1
|
Oh CK, Nakamura T, Zhang X, Lipton SA. Redox regulation, protein S-nitrosylation, and synapse loss in Alzheimer's and related dementias. Neuron 2024; 112:3823-3850. [PMID: 39515322 PMCID: PMC11624102 DOI: 10.1016/j.neuron.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/12/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Redox-mediated posttranslational modification, as exemplified by protein S-nitrosylation, modulates protein activity and function in both health and disease. Here, we review recent findings that show how normal aging, infection/inflammation, trauma, environmental toxins, and diseases associated with protein aggregation can each trigger excessive nitrosative stress, resulting in aberrant protein S-nitrosylation and hence dysfunctional protein networks. These redox reactions contribute to the etiology of multiple neurodegenerative disorders as well as systemic diseases. In the CNS, aberrant S-nitrosylation reactions of single proteins or, in many cases, interconnected networks of proteins lead to dysfunctional pathways affecting endoplasmic reticulum (ER) stress, inflammatory signaling, autophagy/mitophagy, the ubiquitin-proteasome system, transcriptional and enzymatic machinery, and mitochondrial metabolism. Aberrant protein S-nitrosylation and transnitrosylation (transfer of nitric oxide [NO]-related species from one protein to another) trigger protein aggregation, neuronal bioenergetic compromise, and microglial phagocytosis, all of which contribute to the synapse loss that underlies cognitive decline in Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Chang-Ki Oh
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xu Zhang
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Ramos A, Ishizuka K, Hayashida A, Namkung H, Hayes LN, Srivastava R, Zhang M, Kariya T, Elkins N, Palen T, Carloni E, Tsujimura T, Calva C, Ikemoto S, Rais R, Slusher BS, Niwa M, Saito A, Saitoh T, Takimoto E, Sawa A. Nuclear GAPDH in cortical microglia mediates cellular stress-induced cognitive inflexibility. Mol Psychiatry 2024; 29:2967-2978. [PMID: 38615102 PMCID: PMC11449656 DOI: 10.1038/s41380-024-02553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/12/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
We report a mechanism that underlies stress-induced cognitive inflexibility at the molecular level. In a mouse model under subacute cellular stress in which deficits in rule shifting tasks were elicited, the nuclear glyceraldehyde dehydrogenase (N-GAPDH) cascade was activated specifically in microglia in the prelimbic cortex. The cognitive deficits were normalized with a pharmacological intervention with a compound (the RR compound) that selectively blocked the initiation of N-GAPDH cascade without affecting glycolytic activity. The normalization was also observed with a microglia-specific genetic intervention targeting the N-GAPDH cascade. At the mechanistic levels, the microglial secretion of High-Mobility Group Box (HMGB), which is known to bind with and regulate the NMDA-type glutamate receptors, was elevated. Consequently, the hyperactivation of the prelimbic layer 5 excitatory neurons, a neural substrate for cognitive inflexibility, was also observed. The upregulation of the microglial HMGB signaling and neuronal hyperactivation were normalized by the pharmacological and microglia-specific genetic interventions. Taken together, we show a pivotal role of cortical microglia and microglia-neuron interaction in stress-induced cognitive inflexibility. We underscore the N-GAPDH cascade in microglia, which causally mediates stress-induced cognitive alteration.
Collapse
Affiliation(s)
- Adriana Ramos
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koko Ishizuka
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arisa Hayashida
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- International Collaborative Research Administration, Juntendo University, Tokyo, Japan
| | - Ho Namkung
- Departments of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lindsay N Hayes
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rupali Srivastava
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manling Zhang
- Departments of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taro Kariya
- Departments of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Noah Elkins
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Trexy Palen
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elisa Carloni
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tsuyoshi Tsujimura
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Coleman Calva
- Neurocircuitry of Motivation Section, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Satoshi Ikemoto
- Neurocircuitry of Motivation Section, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Rana Rais
- Departments of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barbara S Slusher
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Minae Niwa
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atsushi Saito
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Eiki Takimoto
- Departments of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akira Sawa
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departments of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departments of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departments of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
3
|
Li J, Wang H, Ma P, Li T, Ren J, Zhang J, Zhou M, He Y, Yang T, He W, Mi MT, Liu YW, Dai SS. Osteocalcin-expressing neutrophils from skull bone marrow exert immunosuppressive and neuroprotective effects after TBI. Cell Rep 2024; 43:114670. [PMID: 39213156 DOI: 10.1016/j.celrep.2024.114670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/04/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Neutrophils from skull bone marrow (Nskull) are activated under some brain stresses, but their effects on traumatic brain injury (TBI) are lacking. Here, we find Nskull infiltrates brain tissue quickly and persistently after TBI, which is distinguished by highly and specifically expressed osteocalcin (OCN) from blood-derived neutrophils (Nblood). Reprogramming of glucose metabolism by reducing glycolysis-related enzyme glyceraldehyde 3-phosphate dehydrogenase expression is involved in the antiapoptotic and proliferative abilities of OCN-expressing Nskull. The transcription factor Fos-like 1 governs the specific gene profile of Nskull including C-C motif chemokine receptor-like 2 (CCRL2), arginase 1 (Arg1), and brain-derived neurotrophic factor (BDNF) in addition to OCN. Selective knockout of CCRL2 in Nskull demonstrates that CCRL2 mediates its recruitment, whereas high Arg1 expression is consistent with its immunosuppressive effects on Nblood, and the secretion of BDNF facilitating dendritic growth contributes to its neuroprotection. Thus, our findings provide insight into the roles of Nskull in TBI.
Collapse
Affiliation(s)
- Jiabo Li
- School of Medicine, Chongqing University, Chongqing 400030, China; Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Hao Wang
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Pengjiao Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing 400038, China; Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Health, Institute of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Tao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Jiakui Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Jingyu Zhang
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Mi Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Yuhang He
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Health, Institute of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Teng Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Wenhui He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Man-Tian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Health, Institute of Military Preventive Medicine, Army Medical University, Chongqing 400038, China.
| | - Yang-Wuyue Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing 400038, China.
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
4
|
Duță C, Muscurel C, Dogaru CB, Stoian I. Ferroptosis-A Shared Mechanism for Parkinson's Disease and Type 2 Diabetes. Int J Mol Sci 2024; 25:8838. [PMID: 39201524 PMCID: PMC11354749 DOI: 10.3390/ijms25168838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are the two most frequent age-related chronic diseases. There are many similarities between the two diseases: both are chronic diseases; both are the result of a decrease in a specific substance-insulin in T2D and dopamine in PD; and both are caused by the destruction of specific cells-beta pancreatic cells in T2D and dopaminergic neurons in PD. Recent epidemiological and experimental studies have found that there are common underlying mechanisms in the pathophysiology of T2D and PD: chronic inflammation, mitochondrial dysfunction, impaired protein handling and ferroptosis. Epidemiological research has indicated that there is a higher risk of PD in individuals with T2D. Moreover, clinical studies have observed that the symptoms of Parkinson's disease worsen significantly after the onset of T2D. This article provides an up-to-date review on the intricate interplay between oxidative stress, reactive oxygen species (ROS) and ferroptosis in PD and T2D. By understanding the shared molecular pathways and how they can be modulated, we can develop more effective therapies, or we can repurpose existing drugs to improve patient outcomes in both disorders.
Collapse
|
5
|
Lecht S, Lahiani A, Klazas M, Naamneh MS, Rubin L, Dong J, Zheng W, Lazarovici P. Rasagiline Exerts Neuroprotection towards Oxygen-Glucose-Deprivation/Reoxygenation-Induced GAPDH-Mediated Cell Death by Activating Akt/Nrf2 Signaling. Biomedicines 2024; 12:1592. [PMID: 39062165 PMCID: PMC11275171 DOI: 10.3390/biomedicines12071592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Rasagiline (Azilect®) is a selective monoamine oxidase B (MAO-B) inhibitor that provides symptomatic benefits in Parkinson's disease (PD) treatment and has been found to exert preclinical neuroprotective effects. Here, we investigated the neuroprotective signaling pathways of acute rasagiline treatment for 22 h in PC12 neuronal cultures exposed to oxygen-glucose deprivation (OGD) for 4 h, followed by 18 h of reoxygenation (R), causing 40% aponecrotic cell death. In this study, 3-10 µM rasagiline induced dose-dependent neuroprotection of 20-80%, reduced the production of the neurotoxic reactive oxygen species by 15%, and reduced the nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by 75-90%. In addition, 10 µM rasagiline increased protein kinase B (Akt) phosphorylation by 50% and decreased the protein expression of the ischemia-induced α-synuclein protein by 50% in correlation with the neuroprotective effect. Treatment with 1-5 µM rasagiline induced nuclear shuttling of transcription factor Nrf2 by 40-90% and increased the mRNA levels of the antioxidant enzymes heme oxygenase-1, (NAD (P) H- quinone dehydrogenase, and catalase by 1.8-2.0-fold compared to OGD/R insult. These results indicate that rasagiline provides neuroprotection to the ischemic neuronal cultures through the inhibition of α-synuclein and GAPDH-mediated aponecrotic cell death, as well as via mitochondrial protection, by increasing mitochondria-specific antioxidant enzymes through a mechanism involving the Akt/Nrf2 redox-signaling pathway. These findings may be exploited for neuroprotective drug development in PD and stroke therapy.
Collapse
Affiliation(s)
- Shimon Lecht
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Adi Lahiani
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Michal Klazas
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Majdi Saleem Naamneh
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel
| | - Jiayi Dong
- Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Wenhua Zheng
- Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| |
Collapse
|
6
|
Zhang K, Huang L, Cai Y, Zhong Y, Chen N, Gao F, Zhang L, Li Q, Liu Z, Zhang R, Zhang L, Yue J. Identification of a small chemical as a lysosomal calcium mobilizer and characterization of its ability to inhibit autophagy and viral infection. FEBS J 2023; 290:5353-5372. [PMID: 37528513 DOI: 10.1111/febs.16920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/10/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
We previously identified glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as one of the cyclic adenosine diphosphoribose (cADPR)'s binding proteins and found that GAPDH participates in cADPR-mediated Ca2+ release from endoplasmic reticulum via ryanodine receptors (RyRs). Here, we aimed to chemically synthesise and pharmacologically characterise novel cADPR analogues. Based on the simulated cADPR-GAPDH complex structure, we performed the structure-based drug screening, identified several small chemicals with high docking scores to cADPR's binding pocket in GAPDH and showed that two of these compounds, C244 and C346, are potential cADPR antagonists. We further synthesised several analogues of C346 and found that its analogue, G42, also mobilised Ca2+ release from lysosomes. G42 alkalised lysosomal pH and inhibited autophagosome-lysosome fusion. Moreover, G42 markedly inhibited Zika virus (ZIKV, a flavivirus) or murine hepatitis virus (MHV, a β-coronavirus) infections of host cells. These results suggest that G42 inhibits virus infection, likely by triggering lysosomal Ca2+ mobilisation and inhibiting autophagy.
Collapse
Affiliation(s)
- Kehui Zhang
- State Key Laboratory of Bioactive Substance and Function of Natual Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lihong Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Yang Cai
- Department of Biomedical Sciences, City University of Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, China
| | - Yi Zhong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Nanjun Chen
- Department of Computer Science, City University of Hong Kong, China
| | - Fei Gao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, China
| | - Qi Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Institute of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, China
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China
| |
Collapse
|
7
|
Musyaju S, Modi HR, Flerlage WJ, Scultetus AH, Shear DA, Pandya JD. Revert total protein normalization method offers a reliable loading control for mitochondrial samples following TBI. Anal Biochem 2023; 680:115301. [PMID: 37673410 DOI: 10.1016/j.ab.2023.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Owing to evidence that mitochondrial dysfunction plays a dominant role in the traumatic brain injury (TBI) pathophysiology, the Western blot (WB) based immunoblotting method is widely employed to identify changes in the mitochondrial protein expressions after neurotrauma. In WB method, the housekeeping proteins (HKPs) expression is routinely used as an internal control for sample normalization. However, the traditionally employed HKPs can be susceptible to complex cascades of TBI pathogenesis, leading to their inconsistent expression. Remarkably, our data illustrated here that mitochondrial HKPs, including Voltage-dependent anion channels (VDAC), Complex-IV, Cytochrome C and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) yielded altered expressions following penetrating TBI (PTBI) as compared to Sham. Therefore, our goal was to identify more precise normalization procedure in WB. Adult male Sprague Dawley rats (N = 6 rats/group) were used to perform PTBI, and the novel REVERT Total Protein (RTP) method was used to quantify mitochondrial protein load consistency between samples at 6 h and 24 h post-injury. Notably, the RTP method displayed superior protein normalization compared to HKPs method with higher sensitivity at both time-points between experimental groups. Our data favors application of RTP based normalization to accurately quantify protein expression where inconsistent HKPs may be evident in neuroscience research.
Collapse
Affiliation(s)
- Sudeep Musyaju
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Hiren R Modi
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - William J Flerlage
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Anke H Scultetus
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Deborah A Shear
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Jignesh D Pandya
- TBI Bioenergetics Metabolism and Neurotherapuetics, Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| |
Collapse
|
8
|
Shi M, Hou J, Liang W, Li Q, Shao S, Ci S, Shu C, Zhao X, Zhao S, Huang M, Wu C, Hu Z, He L, Guo Z, Pan F. GAPDH facilitates homologous recombination repair by stabilizing RAD51 in an HDAC1-dependent manner. EMBO Rep 2023; 24:e56437. [PMID: 37306047 PMCID: PMC10398663 DOI: 10.15252/embr.202256437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023] Open
Abstract
Homologous recombination (HR), a form of error-free DNA double-strand break (DSB) repair, is important for the maintenance of genomic integrity. Here, we identify a moonlighting protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), as a regulator of HR repair, which is mediated through HDAC1-dependent regulation of RAD51 stability. Mechanistically, in response to DSBs, Src signaling is activated and mediates GAPDH nuclear translocation. Then, GAPDH directly binds with HDAC1, releasing it from its suppressor. Subsequently, activated HDAC1 deacetylates RAD51 and prevents it from undergoing proteasomal degradation. GAPDH knockdown decreases RAD51 protein levels and inhibits HR, which is re-established by overexpression of HDAC1 but not SIRT1. Notably, K40 is an important acetylation site of RAD51, which facilitates stability maintenance. Collectively, our findings provide new insights into the importance of GAPDH in HR repair, in addition to its glycolytic activity, and they show that GAPDH stabilizes RAD51 by interacting with HDAC1 and promoting HDAC1 deacetylation of RAD51.
Collapse
Affiliation(s)
- Munan Shi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Jiajia Hou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Weichu Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Qianwen Li
- Department of Radiotherapy, Taikang Xianlin Drum Tower HospitalNanjing UniversityNanjingChina
| | - Shan Shao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Shusheng Ci
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
- School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
| | - Chuanjun Shu
- Department of Bioinformatics, School of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingChina
| | - Xingqi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Shanmeizi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Miaoling Huang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Congye Wu
- Department of Oncology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
9
|
Itakura M, Kubo T, Kaneshige A, Nakajima H. Glyceraldehyde-3-phosphate dehydrogenase regulates activation of c-Jun N-terminal kinase under oxidative stress. Biochem Biophys Res Commun 2023; 657:1-7. [PMID: 36963174 DOI: 10.1016/j.bbrc.2023.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) acts as a sensor under oxidative stress, leading to induction of various biological responses. Given that mitogen-activated protein kinase (MAPK) signaling pathways mediate cellular responses to a wide variety of stimuli, including oxidative stress, here, we aimed to elucidate whether a cross-talk cascade between GAPDH and MAPKs occurs under oxidative stress. Of the three typical MAPKs investigated-extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase (JNK)-we found that hydrogen peroxide (H2O2)-induced JNK activation is significantly reduced in HEK293 cells treated with small-interfering (si)RNA targeting GAPDH. Co-immunoprecipitation with a GAPDH antibody further revealed protein-protein interactions between GAPDH and JNK in H2O2-stmulated cells. Notably, both JNK activation and these interactions depend on oxidation of the active-site cysteine (Cys152) in GAPDH, as demonstrated by rescue experiments with either exogenous wild-type GAPDH or the cysteine-substituted mutant (C152A) in endogenous GAPDH-knockdown HEK293 cells. Moreover, H2O2-induced translocation of Bcl-2-associated X protein (Bax) into mitochondria, which occurs downstream of JNK activation, is attenuated by endogenous GAPDH knockdown in HEK293 cells. These results suggest a novel role for GAPDH in the JNK signaling pathway under oxidative stress.
Collapse
Affiliation(s)
- Masanori Itakura
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Takeya Kubo
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Akihiro Kaneshige
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Hidemitsu Nakajima
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka, Japan.
| |
Collapse
|
10
|
Udroiu I, Marinaccio J, Sgura A. Many Functions of Telomerase Components: Certainties, Doubts, and Inconsistencies. Int J Mol Sci 2022; 23:ijms232315189. [PMID: 36499514 PMCID: PMC9736166 DOI: 10.3390/ijms232315189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
A growing number of studies have evidenced non-telomeric functions of "telomerase". Almost all of them, however, investigated the non-canonical effects of the catalytic subunit TERT, and not the telomerase ribonucleoprotein holoenzyme. These functions mainly comprise signal transduction, gene regulation and the increase of anti-oxidative systems. Although less studied, TERC (the RNA component of telomerase) has also been shown to be involved in gene regulation, as well as other functions. All this has led to the publication of many reviews on the subject, which, however, are often disseminating personal interpretations of experimental studies of other researchers as original proofs. Indeed, while some functions such as gene regulation seem ascertained, especially because mechanistic findings have been provided, other ones remain dubious and/or are contradicted by other direct or indirect evidence (e.g., telomerase activity at double-strand break site, RNA polymerase activity of TERT, translation of TERC, mitochondrion-processed TERC). In a critical study of the primary evidence so far obtained, we show those functions for which there is consensus, those showing contradictory results and those needing confirmation. The resulting picture, together with some usually neglected aspects, seems to indicate a link between TERT and TERC functions and cellular stemness and gives possible directions for future research.
Collapse
|
11
|
Bilkic I, Sotelo D, Anujarerat S, Ortiz NR, Alonzo M, El Khoury R, Loyola CC, Joddar B. Development of an extrusion-based 3D-printing strategy for clustering of human neural progenitor cells. Heliyon 2022; 8:e12250. [PMID: 36636220 PMCID: PMC9830177 DOI: 10.1016/j.heliyon.2022.e12250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/28/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
3D bioprinting offers a simplified solution for the engineering of complex tissue parts for in-vitro drug discovery or, in-vivo implantation. However, significant amount of challenges exist in 3D bioprinting of neural tissues, as these are sensitive cell types to handle via extrusion bioprinting techniques. We assessed the feasibility of bioprinting human neural progenitor cells (NPCs) in 3D hydrogel lattices using a fibrinogen-alginate-chitosan bioink, previously optimized for neural-cell growth, and subsequently modified for structural support during extrusion printing, in this study. The original bioink used in this study was made by adding optimized amounts of high- and medium-viscosity alginate to the fibrinogen-chitosan-based bioink and making it extrudable under shear pressure. The mechanically robust 3D constructs promoted NPC cluster formation and maintained their morphology and viability during the entire culture period. This strategy may be useful for co-culturing of NPCs along with other cell types such as cardiac, vascular, and other cells during 3D bioprinting.
Collapse
Affiliation(s)
- Ines Bilkic
- Department of Chemical Engineering and Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Diana Sotelo
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Stephanie Anujarerat
- Department of Chemical Engineering and Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Nickolas R. Ortiz
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Matthew Alonzo
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
| | - Raven El Khoury
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
| | - Carla C. Loyola
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
| | - Binata Joddar
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), The University of Texas at El Paso, El Paso, TX, 79968, USA
- Department of Metallurgical, Materials, and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
| |
Collapse
|
12
|
Zhang J, Qiao N, Wang J, Li B. Nuclear translocation of GluA2/ GAPDH promotes neurotoxicity after pilocarpine-induced epilepsy. Epilepsy Res 2022; 183:106945. [DOI: 10.1016/j.eplepsyres.2022.106945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/01/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
|
13
|
Hyslop PA, Chaney MO. Mechanism of GAPDH Redox Signaling by H 2O 2 Activation of a Two-Cysteine Switch. Int J Mol Sci 2022; 23:4604. [PMID: 35562998 PMCID: PMC9102624 DOI: 10.3390/ijms23094604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Oxidation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by reactive oxygen species such as H2O2 activate pleiotropic signaling pathways is associated with pathophysiological cell fate decisions. Oxidized GAPDH binds chaperone proteins with translocation of the complex to the nucleus and mitochondria initiating autophagy and cellular apoptosis. In this study, we establish the mechanism by which H2O2-oxidized GAPDH subunits undergo a subunit conformational rearrangement. H2O2 oxidizes both the catalytic cysteine and a vicinal cysteine (four residues downstream) to their respective sulfenic acids. A 'two-cysteine switch' is activated, whereby the sulfenic acids irreversibly condense to an intrachain thiosulfinic ester resulting in a major metastable subunit conformational rearrangement. All four subunits of the homotetramer are uniformly and independently oxidized by H2O2, and the oxidized homotetramer is stabilized at low temperatures. Over time, subunits unfold forming disulfide-linked aggregates with the catalytic cysteine oxidized to a sulfinic acid, resulting from thiosulfinic ester hydrolysis via the highly reactive thiosulfonic ester intermediate. Molecular Dynamic Simulations provide additional mechanistic insights linking GAPDH subunit oxidation with generating a putative signaling conformer. The low-temperature stability of the H2O2-oxidized subunit conformer provides an operable framework to study mechanisms associated with gain-of-function activities of oxidized GAPDH to identify novel targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Paul A. Hyslop
- Arkley Research Labs, Arkley BioTek, LLC, 4444 Decatur Blvd., Indianapolis, IN 46241, USA
| | - Michael O. Chaney
- Eli Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA;
| |
Collapse
|
14
|
Zhai C, Huff-Lonergan EJ, Lonergan SM, Nair MN. Housekeeping Proteins in Meat Quality Research: Are They Reliable Markers for Internal Controls in Western Blot? A Mini Review. MEAT AND MUSCLE BIOLOGY 2022. [DOI: 10.22175/mmb.11551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Advancements in technology and analytical methods enable researchers to explore the biochemical events that cause variation in meat quality. Among those, western blot techniques have been successfully used in identifying and quantifying the key proteins that have critical functions in the development of meat quality. Housekeeping proteins, like β-actin, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and tubulins are often used as internal controls in western blots to normalize the abundance of the protein of interest. However, there are increasing concerns about using housekeeping proteins for western blot normalization, as these proteins do not demonstrate any loading differences above the relatively small total protein loading amounts of 10μg. In addition, the interaction between these housekeeping proteins and programmed cell death processes highlights the concerns about using the housekeeping protein as the internal control in meat quality research. Moreover, recent proteomic research has indicated that the abundance of some housekeeping proteins, like β-actin, GAPDH, and tubulin, can be altered by preslaughter stress, dietary supplementation, sex, slaughter method, genotype, breed, aging period, muscle type, and muscle portion. Furthermore, these housekeeping proteins could have differential expression in meat with differing color stability, tenderness, and water holding capacity. Therefore, this review aims to examine the realities of using housekeeping proteins as the loading control in meat quality research and introduce some alternative methods that can be used for western blot normalization.
Collapse
Affiliation(s)
- Chaoyu Zhai
- Colorado State University Department of Animal Sciences
| | | | | | | |
Collapse
|
15
|
Mustafa Rizvi SH, Shao D, Tsukahara Y, Pimentel DR, Weisbrod RM, Hamburg NM, McComb ME, Matsui R, Bachschmid MM. Oxidized GAPDH transfers S-glutathionylation to a nuclear protein Sirtuin-1 leading to apoptosis. Free Radic Biol Med 2021; 174:73-83. [PMID: 34332079 PMCID: PMC8432375 DOI: 10.1016/j.freeradbiomed.2021.07.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 07/25/2021] [Indexed: 11/17/2022]
Abstract
AIMS S-glutathionylation is a reversible oxidative modification of protein cysteines that plays a critical role in redox signaling. Glutaredoxin-1 (Glrx), a glutathione-specific thioltransferase, removes protein S-glutathionylation. Glrx, though a cytosolic protein, can activate a nuclear protein Sirtuin-1 (SirT1) by removing its S-glutathionylation. Glrx ablation causes metabolic abnormalities and promotes controlled cell death and fibrosis in mice. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a key enzyme of glycolysis, is sensitive to oxidative modifications and involved in apoptotic signaling via the SirT1/p53 pathway in the nucleus. We aimed to elucidate the extent to which S-glutathionylation of GAPDH and glutaredoxin-1 contribute to GAPDH/SirT1/p53 apoptosis pathway. RESULTS Exposure of HEK 293T cells to hydrogen peroxide (H2O2) caused rapid S-glutathionylation and nuclear translocation of GAPDH. Nuclear GAPDH peaked 10-15 min after the addition of H2O2. Overexpression of Glrx or redox dead mutant GAPDH inhibited S-glutathionylation and nuclear translocation. Nuclear GAPDH formed a protein complex with SirT1 and exchanged S-glutathionylation to SirT1 and inhibited its deacetylase activity. Inactivated SirT1 remained stably bound to acetylated-p53 and initiated apoptotic signaling resulting in cleavage of caspase-3. We observed similar effects in human primary aortic endothelial cells suggesting the GAPDH/SirT1/p53 pathway as a common apoptotic mechanism. CONCLUSIONS Abundant GAPDH with its highly reactive-cysteine thiolate may function as a cytoplasmic rheostat to sense oxidative stress. S-glutathionylation of GAPDH may relay the signal to the nucleus where GAPDH trans-glutathionylates nuclear proteins such as SirT1 to initiate apoptosis. Glrx reverses GAPDH S-glutathionylation and prevents its nuclear translocation and cytoplasmic-nuclear redox signaling leading to apoptosis. Our data suggest that trans-glutathionylation is a critical step in apoptotic signaling and a potential mechanism that cytosolic Glrx controls nuclear transcription factors.
Collapse
Affiliation(s)
- Syed Husain Mustafa Rizvi
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, USA; Cardiology, Whitaker Cardiovascular Institute, And Boston University School of Medicine, Boston, MA, USA
| | - Di Shao
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, USA
| | - Yuko Tsukahara
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, USA
| | - David Richard Pimentel
- Cardiology, Whitaker Cardiovascular Institute, And Boston University School of Medicine, Boston, MA, USA
| | - Robert M Weisbrod
- Cardiology, Whitaker Cardiovascular Institute, And Boston University School of Medicine, Boston, MA, USA
| | - Naomi M Hamburg
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, USA; Cardiology, Whitaker Cardiovascular Institute, And Boston University School of Medicine, Boston, MA, USA
| | - Mark E McComb
- Cardiovascular Proteomics Center, Boston University School of Medicine, Boston, MA, USA
| | - Reiko Matsui
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, USA.
| | | |
Collapse
|
16
|
Nakamura T, Oh CK, Zhang X, Tannenbaum SR, Lipton SA. Protein Transnitrosylation Signaling Networks Contribute to Inflammaging and Neurodegenerative Disorders. Antioxid Redox Signal 2021; 35:531-550. [PMID: 33957758 PMCID: PMC8388249 DOI: 10.1089/ars.2021.0081] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: Physiological concentrations of nitric oxide (NO•) and related reactive nitrogen species (RNS) mediate multiple signaling pathways in the nervous system. During inflammaging (chronic low-grade inflammation associated with aging) and in neurodegenerative diseases, excessive RNS contribute to synaptic and neuronal loss. "NO signaling" in both health and disease is largely mediated through protein S-nitrosylation (SNO), a redox-based posttranslational modification with "NO" (possibly in the form of nitrosonium cation [NO+]) reacting with cysteine thiol (or, more properly, thiolate anion [R-S-]). Recent Advances: Emerging evidence suggests that S-nitrosylation occurs predominantly via transnitros(yl)ation. Mechanistically, the reaction involves thiolate anion, as a nucleophile, performing a reversible nucleophilic attack on a nitroso nitrogen to form an SNO-protein adduct. Prior studies identified transnitrosylation reactions between glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-nuclear proteins, thioredoxin-caspase-3, and X-linked inhibitor of apoptosis (XIAP)-caspase-3. Recently, we discovered that enzymes previously thought to act in completely disparate biochemical pathways can transnitrosylate one another during inflammaging in an unexpected manner to mediate neurodegeneration. Accordingly, we reported a concerted tricomponent transnitrosylation network from Uch-L1-to-Cdk5-to-Drp1 that mediates synaptic damage in Alzheimer's disease. Critical Issues: Transnitrosylation represents a critical chemical mechanism for transduction of redox-mediated events to distinct subsets of proteins. Although thousands of thiol-containing proteins undergo S-nitrosylation, how transnitrosylation regulates a myriad of neuronal attributes is just now being uncovered. In this review, we highlight recent progress in the study of the chemical biology of transnitrosylation between proteins as a mechanism of disease. Future Directions: We discuss future areas of study of protein transnitrosylation that link our understanding of aging, inflammation, and neurodegenerative diseases. Antioxid. Redox Signal. 35, 531-550.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Chang-Ki Oh
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Xu Zhang
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Steven R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stuart A Lipton
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA.,Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
17
|
Sakaguchi M, Nishiuchi R, Bando M, Yamada Y, Kondo R, Mitsumori M, Shiokawa A, Kanazawa M, Ikeguchi S, Kikyo F, Tanaka S. Prolyl oligopeptidase participates in the cytosine arabinoside-induced nuclear translocation of glyceraldehyde 3-phosphate dehydrogenase in a human neuroblastoma cell line. Biochem Biophys Res Commun 2021; 572:65-71. [PMID: 34358965 DOI: 10.1016/j.bbrc.2021.07.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022]
Abstract
Previously, we reported that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a binding partner of prolyl oligopeptidase (POP) in neuroblastoma NB-1 cells and that the POP inhibitor, SUAM-14746, inhibits cytosine arabinoside (Ara-C)-induced nuclear translocation of GAPDH and protects against Ara-C cytotoxicity. To carry out a more in-depth analysis of the interaction between POP and GAPDH, we generated POP-KO NB-1 cells and compared the nuclear translocation of GAPDH after Ara-C with or without SUAM-14746 treatment to wild-type NB-1 cells by western blotting and fluorescence immunostaining. Ara-C did not induce the nuclear translocation of GAPDH and SUAM-14746 did not protect against Ara-C cytotoxicity in POP-KO cells. These results indicate that the anticancer effects of Ara-C not only include the commonly known antimetabolic effects, but also the induction of cell death by nuclear transfer of GAPDH through interaction with POP.
Collapse
Affiliation(s)
- Minoru Sakaguchi
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| | - Ryota Nishiuchi
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Mika Bando
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yui Yamada
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Rie Kondo
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Mika Mitsumori
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Ai Shiokawa
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Miyuki Kanazawa
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Shiori Ikeguchi
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Fumi Kikyo
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Satoshi Tanaka
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| |
Collapse
|
18
|
Kim H, Rhee SJ, Lee H, Han D, Lee TY, Kim M, Kim EY, Kwon JS, Shin H, Kim H, Ahn YM, Ha K. Identification of altered protein expression in major depressive disorder and bipolar disorder patients using liquid chromatography-tandem mass spectrometry. Psychiatry Res 2021; 299:113850. [PMID: 33711561 DOI: 10.1016/j.psychres.2021.113850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/28/2021] [Indexed: 01/07/2023]
Abstract
Emerging high-throughput proteomic technologies have recently been considered as a powerful means of identifying substrates involved in mood disorders. We performed proteomic profiling using liquid chromatography-tandem mass spectrometry to identify dysregulated proteins in plasma samples of 42 and 45 patients with major depressive disorder (MDD) and bipolar disorder (BD), respectively, in comparison to 51 healthy controls (HCs). Fourteen and six proteins in MDD and BD patients, respectively, were differentially expressed compared to HCs, among which coagulation factor XIII A chain (F13A1), platelet basic protein (PPBP), platelet facor 4 (PF4), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and thymosin beta-4 (TMSB4X) were altered in both disorders. For proteins dysregulated in both, except F13A1, higher fold changes were observed in MDD than in BD patients. These findings may help identify candidate biomarkers of mood disorders and elucidate their underlying pathophysiology and biochemical abnormalities.
Collapse
Affiliation(s)
- Hyeyoung Kim
- Department of Psychiatry, Inha University Hospital, Incheon, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Jin Rhee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyunju Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Neuropsychiatry, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyunsuk Shin
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeyoon Kim
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong Min Ahn
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| | - Kyooseob Ha
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Wang JL, Chen WG, Zhang JJ, Xu CJ. Nogo-A-Δ20/EphA4 interaction antagonizes apoptosis of neural stem cells by integrating p38 and JNK MAPK signaling. J Mol Histol 2021; 52:521-537. [PMID: 33555537 DOI: 10.1007/s10735-021-09960-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/25/2021] [Indexed: 11/26/2022]
Abstract
Nogo-A protein consists of two main extracellular domains: Nogo-66 (rat amino acid [aa] 1019-1083) and Nogo-A-Δ20 (extracellular, active 180 amino acid Nogo-A region), which serve as strong inhibitors of axon regeneration in the adult CNS (Central Nervous System). Although receptors S1PR2 and HSPGs have been identified as Nogo-A-Δ20 binding proteins, it remains at present elusive whether other receptors directly interacting with Nogo-A-Δ20 exist, and decrease cell death. On the other hand, the key roles of EphA4 in the regulation of glioblastoma, axon regeneration and NSCs (Neural Stem Cells) proliferation or differentiation are well understood, but little is known the relationship between EphA4 and Nogo-A-Δ20 in NSCs apoptosis. Thus, we aim to determine whether Nogo-A-Δ20 can bind to EphA4 and affect survival of NSCs. Here, we discover that EphA4, belonging to a member of erythropoietin-producing hepatocellular (Eph) receptors family, could be acting as a high affinity ligand for Nogo-A-Δ20. Trans-membrane protein of EphA4 is needed for Nogo-A-Δ20-triggered inhibition of NSCs apoptosis, which are mediated by balancing p38 inactivation and JNK MAPK pathway activation. Finally, we predict at the atomic level that essential residues Lys-205, Ile-190, Pro-194 in Nogo-A-Δ20 and EphA4 residues Gln-390, Asn-425, Pro-426 might play critical roles in Nogo-A-Δ20/EphA4 binding via molecular docking.
Collapse
Affiliation(s)
- Jun-Ling Wang
- Center for Reproductive Medicine, Affiliated Hospital 1 of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Wei-Guang Chen
- Department of Histology & Embryology, School of Basic Medical Science, Wenzhou Medical University, Cha Shan University Town, No.1 Central North Road, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Jia-Jia Zhang
- School of 1St Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Chao-Jin Xu
- Department of Histology & Embryology, School of Basic Medical Science, Wenzhou Medical University, Cha Shan University Town, No.1 Central North Road, Wenzhou, 325035, Zhejiang, People's Republic of China.
| |
Collapse
|
20
|
Roosterman D, Cottrell GS. The two-cell model of glucose metabolism: a hypothesis of schizophrenia. Mol Psychiatry 2021; 26:1738-1747. [PMID: 33402704 PMCID: PMC8440173 DOI: 10.1038/s41380-020-00980-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/16/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a chronic and severe mental disorder that affects over 20 million people worldwide. Common symptoms include distortions in thinking, perception, emotions, language, and self awareness. Different hypotheses have been proposed to explain the development of schizophrenia, however, there are no unifying features between the proposed hypotheses. Schizophrenic patients have perturbed levels of glucose in their cerebrospinal fluid, indicating a disturbance in glucose metabolism. We have explored the possibility that disturbances in glucose metabolism can be a general mechanism for predisposition and manifestation of the disease. We discuss glucose metabolism as a network of signaling pathways. Glucose and glucose metabolites can have diverse actions as signaling molecules, such as regulation of transcription factors, hormone and cytokine secretion and activation of neuronal cells, such as microglia. The presented model challenges well-established concepts in enzyme kinetics and glucose metabolism. We have developed a 'two-cell' model of glucose metabolism, which can explain the effects of electroconvulsive therapy and the beneficial and side effects of olanzapine treatment. Arrangement of glycolytic enzymes into metabolic signaling complexes within the 'two hit' hypothesis, allows schizophrenia to be formulated in two steps. The 'first hit' is the dysregulation of the glucose signaling pathway. This dysregulation of glucose metabolism primes the central nervous system for a pathological response to a 'second hit' via the astrocytic glycogenolysis signaling pathway.
Collapse
Affiliation(s)
- Dirk Roosterman
- Ruhr Universität Bochum, LWL-Hospital of Psychiatry, Bochum, Germany.
| | - Graeme Stuart Cottrell
- grid.9435.b0000 0004 0457 9566School of Pharmacy, University of Reading, Reading, RG6 6AP UK
| |
Collapse
|
21
|
Finelli MJ. Redox Post-translational Modifications of Protein Thiols in Brain Aging and Neurodegenerative Conditions-Focus on S-Nitrosation. Front Aging Neurosci 2020; 12:254. [PMID: 33088270 PMCID: PMC7497228 DOI: 10.3389/fnagi.2020.00254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species and reactive nitrogen species (RONS) are by-products of aerobic metabolism. RONS trigger a signaling cascade that can be transduced through oxidation-reduction (redox)-based post-translational modifications (redox PTMs) of protein thiols. This redox signaling is essential for normal cellular physiology and coordinately regulates the function of redox-sensitive proteins. It plays a particularly important role in the brain, which is a major producer of RONS. Aberrant redox PTMs of protein thiols can impair protein function and are associated with several diseases. This mini review article aims to evaluate the role of redox PTMs of protein thiols, in particular S-nitrosation, in brain aging, and in neurodegenerative diseases. It also discusses the potential of using redox-based therapeutic approaches for neurodegenerative conditions.
Collapse
Affiliation(s)
- Mattéa J Finelli
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
22
|
Muronetz VI, Melnikova AK, Saso L, Schmalhausen EV. Influence of Oxidative Stress on Catalytic and Non-glycolytic Functions of Glyceraldehyde-3-phosphate Dehydrogenase. Curr Med Chem 2020; 27:2040-2058. [PMID: 29848267 DOI: 10.2174/0929867325666180530101057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) is a unique enzyme that, besides its main function in glycolysis (catalysis of glyceraldehyde-3-phosphate oxidation), possesses a number of non-glycolytic activities. The present review summarizes information on the role of oxidative stress in the regulation of the enzymatic activity as well as non-glycolytic functions of GAPDH. METHODS Based on the analysis of literature data and the results obtained in our research group, mechanisms of the regulation of GAPDH functions through the oxidation of the sulfhydryl groups in the active site of the enzyme have been suggested. RESULTS Mechanism of GAPDH oxidation includes consecutive oxidation of the catalytic Cysteine (Cys150) into sulfenic, sulfinic, and sulfonic acid derivatives, resulting in the complete inactivation of the enzyme. The cysteine sulfenic acid reacts with reduced glutathione (GSH) to form a mixed disulfide (S-glutathionylated GAPDH) that further reacts with Cys154 yielding the disulfide bond in the active site of the enzyme. In contrast to the sulfinic and sulfonic acids, the mixed disulfide and the intramolecular disulfide bond are reversible oxidation products that can be reduced in the presence of GSH or thioredoxin. CONCLUSION Oxidation of sulfhydryl groups in the active site of GAPDH is unavoidable due to the enhanced reactivity of Cys150. The irreversible oxidation of Cys150 is prevented by Sglutathionylation and disulfide bonding with Cys154. The oxidation/reduction of the sulfhydryl groups in the active site of GAPDH can be used for regulation of glycolysis and numerous side activities of this enzyme including the induction of apoptosis.
Collapse
Affiliation(s)
- Vladimir I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Aleksandra K Melnikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer"Sapienza, University of Rome, Rome, Italy
| | - Elena V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
23
|
Grolla AA, Miggiano R, Di Marino D, Bianchi M, Gori A, Orsomando G, Gaudino F, Galli U, Del Grosso E, Mazzola F, Angeletti C, Guarneri M, Torretta S, Calabrò M, Boumya S, Fan X, Colombo G, Travelli C, Rocchio F, Aronica E, Wohlschlegel JA, Deaglio S, Rizzi M, Genazzani AA, Garavaglia S. A nicotinamide phosphoribosyltransferase-GAPDH interaction sustains the stress-induced NMN/NAD + salvage pathway in the nucleus. J Biol Chem 2020; 295:3635-3651. [PMID: 31988240 DOI: 10.1074/jbc.ra119.010571] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/16/2020] [Indexed: 12/26/2022] Open
Abstract
All cells require sustained intracellular energy flux, which is driven by redox chemistry at the subcellular level. NAD+, its phosphorylated variant NAD(P)+, and its reduced forms NAD(P)/NAD(P)H are all redox cofactors with key roles in energy metabolism and are substrates for several NAD-consuming enzymes (e.g. poly(ADP-ribose) polymerases, sirtuins, and others). The nicotinamide salvage pathway, constituted by nicotinamide mononucleotide adenylyltransferase (NMNAT) and nicotinamide phosphoribosyltransferase (NAMPT), mainly replenishes NAD+ in eukaryotes. However, unlike NMNAT1, NAMPT is not known to be a nuclear protein, prompting the question of how the nuclear NAD+ pool is maintained and how it is replenished upon NAD+ consumption. In the present work, using human and murine cells; immunoprecipitation, pulldown, and surface plasmon resonance assays; and immunofluorescence, small-angle X-ray scattering, and MS-based analyses, we report that GAPDH and NAMPT form a stable complex that is essential for nuclear translocation of NAMPT. This translocation furnishes NMN to replenish NAD+ to compensate for the activation of NAD-consuming enzymes by stressful stimuli induced by exposure to H2O2 or S-nitrosoglutathione and DNA damage inducers. These results indicate that by forming a complex with GAPDH, NAMPT can translocate to the nucleus and thereby sustain the stress-induced NMN/NAD+ salvage pathway.
Collapse
Affiliation(s)
- Ambra A Grolla
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Riccardo Miggiano
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Michele Bianchi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare (ICRM-CNR), via Mario Bianco 9, 20131 Milano, Italy
| | - Giuseppe Orsomando
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60128 Ancona, Italy
| | - Federica Gaudino
- Department of Medical Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy
| | - Ubaldina Galli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Erika Del Grosso
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Francesca Mazzola
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60128 Ancona, Italy
| | - Carlo Angeletti
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60128 Ancona, Italy
| | - Martina Guarneri
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Simone Torretta
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Marta Calabrò
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Sara Boumya
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Xiaorui Fan
- Department of Biological Chemistry, UCLA, Los Angeles, California 90095
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Francesca Rocchio
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, 1001 NK Amsterdam, The Netherlands
| | | | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; Italian Institute for Genomic Medicine, Via Nizza 52, 10126 Turin, Italy
| | - Menico Rizzi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy.
| | - Silvia Garavaglia
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy.
| |
Collapse
|
24
|
Sekar S, Taghibiglou C. Nuclear accumulation of GAPDH, GluA2 and p53 in post-mortem substantia nigral region of patients with Parkinson’s disease. Neurosci Lett 2020; 716:134641. [DOI: 10.1016/j.neulet.2019.134641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 11/25/2022]
|
25
|
e Silva KSF, Lima RM, Baeza LC, Lima PDS, Cordeiro TDM, Charneau S, da Silva RA, Soares CMDA, Pereira M. Interactome of Glyceraldehyde-3-Phosphate Dehydrogenase Points to the Existence of Metabolons in Paracoccidioides lutzii. Front Microbiol 2019; 10:1537. [PMID: 31338083 PMCID: PMC6629890 DOI: 10.3389/fmicb.2019.01537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/20/2019] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioides is a dimorphic fungus, the causative agent of paracoccidioidomycosis. The disease is endemic within Latin America and prevalent in Brazil. The treatment is based on azoles, sulfonamides and amphotericin B. The seeking for new treatment approaches is a real necessity for neglected infections. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an essential glycolytic enzyme, well known for its multitude of functions within cells, therefore categorized as a moonlight protein. To our knowledge, this is the first approach performed on the Paracoccidioides genus regarding the description of PPIs having GAPDH as a target. Here, we show an overview of experimental GAPDH interactome in different phases of Paracoccidioides lutzii and an in silico analysis of 18 proteins partners. GAPDH interacted with 207 proteins in P. lutzii. Several proteins bound to GAPDH in mycelium, transition and yeast phases are common to important pathways such as glycolysis and TCA. We performed a co-immunoprecipitation assay to validate the complex formed by GAPDH with triose phosphate isomerase, enolase, isocitrate lyase and 2-methylcitrate synthase. We found GAPDH participating in complexes with proteins of specific pathways, indicating the existence of a glycolytic and a TCA metabolon in P. lutzii. GAPDH interacted with several proteins that undergoes regulation by nitrosylation. In addition, we modeled the GAPDH 3-D structure, performed molecular dynamics and molecular docking in order to identify the interacting interface between GAPDH and the interacting proteins. Despite the large number of interacting proteins, GAPDH has only four main regions of contact with interacting proteins, reflecting its ancestrality and conservation over evolution.
Collapse
Affiliation(s)
| | - Raisa Melo Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lilian Cristiane Baeza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Thuany de Moura Cordeiro
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Sébastien Charneau
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Roosevelt Alves da Silva
- Núcleo Colaborativo de Biossistemas, Instituto de Ciências Exatas, Universidade Federal de Jataí, Goiás, Brazil
| | | | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
26
|
Zheng Q, Liu P, Gao G, Yuan J, Wang P, Huang J, Xie L, Lu X, Di F, Tong T, Chen J, Lu Z, Guan J, Wang G. Mitochondrion-processed TERC regulates senescence without affecting telomerase activities. Protein Cell 2019; 10:631-648. [PMID: 30788732 PMCID: PMC6711880 DOI: 10.1007/s13238-019-0612-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial dysfunctions play major roles in ageing. How mitochondrial stresses invoke downstream responses and how specificity of the signaling is achieved, however, remains unclear. We have previously discovered that the RNA component of Telomerase TERC is imported into mitochondria, processed to a shorter form TERC-53, and then exported back to the cytosol. Cytosolic TERC-53 levels respond to mitochondrial functions, but have no direct effect on these functions, suggesting that cytosolic TERC-53 functions downstream of mitochondria as a signal of mitochondrial functions. Here, we show that cytosolic TERC-53 plays a regulatory role on cellular senescence and is involved in cognition decline in 10 months old mice, independent of its telomerase function. Manipulation of cytosolic TERC-53 levels affects cellular senescence and cognition decline in 10 months old mouse hippocampi without affecting telomerase activity, and most importantly, affects cellular senescence in terc−/− cells. These findings uncover a senescence-related regulatory pathway with a non-coding RNA as the signal in mammals.
Collapse
Affiliation(s)
- Qian Zheng
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Peipei Liu
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ge Gao
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jiapei Yuan
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Pengfeng Wang
- Peking University Research Center on Aging, Beijing, 100191, China
| | - Jinliang Huang
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Leiming Xie
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinping Lu
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fan Di
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tanjun Tong
- Peking University Research Center on Aging, Beijing, 100191, China.,Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Jun Chen
- Peking University Research Center on Aging, Beijing, 100191, China.,Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Zhi Lu
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jisong Guan
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Geng Wang
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
27
|
Salazar C, Elorza AA, Cofre G, Ruiz-Hincapie P, Shirihai O, Ruiz LM. The OXPHOS supercomplex assembly factor HIG2A responds to changes in energetic metabolism and cell cycle. J Cell Physiol 2019; 234:17405-17419. [PMID: 30779122 DOI: 10.1002/jcp.28362] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 01/20/2023]
Abstract
HIG2A promotes cell survival under hypoxia and mediates the assembly of complex III and complex IV into respiratory chain supercomplexes. In the present study, we show that human HIGD2A and mouse Higd2a gene expressions are regulated by hypoxia, glucose, and the cell cycle-related transcription factor E2F1. The latter was found to bind the promoter region of HIGD2A. Differential expression of the HIGD2A gene was found in C57BL/6 mice in relation to tissue and age. Besides, the silencing of HIGD2A evidenced the modulation of mitochondrial dynamics proteins namely, OPA1 as a fusion protein increases, while FIS1, a fission protein, decreases. Besides, the mitochondrial membrane potential (ΔΨm) increased. The protein HIG2A is localized in the mitochondria and nucleus. Moreover, we observed that the HIG2A protein interacts with OPA1. Changes in oxygen concentration, glucose availability, and cell cycle regulate HIGD2A expression. Alterations in HIGD2A expression are associated with changes in mitochondrial physiology.
Collapse
Affiliation(s)
- Celia Salazar
- Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Alvaro A Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Glenda Cofre
- Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Paula Ruiz-Hincapie
- School of Engineering and Technology, University of Hertfordshire, Hatfield, UK
| | - Orian Shirihai
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Lina María Ruiz
- Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
28
|
Narula K, Choudhary P, Ghosh S, Elagamey E, Chakraborty N, Chakraborty S. Comparative Nuclear Proteomics Analysis Provides Insight into the Mechanism of Signaling and Immune Response to Blast Disease Caused byMagnaportheoryzaein Rice. Proteomics 2019; 19:e1800188. [DOI: 10.1002/pmic.201800188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/23/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Kanika Narula
- National Institute of Plant Genome Research New Delhi 110067 India
| | - Pooja Choudhary
- National Institute of Plant Genome Research New Delhi 110067 India
| | - Sudip Ghosh
- National Institute of Plant Genome Research New Delhi 110067 India
| | - Eman Elagamey
- National Institute of Plant Genome Research New Delhi 110067 India
| | | | | |
Collapse
|
29
|
Huangyang P, Simon MC. Hidden features: exploring the non-canonical functions of metabolic enzymes. Dis Model Mech 2018; 11:11/8/dmm033365. [PMID: 29991493 PMCID: PMC6124551 DOI: 10.1242/dmm.033365] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The study of cellular metabolism has been rigorously revisited over the past decade, especially in the field of cancer research, revealing new insights that expand our understanding of malignancy. Among these insights is the discovery that various metabolic enzymes have surprising activities outside of their established metabolic roles, including in the regulation of gene expression, DNA damage repair, cell cycle progression and apoptosis. Many of these newly identified functions are activated in response to growth factor signaling, nutrient and oxygen availability, and external stress. As such, multifaceted enzymes directly link metabolism to gene transcription and diverse physiological and pathological processes to maintain cell homeostasis. In this Review, we summarize the current understanding of non-canonical functions of multifaceted metabolic enzymes in disease settings, especially cancer, and discuss specific circumstances in which they are employed. We also highlight the important role of subcellular localization in activating these novel functions. Understanding their non-canonical properties should enhance the development of new therapeutic strategies for cancer treatment. Summary: This Review summarizes recent findings about multifaceted metabolic enzymes with non-canonical activities outside their core biochemical functions, and how they may provide new therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Peiwei Huangyang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Departments of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA .,Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Abstract
Deprenyl, a monoamine oxidase inhibitor used in the treatment of Parkinson's disease, along with its primary metabolite desmethyldeprenyl (DES) have been shown to reduce neuronal apoptosis by a mechanism that requires gene transcription and involves the maintenance of mitochondrial membrane potential. This review article explores the mechanisms by which DES maintains mitochondrial membrane potential. Mediated by GAPDH binding, DES increases mitochondrial BCL-2 and BCL-xL levels and decreases BAX levels thereby preventing the permeability transition pore (PTP) form opening and preventing apoptotic degradation. The favorable effects of deprenyl on neuronal apoptosis suggests the therapeutic potential of designing compounds with the capacity to alter the configurations of pro-apoptosis or anti-apoptotic proteins.
Collapse
Affiliation(s)
- W G Tatton
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA.
| |
Collapse
|
31
|
Vidal RS, Quarti J, Rodrigues MF, Rumjanek FD, Rumjanek VM. Metabolic Reprogramming During Multidrug Resistance in Leukemias. Front Oncol 2018; 8:90. [PMID: 29675398 PMCID: PMC5895924 DOI: 10.3389/fonc.2018.00090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer outcome has improved since introduction of target therapy. However, treatment success is still impaired by the same drug resistance mechanism of classical chemotherapy, known as multidrug resistance (MDR) phenotype. This phenotype promotes resistance to drugs with different structures and mechanism of action. Recent reports have shown that resistance acquisition is coupled to metabolic reprogramming. High-gene expression, increase of active transport, and conservation of redox status are one of the few examples that increase energy and substrate demands. It is not clear if the role of this metabolic shift in the MDR phenotype is related to its maintenance or to its induction. Apart from the nature of this relation, the metabolism may represent a new target to avoid or to block the mechanism that has been impairing treatment success. In this mini-review, we discuss the relation between metabolism and MDR resistance focusing on the multiple non-metabolic functions that enzymes of the glycolytic pathway are known to display, with emphasis with the diverse activities of glyceraldehyde-3-phosphate dehydrogenase.
Collapse
Affiliation(s)
- Raphael Silveira Vidal
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julia Quarti
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Franklin D Rumjanek
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian M Rumjanek
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Yan X, Wu L, Lin Q, Dai X, Hu H, Wang K, Zhang C, Shao M, Cai L, Tan Y. From the Cover: Alcohol Inhibition of the Enzymatic Activity of Glyceraldehyde 3-Phosphate Dehydrogenase Impairs Cardiac Glucose Utilization, Contributing to Alcoholic Cardiomyopathy. Toxicol Sci 2017; 159:392-401. [PMID: 28962519 DOI: 10.1093/toxsci/kfx140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024] Open
Abstract
Heavy consumption of alcohol induces cardiomyopathy and is associated with metabolic changes in the heart. The role of altered metabolism in the development of alcoholic cardiomyopathy remains largely unknown but is examined in the present study. The effect of chronic alcohol consumption on cardiac damage was examined in mice fed an alcohol or isocaloric control diet for 2 months. Signaling pathways of alcohol-induced metabolic alteration and pathologic changes were examined in both animal hearts and H9c2 cell cultures. Compared with controls, the hearts from the alcohol-fed mice exhibited cardiac oxidative stress, cell death, a fibrotic response, hypertrophic remodeling, and the eventual development of cardiac dysfunction. All these detrimental effects could be ameliorated by superoxide dismutase mimic Mn (111) tetrakis 1-methyl 4-pyridylporphyrin pentachloride (MnTMPyP) therapy. A mechanistic study showed that chronic alcohol exposure enhanced the expression of proteins regulating fatty acid uptake but impaired the expression of proteins involved in mitochondrial fatty acid oxidation, which compensatively geared the heart to the suboptimal energy source, glucose. However, chronic alcohol exposure also impaired the glycolytic energy production step regulated by glyceraldehyde-3-phosphate dehydrogenase, which further feeds back to enhance glucose uptake signaling and the accumulation of glycolytic intermediate product fructose, resulting in aggravation of alcohol-induced cardiac oxidative stress, cell death, and remodeling. All these dysmetabolic alterations could be normalized by MnTMPyP treatment, along with significant improvement in cardiac cell death and remodeling. These results demonstrate that alcohol-induced oxidative stress and altered glucose metabolism are causal factors for the development of alcoholic cardiomyopathy.
Collapse
Affiliation(s)
- Xiaoqing Yan
- Chinese-American Research Institute for Diabetic Complications & School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan University-Town, Wenzhou, Zhejiang, China
| | - Lianpin Wu
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian Lin
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, Kentucky
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky
| | - Xiaozhen Dai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, Kentucky
- School of Biomedicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Haiqi Hu
- Chinese-American Research Institute for Diabetic Complications & School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan University-Town, Wenzhou, Zhejiang, China
| | - Kai Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chi Zhang
- Chinese-American Research Institute for Diabetic Complications & School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan University-Town, Wenzhou, Zhejiang, China
| | - Minglong Shao
- Chinese-American Research Institute for Diabetic Complications & School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan University-Town, Wenzhou, Zhejiang, China
| | - Lu Cai
- Chinese-American Research Institute for Diabetic Complications & School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan University-Town, Wenzhou, Zhejiang, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, Kentucky
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications & School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan University-Town, Wenzhou, Zhejiang, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, Kentucky
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
33
|
Barinova K, Eldarov M, Khomyakova E, Muronetz V, Schmalhausen E. Isolation of recombinant human untagged glyceraldehyde-3-phosphate dehydrogenase from E. coli producer strain. Protein Expr Purif 2017. [DOI: 10.1016/j.pep.2017.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Morris G, Walder K, Carvalho AF, Tye SJ, Lucas K, Berk M, Maes M. The role of hypernitrosylation in the pathogenesis and pathophysiology of neuroprogressive diseases. Neurosci Biobehav Rev 2017; 84:453-469. [PMID: 28789902 DOI: 10.1016/j.neubiorev.2017.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/02/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
There is a wealth of data indicating that de novo protein S-nitrosylation in general and protein transnitrosylation in particular mediates the bulk of nitric oxide signalling. These processes enable redox sensing and facilitate homeostatic regulation of redox dependent protein signalling, function, stability and trafficking. Increased S-nitrosylation in an environment of increasing oxidative and nitrosative stress (O&NS) is initially a protective mechanism aimed at maintaining protein structure and function. When O&NS becomes severe, mechanisms governing denitrosylation and transnitrosylation break down leading to the pathological state referred to as hypernitrosylation (HN). Such a state has been implicated in the pathogenesis and pathophysiology of several neuropsychiatric and neurodegenerative diseases and we investigate its potential role in the development and maintenance of neuroprogressive disorders. In this paper, we propose a model whereby the hypernitrosylation of a range of functional proteins and enzymes lead to changes in activity which conspire to produce at least some of the core abnormalities contributing to the development and maintenance of pathology in these illnesses.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW, Wales, United Kingdom
| | - Ken Walder
- Deakin University, The Centre for Molecular and Medical Research, School of Medicine, P.O. Box 291, Geelong, 3220, Australia
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, 60430-040, Fortaleza, CE, Brazil
| | - Susannah J Tye
- Deakin University, The Centre for Molecular and Medical Research, School of Medicine, P.O. Box 291, Geelong, 3220, Australia; Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, 60430-040, Fortaleza, CE, Brazil; Deakin University, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, 3220, Australia; Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - Kurt Lucas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, 3220, Australia; Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia.
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, 3220, Australia; Department of Psychiatry, Chulalongkorn University, Faculty of Medicine, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
35
|
Kosova AA, Khodyreva SN, Lavrik OI. Role of Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) in DNA Repair. BIOCHEMISTRY (MOSCOW) 2017; 82:643-654. [PMID: 28601074 DOI: 10.1134/s0006297917060013] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is widely known as a glycolytic enzyme. Nevertheless, various functions of GAPDH have been found that are unrelated to glycolysis. Some of these functions presume interaction of GAPDH with DNA, but the mechanism of its translocation to the nucleus is not fully understood. When in the nucleus, GAPDH participates in the initiation of apoptosis and transcription of genes involved in antiapoptotic pathways and cell proliferation and plays a role in the regulation of telomere length. Several authors have shown that GAPDH displays the uracil-DNA glycosylase activity and interacts with some types of DNA damages, such as apurinic/apyrimidinic sites, nucleotide analogs, and covalent DNA adducts with alkylating agents. Moreover, GAPDH can interact with proteins participating in DNA repair, such as APE1, PARP1, HMGB1, and HMGB2. In this review, the functions of GAPDH associated with DNA repair are discussed in detail.
Collapse
Affiliation(s)
- A A Kosova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | |
Collapse
|
36
|
Aroca A, Schneider M, Scheibe R, Gotor C, Romero LC. Hydrogen Sulfide Regulates the Cytosolic/Nuclear Partitioning of Glyceraldehyde-3-Phosphate Dehydrogenase by Enhancing its Nuclear Localization. PLANT & CELL PHYSIOLOGY 2017; 58:983-992. [PMID: 28444344 DOI: 10.1093/pcp/pcx056] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/13/2017] [Indexed: 05/18/2023]
Abstract
Hydrogen sulfide is an important signaling molecule comparable with nitric oxide and hydrogen peroxide in plants. The underlying mechanism of its action is unknown, although it has been proposed to be S-sulfhydration. This post-translational modification converts the thiol groups of cysteines within proteins to persulfides, resulting in functional changes of the proteins. In Arabidopsis thaliana, S-sulfhydrated proteins have been identified, including the cytosolic isoforms of glyceraldehyde-3-phosphate dehydrogenase GapC1 and GapC2. In this work, we studied the regulation of sulfide on the subcellular localization of these proteins using two different approaches. We generated GapC1-green fluorescent protein (GFP) and GapC2-GFP transgenic plants in both the wild type and the des1 mutant defective in the l-cysteine desulfhydrase DES1, responsible for the generation of sulfide in the cytosol. The GFP signal was detected in the cytoplasm and the nucleus of epidermal cells, although with reduced nuclear localization in des1 compared with the wild type, and exogenous sulfide treatment resulted in similar signals in nuclei in both backgrounds. The second approach consisted of the immunoblot analysis of the GapC endogenous proteins in enriched nuclear and cytosolic protein extracts, and similar results were obtained. A significant reduction in the total amount of GapC in des1 in comparison with the wild type was determined and exogenous sulfide significantly increased the protein levels in the nuclei in both plants, with a stronger response in the wild type. Moreover, the presence of an S-sulfhydrated cysteine residue on GapC1 was demonstrated by mass spectrometry. We conclude that sulfide enhances the nuclear localization of glyceraldehyde-3-phosphate dehydrogenase.
Collapse
Affiliation(s)
- Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Sevilla, Spain
| | - Markus Schneider
- Department of Plant Physiology, Osnabrück University, Osnabrück, Germany
| | - Renate Scheibe
- Department of Plant Physiology, Osnabrück University, Osnabrück, Germany
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Sevilla, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
37
|
González-Torralva F, Brown AP, Chivasa S. Comparative proteomic analysis of horseweed (Conyza canadensis) biotypes identifies candidate proteins for glyphosate resistance. Sci Rep 2017; 7:42565. [PMID: 28198407 PMCID: PMC5309786 DOI: 10.1038/srep42565] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022] Open
Abstract
Emergence of glyphosate-resistant horseweed (Conyza canadensis) biotypes is an example of how unrelenting use of a single mode of action herbicide in agricultural weed control drives genetic adaptation in targeted species. While in other weeds glyphosate resistance arose from target site mutation or target gene amplification, the resistance mechanism in horseweed uses neither of these, being instead linked to reduced herbicide uptake and/or translocation. The molecular components underpinning horseweed glyphosate-resistance remain unknown. Here, we used an in vitro leaf disc system for comparative analysis of proteins extracted from control and glyphosate-treated tissues of glyphosate-resistant and glyphosate-susceptible biotypes. Analysis of shikimic acid accumulation, ABC-transporter gene expression, and cell death were used to select a suitable glyphosate concentration and sampling time for enriching proteins pivotal to glyphosate resistance. Protein gel analysis and mass spectrometry identified mainly chloroplast proteins differentially expressed between the biotypes before and after glyphosate treatment. Chloroplasts are the organelles in which the shikimate pathway, which is targeted by glyphosate, is located. Calvin cycle enzymes and proteins of unknown function were among the proteins identified. Our study provides candidate proteins that could be pivotal in engendering resistance and implicates chloroplasts as the primary sites driving glyphosate-resistance in horseweed.
Collapse
Affiliation(s)
| | - Adrian P. Brown
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Stephen Chivasa
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
38
|
Cheung TT, Weston MK, Wilson MJ. Selection and evaluation of reference genes for analysis of mouse (Mus musculus) sex-dimorphic brain development. PeerJ 2017; 5:e2909. [PMID: 28133578 PMCID: PMC5251938 DOI: 10.7717/peerj.2909] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/08/2016] [Indexed: 11/24/2022] Open
Abstract
The development of the brain is sex-dimorphic, and as a result so are many neurological disorders. One approach for studying sex-dimorphic brain development is to measure gene expression in biological samples using RT-qPCR. However, the accuracy and consistency of this technique relies on the reference gene(s) selected. We analyzed the expression of ten reference genes in male and female samples over three stages of brain development, using popular algorithms NormFinder, GeNorm and Bestkeeper. The top ranked reference genes at each time point were further used to quantify gene expression of three sex-dimorphic genes (Wnt10b, Xist and CYP7B1). When comparing gene expression between the sexes expression at specific time points the best reference gene combinations are: Sdha/Pgk1 at E11.5, RpL38/Sdha E12.5, and Actb/RpL37 at E15.5. When studying expression across time, the ideal reference gene(s) differs with sex. For XY samples a combination of Actb/Sdha. In contrast, when studying gene expression across developmental stage with XX samples, Sdha/Gapdh were the top reference genes. Our results identify the best combination of two reference genes when studying male and female brain development, and emphasize the importance of selecting the correct reference genes for comparisons between developmental stages.
Collapse
Affiliation(s)
- Tanya T Cheung
- Department of Anatomy, University of Otago , Dunedin , New Zealand
| | | | - Megan J Wilson
- Department of Anatomy, University of Otago , Dunedin , New Zealand
| |
Collapse
|
39
|
Zhang K, Sun W, Huang L, Zhu K, Pei F, Zhu L, Wang Q, Lu Y, Zhang H, Jin H, Zhang LH, Zhang L, Yue J. Identifying Glyceraldehyde 3-Phosphate Dehydrogenase as a Cyclic Adenosine Diphosphoribose Binding Protein by Photoaffinity Protein-Ligand Labeling Approach. J Am Chem Soc 2017; 139:156-170. [PMID: 27936653 DOI: 10.1021/jacs.6b08088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cyclic adenosine diphosphoribose (cADPR), an endogenous nucleotide derived from nicotinamide adenine dinucleotide (NAD+), mobilizes Ca2+ release from endoplasmic reticulum (ER) via ryanodine receptors (RyRs), yet the bridging protein(s) between cADPR and RyRs remain(s) unknown. Here we synthesized a novel photoaffinity labeling (PAL) cADPR agonist, PAL-cIDPRE, and subsequently applied it to purify its binding proteins in human Jurkat T cells. We identified glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as one of the cADPR binding protein(s), characterized the binding affinity between cADPR and GAPDH in vitro by surface plasmon resonance (SPR) assay, and mapped cADPR's binding sites in GAPDH. We further demonstrated that cADPR induces the transient interaction between GAPDH and RyRs in vivo and that GAPDH knockdown abolished cADPR-induced Ca2+ release. However, GAPDH did not catalyze cADPR into any other known or novel compound(s). In summary, our data clearly indicate that GAPDH is the long-sought-after cADPR binding protein and is required for cADPR-mediated Ca2+ mobilization from ER via RyRs.
Collapse
Affiliation(s)
- Kehui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Wei Sun
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
- Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China , Shenzhen 518052, China
| | - Lihong Huang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Kaiyuan Zhu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Fen Pei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Longchao Zhu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Qian Wang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Yingying Lu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Hongmin Zhang
- Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China , Shenzhen 518052, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Li-He Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| |
Collapse
|
40
|
Abstract
Aside from its well-established role in glycolysis, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been shown to possess many key functions in cells. These functions are regulated by protein oligomerization , biomolecular interactions, post-translational modifications , and variations in subcellular localization . Several GAPDH functions and regulatory mechanisms overlap with one another and converge around its role in intermediary metabolism. Several structural determinants of the protein dictate its function and regulation. GAPDH is ubiquitously expressed and is found in all domains of life. GAPDH has been implicated in many diseases, including those of pathogenic, cardiovascular, degenerative, diabetic, and tumorigenic origins. Understanding the mechanisms by which GAPDH can switch between its functions and how these functions are regulated can provide insights into ways the protein can be modulated for therapeutic outcomes.
Collapse
|
41
|
Snider NT, Portney DA, Willcockson HH, Maitra D, Martin HC, Greenson JK, Omary MB. Ethanol and Acetaminophen Synergistically Induce Hepatic Aggregation and TCH346-Insensitive Nuclear Translocation of GAPDH. PLoS One 2016; 11:e0160982. [PMID: 27513663 PMCID: PMC4981434 DOI: 10.1371/journal.pone.0160982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/26/2016] [Indexed: 01/24/2023] Open
Abstract
The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) signals during cellular stress via several post-translational modifications that change its folding properties, protein-protein interactions and sub-cellular localization. We examined GAPDH properties in acute mouse liver injury due to ethanol and/or acetaminophen (APAP) treatment. Synergistic robust and time-dependent nuclear accumulation and aggregation of GAPDH were observed only in combined, but not individual, ethanol/APAP treatments. The small molecule GAPDH-targeting compound TCH346 partially attenuated liver damage possibly via mitochondrial mechanisms, and independent of nuclear accumulation and aggregation of GAPDH. These findings provide a novel potential mechanism for hepatotoxicity caused by combined alcohol and acetaminophen exposure.
Collapse
Affiliation(s)
- Natasha T. Snider
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599, United States of America
- * E-mail:
| | - Daniel A. Portney
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Helen H. Willcockson
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599, United States of America
| | - Dhiman Maitra
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Hope C. Martin
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Joel K. Greenson
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - M. Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States of America
- Veterans Administration Ann Arbor Health Care System, Ann Arbor, MI, 48105, United States of America
| |
Collapse
|
42
|
Qvit N, Joshi AU, Cunningham AD, Ferreira JCB, Mochly-Rosen D. Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Protein-Protein Interaction Inhibitor Reveals a Non-catalytic Role for GAPDH Oligomerization in Cell Death. J Biol Chem 2016; 291:13608-21. [PMID: 27129213 DOI: 10.1074/jbc.m115.711630] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 12/16/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an important glycolytic enzyme, has a non-catalytic (thus a non-canonical) role in inducing mitochondrial elimination under oxidative stress. We recently demonstrated that phosphorylation of GAPDH by δ protein kinase C (δPKC) inhibits this GAPDH-dependent mitochondrial elimination. δPKC phosphorylation of GAPDH correlates with increased cell injury following oxidative stress, suggesting that inhibiting GAPDH phosphorylation should decrease cell injury. Using rational design, we identified pseudo-GAPDH (ψGAPDH) peptide, an inhibitor of δPKC-mediated GAPDH phosphorylation that does not inhibit the phosphorylation of other δPKC substrates. Unexpectedly, ψGAPDH decreased mitochondrial elimination and increased cardiac damage in an animal model of heart attack. Either treatment with ψGAPDH or direct phosphorylation of GAPDH by δPKC decreased GAPDH tetramerization, which corresponded to reduced GAPDH glycolytic activity in vitro and ex vivo Taken together, our study identified the potential mechanism by which oxidative stress inhibits the protective GAPDH-mediated elimination of damaged mitochondria. Our study also identified a pharmacological tool, ψGAPDH peptide, with interesting properties. ψGAPDH peptide is an inhibitor of the interaction between δPKC and GAPDH and of the resulting phosphorylation of GAPDH by δPKC. ψGAPDH peptide is also an inhibitor of GAPDH oligomerization and thus an inhibitor of GAPDH glycolytic activity. Finally, we found that ψGAPDH peptide is an inhibitor of the elimination of damaged mitochondria. We discuss how this unique property of increasing cell damage following oxidative stress suggests a potential use for ψGAPDH peptide-based therapy.
Collapse
Affiliation(s)
- Nir Qvit
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305-5174 and
| | - Amit U Joshi
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305-5174 and
| | - Anna D Cunningham
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305-5174 and
| | - Julio C B Ferreira
- the Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Daria Mochly-Rosen
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305-5174 and
| |
Collapse
|
43
|
Unraveling the role of high-intensity resistance training on left ventricle proteome: Is there a shift towards maladaptation? Life Sci 2016; 152:156-64. [PMID: 27021786 DOI: 10.1016/j.lfs.2016.03.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/13/2016] [Accepted: 03/21/2016] [Indexed: 01/08/2023]
Abstract
UNLABELLED High-intensity resistance training (RT) induces adaptations that improve physiological function. However, high intensity, volume and/or frequency may lead to injury and other health issues such as adverse cardiac effects. The aim of this study was to evaluate the effect of RT on left ventricle proteome, and to identify the pathways involved on the harmful adaptations induced by this protocol. Male Wistar rats were randomized into 2 groups: Trained (T) and Sedentary (S). Animals from T group were trained for 6weeks, and then all the animals were sacrificed and left ventricle was isolated for analysis. We identified 955 proteins, and 93 proteins were considered; 36 were expressed exclusively in T group, and 4 in S group. Based on quantitative analysis, 42 proteins were found overexpressed and 11 underexpressed in T group compared with S group. Using the Gene Ontology to relate the biological processes in which these proteins are involved, we conclude that RT protocol promotes changes similar to those found in the initial phase of heart failure, but we also observed a concomitant increased expression of protective proteins, suggesting the activation of pathways to avoid major damages on left ventricle and delay the onset of pathological hypertrophy. STATEMENT OF SIGNIFICANCE OF THE STUDY Our study shows that high-intensity RT protocol changes left ventricle proteome, modifying metabolic profile of heart tissue and inducing the expression of proteins that acts against cardiac injury. We hypothesize that these adaptations occur to prevent the onset of cardiac dysfunction. Despite highly significant, it remains to be determined whether these adaptations are sufficient to further keep left ventricle function and exert cardioprotection, and whether this panel will be shifted towards maladaptation, and heart failure.
Collapse
|
44
|
Molecular association of glucose-6-phosphate isomerase and pyruvate kinase M2 with glyceraldehyde-3-phosphate dehydrogenase in cancer cells. BMC Cancer 2016; 16:152. [PMID: 26911935 PMCID: PMC4766697 DOI: 10.1186/s12885-016-2172-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 02/14/2016] [Indexed: 12/19/2022] Open
Abstract
Background For a long time cancer cells are known for increased uptake of glucose and its metabolization through glycolysis. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key regulatory enzyme of this pathway and can produce ATP through oxidative level of phosphorylation. Previously, we reported that GAPDH purified from a variety of malignant tissues, but not from normal tissues, was strongly inactivated by a normal metabolite, methylglyoxal (MG). Molecular mechanism behind MG mediated GAPDH inhibition in cancer cells is not well understood. Methods GAPDH was purified from Ehrlich ascites carcinoma (EAC) cells based on its enzymatic activity. GAPDH associated proteins in EAC cells and 3-methylcholanthrene (3MC) induced mouse tumor tissue were detected by mass spectrometry analysis and immunoprecipitation (IP) experiment, respectively. Interacting domains of GAPDH and its associated proteins were assessed by in silico molecular docking analysis. Mechanism of MG mediated GAPDH inactivation in cancer cells was evaluated by measuring enzyme activity, Circular dichroism (CD) spectroscopy, IP and mass spectrometry analyses. Result Here, we report that GAPDH is associated with glucose-6-phosphate isomerase (GPI) and pyruvate kinase M2 (PKM2) in Ehrlich ascites carcinoma (EAC) cells and also in 3-methylcholanthrene (3MC) induced mouse tumor tissue. Molecular docking analyses suggest C-terminal domain preference for the interaction between GAPDH and GPI. However, both C and N termini of PKM2 might be interacting with the C terminal domain of GAPDH. Expression of both PKM2 and GPI is increased in 3MC induced tumor compared with the normal tissue. In presence of 1 mM MG, association of GAPDH with PKM2 or GPI is not perturbed, but the enzymatic activity of GAPDH is reduced to 26.8 ± 5 % in 3MC induced tumor and 57.8 ± 2.3 % in EAC cells. Treatment of MG to purified GAPDH complex leads to glycation at R399 residue of PKM2 only, and changes the secondary structure of the protein complex. Conclusion PKM2 may regulate the enzymatic activity of GAPDH. Increased enzymatic activity of GAPDH in tumor cells may be attributed to its association with PKM2 and GPI. Association of GAPDH with PKM2 and GPI could be a signature for cancer cells. Glycation at R399 of PKM2 and changes in the secondary structure of GAPDH complex could be one of the mechanisms by which GAPDH activity is inhibited in tumor cells by MG. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2172-x) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Suski M, Olszanecki R, Chmura Ł, Stachowicz A, Madej J, Okoń K, Adamek D, Korbut R. Influence of metformin on mitochondrial subproteome in the brain of apoE knockout mice. Eur J Pharmacol 2016; 772:99-107. [DOI: 10.1016/j.ejphar.2015.12.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023]
|
46
|
Nakamura T, Lipton SA. Protein S-Nitrosylation as a Therapeutic Target for Neurodegenerative Diseases. Trends Pharmacol Sci 2015; 37:73-84. [PMID: 26707925 DOI: 10.1016/j.tips.2015.10.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022]
Abstract
At physiological levels, nitric oxide (NO) contributes to the maintenance of normal neuronal activity and survival, thus serving as an important regulatory mechanism in the central nervous system. By contrast, accumulating evidence suggests that exposure to environmental toxins or the normal aging process can trigger excessive production of reactive oxygen/nitrogen species (such as NO), contributing to the etiology of several neurodegenerative diseases. We highlight here protein S-nitrosylation, resulting from covalent attachment of an NO group to a cysteine thiol of the target protein, as a ubiquitous effector of NO signaling in both health and disease. We review our current understanding of this redox-dependent post-translational modification under neurodegenerative conditions, and evaluate how targeting dysregulated protein S-nitrosylation can lead to novel therapeutics.
Collapse
Affiliation(s)
| | - Stuart A Lipton
- Scintillon Institute, San Diego, CA 92121, USA; Department of Neurosciences, University of California, San Diego School of Medicine, La Jolla, CA 92039, USA.
| |
Collapse
|
47
|
Chang C, Su H, Zhang D, Wang Y, Shen Q, Liu B, Huang R, Zhou T, Peng C, Wong CCL, Shen HM, Lippincott-Schwartz J, Liu W. AMPK-Dependent Phosphorylation of GAPDH Triggers Sirt1 Activation and Is Necessary for Autophagy upon Glucose Starvation. Mol Cell 2015; 60:930-940. [PMID: 26626483 DOI: 10.1016/j.molcel.2015.10.037] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/10/2015] [Accepted: 10/22/2015] [Indexed: 12/23/2022]
Abstract
Eukaryotes initiate autophagy to cope with the lack of external nutrients, which requires the activation of the nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase Sirtuin 1 (Sirt1). However, the mechanisms underlying the starvation-induced Sirt1 activation for autophagy initiation remain unclear. Here, we demonstrate that glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a conventional glycolytic enzyme, is a critical mediator of AMP-activated protein kinase (AMPK)-driven Sirt1 activation. Under glucose starvation, but not amino acid starvation, cytoplasmic GAPDH is phosphorylated on Ser122 by activated AMPK. This causes GAPDH to redistribute into the nucleus. Inside the nucleus, GAPDH interacts directly with Sirt1, displacing Sirt1's repressor and causing Sirt1 to become activated. Preventing this shift of GAPDH abolishes Sirt1 activation and autophagy, while enhancing it, through overexpression of nuclear-localized GAPDH, increases Sirt1 activation and autophagy. GAPDH is thus a pivotal and central regulator of autophagy under glucose deficiency, undergoing AMPK-dependent phosphorylation and nuclear translocation to activate Sirt1 deacetylase activity.
Collapse
Affiliation(s)
- Chunmei Chang
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hua Su
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Danhong Zhang
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yusha Wang
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiuhong Shen
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Bo Liu
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rui Huang
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tianhua Zhou
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chao Peng
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Catherine C L Wong
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Wei Liu
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
48
|
Treaster SB, Chaudhuri AR, Austad SN. Longevity and GAPDH Stability in Bivalves and Mammals: A Convenient Marker for Comparative Gerontology and Proteostasis. PLoS One 2015; 10:e0143680. [PMID: 26619001 PMCID: PMC4664256 DOI: 10.1371/journal.pone.0143680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 11/09/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Comparative aging studies, particularly those that include species of exceptional resistance to aging processes, can potentially illuminate novel senescence-retarding mechanisms. In recent years, protein homeostasis (proteostasis) has been implicated in fundamental aging processes. Here we further evaluate the relationship between proteostasis and longevity in a selection of bivalve mollusks and mammals with maximum longevities ranging from 3 to 507 years. METHODS & RESULTS We experimentally examined proteostasis using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a reporter, as it is ubiquitously expressed, highly conserved, and conveniently assayed. The ability to maintain this enzymatic function was tested with increasing concentrations of the chaotropic agent urea, revealing a robust relationship with longevity in bivalves and mice. While our shortest-lived mollusk and mouse lost all activity by 2.5 and 3.5 M urea respectively, the longest-lived mollusk species, Arctica islandica, still preserved 45% of its basal function even at 6 M urea. To confirm that GAPDH proteostasis has a broad association with longevity, we also investigated a selection of primate species ranging in maximum longevity from 22 to 122 years. They outperformed the mouse at all concentrations, but among the primates results were variable at low urea doses. Still, at 6 M urea baboon and human samples retained 10% of their activity while both mouse and marmoset samples had no activity. MECHANISM OF EXCEPTIONAL STRESS RESISTANCE To explore possible mechanisms of the exceptional stress resistance of A. islandica GAPDH we enzymatically removed post-translational glycosylation, but observed no decrease in stability. We also removed molecules smaller than 30 kDa, which includes most small heat shock proteins, but again did not compromise the exceptional stress resistance of Arctica GAPDH. CONCLUSION While the mechanism underlying A. islandica's exceptional stress resistance remains elusive, this research identifies an experimental system that may reveal hitherto unknown mechanisms of protein homeostasis.
Collapse
Affiliation(s)
- Stephen B. Treaster
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Asish R. Chaudhuri
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Steven N. Austad
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
49
|
Phadke M, Krynetskaia N, Mishra A, Barrero C, Merali S, Gothe SA, Krynetskiy E. Disruption of NAD(+) binding site in glyceraldehyde 3-phosphate dehydrogenase affects its intranuclear interactions. World J Biol Chem 2015; 6:366-78. [PMID: 26629320 PMCID: PMC4657119 DOI: 10.4331/wjbc.v6.i4.366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/01/2015] [Accepted: 09/29/2015] [Indexed: 02/05/2023] Open
Abstract
AIM To characterize phosphorylation of human glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and mobility of GAPDH in cancer cells treated with chemotherapeutic agents. METHODS We used proteomics analysis to detect and characterize phosphorylation sites within human GAPDH. Site-specific mutagenesis and alanine scanning was then performed to evaluate functional significance of phosphorylation sites in the GAPDH polypeptide chain. Enzymatic properties of mutated GAPDH variants were assessed using kinetic studies. Intranuclear dynamics parameters (diffusion coefficient and the immobile fraction) were estimated using fluorescence recovery after photobleaching (FRAP) experiments and confocal microscopy. Molecular modeling experiments were performed to estimate the effects of mutations on NAD(+) cofactor binding. RESULTS Using MALDI-TOF analysis, we identified novel phosphorylation sites within the NAD(+) binding center of GAPDH at Y94, S98, and T99. Using polyclonal antibody specific to phospho-T99-containing peptide within GAPDH, we demonstrated accumulation of phospho-T99-GAPDH in the nuclear fractions of A549, HCT116, and SW48 cancer cells after cytotoxic stress. We performed site-mutagenesis, and estimated enzymatic properties, intranuclear distribution, and intranuclear mobility of GAPDH mutated variants. Site-mutagenesis at positions S98 and T99 in the NAD(+) binding center reduced enzymatic activity of GAPDH due to decreased affinity to NAD(+) (Km = 741 ± 257 μmol/L in T99I vs 57 ± 11.1 µmol/L in wild type GAPDH. Molecular modeling experiments revealed the effect of mutations on NAD(+) binding with GAPDH. FRAP (fluorescence recovery after photo bleaching) analysis showed that mutations in NAD(+) binding center of GAPDH abrogated its intranuclear interactions. CONCLUSION Our results suggest an important functional role of phosphorylated amino acids in the NAD(+) binding center in GAPDH interactions with its intranuclear partners.
Collapse
|
50
|
Itakura M, Nakajima H, Semi Y, Higashida S, Azuma YT, Takeuchi T. Glyceraldehyde-3-phosphate dehydrogenase aggregation inhibitor peptide: A potential therapeutic strategy against oxidative stress-induced cell death. Biochem Biophys Res Commun 2015; 467:373-6. [DOI: 10.1016/j.bbrc.2015.09.150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/28/2015] [Indexed: 11/29/2022]
|