1
|
Park JY, Hewawaduge C, Sivasankar C, Lloren KKS, Oh B, So MY, Lee JH. An mRNA-Based Multiple Antigenic Gene Expression System Delivered by Engineered Salmonella for Severe Fever with Thrombocytopenia Syndrome and Assessment of Its Immunogenicity and Protection Using a Human DC-SIGN-Transduced Mouse Model. Pharmaceutics 2023; 15:pharmaceutics15051339. [PMID: 37242581 DOI: 10.3390/pharmaceutics15051339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Currently, there are no commercial vaccines or therapeutics against severe fever with thrombocytopenia syndrome (SFTS) virus. This study explored an engineered Salmonella as a vaccine carrier to deliver a eukaryotic self-mRNA replicating vector, pJHL204. This vector expresses multiple SFTS virus antigenic genes for the nucleocapsid protein (NP), glycoprotein precursor (Gn/Gc), and nonstructural protein (NS) to induce host immune responses. The engineered constructs were designed and validated through 3D structure modeling. Western blot and qRT-PCR analyses of transformed HEK293T cells confirmed the delivery and expression of the vaccine antigens. Significantly, mice immunized with these constructs demonstrated a cell-mediated and humoral response as balanced Th1/Th2 immunity. The JOL2424 and JOL2425 delivering NP and Gn/Gc generated strong immunoglobulin IgG and IgM antibodies and high neutralizing titers. To further examine the immunogenicity and protection, we utilized a human DC-SIGN receptor transduced mouse model for SFTS virus infection by an adeno-associated viral vector system. Among the SFTSV antigen constructs, the construct with full-length NP and Gn/Gc and the construct with NP and selected Gn/Gc epitopes induced robust cellular and humoral immune responses. These were followed by adequate protection based on viral titer reduction and reduced histopathological lesions in the spleen and liver. In conclusion, these data indicate that recombinant attenuated Salmonella JOL2424 and JOL2425 delivering NP and Gn/Gc antigens of SFTSV are promising vaccine candidates that induce strong humoral and cellular immune responses and protection against SFTSV. Moreover, the data proved that the hDC-SIGN transduced mice as a worthy tool for immunogenicity study for SFTSV.
Collapse
Affiliation(s)
- Ji-Young Park
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Chamith Hewawaduge
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Chandran Sivasankar
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Khristine Kaith S Lloren
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Byungkwan Oh
- Department of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Mi Young So
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - John Hwa Lee
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
2
|
Herod MR, Ward JC, Tuplin A, Harris M, Stonehouse NJ, McCormick CJ. Positive strand RNA viruses differ in the constraints they place on the folding of their negative strand. RNA (NEW YORK, N.Y.) 2022; 28:1359-1376. [PMID: 35918125 PMCID: PMC9479745 DOI: 10.1261/rna.079125.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Genome replication of positive strand RNA viruses requires the production of a complementary negative strand RNA that serves as a template for synthesis of more positive strand progeny. Structural RNA elements are important for genome replication, but while they are readily observed in the positive strand, evidence of their existence in the negative strand is more limited. We hypothesized that this was due to viruses differing in their capacity to allow this latter RNA to adopt structural folds. To investigate this, ribozymes were introduced into the negative strand of different viral constructs; the expectation being that if RNA folding occurred, negative strand cleavage and suppression of replication would be seen. Indeed, this was what happened with hepatitis C virus (HCV) and feline calicivirus (FCV) constructs. However, little or no impact was observed for chikungunya virus (CHIKV), human rhinovirus (HRV), hepatitis E virus (HEV), and yellow fever virus (YFV) constructs. Reduced cleavage in the negative strand proved to be due to duplex formation with the positive strand. Interestingly, ribozyme-containing RNAs also remained intact when produced in vitro by the HCV polymerase, again due to duplex formation. Overall, our results show that there are important differences in the conformational constraints imposed on the folding of the negative strand between different positive strand RNA viruses.
Collapse
Affiliation(s)
- Morgan R Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Joseph C Ward
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Christopher J McCormick
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton SO16 6YD, United Kingdom
- Institute for Life Sciences, University of Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
3
|
Senevirathne A, Park JY, Hewawaduge C, Perumalraja K, Lee JH. Eukaryotic expression system complemented with expressivity of Semliki Forest Virus's RdRp and invasiveness of engineered Salmonella demonstrate promising potential for bacteria mediated gene therapy. Biomaterials 2021; 279:121226. [PMID: 34736150 DOI: 10.1016/j.biomaterials.2021.121226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 10/20/2022]
Abstract
This study describes an efficient eukaryotic expression system (pJHL204) built into the Salmonella delivery system to enhance the essential efficacy and effectiveness of conventional DNA therapy. The expression system utilizes RNA-dependent RNA polymerase activity (RdRp) of Semiliki Forest Virus attributing to dramatic antigen expression by cytoplasmic mRNA amplification. Functional characterization of the pJHL204 by in vitro and in vivo transfection studies revealed the improved expression of mRNA at least 150 folds than the RdRp mutant plasmid under in vitro conditions. Using green fluorescence protein (GFP) and mCherry as bait proteins this system was extensively characterized for plasmid delivery capacity, antigen expression, and safety using in vivo and in vitro models by employing flow cytometry, fluorescence microscopy, and immunohistochemical staining. Employment of Salmonella as a carrier significantly extends plasmid in vivo survivability and prolongs the effective duration until the elimination of the Salmonella carrier strain in the host. The strategy can be easily adapted for P2A connected multiple antigen delivery in a single vector system due to the significantly high cargo capacity of Salmonella. A mouse challenge study was carried out utilizing P2A connected H1N1 hemagglutinin (HA) and neuraminidase (NA) via the Salmonella carrier strain JOL2500 significantly reduced viral activity and protected mice against the H1N1 challenge and demonstrates potential to redefine in vivo DNA therapy as a reliable and safe system to treat human diseases using useful microbes like Salmonella.
Collapse
Affiliation(s)
- Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Ji-Young Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Kirthika Perumalraja
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea.
| |
Collapse
|
4
|
Pietilä MK, Hellström K, Ahola T. Alphavirus polymerase and RNA replication. Virus Res 2017; 234:44-57. [DOI: 10.1016/j.virusres.2017.01.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
|
5
|
Hodge K, Tunghirun C, Kamkaew M, Limjindaporn T, Yenchitsomanus PT, Chimnaronk S. Identification of a Conserved RNA-dependent RNA Polymerase (RdRp)-RNA Interface Required for Flaviviral Replication. J Biol Chem 2016; 291:17437-49. [PMID: 27334920 DOI: 10.1074/jbc.m116.724013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 02/01/2023] Open
Abstract
Dengue virus, an ∼10.7-kb positive-sense RNA virus, is the most common arthropod-communicated pathogen in the world. Despite dengue's clear epidemiological importance, mechanisms for its replication remain elusive. Here, we probed the entire dengue genome for interactions with viral RNA-dependent RNA polymerase (RdRp), and we identified the dominant interaction as a loop-forming ACAG motif in the 3' positive-stranded terminus, complicating the prevailing model of replication. A subset of interactions coincides with known flaviviral recombination sites inside the viral protein-coding region. Specific recognition of the RNA element occurs via an arginine patch in the C-terminal thumb domain of RdRp. We also show that the highly conserved nature of the consensus RNA motif may relate to its tolerance to various mutations in the interacting region of RdRp. Disruption of the interaction resulted in loss of viral replication ability in cells. This unique RdRp-RNA interface is found throughout flaviviruses, implying possibilities for broad disease interventions.
Collapse
Affiliation(s)
- Kenneth Hodge
- From the Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170 and
| | - Chairat Tunghirun
- From the Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170 and
| | - Maliwan Kamkaew
- From the Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170 and
| | | | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sarin Chimnaronk
- From the Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170 and
| |
Collapse
|
6
|
Blanco-Pérez M, Hernández C. Evidence supporting a premature termination mechanism for subgenomic RNA transcription in Pelargonium line pattern virus: identification of a critical long-range RNA-RNA interaction and functional variants through mutagenesis. J Gen Virol 2016; 97:1469-1480. [PMID: 26990209 DOI: 10.1099/jgv.0.000459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pelargonium line pattern virus (PLPV) is a plus-strand RNA virus that has been proposed as type species of a tentative new genus, Pelarspovirus, in the family Tombusviridae. One of the singular traits of members of this prospective genus is the production of a unique subgenomic (sg) mRNA that is structurally and functionally tricistronic. Here, we have aimed to get insights into the mechanism that governs PLPV sg mRNA transcription. A long-range RNA-RNA interaction that is critical for the process has been identified through RNA folding predictions and mutational analysis of the viral genome. Such interaction seems to occur in the plus-strand, likely acts in cis, and specifically mediates the synthesis of sg RNA-sized minus-strand. The accumulation of this RNA species is easily detectable in plants and its generation can be uncoupled from that of the plus-strand sg mRNA. All these data together with the observation that 5' ends of PLPV genomic and sg mRNAs have sequence resemblances (as expected if both act as promoters in the corresponding minus-strand), support that premature termination is the mechanism underlying PLPV sg mRNA formation.
Collapse
Affiliation(s)
- Marta Blanco-Pérez
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica e la Innovación, Ed. 8E. Camino de Vera s/n, 46022, Valencia, Spain
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica e la Innovación, Ed. 8E. Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
7
|
The murine norovirus core subgenomic RNA promoter consists of a stable stem-loop that can direct accurate initiation of RNA synthesis. J Virol 2014; 89:1218-29. [PMID: 25392209 DOI: 10.1128/jvi.02432-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED All members of the Caliciviridae family of viruses produce a subgenomic RNA during infection. The subgenomic RNA typically encodes only the major and minor capsid proteins, but in murine norovirus (MNV), the subgenomic RNA also encodes the VF1 protein, which functions to suppress host innate immune responses. To date, the mechanism of norovirus subgenomic RNA synthesis has not been characterized. We have previously described the presence of an evolutionarily conserved RNA stem-loop structure on the negative-sense RNA, the complementary sequence of which codes for the viral RNA-dependent RNA polymerase (NS7). The conserved stem-loop is positioned 6 nucleotides 3' of the start site of the subgenomic RNA in all caliciviruses. We demonstrate that the conserved stem-loop is essential for MNV viability. Mutant MNV RNAs with substitutions in the stem-loop replicated poorly until they accumulated mutations that revert to restore the stem-loop sequence and/or structure. The stem-loop sequence functions in a noncoding context, as it was possible to restore the replication of an MNV mutant by introducing an additional copy of the stem-loop between the NS7- and VP1-coding regions. Finally, in vitro biochemical data suggest that the stem-loop sequence is sufficient for the initiation of viral RNA synthesis by the recombinant MNV RNA-dependent RNA polymerase, confirming that the stem-loop forms the core of the norovirus subgenomic promoter. IMPORTANCE Noroviruses are a significant cause of viral gastroenteritis, and it is important to understand the mechanism of norovirus RNA synthesis. Here we describe the identification of an RNA stem-loop structure that functions as the core of the norovirus subgenomic RNA promoter in cells and in vitro. This work provides new insights into the molecular mechanisms of norovirus RNA synthesis and the sequences that determine the recognition of viral RNA by the RNA-dependent RNA polymerase.
Collapse
|
8
|
Subissi L, Decroly E, Selisko B, Canard B, Imbert I. A closed-handed affair: positive-strand RNA virus polymerases. Future Virol 2014. [DOI: 10.2217/fvl.14.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT RNA viruses are important emerging pathogens that cause human and animal infectious diseases. Antiviral therapies have to deal with the high mutational capacity of RNA viruses, which quickly adapt to new environments. A primary target for antiviral drug development is the viral RNA-dependent RNA polymerase (RdRp), which is the central enzyme of the viral RNA replication/transcription machinery. Here, we review the current mechanistic and structural knowledge on RdRps of positive-strand RNA viruses gained through crystallography and biochemistry. In addition, we review the growing body of information on RdRp-mediated strategies, such as proofreading and genome end repair, used by positive-strand RNA viruses to maintain their genome integrity.
Collapse
Affiliation(s)
- Lorenzo Subissi
- Centre National de la Recherche Scientifique, Aix-Marseille Université, CNRS UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France
| | - Etienne Decroly
- Centre National de la Recherche Scientifique, Aix-Marseille Université, CNRS UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France
| | - Barbara Selisko
- Centre National de la Recherche Scientifique, Aix-Marseille Université, CNRS UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France
| | - Bruno Canard
- Centre National de la Recherche Scientifique, Aix-Marseille Université, CNRS UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France
| | - Isabelle Imbert
- Centre National de la Recherche Scientifique, Aix-Marseille Université, CNRS UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France
| |
Collapse
|
9
|
Ni P, Vaughan RC, Tragesser B, Hoover H, Kao CC. The plant host can affect the encapsidation of brome mosaic virus (BMV) RNA: BMV virions are surprisingly heterogeneous. J Mol Biol 2014; 426:1061-76. [PMID: 24036424 PMCID: PMC3944473 DOI: 10.1016/j.jmb.2013.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/02/2013] [Accepted: 09/08/2013] [Indexed: 01/05/2023]
Abstract
Brome mosaic virus (BMV) packages its genomic and subgenomic RNAs into three separate viral particles. BMV purified from barley, wheat, and tobacco have distinct relative abundances of the encapsidated RNAs. We seek to identify the basis for the host-dependent differences in viral RNA encapsidation. Sequencing of the viral RNAs revealed recombination events in the 3' untranslated region of RNA1 of BMV purified from barley and wheat, but not from tobacco. However, the relative amounts of the BMV RNAs that accumulated in barley and wheat are similar and RNA accumulation is not sufficient to account for the difference in RNA encapsidation. Virions purified from barley and wheat were found to differ in their isoelectric points, resistance to proteolysis, and contacts between the capsid residues and the RNA. Mass spectrometric analyses revealed that virions from the three hosts had different post-translational modifications that should impact the physiochemical properties of the virions. Another major source of variation in RNA encapsidation was due to the purification of BMV particles to homogeneity. Highly enriched BMV present in lysates had a surprising range of sizes, buoyant densities, and distinct relative amounts of encapsidated RNAs. These results show that the encapsidated BMV RNAs reflect a combination of host effects on the physiochemical properties of the viral capsids and the enrichment of a subset of virions. The previously unexpected heterogeneity in BMV should influence the timing of the infection and also the host innate immune responses.
Collapse
Affiliation(s)
- Peng Ni
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Robert C Vaughan
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Brady Tragesser
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Haley Hoover
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - C Cheng Kao
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
10
|
Hodak H. Understanding the conundrums of viral assembly. J Mol Biol 2014; 426:995-1000. [DOI: 10.1016/j.jmb.2013.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Abstract
Ilarviruses were among the first 16 groups of plant viruses approved by ICTV. Like Alfalfa mosaic virus (AMV), bromoviruses, and cucumoviruses they are isometric viruses and possess a single-stranded, tripartite RNA genome. However, unlike these other three groups, ilarviruses were recognized as being recalcitrant subjects for research (their ready lability is reflected in the sigla used to create the group name) and were renowned as unpromising subjects for the production of antisera. However, it was recognized that they shared properties with AMV when the phenomenon of genome activation, in which the coat protein (CP) of the virus is required to be present to initiate infection, was demonstrated to cross group boundaries. The CP of AMV could activate the genome of an ilarvirus and vice versa. Development of the molecular information for ilarviruses lagged behind the knowledge available for the more extensively studied AMV, bromoviruses, and cucumoviruses. In the past 20 years, genomic data for most known ilarviruses have been developed facilitating their detection and allowing the factors involved in the molecular biology of the genus to be investigated. Much information has been obtained using Prunus necrotic ringspot virus and the more extensively studied AMV. A relationship between some ilarviruses and the cucumoviruses has been defined with the recognition that members of both genera encode a 2b protein involved in RNA silencing and long distance viral movement. Here, we present a review of the current knowledge of both the taxonomy and the molecular biology of this genus of agronomically and horticulturally important viruses.
Collapse
|
12
|
Hema M, Murali A, Ni P, Vaughan RC, Fujisaki K, Tsvetkova I, Dragnea B, Kao CC. Effects of amino-acid substitutions in the Brome mosaic virus capsid protein on RNA encapsidation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1433-1447. [PMID: 20923351 DOI: 10.1094/mpmi-05-10-0118] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Brome mosaic virus (BMV) packages its genomic RNAs (RNA1, RNA2, and RNA3) and subgenomic RNA4 into three different particles. However, since the RNAs in the virions have distinct lengths and electrostatic charges, we hypothesize that subsets of the virions should have distinct properties. A glutamine to cysteine substitution at position 120 of the capsid protein (CP) was found to result in a mutant virus named QC that exhibited a dramatically altered ratio of the RNAs in virions. RNA2 was far more abundant than the other RNAs, although the ratios could be affected by the host plant species. RNAs with the QC mutation were competent for replication early in the infection, suggesting that they were either selectively packaged or degraded after packaging. In support of the latter idea, low concentrations of truncated RNA1 that co-migrated with RNA2 were found in the QC virions. Spectroscopic analysis and peptide fingerprinting experiments showed that the QC virus capsid interacted with the encapsidated RNAs differently than did the wild type. Furthermore, wild-type BMV RNA1 was found to be more susceptible to nuclease digestion relative to RNA2 as a function of the buffer pH. Other BMV capsid mutants also had altered ratios of packaged RNAs.
Collapse
Affiliation(s)
- Masarapu Hema
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Renovell A, Gago S, Ruiz-Ruiz S, Velázquez K, Navarro L, Moreno P, Vives MC, Guerri J. Mapping the subgenomic RNA promoter of the Citrus leaf blotch virus coat protein gene by Agrobacterium-mediated inoculation. Virology 2010; 406:360-9. [PMID: 20708769 DOI: 10.1016/j.virol.2010.07.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 06/19/2010] [Accepted: 07/21/2010] [Indexed: 10/19/2022]
Abstract
Citrus leaf blotch virus has a single-stranded positive-sense genomic RNA (gRNA) of 8747 nt organized in three open reading frames (ORFs). The ORF1, encoding a polyprotein involved in replication, is translated directly from the gRNA, whereas ORFs encoding the movement (MP) and coat (CP) proteins are expressed via 3' coterminal subgenomic RNAs (sgRNAs). We characterized the minimal promoter region critical for the CP-sgRNA expression in infected cells by deletion analyses using Agrobacterium-mediated infection of Nicotiana benthamiana plants. The minimal CP-sgRNA promoter was mapped between nucleotides -67 and +50 nt around the transcription start site. Surprisingly, larger deletions in the region between the CP-sgRNA transcription start site and the CP translation initiation codon resulted in increased CP-sgRNA accumulation, suggesting that this sequence could modulate the CP-sgRNA transcription. Site-specific mutational analysis of the transcription start site revealed that the +1 guanylate and the +2 adenylate are important for CP-sgRNA synthesis.
Collapse
Affiliation(s)
- Agueda Renovell
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kim YC, Cheng Kao C. Biochemical analyses of the interactions between viral polymerases and RNAs. Methods Mol Biol 2008; 451:185-200. [PMID: 18370256 DOI: 10.1007/978-1-59745-102-4_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The interaction between viral polymerases and their cognate RNAs is vital to regulate the timing and abundance of viral replication products. Despite this, only minimal detailed information is available for the interaction between viral polymerases and cognate RNAs. We study the biochemical interactions using two viral polymerases that could serve as models for other plus-strand RNA viruses: the replicase from the tripartite brome mosaic virus (BMV), and the recombinant RNA-dependent RNA polymerase (RdRp) from hepatitis C virus (HCV). Replicase binding sites in the BMV RNAs were mapped using a template competition assay. The minimal length of RNA required for RNA binding by the HCV RdRp was determined using fluorescence spectroscopy. Lastly, regions of the HCV RdRp that contact the RNA were determined by a method coupling reversible protein-RNA crosslinking, affinity purification, and mass spectrometry. These analyses of RdRp-RNA interaction will be presented as three topics in this chapter.
Collapse
Affiliation(s)
- Young-Chan Kim
- Department of Biochemistry & Biophysics, 103 Biochemistry/Biophysics Building, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | | |
Collapse
|
15
|
Beerens N, Selisko B, Ricagno S, Imbert I, van der Zanden L, Snijder EJ, Canard B. De novo initiation of RNA synthesis by the arterivirus RNA-dependent RNA polymerase. J Virol 2007; 81:8384-95. [PMID: 17537850 PMCID: PMC1951334 DOI: 10.1128/jvi.00564-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
All plus-strand RNA viruses encode an RNA-dependent RNA polymerase (RdRp) that functions as the catalytic subunit of the viral replication/transcription complex, directing viral RNA synthesis in concert with other viral proteins and, sometimes, host proteins. RNA synthesis essentially can be initiated by two different mechanisms, de novo initiation and primer-dependent initiation. Most viral RdRps have been identified solely on the basis of comparative sequence analysis, and for many viruses the mechanism of initiation is unknown. In this study, using the family prototype equine arteritis virus (EAV), we address the mechanism of initiation of RNA synthesis in arteriviruses. The RdRp domains of the members of the arterivirus family, which are part of replicase subunit nsp9, were compared to coronavirus RdRps that belong to the same order of Nidovirales, as well as to other RdRps with known initiation mechanisms and three-dimensional structures. We report here the first successful expression and purification of an arterivirus RdRp that is catalytically active in the absence of other viral or cellular proteins. The EAV nsp9/RdRp initiates RNA synthesis by a de novo mechanism on homopolymeric templates in a template-specific manner. In addition, the requirements for initiation of RNA synthesis from the 3' end of the viral genome were studied in vivo using a reverse genetics approach. These studies suggest that the 3'-terminal nucleotides of the EAV genome play a critical role in viral RNA synthesis.
Collapse
Affiliation(s)
- Nancy Beerens
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, LUMC P4-26, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
Li Y, Wang L, Li S, Chen X, Shen Y, Zhang Z, He H, Xu W, Shu Y, Liang G, Fang R, Hao X. Seco-pregnane steroids target the subgenomic RNA of alphavirus-like RNA viruses. Proc Natl Acad Sci U S A 2007; 104:8083-8. [PMID: 17470783 PMCID: PMC1876575 DOI: 10.1073/pnas.0702398104] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Indexed: 11/18/2022] Open
Abstract
Plants have evolved multiple mechanisms to selectively suppress pathogens by production of secondary metabolites with antimicrobial activities. Therefore, direct selections for antiviral compounds from plants can be used to identify new agents with potent antiviral activity but not toxic to hosts. Here, we provide evidence that a class of compounds, seco-pregnane steroid glaucogenin C and its monosugar-glycoside cynatratoside A of Strobilanthes cusia and three new pantasugar-glycosides of glaucogenin C of Cynanchum paniculatum, are effective and selective inhibitors to alphavirus-like positive-strand RNA viruses including plant-infecting tobacco mosaic virus (TMV) and animal-infecting Sindbis virus (SINV), eastern equine encephalitis virus, and Getah virus, but not to other RNA or DNA viruses, yet they were not toxic to host cells. In vivo administration of the compounds protected BALB/c mice from lethal SINV infection without adverse effects on the mice. Using TMV and SINV as models, studies on the action mechanism revealed that the compounds predominantly suppress the expression of viral subgenomic RNA(s) without affecting the accumulation of viral genomic RNA. Our work suggested that the viral subgenomic RNA could be a new target for the discovery of antiviral drugs, and that seco-pregnane steroid and its four glycosides found in the two medicinal herbs have the potential for further development as antiviral agents against alphavirus-like positive-strand RNA viruses.
Collapse
Affiliation(s)
- Yanmei Li
- *State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lihua Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Shunlin Li
- *State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Xiaoying Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | - Yuemao Shen
- *State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Zhongkai Zhang
- Laboratory of Plant Virology, Yunnan Academy of Agricultural Sciences, Kunming 650223, China; and
| | - Hongping He
- *State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Wenbo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Yuelong Shu
- State Key Laboratory for Infectious Disease Prevention and Control, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Guodong Liang
- State Key Laboratory for Infectious Disease Prevention and Control, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | - Xiaojiang Hao
- *State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
17
|
Gopinath K, Kao CC. Replication-independent long-distance trafficking by viral RNAs in Nicotiana benthamiana. THE PLANT CELL 2007; 19:1179-91. [PMID: 17416731 PMCID: PMC1913753 DOI: 10.1105/tpc.107.050088] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 03/07/2007] [Accepted: 03/21/2007] [Indexed: 05/14/2023]
Abstract
Viruses with separately encapsidated genomes could have their genomes introduced into different leaves of a plant, thus necessitating long-distance trafficking of the viral RNAs for successful infection. To examine this possibility, individual or combinations of genome segments from the tripartite Brome mosaic virus (BMV) were transiently expressed in leaves of Nicotiana benthamiana plants using engineered Agrobacterium tumefaciens. BMV RNA3 was found to traffic from the initial site of expression to other leaves of the plant, as detected by RNA gel blot analyses and also by the expression of an endoplasmic reticulum-targeted green fluorescent protein. When RNA3 trafficked into leaves containing the BMV replication enzymes, RNA replication, transcription, and virion production were observed. RNA3 trafficking occurred even when it did not encode the movement or capsid proteins. However, coexpression of the movement protein increased the trafficking of BMV RNAs. BMV RNA1 and RNA2 could also traffic throughout the plant, but less efficiently than RNA3. All three BMV RNAs trafficked bidirectionally to sink leaves near the apical meristem as well as to the source leaves at the bottom of the stem, suggesting that trafficking used the phloem. These results demonstrate that BMV RNAs can use a replication-independent mechanism to traffic in N. benthamiana.
Collapse
Affiliation(s)
- Kodetham Gopinath
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
18
|
Ranjith-Kumar CT, Miller W, Xiong J, Russell WK, Lamb R, Santos J, Duffy KE, Cleveland L, Park M, Bhardwaj K, Wu Z, Russell DH, Sarisky RT, Mbow ML, Kao CC. Biochemical and functional analyses of the human Toll-like receptor 3 ectodomain. J Biol Chem 2007; 282:7668-78. [PMID: 17209042 DOI: 10.1074/jbc.m610946200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The structure of the human Toll-like receptor 3 (TLR3) ectodomain (ECD) was recently solved by x-ray crystallography, leading to a number of models concerning TLR3 function (Choe, J., Kelker, M. S., and Wilson, I. A. (2005) Science 309, 581-585; Bell, J. K., Botos, I., Hall, P. R., Askins, J., Shiloach, J., Segal, D. M., and Davies, D. R. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 10976-10980) The structure revealed four pairs of cysteines that are putatively involved in disulfide bond formation, several residues that are predicted to be involved in dimerization between ECD subunits, and surfaces that could bind to poly(I:C). In addition, there are two loops that protrude from the central solenoid structure of the protein. We examined the recombinant TLR3 ECD for disulfide bond formation, poly(I:C) binding, and protein-protein interaction. We also made over 80 mutations in the residues that could affect these features in the full-length TLR3 and examined their effects in TLR3-mediated NF-kappaB activation. A number of mutations that affected TLR3 activity also affected the ability to act as dominant negative inhibitors of wild type TLR3. Loss of putative RNA binding did not necessarily affect dominant negative activity. All of the results support a model where a dimer of TLR3 is the form that binds RNA and activates signal transduction.
Collapse
Affiliation(s)
- C T Ranjith-Kumar
- Department of Biochemistry and Biophysics, Department of Biology, and Laboratory for Biological Mass Spectrometry, Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Garcia-Ruiz H, Ahlquist P. Inducible yeast system for Viral RNA recombination reveals requirement for an RNA replication signal on both parental RNAs. J Virol 2006; 80:8316-28. [PMID: 16912283 PMCID: PMC1563876 DOI: 10.1128/jvi.01790-05] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To facilitate RNA recombination studies, we tested whether Saccharomyces cerevisiae, which supports brome mosaic virus (BMV) replication, also supports BMV RNA recombination. Yeast strains expressing BMV RNA replication proteins 1a and 2a(pol) were engineered to transiently coexpress two independently inducible, overlapping, nonreplicating derivatives of BMV genomic RNA3. B3Delta3' lacked the coat protein gene and negative-strand RNA promoter. B3Delta5' lacked the positive-strand RNA promoter and had the coat gene replaced by the selectable URA3 gene. After 12 to 72 h of induction, B3Delta3' and B3Delta5' transcription was repressed and Ura(+) yeast cells were selected. All Ura(+) cells contained recombinant RNA3 replicons expressing URA3. Most replicons arose by intermolecular homologous recombination between B3Delta3' and B3Delta5'. Such recombinants were isolated only when 1a and 2a(pol) were expressed and after transient transcription of both B3Delta3' and B3Delta5', showing that recombination occurred at the RNA, not DNA, level. A minority of URA3-expressing replicons were derived from B3Delta5', independently of B3Delta3', by 5' truncation and modification, generating novel positive-strand promoters and demonstrating that BMV can give rise to subgenomic RNA replicons. Intermolecular B3Delta3'-B3Delta5' recombination occurred only when both parental RNAs bore a functional, cis-acting template recognition and recruitment element targeting viral RNAs to replication complexes. The results imply that recombination occurred in RNA replication complexes to which parental RNAs were independently recruited. Moreover, the ability to obtain intermolecular recombinants at precisely measurable, reproducible frequencies, to control genetic background and induction conditions, and other features of this system will facilitate further studies of virus and host functions in RNA recombination.
Collapse
Affiliation(s)
- Hernan Garcia-Ruiz
- Institute for Molecular Virology and Department of Plant Pathology, University of Wisconsin--Madison, 53706 USA
| | | |
Collapse
|
20
|
Osman TAM, Coutts RHA, Buck KW. In vitro synthesis of minus-strand RNA by an isolated cereal yellow dwarf virus RNA-dependent RNA polymerase requires VPg and a stem-loop structure at the 3' end of the virus RNA. J Virol 2006; 80:10743-51. [PMID: 16928757 PMCID: PMC1641740 DOI: 10.1128/jvi.01050-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cereal yellow dwarf virus (CYDV) RNA has a 5'-terminal genome-linked protein (VPg). We have expressed the VPg region of the CYDV genome in bacteria and used the purified protein (bVPg) to raise an antiserum which was able to detect free VPg in extracts of CYDV-infected oat plants. A template-dependent RNA-dependent RNA polymerase (RdRp) has been produced from a CYDV membrane-bound RNA polymerase by treatment with BAL 31 nuclease. The RdRp was template specific, being able to utilize templates from CYDV plus- and minus-strand RNAs but not those of three unrelated viruses, Red clover necrotic mosaic virus, Cucumber mosaic virus, and Tobacco mosaic virus. RNA synthesis catalyzed by the RdRp required a 3'-terminal GU sequence and the presence of bVPg. Additionally, synthesis of minus-strand RNA on a plus-strand RNA template required the presence of a putative stem-loop structure near the 3' terminus of CYDV RNA. The base-paired stem, a single-nucleotide (A) bulge in the stem, and the sequence of a tetraloop were all required for the template activity. Evidence was produced showing that minus-strand synthesis in vitro was initiated by priming by bVPg at the 3' end of the template. The data are consistent with a model in which the RdRp binds to the stem-loop structure which positions the active site to recognize the 3'-terminal GU sequence for initiation of RNA synthesis by the addition of an A residue to VPg.
Collapse
Affiliation(s)
- Toba A M Osman
- Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
21
|
Pasternak AO, Spaan WJM, Snijder EJ. Nidovirus transcription: how to make sense...? J Gen Virol 2006; 87:1403-1421. [PMID: 16690906 DOI: 10.1099/vir.0.81611-0] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many positive-stranded RNA viruses use subgenomic mRNAs to express part of their genetic information. To produce structural and accessory proteins, members of the order Nidovirales (corona-, toro-, arteri- and roniviruses) generate a 3' co-terminal nested set of at least three and often seven to nine mRNAs. Coronavirus and arterivirus subgenomic transcripts are not only 3' co-terminal but also contain a common 5' leader sequence, which is derived from the genomic 5' end. Their synthesis involves a process of discontinuous RNA synthesis that resembles similarity-assisted RNA recombination. Most models proposed over the past 25 years assume co-transcriptional fusion of subgenomic RNA leader and body sequences, but there has been controversy over the question of whether this occurs during plus- or minus-strand synthesis. In the latter model, which has now gained considerable support, subgenomic mRNA synthesis takes place from a complementary set of subgenome-size minus-strand RNAs, produced by discontinuous minus-strand synthesis. Sense-antisense base-pairing interactions between short conserved sequences play a key regulatory role in this process. In view of the presumed common ancestry of nidoviruses, the recent finding that ronivirus and torovirus mRNAs do not contain a common 5' leader sequence is surprising. Apparently, major mechanistic differences must exist between nidoviruses, which raises questions about the functions of the common leader sequence and nidovirus transcriptase proteins and the evolution of nidovirus transcription. In this review, nidovirus transcription mechanisms are compared, the experimental systems used are critically assessed and, in particular, the impact of recently developed reverse genetic systems is discussed.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Willy J M Spaan
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
22
|
Li W, Wong SM. Analyses of subgenomic promoters of Hibiscus chlorotic ringspot virus and demonstration of 5' untranslated region and 3'-terminal sequences functioning as subgenomic promoters. J Virol 2006; 80:3395-405. [PMID: 16537607 PMCID: PMC1440410 DOI: 10.1128/jvi.80.7.3395-3405.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hibiscus chlorotic ringspot virus (HCRSV), which belongs to the genus Carmovirus, generates two 3'-coterminal subgenomic RNAs (sgRNAs) of 1.4 kb and 1.7 kb. Transcription start sites of the two sgRNAs were identified at nucleotides (nt) 2178 and 2438, respectively. The full promoter of sgRNA1, a 118-base sequence, is localized between positions +6 and -112 relative to its transcription start site (+1). Similarly, a 132-base sequence, from +6 to -126, defines the sgRNA2 promoter. Computer analysis revealed that both sgRNA promoters share a similar two-stem-loop (SL1 + SL2) structure, immediately upstream of the transcription start site. Mutational analysis of the primary sequence and secondary structures showed further similarities between the two subgenomic promoters. The basal portion of SL2, encompassing the transcription start site, was essential for transcription activity in each promoter, while SL1 and the upper portion of SL2 played a role in transcription enhancement. Both the 5' untranslated region (UTR) and the last 87 nt at the 3' UTR of HCRSV genomic RNA are likely to be the putative genomic plus-strand and minus-strand promoters, respectively. They function well as individual sgRNA promoters to produce ectopic subgenomic RNAs in vivo but not to the same levels of the actual sgRNA promoters. This suggests that HCRSV sgRNA promoters share common features with the promoters for genomic plus-strand and minus-strand RNA synthesis. To our knowledge, this is the first demonstration that both the 5' UTR and part of the 3' UTR can be duplicated and function as sgRNA promoters within a single viral genome.
Collapse
Affiliation(s)
- Weimin Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore
| | | |
Collapse
|
23
|
Ranjith-Kumar CT, Kao CC. Recombinant viral RdRps can initiate RNA synthesis from circular templates. RNA (NEW YORK, N.Y.) 2006; 12:303-12. [PMID: 16373481 PMCID: PMC1370910 DOI: 10.1261/rna.2163106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The crystal structure of the recombinant hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) revealed extensive interactions between the fingers and the thumb subdomains, resulting in a closed conformation with an established template channel that should specifically accept single-stranded templates. We made circularized RNA templates and found that they were efficiently used by the HCV RdRp to synthesize product RNAs that are significantly longer than the template, suggesting that RdRp could exist in an open conformation prior to template binding. RNA synthesis using circular RNA templates had properties similar to those previously documented for linear RNA, including a need for higher GTP concentration for initiation, usage of GTP analogs, sensitivity to salt, and involvement of active-site residues for product formation. Some products were resistant to challenge with the template competitor heparin, indicating that the elongation complexes remain bound to template and are competent for RNA synthesis. Other products were not elongated in the presence of heparin, indicating that the elongation complex was terminated. Lastly, recombinant RdRps from two other flaviviruses and from the Pseudomonas phage phi6 also could use circular RNA templates for RNA-dependent RNA synthesis, although the phi6 RdRp could only use circular RNAs made from the 3'-terminal sequence of the phi6 genome.
Collapse
Affiliation(s)
- C T Ranjith-Kumar
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.
| | | |
Collapse
|
24
|
Li ML, Lin YH, Stollar V. A cell-free system for the synthesis of Sindbis virus subgenomic RNA: importance of the concentration of the initiating NTP. Virology 2005; 341:24-33. [PMID: 16085228 DOI: 10.1016/j.virol.2005.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 04/19/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Abstract
We describe here an in vitro system for template-dependent initiation and synthesis of a Sindbis virus (SV) subgenomic (SG) RNA transcript. The critical components of this system were (1) a minus-strand promoter-template corresponding to the region of the SV genome from nt 7441 to nt 7772 (-157 to +175 relative to the SG RNA transcription initiation site at nt 7598), and (2) a p15 fraction from cells infected with recombinant vaccinia viruses expressing the SV nonstructural proteins, P123 and nsP4 (the nsP2 coding region in P123 contained a mutation which results in more rapid than normal processing of P123). Our data indicate that the SG RNA transcript is of the expected size, of positive polarity, and is initiated at the expected site. Changing the +1 nt from A to G, U, or C resulted in decreased synthesis of the SG RNA transcript. However, in each case, increasing the concentration of the initiating NTP restored synthesis of the transcript to the wild-type level. This is the first demonstration of an in vitro synthesis of an alphavirus SG RNA transcript which is dependent on the addition of an exogenous promoter-template. As such, it will make possible new approaches for learning how the synthesis of SG RNA is regulated.
Collapse
Affiliation(s)
- Mei-Ling Li
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
25
|
Gopinath K, Dragnea B, Kao C. Interaction between Brome mosaic virus proteins and RNAs: effects on RNA replication, protein expression, and RNA stability. J Virol 2005; 79:14222-34. [PMID: 16254357 PMCID: PMC1280218 DOI: 10.1128/jvi.79.22.14222-14234.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 08/20/2005] [Indexed: 11/20/2022] Open
Abstract
Brome mosaic virus (BMV) RNA replication has been examined in a number of systems, including Saccharomyces cerevisiae. We developed an efficient T-DNA-based gene delivery system using Agrobacterium tumefaciens to transiently express BMV RNAs in Nicotiana benthamiana. The expressed RNAs can systemically infect plants and provide material to extract BMV replicase that can perform template-dependent RNA-dependent RNA synthesis in vitro. We also expressed the four BMV-encoded proteins from nonreplicating RNAs and analyzed their effects on BMV RNA accumulation. The capsid protein that coinfiltrated with constructs expressing RNA1 and RNA2 suppressed minus-strand levels but increased plus-strand RNA accumulation. The replication proteins 1a and 2a could function in trans to replicate and transcribe the BMV RNAs. None of the BMV proteins or RNA could efficiently suppress posttranscriptional silencing. However, 1a expressed in trans will suppress the production of a recombinant green fluorescent protein expressed from the nontranslated portions of BMV RNA1 and RNA2, suggesting that 1a may regulate translation from BMV RNAs. BMV replicase proteins 1a did not affect the accumulation of the BMV RNAs in the absence of RNA replication, unlike the situation reported for S. cerevisiae. This work demonstrates that the Agrobacterium-mediated gene delivery system can be used to study the cis- and trans-acting requirements for BMV RNA replication in plants and that significant differences can exist for BMV RNA replication in different hosts.
Collapse
Affiliation(s)
- K Gopinath
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
26
|
Grdzelishvili VZ, Garcia-Ruiz H, Watanabe T, Ahlquist P. Mutual interference between genomic RNA replication and subgenomic mRNA transcription in brome mosaic virus. J Virol 2005; 79:1438-51. [PMID: 15650170 PMCID: PMC544081 DOI: 10.1128/jvi.79.3.1438-1451.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Replication by many positive-strand RNA viruses includes genomic RNA amplification and subgenomic mRNA (sgRNA) transcription. For brome mosaic virus (BMV), both processes occur in virus-induced, membrane-associated compartments, require BMV replication factors 1a and 2a, and use negative-strand RNA3 as a template for genomic RNA3 and sgRNA syntheses. To begin elucidating their relations, we examined the interaction of RNA3 replication and sgRNA transcription in Saccharomyces cerevisiae expressing 1a and 2a, which support the full RNA3 replication cycle. Blocking sgRNA transcription stimulated RNA3 replication by up to 350%, implying that sgRNA transcription inhibits RNA3 replication. Such inhibition was independent of the sgRNA-encoded coat protein and operated in cis. We further found that sgRNA transcription inhibited RNA3 replication at a step or steps after negative-strand RNA3 synthesis, implying competition with positive-strand RNA3 synthesis for negative-strand RNA3 templates, viral replication factors, or common host components. Consistent with this, sgRNA transcription was stimulated by up to 400% when mutations inhibiting positive-strand RNA3 synthesis were introduced into the RNA3 5'-untranslated region. Thus, BMV subgenomic and genomic RNA syntheses mutually interfered with each other, apparently by competition for one or more common factors. In plant protoplasts replicating all three BMV genomic RNAs, mutations blocking sgRNA transcription often had lesser effects on RNA3 accumulation, possibly because RNA3 also competed with RNA1 and RNA2 replication templates and because any increase in RNA3 replication at the expense of RNA1 and RNA2 would be self-limited by decreased 1a and 2a expression from RNA1 and RNA2.
Collapse
Affiliation(s)
- Valery Z Grdzelishvili
- Institute for Molecular Virology, University of Wisconsin-Madison, 1525 Linden Dr., Madison, WI 53706-1596, USA
| | | | | | | |
Collapse
|
27
|
Choi SK, Hema M, Gopinath K, Santos J, Kao C. Replicase-binding sites on plus- and minus-strand brome mosaic virus RNAs and their roles in RNA replication in plant cells. J Virol 2004; 78:13420-9. [PMID: 15564452 PMCID: PMC533945 DOI: 10.1128/jvi.78.24.13420-13429.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cis-acting elements for Brome mosaic virus (BMV) RNA synthesis have been characterized primarily for RNA3. To identify additional replicase-binding elements, nested fragments of all three of the BMV RNAs, both plus- and minus-sense fragments, were constructed and tested for binding enriched BMV replicase in a template competition assay. Ten RNA fragments containing replicase-binding sites were identified; eight were characterized further because they were more effective competitors. All eight mapped to noncoding regions of BMV RNAs, and the positions of seven localized to sequences containing previously characterized core promoter elements (C. C. Kao, Mol. Plant Pathol. 3:55-62, 2001), thus suggesting the identities of the replicase-binding sites. Three contained the tRNA-like structures that direct minus-strand RNA synthesis, three were within the 3' region of each minus-strand RNA that contained the core promoter for genomic plus-strand initiation, and one was in the core subgenomic promoter. Single-nucleotide mutations known previously to abolish RNA synthesis in vitro prevented replicase binding. When tested in the context of the respective full-length RNAs, the same mutations abolished BMV RNA synthesis in transfected barley protoplasts. The eighth site was within the intercistronic region (ICR) of plus-strand RNA3. Further mapping showed that a sequence of 22 consecutive adenylates was responsible for binding the replicase, with 16 being the minimal required length. Deletion of the poly(A) sequence was previously shown to severely debilitate BMV RNA replication in plants (E. Smirnyagina, Y. H. Hsu, N. Chua, and P. Ahlquist, Virology 198:427-436, 1994). Interestingly, the B box motif in the ICR of RNA3, which has previously been determined to bind the 1a protein, does not bind the replicase. These results identify the replicase-binding sites in all of the BMV RNAs and suggest that the recognition of RNA3 is different from that of RNA1 and RNA2.
Collapse
Affiliation(s)
- S-K Choi
- Department of Biochemistry & Biophysics, Texas A&M University, Mail Stop 2128, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
28
|
Wierzchoslawski R, Dzianott A, Bujarski J. Dissecting the requirement for subgenomic promoter sequences by RNA recombination of brome mosaic virus in vivo: evidence for functional separation of transcription and recombination. J Virol 2004; 78:8552-64. [PMID: 15280464 PMCID: PMC479100 DOI: 10.1128/jvi.78.16.8552-8564.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previously, we and others mapped an increased homologous recombination activity within the subgenomic promoter (sgp) region in brome mosaic virus (BMV) RNA3. In order to correlate sgp-mediated recombination and transcription, in the present work we used BMV RNA3 constructs that carried altered sgp repeats. We observed that the removal or extension of the poly(U) tract reduced or increased recombination, respectively. Deletion of the sgp core hairpin or its replacement by a different stem-loop structure inhibited recombination activity. Nucleotide substitutions at the +1 or +2 transcription initiation position reduced recombination. The sgp core alone supported only basal recombination activity. The sites of crossovers mapped to the poly(U) region and to the core hairpin. The observed effects on recombination did not parallel those observed for transcription. To explain how both activities operate within the sgp sequence, we propose a dual mechanism whereby recombination is primed at the poly(U) tract by the predetached nascent plus strand, whereas transcription is initiated de novo at the sgp core.
Collapse
Affiliation(s)
- Rafal Wierzchoslawski
- Plant Molecular Biology Center, Department of Biological Sciences, Northern Illinois University, Montgomery Hall, De Kalb, IL 60115, USA
| | | | | |
Collapse
|
29
|
Sivakumaran K, Choi SK, Hema M, Kao CC. Requirements for brome mosaic virus subgenomic RNA synthesis in vivo and replicase-core promoter interactions in vitro. J Virol 2004; 78:6091-101. [PMID: 15163702 PMCID: PMC416551 DOI: 10.1128/jvi.78.12.6091-6101.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Based solely on in vitro results, two contrasting models have been proposed for the recognition of the brome mosaic virus (BMV) subgenomic core promoter by the replicase. The first posits that the replicase recognizes at least four key nucleotides in the core promoter, followed by an induced fit, wherein some of the nucleotides base pair prior to the initiation of RNA synthesis (S. Adkins and C. C. Kao, Virology 252:1-8, 1998). The second model posits that a short RNA hairpin in the core promoter serves as a landing pad for the replicase and that at least some of the key nucleotides help form a stable hairpin (P. C. J. Haasnoot, F. Brederode, R. C. L. Olsthoorn, and J. Bol, RNA 6:708-716, 2000; P. C. J. Haasnoot, R. C. L. Olsthoorn, and J. Bol, RNA 8:110-122, 2002). We used transfected barley protoplasts to examine the recognition of the subgenomic core promoter by the BMV replicase. Key nucleotides required for subgenomic initiation in vitro were found to be important for RNA4 levels in protoplasts. In addition, additional residues not required in vitro and the formation of an RNA hairpin within the core promoter were correlated with wild-type RNA4 levels in cells. Using a template competition assay, the core promoter of ca. 20 nucleotides was found to be sufficient for replicase binding. Mutations of the key residues in the core promoter reduced replicase binding, but deletions that disrupt the predicted base pairing in the proposed stem retained binding at wild-type levels. Together, these results indicate that key nucleotides in the BMV subgenomic core promoter direct replicase recognition but that the formation of a stem-loop is required at a step after binding. Additional functional characterization of the subgenomic core promoter was performed. A portion of the promoter for BMV minus-strand RNA synthesis could substitute for the subgenomic core promoter in transfected cells. The comparable sequence from Cowpea Chlorotic Mottle Virus (CCMV) could also substitute for the BMV subgenomic core promoter. However, nucleotides in the CCMV core required for RNA synthesis are not identical to those in BMV, suggesting that the subgenomic core promoter can induce the BMV replicase in interactions needed for subgenomic RNA transcription in vivo.
Collapse
Affiliation(s)
- K Sivakumaran
- Texas A&M University, Department of Biochemistry and Biophysics, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
30
|
Hema M, Kao CC. Template sequence near the initiation nucleotide can modulate brome mosaic virus RNA accumulation in plant protoplasts. J Virol 2004; 78:1169-80. [PMID: 14722272 PMCID: PMC321408 DOI: 10.1128/jvi.78.3.1169-1180.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Accepted: 10/16/2003] [Indexed: 11/20/2022] Open
Abstract
Bromoviral templates for plus-strand RNA synthesis are rich in A or U nucleotides in comparison to templates for minus-strand RNA synthesis. Previous studies demonstrated that plus-strand RNA synthesis by the brome mosaic virus (BMV) RNA replicase is more efficient if the template contains an A/U-rich template sequence near the initiation site (K. Sivakumaran and C. C. Kao, J. Virol. 73:6415-6423, 1999). These observations led us to examine the effects of nucleotide changes near the template's initiation site on the accumulation of BMV RNA3 genomic minus-strand, genomic plus-strand, and subgenomic RNAs in barley protoplasts transfected with wild-type and mutant BMV transcripts. Mutations in the template for minus-strand synthesis had only modest effects on BMV replication in barley protoplasts. Mutants with changes to the +3, +5, and +7 template nucleotides accumulated minus-strand RNA at levels similar to the the wild-type level. However, mutations at positions adjacent to the initiation cytidylate in the templates for genomic and subgenomic plus-strand RNA synthesis significantly decreased RNA accumulation. For example, changes at the third template nucleotide for plus-strand RNA3 synthesis resulted in RNA accumulation at between 18 and 24% of the wild-type level, and mutations in the third template nucleotide for subgenomic RNA4 resulted in accumulations at between 7 and 14% of the wild-type level. The effects of the mutations generally decreased as the mutations occurred further from the initiation nucleotide. These findings demonstrate that there are different requirements of the template sequence near the initiation nucleotide for BMV RNA accumulation in plant cells.
Collapse
Affiliation(s)
- M Hema
- Department of Biophysics and Biochemistry, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
31
|
Ayllón MA, Gowda S, Satyanarayana T, Karasev AV, Adkins S, Mawassi M, Guerri J, Moreno P, Dawson WO. Effects of modification of the transcription initiation site context on citrus tristeza virus subgenomic RNA synthesis. J Virol 2003; 77:9232-43. [PMID: 12915539 PMCID: PMC187412 DOI: 10.1128/jvi.77.17.9232-9243.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Citrus tristeza virus (CTV), a member of the Closteroviridae, has a positive-sense RNA genome of about 20 kb organized into 12 open reading frames (ORFs). The last 10 ORFs are expressed through 3'-coterminal subgenomic RNAs (sgRNAs) regulated in both amounts and timing. Additionally, relatively large amounts of complementary sgRNAs are produced. We have been unable to determine whether these sgRNAs are produced by internal promotion from the full-length template minus strand or by transcription from the minus-stranded sgRNAs. Understanding the regulation of 10 sgRNAs is a conceptual challenge. In analyzing commonalities of a replicase complex in producing so many sgRNAs, we examined initiating nucleotides of the sgRNAs. We mapped the 5' termini of intermediate- (CP and p13) and low- (p18) produced sgRNAs that, like the two highly abundant sgRNAs (p20 and p23) previously mapped, all initiate with an adenylate. We then examined modifications of the initiation site, which has been shown to be useful in defining mechanisms of sgRNA synthesis. Surprisingly, mutation of the initiating nucleotide of the CTV sgRNAs did not prevent sgRNA accumulation. Based on our results, the CTV replication complex appears to initiate sgRNA synthesis with purines, preferably with adenylates, and is able to initiate synthesis using a nucleotide a few positions 5' or 3' of the native initiation nucleotide. Furthermore, the context of the initiation site appears to be a regulatory mechanism for levels of sgRNA production. These data do not support either of the established mechanisms for synthesis of sgRNAs, suggesting that CTV sgRNA production utilizes a different mechanism.
Collapse
Affiliation(s)
- María A Ayllón
- Department of Plant Pathology, University of Florida, Citrus Research and Education Center, Lake Alfred, Florida 33850, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Johnson JA, Bragg JN, Lawrence DM, Jackson AO. Sequence elements controlling expression of Barley stripe mosaic virus subgenomic RNAs in vivo. Virology 2003; 313:66-80. [PMID: 12951022 PMCID: PMC7172551 DOI: 10.1016/s0042-6822(03)00285-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Barley stripe mosaic virus (BSMV) contains three positive-sense, single-stranded genomic RNAs, designated alpha, beta, and gamma, that encode seven major proteins and one minor translational readthrough protein. Three proteins (alphaa, betaa, and gammaa) are translated directly from the genomic RNAs and the remaining proteins encoded on RNAbeta and RNAgamma are expressed via three subgenomic messenger RNAs (sgRNAs). sgRNAbeta1 directs synthesis of the triple gene block 1 (TGB1) protein. The TGB2 protein, the TGB2' minor translational readthrough protein, and the TGB3 protein are expressed from sgRNAbeta2, which is present in considerably lower abundance than sgRNAbeta1. A third sgRNA, sgRNAgamma, is required for expression of the gammab protein. We have used deletion analyses and site-specific mutations to define the boundaries of promoter regions that are critical for expression of the BSMV sgRNAs in infected protoplasts. The results reveal that the sgRNAbeta1 promoter encompasses positions -29 to -2 relative to its transcription start site and is adjacent to a cis-acting element required for RNAbeta replication that maps from -107 to -74 relative to the sgRNAbeta1 start site. The core sgRNAbeta2 promoter includes residues -32 to -17 relative to the sgRNAbeta2 transcriptional start site, although maximal activity requires an upstream hexanucleotide sequence residing from positions -64 to -59. The sgRNAgamma promoter maps from -21 to +2 relative to its transcription start site and therefore partially overlaps the gammaa gene. The sgRNAbeta1, beta2, and gamma promoters also differ substantially in sequence, but have similarities to the putative homologous promoters of other Hordeiviruses. These differences are postulated to affect competition for the viral polymerase, coordination of the temporal expression and abundance of the TGB proteins, and constitutive expression of the gammab protein.
Collapse
Affiliation(s)
- Jennifer A Johnson
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
33
|
Wierzchoslawski R, Dzianott A, Kunimalayan S, Bujarski JJ. A transcriptionally active subgenomic promoter supports homologous crossovers in a plus-strand RNA virus. J Virol 2003; 77:6769-76. [PMID: 12767997 PMCID: PMC156210 DOI: 10.1128/jvi.77.12.6769-6776.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic RNA recombination plays an important role in viral evolution, but its molecular mechanism is not well understood. In this work we describe homologous RNA recombination activity that is supported by a subgenomic promoter (sgp) region in the RNA3 segment of brome mosaic bromovirus (BMV), a tripartite plus-strand RNA virus. The crossover frequencies were determined by coinoculations with pairs of BMV RNA3 variants that carried a duplicated sgp region flanked by marker restriction sites. A region composed of the sgp core, a poly(A) tract, and an upstream enhancer supported homologous exchanges in 25% of the analyzed RNA3 progeny. However, mutations in the sgp core stopped both the transcription of the sgp RNA and homologous recombination. These data provide evidence for an association of RNA recombination with transcription.
Collapse
Affiliation(s)
- Rafal Wierzchoslawski
- Plant Molecular Biology Center, Department of Biological Sciences, Northern Illinois University, De Kalb, Illinois 60115, USA
| | | | | | | |
Collapse
|
34
|
Abstract
The RNA replicase extracted from Brome mosaic virus (BMV)-infected plants has been used to characterize the cis-acting elements for RNA synthesis and the mechanism of RNA synthesis. Minus-strand RNA synthesis in vitro requires a structure named stem-loop C (SLC) that contains a clamped adenine motif. In vitro, there are several specific requirements for SLC recognition. We examined whether these requirements also apply to BMV replication in barley protoplasts. BMV RNA3s with mutations in SLC were transfected into barley protoplasts, and the requirements for minus- and plus-strand replication were found to correlate well with the requirements in vitro. Furthermore, previous analysis of replicase recognition of the Cucumber mosaic virus (CMV) and BMV SLCs indicates that the requirements in the BMV SLC are highly specific. In protoplasts, we found that BMV RNA3s with their SLCs replaced with two different CMV SLCs were defective for replication. In vitro results generated with the BMV replicase and minimal-length RNAs generally agreed with those of in vivo BMV RNA replication. To extend this conclusion, we determined that, corresponding with the process of infection, the BMV replicases extracted from plants at different times after infection have different levels of recognition of the minimal promoters for plus- and minus-strand RNA syntheses.
Collapse
Affiliation(s)
- K Sivakumaran
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
35
|
Aparicio F, Pallás V. The molecular variability analysis of the RNA 3 of fifteen isolates of Prunus necrotic ringspot virus sheds light on the minimal requirements for the synthesis of its subgenomic RNA. Virus Genes 2003; 25:75-84. [PMID: 12206311 DOI: 10.1023/a:1020126309692] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The nucleotide sequences of the RNA 3 of fifteen isolates of Prunus necrotic ringspot virus (PNRSV) varying in the symptomatology they cause in six different Prunus spp. were determined. Analysis of the molecular variability has allowed, in addition to study the phylogenetic relationships among them, to evaluate the minimal requirements for the synthesis of the subgenomic RNA in Ilarvirus genus and their comparison to other members of the Bromoviridae family. Computer assisted comparisons led recently to Jaspars (Virus Genes 17, 233-242, 1998) to propose that a hairpin structure in viral minus strand RNA is required for subgenomic promoter activity of viruses from at least two, and possibly all five, genera in the family of Bromoviridae. For PNRSV and Apple mosaic virus two stable hairpins were proposed whereas for the rest of Ilarviruses and the other four genera of the Bromoviridae family only one stable hairpin was predicted. Comparative analysis of this region among the fifteen PNRSV isolates characterized in this study revealed that two of them showed a 12-nt deletion that led to the disappearance of the most proximal hairpin to the initiation site. Interestingly, the only hairpin found in these two isolates is very similar in primary and secondary structure to the one previously shown in Brome mosaic virus to be required for the synthesis of the subgenomic RNA. In this hairpin, the molecular diversity was concentrated mostly at the loop whereas compensatory mutations were observed at the base of the stem strongly suggesting its functional relevance. The evolutionary implications of these observations are discussed.
Collapse
Affiliation(s)
- Frederic Aparicio
- Instituto de Biologia Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Spain
| | | |
Collapse
|
36
|
Abstract
As with transcription from DNA templates, RNA synthesis from viral RNA templates must initiate accurately. RNA sequences named specificity and initiation determinants allow recognition of and coordinated interaction with the viral replication enzyme. Using enriched replicase from brome mosaic virus (BMV)-infected plants and variants of the promoter template for minus-strand and subgenomic RNA initiation, we found that a specificity determinant for minus-strand initiation could function at variable distances and positions from the 3' initiation site in a manner similar to enhancers of transcription from DNA templates. This determinant's addition could convert a cellular tRNA into a template for RNA synthesis by the BMV replicase in vitro. Furthermore, the same specificity element could direct internal initiation, which occurred at a highly preferred site in a manner distinct from initiation at the 3' terminus of the template. These results document two distinct modes of initiation site recognition by a viral RNA replicase.
Collapse
Affiliation(s)
- C T Ranjith-Kumar
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
37
|
Ranjith-Kumar CT, Gutshall L, Kim MJ, Sarisky RT, Kao CC. Requirements for de novo initiation of RNA synthesis by recombinant flaviviral RNA-dependent RNA polymerases. J Virol 2002; 76:12526-36. [PMID: 12438578 PMCID: PMC136677 DOI: 10.1128/jvi.76.24.12526-12536.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2002] [Accepted: 09/10/2002] [Indexed: 11/20/2022] Open
Abstract
RNA-dependent RNA polymerases (RdRps) that initiate RNA synthesis by a de novo mechanism should specifically recognize the template initiation nucleotide, T1, and the substrate initiation nucleotide, the NTPi. The RdRps from hepatitis C virus (HCV), bovine viral diarrhea virus (BVDV), and GB virus-B all can initiate RNA synthesis by a de novo mechanism. We used RNAs and GTP analogs, respectively, to examine the use of the T1 nucleotide and the initiation nucleotide (NTPi) during de novo initiation of RNA synthesis. The effects of the metal ions Mg(2+) and Mn(2+) on initiation were also analyzed. All three viral RdRps require correct base pairing between the T1 and NTPi for efficient RNA synthesis. However, each RdRp had some distinct tolerances for modifications in the T1 and NTPi. For example, the HCV RdRp preferred an NTPi lacking one or more phosphates regardless of whether Mn(2+) was present or absent, while the BVDV RdRp efficiently used GDP and GMP for initiation of RNA synthesis only in the presence of Mn(2+). These and other results indicate that although the three RdRps share a common mechanism of de novo initiation, each has distinct preferences.
Collapse
Affiliation(s)
- C T Ranjith-Kumar
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA
| | | | | | | | | |
Collapse
|
38
|
Vives MC, Galipienso L, Navarro L, Moreno P, Guerri J. Characterization of two kinds of subgenomic RNAs produced by citrus leaf blotch virus. Virology 2002; 295:328-36. [PMID: 12033792 DOI: 10.1006/viro.2001.1349] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Citrus leaf blotch virus (CLBV) has a single-stranded, positive-sense, genomic RNA (gRNA) organized in three ORFs, which encode a polyprotein involved in replication (RP), a potential movement protein (MP), and coat protein (CP). Northern blot hybridization of total, virion, or double-stranded RNA with probes of different gRNA regions revealed that CLBV produces two 3'-coterminal and two 5'-coterminal subgenomic RNAs (sgRNAs). The 3'-coterminal sgRNAs contain the MP (3'MP sgRNA) and CP (3'CP sgRNA) genes and untranslated regions (UTRs) of 123 and 284 nt, respectively, at their 5' end. These sgRNAs start with a hexanucleotide which is also present at the 5' terminus of the gRNA. The 5'-coterminal sgRNAs have 6795 and 5798 nt, colinear with the gRNA, and contain ORF1 and most MP gene (5'RPMP sgRNA) and most ORF1 (5'RP sgRNA), respectively. Their 3' termini map 35 and 40 nt upstream of the transcription initiation of the 3'CP and 3'MP sgRNAs, respectively, next to a potential promoter element. Our results suggest that, as in alphaviruses, CLBV internal genes are expressed via 3'-coterminal sgRNAs transcribed from the minus gRNA strand. The 5'-coterminal sgRNAs may result from early termination of the gRNA during the plus-strand synthesis.
Collapse
Affiliation(s)
- María C Vives
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Valencia, Spain
| | | | | | | | | |
Collapse
|
39
|
Abstract
Rubella virus (RUB), the sole member of the Rubivirus genus in the Togaviridae family of positive-strand RNA viruses, synthesizes a single subgenomic (SG) RNA containing sequences from the 3' end of the genomic RNA including the open reading frame (ORF) that encodes the virion proteins. The synthesis of SG RNA is initiated internally on a negative-strand, genome-length template at a site known as the SG promoter (SGP). Mapping the RUB SGP was initiated by using an infectious cDNA vector, dsRobo402/GFP, in which the region containing the SGP was duplicated (K. V. Pugachev, W.-P. Tzeng, and T. K. Frey, J. Virol. 74:10811-10815, 2000). In dsRobo402/GFP, the 5'-proximal nonstructural protein ORF (NS-ORF) is followed by the first SGP (SGP-1), the green fluorescent protein (GFP) gene, the second SGP (SGP-2), and the structural protein ORF. The duplicated SGP, SGP-2, contained nucleotides (nt) -175 to +76 relative to the SG start site, including the 3' 127 nt of the NS-ORF and 47 nt between the NS-ORF and the SG start site. 5' Deletions of SGP-2 to nt -40 (9 nt beyond the 3' end of the NS-ORF) resulted in a wild-type (wt) phenotype in terms of virus replication and RNA synthesis. Deletions beyond this point impaired viability; however, the analysis was complicated by homologous recombination between SGP-1 and SGP-2 that resulted in deletion of the GFP gene and resurrection of viable virus with one SGP. Since the NS-ORF region was not necessary for SGP activity, subsequent mapping was done by using both replicon vectors, RUBrep/GFP and RUBrep/CAT, in which the SP-ORF is replaced with the reporter GFP and chloramphenical acetyltransferase genes, respectively, and the wt infectious clone, Robo402. In the replicon vectors, 5' deletions to nt -26 resulted in the synthesis of SG RNA. In the infectious clone, deletions through nt -28 gave rise to viable virus. A series of short internal deletions confirmed that the region between nt -28 and the SG start site was essential for viability and showed that the repeated UCA triplet at the 5' end of SG RNA was also required. Thus, the minimal SGP maps from nt -26 through the SG start site and appears to extend to at least nt +6, although a larger region is required for the generation of virus with a wt phenotype. Interestingly, while the positioning of the RUB SGP immediately adjacent the SG start site is thus similar to that of members of the genus Alphavirus, the other genus in the Togaviridae family, it does not include a region of nucleotide sequence homology with the alphavirus SGP that is located between nt -48 and nt -23 with respect to the SG start site in the RUB genome.
Collapse
Affiliation(s)
- Wen-Pin Tzeng
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | |
Collapse
|
40
|
Peng CW, Peremyslov VV, Snijder EJ, Dolja VV. A replication-competent chimera of plant and animal viruses. Virology 2002; 294:75-84. [PMID: 11886267 DOI: 10.1006/viro.2001.1306] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human, animal, fungal, and plant viruses encode papain-like proteinases that function in polyprotein processing, RNA synthesis, and virus-host interactions. To compare the functional profiles of diverse papain-like proteinases, we replaced a proteinase gene of the beet yellows virus (BYV) with those derived from equine arteritis virus (EAV), foot-and-mouth disease virus (FMDV), and the fungal virus CHV1. We found that, although each of the foreign proteinases efficiently processed the viral polyprotein, only the EAV proteinase supported vigorous replication of the chimeric BYV in plant protoplasts. This result demonstrated that the proteinases of BYV and EAV, but not FMDV or CHV1, provide a function that is critical for genome replication and that is separable from polyprotein processing. Further characterization of the BYV-EAV chimera revealed that BYV proteinase is also required for virus invasion and cell-to-cell movement. Thus, the same viral protein can combine both replication-related functions shared by plant and animal viruses and specialized functions in virus-host interactions.
Collapse
Affiliation(s)
- Chih-Wen Peng
- Department of Botany and Plant Pathology, Center for Gene Research and Biotechnology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
41
|
Choi IR, White KA. An RNA activator of subgenomic mRNA1 transcription in tomato bushy stunt virus. J Biol Chem 2002; 277:3760-6. [PMID: 11714712 DOI: 10.1074/jbc.m109067200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many (+)-strand RNA viruses transcribe small subgenomic (sg) mRNAs that allow for regulated expression of a subset of their genes. Tomato bushy stunt virus (TBSV) transcribes two such messages and here we report the identification of a long-distance RNA*RNA interaction that is essential for the efficient accumulation of capsid protein-encoding sg mRNA1. The relevant base pairing interaction occurs within the TBSV RNA genome between a 7-nucleotide (nt) long sequence, separated by just 3 nt from the downstream sg mRNA1 initiation site, and a complementary sequence positioned some approximately 1000 nt further upstream. Analyses of this interaction indicate that it (i) functions in the (+)-strand, (ii) modulates both (+)- and (-)-strand sg mRNA1 accumulation, (iii) specifically regulates the accumulation of sg mRNA1 (-)-strands, (iv) controls sg mRNA1 expression from an ectopic transcriptional initiation site, (v) may occur in cis and, and (vi) could nucleate the formation of a more complex RNA structure. These data are most consistent with a role for this interaction in regulating sg mRNA1 accumulation at the level of transcription.
Collapse
Affiliation(s)
- Il-Ryong Choi
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | |
Collapse
|
42
|
Koev G, Liu S, Beckett R, Miller WA. The 3prime prime or minute-terminal structure required for replication of Barley yellow dwarf virus RNA contains an embedded 3prime prime or minute end. Virology 2002; 292:114-26. [PMID: 11878914 DOI: 10.1006/viro.2001.1268] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We determined the 3prime prime or minute-terminal primary and secondary structures required for replication of Barley yellow dwarf virus (BYDV) RNA in oat protoplasts. Computer predictions, nuclease probing, phylogenetic comparisons, and replication assays of specific mutants and chimeras revealed that the 3prime prime or minute-terminal 109 nucleotides (nt) form a structure with three to four stem-loops followed by a coaxially stacked helix incorporating the last four nt [(A/U)CCC]. Sequences upstream of the 109-nt region also contributed to RNA accumulation. The base-pairing but not the sequences or bulges in the stems were essential for replication, but any changes to the 3prime prime or minute-terminal helix destroyed replication. The two 3prime prime or minute-proximal tetraloops tolerated all changes, but the two 3prime prime or minute-distal tetraloops gave most efficient replication if they fit the GNRA consensus. A mutant lacking the 3prime prime or minute-proximal stem-loop produced elevated levels of less-than-full-length minus strands, and no (+) strand. We propose that a "pocket" structure is the origin of (minus sign)-strand synthesis, which is negatively regulated by the inaccessible conformation of the 3prime prime or minute terminus, thus favoring a high (+)/(minus sign) ratio. This 3prime prime or minute structure and the polymerase homologies suggest that genus Luteovirus is more closely related to the Tombusviridae family than to other Luteoviridae genera.
Collapse
Affiliation(s)
- Gennadiy Koev
- Plant Pathology Department, Iowa State University, 351 Bessey Hall, Ames, Iowa 50011-1020, USA
| | | | | | | |
Collapse
|
43
|
Haasnoot PCJ, Olsthoorn RCL, Bol JF. The Brome mosaic virus subgenomic promoter hairpin is structurally similar to the iron-responsive element and functionally equivalent to the minus-strand core promoter stem-loop C. RNA (NEW YORK, N.Y.) 2002; 8:110-122. [PMID: 11873757 PMCID: PMC1370233 DOI: 10.1017/s1355838202012074] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the Bromoviridae family of plant viruses, trinucleotide hairpin loops play an important role in RNA transcription. Recently, we reported that Brome mosaic virus (BMV) subgenomic (sg) transcription depended on the formation of an unusual triloop hairpin. By native gel electrophoresis, enzymatic structure probing, and NMR spectroscopy it is shown here that in the absence of viral replicase the hexanucleotide loop 5'C1AUAG5A3' of this RNA structure can adopt a pseudo trinucleotide loop conformation by transloop base pairing between C1 and G5. By means of in vitro replication assays using partially purified BMV RNA-dependent RNA polymerase (RdRp) it was found that other base pairs contribute to sg transcription, probably by stabilizing the formation of this pseudo triloop, which is proposed to be the primary element recognized by the viral replicase. The BMV pseudo triloop structure strongly resembles iron-responsive elements (IREs) in cellular messenger RNAs and may represent a general protein-binding motif. In addition, in vitro replication assays showed that the BMV sg hairpin is functionally equivalent to the minus-strand core promoter hairpin stem-loop C at the 3' end of BMV RNAs. Replacement of the sg hairpin by stem-loop C yielded increased sg promoter activity whereas replacement of stem-loop C by the sg hairpin resulted in reduced minus-strand promoter activity. We conclude that AUA triloops represent the common motif in the BMV sg and minus-strand promoters required for recruitment of the viral replicase. Additional sequence elements of the minus-strand promoter are proposed to direct the RdRp to the initiation site at the 3' end of the genomic RNA.
Collapse
Affiliation(s)
- P C Joost Haasnoot
- Institute of Molecular Plant Sciences, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | |
Collapse
|
44
|
Kao CC. Lessons learned from the core RNA promoters of Brome mosaic virus and Cucumber mosaic virus. MOLECULAR PLANT PATHOLOGY 2002; 3:53-59. [PMID: 20569308 DOI: 10.1046/j.1464-6722.2001.00090.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
summary RNA core promoters are nucleotide sequences needed to direct proper initiation of viral RNA synthesis by the viral replicase. Minimal length core promoter-templates that can direct accurate initiation of the genomic plus-, genomic minus-, and subgenomic RNAs of Brome mosaic virus and Cucumber mosaic virus were characterized in previous works. Several common themes and differences were observed in how each of the core promoters directed the initiation of viral RNA synthesis in vitro. These observations are summarized and compared in this short review.
Collapse
Affiliation(s)
- C Cheng Kao
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
45
|
Pasternak AO, van den Born E, Spaan WJ, Snijder EJ. Sequence requirements for RNA strand transfer during nidovirus discontinuous subgenomic RNA synthesis. EMBO J 2001; 20:7220-8. [PMID: 11742998 PMCID: PMC125340 DOI: 10.1093/emboj/20.24.7220] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2001] [Revised: 10/25/2001] [Accepted: 11/01/2001] [Indexed: 12/02/2022] Open
Abstract
Nidovirus subgenomic mRNAs contain a leader sequence derived from the 5' end of the genome fused to different sequences ('bodies') derived from the 3' end. Their generation involves a unique mechanism of discontinuous subgenomic RNA synthesis that resembles copy-choice RNA recombination. During this process, the nascent RNA strand is transferred from one site in the template to another, during either plus or minus strand synthesis, to yield subgenomic RNA molecules. Central to this process are transcription-regulating sequences (TRSs), which are present at both template sites and ensure the fidelity of strand transfer. Here we present results of a comprehensive co-variation mutagenesis study of equine arteritis virus TRSs, demonstrating that discontinuous RNA synthesis depends not only on base pairing between sense leader TRS and antisense body TRS, but also on the primary sequence of the body TRS. While the leader TRS merely plays a targeting role for strand transfer, the body TRS fulfils multiple functions. The sequences of mRNA leader-body junctions of TRS mutants strongly suggested that the discontinuous step occurs during minus strand synthesis.
Collapse
Affiliation(s)
| | | | | | - Eric J. Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
Corresponding author e-mail: A.O.Pasternak and E.van den Born contributed equally to this work
| |
Collapse
|
46
|
Choi IR, Ostrovsky M, Zhang G, White KA. Regulatory activity of distal and core RNA elements in Tombusvirus subgenomic mRNA2 transcription. J Biol Chem 2001; 276:41761-8. [PMID: 11546813 DOI: 10.1074/jbc.m106727200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Positive-strand RNA viruses that encode multiple cistrons often mediate expression of 3'-encoded open reading frames via RNA-templated transcription of subgenomic (sg) mRNAs. Tomato bushy stunt virus (TBSV) is a positive-strand RNA virus that transcribes two such sg mRNAs during infections. We have previously identified a distal element (DE), located approximately 1100 nucleotides upstream from the initiation site of sg mRNA2 transcription, part of which must base pair with a portion of a core element (CE), located just 5' to the initiation site, for efficient transcription to occur (Zhang, G., Slowinski, V., and White, K. A. (1999) RNA 5, 550-561). Here we have analyzed further this long distance RNA-RNA interaction and have investigated the regulatory roles of other subelements within the DE and CE. Our results indicate that (i) the functional base-pairing interaction between these elements occurs in the positive strand and that the interaction likely acts to properly position other subelements, (ii) two previously undefined subelements within the DE and CE are important and essential, respectively, for efficient sg mRNA2 accumulation, and (iii) the production of (-)-strand sg mRNA2 can be uncoupled from the synthesis of its (+)-strand complement. These data provide important insight into the mechanism of sg mRNA2 transcription.
Collapse
Affiliation(s)
- I R Choi
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | |
Collapse
|
47
|
Reigadas S, Ventura M, Sarih-Cottin L, Castroviejo M, Litvak S, Astier-Gin T. HCV RNA-dependent RNA polymerase replicates in vitro the 3' terminal region of the minus-strand viral RNA more efficiently than the 3' terminal region of the plus RNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5857-67. [PMID: 11722573 DOI: 10.1046/j.0014-2956.2001.02532.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The NS5B protein, or RNA-dependent RNA polymerase of the hepatitis virus type C, catalyzes the replication of the viral genomic RNA. Little is known about the recognition domains of the viral genome by the NS5B. To better understand the initiation of RNA synthesis on HCV genomic RNA, we used in vitro transcribed RNAs as templates for in vitro RNA synthesis catalyzed by the HCV NS5B. These RNA templates contained different regions of the 3' end of either the plus or the minus RNA strands. Large differences were obtained depending on the template. A few products shorter than the template were synthesized by using the 3' UTR of the (+) strand RNA. In contrast the 341 nucleotides at the 3' end of the HCV minus-strand RNA were efficiently copied by the purified HCV NS5B in vitro. At least three elements were found to be involved in the high efficiency of the RNA synthesis directed by the HCV NS5B with templates derived from the 3' end of the minus-strand RNA: (a) the presence of a C residue as the 3' terminal nucleotide; (b) one or two G residues at positions +2 and +3; (c) other sequences and/or structures inside the following 42-nucleotide stretch. These results indicate that the 3' end of the minus-strand RNA of HCV possesses some sequences and structure elements well recognized by the purified NS5B.
Collapse
Affiliation(s)
- S Reigadas
- UMR 5097 CNRS Université Victor Ségalen Bordeaux 2, IFR 66 Pathologies Infectieuses, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
48
|
Hemenway CL, Lommel SA. Manipulating plant viral RNA transcription signals. GENETIC ENGINEERING 2001; 22:171-95. [PMID: 11501376 DOI: 10.1007/978-1-4615-4199-8_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- C L Hemenway
- Departments of Biochemistry Box 7622 & Plant Pathology Box 7616, North Carolina State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
49
|
Dzianott A, Rauffer-Bruyere N, Bujarski JJ. Studies on functional interaction between brome mosaic virus replicase proteins during RNA recombination, using combined mutants in vivo and in vitro. Virology 2001; 289:137-49. [PMID: 11601925 DOI: 10.1006/viro.2001.1118] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two viral proteins, 1a and 2a, direct replication of brome mosaic bromovirus (BMV) RNAs as well as they participate in BMV RNA recombination. To study the relationship between replication and recombination, double BMV variants that carried mutations in 1a and 2a genes were tested. The observed effects revealed that the 1a helicase and 2a N-terminal or core domains were functionally linked during both processes in vivo. The use of a series of mutant BMV replicase (RdRp) preparations demonstrated in vitro the participation of the 1a and 2a domains in BMV RNA copying and in template switching during minus-strand synthesis. The observed effects support previous observations that the characteristics of homologous and nonhomologous recombination can be modified separately by mutations at different sites on BMV replicase proteins.
Collapse
Affiliation(s)
- A Dzianott
- Plant Molecular Biology Center, Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA
| | | | | |
Collapse
|
50
|
Ranjith-Kumar CT, Gajewski J, Gutshall L, Maley D, Sarisky RT, Kao CC. Terminal nucleotidyl transferase activity of recombinant Flaviviridae RNA-dependent RNA polymerases: implication for viral RNA synthesis. J Virol 2001; 75:8615-23. [PMID: 11507207 PMCID: PMC115107 DOI: 10.1128/jvi.75.18.8615-8623.2001] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) was reported to possess terminal transferase (TNTase) activity, the ability to add nontemplated nucleotides to the 3' end of viral RNAs. However, this TNTase was later purported to be a cellular enzyme copurifying with the HCV RdRp. In this report, we present evidence that TNTase activity is an inherent function of HCV and bovine viral diarrhea virus RdRps highly purified from both prokaryotic and eukaryotic cells. A change of the highly conserved GDD catalytic motif in the HCV RdRp to GAA abolished both RNA synthesis and TNTase activity. Furthermore, the nucleotides added via this TNTase activity are strongly influenced by the sequence near the 3' terminus of the viral template RNA, perhaps accounting for the previous discrepant observations between RdRp preparations. Last, the RdRp TNTase activity was shown to restore the ability to direct initiation of RNA synthesis in vitro on an initiation-defective RNA substrate, thereby implicating this activity in maintaining the integrity of the viral genome termini.
Collapse
Affiliation(s)
- C T Ranjith-Kumar
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | | | |
Collapse
|