1
|
Garribba L, Santaguida S. The Dynamic Instability of the Aneuploid Genome. Front Cell Dev Biol 2022; 10:838928. [PMID: 35265623 PMCID: PMC8899291 DOI: 10.3389/fcell.2022.838928] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
Proper partitioning of replicated sister chromatids at each mitosis is crucial for maintaining cell homeostasis. Errors in this process lead to aneuploidy, a condition in which daughter cells harbor genome imbalances. Importantly, aneuploid cells often experience DNA damage, which in turn could drive genome instability. This might be the product of DNA damage accumulation in micronuclei and/or a consequence of aneuploidy-induced replication stress in S-phase. Although high levels of genome instability are associated with cell cycle arrest, they can also confer a proliferative advantage in some circumstances and fuel tumor growth. Here, we review the main consequences of chromosome segregation errors on genome stability, with a special focus on the bidirectional relationship between aneuploidy and DNA damage. Also, we discuss recent findings showing how increased genome instability can provide a proliferation improvement under specific conditions, including chemotherapeutic treatments.
Collapse
Affiliation(s)
- Lorenza Garribba
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefano Santaguida
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Almengló C, Caamaño P, Fraga M, Devesa J, Costoya JA, Arce VM. From neural stem cells to glioblastoma: A natural history of GBM recapitulated in vitro. J Cell Physiol 2021; 236:7390-7404. [PMID: 33959982 DOI: 10.1002/jcp.30409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
Due to its aggressive and invasive nature glioblastoma (GBM), the most common and aggressive primary brain tumour in adults, remains almost invariably lethal. Significant advances in the last several years have elucidated much of the molecular and genetic complexities of GBM. However, GBM exhibits a vast genetic variation and a wide diversity of phenotypes that have complicated the development of effective therapeutic strategies. This complex pathogenesis makes necessary the development of experimental models that could be used to further understand the disease, and also to provide a more realistic testing ground for potential therapies. In this report, we describe the process of transformation of primary mouse embryo astrocytes into immortalized cultures with neural stem cell characteristics, that are able to generate GBM when injected into the brain of C57BL/6 mice, or heterotopic tumours when injected IV. Overall, our results show that oncogenic transformation is the fate of NSC if cultured for long periods in vitro. In addition, as no additional hit is necessary to induce the oncogenic transformation, our model may be used to investigate the pathogenesis of gliomagenesis and to test the effectiveness of different drugs throughout the natural history of GBM.
Collapse
Affiliation(s)
- Cristina Almengló
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, Santiago de Compostela, Spain
| | - Pilar Caamaño
- Fundación Publica Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Máximo Fraga
- Departamento de Anatomía Patolóxica e Ciencias Forenses, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesús Devesa
- Research and Development, Medical Center Foltra, Teo, Spain
| | - José A Costoya
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, Santiago de Compostela, Spain
| | - Víctor M Arce
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Heng J, Heng HH. Two-phased evolution: Genome chaos-mediated information creation and maintenance. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:29-42. [PMID: 33992670 DOI: 10.1016/j.pbiomolbio.2021.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
Cancer is traditionally labeled a "cellular growth problem." However, it is fundamentally an issue of macroevolution where new systems emerge from tissue by breaking various constraints. To study this process, we used experimental platforms to "watch evolution in action" by comparing the profiles of karyotypes, transcriptomes, and cellular phenotypes longitudinally before, during, and after key phase transitions. This effort, alongside critical rethinking of current gene-based genomic and evolutionary theory, led to the development of the Genome Architecture Theory. Following a brief historical review, we present four case studies and their takeaways to describe the pattern of genome-based cancer evolution. Our discoveries include 1. The importance of non-clonal chromosome aberrations or NCCAs; 2. Two-phased cancer evolution, comprising a punctuated phase and a gradual phase, dominated by karyotype changes and gene mutation/epigenetic alterations, respectively; 3. How the karyotype codes system inheritance, which organizes gene interactions and provides the genomic basis for physiological regulatory networks; and 4. Stress-induced genome chaos, which creates genomic information by reorganizing chromosomes for macroevolution. Together, these case studies redefine the relationship between cellular macro- and microevolution: macroevolution does not equal microevolution + time. Furthermore, we incorporate genome chaos and gene mutation in a general model: genome reorganization creates new karyotype coding, then diverse cancer gene mutations can promote the dominance of tumor cell populations. Finally, we call for validation of the Genome Architecture Theory of cancer and organismal evolution, as well as the systematic study of genomic information flow in evolutionary processes.
Collapse
Affiliation(s)
- Julie Heng
- Harvard College, 86 Brattle Street Cambridge, MA, 02138, USA
| | - Henry H Heng
- Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
4
|
Ramone T, Mulè C, Ciampi R, Bottici V, Cappagli V, Prete A, Matrone A, Piaggi P, Torregrossa L, Basolo F, Elisei R, Romei C. RET Copy Number Alteration in Medullary Thyroid Cancer Is a Rare Event Correlated with RET Somatic Mutations and High Allelic Frequency. Genes (Basel) 2020; 12:35. [PMID: 33383911 PMCID: PMC7824333 DOI: 10.3390/genes12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 01/10/2023] Open
Abstract
Copy number variations (CNV) of the RET gene have been described in 30% of Medullary Thyroid Cancer (MTC), but no information is available about their role in this tumor. This study was designed to clarify RET gene CNV prevalence and their potential role in MTC development. RET gene CNV were analyzed in 158 sporadic MTC cases using the ION Reporter Software (i.e., in silico analysis) while the multiplex ligation-dependent probe amplification assay (i.e., in vitro analysis) technique was performed in 78 MTC cases. We identified three categories of RET ploidy: 137 in 158 (86.7%) cases were diploid and 21 in 158 (13.3%) were aneuploid. Among the aneuploid cases, five out of 21 (23.8%) showed an allelic deletion while 16 out of 21 (76.2%) had an allelic amplification. The prevalence of amplified or deleted RET gene cases (aneuploid) was higher in RET positive tumors. Aneuploid cases also showed a higher allelic frequency of the RET driver mutation. The prevalence of patients with metastatic disease was higher in the group of aneuploid cases while the higher prevalence of disease-free patients was observed in diploid tumors. A statistically significant difference was found when comparing the ploidy status and mortality. RET gene CNVs are rare events in sporadic MTC and are associated with RET somatic mutation, suggesting that they could not be a driver mechanism of tumoral transformation per se. Finally, we found a positive correlation between RET gene CNV and a worse clinical outcome.
Collapse
Affiliation(s)
- Teresa Ramone
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (T.R.); (C.M.); (R.C.); (V.B.); (V.C.); (A.P.); (A.M.); (P.P.); (C.R.)
| | - Chiara Mulè
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (T.R.); (C.M.); (R.C.); (V.B.); (V.C.); (A.P.); (A.M.); (P.P.); (C.R.)
| | - Raffaele Ciampi
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (T.R.); (C.M.); (R.C.); (V.B.); (V.C.); (A.P.); (A.M.); (P.P.); (C.R.)
| | - Valeria Bottici
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (T.R.); (C.M.); (R.C.); (V.B.); (V.C.); (A.P.); (A.M.); (P.P.); (C.R.)
| | - Virginia Cappagli
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (T.R.); (C.M.); (R.C.); (V.B.); (V.C.); (A.P.); (A.M.); (P.P.); (C.R.)
| | - Alessandro Prete
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (T.R.); (C.M.); (R.C.); (V.B.); (V.C.); (A.P.); (A.M.); (P.P.); (C.R.)
| | - Antonio Matrone
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (T.R.); (C.M.); (R.C.); (V.B.); (V.C.); (A.P.); (A.M.); (P.P.); (C.R.)
| | - Paolo Piaggi
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (T.R.); (C.M.); (R.C.); (V.B.); (V.C.); (A.P.); (A.M.); (P.P.); (C.R.)
| | - Liborio Torregrossa
- Department of Surgical, Medical, Molecular Pathology, University of Pisa, 56124 Pisa, Italy; (L.T.); (F.B.)
| | - Fulvio Basolo
- Department of Surgical, Medical, Molecular Pathology, University of Pisa, 56124 Pisa, Italy; (L.T.); (F.B.)
| | - Rossella Elisei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (T.R.); (C.M.); (R.C.); (V.B.); (V.C.); (A.P.); (A.M.); (P.P.); (C.R.)
| | - Cristina Romei
- Endocrine Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (T.R.); (C.M.); (R.C.); (V.B.); (V.C.); (A.P.); (A.M.); (P.P.); (C.R.)
| |
Collapse
|
5
|
He P, Hu P, Yang C, He X, Shao M, Lin Y. Reduced expression of CENP-E contributes to the development of hepatocellular carcinoma and is associated with adverse clinical features. Biomed Pharmacother 2020; 123:109795. [PMID: 31881483 DOI: 10.1016/j.biopha.2019.109795] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 01/17/2023] Open
Abstract
Human kinesin centromere-associated protein E (CENP-E), one of spindle checkpoint proteins, has been identified as a tumor suppressor in several types of cancer, however, its role in hepatocarcinogenesis remains unknown. Here we investigated the role of CENP-E in human hepatocellular carcinoma (HCC) employing HCC cell lines (Hep3B, SMMC7721, and QGY7701), animal models, and patient's clinical samples and data. We demonstrated that down-regulation of CENP-E by CENP-E-silencing shRNAs significantly promoted HCC proliferation/growth both in vitro and in vivo. Further studies found that CENP-E suppressed the proliferation of HCC cells by halting cell cycle progression at the G1-S phase and accelerating cell apoptosis. Analyses of HCC patient samples and clinical data revealed that CENP-E was significantly down-regulated in HCC tissues and low CENP-E expression was significantly associated with patient's adverse clinicopathological features: poor prognosis, advanced TNM stage, metastasis, and larger tumor size. Multivariate analysis indicated that CENP-E was an independent prognostic factor predicting outcomes of advanced HCC patients. Our data suggest that loss of CENP-E contributes to HCC development and is strongly associated with adverse HCC clinical pathology. Thus, CENP-E could be a novel target for new treatments and a useful prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Peirong He
- The Geriatric Ward, General Hospital of Guangzhou Military Command, Guangzhou, PR China
| | - Penghui Hu
- Department of Oncology, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, PR China; Central Laboratory, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Chaohao Yang
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Xingxiang He
- Department of Gastroenterology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Ming Shao
- Department of Neurology, Sichuan Provincial Rehabilitation Hospital, Chengdu, PR China.
| | - Yiguang Lin
- Central Laboratory, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China; School of Life Sciences, University of Technology Sydney, Broadway, NSW 2007, Australia.
| |
Collapse
|
6
|
Weiler J, Dittmar T. Cell Fusion in Human Cancer: The Dark Matter Hypothesis. Cells 2019; 8:E132. [PMID: 30736482 PMCID: PMC6407028 DOI: 10.3390/cells8020132] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Current strategies to determine tumor × normal (TN)-hybrid cells among human cancer cells include the detection of hematopoietic markers and other mesodermal markers on tumor cells or the presence of donor DNA in cancer samples from patients who had previously received an allogenic bone marrow transplant. By doing so, several studies have demonstrated that TN-hybrid cells could be found in human cancers. However, a prerequisite of this cell fusion search strategy is that such markers are stably expressed by TN-hybrid cells over time. However, cell fusion is a potent inducer of genomic instability, and TN-hybrid cells may lose these cell fusion markers, thereby becoming indistinguishable from nonfused tumor cells. In addition, hybrid cells can evolve from homotypic fusion events between tumor cells or from heterotypic fusion events between tumor cells and normal cells possessing similar markers, which would also be indistinguishable from nonfused tumor cells. Such indistinguishable or invisible hybrid cells will be referred to as dark matter hybrids, which cannot as yet be detected and quantified, but which contribute to tumor growth and progression.
Collapse
Affiliation(s)
- Julian Weiler
- Chair of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany.
| | - Thomas Dittmar
- Chair of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany.
| |
Collapse
|
7
|
Dasari S, Ganjayi MS, Yellanurkonda P, Basha S, Meriga B. Role of glutathione S-transferases in detoxification of a polycyclic aromatic hydrocarbon, methylcholanthrene. Chem Biol Interact 2018; 294:81-90. [PMID: 30145136 DOI: 10.1016/j.cbi.2018.08.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/02/2018] [Accepted: 08/20/2018] [Indexed: 02/08/2023]
Abstract
Glutathione S-transferases (GSTs), the versatile phase II biotransformation enzymes, metabolize and detoxify a wide variety of toxic chemical compounds like carcinogens, chemotherapeutic drugs, environmental pollutants and oxidative stress products. GSTs are currently of great interest in drug discovery, nanotechnology and biotechnology because of their involvement in many major cellular processes. GSTs, which are either homo or hetero dimeric proteins mediate catalytic binding between glutathione (GSH) and an array of either endogenous or exogenous toxic compounds to form a highly soluble detoxified complex which is then eliminated. Polycyclic aromatic hydrocarbons (PAHs) which are composed of two or more benzene rings bonded as linear, cluster or angular arrangements are used as intermediaries in pharmaceuticals, agricultural products, photographic products, thermosetting plastics, lubricating materials and other chemical products. Foods those cooked at high temperatures by grilling, roasting, frying and smoking are the main sources for the persistent bio-accumulation of PAHs in food chain. The carcinogenic, mutagenic and immunosuppressive effects of PAHs are well established. A well-known polycyclic aromatic hydrocarbon, methylcholanthrene is a potential carcinogenic, neurotoxic, mutagenic and tumour causing agent that is used as an experimental carcinogen in biological research. Methylcholanthrene converts into reactive metabolites when it enters living cells and those reactive metabolites oxidize DNA, RNA, proteins and lipids and form DNA and protein adducts as well. GSTs play major role in the detoxification of reactive metabolites of methylcholanthrene by mediating catalytic binding with GSH to form a highly soluble detoxified complex which is then eliminated. This review summarizes the role of GSTs in the detoxification of a polycyclic aromatic hydrocarbon, methylcholanthrene.
Collapse
Affiliation(s)
- Sreenivasulu Dasari
- Dept. of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India.
| | - Muni Swamy Ganjayi
- Dept. of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | | | - Sreenivasulu Basha
- Dept. of Microbiology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Balaji Meriga
- Dept. of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| |
Collapse
|
8
|
Hirpara A, Bloomfield M, Duesberg P. Speciation Theory of Carcinogenesis Explains Karyotypic Individuality and Long Latencies of Cancers. Genes (Basel) 2018; 9:genes9080402. [PMID: 30096943 PMCID: PMC6115917 DOI: 10.3390/genes9080402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/14/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
It has been known for over 100 years that cancers have individual karyotypes and arise only years to decades after initiating carcinogens. However, there is still no coherent theory to explain these definitive characteristics of cancer. The prevailing mutation theory holds that cancers are late because the primary cell must accumulate 3–8 causative mutations to become carcinogenic and that mutations, which induce chromosomal instability (CIN), generate the individual karyotypes of cancers. However, since there is still no proven set of mutations that transforms a normal to a cancer cell, we have recently advanced the theory that carcinogenesis is a form of speciation. This theory predicts carcinogens initiate cancer by inducing aneuploidy, which automatically unbalances thousands of genes and thus catalyzes chain-reactions of progressive aneuploidizations. Over time, these aneuploidizations have two endpoints, either non-viable karyotypes or very rarely karyotypes of new autonomous and immortal cancers. Cancer karyotypes are immortalized despite destabilizing congenital aneuploidy by clonal selections for autonomy—similar to those of conventional species. This theory predicts that the very low probability of converting the karyotype of a normal cell to that of a new autonomous cancer species by random aneuploidizations is the reason for the karyotypic individuality of new cancers and for the long latencies from carcinogens to cancers. In testing this theory, we observed: (1) Addition of mutagenic and non-mutagenic carcinogens to normal human and rat cells generated progressive aneuploidizations months before neoplastic transformation. (2) Sub-cloning of a neoplastic rat clone revealed heritable individual karyotypes, rather than the non-heritable karyotypes predicted by the CIN theory. (3) Analyses of neoplastic and preneoplastic karyotypes unexpectedly identified karyotypes with sets of 3–12 new marker chromosomes without detectable intermediates, consistent with single-step origins. We conclude that the speciation theory explains logically the long latencies from carcinogen exposure and the individuality of cancers. In addition, the theory supports the single-step origins of cancers, because karyotypic autonomy is all-or-nothing. Accordingly, we propose that preneoplastic aneuploidy and clonal neoplastic karyotypes provide more reliable therapeutic indications than current analyses of thousands of mutations.
Collapse
Affiliation(s)
- Ankit Hirpara
- Department of Molecular and Cell Biology, Donner Laboratory, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Mathew Bloomfield
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94 901, USA.
| | - Peter Duesberg
- Department of Molecular and Cell Biology, Donner Laboratory, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Wise SS, Aboueissa AEM, Martino J, Wise JP. Hexavalent Chromium-Induced Chromosome Instability Drives Permanent and Heritable Numerical and Structural Changes and a DNA Repair-Deficient Phenotype. Cancer Res 2018; 78:4203-4214. [PMID: 29880483 PMCID: PMC6072558 DOI: 10.1158/0008-5472.can-18-0531] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/03/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022]
Abstract
A key hypothesis for how hexavalent chromium [Cr(VI)] causes cancer is that it drives chromosome instability (CIN), which leads to neoplastic transformation. Studies show chronic Cr(VI) can affect DNA repair and induce centrosome amplification, which can lead to structural and numerical CIN. However, no studies have considered whether these outcomes are transient or permanent. In this study, we exposed human lung cells to particulate Cr(VI) for three sequential 24-hour periods, each separated by about a month. After each treatment, cells were seeded at colony-forming density, cloned, expanded, and retreated, creating three generations of clonal cell lines. Each generation of clones was tested for chromium sensitivity, chromosome complement, DNA repair capacity, centrosome amplification, and the ability to grow in soft agar. After the first treatment, Cr(VI)-treated clones exhibited a normal chromosome complement, but some clones showed a repair-deficient phenotype and amplified centrosomes. After the second exposure, more than half of the treated clones acquired an abnormal karyotype including numerical and structural alterations, with many exhibiting deficient DNA double-strand break repair and amplified centrosomes. The third treatment produced new abnormal clones, with previously abnormal clones acquiring additional abnormalities and most clones exhibiting repair deficiency. CIN, repair deficiency, and amplified centrosomes were all permanent and heritable phenotypes of repeated Cr(VI) exposure. These outcomes support the hypothesis that CIN is a key mechanism of Cr(VI)-induced carcinogenesis.Significance: Chromium, a major public health concern and human lung carcinogen, causes fundamental changes in chromosomes and DNA repair in human lung cells. Cancer Res; 78(15); 4203-14. ©2018 AACR.
Collapse
Affiliation(s)
- Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | | | - Julieta Martino
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky.
| |
Collapse
|
10
|
Ye CJ, Regan S, Liu G, Alemara S, Heng HH. Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems. Mol Cytogenet 2018; 11:31. [PMID: 29760781 PMCID: PMC5946397 DOI: 10.1186/s13039-018-0376-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/12/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In the past 15 years, impressive progress has been made to understand the molecular mechanism behind aneuploidy, largely due to the effort of using various -omics approaches to study model systems (e.g. yeast and mouse models) and patient samples, as well as the new realization that chromosome alteration-mediated genome instability plays the key role in cancer. As the molecular characterization of the causes and effects of aneuploidy progresses, the search for the general mechanism of how aneuploidy contributes to cancer becomes increasingly challenging: since aneuploidy can be linked to diverse molecular pathways (in regards to both cause and effect), the chances of it being cancerous is highly context-dependent, making it more difficult to study than individual molecular mechanisms. When so many genomic and environmental factors can be linked to aneuploidy, and most of them not commonly shared among patients, the practical value of characterizing additional genetic/epigenetic factors contributing to aneuploidy decreases. RESULTS Based on the fact that cancer typically represents a complex adaptive system, where there is no linear relationship between lower-level agents (such as each individual gene mutation) and emergent properties (such as cancer phenotypes), we call for a new strategy based on the evolutionary mechanism of aneuploidy in cancer, rather than continuous analysis of various individual molecular mechanisms. To illustrate our viewpoint, we have briefly reviewed both the progress and challenges in this field, suggesting the incorporation of an evolutionary-based mechanism to unify diverse molecular mechanisms. To further clarify this rationale, we will discuss some key concepts of the genome theory of cancer evolution, including system inheritance, fuzzy inheritance, and cancer as a newly emergent cellular system. CONCLUSION Illustrating how aneuploidy impacts system inheritance, fuzzy inheritance and the emergence of new systems is of great importance. Such synthesis encourages efforts to apply the principles/approaches of complex adaptive systems to ultimately understand aneuploidy in cancer.
Collapse
Affiliation(s)
- Christine J. Ye
- The Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Sarah Regan
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Guo Liu
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Sarah Alemara
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Henry H. Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| |
Collapse
|
11
|
McClelland SE. Role of chromosomal instability in cancer progression. Endocr Relat Cancer 2017; 24:T23-T31. [PMID: 28696210 DOI: 10.1530/erc-17-0187] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 12/24/2022]
Abstract
Cancer cells often display chromosomal instability (CIN), a defect that involves loss or rearrangement of the cell's genetic material - chromosomes - during cell division. This process results in the generation of aneuploidy, a deviation from the haploid number of chromosomes, and structural alterations of chromosomes in over 90% of solid tumours and many haematological cancers. This trait is unique to cancer cells as normal cells in the body generally strictly maintain the correct number and structure of chromosomes. This key difference between cancer and normal cells has led to two important hypotheses: (i) cancer cells have had to overcome inherent barriers to changes in chromosomes that are not tolerated in non-cancer cells and (ii) CIN represents a cancer-specific target to allow the specific elimination of cancer cells from the body. To exploit these hypotheses and design novel approaches to treat cancer, a full understanding of the mechanisms driving CIN and how CIN contributes to cancer progression is required. Here, we will discuss the possible mechanisms driving chromosomal instability, how CIN may contribute to the progression at multiple stages of tumour evolution and possible future therapeutic directions based on targeting cancer chromosomal instability.
Collapse
|
12
|
Ochi T. Induction of Aneuploidy, Centrosome Abnormality, Multipolar Spindle, and Multipolar Division in Cultured Mammalian Cells Exposed to an Arsenic Metabolite, Dimethylarsinate. YAKUGAKU ZASSHI 2016; 136:873-81. [PMID: 27252065 DOI: 10.1248/yakushi.15-00275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Toxicological studies of arsenic compounds were conducted in cultured mammalian cells to investigate the effects of glutathione (GSH) depletion. Dimethylarsinate DMA(V) was not cytotoxic in cells depleted of GSH, but was found to be cytotoxic when GSH was present outside the cells. The results suggested that a reactive form of DMA(V) was generated through interaction with GSH. Dimethylarsine iodide DMI(III) was used as a model compound of DMA(III), and the biological effects were investigated. DMI(III) was about 10000 times more toxic to the cells than DMA(V). Chromosome structural aberrations and numerical changes, such as aneuploidy, were induced by DMI(III). DMA(V) induced multiple foci of the centrosome protein, γ-tubulin, which were colocalized with multipolar spindles in mitotic cells. The multiple foci coalesced into a single dot on disruption of the microtubules (MT). However, reorganization of the MT caused multiple foci of γ-tubulin, suggesting that the induction of centrosome abnormalities by DMA(V) required intact MT. Inhibition of the MT-dependent motor, kinesin, prevented formation of multiple foci of γ-tubulin, which pointed to the involvement of the MT-dependent mitotic motor, kinesin, in the maintenance of centrosome abnormalities. DMI(III) caused abnormal cytokinesis (multipolar division). In addition, DMI(III) caused morphological transformation in Syrian hamster embryo cells. Consideration of the overall process following the centrosome abnormalities caused by DMA(V) suggested a mode of cytotoxicity in which the mitotic centrosome is a critical target.
Collapse
|
13
|
The presence of extra chromosomes leads to genomic instability. Nat Commun 2016; 7:10754. [PMID: 26876972 PMCID: PMC4756715 DOI: 10.1038/ncomms10754] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/15/2016] [Indexed: 12/14/2022] Open
Abstract
Aneuploidy is a hallmark of cancer and underlies genetic disorders characterized by severe developmental defects, yet the molecular mechanisms explaining its effects on cellular physiology remain elusive. Here we show, using a series of human cells with defined aneuploid karyotypes, that gain of a single chromosome increases genomic instability. Next-generation sequencing and SNP-array analysis reveal accumulation of chromosomal rearrangements in aneuploids, with break point junction patterns suggestive of replication defects. Trisomic and tetrasomic cells also show increased DNA damage and sensitivity to replication stress. Strikingly, we find that aneuploidy-induced genomic instability can be explained by the reduced expression of the replicative helicase MCM2-7. Accordingly, restoring near-wild-type levels of chromatin-bound MCM helicase partly rescues the genomic instability phenotypes. Thus, gain of chromosomes triggers replication stress, thereby promoting genomic instability and possibly contributing to tumorigenesis. One of the hallmarks of cancer cells is aneuploidy, however the molecular effects are poorly understood. Here the authors show that trisomic and tetrasomic cells display increased genomic instability and reduced levels of the helicase MCM2-7.
Collapse
|
14
|
Giladi M, Schneiderman RS, Voloshin T, Porat Y, Munster M, Blat R, Sherbo S, Bomzon Z, Urman N, Itzhaki A, Cahal S, Shteingauz A, Chaudhry A, Kirson ED, Weinberg U, Palti Y. Mitotic Spindle Disruption by Alternating Electric Fields Leads to Improper Chromosome Segregation and Mitotic Catastrophe in Cancer Cells. Sci Rep 2015; 5:18046. [PMID: 26658786 PMCID: PMC4676010 DOI: 10.1038/srep18046] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/11/2015] [Indexed: 12/19/2022] Open
Abstract
Tumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields. TTFields are a unique anti-mitotic treatment modality delivered in a continuous, noninvasive manner to the region of a tumor. It was previously postulated that by exerting directional forces on highly polar intracellular elements during mitosis, TTFields could disrupt the normal assembly of spindle microtubules. However there is limited evidence directly linking TTFields to an effect on microtubules. Here we report that TTFields decrease the ratio between polymerized and total tubulin, and prevent proper mitotic spindle assembly. The aberrant mitotic events induced by TTFields lead to abnormal chromosome segregation, cellular multinucleation, and caspase dependent apoptosis of daughter cells. The effect of TTFields on cell viability and clonogenic survival substantially depends upon the cell division rate. We show that by extending the duration of exposure to TTFields, slowly dividing cells can be affected to a similar extent as rapidly dividing cells.
Collapse
Affiliation(s)
- Moshe Giladi
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | | | - Tali Voloshin
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Yaara Porat
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Mijal Munster
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Roni Blat
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Shay Sherbo
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Zeev Bomzon
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Noa Urman
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Aviran Itzhaki
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Shay Cahal
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Anna Shteingauz
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Aafia Chaudhry
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Eilon D Kirson
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Uri Weinberg
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| | - Yoram Palti
- Novocure Ltd. Topaz Building, MATAM center Haifa 31905, Israel
| |
Collapse
|
15
|
Li JP, Yang YX, Liu QL, Zhou ZW, Pan ST, He ZX, Zhang X, Yang T, Pan SY, Duan W, He SM, Chen XW, Qiu JX, Zhou SF. The pan-inhibitor of Aurora kinases danusertib induces apoptosis and autophagy and suppresses epithelial-to-mesenchymal transition in human breast cancer cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1027-62. [PMID: 25733818 PMCID: PMC4338784 DOI: 10.2147/dddt.s74412] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Danusertib (Danu) is a pan-inhibitor of Aurora kinases and a third-generation breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (Bcr-Abl) tyrosine kinase inhibitor, but its antitumor effect and underlying mechanisms in the treatment of human breast cancer remain elusive. This study aimed to investigate the effects of Danu on the growth, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT) and the molecular mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. The results demonstrated that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both breast cancer cell lines. Danu arrested MCF7 and MDA-MB-231 cells in G2/M phase, accompanied by the downregulation of cyclin-dependent kinase 1 and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53. Danu significantly decreased the expression of B-cell lymphoma-extra-large (Bcl-xl) and B-cell lymphoma 2 (Bcl-2), but increased the expression of Bcl-2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and promoted the cleavage of caspases 3 and 9. Furthermore, Danu significantly increased the expression levels of the membrane-bound microtubule-associated protein 1A/1B-light chain 3 (LC3-II) and beclin 1 in breast cancer cells, two markers for autophagy. Danu induced the activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases 1 and 2 (Erk1/2) and inhibited the activation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways in breast cancer cells. Treatment with wortmannin (a phosphatidylinositol 3-kinase inhibitor) markedly inhibited Danu-induced activation of p38 MAPK and conversion of cytosolic LC3-I to membrane-bound LC3-II. Pharmacological inhibition and small interfering RNA-mediated knockdown of p38 MAPK suppressed Akt activation, resulting in LC3-II accumulation and enhanced autophagy. Pharmacological inhibition and small interfering RNA-mediated knockdown of Erk1/2 also remarkably increased the level of LC3-II in MCF7 cells. Moreover, Danu inhibited EMT in both MCF7 and MDA-MB-231 cells with upregulated E-cadherin and zona occludens protein 1 (ZO-1) but downregulated N-cadherin, zinc finger E-box-binding homeobox 1 (TCF8/ZEB1), snail, slug, vimentin, and β-catenin. Notably, Danu showed lower cytotoxicity toward normal breast epithelial MCF10A cells. These findings indicate that Danu promotes cellular apoptosis and autophagy but inhibits EMT in human breast cancer cells via modulation of p38 MAPK/Erk1/2/Akt/mTOR signaling pathways. Danu may represent a promising anticancer agent for breast cancer treatment. More studies are warranted to fully delineate the underlying mechanisms, efficacy, and safety of Danu in breast cancer therapy.
Collapse
Affiliation(s)
- Jin-Ping Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China ; Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Yin-Xue Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Qi-Lun Liu
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Shu-Ting Pan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Si-Yuan Pan
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Shu-Ming He
- Department of Obstetrics and Gynecology, Xiaolan People's Hospital affiliated to Southern Medical University, Zhongshan, Guangdong, People's Republic of China
| | - Xiao-Wu Chen
- Department of General Surgery, The First People's Hospital of Shunde affiliated to Southern Medical University, Shunde, Foshan, Guangdong, People's Republic of China
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
16
|
Huang S. Genetic and non-genetic instability in tumor progression: link between the fitness landscape and the epigenetic landscape of cancer cells. Cancer Metastasis Rev 2014; 32:423-48. [PMID: 23640024 DOI: 10.1007/s10555-013-9435-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Genetic instability is invoked in explaining the cell phenotype changes that take place during cancer progression. However, the coexistence of a vast diversity of distinct clones, most prominently visible in the form of non-clonal chromosomal aberrations, suggests that Darwinian selection of mutant cells is not operating at maximal efficacy. Conversely, non-genetic instability of cancer cells must also be considered. Such mutation-independent instability of cell states is most prosaically manifest in the phenotypic heterogeneity within clonal cell populations or in the reversible switching between immature "cancer stem cell-like" and more differentiated states. How are genetic and non-genetic instability related to each other? Here, we review basic theoretical foundations and offer a dynamical systems perspective in which cancer is the inevitable pathological manifestation of modes of malfunction that are immanent to the complex gene regulatory network of the genome. We explain in an accessible, qualitative, and permissively simplified manner the mathematical basis for the "epigenetic landscape" and how the latter relates to the better known "fitness landscape." We show that these two classical metaphors have a formal basis. By combining these two landscape concepts, we unite development and somatic evolution as the drivers of the relentless increase in malignancy. Herein, the cancer cells are pushed toward cancer attractors in the evolutionarily unused regions of the epigenetic landscape that encode more and more "dedifferentiated" states as a consequence of both genetic (mutagenic) and non-genetic (regulatory) perturbations-including therapy. This would explain why for the cancer cell, the principle of "What does not kill me makes me stronger" is as much a driving force in tumor progression and development of drug resistance as the simple principle of "survival of the fittest."
Collapse
Affiliation(s)
- Sui Huang
- Institute for Systems Biology, Seattle, WA, USA,
| |
Collapse
|
17
|
Abstract
Cancers arise through the progression of multiple genetic and epigenetic defects that lead to deregulation of numerous signalling networks. However, the last decade has seen the development of the concept of 'oncogene addiction', where tumours appear to depend on a single oncogene for survival. RNAi has provided an invaluable tool in the identification of these oncogenes and oncogene-dependent cancers, and also presents great potential as a novel therapeutic strategy against them. Although RNAi therapeutics have demonstrated effective killing of oncogene-dependent cancers in vitro, their efficacy in vivo is severely limited by effective delivery systems. Several virus-based RNAi delivery strategies have been explored, but problems arose associated with high immunogenicity, random genome integration and non-specific targeting. This has directed efforts towards non-viral formulations, including delivery systems based on virus-like particles, liposomes and cationic polymers, which can circumvent some of these problems by immunomasking and the use of specific tumour-targeting ligands. This review outlines the prevalence of oncogene-dependent cancers, evaluates the potential of RNAi-based therapeutics and assesses the relative strengths and weaknesses of different approaches to targeted RNAi delivery.
Collapse
|
18
|
Coward J, Harding A. Size Does Matter: Why Polyploid Tumor Cells are Critical Drug Targets in the War on Cancer. Front Oncol 2014; 4:123. [PMID: 24904834 PMCID: PMC4033620 DOI: 10.3389/fonc.2014.00123] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/11/2014] [Indexed: 12/14/2022] Open
Abstract
Tumor evolution presents a formidable obstacle that currently prevents the development of truly curative treatments for cancer. In this perspective, we advocate for the hypothesis that tumor cells with significantly elevated genomic content (polyploid tumor cells) facilitate rapid tumor evolution and the acquisition of therapy resistance in multiple incurable cancers. We appeal to studies conducted in yeast, cancer models, and cancer patients, which all converge on the hypothesis that polyploidy enables large phenotypic leaps, providing access to many different therapy-resistant phenotypes. We develop a flow-cytometry based method for quantifying the prevalence of polyploid tumor cells, and show the frequency of these cells in patient tumors may be higher than is generally appreciated. We then present recent studies identifying promising new therapeutic strategies that could be used to specifically target polyploid tumor cells in cancer patients. We argue that these therapeutic approaches should be incorporated into new treatment strategies aimed at blocking tumor evolution by killing the highly evolvable, therapy-resistant polyploid cell subpopulations, thus helping to maintain patient tumors in a drug sensitive state.
Collapse
Affiliation(s)
- Jermaine Coward
- Mater Medical Research Institute, Princess Alexandra Hospital , Woolloongabba, QLD , Australia
| | - Angus Harding
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute , Brisbane, QLD , Australia
| |
Collapse
|
19
|
The pan-Aurora kinase inhibitor, PHA-739358, induces apoptosis and inhibits migration in melanoma cell lines. Melanoma Res 2014; 23:102-13. [PMID: 23344158 DOI: 10.1097/cmr.0b013e32835df5e4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Treatment of metastatic melanoma has long been a challenge because of its resistance to traditional chemotherapeutics, leading to the search for alternative strategies. Aurora kinases are key mitotic regulators that are frequently overexpressed in various cancers including melanoma, making them ideal targets for drug development. Several Aurora kinase inhibitors have been developed and tested preclinically and clinically. PHA-739358 is currently one of the most advanced clinical compounds being tested in phase II clinical trials; however, its antitumor effect has not been tested in melanoma. In this study, the antiproliferative and anti-invasive effects of PHA-739358 were investigated in melanoma cell lines. The results demonstrated that PHA-739358 produces a time-dependent and dose-dependent inhibition of cell proliferation, induction of apoptosis, and inhibition of cell migration. Downregulation of matrix metalloproteinase-2 by the inhibition of NFκB-signaling pathway may contribute to PHA-739358-induced inhibition of migration. Furthermore, PHA-739358 enhanced temozolomide and Plx4032-induced apoptosis. This study suggests that Aurora kinase inhibitors may provide a new strategy for the treatment of advanced melanoma.
Collapse
|
20
|
|
21
|
Bogen KT. Efficient tumorigenesis by mutation-induced failure to terminate microRNA-mediated adaptive hyperplasia. Med Hypotheses 2012. [PMID: 23183421 DOI: 10.1016/j.mehy.2012.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Seven current contending cancer theories consider different sets of critical events as sufficient for tumorigenesis. These theories, most recently the microRNA dysregulation (MRD) theory, have overlapping attributes and extensive empirical support, but also some discrepancies, and some do not address both benign and malignant tumorigenesis. By definition, the most efficient tumorigenic pathways will dominate under conditions that selectively activate those pathways. The MRD theory provides a mechanistic basis to combine elements of the current theories into a new hypothesis that: (i) tumors arise most efficiently under stress that induces and sustains either protective or regenerative states of adaptive hyperplasia (AH) that normally are epigenetically maintained unless terminated; and (ii) if dysregulated by a somatic mutation that prevents normal termination, these two AH states can generate benign and malignant tumors, respectively. This hypothesis, but not multistage cancer theory, predicts that key participating AH-stem-cell populations expand markedly when triggered by stress, particularly chronic metabolic or oxidative stress, mechanical irritation, toxic exposure, wounding, inflammation, and/or infection. This hypothesis predicts that microRNA expression patterns in benign vs. malignant tumor tissue will correlate best with those governing protective vs. regenerative AH in that tissue, and that tumors arise most efficiently inmutagen-exposed stem cells that either happen to be in, or incidentally later become recruited into, an AH state.
Collapse
Affiliation(s)
- Kenneth T Bogen
- DrPH DABT, Exponent Inc., Health Sciences, 475, 14th Street, Ste 400, Oakland, CA 94612, USA.
| |
Collapse
|
22
|
Wang CY, Liu LN, Zhao ZB. The role of ROS toxicity in spontaneous aneuploidy in cultured cells. Tissue Cell 2012; 45:47-53. [PMID: 23107981 DOI: 10.1016/j.tice.2012.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/23/2012] [Accepted: 09/23/2012] [Indexed: 12/24/2022]
Abstract
It is well known that the karyotype of animal cells cultured in vitro tends to become aneuploid as the culture ages. Aneuploidy can cause genetic instability, alter the biological properties of cells, and affect their application in genetic studies and cell engineering. Understanding the causes and mechanisms of aneuploidy is primary to control its occurrence in cultured cells, and is also helpful to understand the mechanisms of tumorigenesis because aneuploidy is a hallmark of tumor cells. This review underscores the potential role of reactive oxygen species (ROS) toxicity in spontaneous aneuploidy of cultured cells. The underlying mechanisms and possible sources of ROS are also discussed.
Collapse
Affiliation(s)
- Cheng-Ye Wang
- Key Laboratory of Cultivating and Utilization of Resource Insects of State Forestry Administration, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming 650224, China.
| | | | | |
Collapse
|
23
|
Padilla-Nash HM, Hathcock K, McNeil NE, Mack D, Hoeppner D, Ravin R, Knutsen T, Yonescu R, Wangsa D, Dorritie K, Barenboim L, Hu Y, Ried T. Spontaneous transformation of murine epithelial cells requires the early acquisition of specific chromosomal aneuploidies and genomic imbalances. Genes Chromosomes Cancer 2012; 51:353-74. [PMID: 22161874 PMCID: PMC3276700 DOI: 10.1002/gcc.21921] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/09/2011] [Indexed: 01/10/2023] Open
Abstract
Human carcinomas are defined by recurrent chromosomal aneuploidies, which result in a tissue-specific distribution of genomic imbalances. In order to develop models for these genome mutations and to determine their role in tumorigenesis, we generated 45 spontaneously transformed murine cell lines from normal epithelial cells derived from bladder, cervix, colon, kidney, lung, and mammary gland. Phenotypic changes, chromosomal aberrations, centrosome number, and telomerase activity were assayed in control uncultured cells and in three subsequent stages of transformation. Supernumerary centrosomes, binucleate cells, and tetraploidy were observed as early as 48 hr after explantation. In addition, telomerase activity increased throughout progression. Live-cell imaging revealed that failure of cytokinesis, not cell fusion, promoted genome duplication. Spectral karyotyping demonstrated that aneuploidy preceded immortalization, consisting predominantly of whole chromosome losses (4, 9, 12, 13, 16, and Y) and gains (1, 10, 15, and 19). After transformation, focal amplifications of the oncogenes Myc and Mdm2 were frequently detected. Fifty percent of the transformed lines resulted in tumors on injection into immunocompromised mice. The phenotypic and genomic alterations observed in spontaneously transformed murine epithelial cells recapitulated the aberration pattern observed during human carcinogenesis. The dominant aberration of these cell lines was the presence of specific chromosomal aneuploidies. We propose that our newly derived cancer models will be useful tools to dissect the sequential steps of genome mutations during malignant transformation, and also to identify cancer-specific genes, signaling pathways, and the role of chromosomal instability in this process.
Collapse
|
24
|
Hirner H, Günes C, Bischof J, Wolff S, Grothey A, Kühl M, Oswald F, Wegwitz F, Bösl MR, Trauzold A, Henne-Bruns D, Peifer C, Leithäuser F, Deppert W, Knippschild U. Impaired CK1 delta activity attenuates SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo. PLoS One 2012; 7:e29709. [PMID: 22235331 PMCID: PMC3250488 DOI: 10.1371/journal.pone.0029709] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 12/01/2011] [Indexed: 02/05/2023] Open
Abstract
Simian virus 40 (SV40) is a powerful tool to study cellular transformation in vitro, as well as tumor development and progression in vivo. Various cellular kinases, among them members of the CK1 family, play an important role in modulating the transforming activity of SV40, including the transforming activity of T-Ag, the major transforming protein of SV40, itself. Here we characterized the effects of mutant CK1δ variants with impaired kinase activity on SV40-induced cell transformation in vitro, and on SV40-induced mammary carcinogenesis in vivo in a transgenic/bi-transgenic mouse model. CK1δ mutants exhibited a reduced kinase activity compared to wtCK1δ in in vitro kinase assays. Molecular modeling studies suggested that mutation N172D, located within the substrate binding region, is mainly responsible for impaired mutCK1δ activity. When stably over-expressed in maximal transformed SV-52 cells, CK1δ mutants induced reversion to a minimal transformed phenotype by dominant-negative interference with endogenous wtCK1δ. To characterize the effects of CK1δ on SV40-induced mammary carcinogenesis, we generated transgenic mice expressing mutant CK1δ under the control of the whey acidic protein (WAP) gene promoter, and crossed them with SV40 transgenic WAP-T-antigen (WAP-T) mice. Both WAP-T mice as well as WAP-mutCK1δ/WAP-T bi-transgenic mice developed breast cancer. However, tumor incidence was lower and life span was significantly longer in WAP-mutCK1δ/WAP-T bi-transgenic animals. The reduced CK1δ activity did not affect early lesion formation during tumorigenesis, suggesting that impaired CK1δ activity reduces the probability for outgrowth of in situ carcinomas to invasive carcinomas. The different tumorigenic potential of SV40 in WAP-T and WAP-mutCK1δ/WAP-T tumors was also reflected by a significantly different expression of various genes known to be involved in tumor progression, specifically of those involved in wnt-signaling and DNA repair. Our data show that inactivating mutations in CK1δ impair SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo.
Collapse
MESH Headings
- Animals
- Antigens, Viral, Tumor/immunology
- Casein Kinase Idelta/chemistry
- Casein Kinase Idelta/genetics
- Casein Kinase Idelta/metabolism
- Cell Line
- Cell Line, Tumor
- Cell Transformation, Viral/genetics
- Disease Progression
- Female
- Gene Expression Regulation
- Male
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/virology
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/virology
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Milk Proteins/genetics
- Models, Molecular
- Mutation
- Phenotype
- Phosphorylation
- Promoter Regions, Genetic/genetics
- Protein Structure, Tertiary
- Simian virus 40/immunology
- Simian virus 40/physiology
- Survival Analysis
Collapse
Affiliation(s)
- Heidrun Hirner
- Department of General-, Visceral- and Transplantation Surgery, University of Ulm, Ulm, Germany
| | - Cagatay Günes
- Institute of Molecular Medicine and Max-Planck-Research Group on Stem Cell Aging, University of Ulm, Ulm, Germany
| | - Joachim Bischof
- Department of General-, Visceral- and Transplantation Surgery, University of Ulm, Ulm, Germany
| | - Sonja Wolff
- Department of General-, Visceral- and Transplantation Surgery, University of Ulm, Ulm, Germany
| | - Arnhild Grothey
- Department of General-, Visceral- and Transplantation Surgery, University of Ulm, Ulm, Germany
| | - Marion Kühl
- Department of Tumor Virology, Heinrich-Pette-Institute, Leibniz-Center for Experimental Virology, Hamburg, Germany
| | - Franz Oswald
- Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | - Florian Wegwitz
- Department of Tumor Virology, Heinrich-Pette-Institute, Leibniz-Center for Experimental Virology, Hamburg, Germany
| | - Michael R. Bösl
- Max Planck Institute of Neurobiology Transgenic Mouse Models, Max Planck Institute, Martinsried, Germany
| | - Anna Trauzold
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCCNorth, UK S-H, Kiel, Germany
| | - Doris Henne-Bruns
- Department of General-, Visceral- and Transplantation Surgery, University of Ulm, Ulm, Germany
| | | | | | - Wolfgang Deppert
- Department of Tumor Virology, Heinrich-Pette-Institute, Leibniz-Center for Experimental Virology, Hamburg, Germany
| | - Uwe Knippschild
- Department of General-, Visceral- and Transplantation Surgery, University of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
25
|
Ciampi R, Romei C, Cosci B, Vivaldi A, Bottici V, Renzini G, Ugolini C, Tacito A, Basolo F, Pinchera A, Elisei R. Chromosome 10 and RET gene copy number alterations in hereditary and sporadic Medullary Thyroid Carcinoma. Mol Cell Endocrinol 2012; 348:176-82. [PMID: 21867742 DOI: 10.1016/j.mce.2011.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 08/09/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
Abstract
About 30% of hereditary Medullary Thyroid Carcinoma (MTC) have been demonstrated to harbour imbalance between mutant and wild-type RET alleles. We studied the RET copy number alterations (RET CNA) in 65 MTC and their correlation with RET mutation and patients' outcome. Fluorescence in situ Hybridization and Real-time PCR revealed RET CNA in 27.7% MTC but only in a variable percentage of cells. In sporadic MTC, RET CNA were represented by chromosome 10 aneuploidy while in hereditary MTC by RET amplification. A significant higher prevalence of RET CNA was observed in RET mutated MTC (P=0.003). RET CNA was also associated to a poorer outcome (P=0.005). However, the multivariate analysis revealed that only RET mutation and advanced clinical stage correlated with the worst outcome. In conclusion, 30% MTC harbour RET CNA in variable percentage of cells suggesting cell heterogeneity. RET CNA can be considered a poor prognostic factor potentiating the poor prognostic role of RET mutation.
Collapse
Affiliation(s)
- Raffaele Ciampi
- Department of Endocrinology and Metabolism, University-Hospital of Pisa, 56100 Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Aquino NB, Sevigny MB, Sabangan J, Louie MC. The role of cadmium and nickel in estrogen receptor signaling and breast cancer: metalloestrogens or not? JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2012; 30:189-224. [PMID: 22970719 PMCID: PMC3476837 DOI: 10.1080/10590501.2012.705159] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
During the past half-century, incidences of breast cancer have increased globally. Various factors--genetic and environmental--have been implicated in the initiation and progression of this disease. One potential environmental risk factor that has not received a lot of attention is the exposure to heavy metals. While several mechanisms have been put forth describing how high concentrations of heavy metals play a role in carcinogenesis, it is unclear whether chronic, low-level exposure to certain heavy metals (i.e., cadmium and nickel) can directly result in the development and progression of cancer. Cadmium and nickel have been hypothesized to play a role in breast cancer development by acting as metalloestrogens--metals that bind to estrogen receptors and mimic the actions of estrogen. Since the lifetime exposure to estrogen is a well-established risk factor for breast cancer, anything that mimics its activity will likely contribute to the etiology of the disease. However, heavy metals, depending on their concentration, are capable of binding to a variety of proteins and may exert their toxicities by disrupting multiple cellular functions, complicating the analysis of whether heavy metal-induced carcinogenesis is mediated by the estrogen receptor. The purpose of this review is to discuss the various epidemiological, in vivo, and in vitro studies that show a link between the heavy metals, cadmium and nickel, and breast cancer development. We will particularly focus on the studies that test whether these two metals act as metalloestrogens in order to assess the strength of the data supporting this hypothesis.
Collapse
Affiliation(s)
- Natalie B. Aquino
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael CA 94901
| | - Mary B. Sevigny
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael CA 94901
| | - Jackielyn Sabangan
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael CA 94901
| | - Maggie C. Louie
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael CA 94901
| |
Collapse
|
27
|
Huang N, Shah PK, Li C. Lessons from a decade of integrating cancer copy number alterations with gene expression profiles. Brief Bioinform 2011; 13:305-16. [PMID: 21949216 DOI: 10.1093/bib/bbr056] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Over the last decade, multiple functional genomic datasets studying chromosomal aberrations and their downstream effects on gene expression have accumulated for several cancer types. A vast majority of them are in the form of paired gene expression profiles and somatic copy number alterations (CNA) information on the same patients identified using microarray platforms. In response, many algorithms and software packages are available for integrating these paired data. Surprisingly, there has been no serious attempt to review the currently available methodologies or the novel insights brought using them. In this work, we discuss the quantitative relationships observed between CNA and gene expression in multiple cancer types and biological milestones achieved using the available methodologies. We discuss the conceptual evolution of both, the step-wise and the joint data integration methodologies over the last decade. We conclude by providing suggestions for building efficient data integration methodologies and asking further biological questions.
Collapse
Affiliation(s)
- Norman Huang
- Department of Biostatistics and Computational Biology, CLS-11075, Dana-Farber Cancer Institute, Harvard School of Public Health, CLS-11075 3 Blackfan Circle, Boston, MA 02115, USA
| | | | | |
Collapse
|
28
|
Huang S. On the intrinsic inevitability of cancer: from foetal to fatal attraction. Semin Cancer Biol 2011; 21:183-99. [PMID: 21640825 DOI: 10.1016/j.semcancer.2011.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/02/2011] [Accepted: 05/09/2011] [Indexed: 01/07/2023]
Abstract
The cracks in the paradigm of oncogenic mutations and somatic evolution as driving force of tumorigenesis, lucidly exposed by the dynamic heterogeneity of "cancer stem cells" or the diffuse results of cancer genome sequencing projects, indicate the need for a more encompassing theory of cancer that reaches beyond the current proximate explanations based on individual genetic pathways. One such integrative concept, derived from first principles of the dynamics of gene regulatory networks, is that cancerous cell states are attractor states, just like normal cell types are. Here we extend the concept of cancer attractors to illuminate a more profound property of cancer initiation: its inherent inevitability in the light of metazoan evolution. Using Waddington's Epigenetic Landscape as a conceptual aid, for which we present a mathematical and evolutionary foundation, we propose that cancer is intrinsically linked to ontogenesis and phylogenesis. This explanatory rather than enumerating review uses a formal argumentation structure that is atypical in modern experimental biology but may hopefully offer a new coherent perspective to reconcile many conflicts between new findings and the old thinking in the categories of linear oncogenic pathways.
Collapse
Affiliation(s)
- Sui Huang
- Institute for Biocomplexity and Informatics, University of Calgary, Alberta, Canada.
| |
Collapse
|
29
|
Abstract
INTRODUCTION Most cancers are characterized by some degree of aneuploidy, although its relevance for tumor initiation or progression and the nature of the initial trigger are still not well understood. It was Theodor Boveri who first suggested a link between aneuploidy and cancer at the beginning of the last century, but it is only recently that the molecular mechanisms involved have started to be uncovered. AREAS COVERED The molecular mechanisms that are at the origin of aneuploidy and their cellular consequences. Based on these new findings molecular targets have emerged which could lead to a specific treatment of at least some types of aneuploid tumors. EXPERT OPINION Therapeutic intervention specifically for aneuploid cells is a very promising approach, however, although new promising targets have been spotted they still need to be tested for proof of concept. Targeting the spindle checkpoint could be an interesting approach for cancer therapy, however, as for other mitotic targets, the open question of the therapeutic window and sensitivity of normal hemopoietic cells has to be considered carefully. Future challenges will not only include identifying and validating druggable targets related to the relevant pathways, but also finding predictive biomarkers to define the responding patient population(s).
Collapse
|
30
|
Jacobus J, Wang B, Maddox C, Esch H, Lehmann L, Robertson L, Wang K, Kirby P, Ludewig G. 3-Methylcholanthrene (3-MC) and 4-chlorobiphenyl (PCB3) genotoxicity is gender-related in Fischer 344 transgenic rats. ENVIRONMENT INTERNATIONAL 2010; 36:970-979. [PMID: 20739065 PMCID: PMC2949545 DOI: 10.1016/j.envint.2010.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 06/16/2010] [Accepted: 07/27/2010] [Indexed: 05/29/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants with myriad biological effects, including carcinogenicity. We present data showing gender-specific genotoxicity in Fischer 344 transgenic BigBlue rodents exposed to 4-chlorobiphenyl (PCB3), a hydroxylated metabolite, and the positive control 3-methylcholanthrene (3-MC) where female rats are more resistant to the genotoxic effects of the test compounds compared to their male counterparts. This difference is further highlighted through our examination of gene expression, organ-specific weight changes, and tissue morphology. The purpose of the present study was to explore the complex and multifaceted issues of lower molecular weight PCBs as initiators of carcinogenesis, by examining the mutagenicity of PCB3, a hydroxylated metabolite (4'-OH-PCB3), and 3-methylcholanthrene (3-MC, positive control) in a transgenic rodent model. Previous findings indicated that PCB3 is mutagenic in the liver of male BigBlue transgenic rats under identical exposure conditions. We expected that female rats would be equally, if not more sensitive than male rats, since a 2-year carcinogenesis bioassay with Sprague-Dawley rats and commercial PCB mixtures reported much higher liver cancer rates in female than in male rats. The current study, however, revealed a similar trend in the mutation frequencies across all four treatment groups in females as reported previously in males, but increased variability among animals within each group and a lower overall effect, led to non significant differences in mutation frequencies. A closer analysis of the possible reasons for this negative result using microarray, organ weight and histology data comparisons shows that female Fischer 344 rats 1) had a higher baseline mutation frequency in the corn oil control group and greater variability than male rats; 2) responded with robust gene expression changes, which may also play a role in our observation of 3) highly increased liver, spleen, and lung weight in 3-MC and PCB3-treated female rats and thus changed distribution and kinetics of the test compounds. Our analysis indicates that female transgenic BigBlue Fischer 344 rats are more resistant to PCB3 and 3-MC genotoxicity compared to their male counterparts.
Collapse
Affiliation(s)
- J.A. Jacobus
- Department of Occupational and Environmental Health, University of Iowa, 100 Oakdale Campus # 124 IREH, Iowa City, IA 52242-5000
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, 100 Oakdale Campus # 124 IREH, Iowa City, IA 52242-5000
| | - B. Wang
- Department of Occupational and Environmental Health, University of Iowa, 100 Oakdale Campus # 124 IREH, Iowa City, IA 52242-5000
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, 100 Oakdale Campus # 124 IREH, Iowa City, IA 52242-5000
| | - C. Maddox
- Department of Occupational and Environmental Health, University of Iowa, 100 Oakdale Campus # 124 IREH, Iowa City, IA 52242-5000
| | - H. Esch
- Department of Occupational and Environmental Health, University of Iowa, 100 Oakdale Campus # 124 IREH, Iowa City, IA 52242-5000
| | - L. Lehmann
- Department of Occupational and Environmental Health, University of Iowa, 100 Oakdale Campus # 124 IREH, Iowa City, IA 52242-5000
| | - L.W. Robertson
- Department of Occupational and Environmental Health, University of Iowa, 100 Oakdale Campus # 124 IREH, Iowa City, IA 52242-5000
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, 100 Oakdale Campus # 124 IREH, Iowa City, IA 52242-5000
| | - K. Wang
- Department of Biostatistics, University of Iowa, 100 Oakdale Campus # 124 IREH, Iowa City, IA 52242-5000
| | - P. Kirby
- Department of Pathology; University of Iowa, 100 Oakdale Campus # 124 IREH, Iowa City, IA 52242-5000
| | - G. Ludewig
- Department of Occupational and Environmental Health, University of Iowa, 100 Oakdale Campus # 124 IREH, Iowa City, IA 52242-5000
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, 100 Oakdale Campus # 124 IREH, Iowa City, IA 52242-5000
| |
Collapse
|
31
|
Flor S, Ludewig G. Polyploidy-induction by dihydroxylated monochlorobiphenyls: structure-activity-relationships. ENVIRONMENT INTERNATIONAL 2010; 36:962-9. [PMID: 20471090 PMCID: PMC2949501 DOI: 10.1016/j.envint.2010.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 03/06/2010] [Accepted: 03/29/2010] [Indexed: 05/21/2023]
Abstract
Recently semivolatile lower chlorinated biphenyls have been identified in inner city air, in public buildings like schools, and at many other sites. Inhalation exposure to these compounds, which are readily metabolized to mono- and dihydroxy-biphenyls and further to quinones, is of great concern in light of new studies revealing that at least one such compound, 4-monochlorobiphenyl (PCB3), has tumor initiating and mutagenic activity in rats. In vitro the quinone metabolites of PCB3 induced gene mutations, whereas its mono- and dihydroxylated metabolites increased micronuclei frequency. To gain further insight into the genotoxicity and possible structure-activity-relationships of the dihydroxy-metabolites, we measured the effects of the 2-chloro-, 3-chloro-, and 4-chloro-2',5'-dihydroxybiphenyl (PCB1-HQ, PCB2-HQ, and PCB3-HQ, respectively), and of 4-chloro-3',4'-dihydroxybiphenyl (PCB3-Cat) on cytotoxicity, sister chromatid exchange (SCE), cellular proliferation and chromosome number. Notably only PCB3-Cat caused a significant increase in SCE levels. Cell cycle progression during exposure, which is indicated indirectly in this assay by the occurrence of metaphases with Harlequin-stained chromosomes (cell underwent two S-phases) or uniformly dark-stained chromosomes (underwent less than two S-phases) was inhibited by PCB2-HQ and PCB3-HQ. Most surprising was the finding that up to 96% of metaphases from cells treated with PCB2- or PCB3-HQ were tetraploid, some of which had dark and some Harlequin-stained chromosomes. Neither PCB1-HQ nor PCB3-Cat or the negative (solvent) or positive control (ethylmethane sulfonate, EMS) induced this effect. The mechanism of this polyploidization is unknown. Nearly all cancer cells are hyperdiploid and polyploidization, followed by uneven chromosome loss, is hypothesized as one possible underlying mechanism of carcinogenesis. Thus different PCB metabolites may induce carcinogenesis by different mechanisms, including SCE induction or polyploidization. Understanding the mechanism(s) and structure-activity-relationships of these unexpected effects is needed before we can perform fully data-driven risk assessment of these compounds.
Collapse
Affiliation(s)
- Susanne Flor
- Dept of Occupational and Environmental Health, The University of Iowa, College of Public Health, 100 Oakdale Campus IREH, Iowa City, IA 52242-5000, United States
| | | |
Collapse
|
32
|
Rozich RA, Mills DR, Brilliant KE, Callanan HM, Yang D, Tantravahi U, Hixson DC. Accumulation of neoplastic traits prior to spontaneous in vitro transformation of rat cholangiocytes determines susceptibility to activated ErbB-2/Neu. Exp Mol Pathol 2010; 89:248-59. [PMID: 20655306 DOI: 10.1016/j.yexmp.2010.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/15/2010] [Accepted: 07/16/2010] [Indexed: 11/16/2022]
Abstract
Cholangiocarcinoma, a severe form of biliary cancer, has a high mortality rate resulting partially from the advanced stage of disease at earliest diagnosis. A better understanding of the progressive molecular and cellular changes occurring during spontaneous cholangiocarcinogenesis is needed to identify potential biomarkers for diagnosis/prognosis or targets for novel therapeutics. Here, we show that with continued passage (p) in vitro, rat bile duct epithelial cells (BDEC) accumulated neoplastic characteristics that by mid-passage (p31-85) included alterations in morphology, increased growth rate, growth factor independence, decreased cell adhesion, loss of cholangiocyte markers expressed at low passage (p<30), and onset of aneuploidy. At high passage (p>85), BDEC cultures showed increasing numbers of cells expressing activated, tyrosine phosphorylated ErbB-2/Neu, a receptor tyrosine kinase previously reported to be at elevated levels in cholangiocarcinomas. Enrichment for high passage ErbB-2/Neu-positive cells yielded several anchorage-independent sub-lines with elevated levels of activated ErbB-2/Neu and increased expression of cyclooxygenase-2 (COX-2). When injected into immunodeficient beige/nude/xid mice, these sub-lines formed poorly differentiated cystic tumors strongly positive for rat cholangiocyte markers, a finding consistent with a previous report showing the susceptibility of high passage, non-tumorigenic BDEC to transformation by activated ErbB-2/Neu. Mid passage BDEC, in contrast, were resistant to the transforming activity of activated ErbB-2/Neu and remained anchorage dependent in vitro and non-tumorigenic in vivo following stable transfection. Based on these findings, we concluded that during progression to high passage, cultured BDEC undergo preneoplastic changes that enhance their susceptibility to transformation by ErbB-2/Neu. The ability to generate cells at different points in the process of spontaneous neoplastic transformation offers a valuable model system for identifying molecular features that determine whether over-expression of activated ErbB-2/Neu is necessary and sufficient to induce neoplastic conversion.
Collapse
Affiliation(s)
- Rebecca A Rozich
- Department of Medicine, Division of Hematology and Oncology, Rhode Island Hospital/The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Sigounas G, Hairr JW, Cooke CD, Owen JR, Asch AS, Weidner DA, Wiley JE. Role of benzo[alpha]pyrene in generation of clustered DNA damage in human breast tissue. Free Radic Biol Med 2010; 49:77-87. [PMID: 20347033 DOI: 10.1016/j.freeradbiomed.2010.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 03/06/2010] [Accepted: 03/18/2010] [Indexed: 12/23/2022]
Abstract
Complex DNA damage may manifest in double-strand breaks (DSBs) and non-DSB, bistranded, oxidatively induced clustered DNA lesions (OCDLs). Although the carcinogen benzo[alpha]pyrene (B[alpha]P) has been shown to induce chromosomal aberrations and transformation of mammary cells, it is not known whether this compound engenders clustered DNA damage. Normal primary breast tissue-derived cells were treated with B[alpha]P, and the levels of DNA lesions, chromosomal aberrations, total antioxidant capacity (TAC), and reactive oxygen species (ROS) were determined. DNA from cells treated with 2 and 8 microM B[alpha]P exhibited increases of 3- and 4-fold in APE1 (p<0.001), 11- and 19-fold in Endo III (p<0.001), and 8- and 15-fold in hOGG1 (p<0.001) OCDLs, respectively, compared to the 0 microM B[alpha]P-treated (control) group. Mammary cells treated with 8 microM B[alpha]P produced 0.12 aberrations per cell (p<0.05) and there was a strong positive correlation (r=0.91) between the levels of OCDLs and those of chromosomal aberrations. Finally, TAC was decreased by 25% (p<0.02), whereas ROS production increased by 2-fold (p<0.02) in cells treated with 8 microM B[alpha]P compared to the control group. In conclusion, oxidatively induced clustered DNA damage mediated through differential expression of APE1, reduced TAC, and increased ROS may play a significant role in the chemically induced transformation of normal primary mammary cells.
Collapse
Affiliation(s)
- George Sigounas
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Arqué G, Fotaki V, Fernández D, de Lagrán MM, Arbonés ML, Dierssen M. Impaired spatial learning strategies and novel object recognition in mice haploinsufficient for the dual specificity tyrosine-regulated kinase-1A (Dyrk1A). PLoS One 2008; 3:e2575. [PMID: 18648535 PMCID: PMC2481280 DOI: 10.1371/journal.pone.0002575] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 05/28/2008] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Pathogenic aneuploidies involve the concept of dosage-sensitive genes leading to over- and underexpression phenotypes. Monosomy 21 in human leads to mental retardation and skeletal, immune and respiratory function disturbances. Most of the human condition corresponds to partial monosomies suggesting that critical haploinsufficient genes may be responsible for the phenotypes. The DYRK1A gene is localized on the human chromosome 21q22.2 region, and has been proposed to participate in monosomy 21 phenotypes. It encodes a dual-specificity kinase involved in neuronal development and in adult brain physiology, but its possible role as critical haploinsufficient gene in cognitive function has not been explored. METHODOLOGY/PRINCIPAL FINDINGS We used mice heterozygous for a Dyrk1A targeted mutation (Dyrk1A+/-) to investigate the implication of this gene in the cognitive phenotypes of monosomy 21. Performance of Dyrk1A+/- mice was assayed 1/ in a navigational task using the standard hippocampally related version of the Morris water maze, 2/ in a swimming test designed to reveal potential kinesthetic and stress-related behavioral differences between control and heterozygous mice under two levels of aversiveness (25 degrees C and 17 degrees C) and 3/ in a long-term novel object recognition task, sensitive to hippocampal damage. Dyrk1A+/- mice showed impairment in the development of spatial learning strategies in a hippocampally-dependent memory task, they were impaired in their novel object recognition ability and were more sensitive to aversive conditions in the swimming test than euploid control animals. CONCLUSIONS/SIGNIFICANCE The present results are clear examples where removal of a single gene has a profound effect on phenotype and indicate that haploinsufficiency of DYRK1A might contribute to an impairment of cognitive functions and stress coping behavior in human monosomy 21.
Collapse
Affiliation(s)
- Glòria Arqué
- Genes and Disease Program, Genomic Regulation Center-CRG, Pompeu Fabra University, Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Vassiliki Fotaki
- Genes and Disease Program, Genomic Regulation Center-CRG, Pompeu Fabra University, Barcelona, Spain
| | - David Fernández
- Genes and Disease Program, Genomic Regulation Center-CRG, Pompeu Fabra University, Barcelona, Spain
| | - María Martínez de Lagrán
- Genes and Disease Program, Genomic Regulation Center-CRG, Pompeu Fabra University, Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Maria L. Arbonés
- Genes and Disease Program, Genomic Regulation Center-CRG, Pompeu Fabra University, Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Mara Dierssen
- Genes and Disease Program, Genomic Regulation Center-CRG, Pompeu Fabra University, Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
35
|
Cimini D. Merotelic kinetochore orientation, aneuploidy, and cancer. Biochim Biophys Acta Rev Cancer 2008; 1786:32-40. [PMID: 18549824 DOI: 10.1016/j.bbcan.2008.05.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/21/2008] [Accepted: 05/13/2008] [Indexed: 01/16/2023]
Abstract
Accurate chromosome segregation in mitosis is crucial to maintain a diploid chromosome number. A majority of cancer cells are aneuploid and chromosomally unstable, i.e. they tend to gain and lose chromosomes at each mitotic division. Chromosome mis-segregation can arise when cells progress through mitosis with mis-attached kinetochores. Merotelic kinetochore orientation, a type of mis-attachment in which a single kinetochore binds microtubules from two spindle poles rather than just one, can represent a particular threat for dividing cells, as: (i) it occurs frequently in early mitosis; (ii) it is not detected by the spindle assembly checkpoint (unlike other types of mis-attachments); (iii) it can lead to chromosome mis-segregation, and, hence, aneuploidy. A number of studies have recently started to unveil the cellular and molecular mechanisms involved in merotelic kinetochore formation and correction. Here, I review these studies and discuss the relevance of merotelic kinetochore orientation in cancer cell biology.
Collapse
Affiliation(s)
- Daniela Cimini
- Virginia Tech, Department of Biological Sciences, 5036 Derring Hall, Blacksburg, VA 24061, USA.
| |
Collapse
|
36
|
Random aneuploidy in chronic hepatitis C patients. ACTA ACUST UNITED AC 2008; 180:20-3. [PMID: 18068528 DOI: 10.1016/j.cancergencyto.2007.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 09/16/2007] [Indexed: 11/22/2022]
Abstract
Hepatitis C virus (HCV) has been recently recognized as a potential cause of B-cell lymphoma. Both chronic hepatitis B and C with or without cirrhosis represent major preneoplastic conditions, and the majority of hepatocellular carcinomas arise in these pathological settings. According to the aneuploidy-cancer theory, carcinogenesis is initiated by random aneuploidy, which is either induced by carcinogens or arises spontaneously. The aim of this study was to evaluate random aneuploidy rate in HCV patients during chronic infection and remission (past infection eradicated), compared with non-Hodgkin lymphoma (NHL) patients and healthy controls. To determine random aneuploidy, we applied the FISH technique with probes for chromosomes 9 and 18. Significantly higher random aneuploidy rate was found in the HCV-infected and lymphoma patients than in the control group; the past HCV group in remission had intermediate rates, between those of the control group and the chronically infected patients. Patients who have eradicated HCV infection may nonetheless carry higher risk for future malignancy and therefore need long-term follow-up.
Collapse
|
37
|
Stindl R. Defining the steps that lead to cancer: replicative telomere erosion, aneuploidy and an epigenetic maturation arrest of tissue stem cells. Med Hypotheses 2008; 71:126-40. [PMID: 18294777 DOI: 10.1016/j.mehy.2008.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 01/04/2008] [Accepted: 01/07/2008] [Indexed: 01/21/2023]
Abstract
Recently, an influential sequencing study found that more than 1700 genes had non-silent mutations in either a breast or colorectal cancer, out of just 11 breast and 11 colorectal tumor samples. This is not surprising given the fact that genomic instability is the hallmark of cancer cells. The plethora of genomic alterations found in every carcinoma does not obey the 'law of genotype-phenotype correlation', since the same histological subtype of cancer harbors different gene mutations and chromosomal aberrations in every patient. In an attempt to make sense out of the observed genetic and chromosomal chaos in cancer, I propose a cascade model. According to this model, tissue regeneration depends on the proliferation and serial activation of stem cells. Replicative telomere erosion limits the proliferative life span of adult stem cells and results in the Hayflick limit (M1). However, local tissue exhaustion or old age might promote the activation of M1-deficient tissue stem cells. Extended proliferation of these cells leads to telomere-driven chromosomal instability and aneuploidy (abnormal balance of chromosomes and/or chromosome material). Several of the aforementioned steps have been already described in the literature. However, in contrast to common theories, it is proposed here that the genomic damage blocks the epigenetic differentiation switch. As a result of aneuploidy, differentiation-specific genes cannot be activated by modification of methylation patterns. Consequently, the phenotype of cancer tissue is largely determined by the epigenetic maturation arrest of tissue stem cells, which in addition enables a fraction of cancer cells to proliferate, invade and metastasize, as normal adult stem cells do. The new model combines genetic and epigenetic alterations of cancer cells in one causative cascade and offers an explanation for why identical histologic cancer types harbor a confusing variety of chromosomal and gene aberrations. The Viennese Cascade, as presented here, may end the debate on if and how 'tumor-unspecific' aneuploidy leads to cancer.
Collapse
Affiliation(s)
- Reinhard Stindl
- Department of Molecular and Cell Biology, 353 Donner Hall, University of California at Berkeley, Berkeley, CA 94720-3206, USA.
| |
Collapse
|
38
|
Fabarius A, Li R, Yerganian G, Hehlmann R, Duesberg P. Specific clones of spontaneously evolving karyotypes generate individuality of cancers. ACTA ACUST UNITED AC 2008; 180:89-99. [DOI: 10.1016/j.cancergencyto.2007.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 10/05/2007] [Indexed: 11/25/2022]
|
39
|
Abstract
Aneuploidy, an aberrant chromosome number, has been recognized as a common characteristic of cancer cells for more than 100 years and has been suggested as a cause of tumorigenesis for nearly as long. However, this proposal had remained untested due to the difficulty of selectively generating aneuploidy without causing other damage. Using Cenp-E heterozygous animals, which develop whole chromosome aneuploidy in the absence of other defects, we have found that aneuploidy promotes tumorigenesis in some contexts and inhibits it in others. These findings confirm that aneuploidy can act oncogenically and reveal a previously unsuspected role for aneuploidy as a tumor suppressor.
Collapse
Affiliation(s)
- Beth A A Weaver
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093-0670, USA
| | | |
Collapse
|
40
|
Liao WT, Song LB, Zhang HZ, Zhang X, Zhang L, Liu WL, Feng Y, Guo BH, Mai HQ, Cao SM, Li MZ, Qin HD, Zeng YX, Zeng MS. Centromere protein H is a novel prognostic marker for nasopharyngeal carcinoma progression and overall patient survival. Clin Cancer Res 2007; 13:508-14. [PMID: 17255272 DOI: 10.1158/1078-0432.ccr-06-1512] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of the present study was to analyze the expression of Centromere protein H (CENP-H), one of the fundamental components of the human active kinetochore, in nasopharyngeal carcinoma (NPC) and to correlate it with clinicopathologic data, including patient survival. EXPERIMENTAL DESIGN Using reverse transcription-PCR and Western blot, we detected the expression of CENP-H in normal nasopharyngeal epithelial cells, immortalized nasopharyngeal epithelial cell lines, and NPC cell lines. Using immunohistochemistry, we analyzed CENP-H protein expression in 160 clinicopathologically characterized NPC cases. Statistical analyses were applied to test for prognostic and diagnostic associations. RESULTS Reverse transcription-PCR and Western blot showed that the expression level of CENP-H was higher in NPC cell lines and in immortalized nasopharyngeal epithelial cells than in the normal nasopharyngeal epithelial cell line at both transcriptional and translational levels. By immunohistochemical analysis, we found that 76 of 160 (47.5%) paraffin-embedded archival NPC biopsies showed high expression of CENP-H. Statistical analysis showed that there was a significant difference of CENP-H expression in patients categorized according to clinical stage (P = 0.024) and T classification (P = 0.027). Patients with higher CENP-H expression had shorter overall survival time, whereas patients with lower CENP-H expression had better survival. A prognostic value of CENP-H was also found of the subgroup of N(0)-N(1) tumor classification. Multivariate analysis showed that CENP-H expression was an independent prognostic indicator for patient's survival. CONCLUSIONS Our results suggest that CENP-H protein is a valuable marker of NPC progression. High CENP-H expression is associated with poor overall survival in NPC patients.
Collapse
Affiliation(s)
- Wen-Ting Liao
- State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Afonso PV, Zamborlini A, Saïb A, Mahieux R. Centrosome and retroviruses: the dangerous liaisons. Retrovirology 2007; 4:27. [PMID: 17433108 PMCID: PMC1855351 DOI: 10.1186/1742-4690-4-27] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 04/14/2007] [Indexed: 01/22/2023] Open
Abstract
Centrosomes are the major microtubule organizing structures in vertebrate cells. They localize in close proximity to the nucleus for the duration of interphase and play major roles in numerous cell functions. Consequently, any deficiency in centrosome function or number may lead to genetic instability. Several viruses including retroviruses such as, Foamy Virus, HIV-1, JSRV, M-PMV and HTLV-1 have been shown to hamper centrosome functions for their own profit, but the outcomes are very different. Foamy viruses, HIV-1, JSRV, M-PMV and HTLV-1 use the cellular machinery to traffic towards the centrosome during early and/or late stages of the infection. In addition HIV-1 Vpr protein alters the cell-cycle regulation by hijacking centrosome functions. Enthrallingly, HTLV-1 Tax expression also targets the functions of the centrosome, and this event is correlated with centrosome amplification, aneuploidy and transformation.
Collapse
Affiliation(s)
- Philippe V Afonso
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, CNRS URA 3015, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Alessia Zamborlini
- CNRS UMR7151, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | - Ali Saïb
- CNRS UMR7151, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | - Renaud Mahieux
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, CNRS URA 3015, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
42
|
Weaver BAA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 2007; 11:25-36. [PMID: 17189716 DOI: 10.1016/j.ccr.2006.12.003] [Citation(s) in RCA: 561] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/26/2006] [Accepted: 12/04/2006] [Indexed: 12/22/2022]
Abstract
An abnormal chromosome number, aneuploidy, is a common characteristic of tumor cells. Boveri proposed nearly 100 years ago that aneuploidy causes tumorigenesis, but this has remained untested due to the difficulty of selectively generating aneuploidy. Cells and mice with reduced levels of the mitosis-specific, centromere-linked motor protein CENP-E are now shown to develop aneuploidy and chromosomal instability in vitro and in vivo. An increased rate of aneuploidy does drive an elevated level of spontaneous lymphomas and lung tumors in aged animals. Remarkably, however, in examples of chemically or genetically induced tumor formation, an increased rate of aneuploidy is a more effective inhibitor than initiator of tumorigenesis. These findings reveal a role of aneuploidy and chromosomal instability in preventing tumorigenesis.
Collapse
Affiliation(s)
- Beth A A Weaver
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
43
|
Chung YM, Kim JS, Yoo YD. A novel protein, Romo1, induces ROS production in the mitochondria. Biochem Biophys Res Commun 2006; 347:649-55. [PMID: 16842742 DOI: 10.1016/j.bbrc.2006.06.140] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 06/21/2006] [Indexed: 11/21/2022]
Abstract
The majority of endogenous reactive oxygen species (ROS) are produced in the mitochondrial respiratory chain. An imbalance in ROS production alters the intracellular redox homeostasis, triggers DNA damage, and contributes to cancer development and progression. This study identified a novel protein, reactive oxygen species modulator 1 (Romo1), which is localized in the mitochondria. Romo1 was found to increase the level of ROS in the cells. Increased Romo1 expression was observed in various cancer cell lines. This suggests that the increased Romo1 expression during cancer progression may cause persistent oxidative stress to tumor cells, which can increase their malignancy.
Collapse
Affiliation(s)
- Young Min Chung
- Graduate School of Medicine, Korea University College of Medicine, Korea University, Anam-dong, Sungbuk-ku, Seoul, Republic of Korea
| | | | | |
Collapse
|
44
|
Amiel A, Yukla M, Gaber E, Leopold L, Josef G, Fejgin M, Lishner M. Random aneuploidy in CML patients at diagnosis and under imatinib treatment. ACTA ACUST UNITED AC 2006; 168:120-3. [PMID: 16843101 DOI: 10.1016/j.cancergencyto.2006.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 01/31/2006] [Accepted: 02/06/2006] [Indexed: 11/18/2022]
Abstract
Chronic myeloid leukemia (CML) is characterized by the presence of a BCR-ABL fusion gene, which is the result of a reciprocal translocation between chromosomes 9 and 22, and is cytogenetically visible as a shortened chromosome 22 (Philadelphia). Research during the past two decades has established that BCR-ABL is probably the pathogenetic pathway leading to CML, and that constitutive tyrosine kinase activity is central to BCR-ABL capacity to transform hematopoietic cells in vitro and in vivo. The tyrosine kinase inhibitor imatinib mesylate was introduced into the treatment regimen for CML in 1998. During the last few years, reports on chromosomal changes during imatinib treatment have been described. In this study, we evaluated the random aneuploidy rate with chromosomes 9 and 18 in bone marrow from treated and untreated patients. We found higher aneuploidy rates in both treated and untreated patients compared to the control group. In three patients who were treated with imatinib mesylate for more than 1.5 years, triploidy also appeared in some nuclei. To our knowledge, this is the first report on new chromosomal changes such as random aneuploidy and triploidy under imatinib treatment, but more studies are needed to investigate the long-term effect of the imatinib treatment on genetic instability.
Collapse
MESH Headings
- Adult
- Aged
- Aneuploidy
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Benzamides
- Female
- Genomic Instability/drug effects
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Male
- Middle Aged
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A Amiel
- Genetic Institute, Meir Medical Center, Tshernichovski St., Kfar-Saba 44281, Israel.
| | | | | | | | | | | | | |
Collapse
|
45
|
Amiel A, Leopold L, Gronich N, Yukla M, Fejgin MD, Lishner M. The influence of different chromosomal aberrations on molecular cytogenetic parameters in chronic lymphocytic leukemia. ACTA ACUST UNITED AC 2006; 167:145-9. [PMID: 16737914 DOI: 10.1016/j.cancergencyto.2005.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 11/28/2005] [Accepted: 11/29/2005] [Indexed: 10/24/2022]
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is the most common leukemia of adults in Western countries. The most frequent recurring chromosomal aberrations identified in B-CLL patients are trisomy 12 and deletions of 13q, 17p, and 11q. Cases with deletions of 11q and 17p have a poor prognosis, whereas cases with deletions in 13q have a favorable prognosis. It was previously shown that CLL patients with trisomy 12 and del(13)(q14) have a higher rate of asynchronous replication of normal structural genes when compared to those with normal karyotypes. We studied the replication pattern of the structural locus 21q22 and the imprinted gene SNRPN and its telomere (15qter) and the random aneuploidy of chromosomes 9 and 18 in CLL patients with trisomy 12 and deletions of 11q and 17p, and compared the results to those of CLL patients without these aberrations and to healthy controls. Random aneuploidy rate was higher in the group of patients with trisomy 12 as compared to all other groups. The replication pattern with higher asynchronous pattern was found in both aberration groups compared to the CLL patients without the aberrations and to the control group with involvement of 21q22 and 15qter, whereas the highest synchronous group was found in the 2 aberrations CLL patient groups compared to the other groups with the imprinted locus SNRPN. The existence and significance of chromosomal aberrations in CLL have a deleterious effect on the processes of cell cycle and gene replication and may have biological and prognostic implications.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Aneuploidy
- Autoantigens/genetics
- Chromosome Aberrations
- Chromosome Deletion
- Chromosomes, Human, Pair 11/ultrastructure
- Chromosomes, Human, Pair 12/ultrastructure
- Chromosomes, Human, Pair 17/ultrastructure
- Chromosomes, Human, Pair 18/ultrastructure
- Chromosomes, Human, Pair 21/ultrastructure
- Chromosomes, Human, Pair 9/ultrastructure
- DNA Replication/genetics
- Genomic Imprinting
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Middle Aged
- Ribonucleoproteins, Small Nuclear/genetics
- Trisomy
- snRNP Core Proteins
Collapse
Affiliation(s)
- A Amiel
- Genetic Institute, Meir Hospital, Kfar-Saba 44281, Israel.
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Telomeres which protect the individual chromosomes from disintegration, end-to-end fusion and maintain the genomic integrity during the somatic cell divisions play an important role in cellular aging. Aging and cancer development are linked with each other because cancer is considered a group of complex genetic diseases that develop in old cells and, in both, telomere attrition is involved. Numeric chromosome imbalance also known as aneuploidy is the hallmark of most solid tumors, whether spontaneous or induced by carcinogens. We provide evidence in support of the hypothesis that telomere attrition is the earliest genetic alteration responsible for the induction of aneuploidy. Dysfunctional telomeres are highly recombinogenic leading to the formation of dicentric chromosomes. During cell divisions, such complex chromosome alterations undergo breakage fusion bridge cycles and may lead to loss of heterozygosity (LOH) and gene amplification. Furthermore, we have provided evidence in support of the hypothesis that all types of cancer originate in the organ- or tissue-specific stem cells present in a particular organ. Cancer cells and stem cells share many characteristics, such as, self-renewal, migration, and differentiation. Metaphases with abnormal genetic constitution present in the lymphocytes of cancer patients and in some of their asymptomatic family members may have been derived from the organ-specific stem cells. In addition, evidence and discussion has been presented for the existence of cancer-specific stem cells. Successful treatment of cancer, therefore, should be directed towards these cancer stem cells.
Collapse
Affiliation(s)
- Sen Pathak
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.
| | | |
Collapse
|
47
|
Derouazi M, Martinet D, Besuchet Schmutz N, Flaction R, Wicht M, Bertschinger M, Hacker DL, Beckmann JS, Wurm FM. Genetic characterization of CHO production host DG44 and derivative recombinant cell lines. Biochem Biophys Res Commun 2006; 340:1069-77. [PMID: 16403443 DOI: 10.1016/j.bbrc.2005.12.111] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022]
Abstract
The dihydrofolate reductase-deficient Chinese hamster ovary (CHO) cell line DG44 is the dominant mammalian host for recombinant protein manufacturing, in large part because of the availability of a well-characterized genetic selection and amplification system. However, this cell line has not been studied at the cytogenetic level. Here, the first detailed karyotype analysis of DG44 and several recombinant derivative cell lines is described. In contrast to the 22 chromosomes in diploid Chinese hamster cells, DG44 has 20 chromosomes, only seven of which are normal. In addition, four Z group chromosomes, seven derivative chromosomes, and 2 marker chromosomes were identified. For all but one of the 16 DG44-derived recombinant cell lines analyzed, a single integration site was detected by fluorescence in situ hybridization regardless of the gene delivery method (calcium phosphate-DNA coprecipitation or microinjection), the topology of the DNA (circular or linear), or the integrated plasmid copy number (between 1 and 51). Chromosomal aberrations, observed in more than half of the cell lines studied, were mostly unbalanced with examples of aneuploidy, deletions, and complex rearrangements. The results demonstrate that chromosomal aberrations are frequently associated with the establishment of recombinant CHO DG44 cell lines. Noteworthy, there was no direct correlation between the stability of the genome and the stability of recombinant protein expression.
Collapse
Affiliation(s)
- M Derouazi
- Laboratory of Cellular Biotechnology (LBTC), Institute of Biological Engineering and Biotechnology (IGBB), Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lu S, Shen K, Wang Y, Santner SJ, Chen J, Brooks SC, Wang YA. Atm-haploinsufficiency enhances susceptibility to carcinogen-induced mammary tumors. Carcinogenesis 2006; 27:848-55. [PMID: 16400190 DOI: 10.1093/carcin/bgi302] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ataxia-telangiectasia (A-T), which is due to mutations in the ATM gene, is a rare autosomal recessive genomic instability syndrome characterized by radiosensitivity and predisposition to cancer. Epidemiological studies have suggested that relatives of A-T patients (A-T carriers) have increased risks of developing breast cancer. We propose that increased breast cancer risks in A-T carriers may be due to exposure to various environmental carcinogens and/or dietary consumption. To test this hypothesis, we treated a congenic strain of Atm+/- mice with DMBA (7,12-dimethylbenz(alpha)anthracene), a mammary carcinogen, and observed mammary tumor incidence. It was found that Atm+/- mice have a 2-fold increase, as well as early onset, in mammary tumor incidence relative to wild-type mice (P<0.005). The increased mammary tumor development is correlated with a 3-fold increase in the development of mammary dysplasia in Atm+/- compared with wild-type mice (P<0.05). We also found that Ras signaling pathway was not activated in DMBA-induced mammary tumors irrespective of the Atm status. At the cellular level, Atm-haploinsufficiency confers increased cellular stress manifested by an increased p53 expression and a slightly enhanced survival of mammary epithelial cells in response to radiation. Our results demonstrate that Atm heterozygotes are predisposed to mammary tumor development and support the hypothesis that exposure to environmental carcinogens contributes to the increased rate of breast cancer development in A-T carriers. Given that 1% of the general population are ATM heterozygotes (A-T carriers), this study has great implications in breast cancer development in this population.
Collapse
Affiliation(s)
- Shu Lu
- Karmanos Cancer Institute, Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, 110 E. Warren Avenue, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Shen KC, Heng H, Wang Y, Lu S, Liu G, Deng CX, Brooks SC, Wang YA. ATM and p21 cooperate to suppress aneuploidy and subsequent tumor development. Cancer Res 2005; 65:8747-53. [PMID: 16204044 DOI: 10.1158/0008-5472.can-05-1471] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The DNA damage checkpoint protein kinase mutated in ataxia telangiectasia (ATM) is involved in sensing and transducing DNA damage signals by phosphorylating and activating downstream target proteins that are implicated in the regulation of cell cycle progression and DNA repair. Atm-/- cells are defective in cellular proliferation mediated by the Arf/p53/p21 pathway. In this report, we show that increased expression of p21 (also known as Waf1 or CDKN1a) in Atm-/- cells serves as a cellular defense mechanism to suppress further chromosomal instability (CIN) and tumor development because Atm-/- p21-/- mice are predisposed to carcinomas and sarcomas with intratumoral heterogeneity. It was found that Atm-deficient cells are defective in metaphase-anaphase transition leading to abnormal karyokinesis. Moreover, Atm-/- p21-/- primary embryonic fibroblasts exhibit increased CIN compared with either Atm-/- or p21-/- cells. The increased CIN is manifested at the cellular level by increased chromatid breaks and elevated aneuploid genome in Atm-/- p21-/- cells. Finally, we showed that the role of p21 in a CIN background induced by loss of Atm is to suppress numerical CIN but not structural CIN. Our data suggest that the development of aneuploidy precedes tumor formation and implicates p21 as a major tumor suppressor in a genome instability background.
Collapse
Affiliation(s)
- Kate C Shen
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Amiel A, Goldzak G, Gaber E, Yosef G, Fejgin MD, Yukla M, Lishner M. Random aneuploidy and telomere capture in chronic lymphocytic leukemia and chronic myeloid leukemia patients. ACTA ACUST UNITED AC 2005; 163:12-6. [PMID: 16271950 DOI: 10.1016/j.cancergencyto.2005.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 04/12/2005] [Accepted: 04/13/2005] [Indexed: 11/25/2022]
Abstract
Telomeric regions of the human genome are of particular interest, because rearrangements of these regions are difficult to identify by conventional chromosome banding technology. With the advent of molecular cytogenetic techniques such as fluorescence in situ hybridization (FISH), it has been possible to investigate the terminus in cytogenetically visible terminal deletions and telomere rearrangements. We investigated telomere capture and aneuploidy rates in chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML) patients, as well as in healthy control subsets. Using a FISH technique, we estimated the random aneuploidy and telomere capture of the 21q22, SNRPN, and 15qter loci. Higher aneuploidy rates were found in the leukocytes of CLL and CML patients, compared with the control group, for the 21q22 and SNRPN loci. There was no difference in the aneuploidy rate between the CML and CLL groups. Telomere capture was found in the two groups (CLL and CML), but not in the control group. We propose that the telomere capture phenomenon is much more common than has been reported in the literature; however, its prognostic significance is yet to be established.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Aneuploidy
- Bone Marrow Cells/pathology
- Chromosome Mapping
- Chromosomes, Human, Pair 15
- Chromosomes, Human, Pair 21
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Middle Aged
- Telomere/genetics
- Translocation, Genetic
- Trisomy
Collapse
Affiliation(s)
- A Amiel
- Genetic Institute, Meir Medical Center, Kfar-Saba 44281, Israel.
| | | | | | | | | | | | | |
Collapse
|