PMID: 9450970 PMCID: PMC25279 DOI: 10.1091/mbc.9.2.497] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Formation and discharge of dense-core secretory vesicles depend on controlled rearrangement of the core proteins during their assembly and dispersal. The ciliate Tetrahymena thermophila offers a simple system in which the mechanisms may be studied. Here we show that most of the core consists of a set of polypeptides derived proteolytically from five precursors. These share little overall amino acid identity but are nonetheless predicted to have structural similarity. In addition, sites of proteolytic processing are notably conserved and suggest that specific endoproteases as well as carboxypeptidase are involved in core maturation. In vitro binding studies and sequence analysis suggest that the polypeptides bind calcium in vivo. Core assembly and postexocytic dispersal are compartment-specific events. Two likely regulatory factors are proteolytic processing and exposure to calcium. We asked whether these might directly influence the conformations of core proteins. Results using an in vitro chymotrypsin accessibility assay suggest that these factors can induce sequential structural rearrangements. Such progressive changes in polypeptide folding may underlie the mechanisms of assembly and of rapid postexocytic release. The parallels between dense-core vesicles in different systems suggest that similar mechanisms are widespread in this class of organelles.
Collapse
Affiliation(s)
- J W Verbsky
- Department of Molecular Genetics & Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
35
|
Melia SM, Cole ES, Turkewitz AP. Mutational analysis of regulated exocytosis in Tetrahymena. J Cell Sci 1998; 111 ( Pt 1):131-40. [PMID: 9394019 DOI: 10.1242/jcs.111.1.131] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic analysis of regulated exocytosis can be accomplished in ciliates, since mutants defective in stimulus-dependent secretion of dense-core vesicles can be identified. In Tetrahymena thermophila, secretion in wild-type cells can result in their encapsulation by the proteins released from vesicle cores. Cells with defects in secretion were isolated from mutagenized homozygous cells that were generated using a highly efficient method. Screening was based both on a visual assay for encapsulation, and on a novel panning step using differential centrifugation to take advantage of the selective mobility of mutants that fail to encapsulate upon stimulation. 18 mutants with defects in several ordered steps have been identified. Defects in a set of these could be localized to three stages: granule formation, transport to cell surface docking sites, and exocytosis itself. Mutants with defects in this last stage can be ordered into successive steps based on several criteria, including their responsiveness to multiple secretagogues and Ca2+ ionophores. The results of both somatic and genetic complementation on selected pairs also help to characterize the defective factors.
Collapse
Affiliation(s)
- S M Melia
- Department of Molecular Genetics, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
36
|
Hutton JC. Tetrahymena: the key to the genetic analysis of the regulated pathway of polypeptide secretion? Proc Natl Acad Sci U S A 1997; 94:10490-2. [PMID: 9380665 PMCID: PMC33770 DOI: 10.1073/pnas.94.20.10490] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- J C Hutton
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| |
Collapse
|