1
|
Kajita Y, Mushiake H. Dynamic changes in seizure state and anxiety-like behaviors during pentylenetetrazole kindling in rats. Epilepsy Behav 2024; 159:110019. [PMID: 39213933 DOI: 10.1016/j.yebeh.2024.110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Excessive anxiety is a mental disorder, and its treatment involves the use of benzodiazepines, a class of drugs that enhance the effects of the neurotransmitter gamma-aminobutyric acid (GABA) at the GABAA receptor. Anxiety disorders are frequent comorbidities in patients with epilepsy, and it has been speculated that anxiety disorders and epileptic seizures share common neurobiological mechanisms. However, conflicting results regarding anxiolytic and anxiogenic effects have been reported in animal models of epilepsy induced by pentylenetetrazole (PTZ) injections, and the causes of this discrepancy are unknown. We hypothesized that anxiety-like behaviors would change dynamically according to the changes in epilepsy susceptibility that occur during the PTZ kindling process. Therefore, we attempted to change anxiety-like behaviors bidirectionally depending on the number of PTZ injections. METHODS Adult male rats were injected with PTZ 20 times every other day, and stages of seizure onset were classified according to the Racine staging system. Anxiety-like behaviors were measured after 10 and 20 injections. The control group was injected with an equal volume of saline solution. Anxiety-like behaviors were investigated using the open-field, light/dark transition, elevated plus maze, and social interaction tests. RESULTS Bimodal changes in seizure stage were observed in response to PTZ kindling. The increase in the seizure stage was transiently suppressed after 10 injections, and this decrease in epileptic sensitivity disappeared after 20 injections. However, none of the rats reached a fully kindled state after 20 PTZ injections. After 10 PTZ injections, anxiety-like behaviors decreased compared with those of the control group in the open field, light/dark transition, and elevated plus-maze tests. The anxiolytic effects correlated with the seizure stage in individual rats. After 20 PTZ injections, anxiety-like behaviors returned to control levels. CONCLUSION PTZ kindling induced bimodal changes in the seizure stage. Anxiety-like behaviors decreased with transient decrease in epileptic sensitivity and returned to control levels with the disappearance of these states. These findings suggest a common neurobiological mechanism underlying anxiety disorders and epileptic seizures. In addition, the discrepancy in the previous studies, in which anxiety levels increase or decrease in PTZ-kindled animals, may be due to examination at different phases of the kindling process.
Collapse
Affiliation(s)
- Yuki Kajita
- Department of Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Hajime Mushiake
- Department of Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
2
|
Soeung V, Puchalski RB, Noebels JL. The complex molecular epileptogenesis landscape of glioblastoma. Cell Rep Med 2024; 5:101691. [PMID: 39168100 PMCID: PMC11384957 DOI: 10.1016/j.xcrm.2024.101691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/30/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
The cortical microenvironment surrounding malignant glioblastoma is a source of depolarizing crosstalk favoring hyperexcitability, tumor expansion, and immune evasion. Neosynaptogenesis, excess glutamate, and altered intrinsic membrane currents contribute to excitability dyshomeostasis, yet only half of the cases develop seizures, suggesting that tumor and host genomics, along with location, rather than mass effect, play a critical role. We analyzed the spatial contours and expression of 358 clinically validated human epilepsy genes in the human glioblastoma transcriptome compared to non-tumor adult and developing cortex datasets. Nearly half, including dosage-sensitive genes whose expression levels are securely linked to monogenic epilepsy, are strikingly enriched and aberrantly regulated at the leading edge, supporting a complex epistatic basis for peritumoral epileptogenesis. Surround hyperexcitability induced by complex patterns of proepileptic gene expression may explain the limited efficacy of narrowly targeted antiseizure medicines and the persistence of epilepsy following tumor resection and clarify why not all brain tumors provoke seizures.
Collapse
Affiliation(s)
- Victoria Soeung
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Ralph B Puchalski
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Jeffrey L Noebels
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Gauer C, Battis K, Schneider Y, Florio JB, Mante M, Kim HY, Rissman RA, Hoffmann A, Winkler J. CSF1R-mediated myeloid cell depletion shifts the ratio of motor cortical excitatory to inhibitory neurons in a multiple system atrophy model. Exp Neurol 2024; 374:114706. [PMID: 38311020 DOI: 10.1016/j.expneurol.2024.114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
Motor cortical circuit functions depend on the coordinated fine-tuning of two functionally diverse neuronal populations: glutamatergic pyramidal neurons providing synaptic excitation and GABAergic interneurons adjusting the response of pyramidal neurons through synaptic inhibition. Microglia are brain resident macrophages which dynamically refine cortical circuits by monitoring perineuronal extracellular matrix and remodelling synapses. Previously, we showed that colony-stimulating factor 1 receptor (CSF1R)-mediated myeloid cell depletion extended the lifespan, but impaired motor functions of MBP29 mice, a mouse model for multiple system atrophy. In order to better understand the mechanisms underlying these motor deficits we characterized the microglial involvement in the cortical balance of GABAergic interneurons and glutamatergic pyramidal neurons in 4-months-old MBP29 mice following CSF1R inhibition for 12 weeks. Lack of myeloid cells resulted in a decreased number of COUP TF1 interacting protein 2-positive (CTIP2+) layer V pyramidal neurons, however in a proportional increase of calretinin-positive GABAergic interneurons in MBP29 mice. While myeloid cell depletion did not alter the expression of important presynaptic and postsynaptic proteins, the loss of cortical perineuronal net area was attenuated by CSF1R inhibition in MBP29 mice. These cortical changes may restrict synaptic plasticity and potentially modify parvalbumin-positive perisomatic input. Collectively, this study suggests, that the lack of myeloid cells shifts the neuronal balance toward an increased inhibitory connectivity in the motor cortex of MBP29 mice thereby potentially deteriorating motor functions.
Collapse
Affiliation(s)
- C Gauer
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - K Battis
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Y Schneider
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - J B Florio
- Department of Neurosciences, University of California-San Diego, La Jolla, CA 92093, USA
| | - M Mante
- Department of Neurosciences, University of California-San Diego, La Jolla, CA 92093, USA
| | - H Y Kim
- Department of Neurosciences, University of California-San Diego, La Jolla, CA 92093, USA
| | - R A Rissman
- Department of Neurosciences, University of California-San Diego, La Jolla, CA 92093, USA
| | - A Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK; Keenan Research Centre for Biomedical Science and Barlo Multiple Sclerosis Centre, St. Michael's Hospital, Toronto, Ontario, Canada.
| | - J Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| |
Collapse
|
4
|
Burnyasheva AO, Stefanova NA, Kolosova NG, Telegina DV. Changes in the Glutamate/GABA System in the Hippocampus of Rats with Age and during Alzheimer's Disease Signs Development. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1972-1986. [PMID: 38462444 DOI: 10.1134/s0006297923120027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 03/12/2024]
Abstract
GABA and glutamate are the most abundant neurotransmitters in the CNS and play a pivotal part in synaptic stability/plasticity. Glutamate and GABA homeostasis is important for healthy aging and reducing the risk of various neurological diseases, while long-term imbalance can contribute to the development of neurodegenerative disorders, including Alzheimer's disease (AD). Normalization of the homeostasis has been discussed as a promising strategy for prevention and/or treatment of AD, however, data on the changes in the GABAergic and glutamatergic systems with age, as well as on the dynamics of AD development, are limited. It is not clear whether imbalance of the excitatory/inhibitory systems is the cause or the consequence of the disease development. Here we analyzed the age-related alterations of the levels of glutamate, GABA, as well as enzymes that synthesize them (glutaminase, glutamine synthetase, GABA-T, and GAD67), transporters (GLAST, GLT-1, and GAT1), and relevant receptors (GluA1, NMDAR1, NMDA2B, and GABAAr1) in the whole hippocampus of the Wistar rats and of the senescence-accelerated OXYS rats, a model of the most common (> 95%) sporadic AD. Our results suggest that there is a decline in glutamate and GABA signaling with age in hippocampus of the both rat strains. However, we have not identified significant changes or compensatory enhancements in this system in the hippocampus of OXYS rats during the development of neurodegenerative processes that are characteristic of AD.
Collapse
Affiliation(s)
- Alena O Burnyasheva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Natalia A Stefanova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nataliya G Kolosova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Darya V Telegina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
5
|
Bahabry R, Hauser RM, Sánchez RG, Jago SS, Ianov L, Stuckey RJ, Parrish RR, Hoef LV, Lubin FD. Alterations in DNA 5-hydroxymethylation Patterns in the Hippocampus of an Experimental Model of Refractory Epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560698. [PMID: 37873276 PMCID: PMC10592907 DOI: 10.1101/2023.10.03.560698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Temporal lobe epilepsy (TLE) is a type of focal epilepsy characterized by spontaneous recurrent seizures originating from the hippocampus. The epigenetic reprogramming hypothesis of epileptogenesis suggests that the development of TLE is associated with alterations in gene transcription changes resulting in a hyperexcitable network in TLE. DNA 5-methylcytosine (5-mC) is an epigenetic mechanism that has been associated with chronic epilepsy. However, the contribution of 5-hydroxymethylcytosine (5-hmC), a product of 5-mC demethylation by the Ten-Eleven Translocation (TET) family proteins in chronic TLE is poorly understood. 5-hmC is abundant in the brain and acts as a stable epigenetic mark altering gene expression through several mechanisms. Here, we found that the levels of bulk DNA 5-hmC but not 5-mC were significantly reduced in the hippocampus of human TLE patients and in the kainic acid (KA) TLE rat model. Using 5-hmC hMeDIP-sequencing, we characterized 5-hmC distribution across the genome and found bidirectional regulation of 5-hmC at intergenic regions within gene bodies. We found that hypohydroxymethylated 5-hmC intergenic regions were associated with several epilepsy-related genes, including Gal , SV2, and Kcnj11 and hyperdroxymethylation 5-hmC intergenic regions were associated with Gad65 , TLR4 , and Bdnf gene expression. Mechanistically, Tet1 knockdown in the hippocampus was sufficient to decrease 5-hmC levels and increase seizure susceptibility following KA administration. In contrast, Tet1 overexpression in the hippocampus resulted in increased 5-hmC levels associated with improved seizure resiliency in response to KA. These findings suggest an important role for 5-hmC as an epigenetic regulator of epilepsy that can be manipulated to influence seizure outcomes.
Collapse
|
6
|
Olkhova EA, Smith LA, Bradshaw C, Gorman GS, Erskine D, Ng YS. Neurological Phenotypes in Mouse Models of Mitochondrial Disease and Relevance to Human Neuropathology. Int J Mol Sci 2023; 24:ijms24119698. [PMID: 37298649 DOI: 10.3390/ijms24119698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Mitochondrial diseases represent the most common inherited neurometabolic disorders, for which no effective therapy currently exists for most patients. The unmet clinical need requires a more comprehensive understanding of the disease mechanisms and the development of reliable and robust in vivo models that accurately recapitulate human disease. This review aims to summarise and discuss various mouse models harbouring transgenic impairments in genes that regulate mitochondrial function, specifically their neurological phenotype and neuropathological features. Ataxia secondary to cerebellar impairment is one of the most prevalent neurological features of mouse models of mitochondrial dysfunction, consistent with the observation that progressive cerebellar ataxia is a common neurological manifestation in patients with mitochondrial disease. The loss of Purkinje neurons is a shared neuropathological finding in human post-mortem tissues and numerous mouse models. However, none of the existing mouse models recapitulate other devastating neurological phenotypes, such as refractory focal seizures and stroke-like episodes seen in patients. Additionally, we discuss the roles of reactive astrogliosis and microglial reactivity, which may be driving the neuropathology in some of the mouse models of mitochondrial dysfunction, as well as mechanisms through which cellular death may occur, beyond apoptosis, in neurons undergoing mitochondrial bioenergy crisis.
Collapse
Affiliation(s)
- Elizaveta A Olkhova
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Laura A Smith
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Carla Bradshaw
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Daniel Erskine
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
7
|
Bryson A, Reid C, Petrou S. Fundamental Neurochemistry Review: GABA A receptor neurotransmission and epilepsy: Principles, disease mechanisms and pharmacotherapy. J Neurochem 2023; 165:6-28. [PMID: 36681890 DOI: 10.1111/jnc.15769] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/23/2023]
Abstract
Epilepsy is a common neurological disorder associated with alterations of excitation-inhibition balance within brain neuronal networks. GABAA receptor neurotransmission is the most prevalent form of inhibitory neurotransmission and is strongly implicated in both the pathophysiology and treatment of epilepsy, serving as a primary target for antiseizure medications for over a century. It is now established that GABA exerts a multifaceted influence through an array of GABAA receptor subtypes that extends far beyond simply negating excitatory activity. As the role of GABAA neurotransmission within inhibitory circuits is elaborated, this will enable the development of precision therapies that correct the network dysfunction underlying epileptic pathology.
Collapse
Affiliation(s)
- Alexander Bryson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| | - Christopher Reid
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Praxis Precision Medicines, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
8
|
Astrocytes regulate inhibitory neurotransmission through GABA uptake, metabolism, and recycling. Essays Biochem 2023; 67:77-91. [PMID: 36806927 DOI: 10.1042/ebc20220208] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/23/2023]
Abstract
Synaptic regulation of the primary inhibitory neurotransmitter γ-aminobutyric acid (GABA) is essential for brain function. Cerebral GABA homeostasis is tightly regulated through multiple mechanisms and is directly coupled to the metabolic collaboration between neurons and astrocytes. In this essay, we outline and discuss the fundamental roles of astrocytes in regulating synaptic GABA signaling. A major fraction of synaptic GABA is removed from the synapse by astrocytic uptake. Astrocytes utilize GABA as a metabolic substrate to support glutamine synthesis. The astrocyte-derived glutamine is subsequently transferred to neurons where it serves as the primary precursor of neuronal GABA synthesis. The flow of GABA and glutamine between neurons and astrocytes is collectively termed the GABA-glutamine cycle and is essential to sustain GABA synthesis and inhibitory signaling. In certain brain areas, astrocytes are even capable of synthesizing and releasing GABA to modulate inhibitory transmission. The majority of oxidative GABA metabolism in the brain takes place in astrocytes, which also leads to synthesis of the GABA-related metabolite γ-hydroxybutyric acid (GHB). The physiological roles of endogenous GHB remain unclear, but may be related to regulation of tonic inhibition and synaptic plasticity. Disrupted inhibitory signaling and dysfunctional astrocyte GABA handling are implicated in several diseases including epilepsy and Alzheimer's disease. Synaptic GABA homeostasis is under astrocytic control and astrocyte GABA uptake, metabolism, and recycling may therefore serve as relevant targets to ameliorate pathological inhibitory signaling.
Collapse
|
9
|
A method to estimate the cellular composition of the mouse brain from heterogeneous datasets. PLoS Comput Biol 2022; 18:e1010739. [PMID: 36542673 PMCID: PMC9838873 DOI: 10.1371/journal.pcbi.1010739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/13/2023] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
The mouse brain contains a rich diversity of inhibitory neuron types that have been characterized by their patterns of gene expression. However, it is still unclear how these cell types are distributed across the mouse brain. We developed a computational method to estimate the densities of different inhibitory neuron types across the mouse brain. Our method allows the unbiased integration of diverse and disparate datasets into one framework to predict inhibitory neuron densities for uncharted brain regions. We constrained our estimates based on previously computed brain-wide neuron densities, gene expression data from in situ hybridization image stacks together with a wide range of values reported in the literature. Using constrained optimization, we derived coherent estimates of cell densities for the different inhibitory neuron types. We estimate that 20.3% of all neurons in the mouse brain are inhibitory. Among all inhibitory neurons, 18% predominantly express parvalbumin (PV), 16% express somatostatin (SST), 3% express vasoactive intestinal peptide (VIP), and the remainder 63% belong to the residual GABAergic population. We find that our density estimations improve as more literature values are integrated. Our pipeline is extensible, allowing new cell types or data to be integrated as they become available. The data, algorithms, software, and results of our pipeline are publicly available and update the Blue Brain Cell Atlas. This work therefore leverages the research community to collectively converge on the numbers of each cell type in each brain region.
Collapse
|
10
|
Rodent Models of Audiogenic Epilepsy: Genetic Aspects, Advantages, Current Problems and Perspectives. Biomedicines 2022; 10:biomedicines10112934. [PMID: 36428502 PMCID: PMC9687921 DOI: 10.3390/biomedicines10112934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Animal models of epilepsy are of great importance in epileptology. They are used to study the mechanisms of epileptogenesis, and search for new genes and regulatory pathways involved in the development of epilepsy as well as screening new antiepileptic drugs. Today, many methods of modeling epilepsy in animals are used, including electroconvulsive, pharmacological in intact animals, and genetic, with the predisposition for spontaneous or refractory epileptic seizures. Due to the simplicity of manipulation and universality, genetic models of audiogenic epilepsy in rodents stand out among this diversity. We tried to combine data on the genetics of audiogenic epilepsy in rodents, the relevance of various models of audiogenic epilepsy to certain epileptic syndromes in humans, and the advantages of using of rodent strains predisposed to audiogenic epilepsy in current epileptology.
Collapse
|
11
|
Dendritic Inhibition by Shh Signaling-Dependent Stellate Cell Pool Is Critical for Motor Learning. J Neurosci 2022; 42:5130-5143. [PMID: 35589396 PMCID: PMC9236294 DOI: 10.1523/jneurosci.2073-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/14/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
Cerebellar inhibitory interneurons are important regulators of neural circuit activity for diverse motor and nonmotor functions. The molecular layer interneurons (MLIs), consisting of basket cells (BCs) and stellate cells (SCs), provide dendritic and somatic inhibitory synapses onto Purkinje cells, respectively. They are sequentially generated in an inside-out pattern from Pax2+ immature interneurons, which migrate from the prospective white matter to the ML of the cortex. However, little is known about how MLI subtype identities and pool sizes are determined, nor are their contributions to motor learning well understood. Here, we show that GABAergic progenitors fated to generate both BCs and SCs respond to the Sonic hedgehog (Shh) signal. Conditional abrogation of Shh signaling of either sex inhibited proliferation of GABAergic progenitors and reduced the number of Pax2+ cells, whereas persistent Shh pathway activation increased their numbers. These changes, however, did not affect early born BC numbers but selectively altered the SC pool size. Moreover, genetic depletion of GABAergic progenitors when BCs are actively generated also resulted in a specific reduction of SCs, suggesting that the specification of MLI subtypes is independent of Shh signaling and their birth order and likely occurs after Pax2+ cells settle into their laminar positions in an inside-out sequence. Mutant mice with reduced SC numbers displayed decreased dendritic inhibitory synapses and neurotransmission onto Purkinje cells, resulting in an impaired acquisition of eyeblink conditioning. These findings also reveal an essential role of Shh signaling-dependent SCs in regulating inhibitory dendritic synapses and motor learning.SIGNIFICANCE STATEMENT The cerebellar circuit that enables fine motor learning involves MLIs of BCs and SCs, which provide dendritic and somatic inhibitory synapses onto Purkinje cells. Little is known about how their identities and numbers are determined, nor are their specific contributions to motor learning well understood. We show that MLI subtypes are specified independent of Shh signaling and their birth orders but appear to occur in their terminal laminar positions according to the inside-out sequence. This finding challenges the current view that MLI subtypes are specified sequentially at the progenitor level. We also demonstrate that dendritic inhibition by Shh signaling-dependent SC pool is necessary for motor learning.
Collapse
|
12
|
Michalettos G, Ruscher K. Crosstalk Between GABAergic Neurotransmission and Inflammatory Cascades in the Post-ischemic Brain: Relevance for Stroke Recovery. Front Cell Neurosci 2022; 16:807911. [PMID: 35401118 PMCID: PMC8983863 DOI: 10.3389/fncel.2022.807911] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Adaptive plasticity processes are required involving neurons as well as non-neuronal cells to recover lost brain functions after an ischemic stroke. Recent studies show that gamma-Aminobutyric acid (GABA) has profound effects on glial and immune cell functions in addition to its inhibitory actions on neuronal circuits in the post-ischemic brain. Here, we provide an overview of how GABAergic neurotransmission changes during the first weeks after stroke and how GABA affects functions of astroglial and microglial cells as well as peripheral immune cell populations accumulating in the ischemic territory and brain regions remote to the lesion. Moreover, we will summarize recent studies providing data on the immunomodulatory actions of GABA of relevance for stroke recovery. Interestingly, the activation of GABA receptors on immune cells exerts a downregulation of detrimental anti-inflammatory cascades. Conversely, we will discuss studies addressing how specific inflammatory cascades affect GABAergic neurotransmission on the level of GABA receptor composition, GABA synthesis, and release. In particular, the chemokines CXCR4 and CX3CR1 pathways have been demonstrated to modulate receptor composition and synthesis. Together, the actual view on the interactions between GABAergic neurotransmission and inflammatory cascades points towards a specific crosstalk in the post-ischemic brain. Similar to what has been shown in experimental models, specific therapeutic modulation of GABAergic neurotransmission and inflammatory pathways may synergistically promote neuronal plasticity to enhance stroke recovery.
Collapse
Affiliation(s)
- Georgios Michalettos
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- LUBIN Lab—Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- *Correspondence: Karsten Ruscher
| |
Collapse
|
13
|
Phongpreecha T, Gajera CR, Liu CC, Vijayaragavan K, Chang AL, Becker M, Fallahzadeh R, Fernandez R, Postupna N, Sherfield E, Tebaykin D, Latimer C, Shively CA, Register TC, Craft S, Montine KS, Fox EJ, Poston KL, Keene CD, Angelo M, Bendall SC, Aghaeepour N, Montine TJ. Single-synapse analyses of Alzheimer's disease implicate pathologic tau, DJ1, CD47, and ApoE. SCIENCE ADVANCES 2021; 7:eabk0473. [PMID: 34910503 PMCID: PMC8673771 DOI: 10.1126/sciadv.abk0473] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Synaptic molecular characterization is limited for Alzheimer’s disease (AD). Our newly invented mass cytometry–based method, synaptometry by time of flight (SynTOF), was used to measure 38 antibody probes in approximately 17 million single-synapse events from human brains without pathologic change or with pure AD or Lewy body disease (LBD), nonhuman primates (NHPs), and PS/APP mice. Synaptic molecular integrity in humans and NHP was similar. Although not detected in human synapses, Aβ was in PS/APP mice single-synapse events. Clustering and pattern identification of human synapses showed expected disease-specific differences, like increased hippocampal pathologic tau in AD and reduced caudate dopamine transporter in LBD, and revealed previously unidentified findings including increased hippocampal CD47 and lowered DJ1 in AD and higher ApoE in AD with dementia. Our results were independently supported by multiplex ion beam imaging of intact tissue. This highlights the higher depth and breadth of insight on neurodegenerative diseases obtainable through SynTOF.
Collapse
Affiliation(s)
- Thanaphong Phongpreecha
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | | | - Candace C. Liu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Alan L. Chang
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Martin Becker
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Ramin Fallahzadeh
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Nadia Postupna
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Emily Sherfield
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Dmitry Tebaykin
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Caitlin Latimer
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Carol A. Shively
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Thomas C. Register
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Suzanne Craft
- Department of Internal Medicine–Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Edward J. Fox
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Kathleen L. Poston
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Sean C. Bendall
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Thomas J. Montine
- Department of Pathology, Stanford University, Stanford, CA, USA
- Corresponding author.
| |
Collapse
|
14
|
Dik A, Widman G, Schulte-Mecklenbeck A, Witt JA, Pitsch J, Golombeck KS, Wagner J, Gallus M, Strippel C, Hansen N, Mönig C, Räuber S, Wiendl H, Elger CE, Surges R, Meuth SG, Helmstaedter C, Gross CC, Becker AJ, Melzer N. Impact of T cells on neurodegeneration in anti-GAD65 limbic encephalitis. Ann Clin Transl Neurol 2021; 8:2289-2301. [PMID: 34841709 PMCID: PMC8670322 DOI: 10.1002/acn3.51486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Objective Direct pathogenic effects of autoantibodies to the 65 kDa isoform of glutamic acid decarboxylase (GAD65) in autoimmune limbic encephalitis (LE) have been questioned due to its intracellular localization. We therefore hypothesized a pathogenic role for T cells. Methods We assessed magnet resonance imaging, neuropsychological and peripheral blood, and CSF flow cytometry data of 10 patients with long‐standing GAD65‐LE compared to controls in a cross‐sectional manner. These data were related to each other within the GAD65‐LE group and linked to neuropathological findings in selective hippocampectomy specimen from another two patients. In addition, full‐resolution human leukocyte antigen (HLA) genotyping of all patients was performed. Results Compared to controls, no alteration in hippocampal volume but impaired memory function and elevated fractions of activated HLADR+ CD4+ and CD8+ T cells in peripheral blood and cerebrospinal fluid were found. Intrathecal fractions of CD8+ T cells negatively correlated with hippocampal volume and memory function, whereas the opposite was true for CD4+ T cells. Consistently, antigen‐experienced CD8+ T cells expressed increased levels of the cytotoxic effector molecule perforin in peripheral blood, and perforin‐expressing CD8+ T cells were found attached mainly to small interneurons but also to large principal neurons together with wide‐spread hippocampal neurodegeneration. 6/10 LE patients harbored the HLA‐A*02:01 allele known to present the immunodominant GAD65114–123 peptide in humans. Interpretation Our data suggest a pathogenic effect of CD8+ T cells and a regulatory effect of CD4+ T cells in patients with long‐standing GAD65‐LE.
Collapse
Affiliation(s)
- Andre Dik
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Guido Widman
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | | | - Juri-Alexander Witt
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.,Institute of Neuropathology, Medical Faculty, University of Bonn, Section for Translational Epilepsy Research, Bonn, Germany
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Kristin S Golombeck
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Jan Wagner
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Marco Gallus
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christine Strippel
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Niels Hansen
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Constanze Mönig
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Saskia Räuber
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | | | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | | | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Albert J Becker
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.,Institute of Neuropathology, Medical Faculty, University of Bonn, Section for Translational Epilepsy Research, Bonn, Germany
| | - Nico Melzer
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| |
Collapse
|
15
|
Sperk G, Pirker S, Gasser E, Wieselthaler A, Bukovac A, Kuchukhidze G, Maier H, Drexel M, Baumgartner C, Ortler M, Czech T. Increased expression of GABA A receptor subunits associated with tonic inhibition in patients with temporal lobe epilepsy. Brain Commun 2021; 3:fcab239. [PMID: 34708207 PMCID: PMC8545616 DOI: 10.1093/braincomms/fcab239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/07/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
Epilepsy animal models indicate pronounced changes in the expression and rearrangement of GABAA receptor subunits in the hippocampus and in para-hippocampal areas, including widespread downregulation of the subunits α5 and δ, and upregulation of α4, subunits that mediate tonic inhibition of GABA. In this case–control study, we investigated changes in the expression of subunits α4, α5 and δ in hippocampal specimens of drug resistant temporal lobe epilepsy patients who underwent epilepsy surgery. Using in situ hybridization, immunohistochemistry and α5-specific receptor autoradiography, we characterized expression of the receptor subunits in specimens from patients with and without Ammon’s horn sclerosis compared to post-mortem controls. Expression of the α5-subunit was abundant throughout all subfields of the hippocampus, including the dentate gyrus, sectors CA1 and CA3, the subiculum and pre- and parasubiculum. Significant but weaker expression was detected for subunits α4 and δ notably in the granule cell/molecular layer of control specimens, but was faint in the other parts of the hippocampus. Expression of all three subunits was similarly altered in sclerotic and non-sclerotic specimens. Respective mRNA levels were increased by about 50–80% in the granule cell layer compared with post-mortem controls. Subunit α5 mRNA levels and immunoreactivities were also increased in the sector CA3 and in the subiculum. Autoradiography for α5-containing receptors using [3H]L-655,708 as ligand showed significantly increased binding in the molecular layer of the dentate gyrus in non-sclerotic specimens. Increased expression of the α5 and δ subunits is in contrast to the previously observed downregulation of these subunits in different epilepsy models, whereas increased expression of α4 in temporal lobe epilepsy patients is consistent with that in the rodent models. Our findings indicate increased tonic inhibition likely representing an endogenous anticonvulsive mechanism in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Günther Sperk
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Susanne Pirker
- Neurological Department, Klinik Hietzing, 1130 Vienna, Austria
| | - Elisabeth Gasser
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anna Wieselthaler
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anneliese Bukovac
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Giorgi Kuchukhidze
- Department of Neurology, Christian Doppler Klinik, Affiliated Member of the European Reference Network EpiCARE and Centre for Cognitive Neuroscience, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.,Neuroscience Institute, Christian Doppler Klinik, 5020 Salzburg, Austria
| | - Hans Maier
- INNPATH GmbH-Institute of Pathology, 6020 Innsbruck, Austria
| | - Meinrad Drexel
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria.,Institute of Molecular and Cellular Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Marin Ortler
- Department of Neurosurgery, Klinik Landstrasse, Vienna Healthcare Network, 1030Vienna, Austria.,Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Czech
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
16
|
Demchenko IT, Zhilyaev SY, Platonova TF, Alekseeva OS, Nikitina ER. Inhibition of GABA-Transaminase and GABA-Transporters in the Brain by Vigabatrin and Tiagabine Prevents Seizure Development in Rats Breathing Hyperbaric Oxygen. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021050112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Duba-Kiss R, Niibori Y, Hampson DR. GABAergic Gene Regulatory Elements Used in Adeno-Associated Viral Vectors. Front Neurol 2021; 12:745159. [PMID: 34671313 PMCID: PMC8521139 DOI: 10.3389/fneur.2021.745159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Several neurological and psychiatric disorders have been associated with impairments in GABAergic inhibitory neurons in the brain. Thus, in the current era of accelerated development of molecular medicine and biologically-based drugs, there is a need to identify gene regulatory sequences that can be utilized for selectively manipulating the expression of nucleic acids and proteins in GABAergic neurons. This is particularly important for the use of viral vectors in gene therapy. In this Mini Review, we discuss the use of various gene regulatory elements for targeting GABAergic neurons, with an emphasis on adeno-associated viral vectors, the most widely used class of viral vectors for treating brain diseases.
Collapse
Affiliation(s)
- Robert Duba-Kiss
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yosuke Niibori
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - David R Hampson
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Zhang S, Liu W, Liu X, Du X, Zhang K, Zhang Y, Song Y, Zi Y, Qiu Q, Lenstra JA, Liu J. Structural Variants Selected during Yak Domestication Inferred from Long-Read Whole-Genome Sequencing. Mol Biol Evol 2021; 38:3676-3680. [PMID: 33944937 PMCID: PMC8382902 DOI: 10.1093/molbev/msab134] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Structural variants (SVs) represent an important genetic resource for both natural and artificial selection. Here we present a chromosome-scale reference genome for domestic yak (Bos grunniens) that has longer contigs and scaffolds (N50 44.72 and 114.39 Mb, respectively) than reported for any other ruminant genome. We further obtained long-read resequencing data for 6 wild and 23 domestic yaks and constructed a genetic SV map of 372,220 SVs that covers the geographic range of the yaks. The majority of the SVs contains repetitive sequences and several are in or near genes. By comparing SVs in domestic and wild yaks, we identified genes that are predominantly related to the nervous system, behavior, immunity, and reproduction and may have been targeted by artificial selection during yak domestication. These findings provide new insights in the domestication of animals living at high altitude and highlight the importance of SVs in animal domestication.
Collapse
Affiliation(s)
- Shangzhe Zhang
- State Key Laboratory of Grassland and Agro-ecosystem, Institute of Innovation Ecology and School of Life Science, Lanzhou University, Lanzhou, China
| | - Wenyu Liu
- State Key Laboratory of Grassland and Agro-ecosystem, Institute of Innovation Ecology and School of Life Science, Lanzhou University, Lanzhou, China
| | - Xinfeng Liu
- State Key Laboratory of Grassland and Agro-ecosystem, Institute of Innovation Ecology and School of Life Science, Lanzhou University, Lanzhou, China
| | - Xin Du
- State Key Laboratory of Grassland and Agro-ecosystem, Institute of Innovation Ecology and School of Life Science, Lanzhou University, Lanzhou, China
| | - Ke Zhang
- State Key Laboratory of Grassland and Agro-ecosystem, Institute of Innovation Ecology and School of Life Science, Lanzhou University, Lanzhou, China
| | - Yang Zhang
- The Supercomputing Center, Lanzhou University, Lanzhou, China
| | - Yongwu Song
- Animal Disease Prevention and Control Center of Gangcha County, Haibei Tibetan Autonomous Prefecture, China
| | - Yunnan Zi
- Animal Husbandry Workstation of Xiahe County, Gannan Tibetan Autonomous Prefecture, China
| | - Qiang Qiu
- State Key Laboratory of Grassland and Agro-ecosystem, Institute of Innovation Ecology and School of Life Science, Lanzhou University, Lanzhou, China
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jianquan Liu
- State Key Laboratory of Grassland and Agro-ecosystem, Institute of Innovation Ecology and School of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
19
|
Panthi S, Lyons NMA, Leitch B. Impact of Dysfunctional Feed-Forward Inhibition on Glutamate Decarboxylase Isoforms and γ-Aminobutyric Acid Transporters. Int J Mol Sci 2021; 22:ijms22147740. [PMID: 34299369 PMCID: PMC8306481 DOI: 10.3390/ijms22147740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/16/2021] [Indexed: 12/02/2022] Open
Abstract
Absence seizures are associated with generalised synchronous 2.5–4 Hz spike-wave discharges causing brief and sudden alteration of awareness during childhood, which is known as childhood absence epilepsy (CAE). CAE is also associated with impaired learning, psychosocial challenges, and physical danger. Absence seizures arise from disturbances within the cortico-thalamocortical (CTC) network, including dysfunctional feed-forward inhibition (FFI); however, the precise mechanisms remain unclear. In epileptic stargazers, a genetic mouse model of CAE with chronic seizures, levels of γ-aminobutyric acid (GABA), and expression of GABA receptors are altered within the CTC network, implicating altered GABAergic transmission in absence seizures. However, the expression of GABA synthesising enzymes (GAD65 and GAD67) and GABA transporters (GAT-1 and 3) have not yet been characterised within absence seizure models. We found a specific upregulation of GAD65 in the somatosensory cortex but not the thalamus of epileptic stargazer mice. No differences were detected in GAD67 and GAT-3 levels in the thalamus or somatosensory cortex. Then, we assessed if GAD65 upregulation also occurred in Gi-DREADD mice exhibiting acute absence seizures, but we found no change in the expression profiles of GAD65/67 or GAT-3. Thus, the upregulation of GAD65 in stargazers may be a compensatory mechanism in response to long-term dysfunctional FFI and chronic absence seizures.
Collapse
Affiliation(s)
| | | | - Beulah Leitch
- Correspondence: ; Tel.: +64-3-479-7618; Fax: +64-3-479-7254
| |
Collapse
|
20
|
Hadtstein F, Vrolijk M. Vitamin B-6-Induced Neuropathy: Exploring the Mechanisms of Pyridoxine Toxicity. Adv Nutr 2021; 12:1911-1929. [PMID: 33912895 PMCID: PMC8483950 DOI: 10.1093/advances/nmab033] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/26/2022] Open
Abstract
Vitamin B-6 in the form of pyridoxine (PN) is commonly used by the general population. The use of PN-containing supplements has gained lots of attention over the past years as they have been related to the development of peripheral neuropathy. In light of this, the number of reported cases of adverse health effects due to the use of vitamin B-6 have increased. Despite a long history of study, the pathogenic mechanisms associated with PN toxicity remain elusive. Therefore, the present review is focused on investigating the mechanistic link between PN supplementation and sensory peripheral neuropathy. Excessive PN intake induces neuropathy through the preferential injury of sensory neurons. Recent reports on hereditary neuropathy due to pyridoxal kinase (PDXK) mutations may provide some insight into the mechanism, as genetic deficiencies in PDXK lead to the development of axonal sensory neuropathy. High circulating concentrations of PN may lead to a similar condition via the inhibition of PDXK. The mechanism behind PDXK-induced neuropathy is unknown; however, there is reason to believe that it may be related to γ-aminobutyric acid (GABA) neurotransmission. Compounds that inhibit PDXK lead to convulsions and reductions in GABA biosynthesis. The absence of central nervous system-related symptoms in PDXK deficiency could be due to differences in the regulation of PDXK, where PDXK activity is preserved in the brain but not in peripheral tissues. As PN is relatively impermeable to the blood-brain barrier, PDXK inhibition would similarly be confined to the peripheries and, as a result, GABA signaling may be perturbed within peripheral tissues, such as sensory neurons. Perturbed GABA signaling within sensory neurons may lead to excitotoxicity, neurodegeneration, and ultimately, the development of peripheral neuropathy. For several reasons, we conclude that PDXK inhibition and consequently disrupted GABA neurotransmission is the most plausible mechanism of toxicity.
Collapse
Affiliation(s)
- Felix Hadtstein
- University College Venlo, Campus Venlo, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
21
|
Bai X, Kirchhoff F, Scheller A. Oligodendroglial GABAergic Signaling: More Than Inhibition! Neurosci Bull 2021; 37:1039-1050. [PMID: 33928492 PMCID: PMC8275815 DOI: 10.1007/s12264-021-00693-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022] Open
Abstract
GABA is the main inhibitory neurotransmitter in the CNS acting at two distinct types of receptor: ligand-gated ionotropic GABAA receptors and G protein-coupled metabotropic GABAB receptors, thus mediating fast and slow inhibition of excitability at central synapses. GABAergic signal transmission has been intensively studied in neurons in contrast to oligodendrocytes and their precursors (OPCs), although the latter express both types of GABA receptor. Recent studies focusing on interneuron myelination and interneuron-OPC synapses have shed light on the importance of GABA signaling in the oligodendrocyte lineage. In this review, we start with a short summary on GABA itself and neuronal GABAergic signaling. Then, we elaborate on the physiological role of GABA receptors within the oligodendrocyte lineage and conclude with a description of these receptors as putative targets in treatments of CNS diseases.
Collapse
Affiliation(s)
- Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany.
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| |
Collapse
|
22
|
Kim HY, Suh PG, Kim JI. The Role of Phospholipase C in GABAergic Inhibition and Its Relevance to Epilepsy. Int J Mol Sci 2021; 22:ijms22063149. [PMID: 33808762 PMCID: PMC8003358 DOI: 10.3390/ijms22063149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/02/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is characterized by recurrent seizures due to abnormal hyperexcitation of neurons. Recent studies have suggested that the imbalance of excitation and inhibition (E/I) in the central nervous system is closely implicated in the etiology of epilepsy. In the brain, GABA is a major inhibitory neurotransmitter and plays a pivotal role in maintaining E/I balance. As such, altered GABAergic inhibition can lead to severe E/I imbalance, consequently resulting in excessive and hypersynchronous neuronal activity as in epilepsy. Phospholipase C (PLC) is a key enzyme in the intracellular signaling pathway and regulates various neuronal functions including neuronal development, synaptic transmission, and plasticity in the brain. Accumulating evidence suggests that neuronal PLC is critically involved in multiple aspects of GABAergic functions. Therefore, a better understanding of mechanisms by which neuronal PLC regulates GABAergic inhibition is necessary for revealing an unrecognized linkage between PLC and epilepsy and developing more effective treatments for epilepsy. Here we review the function of PLC in GABAergic inhibition in the brain and discuss a pathophysiological relationship between PLC and epilepsy.
Collapse
Affiliation(s)
- Hye Yun Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (H.Y.K.); (P.-G.S.)
| | - Pann-Ghill Suh
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (H.Y.K.); (P.-G.S.)
- Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Jae-Ick Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (H.Y.K.); (P.-G.S.)
- Correspondence: ; Tel.: +82-52-217-2458
| |
Collapse
|
23
|
Marshall GF, Gonzalez-Sulser A, Abbott CM. Modelling epilepsy in the mouse: challenges and solutions. Dis Model Mech 2021; 14:dmm.047449. [PMID: 33619078 PMCID: PMC7938804 DOI: 10.1242/dmm.047449] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In most mouse models of disease, the outward manifestation of a disorder can be measured easily, can be assessed with a trivial test such as hind limb clasping, or can even be observed simply by comparing the gross morphological characteristics of mutant and wild-type littermates. But what if we are trying to model a disorder with a phenotype that appears only sporadically and briefly, like epileptic seizures? The purpose of this Review is to highlight the challenges of modelling epilepsy, in which the most obvious manifestation of the disorder, seizures, occurs only intermittently, possibly very rarely and often at times when the mice are not under direct observation. Over time, researchers have developed a number of ways in which to overcome these challenges, each with their own advantages and disadvantages. In this Review, we describe the genetics of epilepsy and the ways in which genetically altered mouse models have been used. We also discuss the use of induced models in which seizures are brought about by artificial stimulation to the brain of wild-type animals, and conclude with the ways these different approaches could be used to develop a wider range of anti-seizure medications that could benefit larger patient populations. Summary: This Review discusses the challenges of modelling epilepsy in mice, a condition in which the outward manifestation of the disorder appears only sporadically, and reviews possible solutions encompassing both genetic and induced models.
Collapse
Affiliation(s)
- Grant F Marshall
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Alfredo Gonzalez-Sulser
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Discovery Brain Sciences, 1 George Square, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Catherine M Abbott
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK .,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
24
|
Abstract
The adult brain is the result of a multistages complex neurodevelopmental process involving genetic, molecular and microenvironmental factors as well as diverse patterns of electrical activity. In the postnatal life, immature neuronal circuits undergo an experience-dependent maturation during critical periods of plasticity, but the brain still retains plasticity during adult life. In all these stages, the neurotransmitter GABA plays a pivotal role. In this chapter, we will describe the interaction of 5-HT with GABA in regulating neurodevelopment and plasticity.
Collapse
|
25
|
Fujihara K, Sato T, Miyasaka Y, Mashimo T, Yanagawa Y. Genetic deletion of the 67-kDa isoform of glutamate decarboxylase alters conditioned fear behavior in rats. FEBS Open Bio 2020; 11:340-353. [PMID: 33325157 PMCID: PMC7876494 DOI: 10.1002/2211-5463.13065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
The GABAergic system is thought to play an important role in the control of cognition and emotion, such as fear, and is related to the pathophysiology of psychiatric disorders. For example, the expression of the 67‐kDa isoform of glutamate decarboxylase (GAD67), a GABA‐producing enzyme, is downregulated in the postmortem brains of patients with major depressive disorder and schizophrenia. However, knocking out the Gad1 gene, which encodes GAD67, is lethal in mice, and thus, the association between Gad1 and cognitive/emotional functions is unclear. We recently developed Gad1 knockout rats and found that some of them can grow into adulthood. Here, we performed fear‐conditioning tests in adult Gad1 knockout rats to assess the impact of the loss of Gad1 on fear‐related behaviors and the formation of fear memory. In a protocol assessing both cued and contextual memory, Gad1 knockout rats showed a partial antiphase pattern of freezing during training and significantly excessive freezing during the contextual test compared with wild‐type rats. However, Gad1 knockout rats did not show any synchronous increase in freezing with auditory tones in the cued test. On the other hand, in a contextual memory specialized protocol, Gad1 knockout rats exhibited comparable freezing behavior to wild‐type rats, while their fear extinction was markedly impaired. These results suggest that GABA synthesis by GAD67 has differential roles in cued and contextual fear memory.
Collapse
Affiliation(s)
- Kazuyuki Fujihara
- Departments of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Department of Psychiatry and Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Takumi Sato
- Departments of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yoshiki Miyasaka
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tomoji Mashimo
- Laboratory Animal Research Center, Institute of Medical Science, the University of Tokyo, Japan
| | - Yuchio Yanagawa
- Departments of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
26
|
CRISPR/Cas9-engineered Gad1 elimination in rats leads to complex behavioral changes: implications for schizophrenia. Transl Psychiatry 2020; 10:426. [PMID: 33293518 PMCID: PMC7723991 DOI: 10.1038/s41398-020-01108-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022] Open
Abstract
GABAergic dysfunctions have been implicated in the pathogenesis of schizophrenia, especially the associated cognitive impairments. The GABA synthetic enzyme glutamate decarboxylase 67-kDa isoform (GAD67) encoded by the GAD1 gene is downregulated in the brains of patients with schizophrenia. Furthermore, a patient with schizophrenia harboring a homozygous mutation of GAD1 has recently been discovered. However, it remains unclear whether loss of function of GAD1 leads to the symptoms observed in schizophrenia, including cognitive impairment. One of the obstacles faced in experimental studies to address this issue is the perinatal lethality of Gad1 knockout (KO) mice, which precluded characterization at the adult stage. In the present study, we successfully generated Gad1 KO rats using CRISPR/Cas9 genome editing technology. Surprisingly, 33% of Gad1 KO rats survived to adulthood and could be subjected to further characterization. The GABA concentration in the Gad1 KO cerebrum was reduced to ~52% of the level in wild-type rats. Gad1 KO rats exhibited impairments in both spatial reference and working memory without affecting adult neurogenesis in the hippocampus. In addition, Gad1 KO rats showed a wide range of behavioral alterations, such as enhanced sensitivity to an NMDA receptor antagonist, hypoactivity in a novel environment, and decreased preference for social novelty. Taken together, the results suggest that Gad1 KO rats could provide a novel model covering not only cognitive deficits but also other aspects of the disorder. Furthermore, the present study teaches an important lesson: differences between species should be considered when developing animal models of human diseases.
Collapse
|
27
|
Kakizaki T, Ohshiro T, Itakura M, Konno K, Watanabe M, Mushiake H, Yanagawa Y. Rats deficient in the GAD65 isoform exhibit epilepsy and premature lethality. FASEB J 2020; 35:e21224. [PMID: 33236473 DOI: 10.1096/fj.202001935r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 02/02/2023]
Abstract
GABA is synthesized by glutamate decarboxylase (GAD), which has two isoforms, namely, GAD65 and GAD67, encoded by the Gad2 and Gad1 genes, respectively. GAD65-deficient (Gad2-/- ) mice exhibit a reduction in brain GABA content after 1 month of age and show spontaneous seizures in adulthood. Approximately 25% of Gad2-/- mice died by 6 months of age. Our Western blot analysis demonstrated that the protein expression ratio of GAD65 to GAD67 in the brain was greater in rats than in mice during postnatal development, suggesting that the contribution of each GAD isoform to GABA functions differs between these two species. To evaluate whether GAD65 deficiency causes different phenotypes between rats and mice, we generated Gad2-/- rats using TALEN genome editing technology. Western blot and immunohistochemical analyses with new antibodies demonstrated that the GAD65 protein was undetectable in the Gad2-/- rat brain. Gad2-/- pups exhibited spontaneous seizures and paroxysmal discharge in EEG at postnatal weeks 3-4. More than 80% of the Gad2-/- rats died at postnatal days (PNDs) 17-23. GABA content in Gad2-/- brains was significantly lower than those in Gad2+/- and Gad2+/+ brains at PND17-19. These results suggest that the low levels of brain GABA content in Gad2-/- rats may lead to epilepsy followed by premature death, and that Gad2-/- rats are more severely affected than Gad2-/- mice. Considering that the GAD65/GAD67 ratio in human brains is more similar to that in rat brains than in mouse brains, Gad2-/- rats would be useful for further investigating the roles of GAD65 in vivo.
Collapse
Affiliation(s)
- Toshikazu Kakizaki
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tomokazu Ohshiro
- Department of Physiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
28
|
Neuray C, Maroofian R, Scala M, Sultan T, Pai GS, Mojarrad M, Khashab HE, deHoll L, Yue W, Alsaif HS, Zanetti MN, Bello O, Person R, Eslahi A, Khazaei Z, Feizabadi MH, Efthymiou S, El-Bassyouni HT, Soliman DR, Tekes S, Ozer L, Baltaci V, Khan S, Beetz C, Amr KS, Salpietro V, Jamshidi Y, Alkuraya FS, Houlden H. Early-infantile onset epilepsy and developmental delay caused by bi-allelic GAD1 variants. Brain 2020; 143:2388-2397. [PMID: 32705143 PMCID: PMC7447512 DOI: 10.1093/brain/awaa178] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 01/31/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) and glutamate are the most abundant amino acid neurotransmitters in the brain. GABA, an inhibitory neurotransmitter, is synthesized by glutamic acid decarboxylase (GAD). Its predominant isoform GAD67, contributes up to ∼90% of base-level GABA in the CNS, and is encoded by the GAD1 gene. Disruption of GAD1 results in an imbalance of inhibitory and excitatory neurotransmitters, and as Gad1-/- mice die neonatally of severe cleft palate, it has not been possible to determine any potential neurological dysfunction. Furthermore, little is known about the consequence of GAD1 disruption in humans. Here we present six affected individuals from six unrelated families, carrying bi-allelic GAD1 variants, presenting with developmental and epileptic encephalopathy, characterized by early-infantile onset epilepsy and hypotonia with additional variable non-CNS manifestations such as skeletal abnormalities, dysmorphic features and cleft palate. Our findings highlight an important role for GAD1 in seizure induction, neuronal and extraneuronal development, and introduce GAD1 as a new gene associated with developmental and epileptic encephalopathy.
Collapse
Affiliation(s)
- Caroline Neuray
- UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
| | - Reza Maroofian
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marcello Scala
- UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Tipu Sultan
- Department of Pediatric Neurology, Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | | | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Genetic Center of Khorasan Razavi, Mashhad, Iran
| | - Heba El Khashab
- Department of Pediatrics, Children's Hospital, Ain Shams University, Cairo, Egypt
- Department of Pediatrics, Dr. Suliman Al Habib Medical Group, Riyadh, Saudi Arabia
| | | | - Wyatt Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK
| | - Hessa S Alsaif
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maria N Zanetti
- Department of Clinical and Experimental Epilepsy, University College London, London, UK
| | - Oscar Bello
- Department of Clinical and Experimental Epilepsy, University College London, London, UK
| | | | - Atieh Eslahi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Masoumeh H Feizabadi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Stephanie Efthymiou
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - Doaa R Soliman
- Department of Pediatrics, Faculty of Medicine, Benha University, Benha, Egypt
| | - Selahattin Tekes
- Dicle University, School of Medicine, Department of Medical Genetics, Diyarbakir, Turkey
| | - Leyla Ozer
- Yuksek Ihtisas University, School of Medicine, Department of Medical Genetics, Ankara, Turkey
| | | | | | | | - Khalda S Amr
- Molecular Genetics Department, National Research Centre, Cairo, Egypt
| | - Vincenzo Salpietro
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Yalda Jamshidi
- Molecular and Clinical Sciences Institute St George's, University of London, UK
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center Riyadh, Saudi Arabia
| | - Henry Houlden
- UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
29
|
Henke C, Töllner K, van Dijk RM, Miljanovic N, Cordes T, Twele F, Bröer S, Ziesak V, Rohde M, Hauck SM, Vogel C, Welzel L, Schumann T, Willmes DM, Kurzbach A, El-Agroudy NN, Bornstein SR, Schneider SA, Jordan J, Potschka H, Metallo CM, Köhling R, Birkenfeld AL, Löscher W. Disruption of the sodium-dependent citrate transporter SLC13A5 in mice causes alterations in brain citrate levels and neuronal network excitability in the hippocampus. Neurobiol Dis 2020; 143:105018. [PMID: 32682952 DOI: 10.1016/j.nbd.2020.105018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 12/28/2022] Open
Abstract
In addition to tissues such as liver, the plasma membrane sodium-dependent citrate transporter, NaCT (SLC13A5), is highly expressed in brain neurons, but its function is not understood. Loss-of-function mutations in the human SLC13A5 gene have been associated with severe neonatal encephalopathy and pharmacoresistant seizures. The molecular mechanisms of these neurological alterations are not clear. We performed a detailed examination of a Slc13a5 deletion mouse model including video-EEG monitoring, behavioral tests, and electrophysiologic, proteomic, and metabolomic analyses of brain and cerebrospinal fluid. The experiments revealed an increased propensity for epileptic seizures, proepileptogenic neuronal excitability changes in the hippocampus, and significant citrate alterations in the CSF and brain tissue of Slc13a5 deficient mice, which may underlie the neurological abnormalities. These data demonstrate that SLC13A5 is involved in brain citrate regulation and suggest that abnormalities in this regulation can induce seizures. The present study is the first to (i) establish the Slc13a5-knockout mouse model as a helpful tool to study the neuronal functions of NaCT and characterize the molecular mechanisms by which functional deficiency of this citrate transporter causes epilepsy and impairs neuronal function; (ii) evaluate all hypotheses that have previously been suggested on theoretical grounds to explain the neurological phenotype of SLC13A5 mutations; and (iii) indicate that alterations in brain citrate levels result in neuronal network excitability and increased seizure propensity.
Collapse
Affiliation(s)
- Christine Henke
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - R Maarten van Dijk
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Nina Miljanovic
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Thekla Cordes
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Friederike Twele
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Vanessa Ziesak
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Marco Rohde
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany
| | - Charlotte Vogel
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Germany
| | - Lisa Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Tina Schumann
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Diana M Willmes
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Anica Kurzbach
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Nermeen N El-Agroudy
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Germany
| | | | - Jens Jordan
- Institute for Aerospace Medicine, German Aerospace Center (DLR) and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Andreas L Birkenfeld
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
30
|
Dade M, Berzero G, Izquierdo C, Giry M, Benazra M, Delattre JY, Psimaras D, Alentorn A. Neurological Syndromes Associated with Anti-GAD Antibodies. Int J Mol Sci 2020; 21:E3701. [PMID: 32456344 PMCID: PMC7279468 DOI: 10.3390/ijms21103701] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamic acid decarboxylase (GAD) is an intracellular enzyme whose physiologic function is the decarboxylation of glutamate to gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter within the central nervous system. GAD antibodies (Ab) have been associated with multiple neurological syndromes, including stiff-person syndrome, cerebellar ataxia, and limbic encephalitis, which are all considered to result from reduced GABAergic transmission. The pathogenic role of GAD Ab is still debated, and some evidence suggests that GAD autoimmunity might primarily be cell-mediated. Diagnosis relies on the detection of high titers of GAD Ab in serum and/or in the detection of GAD Ab in the cerebrospinal fluid. Due to the relative rarity of these syndromes, treatment schemes and predictors of response are poorly defined, highlighting the unmet need for multicentric prospective trials in this population. Here, we reviewed the main clinical characteristics of neurological syndromes associated with GAD Ab, focusing on pathophysiologic mechanisms.
Collapse
Affiliation(s)
- Maëlle Dade
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, 75013 Paris, France; (M.D.); (G.B.); (J.-Y.D.); (D.P.)
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013 Paris, France; (M.G.); (M.B.)
| | - Giulia Berzero
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, 75013 Paris, France; (M.D.); (G.B.); (J.-Y.D.); (D.P.)
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013 Paris, France; (M.G.); (M.B.)
- Neuroncology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Cristina Izquierdo
- Department of Neuroscience, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | - Marine Giry
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013 Paris, France; (M.G.); (M.B.)
| | - Marion Benazra
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013 Paris, France; (M.G.); (M.B.)
| | - Jean-Yves Delattre
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, 75013 Paris, France; (M.D.); (G.B.); (J.-Y.D.); (D.P.)
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013 Paris, France; (M.G.); (M.B.)
| | - Dimitri Psimaras
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, 75013 Paris, France; (M.D.); (G.B.); (J.-Y.D.); (D.P.)
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013 Paris, France; (M.G.); (M.B.)
| | - Agusti Alentorn
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, 75013 Paris, France; (M.D.); (G.B.); (J.-Y.D.); (D.P.)
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013 Paris, France; (M.G.); (M.B.)
| |
Collapse
|
31
|
Chahal CAA, Salloum MN, Alahdab F, Gottwald JA, Tester DJ, Anwer LA, So EL, Murad MH, St Louis EK, Ackerman MJ, Somers VK. Systematic Review of the Genetics of Sudden Unexpected Death in Epilepsy: Potential Overlap With Sudden Cardiac Death and Arrhythmia-Related Genes. J Am Heart Assoc 2020; 9:e012264. [PMID: 31865891 PMCID: PMC6988156 DOI: 10.1161/jaha.119.012264] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 09/25/2019] [Indexed: 12/29/2022]
Abstract
Background Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related death. SUDEP shares many features with sudden cardiac death and sudden unexplained death in the young and may have a similar genetic contribution. We aim to systematically review the literature on the genetics of SUDEP. Methods and Results PubMed, MEDLINE Epub Ahead of Print, Ovid Medline In-Process & Other Non-Indexed Citations, MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, and Scopus were searched through April 4, 2017. English language human studies analyzing SUDEP for known sudden death, ion channel and arrhythmia-related pathogenic variants, novel variant discovery, and copy number variant analyses were included. Aggregate descriptive statistics were generated; data were insufficient for meta-analysis. A total of 8 studies with 161 unique individuals were included; mean was age 29.0 (±SD 14.2) years; 61% males; ECG data were reported in 7.5% of cases; 50.7% were found prone and 58% of deaths were nocturnal. Cause included all types of epilepsy. Antemortem diagnosis of Dravet syndrome and autism (with duplication of chromosome 15) was associated with 11% and 9% of cases. The most frequently detected known pathogenic variants at postmortem were in Na+ and K+ ion channel subunits, as were novel potentially pathogenic variants (11%). Overall, the majority of variants were of unknown significance. Analysis of copy number variant was insignificant. Conclusions SUDEP case adjudication and evaluation remains limited largely because of crucial missing data such as ECGs. The most frequent pathogenic/likely pathogenic variants identified by molecular autopsy are in ion channel or arrhythmia-related genes, with an ≈11% discovery rate. Comprehensive postmortem examination should include examination of the heart and brain by specialized pathologists and blood storage.
Collapse
Affiliation(s)
- C. Anwar A. Chahal
- Mayo Clinic College of MedicineMayo ClinicRochesterMN
- Mayo Clinic Graduate School of Biomedical SciencesMayo ClinicRochesterMN
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
| | - Mohammad N. Salloum
- Internal MedicineIcahn School of Medicine at Mount SinaiQueens Hospital CenterNew YorkNY
| | - Fares Alahdab
- Evidence‐Based Practice Research ProgramMayo ClinicRochesterMN
- Division of Preventive, Occupational and Aerospace MedicineMayo ClinicRochesterMN
| | | | - David J. Tester
- Mayo Clinic College of MedicineMayo ClinicRochesterMN
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
- Windland Smith Rice Sudden Death Genomics LaboratoryMayo ClinicRochesterMN
| | - Lucman A. Anwer
- Mayo Clinic College of MedicineMayo ClinicRochesterMN
- Department of Cardiovascular SurgeryMayo ClinicRochesterMN
- General SurgeryUIC/MGHChicagoIL
| | - Elson L. So
- Evidence‐Based Practice Research ProgramMayo ClinicRochesterMN
| | - Mohammad Hassan Murad
- Evidence‐Based Practice Research ProgramMayo ClinicRochesterMN
- Division of Preventive, Occupational and Aerospace MedicineMayo ClinicRochesterMN
| | - Erik K. St Louis
- Mayo Clinic College of MedicineMayo ClinicRochesterMN
- Department of NeurologyMayo ClinicRochesterMN
- Mayo Center for Sleep MedicineMayo ClinicRochesterMN
| | - Michael J. Ackerman
- Mayo Clinic College of MedicineMayo ClinicRochesterMN
- Mayo Clinic Graduate School of Biomedical SciencesMayo ClinicRochesterMN
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
- Windland Smith Rice Sudden Death Genomics LaboratoryMayo ClinicRochesterMN
- Department of PediatricsMayo ClinicRochesterMN
| | - Virend K. Somers
- Mayo Clinic College of MedicineMayo ClinicRochesterMN
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
| |
Collapse
|
32
|
Shaw JC, Crombie GK, Zakar T, Palliser HK, Hirst JJ. Perinatal compromise contributes to programming of GABAergic and glutamatergic systems leading to long-term effects on offspring behaviour. J Neuroendocrinol 2020; 32:e12814. [PMID: 31758712 DOI: 10.1111/jne.12814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/30/2019] [Accepted: 11/20/2019] [Indexed: 01/01/2023]
Abstract
Extensive evidence now shows that adversity during the perinatal period is a significant risk factor for the development of neurodevelopmental disorders long after the causative event. Despite stemming from a variety of causes, perinatal compromise appears to have similar effects on the developing brain, thereby resulting in behavioural disorders of a similar nature. These behavioural disorders occur in a sex-dependent manner, with males affected more by externalising behaviours such as attention deficit hyperactivity disorder (ADHD) and females by internalising behaviours such as anxiety. Regardless of the causative event or the sex of the offspring, these disorders may begin in childhood or adolescence but extend into adulthood. A mechanism by which adverse events in the perinatal period impact later in life behaviour has been shown to be the changing epigenetic landscape. Methylation of the GAD1/GAD67 gene, which encodes the key glutamate-to-GABA-synthesising enzyme glutamate decarboxylase 1, resulting in increased levels of glutamate, is one epigenetic mechanism that may account for a tendency towards excitation in disorders such as ADHD. Exposure of the fetus or the neonate to high levels of cortisol may be the mediator between perinatal compromise and poor behavioural outcomes because evidence suggests that increased glucocorticoid exposure triggers widespread changes in the epigenetic landscape. This review summarises the current evidence and recent literature about the impact of various perinatal insults on the epigenome and the common mechanisms that may explain the similarity of behavioural outcomes occurring following diverse perinatal compromise.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Gabrielle K Crombie
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tamas Zakar
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
33
|
Abstract
Hypophosphatasia (HPP) is a rare inherited systemic metabolic disease caused by mutations in the tissue-nonspecific alkaline phosphatase (TNSALP) gene. TNSALP is expressed in the liver, kidney and bone, and its substrates include TNSALP inorganic pyrophosphate, pyridoxal-5'-phosphate (PLP)/vitamin B6 and phosphoethanolamine (PEA). Autosomal recessive and dominant forms of the disease result in a range of clinical entities. Major hallmarks are low alkaline phosphatase (ALP) and elevated PLP and PEA levels. Very severe infantile forms of HPP cause premature death as a result of respiratory insufficiency and also present with hypo-mineralisation leading to deformed limbs with, in some cases, the near-absence of bones and skull altogether. Respiratory failure, rib fractures and seizures due to vitamin B6 deficiency are indicative of a poor prognosis. Craniosynostosis is frequent. HPP leads to an unusual presentation of rickets with high levels of calcium and phosphorus, resulting in hypercalciuria, nephrocalcinosis and low ALP levels. Hypercalcaemic crisis, failure to thrive and growth retardation are concerns in infants. Fractures are common in both infantile and adult forms of the disease, concomitantly occurring with unexplained chronic pain and fatigue. Dental clinical presentations, which include the premature loss of teeth, are also commonly found in HPP and specifically manifest as odontohypophosphatasia. A novel enzyme therapy for human HPP, asfotase alfa, which is specifically targeted to mineralised tissues, has been developed in the past decades. While this treatment seems very promising, especially for infantile HPP, many questions regarding its long-term effects, the management of treatment, and any potential secondary adverse effects remain unresolved.
Collapse
|
34
|
Wearne TA, Cornish JL. Inhibitory regulation of the prefrontal cortex following behavioral sensitization to amphetamine and/or methamphetamine psychostimulants: A review of GABAergic mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109681. [PMID: 31255648 DOI: 10.1016/j.pnpbp.2019.109681] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022]
Abstract
Behavioral sensitization to repeated psychostimulant administration has been proposed to reflect many of the neurochemical and behavioral changes that are characteristic of a range of disorders, including drug addiction and psychoses. While previous studies have examined the role of dopamine and glutamate neurotransmission in mediating sensitization, particularly within the prefrontal cortex (PFC), the role of inhibitory GABAergic processing of the PFC in the expression of sensitization is not well understood. Recent research, however, has proposed an emerging role of GABA synthesis, reuptake, ionotropic and metabotropic receptor regulation, and interneuronal changes following sensitization to methamphetamine and/or amphetamine within the PFC. The aim of this review, therefore, is to synthesize research findings on changes to the GABAergic network following sensitization induced by amphetamines (i.e., amphetamine and/or methamphetamine) in the PFC. In addition to providing an overview of global PFC changes, we also provide evidence of regional specific inhibitory influences on sensitized circuitry, focusing on the prelimbic and orbitofrontal cortices. We propose a neural circuit through which inhibitory PFC GABA changes mediate sensitized disease states, focusing on the interaction between the prelimbic and orbitofrontal cortices with subcortical brain structures and the mesolimbic system. Methodological considerations and avenues for future research are also discussed.
Collapse
Affiliation(s)
- Travis A Wearne
- Department of Psychology, Macquarie University, Sydney, NSW, Australia; School of Psychology, University of New South Wales, Kensington, NSW, Australia
| | | |
Collapse
|
35
|
Γ-Aminobutyric acid in adult brain: an update. Behav Brain Res 2019; 376:112224. [DOI: 10.1016/j.bbr.2019.112224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/21/2023]
|
36
|
The regulation of glutamic acid decarboxylases in GABA neurotransmission in the brain. Arch Pharm Res 2019; 42:1031-1039. [PMID: 31786745 DOI: 10.1007/s12272-019-01196-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter that is required for the control of synaptic excitation/inhibition and neural oscillation. GABA is synthesized by glutamic acid decarboxylases (GADs) that are widely distributed and localized to axon terminals of inhibitory neurons as well as to the soma and, to a lesser extent, dendrites. The expression and activity of GADs is highly correlated with GABA levels and subsequent GABAergic neurotransmission at the inhibitory synapse. Dysregulation of GADs has been implicated in various neurological disorders including epilepsy and schizophrenia. Two isoforms of GADs, GAD67 and GAD65, are expressed from separate genes and have different regulatory processes and molecular properties. This review focuses on the recent advances in understanding the structure of GAD, its transcriptional regulation and post-transcriptional modifications in the central nervous system. This may provide insights into the pathological mechanisms underlying neurological diseases that are associated with GAD dysfunction.
Collapse
|
37
|
Tinnitus Correlates with Downregulation of Cortical Glutamate Decarboxylase 65 Expression But Not Auditory Cortical Map Reorganization. J Neurosci 2019; 39:9989-10001. [PMID: 31704784 DOI: 10.1523/jneurosci.1117-19.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/23/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Hearing loss is the biggest risk factor for tinnitus, and hearing-loss-related pathological changes in the auditory pathway have been hypothesized as the mechanism underlying tinnitus. However, due to the comorbidity of tinnitus and hearing loss, it has been difficult to differentiate between neural correlates of tinnitus and consequences of hearing loss. In this study, we dissociated tinnitus and hearing loss in FVB mice, which exhibit robust resistance to tinnitus following monaural noise-induced hearing loss. Furthermore, knock-down of glutamate decarboxylase 65 (GAD65) expression in auditory cortex (AI) by RNA interference gave rise to tinnitus in normal-hearing FVB mice. We found that tinnitus was significantly correlated with downregulation of GAD65 in the AI. By contrast, cortical map distortions, which have been hypothesized as a mechanism underlying tinnitus, were correlated with hearing loss but not tinnitus. Our findings suggest new strategies for the rehabilitation of tinnitus and other phantom sensation, such as phantom pain.SIGNIFICANCE STATEMENT Hearing loss is the biggest risk factor for tinnitus in humans. Most animal models of tinnitus also exhibit comorbid hearing loss, making it difficult to dissociate the mechanisms underlying tinnitus from mere consequences of hearing loss. Here we show that, although both C57BL/6 and FVB mice exhibited similar noise-induced hearing threshold increase, only C57BL/6, but not FVB, mice developed tinnitus following noise exposure. Although both strains showed frequency map reorganization following noise-induced hearing loss, only C57BL/6 mice had reduced glutamate decarboxylase 65 (GAD65) expression in the auditory cortex (AI). Knocking down GAD65 expression in the AI resulted in tinnitus in normal-hearing FVB mice. Our results suggest that reduced inhibitory neuronal function, but not sensory map reorganization, underlies noise-induced tinnitus.
Collapse
|
38
|
Song J, Yang X, Zhou Y, Chen L, Zhang X, Liu Z, Niu W, Zhan N, Fan X, Khan AA, Kuang Y, Song L, He G, Li W. Dysregulation of neuron differentiation in an autistic savant with exceptional memory. Mol Brain 2019; 12:91. [PMID: 31699123 PMCID: PMC6836402 DOI: 10.1186/s13041-019-0507-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/01/2019] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of complex neurodevelopmental disorders without a unique or definite underlying pathogenesis. Although savant syndrome is common in ASD, few models are available for studying the molecular and cellular mechanisms of this syndrome. In this study, we generated urinary induced pluripotent stem cells (UiPSCs) from a 13-year-old male autistic savant with exceptional memory. The UiPSC-derived neurons of the autistic savant exhibited upregulated expression levels of ASD genes/learning difficulty-related genes, namely PAX6, TBR1 and FOXP2, accompanied by hypertrophic neural somas, enlarged spines, reduced spine density, and an increased frequency of spontaneous excitatory postsynaptic currents. Although this study involved only a single patient and a single control because of the rarity of such cases, it provides the first autistic savant UiPSC model that elucidates the potential cellular mechanisms underlying the condition.
Collapse
Affiliation(s)
- Jinjing Song
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiujuan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ying Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lei Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xu Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhuxi Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Weibo Niu
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute for Pediatric Research, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Nengpeng Zhan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xuelian Fan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Abdul Aziz Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yifang Kuang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lulu Song
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
39
|
Walia V, Garg C, Garg M. Lithium potentiated, pyridoxine abolished and fluoxetine attenuated the anxiolytic effect of diazepam in mice. Brain Res Bull 2019; 150:343-353. [PMID: 31201833 DOI: 10.1016/j.brainresbull.2019.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/05/2019] [Accepted: 06/10/2019] [Indexed: 11/19/2022]
Abstract
In the present study, the anxiolytic effect of diazepam (1 and 2 mg/kg, i.p.) was determined alone and in combination with lithium (50 mg/kg, i.p.), pyridoxine (90 mg/kg, i.p.) and fluoxetine (10 mg/kg, i.p.) using elevated plus maze (EPM) and light/dark box (LDB) tests in experimental mice. The effect of various treatments on the brain GABA levels and glutamic acid decarboxylase (GAD) expression were also determined. The results obtained suggested that the diazepam (2 mg/kg, i.p.) exerted anxiolytic effect and significantly increased the brain GABA levels and GAD expression as compared to control group. Fluoxetine (10 mg/kg, i.p.) exerted anxiogenic effects, but did not affect the brain GABA levels and GAD activity significantly as compared to control. Pretreatments of pyridoxine (90 mg/kg, i.p.) abolished; lithium (50 mg/kg, i.p.) potentiated while fluoxetine (10 mg/kg, i.p.) attenuated the anxiolytic and neurochemical effects of diazepam (1 and 2 mg/kg, i.p.) treatment in mice. Therefore, the combined treatment of lithium and diazepam might be a promising treatment for anxiety.
Collapse
Affiliation(s)
- Vaibhav Walia
- Department of Pharmaceutical Sciences, M.D University Rohtak, Haryana, India
| | - Chanchal Garg
- Department of Pharmaceutical Sciences, M.D University Rohtak, Haryana, India
| | - Munish Garg
- Department of Pharmaceutical Sciences, M.D University Rohtak, Haryana, India.
| |
Collapse
|
40
|
Ye Q, Trivedi M, Zhang Y, Böhlke M, Alsulimani H, Chang J, Maher T, Deth R, Kim J. Brain iron loading impairs DNA methylation and alters GABAergic function in mice. FASEB J 2019; 33:2460-2471. [PMID: 30277817 PMCID: PMC6338660 DOI: 10.1096/fj.201801116rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022]
Abstract
Iron deficiency is closely associated with altered GABA metabolism and affective behavior. While mutation in the hemochromatosis ( HFE) gene disrupts iron homeostasis and promotes oxidative stress that increases the risk of neurodegeneration, it is largely unknown whether HFE mutation modifies GABAergic homeostasis and emotional behavior. The goal of our study was to investigate the impact of HFE on GABAergic neurochemistry and redox-epigenetic regulation in the brain using H67D HFE-mutant mice that recapitulates the H63D-HFE mutation in humans. H67D mice displayed elevated redox-active iron levels in the brain by 32% compared to age-matched wild-type mice. Moreover, the H67D brain had increased isoprostane and decreased glutathione, indicating elevated oxidative stress. Additionally, the H67D brain had decreased global methylation and attenuated DNA methyltransferase (DNMT) activity. Direct addition of iron to purified DNMT in vitro decreased enzyme activity in a concentration-dependent manner. Last, H67D mice exhibited decreased anxiety-like behavior, which was associated with increased expression of the GABAA receptor α2 subunits by 93%, and these changes were also observed in H67D mice fed a low-iron diet. Taken together, our results suggest a putative role of HFE in regulating labile iron status in the brain, and mutation in H67D perturbs redox-methylation status, contributing to GABAergic dysfunction.-Ye, Q., Trivedi, M., Zhang, Y., Böhlke, M., Alsulimani, H., Chang, J., Maher, T., Deth, R., Kim, J. Brain iron loading impairs DNA methylation and alters GABAergic function in mice.
Collapse
Affiliation(s)
- Qi Ye
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Malav Trivedi
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, Florida, USA; and
| | - Yiting Zhang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Mark Böhlke
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Science (MCPHS) University, Boston, Massachusetts, USA
| | - Helal Alsulimani
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Timothy Maher
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Science (MCPHS) University, Boston, Massachusetts, USA
| | - Richard Deth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, Florida, USA; and
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
41
|
O’Connor MJ, Beebe LL, Deodato D, Ball RE, Page AT, VanLeuven AJ, Harris KT, Park S, Hariharan V, Lauderdale JD, Dore TM. Bypassing Glutamic Acid Decarboxylase 1 (Gad1) Induced Craniofacial Defects with a Photoactivatable Translation Blocker Morpholino. ACS Chem Neurosci 2019; 10:266-278. [PMID: 30200754 PMCID: PMC6337688 DOI: 10.1021/acschemneuro.8b00231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
![]()
γ-Amino
butyric acid (GABA) mediated signaling is critical
in the central and enteric nervous systems, pancreas, lungs, and other
tissues. It is associated with many neurological disorders and craniofacial
development. Glutamic acid decarboxylase (GAD) synthesizes GABA from
glutamate, and knockdown of the gad1 gene results
in craniofacial defects that are lethal in zebrafish. To bypass this
and enable observation of the neurological defects resulting from
knocking down gad1 expression, a photoactivatable
morpholino oligonucleotide (MO) against gad1 was
prepared by cyclization with a photocleavable linker rendering the
MO inactive. The cyclized MO was stable in the dark and toward degradative
enzymes and was completely linearized upon brief exposure to 405 nm
light. In the course of investigating the function of the ccMOs in
zebrafish, we discovered that zebrafish possess paralogous gad1 genes, gad1a and gad1b. A gad1b MO injected at the 1–4 cell stage
caused severe morphological defects in head development, which could
be bypassed, enabling the fish to develop normally, if the fish were
injected with a photoactivatable, cyclized gad1b MO
and grown in the dark. At 1 day post fertilization (dpf), light activation
of the gad1b MO followed by observation at 3 and
7 dpf led to increased and abnormal electrophysiological brain activity
compared to wild type animals. The photocleavable linker can be used
to cyclize and inactivate any MO, and represents a general strategy
to parse the function of developmentally important genes in a spatiotemporal
manner.
Collapse
Affiliation(s)
- Matthew J. O’Connor
- New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Lindsey L. Beebe
- Department of Genetics, University of Georgia, Athens, Georgia 30602, United States
| | - Davide Deodato
- New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Rebecca E. Ball
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - A. Tyler Page
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Ariel J. VanLeuven
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Kyle T. Harris
- Department of Chemistry, University of Georgia, Athens, Georgia 30602 United States
| | - Sungdae Park
- Department of Genetics, University of Georgia, Athens, Georgia 30602, United States
| | - Vani Hariharan
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - James D. Lauderdale
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
- Neuroscience
Division
of the Biomedical and Health Sciences Institute, Athens, Georgia 30602, United States
| | - Timothy M. Dore
- New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Department of Chemistry, University of Georgia, Athens, Georgia 30602 United States
| |
Collapse
|
42
|
Pandya M, Palpagama TH, Turner C, Waldvogel HJ, Faull RL, Kwakowsky A. Sex- and age-related changes in GABA signaling components in the human cortex. Biol Sex Differ 2019; 10:5. [PMID: 30642393 PMCID: PMC6332906 DOI: 10.1186/s13293-018-0214-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/09/2018] [Indexed: 12/13/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the nervous system. Previous studies have shown fluctuations in expression levels of GABA signaling components-glutamic acid decarboxylase (GAD), GABA receptor (GABAR) subunit, and GABA transporter (GAT)-with increasing age and between sexes; however, this limited knowledge is highly based on animal models that produce inconsistent findings. This study is the first analysis of the age- and sex-specific changes of the GAD, GABAA/BR subunits, and GAT expression in the human primary sensory and motor cortices; superior (STG), middle (MTG), and inferior temporal gyrus (ITG); and cerebellum. Utilizing Western blotting, we found that the GABAergic system is relatively robust against sex and age-related differences in all brain regions examined. However, we observed several sex-dependent differences in GABAAR subunit expression in STG along with age-dependent GABAAR subunit and GAD level alteration. No significant age-related differences were found in α1, α2, α5, β3, and γ2 subunit expression in the STG. However, we found significantly higher GABAAR α3 subunit expression in the STG in young males compared to old males. We observed a significant sex-dependent difference in α1 subunit expression: males presenting significantly higher levels compared to women across all stages of life in STG. Older females showed significantly lower α2, α5, and β3 subunit expression compared to old males in the STG. These changes found in the STG might significantly influence GABAergic neurotransmission and lead to sex- and age-specific disease susceptibility and progression.
Collapse
Affiliation(s)
- Madhavi Pandya
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H. Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
43
|
Cho JH, Lee KM, Lee YI, Nam HG, Jeon WB. Glutamate decarboxylase 67 contributes to compensatory insulin secretion in aged pancreatic islets. Islets 2019; 11:33-43. [PMID: 31084527 PMCID: PMC6548491 DOI: 10.1080/19382014.2019.1599708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pancreatic islets play an essential role in regulating blood glucose levels. Age-dependent development of glucose intolerance and insulin resistance results in hyperglycemia, which in turn stimulates insulin synthesis and secretion from aged islets, to fulfill the increased demand for insulin. However, the mechanism underlying enhanced insulin secretion remains unknown. Glutamic acid decarboxylase 67 (GAD67) catalyzes the conversion of glutamate into γ-aminobutyric acid (GABA) and CO2. Both glutamate and GABA can affect islet function. Here, we investigated the role of GAD67 in insulin secretion in young (3 month old) and aged (24 month old) C57BL/6J male mice. Unlike young mice, aged mice displayed glucose-intolerance and insulin-resistance. However, aged mice secreted more insulin and showed lower fed blood glucose levels than young mice. GAD67 levels in primary islets increased with aging and in response to high glucose levels. Inhibition of GAD67 activity using a potent inhibitor of GAD, 3-mercaptopropionic acid, abrogated glucose-stimulated insulin secretion from a pancreatic β-cell line and from young and aged islets. Collectively, our results suggest that blood glucose levels regulate GAD67 expression, which contributes to β-cell responses to impaired glucose homeostasis caused by advanced aging.
Collapse
Affiliation(s)
- Jung Hoon Cho
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Korea
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Korea
| | - Kyeong-Min Lee
- Laboratory of Biochemistry and Cellular Engineering, DGIST, Daegu, Korea
| | - Yun-Il Lee
- Well Aging Research Center, DGIST, Daegu, Korea
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Korea
- Department of New Biology, DGIST, Daegu, Korea
| | - Won Bae Jeon
- Laboratory of Biochemistry and Cellular Engineering, DGIST, Daegu, Korea
- Department of New Biology, DGIST, Daegu, Korea
- CONTACT Won Bae Jeon Laboratory of Biochemistry and Cellular Engineering, DGIST, Daegu 42988, Korea
| |
Collapse
|
44
|
Abstract
The pathophysiology of the neuromuscular manifestations of hypophosphatasia (HPP) remains unknown. Pyridoxine-sensitive seizures characterize severe forms of infantile HPP. Young children and infants affected with severe forms of HPP, but also adults often present with myopathy characterized by hypotonia or muscle weakness. Chronic pain, of unclear mechanism is also often present. Tissue-non-specific alkaline phosphatase (Alkaline Phosphatase-Liver/Bone/Kidney [ALPL]) is expressed in brain neuronal cell and in muscle cells during development and adulthood. The knockout of the ALPL impacts neuronal functions in animal models. This may occur through metabolic anomalies involving gamma-aminobutyric acid (GABA) and other neurotransmitters via the metabolism of pyridoxal phosphate (vitamin B6) and phosphoethanolamine. In this context, a greater understanding of the neuromuscular pathophysiology of HPP is critical to assess the potential impact of new therapies.
Collapse
|
45
|
Hussain T, Kil H, Hattiangady B, Lee J, Kodali M, Shuai B, Attaluri S, Takata Y, Shen J, Abba MC, Shetty AK, Aldaz CM. Wwox deletion leads to reduced GABA-ergic inhibitory interneuron numbers and activation of microglia and astrocytes in mouse hippocampus. Neurobiol Dis 2018; 121:163-176. [PMID: 30290271 DOI: 10.1016/j.nbd.2018.09.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/18/2018] [Accepted: 09/30/2018] [Indexed: 02/07/2023] Open
Abstract
The association of WW domain-containing oxidoreductase WWOX gene loss of function with central nervous system (CNS) related pathologies is well documented. These include spinocerebellar ataxia, epilepsy and mental retardation (SCAR12, OMIM: 614322) and early infantile epileptic encephalopathy (EIEE28, OMIM: 616211) syndromes. However, there is complete lack of understanding of the pathophysiological mechanisms at play. In this study, using a Wwox knockout (Wwox KO) mouse model (2 weeks old, both sexes) and stereological studies we observe that Wwox deletion leads to a significant reduction in the number of hippocampal GABA-ergic (γ-aminobutyric acid) interneurons. Wwox KO mice displayed significantly reduced numbers of calcium-binding protein parvalbumin (PV) and neuropeptide Y (NPY) expressing interneurons in different subfields of the hippocampus in comparison to Wwox wild-type (WT) mice. We also detected decreased levels of Glutamic Acid Decarboxylase protein isoforms GAD65/67 expression in Wwox null hippocampi suggesting lower levels of GABA synthesis. In addition, Wwox deficiency was associated with signs of neuroinflammation such as evidence of activated microglia, astrogliosis, and overexpression of inflammatory cytokines Tnf-a and Il6. We also performed comparative transcriptome-wide expression analyses of neural stem cells grown as neurospheres from hippocampi of Wwox KO and WT mice thus identifying 283 genes significantly dysregulated in their expression. Functional annotation of transcriptome profiling differences identified 'neurological disease' and 'CNS development related functions' to be significantly enriched. Several epilepsy-related genes were found differentially expressed in Wwox KO neurospheres. This study provides the first genotype-phenotype observations as well as potential mechanistic clues associated with Wwox loss of function in the brain.
Collapse
Affiliation(s)
- Tabish Hussain
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Hyunsuk Kil
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Bharathi Hattiangady
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, United States; Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, TX, United States
| | - Jaeho Lee
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, United States; Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, TX, United States
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, United States; Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, TX, United States
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, United States; Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, TX, United States
| | - Yoko Takata
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Martin C Abba
- CINIBA, School of Medicine, UNLP, La Plata, Argentina
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, United States; Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, TX, United States
| | - C Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States.
| |
Collapse
|
46
|
Liimatainen S, Honnorat J, Pittock SJ, McKeon A, Manto M, Radtke JR, Hampe CS. GAD65 autoantibody characteristics in patients with co-occurring type 1 diabetes and epilepsy may help identify underlying epilepsy etiologies. Orphanet J Rare Dis 2018; 13:55. [PMID: 29636076 PMCID: PMC5892043 DOI: 10.1186/s13023-018-0787-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/16/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Autoantibodies against the smaller isoform of glutamate decarboxylase (GAD65Ab) reflect autoimmune etiologies in Type 1 diabetes (T1D) and several neurological disorders, including Stiff Person Syndrome (SPS). GAD65Ab are also reported in cases of epilepsy, indicating an autoimmune component. GAD65Ab in patients with co-occurring T1D, epilepsy or SPS may be part of either autoimmune pathogenesis. To dissect the etiologies associated with GAD65Ab, we analyzed GAD65Ab titer, epitope specificity and enzyme inhibition in GAD65Ab-positive patients diagnosed with epilepsy (n = 28), patients with epilepsy and T1D (n = 10), patients with SPS (n = 20), and patients with T1D (n = 42). RESULTS GAD65Ab epitope pattern in epilepsy differed from T1D and SPS patients. Four of 10 patients with co-occurring T1D and epilepsy showed GAD65Ab profiles similar to T1D patients, while lacking GAD65Ab characteristics found in GAD65Ab-positive epilepsy patients. One of these patients responded well to anti-epileptic drugs (AEDs), while another patient did not require medication for seizure control. The third patient was refractory due to a diagnosis of meningioma. The response of the remaining patient to AEDs was unknown. GAD65Ab in the remaining six patients with T1D and epilepsy showed profiles similar to those in epilepsy patients. CONCLUSIONS Different autoimmune responses associated with T1D, epilepsy and SPS are reflected by disease-specific GAD65Ab patterns. Moreover, the epileptic etiology in patients diagnosed with both T1D and epilepsy may present two different etiologies regarding their epileptic condition. In one group T1D co-occurs with non-autoimmune epilepsy. In the other group GAD65Ab are part of an autoimmune epileptic condition.
Collapse
Affiliation(s)
- Suvi Liimatainen
- Department of Neurology and Rehabilitation, Tampere University Hospital, Tampere, Finland
- Division 7, Tampere University Hospital, Tampere, Finland
| | - Jerome Honnorat
- University of Lyon - University Claude Bernard Lyon, Lyon, France
| | - Sean J Pittock
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine & Pathology College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andrew McKeon
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine & Pathology College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mario Manto
- Unité d'Etude du Mouvement, Université Libre De Bruxelles, Brussels, Belgium
| | - Jared R Radtke
- Department of Medicine, School of Medicine, University of Washington, 850 Republican, Seattle, WA, 98109, USA
| | - Christiane S Hampe
- Department of Medicine, School of Medicine, University of Washington, 850 Republican, Seattle, WA, 98109, USA.
| |
Collapse
|
47
|
Turovsky EA, Zinchenko VP, Gaidin SG, Turovskaya MV. Calcium-Binding Proteins Protect GABAergic Neurons of the Hippocampus from Hypoxia and Ischemia in vitro. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2018. [DOI: 10.1134/s1990747818010105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Liu M, Fitzgibbon M, Wang Y, Reilly J, Qian X, O'Brien T, Clapcote S, Shen S, Roche M. Ulk4 regulates GABAergic signaling and anxiety-related behavior. Transl Psychiatry 2018; 8:43. [PMID: 29391390 PMCID: PMC5804027 DOI: 10.1038/s41398-017-0091-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/09/2017] [Accepted: 11/30/2017] [Indexed: 01/15/2023] Open
Abstract
Excitation/inhibition imbalance has been proposed as a fundamental mechanism in the pathogenesis of neuropsychiatric and neurodevelopmental disorders, in which copy number variations of the Unc-51 like kinase 4 (ULK4) gene encoding a putative Serine/Threonine kinase have been reported in approximately 1/1000 of patients suffering pleiotropic clinical conditions of schizophrenia, depression, autistic spectrum disorder (ASD), developmental delay, language delay, intellectual disability, or behavioral disorder. The current study characterized behavior of heterozygous Ulk4 +/tm1a mice, demonstrating that Ulk4 +/tm1a mice displayed no schizophrenia-like behavior in acoustic startle reactivity and prepulse inhibition tests or depressive-like behavior in the Porsolt swim or tail suspension tests. However, Ulk4 +/tm1a mice exhibited an anxiety-like behavioral phenotype in several tests. Previously identified hypo-anxious (Atp1a2, Ptn, and Mdk) and hyper-anxious (Gria1, Syngap1, and Npy2r) genes were found to be dysregulated accordingly in Ulk4 mutants. Ulk4 was found to be expressed in GABAergic neurons and the Gad67+ interneurons were significantly reduced in the hippocampus and basolateral amygdala of Ulk4 +/tm1a mice. Transcriptome analyses revealed a marked reduction of GABAergic neuronal subtypes, including Pvalb, Sst, Cck, Npy, and Nos3, as well as significant upregulation of GABA receptors, including Gabra1, Gabra3, Gabra4, Gabra5, and Gabrb3. This is the first evidence that Ulk4 plays a major role in regulating GABAergic signaling and anxiety-like behavior, which may have implications for the development of novel anxiolytic treatments.
Collapse
Affiliation(s)
- Min Liu
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Marie Fitzgibbon
- Physiology, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, National University of Ireland Galway, Galway, Ireland
| | - Yanqin Wang
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
- Department of Physiology, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Jamie Reilly
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Xiaohong Qian
- National Center for Protein Sciences, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine, Beijing, China
| | - Timothy O'Brien
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Steve Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland.
| | - Michelle Roche
- Physiology, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
49
|
Enhanced susceptibility to stress and seizures in GAD65 deficient mice. PLoS One 2018; 13:e0191794. [PMID: 29377906 PMCID: PMC5788371 DOI: 10.1371/journal.pone.0191794] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/11/2018] [Indexed: 12/23/2022] Open
Abstract
Reduced gamma-aminobutyric acid (GABA) inhibition has been implicated in both anxiety and epilepsy. GAD65-/- (NOD/LtJ) mice have significantly decreased basal GABA levels in the brain and a lowered threshold for seizure generation. One fifth of GAD65 -/- mice experienced stress-induced seizures upon exposure to an open field at 4 weeks of age. In each successive week until 8 weeks of age, the latency to seizures decreased with prior seizure experience. 100% of GAD65-/- mice exhibited stress-induced seizures by the end of 8 weeks. GAD65-/- mice also exhibited marked impairment in open field exploratory behavior and deficits in spatial learning acquisition on a Barnes maze. Anxiety-like behavior in an open field was observed prior to seizure onset and was predictive of subsequent seizures. Immunohistochemical characterization of interneuron subtypes in GAD65-/- mice showed a selective decrease in GABA and neuropeptide Y (NPY) levels and no change in calbindin (CLB) or calretinin (CLR) immunoreactivity in the hippocampus. Stem cells from the medial ganglionic eminence (MGE) were injected into the hippocampal hilus to restore GABAergic interneurons. One week after transplantation, MGE-transplanted mice demonstrated significant seizure resistance compared to sham surgical controls. The percent area of GFP+ MGE graft in the hippocampus correlated significantly with the increase in seizure latency. Our data indicate that impaired GABAergic neurotransmission can cause anxiety-like behavior and stress-induced seizures that can be rescued by MGE stem cell transplantation.
Collapse
|
50
|
Rossignoli G, Phillips RS, Astegno A, Menegazzi M, Voltattorni CB, Bertoldi M. Phosphorylation of pyridoxal 5'-phosphate enzymes: an intriguing and neglected topic. Amino Acids 2017; 50:205-215. [PMID: 29204749 DOI: 10.1007/s00726-017-2521-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/29/2017] [Indexed: 12/25/2022]
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes catalyze a wide range of reactions of amino acids and amines, with the exception of glycogen phosphorylase which exhibits peculiar both substrate preference and chemical mechanism. They represent about 4% of the gene products in eukaryotic cells. Although structure-function investigations regarding these enzymes are copious, their regulation by post-translational modifications is largely unknown. Protein phosphorylation is the most common post-translational modification fundamental in mediating diverse cellular functions. This review aims at summarizing the current knowledge on regulation of PLP enzymes by phosphorylation. Starting from the paradigmatic PLP-dependent glycogen phosphorylase, the first phosphoprotein discovered, we collect data in literature regarding functional phosphorylation events of eleven PLP enzymes belonging to different fold types and discuss the impact of the modification in affecting their activity and localization as well as the implications on the pathogenesis of diseases in which many of these enzymes are involved. The pivotal question is to correlate the structural consequences of phosphorylation among PLP enzymes of different folds with the functional modifications exerted in terms of activity or conformational changes or others. Although the literature shows that the phosphorylation of PLP enzymes plays important roles in mediating diverse cellular functions, our recapitulation of clue findings in the field makes clear that there is still much to be learnt. Besides mass spectrometry-based proteomic analyses, further biochemical and structural studies on purified native proteins are imperative to fully understand and predict how phosphorylation regulates PLP enzymes and to find the relationship between addition of a phosphate moiety and physiological response.
Collapse
Affiliation(s)
- Giada Rossignoli
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Strada Le Grazie, 8, 37134, Verona, Italy
| | - Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134, Verona, Italy
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Strada Le Grazie, 8, 37134, Verona, Italy
| | - Carla Borri Voltattorni
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Strada Le Grazie, 8, 37134, Verona, Italy
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Strada Le Grazie, 8, 37134, Verona, Italy.
| |
Collapse
|