1
|
Yu X, Wang X, Ma K, Gao D, Deng Y, Zhou D, Ding W, Zhao Y, Liu Q, Zhou Z. Tai/NCOA2 suppresses the Hedgehog pathway by directly targeting the transcription factor Ci/GLI. Proc Natl Acad Sci U S A 2024; 121:e2409380121. [PMID: 39531503 PMCID: PMC11588115 DOI: 10.1073/pnas.2409380121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
The Hedgehog (Hh) pathway plays diverse roles in cellular processes by activating the transcription factor Cubitus interruptus (Ci). Abnormal regulation of this pathway has been linked to various human diseases. While previous studies have focused on how Ci is regulated in the cytoplasm, the control of nuclear Ci remains poorly understood. In this study, we have found that the transcriptional cofactor Taiman (Tai) functions as an inhibitor of the Hh pathway. Tai interferes with the response of Hh signal, rather than Hh secretion. Our epistatic analyses reveal that Tai works in parallel with Ci to reduce its activity, thereby counteracting organ overgrowth and the activation of target genes caused by Ci overexpression. Specifically, Tai interacts with Ci to decrease its binding to target gene promoters. The Hh signal weakens the interaction between Ci and Tai, releasing the inhibition on Ci. Importantly, this regulatory mechanism is conserved from Drosophila to mammalian cells. Moreover, NCOA1-3 are the mammalian ortholog of Drosophila protein Tai, but only NCOA2 plays a similar role in inhibiting the Hh pathway. These findings reveal an additional way to modulate the transcriptional activity of nuclear Ci.
Collapse
Affiliation(s)
- Xuan Yu
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Xinyu Wang
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Kaize Ma
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Dongqing Gao
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Yanran Deng
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang330022, China
| | - Dafa Zhou
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Wenhao Ding
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Yunhe Zhao
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Zizhang Zhou
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang330022, China
| |
Collapse
|
2
|
Warren J, Kumar JP. Patterning of the Drosophila retina by the morphogenetic furrow. Front Cell Dev Biol 2023; 11:1151348. [PMID: 37091979 PMCID: PMC10117938 DOI: 10.3389/fcell.2023.1151348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
Pattern formation is the process by which cells within a homogeneous epithelial sheet acquire distinctive fates depending upon their relative spatial position to each other. Several proposals, starting with Alan Turing's diffusion-reaction model, have been put forth over the last 70 years to describe how periodic patterns like those of vertebrate somites and skin hairs, mammalian molars, fish scales, and avian feather buds emerge during development. One of the best experimental systems for testing said models and identifying the gene regulatory networks that control pattern formation is the compound eye of the fruit fly, Drosophila melanogaster. Its cellular morphogenesis has been extensively studied for more than a century and hundreds of mutants that affect its development have been isolated. In this review we will focus on the morphogenetic furrow, a wave of differentiation that takes an initially homogeneous sheet of cells and converts it into an ordered array of unit eyes or ommatidia. Since the discovery of the furrow in 1976, positive and negative acting morphogens have been thought to be solely responsible for propagating the movement of the furrow across a motionless field of cells. However, a recent study has challenged this model and instead proposed that mechanical driven cell flow also contributes to retinal pattern formation. We will discuss both models and their impact on patterning.
Collapse
Affiliation(s)
| | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN, United States
| |
Collapse
|
3
|
Moucaud B, Prince E, Jagla K, Soler C. Developmental origin of tendon diversity in Drosophila melanogaster. Front Physiol 2023; 14:1176148. [PMID: 37143929 PMCID: PMC10151533 DOI: 10.3389/fphys.2023.1176148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Myogenesis is a developmental process that is largely conserved in both Drosophila and higher organisms. Consequently, the fruit fly is an excellent in vivo model for identifying the genes and mechanisms involved in muscle development. Moreover, there is growing evidence indicating that specific conserved genes and signaling pathways govern the formation of tissues that connect the muscles to the skeleton. In this review, we present an overview of the different stages of tendon development, from the specification of tendon progenitors to the assembly of a stable myotendinous junction across three different myogenic contexts in Drosophila: larval, flight and leg muscle development. We underline the different aspects of tendon cell specification and differentiation in embryo and during metamorphosis that result into tendon morphological and functional diversity.
Collapse
|
4
|
Liu B, Ding Y, Sun B, Liu Q, Zhou Z, Zhan M. The Hh pathway promotes cell apoptosis through Ci-Rdx-Diap1 axis. Cell Death Discov 2021; 7:263. [PMID: 34561426 PMCID: PMC8463586 DOI: 10.1038/s41420-021-00653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022] Open
Abstract
Apoptosis is a strictly coordinated process to eliminate superfluous or damaged cells, and its deregulation leads to birth defects and various human diseases. The regulatory mechanism underlying apoptosis still remains incompletely understood. To identify novel components in apoptosis, we carry out a modifier screen and find that the Hh pathway aggravates Hid-induced apoptosis. In addition, we reveal that the Hh pathway triggers apoptosis through its transcriptional target gene rdx, which encodes an E3 ubiquitin ligase. Rdx physically binds Diap1 to promote its K63-linked polyubiquitination, culminating in attenuating Diap1-Dronc interaction without affecting Diap1 stability. Taken together, our findings unexpectedly uncover the oncogenic Hh pathway is able to promote apoptosis through Ci-Rdx-Diap1 module, raising a concern to choose Hh pathway inhibitors as anti-tumor drugs.
Collapse
Affiliation(s)
- Bin Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yan Ding
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Bing Sun
- Department of Anorectum, the First affiliated Hospital of Shandong First Medical University, Ji'nan, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Zizhang Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an, China.
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China.
| |
Collapse
|
5
|
Ishikawa Y, Ida-Yonemochi H, Saito K, Nakatomi M, Ohshima H. The Sonic Hedgehog–Patched–Gli Signaling Pathway Maintains Dental Epithelial and Pulp Stem/Progenitor Cells and Regulates the Function of Odontoblasts. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.651334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study aimed to elucidate the role of the Sonic hedgehog (Shh)–Patched (Ptch)–Gli signaling pathway in maintaining dental epithelial and pulp stem/progenitor cells and regulating the function of odontoblasts. Doxycycline (dox)-inducible histone 2B (H2B)–green fluorescent protein (GFP) transgenic mice ingested dox at prenatal embryonic days 14.5 or 15.5 and their offspring were collected from postnatal day 1 (P1) to week 3 (P3W). Immunohistochemistry for Gli1, Ptch1, and Ptch2 andin situhybridization forShhandPtch1were conducted. Mandibular incisors of postnatal day 2 H2B-GFP transgenic and wild-type mice were cultivated in a nutrient medium with Shh antibody for 4 days and subsequently processed for immunohistochemistry for Sox2. In molars, dense H2B-GFP-label-retaining cells (H2B-GFP-LRCs) were densely distributed throughout the dental pulp during P1 to postnatal week 2 (P2W) and decreased in number by postnatal P3W, whereas the number of dense H2B-GFP-LRCs in the subodontoblastic layer increased in number at P2W. Gli1+and Pthc1+cells were distributed throughout the enamel organ and dental pulp, including the odontoblast and subodontoblastic layers.ShhmRNA was expressed in the inner enamel epithelium and shifted into odontoblasts after dentin deposition.Ptch1mRNA was expressed in the inner enamel epithelium and cuspal pulpal tissue on P1 and decreased in intensity from postnatal week 1 to P3W. In incisors, the apical bud contained H2B-GFP-LRCs, Gli1+cells, and Ptch1+cells. The addition of Shh antibody to explants induced a decrease in the number of Sox2+cells due to the increase in apoptotic cells in the apical bud. Thus, the Shh–Ptch–Gli signaling pathway plays a role in maintaining quiescent adult stem cells and regulating the function of odontoblasts.
Collapse
|
6
|
Bairzin JCD, Emmons-Bell M, Hariharan IK. The Hippo pathway coactivator Yorkie can reprogram cell fates and create compartment-boundary-like interactions at clone margins. SCIENCE ADVANCES 2020; 6:6/50/eabe8159. [PMID: 33298454 PMCID: PMC7725458 DOI: 10.1126/sciadv.abe8159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
During development, tissue-specific patterns of gene expression are established by transcription factors and then stably maintained via epigenetic mechanisms. Cancer cells often express genes that are inappropriate for that tissue or developmental stage. Here, we show that high activity levels of Yki, the Hippo pathway coactivator that causes overgrowth in Drosophila imaginal discs, can also disrupt cell fates by altering expression of selector genes like engrailed (en) and Ultrabithorax (Ubx). Posterior clones expressing activated Yki can down-regulate en and express an anterior selector gene, cubitus interruptus (ci). The microRNA bantam and the chromatin regulator Taranis both function downstream of Yki in promoting ci expression. The boundary between Yki-expressing posterior clones and surrounding wild-type cells acquires properties reminiscent of the anteroposterior compartment boundary; Hedgehog signaling pathway activation results in production of Dpp. Thus, at least in principle, heterotypic interactions between Yki-expressing cells and their neighbors could activate boundary-specific signaling mechanisms.
Collapse
Affiliation(s)
- Joanna C D Bairzin
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Maya Emmons-Bell
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, 515 Weill Hall, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
7
|
Wang J, Dahmann C. Establishing compartment boundaries in Drosophila wing imaginal discs: An interplay between selector genes, signaling pathways and cell mechanics. Semin Cell Dev Biol 2020; 107:161-169. [PMID: 32732129 DOI: 10.1016/j.semcdb.2020.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/02/2023]
Abstract
The partitioning of cells into groups or 'compartments' separated by straight and sharp boundaries is important for tissue formation in animal development. Cells from neighboring compartments are characterized by distinct fates and functions and their continuous separation at compartment boundaries maintains proper tissue organization. Signaling across compartment boundaries can induce the local expression of morphogens that in turn direct growth and patterning of the surrounding cells. Compartment boundaries play therefore an important role in tissue development. Compartment boundaries were first identified in the early 1970s in the Drosophila wing. Here, we review the role of compartment boundaries in growth and patterning of the developing wing and then discuss the genetic and physical mechanisms underlying cell separation at compartment boundaries in this tissue.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Christian Dahmann
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
8
|
Basu U, Balakrishnan SS, Janardan V, Raghu P. A PI4KIIIα protein complex is required for cell viability during Drosophila wing development. Dev Biol 2020; 462:208-222. [PMID: 32194035 DOI: 10.1016/j.ydbio.2020.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 01/02/2023]
Abstract
Phosphatidylinositol 4 phosphate (PI4P) and phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] are enriched on the inner leaflet of the plasma membrane and proposed to be key determinants of its function. PI4P is also the biochemical precursor for the synthesis of PI(4,5)P2 but can itself also bind to and regulate protein function. However, the independent function of PI4P at the plasma membrane in supporting cell function in metazoans during development in vivo remains unclear. We find that conserved components of a multi-protein complex composed of phosphatidylinositol 4-kinase IIIα (PI4KIIIα), TTC7 and Efr3 is required for normal vein patterning and wing development. Depletion of each of these three components of the PI4KIIIα complex in developing wing cells results in altered wing morphology. These effects are associated with an increase in apoptosis and can be rescued by expression of an inhibitor of Drosophila caspase. We find that in contrast to previous reports, PI4KIIIα depletion does not alter key outputs of hedgehog signalling in developing wing discs. Depletion of PI4KIIIα results in reduced PI4P levels at the plasma membrane of developing wing disc cells while levels of PI(4,5)P2, the downstream metabolite of PI4P, are not altered. Thus, PI4P itself generated by the activity of the PI4KIIIα complex plays an essential role in supporting cell viability in the developing Drosophila wing disc.
Collapse
Affiliation(s)
- Urbashi Basu
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Sruthi S Balakrishnan
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Vishnu Janardan
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore, 560065, India.
| |
Collapse
|
9
|
Lim J, Choe CP. Functional analysis of engrailed in Tribolium segmentation. Mech Dev 2019; 161:103594. [PMID: 31778794 DOI: 10.1016/j.mod.2019.103594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/05/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
Abstract
The segment-polarity gene engrailed is required for segmentation in the early Drosophila embryo. Loss of Engrailed function results in segmentation defects that vary in severity from pair-rule phenotypes to a lawn phenotype lacking in obvious of segmentation. During segmentation, Engrailed is expressed in stripes with a single segmental periodicity in Drosophila, which is conserved in all arthropods examined so far. To define segments, the segmental stripes of Engrailed induce the segmental stripes of wingless at each parasegmental boundary. However, segmentation functions of orthologs of engrailed in non-Drosophila arthropods have yet to be reported. Here, we analyzed functions of the Tribolium ortholog of engrailed (Tc-engrailed) during embryonic segmentation. Larval cuticles with Tc-engrailed being knocked down had segmentation phenotypes including incomplete segment formation and loss of a group of segments. In agreement with the cuticle segmentation defects, segments developed incompletely and irregularly or did not form in Tribolium germbands where Tc-engrailed was knocked down. Furthermore, knock-down of Tc-engrailed did not properly express the segmental stripes of wingless in Tribolium germbands. Taken together with the conserved expression patterns of Engrailed in arthropod segmentation, our data suggest that Tc-engrailed is required for embryonic segmentation in Tribolium, and the genetic mechanism of Engrailed inducing wingless expression is conserved at least between Drosophila and Tribolium.
Collapse
Affiliation(s)
- Jinsung Lim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chong Pyo Choe
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
10
|
Zhang J, Liu Y, Jiang K, Jia J. Hedgehog signaling promotes lipolysis in adipose tissue through directly regulating Bmm/ATGL lipase. Dev Biol 2019; 457:128-139. [PMID: 31550483 DOI: 10.1016/j.ydbio.2019.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/21/2019] [Accepted: 09/20/2019] [Indexed: 01/20/2023]
Abstract
Hedgehog (Hh) signaling has been shown to regulate multiple developmental processes, however, it is unclear how it regulates lipid metabolism. Here, we demonstrate that Hh signaling exhibits potent activity in Drosophila fat body, which is induced by both locally expressed and midgut-derived Hh proteins. Inactivation of Hh signaling increases, whereas activation of Hh signaling decreases lipid accumulation. The major lipase Brummer (Bmm) acts downstream of Smoothened (Smo) in Hh signaling to promote lipolysis, therefore, the breakdown of triacylglycerol (TAG). We identify a critical Ci binding site in bmm promoter that is responsible to mediate Bmm expression induced by Hh signaling. Genomic mutation of the Ci binding site significantly reduces the expression of Bmm and dramatically decreases the responsiveness to Ci overexpression. Together, our findings provide a model for lipolysis to be regulated by Hh signaling, raising the possibility for Hh signaling to be involved in lipid metabolic and/or lipid storage diseases.
Collapse
Affiliation(s)
- Jie Zhang
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Yajuan Liu
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Kai Jiang
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Jianhang Jia
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
11
|
Binder M, Chmielarz P, Mckinnon PJ, Biggs LC, Thesleff I, Balic A. Functionally Distinctive Ptch Receptors Establish Multimodal Hedgehog Signaling in the Tooth Epithelial Stem Cell Niche. Stem Cells 2019; 37:1238-1248. [PMID: 31145830 DOI: 10.1002/stem.3042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 01/06/2023]
Abstract
Continuous growth of the mouse incisor teeth is due to the life-long maintenance of epithelial stem cells (SCs) in their niche called cervical loop (CL). Several signaling factors regulate SC maintenance and/or their differentiation to achieve organ homeostasis. Previous studies indicated that Hedgehog signaling is crucial for both the maintenance of the SCs in the niche, as well as for their differentiation. How Hedgehog signaling regulates these two opposing cellular behaviors within the confinement of the CL remains elusive. In this study, we used in vitro organ and cell cultures to pharmacologically attenuate Hedgehog signaling. We analyzed expression of various genes expressed in the SC niche to determine the effect of altered Hedgehog signaling on the cellular hierarchy within the niche. These genes include markers of SCs (Sox2 and Lgr5) and transit-amplifying cells (P-cadherin, Sonic Hedgehog, and Yap). Our results show that Hedgehog signaling is a critical survival factor for SCs in the niche, and that the architecture and the diversity of the SC niche are regulated by multiple Hedgehog ligands. We demonstrated the presence of an additional Hedgehog ligand, nerve-derived Desert Hedgehog, secreted in the proximity of the CL. In addition, we provide evidence that Hedgehog receptors Ptch1 and Ptch2 elicit independent responses, which enable multimodal Hedgehog signaling to simultaneously regulate SC maintenance and differentiation. Our study indicates that the cellular hierarchy in the continuously growing incisor is a result of complex interplay of two Hedgehog ligands with functionally distinct Ptch receptors. Stem Cells 2019;37:1238-1248.
Collapse
Affiliation(s)
- Martin Binder
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Piotr Chmielarz
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Peter J Mckinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Leah C Biggs
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Irma Thesleff
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Anamaria Balic
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Lai CM, Lin KY, Kao SH, Chen YN, Huang F, Hsu HJ. Hedgehog signaling establishes precursors for germline stem cell niches by regulating cell adhesion. J Cell Biol 2017; 216:1439-1453. [PMID: 28363970 PMCID: PMC5412570 DOI: 10.1083/jcb.201610063] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/10/2017] [Accepted: 02/27/2017] [Indexed: 11/22/2022] Open
Abstract
Stem cells require different types of supporting cells, or niches, to control stem cell maintenance and differentiation. However, little is known about how those niches are formed. We report that in the development of the Drosophila melanogaster ovary, the Hedgehog (Hh) gradient sets differential cell affinity for somatic gonadal precursors to specify stromal intermingled cells, which contributes to both germline stem cell maintenance and differentiation niches in the adult. We also report that Traffic Jam (an orthologue of a large Maf transcription factor in mammals) is a novel transcriptional target of Hh signaling to control cell-cell adhesion by negative regulation of E-cadherin expression. Our results demonstrate the role of Hh signaling in niche establishment by segregating somatic cell lineages for differentiation.
Collapse
Affiliation(s)
- Chun-Ming Lai
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kun-Yang Lin
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shih-Han Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ning Chen
- Institute of Molecular and Cell Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Fu Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Hwei-Jan Hsu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
13
|
Sagner A, Briscoe J. Morphogen interpretation: concentration, time, competence, and signaling dynamics. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28319331 PMCID: PMC5516147 DOI: 10.1002/wdev.271] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/22/2017] [Accepted: 02/10/2017] [Indexed: 12/14/2022]
Abstract
Tissue patterning during animal development is orchestrated by a handful of inductive signals. Most of these developmental cues act as morphogens, meaning they are locally produced secreted molecules that act at a distance to govern tissue patterning. The iterative use of the same signaling molecules in different developmental contexts demands that signal interpretation occurs in a highly context‐dependent manner. Hence the interpretation of signal depends on the specific competence of the receiving cells. Moreover, it has become clear that the differential interpretation of morphogens depends not only on the level of signaling but also the signaling dynamics, particularly the duration of signaling. In this review, we outline molecular mechanisms proposed in recent studies that explain how the response to morphogens is determined by differential competence, pathway intrinsic feedback, and the interpretation of signaling dynamics by gene regulatory networks. WIREs Dev Biol 2017, 6:e271. doi: 10.1002/wdev.271 For further resources related to this article, please visit the WIREs website.
Collapse
|
14
|
Liu N, Liu X, Yu Q, Chen X, Ding Y, He J, Gao R, Wang Y, Liu X. SPOP Regulates Endometrial Stromal Cell Decidualization in Mice. Reprod Sci 2016; 23:1565-1574. [DOI: 10.1177/1933719116648215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Na Liu
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Xin Liu
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Qiubo Yu
- Molecular Medical Laboratory, Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| |
Collapse
|
15
|
Gurdziel K, Lorberbaum DS, Udager AM, Song JY, Richards N, Parker DS, Johnson LA, Allen BL, Barolo S, Gumucio DL. Identification and Validation of Novel Hedgehog-Responsive Enhancers Predicted by Computational Analysis of Ci/Gli Binding Site Density. PLoS One 2015; 10:e0145225. [PMID: 26710299 PMCID: PMC4692483 DOI: 10.1371/journal.pone.0145225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/01/2015] [Indexed: 01/20/2023] Open
Abstract
The Hedgehog (Hh) signaling pathway directs a multitude of cellular responses during embryogenesis and adult tissue homeostasis. Stimulation of the pathway results in activation of Hh target genes by the transcription factor Ci/Gli, which binds to specific motifs in genomic enhancers. In Drosophila, only a few enhancers (patched, decapentaplegic, wingless, stripe, knot, hairy, orthodenticle) have been shown by in vivo functional assays to depend on direct Ci/Gli regulation. All but one (orthodenticle) contain more than one Ci/Gli site, prompting us to directly test whether homotypic clustering of Ci/Gli binding sites is sufficient to define a Hh-regulated enhancer. We therefore developed a computational algorithm to identify Ci/Gli clusters that are enriched over random expectation, within a given region of the genome. Candidate genomic regions containing Ci/Gli clusters were functionally tested in chicken neural tube electroporation assays and in transgenic flies. Of the 22 Ci/Gli clusters tested, seven novel enhancers (and the previously known patched enhancer) were identified as Hh-responsive and Ci/Gli-dependent in one or both of these assays, including: Cuticular protein 100A (Cpr100A); invected (inv), which encodes an engrailed-related transcription factor expressed at the anterior/posterior wing disc boundary; roadkill (rdx), the fly homolog of vertebrate Spop; the segment polarity gene gooseberry (gsb); and two previously untested regions of the Hh receptor-encoding patched (ptc) gene. We conclude that homotypic Ci/Gli clustering is not sufficient information to ensure Hh-responsiveness; however, it can provide a clue for enhancer recognition within putative Hedgehog target gene loci.
Collapse
Affiliation(s)
- Katherine Gurdziel
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Computational Medicine and Bioinformatics, The University of Michigan, Ann Arbor, MI 48109, United States of America
| | - David S. Lorberbaum
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
- Cellular and Molecular Biology Program, The University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Aaron M. Udager
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Jane Y. Song
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
- Cellular and Molecular Biology Program, The University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Neil Richards
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
| | - David S. Parker
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Lisa A. Johnson
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
- * E-mail: (DLG); (SB); (BLA)
| | - Scott Barolo
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
- * E-mail: (DLG); (SB); (BLA)
| | - Deborah L. Gumucio
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, United States of America
- * E-mail: (DLG); (SB); (BLA)
| |
Collapse
|
16
|
Marada S, Navarro G, Truong A, Stewart DP, Arensdorf AM, Nachtergaele S, Angelats E, Opferman JT, Rohatgi R, McCormick PJ, Ogden SK. Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling. PLoS Genet 2015; 11:e1005473. [PMID: 26291458 PMCID: PMC4546403 DOI: 10.1371/journal.pgen.1005473] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/28/2015] [Indexed: 01/06/2023] Open
Abstract
The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice. N-linked glycosylation is a post-translational modification occurring on membrane proteins such as G protein-coupled receptors (GPCR). Smoothened (Smo) is a GPCR that functions as the signal transducer of the Hedgehog (Hh) pathway. We used a mutagenesis approach to assess the role of N-glycans in Smo signaling in two genetic models for Hh pathway activity, Drosophila and mouse. In doing so, we discovered a divergence in glycan function between them. We mapped an essential N-glycan acceptor site that when lost in Drosophila, triggered ER retention, altered Smo protein stability and blunted its signaling capacity. Conversely, ER exit of the murine protein was unaffected by glycan loss, as was its ability to traffic and induce a G protein-independent signal to activate Hh target genes. However, the ability of vertebrate Smo to induce a distinct G protein-dependent signal was lost. This suggests that N-linked glycosylation may influence signal bias of vertebrate Smo to favor one signal output over the other. We therefore propose that the role of this conserved post-translational modification may have been repurposed from governing Smo ER exit in the fly to influencing effector route selection in vertebrates.
Collapse
Affiliation(s)
- Suresh Marada
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biology, Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)University of Barcelona, Barcelona, Spain
| | - Ashley Truong
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Summer Plus Program, Rhodes College, Memphis, Tennessee, United States of America
| | - Daniel P. Stewart
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Angela M. Arensdorf
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sigrid Nachtergaele
- Departments of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Edgar Angelats
- Department of Biochemistry and Molecular Biology, Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)University of Barcelona, Barcelona, Spain
| | - Joseph T. Opferman
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Rajat Rohatgi
- Departments of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peter J. McCormick
- Department of Biochemistry and Molecular Biology, Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)University of Barcelona, Barcelona, Spain
- School of Pharmacy, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Stacey K. Ogden
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
17
|
Hedgehog-regulated atypical PKC promotes phosphorylation and activation of Smoothened and Cubitus interruptus in Drosophila. Proc Natl Acad Sci U S A 2014; 111:E4842-50. [PMID: 25349414 DOI: 10.1073/pnas.1417147111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Smoothened (Smo) is essential for transduction of the Hedgehog (Hh) signal in both insects and vertebrates. Cell surface/cilium accumulation of Smo is thought to play an important role in Hh signaling, but how the localization of Smo is controlled remains poorly understood. In this study, we demonstrate that atypical PKC (aPKC) regulates Smo phosphorylation and basolateral accumulation in Drosophila wings. Inactivation of aPKC by either RNAi or a mutation inhibits Smo basolateral accumulation and attenuates Hh target gene expression. In contrast, expression of constitutively active aPKC elevates basolateral accumulation of Smo and promotes Hh signaling. The aPKC-mediated phosphorylation of Smo at Ser680 promotes Ser683 phosphorylation by casein kinase 1 (CK1), and these phosphorylation events elevate Smo activity in vivo. Moreover, aPKC has an additional positive role in Hh signaling by regulating the activity of Cubitus interruptus (Ci) through phosphorylation of the Zn finger DNA-binding domain. Finally, the expression of aPKC is up-regulated by Hh signaling in a Ci-dependent manner. Our findings indicate a direct involvement of aPKC in Hh signaling beyond its role in cell polarity.
Collapse
|
18
|
Transcriptional regulation of graded Hedgehog signaling. Semin Cell Dev Biol 2014; 33:73-80. [PMID: 24862856 DOI: 10.1016/j.semcdb.2014.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 02/06/2023]
Abstract
The Hedgehog (Hh) pathway plays conserved roles in regulating a diverse spectrum of developmental processes. In some developmental contexts, a gradient of Hh protein specifies multiple cell types in a dose-dependent fashion, thereby acting as a morphogen. Hh signaling ultimately acts on the transcriptional level through GLI proteins. In the presence of Hh signaling full length GLI proteins act as transcriptional activators of target genes. Conversely, in the absence of Hh, GLI proteins act as transcriptional repressors. This review will highlight mechanisms contributing to how graded Hh signaling might translate to differential GLI activity and be interpreted into distinct transcriptional responses.
Collapse
|
19
|
Dvorkin D, Biehs B, Kechris K. A graphical model method for integrating multiple sources of genome-scale data. Stat Appl Genet Mol Biol 2014; 12:469-87. [PMID: 23934610 DOI: 10.1515/sagmb-2012-0051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Making effective use of multiple data sources is a major challenge in modern bioinformatics. Genome-wide data such as measures of transcription factor binding, gene expression, and sequence conservation, which are used to identify binding regions and genes that are important to major biological processes such as development and disease, can be difficult to use together due to the different biological meanings and statistical distributions of the heterogeneous data types, but each can provide valuable information for understanding the processes under study. Here we present methods for integrating multiple data sources to gain a more complete picture of gene regulation and expression. Our goal is to identify genes and cis-regulatory regions which play specific biological roles. We describe a graphical mixture model approach for data integration, examine the effect of using different model topologies, and discuss methods for evaluating the effectiveness of the models. Model fitting is computationally efficient and produces results which have clear biological and statistical interpretations. The Hedgehog and Dorsal signaling pathways in Drosophila, which are critical in embryonic development, are used as examples.
Collapse
Affiliation(s)
- Daniel Dvorkin
- Computational Bioscience Program, University of Colorado School of Medicine, 12801 E. 17th Ave., Aurora, CO 80045–0511, USA
| | | | | |
Collapse
|
20
|
Ramos AI, Barolo S. Low-affinity transcription factor binding sites shape morphogen responses and enhancer evolution. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130018. [PMID: 24218631 DOI: 10.1098/rstb.2013.0018] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the era of functional genomics, the role of transcription factor (TF)-DNA binding affinity is of increasing interest: for example, it has recently been proposed that low-affinity genomic binding events, though frequent, are functionally irrelevant. Here, we investigate the role of binding site affinity in the transcriptional interpretation of Hedgehog (Hh) morphogen gradients. We noted that enhancers of several Hh-responsive Drosophila genes have low predicted affinity for Ci, the Gli family TF that transduces Hh signalling in the fly. Contrary to our initial hypothesis, improving the affinity of Ci/Gli sites in enhancers of dpp, wingless and stripe, by transplanting optimal sites from the patched gene, did not result in ectopic responses to Hh signalling. Instead, we found that these enhancers require low-affinity binding sites for normal activation in regions of relatively low signalling. When Ci/Gli sites in these enhancers were altered to improve their binding affinity, we observed patterning defects in the transcriptional response that are consistent with a switch from Ci-mediated activation to Ci-mediated repression. Synthetic transgenic reporters containing isolated Ci/Gli sites confirmed this finding in imaginal discs. We propose that the requirement for gene activation by Ci in the regions of low-to-moderate Hh signalling results in evolutionary pressure favouring weak binding sites in enhancers of certain Hh target genes.
Collapse
Affiliation(s)
- Andrea I Ramos
- Department of Cell and Developmental Biology and Program in Cellular and Molecular Biology, University of Michigan Medical School, , Ann Arbor, MI 48109, USA
| | | |
Collapse
|
21
|
Mitchell NC, Lin JI, Zaytseva O, Cranna N, Lee A, Quinn LM. The Ecdysone receptor constrains wingless expression to pattern cell cycle across the Drosophila wing margin in a Cyclin B-dependent manner. BMC DEVELOPMENTAL BIOLOGY 2013; 13:28. [PMID: 23848468 PMCID: PMC3720226 DOI: 10.1186/1471-213x-13-28] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/10/2013] [Indexed: 01/26/2023]
Abstract
Background Ecdysone triggers transcriptional changes via the ecdysone receptor (EcR) to coordinate developmental programs of apoptosis, cell cycle and differentiation. Data suggests EcR affects cell cycle gene expression indirectly and here we identify Wingless as an intermediary factor linking EcR to cell cycle. Results We demonstrate EcR patterns cell cycle across the presumptive Drosophila wing margin by constraining wg transcription to modulate CycB expression, but not the previously identified Wg-targets dMyc or Stg. Furthermore co-knockdown of Wg restores CycB patterning in EcR knockdown clones. Wg is not a direct target of EcR, rather we demonstrate that repression of Wg by EcR is likely mediated by direct interaction between the EcR-responsive zinc finger transcription factor Crol and the wg promoter. Conclusions Thus we elucidate a critical mechanism potentially connecting ecdysone with patterning signals to ensure correct timing of cell cycle exit and differentiation during margin wing development.
Collapse
Affiliation(s)
- Naomi C Mitchell
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
22
|
The Tbx20 homolog Midline represses wingless in conjunction with Groucho during the maintenance of segment polarity. Dev Biol 2012; 369:319-29. [PMID: 22814213 DOI: 10.1016/j.ydbio.2012.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/07/2012] [Accepted: 07/09/2012] [Indexed: 11/20/2022]
Abstract
The regulation of the segment polarity gene wingless is essential for the correct patterning of the Drosophila ectoderm. We have previously shown that the asymmetric activation of wingless downstream of Hedghog-signaling depends on the T-box transcription factors, midline and H15. Hedgehog activates wingless anterior to the Hedgehog domain. midline/H15 are responsible in part for repressing wingless in cells posterior to the Hedgehog expressing cells. Here, we show that Midline binds the Groucho co-repressor directly via the engrailed homology-1 domain and requires an intact engrailed-homology-1 domain to repress wingless. In contrast, the regulation of Serrate, a second target of midline repression, is not dependent on the engrailed-homology-1 domain. Furthermore, we identify a midline responsive region of the wingless cis-regulatory region and show that Midline binds to sequences within this region. Mutating these sequences in transgenic reporter constructs results in ectopic reporter expression in the midline-expression domain, consistent with wingless being a direct target of Midline repression.
Collapse
|
23
|
Diniz MG, Galvão CF, Macedo PS, Gomes CC, Gomez RS. Evidence of loss of heterozygosity of the PTCH gene in orthokeratinized odontogenic cyst. J Oral Pathol Med 2010; 40:277-80. [PMID: 21138481 DOI: 10.1111/j.1600-0714.2010.00977.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The orthokeratinized odontogenic cyst (OOC) is an odontogenic cyst of unknown etiology. Clinical, histological, and biological differences are reported between keratocystic odontogenic tumor (KOT) and OOC. PTCH is a tumor suppressor gene related to sonic hedgehog (SHH) pathway important in embryological development. Considering that alterations in this pathway have been described in sporadic and nevoid basal cell syndrome-associated KOT, we tested the hypothesis that OOC is also associated with loss of heterozygosity (LOH) of the PTCH gene. Seven samples of OOC and seven of KOT were included in the study. D9S287, D9S196, and D9S127 microsatellite markers located in the region of PTCH gene, at chromosome 9q, were investigated for LOH. There was loss in at least one locus in 5/7 KOT and in 4/7 OOC samples. The present finding demonstrates that, despite the existence of clinical, morphological, immunohistochemical, and biological behavior differences between OOC and KOT, both harbor similar genetic alterations at 9q.
Collapse
Affiliation(s)
- Marina Gonçalves Diniz
- Department of Oral Surgery and Pathology, Universidade Federal de Minas Gerais, Belo Horizonte-MG, Minas Gerais, CEP, Brazil
| | | | | | | | | |
Collapse
|
24
|
Biehs B, Kechris K, Liu S, Kornberg TB. Hedgehog targets in the Drosophila embryo and the mechanisms that generate tissue-specific outputs of Hedgehog signaling. Development 2010; 137:3887-98. [PMID: 20978080 DOI: 10.1242/dev.055871] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Paracrine Hedgehog (Hh) signaling regulates growth and patterning in many Drosophila organs. We mapped chromatin binding sites for Cubitus interruptus (Ci), the transcription factor that mediates outputs of Hh signal transduction, and we analyzed transcription profiles of control and mutant embryos to identify genes that are regulated by Hh. Putative targets that we identified included several Hh pathway components, mostly previously identified targets, and many targets that are novel. Every Hh target we analyzed that is not a pathway component appeared to be regulated by Hh in a tissue-specific manner; analysis of expression patterns of pathway components and target genes provided evidence of autocrine Hh signaling in the optic primordium of the embryo. We present evidence that tissue specificity of Hh targets depends on transcription factors that are Hh-independent, suggesting that `pre-patterns' of transcription factors partner with Ci to make Hh-dependent gene expression position specific.
Collapse
Affiliation(s)
- Brian Biehs
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-2711, USA
| | | | | | | |
Collapse
|
25
|
Interaction between Ataxin-2 Binding Protein 1 and Cubitus-interruptus during wing development in Drosophila. Dev Biol 2010; 341:389-99. [PMID: 20226779 DOI: 10.1016/j.ydbio.2010.02.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 11/21/2022]
Abstract
Animal growth and development is dependent on reiterative use of key signaling pathways such as Hedgehog (Hh) pathway. It is widely believed that Cubitus-interruptus (Ci) mediates all functions of Hh pathway. Here we report that CG32062, the Drosophila homologue of Ataxin-2 Binding Protein 1 (dA2BP1), functions as a cofactor of Ci to specify intervein region between L3 and L4 veins of the adult wing. Specifically, Ci-mediated transactivation of knot/collier (kn) in this region of the developing wing imaginal disc is dependent on dA2BP1 function. Protein interaction studies and chromatin-immunoprecipiation experiments suggest that Ci helps dA2BP1 to bind kn promoter, which in turn may help Ci to activate kn expression. These results suggest a mechanism by which Ci may activate targets such as kn, which do not have classical Ci/Gli-binding sites.
Collapse
|
26
|
Farzan SF, Stegman MA, Ogden SK, Ascano M, Black KE, Tacchelly O, Robbins DJ. A quantification of pathway components supports a novel model of Hedgehog signal transduction. J Biol Chem 2009; 284:28874-84. [PMID: 19717563 PMCID: PMC2781433 DOI: 10.1074/jbc.m109.041608] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/25/2009] [Indexed: 11/06/2022] Open
Abstract
The secreted protein Hedgehog (Hh) plays a critical instructional role during metazoan development. In Drosophila, Hh signaling is interpreted by a set of conserved, downstream effectors that differentially localize and interact to regulate the stability and activity of the transcription factor Cubitus interruptus. Two essential models that integrate genetic, cell biological, and biochemical information have been proposed to explain how these signaling components relate to one another within the cellular context. As the molar ratios of the signaling effectors required in each of these models are quite different, quantitating the cellular ratio of pathway components could distinguish these two models. Here, we address this important question using a set of purified protein standards to perform a quantitative analysis of Drosophila cell lysates for each downstream pathway component. We determine each component's steady-state concentration within a given cell, demonstrate the molar ratio of Hh signaling effectors differs more than two orders of magnitude and that this ratio is conserved in vivo. We find that the G-protein-coupled transmembrane protein Smoothened, an activating component, is present in limiting amounts, while a negative pathway regulator, Suppressor of Fused, is present in vast molar excess. Interestingly, despite large differences in the steady-state ratio, all downstream signaling components exist in an equimolar membrane-associated complex. We use these quantitative results to re-evaluate the current models of Hh signaling and now propose a novel model of signaling that accounts for the stoichiometric differences observed between various Hh pathway components.
Collapse
Affiliation(s)
- Shohreh F. Farzan
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - Melanie A. Stegman
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - Stacey K. Ogden
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - Manuel Ascano
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - Kendall E. Black
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - Ofelia Tacchelly
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - David J. Robbins
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
- the Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03756
| |
Collapse
|
27
|
Guruharsha KG, Ruiz-Gomez M, Ranganath HA, Siddharthan R, VijayRaghavan K. The complex spatio-temporal regulation of the Drosophila myoblast attractant gene duf/kirre. PLoS One 2009; 4:e6960. [PMID: 19742310 PMCID: PMC2734059 DOI: 10.1371/journal.pone.0006960] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/09/2009] [Indexed: 12/18/2022] Open
Abstract
A key early player in the regulation of myoblast fusion is the gene dumbfounded (duf, also known as kirre). Duf must be expressed, and function, in founder cells (FCs). A fixed number of FCs are chosen from a pool of equivalent myoblasts and serve to attract fusion-competent myoblasts (FCMs) to fuse with them to form a multinucleate muscle-fibre. The spatial and temporal regulation of duf expression and function are important and play a deciding role in choice of fibre number, location and perhaps size. We have used a combination of bioinformatics and functional enhancer deletion approaches to understand the regulation of duf. By transgenic enhancer-reporter deletion analysis of the duf regulatory region, we found that several distinct enhancer modules regulate duf expression in specific muscle founders of the embryo and the adult. In addition to existing bioinformatics tools, we used a new program for analysis of regulatory sequence, PhyloGibbs-MP, whose development was largely motivated by the requirements of this work. The results complement our deletion analysis by identifying transcription factors whose predicted binding regions match with our deletion constructs. Experimental evidence for the relevance of some of these TF binding sites comes from available ChIP-on-chip from the literature, and from our analysis of localization of myogenic transcription factors with duf enhancer reporter gene expression. Our results demonstrate the complex regulation in each founder cell of a gene that is expressed in all founder cells. They provide evidence for transcriptional control—both activation and repression—as an important player in the regulation of myoblast fusion. The set of enhancer constructs generated will be valuable in identifying novel trans-acting factor-binding sites and chromatin regulation during myoblast fusion in Drosophila. Our results and the bioinformatics tools developed provide a basis for the study of the transcriptional regulation of other complex genes.
Collapse
Affiliation(s)
- K. G. Guruharsha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysore, India
| | - Mar Ruiz-Gomez
- Centro de Biologia Molecular Severo Ochoa, CSIC and UAM, Cantoblanco, Madrid, Spain
| | - H. A. Ranganath
- Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysore, India
| | - Rahul Siddharthan
- Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, India
| | - K. VijayRaghavan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- * E-mail:
| |
Collapse
|
28
|
Morrow D, Cullen JP, Liu W, Guha S, Sweeney C, Birney YA, Collins N, Walls D, Redmond EM, Cahill PA. Sonic Hedgehog induces Notch target gene expression in vascular smooth muscle cells via VEGF-A. Arterioscler Thromb Vasc Biol 2009; 29:1112-8. [PMID: 19407245 PMCID: PMC2794048 DOI: 10.1161/atvbaha.109.186890] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Notch, VEGF, and components of the Hedgehog (Hh) signaling pathway have been implicated in vascular morphogenesis. The role of Notch in mediating hedgehog control of adult vascular smooth muscle cell (SMC) growth and survival remains unexplored. METHODS AND RESULTS In cultured SMCs, activation of Hh signaling with recombinant rShh (3.5 mug/mL) or plasmid encoded Shh increased Ptc1 expression, enhanced SMC growth and survival and promoted Hairy-related transcription factor (Hrt) expression while concomitantly increasing VEGF-A levels. These effects were significantly reversed after Hh inhibition with cyclopamine. Shh-induced stimulation of Hrt-3 mRNA and SMC growth and survival was attenuated after inhibition of Notch-mediated CBF-1/RBP-Jk-dependent signaling with RPMS-1 while siRNA knockdown of Hrt-3 inhibited SMC growth and survival. Recombinant VEGF-A increased Hrt-3 mRNA levels while siRNA knockdown abolished rShh stimulated VEGF-A expression while concomitantly inhibiting Shh-induced increases in Hrt-3 mRNA levels, proliferating cell nuclear antigen (PCNA), and Notch 1 IC expression, respectively. Hedgehog components were expressed within intimal SMCs of murine carotid arteries after vascular injury concomitant with a significant increase in mRNA for Ptc1, Gli(2), VEGF-A, Notch 1, and Hrts. CONCLUSIONS Hedgehog promotes a coordinate regulation of Notch target genes in adult SMCs via VEGF-A.
Collapse
Affiliation(s)
- David Morrow
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - John P. Cullen
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Weimin Liu
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shaunta Guha
- Vascular Health Research Centre, Faculty of Science and Health, Dublin City University, Dublin 9, Ireland
| | - Catherine Sweeney
- Vascular Health Research Centre, Faculty of Science and Health, Dublin City University, Dublin 9, Ireland
| | - Yvonne A. Birney
- Vascular Health Research Centre, Faculty of Science and Health, Dublin City University, Dublin 9, Ireland
| | - Nora Collins
- Vascular Health Research Centre, Faculty of Science and Health, Dublin City University, Dublin 9, Ireland
| | - Dermot Walls
- School of Biotechnology and the National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Eileen M. Redmond
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Paul A. Cahill
- Vascular Health Research Centre, Faculty of Science and Health, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
29
|
Gonzalez A, Chaouiya C, Thieffry D. Logical modelling of the role of the Hh pathway in the patterning of the Drosophila wing disc. Bioinformatics 2008; 24:i234-40. [DOI: 10.1093/bioinformatics/btn266] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Li X, Deng W, Lobo-Ruppert SM, Ruppert JM. Gli1 acts through Snail and E-cadherin to promote nuclear signaling by beta-catenin. Oncogene 2007; 26:4489-98. [PMID: 17297467 PMCID: PMC2233601 DOI: 10.1038/sj.onc.1210241] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2006] [Revised: 10/23/2006] [Accepted: 11/15/2006] [Indexed: 02/02/2023]
Abstract
The Hedgehog pathway transcription factor Gli1 induces transformation of epithelial cells via induction of Snail, a repressor of E-cadherin (E-cad). E-cad is normally complexed with beta-catenin at the cell membrane. Loss of E-cad during developmental epithelial-mesenchymal transitions can switch beta-catenin from its role at adherens junctions to its role in nuclear transcription. During tumorigenesis it is unclear which pathways trigger this switch. In the current study, gain- and loss-of-function approaches identified E-cad as a selective inhibitor of transformation by Gli1, and Snail knockdown was rescued by downregulation of E-cad. Gli1 induced relocalization of beta-catenin from the cell membrane to the nucleus. The ability of wild-type or mutant alleles of E-cad to modulate transformation by Gli1 correlated with their ability to regulate localization of beta-catenin. Inhibition of Wnt-beta-catenin signaling by dominant negative Tcf4 selectively blocked in vitro transformation by Gli1. In Gli1-transgenic mice, infiltrating skin tumor cells expressed active, unphosphorylated beta-catenin. Our studies identify E-cad as a selective suppressor of transformation by Gli1 and point to the Sonic Hedgehog-Gli1 pathway as a key regulator of the beta-catenin switch in epithelial cells and cancers.
Collapse
Affiliation(s)
- X Li
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - W Deng
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - SM Lobo-Ruppert
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - JM Ruppert
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
31
|
Ceriani MF. Reporter assays. Methods Mol Biol 2007; 362:455-63. [PMID: 17417034 DOI: 10.1007/978-1-59745-257-1_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Transcriptional feedback loops are at the core of the molecular clockworks. As single clock genes were cloned it was compelling to develop an assay that allowed simple and direct functional testing of putative activators or repressors of transcription. This chapter includes a general description and guidelines to carry out transcriptional assays in transiently transfected Schneider's cells.
Collapse
Affiliation(s)
- M Fernanda Ceriani
- Department Behavioral Genetics, Fundación Instituto Leloir, Buenos Aires, Argentina
| |
Collapse
|
32
|
Zhou H, Kim S, Ishii S, Boyer TG. Mediator modulates Gli3-dependent Sonic hedgehog signaling. Mol Cell Biol 2006; 26:8667-82. [PMID: 17000779 PMCID: PMC1636813 DOI: 10.1128/mcb.00443-06] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The physiological and pathological manifestations of Sonic hedgehog (Shh) signaling arise from the specification of unique transcriptional programs dependent upon key nuclear effectors of the Ci/Gli family of transcription factors. However, the underlying mechanism by which Gli proteins regulate target gene transcription in the nucleus remains poorly understood. Here, we identify and characterize a physical and functional interaction between Gli3 and the MED12 subunit within the RNA polymerase II transcriptional Mediator. We show that Gli3 binds to MED12 and intact Mediator both in vitro and in vivo through a Gli3 transactivation domain (MBD; MED12/Mediator-binding domain) whose activity derives from concerted functional interactions with both Mediator and the histone acetyltransferase CBP. Analysis of MBD truncation mutants revealed an excellent correlation between the in vivo activation strength of an MBD derivative and its ability to bind MED12 and intact Mediator in vitro, indicative of a critical functional interaction between the Gli3 MBD and the MED12 interface in Mediator. Disruption of the Gli3-MED12 interaction through dominant-negative interference inhibited, while RNA interference-mediated MED12 depletion enhanced, both MBD transactivation function and Gli3 target gene induction in response to Shh signaling. We propose that activated Gli3 physically targets the MED12 interface within Mediator in order to functionally reverse Mediator-dependent suppression of Shh target gene transcription. These findings thus link MED12 to the modulation of Gli3-dependent Shh signaling and further implicate Mediator in a broad range of developmental and pathological processes driven by Shh signal transduction.
Collapse
Affiliation(s)
- Haiying Zhou
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA
| | | | | | | |
Collapse
|
33
|
Zhou Q, Apionishev S, Kalderon D. The contributions of protein kinase A and smoothened phosphorylation to hedgehog signal transduction in Drosophila melanogaster. Genetics 2006; 173:2049-62. [PMID: 16783001 PMCID: PMC1569721 DOI: 10.1534/genetics.106.061036] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Protein kinase A (PKA) silences the Hedgehog (Hh) pathway in Drosophila in the absence of ligand by phosphorylating the pathway's transcriptional effector, Cubitus interruptus (Ci). Smoothened (Smo) is essential for Hh signal transduction but loses activity if three specific PKA sites or adjacent PKA-primed casein kinase 1 (CK1) sites are replaced by alanine residues. Conversely, Smo becomes constitutively active if acidic residues replace those phosphorylation sites. These observations suggest an essential positive role for PKA in responding to Hh. However, direct manipulation of PKA activity has not provided strong evidence for positive effects of PKA, with the notable exception of a robust induction of Hh target genes by PKA hyperactivity in embryos. Here we show that the latter response is mediated principally by regulatory elements other than Ci binding sites and not by altered Smo phosphorylation. Also, the failure of PKA hyperactivity to induce Hh target genes strongly through Smo phosphorylation cannot be attributed to the coincident phosphorylation of PKA sites on Ci. Finally, we show that Smo containing acidic residues at PKA and CK1 sites can be stimulated further by Hh and acts through Hh pathways that both stabilize Ci-155 and use Fused kinase activity to increase the specific activity of Ci-155.
Collapse
Affiliation(s)
- Qianhe Zhou
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
34
|
Pereira PS, Pinho S, Johnson K, Couso JP, Casares F. A 3' cis-regulatory region controls wingless expression in the Drosophila eye and leg primordia. Dev Dyn 2006; 235:225-34. [PMID: 16261625 DOI: 10.1002/dvdy.20606] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The precise regulation of wingless (wg) expression in the Drosophila eye disc is key to control the anteroposterior and dorsoventral patterning of this disc. Here, we identify an eye disc-specific wg cis-regulatory element that functions as a regulatory rheostat. Pannier (Pnr), a transcription factor previously proposed to act as an upstream activator of wg, is sufficient to activate the eye disc enhancer but required for wg expression only in the peripodial epithelium of the disc. We propose that this regulation of wg by Pnr appeared associated to the development of the peripodial epithelium in higher dipterans and was added to an existing mechanism regulating the deployment of wingless in the dorsal region of the eye primordium. In addition, our analysis identifies a separate ventral disc enhancer that lies adjacent to the eye-specific one, and thus altogether, they define a 1-kb genomic region where disc-specific enhancers of the wg gene are located.
Collapse
Affiliation(s)
- P S Pereira
- IBMC, Universidade do Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
35
|
Abstract
Members of the Wnt gene family play important roles in the regulation of a number of basic developmental processes. Because Wnt is such a potent morphogen, its expression must be controlled tightly and precisely. While many review papers focused on Wnt signaling downstream of the receptor, this review addresses regulations of Wnt itself on several levels, including the transcriptional level, RNA splicing, the post-transcriptional level, the translational level, and the post-translational level. It is these multiple, precise and tight regulations that guarantee that Wnts function correctly both temporally and spatially.
Collapse
Affiliation(s)
- Qi Tian
- Department of Pathology, Oregon Health Sciences University, School of Medicine, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
36
|
Hersh BM, Carroll SB. Direct regulation of knot gene expression by Ultrabithorax and the evolution of cis-regulatory elements in Drosophila. Development 2005; 132:1567-77. [PMID: 15753212 DOI: 10.1242/dev.01737] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulation of development by Hox proteins is important in the evolution of animal morphology, but how the regulatory sequences of Hox-regulated target genes function and evolve is unclear. To understand the regulatory organization and evolution of a Hox target gene, we have identified a wing-specific cis-regulatory element controlling the knot gene, which is expressed in the developing Drosophila wing but not the haltere. This regulatory element contains a single binding site that is crucial for activation by the transcription factor Cubitus interruptus (Ci), and a cluster of binding sites for repression by the Hox protein Ultrabithorax (UBX). The negative and positive control regions are physically separable, demonstrating that UBX does not repress by competing for occupancy of Ci-binding sites. Although knot expression is conserved among Drosophilaspecies, this cluster of UBX binding sites is not. We isolated the knot wing cis-regulatory element from D. pseudoobscura,which contains a cluster of UBX-binding sites that is not homologous to the functionally defined D. melanogaster cluster. It is, however,homologous to a second D. melanogaster region containing a cluster of UBX sites that can also function as a repressor element. Thus, the knot regulatory region in D. melanogaster has two apparently functionally redundant blocks of sequences for repression by UBX, both of which are widely separated from activator sequences. This redundancy suggests that the complete evolutionary unit of regulatory control is larger than the minimal experimentally defined control element. The span of regulatory sequences upon which selection acts may, in general, be more expansive and less modular than functional studies of these elements have previously indicated.
Collapse
Affiliation(s)
- Bradley M Hersh
- University of Wisconsin-Madison, Howard Hughes Medical Institute, 1525 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
37
|
Zhang C, Williams EH, Guo Y, Lum L, Beachy PA. Extensive phosphorylation of Smoothened in Hedgehog pathway activation. Proc Natl Acad Sci U S A 2004; 101:17900-7. [PMID: 15598741 PMCID: PMC535705 DOI: 10.1073/pnas.0408093101] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transmembrane protein Smoothened (Smo) is activated in response to the extracellular protein signal, Hedgehog (Hh), and transmits this state of pathway activity into the cell. Previous studies in Drosophila have correlated pathway activation with Smo accumulation and increased phosphorylation. Using immunopurification and mass spectrometry, we identify here 26 serine/threonine residues within the Smo C-terminal cytoplasmic tail that are phosphorylated in Hh-stimulated cells. By systematically substituting alanine or glutamic acid to block or simulate phosphorylation, we provide evidence for a functional role of collective phosphorylation of a subset of phosphoresidues in pathway activation. This role is indicated by the ability of altered Smo proteins to produce changes in transcription of Hh-responsive genes in vivo and in cultured cells. These altered Smo proteins also affect biochemical indicators of pathway activity, such as Smo accumulation and phosphorylation of other pathway components. The prevalence and arrangement of phosphoresidues within the Smo cytoplasmic tail at recognition sites for cAMP-dependent protein kinase and casein kinase 1 suggest a role for these kinases in Smo phosphorylation, and such a role is supported by the effects of manipulating kinase activities in cultured cells. Our studies confirm and extend previous studies showing a positive effect for cAMP-dependent protein kinase and uncover a positive role for casein kinase 1alpha in Hh pathway activation.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
38
|
Soustelle L, Jacques C, Altenhein B, Technau GM, Volk T, Giangrande A. Terminal tendon cell differentiation requires the glide/gcm complex. Development 2004; 131:4521-32. [PMID: 15342477 DOI: 10.1242/dev.01290] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Locomotion relies on stable attachment of muscle fibres to their target sites, a process that allows for muscle contraction to generate movement. Here, we show that glide/gcm and glide2/gcm2, the fly glial cell determinants, are expressed in a subpopulation of embryonic tendon cells and required for their terminal differentiation. By using loss-of-function approaches, we show that in the absence of both genes, muscle attachment to tendon cells is altered, even though the molecular cascade induced by stripe, the tendon cell determinant, is normal. Moreover, we show that glide/gcm activates a new tendon cell gene independently of stripe. Finally, we show that segment polarity genes control the epidermal expression of glide/gcm and determine, within the segment,whether it induces glial or tendon cell-specific markers. Thus, under the control of positional cues, glide/gcm triggers a new molecular pathway involved in terminal tendon cell differentiation, which allows the establishment of functional muscle attachment sites and locomotion.
Collapse
Affiliation(s)
- Laurent Soustelle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 10142, 67404 Illkirch Cedex, C.U. de Strasbourg, France
| | | | | | | | | | | |
Collapse
|
39
|
Kwon C, Hays R, Fetting J, Orenic TV. Opposing inputs by Hedgehog and Brinker define a stripe of hairy expression in the Drosophila leg imaginal disc. Development 2004; 131:2681-92. [PMID: 15128656 DOI: 10.1242/dev.01127] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The sensory organs of the Drosophila adult leg provide a simple model system with which to investigate pattern-forming mechanisms. In the leg, a group of small mechanosensory bristles is organized into a series of longitudinal rows, a pattern that depends on periodic expression of the hairy gene (h) and the proneural genes achaete (ac) and scute (sc). Expression of ac in longitudinal stripes in prepupal leg discs defines the positions of the mechanosensory bristle rows. The ac/sc expression domains are delimited by the Hairy repressor, which is itself periodically expressed. In order to gain insight into the molecular mechanisms involved in leg sensory organ patterning, we have analyzed a Hedgehog (Hh)- and Decapentaplegic (Dpp)-responsive enhancer of the h gene, which directs expression of h in a narrow stripe in the dorsal leg imaginal disc (the D-h stripe). Our studies suggest that the domain of D-h expression is defined by the overlap of Hh and high-level Dpp signaling. We find that the D-h enhancer consists of a Hh-responsive activation element (HHRE) and a repression element (REPE), which responds to the transcriptional repressor Brinker (Brk). The HHRE directs expression of h in a broad stripe along the anteroposterior (AP) compartment boundary. HHRE-directed expression is refined along the AP and dorsoventral axes by Brk1, acting through the REPE. In D-h-expressing cells, Dpp signaling is required to block Brk-mediated repression. This study elucidates a molecular mechanism for integration of the Hh and Dpp signals, and identifies a novel function for Brk as a repressor of Hh-target genes.
Collapse
Affiliation(s)
- Chulan Kwon
- University of Illinois at Chicago, Department of Biological Sciences, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The Hedgehog (Hh) signal transduction pathway plays critical instructional roles during development. Activating mutations in human Hh signaling components predispose to a variety of tumor types, and have been observed in sporadic tumors occurring in a wide range of organs. Multiple insights into the regulation of Hh signaling have been achieved through studies using Drosophila melanogaster as a model organism. In Drosophila, regulation of the transcription factor Cubitus interruptus (Ci) is the ultimate target of the Hh pathway. Ci is regulated through communication of the membrane proteins Patched (Ptc) and Smoothened (Smo) to the intracellular Hedgehog Signaling Complex (HSC) in response to a graded concentration of Hh ligand. The HSC consists of the Kinesin Related Protein, Costal2 (Cos2), the serine-threonine protein kinase. Fused (Fu) and Ci. In the absence of Hh stimulation, the HSC is involved in processing of Ci to a truncated repressor protein. In response to Hh binding to Ptc, processing of Ci is blocked to allow for accumulation of full-length Ci activator protein(s). Differential concentrations of Hh ligand stimulate production of Ci transcriptional activators of varying strength, which facilitate activation of distinct subsets of target genes. The mechanism(s) by which Ptc and Smo communicate with the HSC in response to differential ligand concentrations to regulate Ci function are not yet fully elucidated. Here, we review what is known about regulation of individual Hh signaling components, concentrating on the mechanisms by which the Hh signal is propagated through Smo to the HSC.
Collapse
Affiliation(s)
- Stacey K. Ogden
- Department of Pharmacology and Toxicology, Dartmouth Medical School, 7650 Remsen Hall, Hanover, NH 03755-3835, USA
| | - Manuel Ascano
- Department of Pharmacology and Toxicology, Dartmouth Medical School, 7650 Remsen Hall, Hanover, NH 03755-3835, USA
- Graduate Program, Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA
| | - Melanie A. Stegman
- Department of Pharmacology and Toxicology, Dartmouth Medical School, 7650 Remsen Hall, Hanover, NH 03755-3835, USA
- Graduate Program, Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA
| | - David J. Robbins
- Department of Pharmacology and Toxicology, Dartmouth Medical School, 7650 Remsen Hall, Hanover, NH 03755-3835, USA
- Corresponding author. Tel.: +1-603-650-1716; fax: +1-603-650-1129. (D.J. Robbins)
| |
Collapse
|
41
|
Affiliation(s)
- Martyn T Cobourne
- Department of Craniofacial Development and Orthodontics, GKT Dental Institute, King's College London, United Kingdom
| | | |
Collapse
|
42
|
Von Dassow G, Odell GM. Design and constraints of the Drosophila segment polarity module: robust spatial patterning emerges from intertwined cell state switches. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 294:179-215. [PMID: 12362429 DOI: 10.1002/jez.10144] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Drosophila segment polarity genes constitute the last tier in the segmentation cascade; their job is to maintain the boundaries between parasegments and provide positional "read-outs" within each parasegment for the entire developmental history of the animal. These genes constitute a relatively well-defined network with a relatively well-understood patterning task. In a previous publication (von Dassow et al. 2000. Nature 406:188-192) we showed that a computer model predicts the segment polarity network to be a robust boundary-making device. Here we elaborate those findings. First, we explore the constraints among parameters that govern the network model. Second, we test architectural variants of the core network, and show that the network tolerates a wide variety of adjustments in design. Third, we evaluate several topologically identical models that incorporate more or less molecular detail, finding that more-complex models perform noticeably better than simplified ones. Fourth, we discuss two instances in which the failure of the network model to behave in a life-like fashion highlights mechanistic details that need further experimental investigation. We conclude with an explanation of how the segment polarity network can be understood as an interwoven conspiracy of simple dynamical elements, several bistable switches and a homeostat. The robustness with which the network as a whole maintains a spatial regime of stable cell state emerges from generic dynamical properties of these simple elements.
Collapse
Affiliation(s)
- George Von Dassow
- Department of Zoology, University of Washington, Seattle, Washington 98105, USA.
| | | |
Collapse
|
43
|
Abstract
Secreted proteins of the Hedgehog (Hh) family direct the development of diverse organs and tissues of vertebrates and invertebrates. Gli-type zinc finger proteins function as transcriptional mediators of the Hh signaling cascade and were implicated both in the activation and repression of Hh target genes. The differential activity of Gli-type zinc finger proteins is regulated on the level of proteolytic processing and subcellular localization as a complex concert of Hh-responsive, intracellular determinants. Here, we provide a survey of recent studies on the characterization of molecular mechanisms involved in the interpretation of Hh signals by Gli-type zinc finger proteins.
Collapse
Affiliation(s)
- Katja Koebernick
- Georg-August-Universität Göttingen, Institute of Biochemistry and Molecular Cell Biology, Humboldtallee 23, 37073 Göttingen, Germany
| | | |
Collapse
|
44
|
Ascano M, Nybakken KE, Sosinski J, Stegman MA, Robbins DJ. The carboxyl-terminal domain of the protein kinase fused can function as a dominant inhibitor of hedgehog signaling. Mol Cell Biol 2002; 22:1555-66. [PMID: 11839821 PMCID: PMC134684 DOI: 10.1128/mcb.22.5.1555-1566.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The secreted protein hedgehog (Hh) plays a critical role in the developmental patterning of multiple tissues. In Drosophila melanogaster, a cytosolic multiprotein signaling complex appears necessary for Hh signaling. Genes that encode components of this Hh signaling complex (HSC) were originally identified and characterized based on their genetic interactions with hh, as well as with each other. It is only in recent years that the mechanistic functions of these components have begun to be unraveled. Here, we have investigated the relationship between two components of the HSC, the serine/threonine protein kinase Fused (Fu) and the kinesin-related protein Costal2 (Cos2). We have reconstituted a Fu/Cos2 complex in vitro and shown that Fu is able to directly associate with Cos2, forming a complex whose molecular size is similar to a previously described complex found in Drosophila cell extracts. We have also determined that the carboxyl-terminal domain of Fu is necessary and sufficient for the direct binding of Fu to Cos2. To validate the physiological relevance of this interaction, we overexpressed the carboxyl-terminal domain of Fu in wild-type flies. These flies exhibit a phenotype similar to that seen in fu mutants and consistent with an hh loss-of-function phenotype. We conclude that the carboxyl-terminal domain of Fu can function in a dominant negative manner, by preventing endogenous Fu from binding to Cos2. Thus, we provide the first evidence that Hh signaling can be compromised by targeting the HSC for disruption.
Collapse
Affiliation(s)
- Manuel Ascano
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA
| | | | | | | | | |
Collapse
|
45
|
Gustafsson MK, Pan H, Pinney DF, Liu Y, Lewandowski A, Epstein DJ, Emerson CP. Myf5 is a direct target of long-range Shh signaling and Gli regulation for muscle specification. Genes Dev 2002; 16:114-26. [PMID: 11782449 PMCID: PMC155306 DOI: 10.1101/gad.940702] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sonic hedgehog (Shh) is a secreted signaling molecule for tissue patterning and stem cell specification in vertebrate embryos. Shh mediates both long-range and short-range signaling responses in embryonic tissues through the activation and repression of target genes by its Gli transcription factor effectors. Despite the well-established functions of Shh signaling in development and human disease, developmental target genes of Gli regulation are virtually unknown. In this study, we investigate the role of Shh signaling in the control of Myf5, a skeletal muscle regulatory gene for specification of muscle stem cells in vertebrate embryos. In previous genetic studies, we showed that Shh is required for Myf5 expression in the specification of dorsal somite, epaxial muscle progenitors. However, these studies did not distinguish whether Myf5 is a direct target of Gli regulation through long-range Shh signaling, or alternatively, whether Myf5 regulation is a secondary response to Shh signaling. To address this question, we have used transgenic analysis with lacZ reporter genes to characterize an Myf5 transcription enhancer that controls the activation of Myf5 expression in the somite epaxial muscle progenitors in mouse embryos. This Myf5 epaxial somite (ES) enhancer is Shh-dependent, as shown by its complete inactivity in somites of homozygous Shh mutant embryos, and by its reduced activity in heterozygous Shh mutant embryos. Furthermore, Shh and downstream Shh signal transducers specifically induce ES enhancer/luciferase reporters in Shh-responsive 3T3 cells. A Gli-binding site located within the ES enhancer is required for enhancer activation by Shh signaling in transfected 3T3 cells and in epaxial somite progenitors in transgenic embryos. These findings establish that Myf5 is a direct target of long-range Shh signaling through positive regulation by Gli transcription factors, providing evidence that Shh signaling has a direct inductive function in cell lineage specification.
Collapse
Affiliation(s)
- Marcus K Gustafsson
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
It has long been known from work in both Drosophila and vertebrate systems that the hedgehog signalling pathway is pivotal to embryonic development, but the past 5 years has seen an increase in our understanding of how members of this pathway are crucial to the processes of tumorigenesis. This important link was firmly established with the discovery that mutations in the gene encoding the hedgehog receptor molecule patched are responsible for both familial and sporadic forms of basal cell carcinoma (BCC), as well as a number of other tumour types. It is now known that a number of key members of the hedgehog cascade are involved in tumorigenesis, and dysregulation of this pathway appears to be a key element in the aetiology of a range of tumours.
Collapse
Affiliation(s)
- C Wicking
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia 4072, Brisbane, Australia.
| | | |
Collapse
|
47
|
Reddy S, Andl T, Bagasra A, Lu MM, Epstein DJ, Morrisey EE, Millar SE. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech Dev 2001; 107:69-82. [PMID: 11520664 DOI: 10.1016/s0925-4773(01)00452-x] [Citation(s) in RCA: 383] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mutations in WNT effector genes perturb hair follicle morphogenesis, suggesting key roles for WNT proteins in this process. We show that expression of Wnts 10b and 10a is upregulated in placodes at the onset of follicle morphogenesis and in postnatal hair follicles beginning a new cycle of hair growth. The expression of additional Wnt genes is observed in follicles at later stages of differentiation. Among these, we find that Wnt5a is expressed in the developing dermal condensate of wild type but not Sonic hedgehog (Shh)-null embryos, indicating that Wnt5a is a target of SHH in hair follicle morphogenesis. These results identify candidates for several key follicular signals and suggest that WNT and SHH signaling pathways interact to regulate hair follicle morphogenesis.
Collapse
Affiliation(s)
- S Reddy
- Departments of Dermatology and Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The Hedgehog signalling pathway is important in embryological development and is highly conserved through evolution. Recently Patched, a member of the pathway, was found to be important in Gorlin's syndrome. Inherited Patched gene mutations underlie the syndrome, in which a key feature is multiple basal cell carcinomas (BCCs). The gene is also mutated in sporadic BCCs as well as in sporadic occurrences of other tumours seen in Gorlin's syndrome. The precise mechanism whereby Patched gene mutation leads to tumour development is not known, but BCC is characterized by relentless local invasion and only rarely metastasizes. This suggests that abnormalities of the Hedgehog pathway account for these features. This proposal is discussed in the context of what is already known about the normal function of the Hedgehog pathway and its deregulation in cancer.
Collapse
Affiliation(s)
- G Saldanha
- Breast Cancer Research Unit, Clinical Sciences Building, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, UK.
| |
Collapse
|
49
|
Smith MJ, Gitlin SD, Browning CM, Lane BR, Clark NM, Shah N, Rainier S, Markovitz DM. GLI-2 modulates retroviral gene expression. J Virol 2001; 75:2301-13. [PMID: 11160733 PMCID: PMC114813 DOI: 10.1128/jvi.75.5.2301-2313.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2000] [Accepted: 12/07/2000] [Indexed: 11/20/2022] Open
Abstract
GLI proteins are involved in the development of mice, humans, zebrafish, Caenorhabditis elegans, Xenopus, and Drosophila. While these zinc finger-containing proteins bind to TG-rich promoter elements and are known to regulate gene expression in C. elegans and Drosophila, mechanistic understanding of how regulation is mediated through naturally occurring transcriptional promoters is lacking. One isoform of human GLI-2 appears to be identical to a factor previously called Tax helper protein (THP), thus named due to its ability to interact with a TG-rich element in the human T-lymphotropic virus type 1 (HTLV-1) enhancer thought to mediate transcriptional stimulation by the Tax protein of HTLV-1. We now demonstrate that, working through its TG-rich binding site and adjacent elements, GLI-2/THP actually suppresses gene expression driven by the HTLV-1 promoter. GLI-2/THP has no effect on the HTLV-2 promoter, activates expression from the promoters of human immunodeficiency virus types 1 and (HIV-1 and -2), and stimulates HIV-1 replication. Both effective suppression and activation of gene expression and viral replication require the first of the five zinc fingers, which is not necessary for DNA binding, to be intact. Thus, not only can GLI-2/THP either activate or suppress gene expression, depending on the promoter, but the same domain (first zinc finger) mediates both effects. These findings suggest a role for GLI-2 in retroviral gene regulation and shed further light on the mechanisms by which GLI proteins regulate naturally occurring promoters.
Collapse
Affiliation(s)
- M J Smith
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0640, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Gallet A, Angelats C, Kerridge S, Thérond PP. Cubitus interruptus-independent transduction of the Hedgehog signal in Drosophila. Development 2000; 127:5509-22. [PMID: 11076770 DOI: 10.1242/dev.127.24.5509] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Hedgehog (Hh) family of secreted proteins are key factors that control pattern formation in invertebrates and vertebrates. The manner in which Hh molecules regulate a target cell remains poorly understood. In the Drosophila embryo, Hh is produced in identical stripes of cells in the posterior compartment of each segment. From these cells a Hh signal acts in both anterior and posterior directions. In the anterior cells, the target genes wingless and patched are activated whereas posterior cells respond to Hh by expressing rhomboid and patched. Here, we have examined the role of the transcription factor Cubitus interruptus (Ci) in this process. So far, Ci has been thought to be the most downstream component of the Hh pathway capable of activating all Hh functions. However, our current study of a null ci allele, indicates that it is actually not required for all Hh functions. Whereas Hh and Ci are both required for patched expression, the target genes wingless and rhomboid have unequal requirements for Hh and Ci activity. Hh is required for the maintenance of wingless expression before embryonic stage 11 whereas Ci is necessary only later during stage 11. For rhomboid expression Hh is required positively whereas Ci exhibits negative input. These results indicate that factors other than Ci are necessary for Hh target gene regulation. We present evidence that the zinc-finger protein Teashirt is one candidate for this activity. We show that it is required positively for rhomboid expression and that Teashirt and Ci act in a partially redundant manner before stage 11 to maintain wingless expression in the trunk.
Collapse
Affiliation(s)
- A Gallet
- Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR 6543, Centre de Biochimie, Parc Valrose, 06108 NICE Cedex 2 France
| | | | | | | |
Collapse
|