1
|
Wei G, Zhang K, Shen FJ, Xie RR, Wang FW, Guo HQ, Liu L. Low-dose polystyrene microplastics exposure increases susceptibility to obesity-induced MASLD via disrupting intestinal barrier integrity and gut microbiota homeostasis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118310. [PMID: 40403691 DOI: 10.1016/j.ecoenv.2025.118310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/22/2025] [Accepted: 05/09/2025] [Indexed: 05/24/2025]
Abstract
The global incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) has surged in recent years, potentially impacted by both high-energy food intake (e.g., high-fat diet, HFD) and environmental pollutants like microplastics (MPs). However, the combined impacts of MPs exposure and HFD feeding, particularly under long-time exposure, low concentrations MPs conditions, on the MASLD progression remain to be fully elucidated. In this study, C57BL/6 J male mice were fed either a normal chow diet or HFD with or without low-dose MPs (polystyrene) exposure (25-30 μg/kg body weight /day) for 14 weeks. The adverse health effects associated with MASLD development were evaluated, including intestinal permeability, gut microbiota composition, hepatic lipid metabolism, and the mediating role of the gut-liver axis. Additionally, HFD with or without low-dose MPs exposure was withdrawn to further verify this process. Our data demonstrated that low-dose MPs exposure or HFD feeding significantly increased the gut permeability, oxidative stress, pro-inflammatory response and apoptosis, while concurrently contributing to gut dysbiosis (e.g., reduced levels of Akkermansia) and MASLD development. Furthermore, low-dose MPs exposure exacerbated these effects in combination with HFD feeding, exhibiting a 'double hit' effect. Notably, the impacts of low-dose MPs exposure combined with HFD feeding on MASLD were difficult to reverse after two weeks withdrawing, likely due to the limited recovery potential of intestinal barrier integrity and gut microbiota homeostasis. These finding underscore the importance of avoiding MPs exposure in the pathogenesis of MASLD, particularly under a metabolic disorder conditions, and provide valuable insights for the developing therapeutic strategies to combat MASLD caused by MPs exposure.
Collapse
Affiliation(s)
- Gang Wei
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| | - Kai Zhang
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Feng-Jie Shen
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| | - Rong-Rong Xie
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| | - Feng-Wei Wang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| | - Hua-Qi Guo
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, China.
| | - Lin Liu
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| |
Collapse
|
2
|
Campos-Bayardo TI, Román-Rojas D, García-Sánchez A, Cardona-Muñoz EG, Sánchez-Lozano DI, Totsuka-Sutto S, Gómez-Hermosillo LF, Casillas-Moreno J, Andrade-Sierra J, Pazarín-Villaseñor L, Campos-Pérez W, Martínez-López E, Miranda-Díaz AG. The Role of TLRs in Obesity and Its Related Metabolic Disorders. Int J Mol Sci 2025; 26:2229. [PMID: 40076851 PMCID: PMC11900219 DOI: 10.3390/ijms26052229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Obesity affects the adaptability of adipose tissue (AT), impairing its ability to regulate energy and metabolism. Obesity is associated with many metabolic disorders, including dyslipidemia, hypertension, sleep disorders, non-alcoholic liver disease, and some types of cancer. Toll-like receptors (TLRs) are important in obesity and related metabolic disorders. TLRs are pattern-recognizing receptors (PRRs) involved in the innate immune system and recognize pathogen-associated molecular patterns (PAMPs) and endogenous ligands. TLRs, especially TLR2 and TLR4, are activated by fatty acids, endotoxins, and other ligands. TLR2 and TLR4 activation triggers inflammatory responses. Chronic inflammation driven by TLR activation is a hallmark of obesity and metabolic diseases. The inflammatory response triggered by TLR activation alters insulin signaling, contributing to insulin resistance, a key feature of metabolic syndrome and type 2 diabetes. Modulation of TLR activity through lifestyle changes (diet and exercise), obesity surgery, and pharmacological agents is under study as a possible therapeutic approach to controlling obesity and its complications.
Collapse
Affiliation(s)
- Tannia Isabel Campos-Bayardo
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Daniel Román-Rojas
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Andrés García-Sánchez
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Ernesto Germán Cardona-Muñoz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Daniela Itzel Sánchez-Lozano
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Sylvia Totsuka-Sutto
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Luis Francisco Gómez-Hermosillo
- Department of Laparoscopic Surgery, Hospital Civil de Guadalajara, “Juan I Menchaca”, Guadalajara 44360, Jalisco, Mexico; (L.F.G.-H.); (J.C.-M.)
| | - Jorge Casillas-Moreno
- Department of Laparoscopic Surgery, Hospital Civil de Guadalajara, “Juan I Menchaca”, Guadalajara 44360, Jalisco, Mexico; (L.F.G.-H.); (J.C.-M.)
| | - Jorge Andrade-Sierra
- Department of Nephrology, National Medical Center of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico; (J.A.-S.); (L.P.-V.)
| | - Leonardo Pazarín-Villaseñor
- Department of Nephrology, National Medical Center of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico; (J.A.-S.); (L.P.-V.)
| | - Wendy Campos-Pérez
- Department of Molecular Biology and Genomics, Institute of Nutrigenetics and Translational Nutrigenomics, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (W.C.-P.); (E.M.-L.)
| | - Erika Martínez-López
- Department of Molecular Biology and Genomics, Institute of Nutrigenetics and Translational Nutrigenomics, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (W.C.-P.); (E.M.-L.)
| | - Alejandra Guillermina Miranda-Díaz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| |
Collapse
|
3
|
Hermanson JB, Tolba SA, Chrisler EA, Leone VA. Gut microbes, diet, and genetics as drivers of metabolic liver disease: a narrative review outlining implications for precision medicine. J Nutr Biochem 2024; 133:109704. [PMID: 39029595 PMCID: PMC11480923 DOI: 10.1016/j.jnutbio.2024.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing in prevalence, impacting over a third of the global population. The advanced form of MASLD, Metabolic dysfunction-associated steatohepatitis (MASH), is on track to become the number one indication for liver transplant. FDA-approved pharmacological agents are limited for MASH, despite over 400 ongoing clinical trials, with only a single drug (resmetirom) currently on the market. This is likely due to the heterogeneous nature of disease pathophysiology, which involves interactions between highly individualized genetic and environmental factors. To apply precision medicine approaches that overcome interpersonal variability, in-depth insights into interactions between genetics, nutrition, and the gut microbiome are needed, given that each have emerged as dynamic contributors to MASLD and MASH pathogenesis. Here, we discuss the associations and molecular underpinnings of several of these factors individually and outline their interactions in the context of both patient-based studies and preclinical animal model systems. Finally, we highlight gaps in knowledge that will require further investigation to aid in successfully implementing precision medicine to prevent and alleviate MASLD and MASH.
Collapse
Affiliation(s)
- Jake B Hermanson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Samar A Tolba
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Evan A Chrisler
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vanessa A Leone
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
4
|
Allen AM, Younossi ZM, Diehl AM, Charlton MR, Lazarus JV. Envisioning how to advance the MASH field. Nat Rev Gastroenterol Hepatol 2024; 21:726-738. [PMID: 38834817 DOI: 10.1038/s41575-024-00938-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/06/2024]
Abstract
Since 1980, the cumulative effort of scientists and health-care stakeholders has advanced the prerequisites to address metabolic dysfunction-associated steatotic liver disease (MASLD), a prevalent chronic non-communicable liver disease. This effort has led to, among others, the approval of the first drug specific for metabolic dysfunction-associated steatohepatitis (MASH; formerly known as nonalcoholic steatohepatitis). Despite substantial progress, MASLD is still a leading cause of advanced chronic liver disease, including primary liver cancer. This Perspective contextualizes the nomenclature change from nonalcoholic fatty liver disease to MASLD and proposes important considerations to accelerate further progress in the field, optimize patient-centric multidisciplinary care pathways, advance pharmacological, behavioural and diagnostic research, and address health disparities. Key regulatory and other steps necessary to optimize the approval and access to upcoming additional pharmacological therapeutic agents for MASH are also outlined. We conclude by calling for increased education and awareness, enhanced health system preparedness, and concerted action by policy-makers to further the public health and policy agenda to achieve at least parity with other non-communicable diseases and to aid in growing the community of practice to reduce the human and economic burden and end the public health threat of MASLD and MASH by 2030.
Collapse
Affiliation(s)
- Alina M Allen
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Zobair M Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, USA
- The Global NASH Council, Washington DC, USA
| | | | - Michael R Charlton
- Center for Liver Diseases, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Jeffrey V Lazarus
- The Global NASH Council, Washington DC, USA.
- CUNY Graduate School of Public Health and Health Policy (CUNY SPH), New York, NY, USA.
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain.
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
5
|
Zhang Q, Yu T, Tan H, Shi H. Hepatic recruitment of myeloid-derived suppressor cells upon liver injury promotes both liver regeneration and fibrosis. BMC Gastroenterol 2024; 24:163. [PMID: 38745150 PMCID: PMC11092103 DOI: 10.1186/s12876-024-03245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The liver regeneration is a highly complicated process depending on the close cooperations between the hepatocytes and non-parenchymal cells involving various inflammatory cells. Here, we explored the role of myeloid-derived suppressor cells (MDSCs) in the processes of liver regeneration and liver fibrosis after liver injury. METHODS We established four liver injury models of mice including CCl4-induced liver injury model, bile duct ligation (BDL) model, concanavalin A (Con A)-induced hepatitis model, and lipopolysaccharide (LPS)-induced hepatitis model. The intrahepatic levels of MDSCs (CD11b+Gr-1+) after the liver injury were detected by flow cytometry. The effects of MDSCs on liver tissues were analyzed in the transwell co-culture system, in which the MDSCs cytokines including IL-10, VEGF, and TGF-β were measured by ELISA assay and followed by being blocked with specific antibodies. RESULTS The intrahepatic infiltrations of MDSCs with surface marker of CD11b+Gr-1+ remarkably increased after the establishment of four liver injury models. The blood served as the primary reservoir for hepatic recruitment of MDSCs during the liver injury, while the bone marrow appeared play a compensated role in increasing the number of MDSCs at the late stage of the inflammation. The recruited MDSCs in injured liver were mainly the M-MDSCs (CD11b+Ly6G-Ly6Chigh) featured by high expression levels of cytokines including IL-10, VEGF, and TGF-β. Co-culture of the liver tissues with MDSCs significantly promoted the proliferation of both hepatocytes and hepatic stellate cells (HSCs). CONCLUSIONS The dramatically and quickly infiltrated CD11b+Gr-1+ MDSCs in injured liver not only exerted pro-proliferative effects on hepatocytes, but also accounted for the activation of profibrotic HSCs.
Collapse
Affiliation(s)
- Qiongwen Zhang
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ting Yu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Huaicheng Tan
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Huashan Shi
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.
| |
Collapse
|
6
|
Molangiri A, Varma S, Hridayanka KSN, Srinivas M, Kona SR, Ibrahim A, Duttaroy AK, Basak S. Gestational exposure to bisphenol S induces microvesicular steatosis in male rat offspring by modulating metaflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166775. [PMID: 37660821 DOI: 10.1016/j.scitotenv.2023.166775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Prenatal exposure to endocrine-disrupting bisphenol A (BPA) shows a long-lasting programming effect on an organ's metabolic function and predisposes it to the risk of adult metabolic diseases. Although a reduced contaminant risk due to "BPA-free" exposure is proposed, limited data on a comparative assessment of gestational exposure to BPS and BPA and their effects on metaflammation in predisposing liver metabolic disease is reported. Pregnant Wistar rats were exposed to BPS and BPA (0.0, 0.4, 4.0 μg/kg bw) via gavage from gestational day 4 to 21, and effects were assessed in the 90 d male offspring. Prenatal BPS-exposed offspring showed a more obesogenic effect than BPA, including changes in body fat distribution, feed efficiency, and leptin signalling. The BPS exposure induced the adipocyte hypertrophy of visceral adipose to a greater extent than BPA. The adipose hypertrophy was augmented by tissue inflammation, endoplasmic reticulum (ER) stress, and apoptosis due to increased expression of pro-inflammatory (IL6, IL1β, CRP, COX2) cytokines, ER stress modulator (CHOP), and apoptotic effector (Caspase 3). The enlarged, stressed, inflamed adipocytes triggered de novo lipogenesis in the bisphenol-exposed offspring liver due to increased expression of cholesterol and lipid biogenesis mediators (srebf1, fasn, acaca, PPARα) concomitant with elevated triacylglycerol (TG) and cholesterol (TC), resulted in impaired hepatic clearance of lipids. The lipogenic effects were also promoted by increased expression of HSD11β1. BPS exposure increased absolute liver weight, discoloration, altered liver lobes more than in BPA. Liver histology showed numerous lipid droplets, and hepatocyte ballooning, upregulated ADRP expression, an increased expression of pro-inflammatory mediators (IL6, CRP, IL1β, TNFα, COX2), enhanced lipid peroxidation in the BPS-exposed offspring's liver suggest altered metaflammation leads to microvesicular steatosis. Overall, gestational BPS exposure demonstrated a higher disruption in metabolic changes than BPA, involving excess adiposity, liver fat, inflammation, and predisposition to steatosis in the adult male offspring.
Collapse
Affiliation(s)
- Archana Molangiri
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Saikanth Varma
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | | | - Myadara Srinivas
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Suryam Reddy Kona
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Ahamed Ibrahim
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | - Sanjay Basak
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India.
| |
Collapse
|
7
|
Beiriger J, Chauhan K, Khan A, Shahzad T, Parra NS, Zhang P, Chen S, Nguyen A, Yan B, Bruckbauer J, Halegoua-DeMarzio D. Advancements in Understanding and Treating NAFLD: A Comprehensive Review of Metabolic-Associated Fatty Liver Disease and Emerging Therapies. LIVERS 2023; 3:637-656. [DOI: 10.3390/livers3040042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
This paper provides a comprehensive review of the current understanding of non-alcoholic fatty liver disease (NAFLD) and its progression to non-alcoholic steatohepatitis (NASH), focusing on key factors influencing its pathogenesis and emerging therapeutic strategies. This review highlights the growing prevalence of NAFLD and NASH, emphasizing their multifactorial nature. The manuscript identifies various contributors to NAFLD development, including genetic, dietary, and environmental factors, while examining the intricate interplay between these factors and their impact on hepatic lipid metabolism, inflammation, and insulin resistance. Genetic predisposition, dietary fat intake, and excessive fructose consumption are discussed as significant contributors to NAFLD progression. The article emphasizes the lack of a single therapeutic approach and underscores the need for combination strategies. Lifestyle interventions, particularly weight loss through diet and exercise, remain crucial, while pharmacological options like GLP-1 receptor agonists, obeticholic acid, lanifibranor, and resmetirom show promise but require further validation. Bariatric surgery and emerging endoscopic procedures offer potential in eligible patients. In sum, this article underscores the complexity of NAFLD and NASH, addresses key factors influencing pathogenesis, and discusses emerging therapies advocating for a multifaceted approach to this increasingly prevalent and clinically relevant condition.
Collapse
Affiliation(s)
- Jacob Beiriger
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Kashyap Chauhan
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Adnan Khan
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Taha Shahzad
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Natalia Salinas Parra
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Peter Zhang
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Sarah Chen
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Anh Nguyen
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Brian Yan
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - John Bruckbauer
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Dina Halegoua-DeMarzio
- Department of Internal Medicine, Division of Gastroenterology & Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Fang J, Celton-Morizur S, Desdouets C. NAFLD-Related HCC: Focus on the Latest Relevant Preclinical Models. Cancers (Basel) 2023; 15:3723. [PMID: 37509384 PMCID: PMC10377912 DOI: 10.3390/cancers15143723] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and one of the deadliest cancers worldwide. Despite extensive research, the biological mechanisms underlying HCC's development and progression remain only partially understood. Chronic overeating and/or sedentary-lifestyle-associated obesity, which promote Non-Alcoholic Fatty Liver Disease (NAFLD), have recently emerged as worrying risk factors for HCC. NAFLD is characterized by excessive hepatocellular lipid accumulation (steatosis) and affects one quarter of the world's population. Steatosis progresses in the more severe inflammatory form, Non-Alcoholic Steatohepatitis (NASH), potentially leading to HCC. The incidence of NASH is expected to increase by up to 56% over the next 10 years. Better diagnoses and the establishment of effective treatments for NAFLD and HCC will require improvements in our understanding of the fundamental mechanisms of the disease's development. This review describes the pathogenesis of NAFLD and the mechanisms underlying the transition from NAFL/NASH to HCC. We also discuss a selection of appropriate preclinical models of NAFLD for research, from cellular models such as liver-on-a-chip models to in vivo models, focusing particularly on mouse models of dietary NAFLD-HCC.
Collapse
Affiliation(s)
- Jing Fang
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France
| | - Séverine Celton-Morizur
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France
| | - Chantal Desdouets
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France
| |
Collapse
|
9
|
Jennings T, Janquart M, Washak C, Duddleston K, Kurtz C. What's gut got to do with it? The role of the microbiota and inflammation in the development of adiposity and obesity. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00029. [PMID: 37492183 PMCID: PMC10364962 DOI: 10.1097/in9.0000000000000029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Obesity is a complex and heterogeneous disease characterized by increased adiposity, ie, the accumulation of lipids and the growth of adipose tissue. In this mini-review, we explore the important role of the gut microbiota and immune system in the development of adiposity. Dysbiosis of the microbiota leads to increased permeability of the gut barrier and bacterial products in the bloodstream, which triggers metabolic inflammation of adipose tissue, muscle, and liver. Inflammation in these highly metabolic organs exacerbates adiposity and contributes to the development of comorbidities associated with obesity. Studies in animal models that manipulate the microbiota and/or inflammation have shown promise in the treatment of obesity.
Collapse
Affiliation(s)
- Travis Jennings
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA
| | - Mallory Janquart
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - Catherine Washak
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - Khrystyne Duddleston
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA
| | - Courtney Kurtz
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| |
Collapse
|
10
|
Lee KC, Wu PS, Lin HC. Pathogenesis and treatment of non-alcoholic steatohepatitis and its fibrosis. Clin Mol Hepatol 2023; 29:77-98. [PMID: 36226471 PMCID: PMC9845678 DOI: 10.3350/cmh.2022.0237] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/11/2022] [Indexed: 02/02/2023] Open
Abstract
The initial presentation of non-alcoholic steatohepatitis (NASH) is hepatic steatosis. The dysfunction of lipid metabolism within hepatocytes caused by genetic factors, diet, and insulin resistance causes lipid accumulation. Lipotoxicity, oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum stress would further contribute to hepatocyte injury and death, leading to inflammation and immune dysfunction in the liver. During the healing process, the accumulation of an excessive amount of fibrosis might occur while healing. During the development of NASH and liver fibrosis, the gut-liver axis, adipose-liver axis, and renin-angiotensin system (RAS) may be dysregulated and impaired. Translocation of bacteria or its end-products entering the liver could activate hepatocytes, Kupffer cells, and hepatic stellate cells, exacerbating hepatic steatosis, inflammation, and fibrosis. Bile acids regulate glucose and lipid metabolism through Farnesoid X receptors in the liver and intestine. Increased adipose tissue-derived non-esterified fatty acids would aggravate hepatic steatosis. Increased leptin also plays a role in hepatic fibrogenesis, and decreased adiponectin may contribute to hepatic insulin resistance. Moreover, dysregulation of peroxisome proliferator-activated receptors in the liver, adipose, and muscle tissues may impair lipid metabolism. In addition, the RAS may contribute to hepatic fatty acid metabolism, inflammation, and fibrosis. The treatment includes lifestyle modification, pharmacological therapy, and non-pharmacological therapy. Currently, weight reduction by lifestyle modification or surgery is the most effective therapy. However, vitamin E, pioglitazone, and obeticholic acid have also been suggested. In this review, we will introduce some new clinical trials and experimental therapies for the treatment of NASH and related fibrosis.
Collapse
Affiliation(s)
- Kuei-Chuan Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan,Corresponding author : Kuei-Chuan Lee Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei 11217, Taiwan Tel: +886 2 2871 2121, Fax: +886 2 2873 9318, E-mail:
| | - Pei-Shan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan,Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan,Corresponding author : Kuei-Chuan Lee Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei 11217, Taiwan Tel: +886 2 2871 2121, Fax: +886 2 2873 9318, E-mail:
| |
Collapse
|
11
|
Flessa CM, Nasiri-Ansari N, Kyrou I, Leca BM, Lianou M, Chatzigeorgiou A, Kaltsas G, Kassi E, Randeva HS. Genetic and Diet-Induced Animal Models for Non-Alcoholic Fatty Liver Disease (NAFLD) Research. Int J Mol Sci 2022; 23:15791. [PMID: 36555433 PMCID: PMC9780957 DOI: 10.3390/ijms232415791] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
A rapidly increasing incidence of non-alcoholic fatty liver disease (NAFLD) is noted worldwide due to the adoption of western-type lifestyles and eating habits. This makes the understanding of the molecular mechanisms that drive the pathogenesis of this chronic disease and the development of newly approved treatments of utmost necessity. Animal models are indispensable tools for achieving these ends. Although the ideal mouse model for human NAFLD does not exist yet, several models have arisen with the combination of dietary interventions, genetic manipulations and/or administration of chemical substances. Herein, we present the most common mouse models used in the research of NAFLD, either for the whole disease spectrum or for a particular disease stage (e.g., non-alcoholic steatohepatitis). We also discuss the advantages and disadvantages of each model, along with the challenges facing the researchers who aim to develop and use animal models for translational research in NAFLD. Based on these characteristics and the specific study aims/needs, researchers should select the most appropriate model with caution when translating results from animal to human.
Collapse
Affiliation(s)
- Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Research Institute for Health and Wellbeing, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Bianca M. Leca
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Maria Lianou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
12
|
Kupffer Cells as a Target for Immunotherapy. J 2022. [DOI: 10.3390/j5040036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Kupffer cells (KCs) are resident macrophages in the liver. Recent studies have revealed that KCs are closely related to inflammatory liver diseases, including nonalcoholic liver diseases (NAFLD). From this point of view, KC transplantation can be a candidate for immunotherapy against inflammatory diseases. Similar to general macrophages, KCs show several different phenotypes according to their environment. Activated KCs are involved in either proinflammatory responses or anti-inflammatory responses. Thus, to manipulate KCs for immunotherapy, it is crucial to control the direction of KC activation. Here, we summarize the outlook and the issues hindering immunotherapy using KC transplantation.
Collapse
|
13
|
Chua D, Low ZS, Cheam GX, Ng AS, Tan NS. Utility of Human Relevant Preclinical Animal Models in Navigating NAFLD to MAFLD Paradigm. Int J Mol Sci 2022; 23:14762. [PMID: 36499091 PMCID: PMC9737809 DOI: 10.3390/ijms232314762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Fatty liver disease is an emerging contributor to disease burden worldwide. The past decades of work established the heterogeneous nature of non-alcoholic fatty liver disease (NAFLD) etiology and systemic contributions to the pathogenesis of the disease. This called for the proposal of a redefinition in 2020 to that of metabolic dysfunction-associated fatty liver disease (MAFLD) to better reflect the current understanding of the disease. To date, several clinical cohort studies comparing NAFLD and MAFLD hint at the relevancy of the new nomenclature in enriching for patients with more severe hepatic injury and extrahepatic comorbidities. However, the underlying systemic pathogenesis is still not fully understood. Preclinical animal models have been imperative in elucidating key biological mechanisms in various contexts, including intrahepatic disease progression, interorgan crosstalk and systemic dysregulation. Furthermore, they are integral in developing novel therapeutics against MAFLD. However, substantial contextual variabilities exist across different models due to the lack of standardization in several aspects. As such, it is crucial to understand the strengths and weaknesses of existing models to better align them to the human condition. In this review, we consolidate the implications arising from the change in nomenclature and summarize MAFLD pathogenesis. Subsequently, we provide an updated evaluation of existing MAFLD preclinical models in alignment with the new definitions and perspectives to improve their translational relevance.
Collapse
Affiliation(s)
- Damien Chua
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Zun Siong Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Guo Xiang Cheam
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Aik Seng Ng
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
14
|
Role of Oxidative Stress and Lipid Peroxidation in the Pathophysiology of NAFLD. Antioxidants (Basel) 2022; 11:antiox11112217. [PMID: 36358589 PMCID: PMC9686676 DOI: 10.3390/antiox11112217] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterised by an excess of hepatic fat that can progress to steatohepatitis, fibrosis, cirrhosis and hepatocarcinoma. The imbalance between lipid uptake/lipogenesis and lipid oxidation/secretion in the liver is a major feature of NAFLD. Given the lack of a non-invasive and reliable methods for the diagnosis of non-alcoholic steatohepatitis (NASH), it is important to find serum markers that are capable of discriminating or defining patients with this stage of NASH. Blood samples were obtained from 152 Caucasian subjects with biopsy-proven NAFLD due to persistently elevated liver enzyme levels. Metabolites representative of oxidative stress were assessed. The findings derived from this work revealed that NAFLD patients with a NASH score of ≥ 4 showed significantly higher levels of lipid peroxidation (LPO). Indeed, LPO levels above the optimal operating point (OOP) of 315.39 μM are an independent risk factor for presenting a NASH score of ≥ 4 (OR: 4.71; 95% CI: 1.68−13.19; p = 0.003). The area under the curve (AUC = 0.81, 95% CI = 0.73−0.89, p < 0.001) shows a good discrimination ability of the model. Therefore, understanding the molecular mechanisms underlying the basal inflammation present in these patients is postulated as a possible source of biomarkers and therapeutic targets in NASH.
Collapse
|
15
|
Wang JS, Liu JC. Intestinal microbiota in the treatment of metabolically associated fatty liver disease. World J Clin Cases 2022; 10:11240-11251. [PMID: 36387806 PMCID: PMC9649557 DOI: 10.12998/wjcc.v10.i31.11240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 02/05/2023] Open
Abstract
Metabolically associated fatty liver disease (MAFLD) is a common cause of chronic liver disease, the hepatic manifestation of metabolic syndrome. Despite the increasing incidence of MAFLD, no effective treatment is available. Recent research indicates a link between the intestinal microbiota and liver diseases such as MAFLD. The composition and characteristics of the intestinal microbiota and therapeutic perspectives of MAFLD are reviewed in the current study. An imbalance in the intestinal microbiota increases intestinal permeability and exposure of the liver to adipokines. Furthermore, we focused on reviewing the latest "gut-liver axis" targeted therapy.
Collapse
Affiliation(s)
- Ji-Shuai Wang
- Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jin-Chun Liu
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
16
|
Novelli A, Bianchetti A. Glutathione: pharmacological aspects and implications for clinical use. GERIATRIC CARE 2022. [DOI: 10.4081/gc.2022.10390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutathione is a tripeptide found in many tissues which plays a pivotal role in critical physiological processes such as maintenance of redox balance, reduction of oxidative stress by enhancement of metabolic detoxification of both xenobiotic and endogenous compounds, and regulation of immune system function. Glutathione depletion is associated with many chronic degenerative diseases and loss of function with aging and altered glutathione metabolism has been implicated in central nervous system diseases, frailty and sarcopenia, infected state, chronic liver diseases, metabolic diseases, pulmonary and cardiovascular diseases. Therefore, the glutathione status may be an important biomarker and treatment target in various chronic, age-related diseases. Here we describe the main pharmacological aspects of glutathione, focusing on its synthesis and role in several vital functions including antioxidant defense, detoxification of xenobiotics and modulation of immune function and fibrogenesis and the clinical implications of its depletion and we discuss the different strategies for increasing glutathione cellular levels either by providing specific precursors and cofactors or directly administering the tripeptide.
Collapse
|
17
|
Price J, Ma Y, Adimora A, Fischl M, French AL, Golub ET, Konkle-Parker D, Kuniholm MH, Ofotokun I, Plankey M, Sharma A, Tien PC. Multisite prospective Liver Disease and Reproductive Ageing (LIVRA) study in US women living with and without HIV. BMJ Open 2022; 12:e055706. [PMID: 35393310 PMCID: PMC8991036 DOI: 10.1136/bmjopen-2021-055706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The Liver Disease and Reproductive Ageing (LIVRA) study leverages the infrastructure of the decades-long multicentre prospective Women's Interagency HIV Study (WIHS) to examine the contributions of HIV, hepatitis C virus (HCV) and ageing to liver disease progression in women. PARTICIPANTS From 2013 to 2018, LIVRA enrolled 1576 participants (77 HCV-seropositive only, 248 HIV/HCV-seropositive, 868 HIV-seropositive only and 383 HIV/HCV-seronegative) who underwent vibration controlled transient elastography (VCTE). A VCTE quality assurance programme was established to ensure consistency and accuracy for longitudinal assessment of steatosis (fatty liver) via the controlled attenuation parameter (CAP) and fibrosis via liver stiffness (LS). Demographic, lifestyle factors, anthropometry, clinical and medication history, host genetics, immune markers and hormone levels were collected as part of the WIHS. FINDINGS TO DATE At baseline, 737 of 1543 women with CAP measurements had steatosis (CAP ≥248 dB/m) and 375 of 1576 women with LS measurements had significant fibrosis (LS ≥7.1 kPa), yielding a prevalence of 48% and 24%, respectively. On multivariable analysis, waist circumference (WC) and insulin resistance were independently associated with higher CAP (17.8 dB/m per 10 cm (95% CI:16.2 to 19.5) and 1.2 dB/m per doubling (95% CI:0.8 to 1.6), respectively). By contrast, HIV/HCV seropositivity and HCV seropositivity alone were associated with less steatosis compared with HIV/HCV-seronegative women, although the latter did not reach statistical significance (-9.2 dB/m (95% CI:-18.2 to -0.3) and -10.4 dB/m (95% CI: -23.8 to 3.1), respectively). Factors independently associated with higher LS were age (4.4% per 10 years (95% CI: 0.4% to 8.4%)), WC (5.0% per 10 cm (95% CI: 3.3% to 6.6%)), CAP steatosis (0.6% per 10 dB/m (95% CI: 0.1% to 1.0%)), HIV/HCV seropositivity (33% (95% CI: 24% to 44%)) and HCV seropositivity alone (43% (95% CI: 28% to 60%)). Excluding scans that were invalid based on traditional criteria for unreliability did not affect the results. FUTURE PLANS Enrolled women undergo VCTE at 3-year intervals unless LS is ≥9.5 kPa, indicating advanced fibrosis, in which case VCTE is performed annually. Participants also undergo VCTE every 6 months until 18 months after HCV treatment initiation. Analysis of the data collected will provide insights into the impact of ageing/ovarian function, host genetics, immune function and contemporary HIV and HCV treatments on liver disease progression.
Collapse
Affiliation(s)
- Jennifer Price
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yifei Ma
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Adaora Adimora
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Margaret Fischl
- Department of Medicine, University of Miami, Miami, Florida, USA
| | - Audrey L French
- Department of Medicine, CORE Center/Stroger Hospital of Cook County, Chicago, Illinois, USA
| | - Elizabeth T Golub
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Deborah Konkle-Parker
- Schools of Nursing, Medicine and Population Health, University of Mississippi, Jackson, Mississippi, USA
| | - Mark H Kuniholm
- Department of Epidemiology and Biostatistics, University of Albany, State University of New York, Rensselaer, New York, USA
| | | | - Michael Plankey
- Department of Medicine, Georgetown University, Washington, District of Columbia, USA
| | - Anjali Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Phyllis C Tien
- Department of Veterans Affairs, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
18
|
Huang FF, Yang Y, Wang LM, Wang H, Li P, Xiao K, Xu X, Liu JS, Liu YL, Zhu HL. Holly polyphenols attenuate liver injury, suppression inflammation and oxidative stress in lipopolysaccharide-challenged weaned pigs. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2021.2022604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- F. F. Huang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - Y. Yang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - L. M. Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - H. Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - P. Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - K. Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - X. Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - J. S. Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Anji, People’s Republic of China
| | - Y. L. Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Anji, People’s Republic of China
| | - H. L. Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| |
Collapse
|
19
|
Schnegelberger RD, Lang AL, Arteel GE, Beier JI. Environmental toxicant-induced maladaptive mitochondrial changes: A potential unifying mechanism in fatty liver disease? Acta Pharm Sin B 2021; 11:3756-3767. [PMID: 35024304 PMCID: PMC8727895 DOI: 10.1016/j.apsb.2021.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/29/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Occupational and environmental exposures to industrial chemicals are well known to cause hepatotoxicity and liver injury. However, despite extensive evidence showing that exposure can lead to disease, current research approaches and regulatory policies fail to address the possibility that subtle changes caused by low level exposure to chemicals may also enhance preexisting conditions. In recent years, the conceptual understanding of the contribution of environmental chemicals to liver disease has progressed significantly. Mitochondria are often target of toxicity of environmental toxicants resulting in multisystem disorders involving different cells, tissues, and organs. Here, we review persistent maladaptive changes to mitochondria in response to environmental toxicant exposure as a mechanism of hepatotoxicity. With better understanding of the mechanism(s) and risk factors that mediate the initiation and progression of toxicant-induced liver disease, rational targeted therapy can be developed to better predict risk, as well as to treat or prevent this disease.
Collapse
Affiliation(s)
- Regina D. Schnegelberger
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anna L. Lang
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gavin E. Arteel
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Juliane I. Beier
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
20
|
Yang Y, Jiang X, Pandol SJ, Han YP, Zheng X. Green Plant Pigment, Chlorophyllin, Ameliorates Non-alcoholic Fatty Liver Diseases (NAFLDs) Through Modulating Gut Microbiome in Mice. Front Physiol 2021; 12:739174. [PMID: 34764881 PMCID: PMC8576288 DOI: 10.3389/fphys.2021.739174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023] Open
Abstract
Non-alcoholic fatty liver diseases (NAFLDs) along with metabolic syndrome and Type-2 diabetes (T2D) are increasingly prevalent worldwide. Without an effective resolution, simple hepatic steatosis may lead to non-alcoholic steatohepatitis (NASH), characterized by hepatocyte damage, chronic inflammation, necrosis, fatty degeneration, and cirrhosis. The gut microbiome is vital for metabolic homeostasis. Conversely, dysbiosis contributes to metabolic diseases including NAFLD. Specifically, diet composition is critical for the enterotype of gut microbiota. We reasoned that green pigment rich in vegetables may modulate the gut microbiome for metabolic homeostasis. In this study, C57BL/6 mice under a high fat diet (HFD) were treated with sodium copper chlorophyllin (CHL), a water-soluble derivative of chlorophyll, in drinking water. After 28 weeks of HFD feeding, liver steatosis was established accompanied by gut microbiota dysbiosis, intestinal impairment, endotoxemia, systemic inflammation, and insulin resistance. Administration of CHL effectively alleviated systemic and intestinal inflammation and maintained tight junction in the intestinal barrier. CHL rebalanced gut microbiota in the mice under high fat feeding and attenuated hepatic steatosis, insulin resistance, dyslipidemia, and reduced body weight. Fecal flora transplants from the CHL-treated mice ameliorated steatosis as well. Thus, dietary green pigment or the administration of CHL may maintain gut eubiosis and intestinal integrity to attenuate systemic inflammation and relieve NASH.
Collapse
Affiliation(s)
- You Yang
- Center for Diabetes and Metabolism Research, Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China.,The College of Life Sciences, Sichuan University, Chengdu, China
| | - Xile Jiang
- Department of Nutrition, West China College of Medicine, Sichuan University, Chengdu, China
| | | | - Yuan-Ping Han
- The College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaofeng Zheng
- Center for Diabetes and Metabolism Research, Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Jacob JS, Ahmed A, Cholankeril G. The impact of alteration in gut microbiome in the pathogenesis of nonalcoholic fatty liver disease. Curr Opin Infect Dis 2021; 34:477-482. [PMID: 34267042 DOI: 10.1097/qco.0000000000000759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW We have increasing evidence that alterations of the intestinal microbiome have a strong influence on human health. Previous work has demonstrated the association between changes in the microbiome and metabolic risk factors. One related area of interest is the relationship between dysbiosis and nonalcoholic fatty liver disease (NAFLD), as the global prevalence of NAFLD, and its resultant complications, increases. RECENT FINDINGS In this review, we summarize the hypothesized pathophysiology of dysbiosis-mediated progression of NAFLD, including promotion of an inflammatory intestinal environment, increased intestinal permeability, endogenous ethanol production, short-chain fatty acid production, secondary bile acid metabolism, and choline depletion. We also review potential therapeutic interventions of the microbiome to slow or prevent NAFLD progression, including antibiotics, probiotics, prebiotics, fecal microbiota transplant, and farnesoid × receptor agonism. SUMMARY Much of the evidence supporting dysbiosis-mediated NAFLD progression has been gathered in high-quality animal trials. There remains a need for additional observational and randomized controlled trials in humans to establish causality between the suspected factors and pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Jake S Jacob
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford, California
| | - George Cholankeril
- Liver Center, Division of Abdominal Transplantation, Michael E DeBakey Department of General Surgery, Baylor College of Medicine
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
22
|
Ren S, Ma X, Wang R, Liu H, Wei Y, Wei S, Jing M, Zhao Y. Preclinical Evidence of Berberine on Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Animal Studies. Front Pharmacol 2021; 12:742465. [PMID: 34566663 PMCID: PMC8458904 DOI: 10.3389/fphar.2021.742465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
As lifestyle and diet structure impact our health, non-alcoholic fatty liver disease (NAFLD) is prevalent all over the world. Some phytomedicines containing berberine (BBR) have been extensively used for centuries in Ayurvedic and traditional Chinese medicine. The goal of this systematic review is to investigate the preclinical evidence of BBR on NAFLD models. The following relevant databases, including Web of Science, PubMed, the Cochrane Library, and Embase, were retrieved from inception to May 2021. The content involved BBR on different animal models for the treatment of NAFLD. The SYstematic Review Center for Laboratory animal Experimentation (SYRCLE) Animal Experiment Bias Risk Assessment Tool was used to assess the methodological quality and RevMan 5.4 software was used to conduct the meta-analysis based on the Cochrane tool. A total of 31 studies involving 566 animals were included, of which five models and five animal breeds were reported. The results showed that TC, TG, ALT, AST, HDL-C, LDL-C, FBG, FINS, and FFA in the group treated with BBR were significantly restored compared with those in the model group. HOMA-IR had a significant downward trend, but the result was not significantly different (P = 0.08). The subgroup analysis of the different models and different animal breeds indicated that BBR could ameliorate the aforementioned indicator levels, although some results showed no significant difference. Finally, we summarized the molecular mechanisms by which berberine regulated NAFLD/NASH, mainly focusing on activating the AMPK pathway, improving insulin sensitivity and glucose metabolism, regulating mitochondrial function, reducing inflammation and oxidative stress, regulating cell death and ER stress, reducing DNA methylation, and regulating intestinal microenvironment and neurotoxicity. The preclinical evidence suggested that BBR might be an effective and promising drug for treating NAFLD/NASH. In addition, further studies with more well-designed researches are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Sichen Ren
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruilin Wang
- Integrative Medical Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Honghong Liu
- Integrative Medical Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying Wei
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shizhang Wei
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Manyi Jing
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Lin WL, Mizobuchi M, Kawahigashi M, Nakahashi O, Maekawa Y, Sakai T. Functional kupffer cells migrate to the liver from the intraperitoneal cavity. Biochem Biophys Rep 2021; 27:101103. [PMID: 34458593 PMCID: PMC8379421 DOI: 10.1016/j.bbrep.2021.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/28/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
We established a method of KC transplantation by intraperitoneal (i.p.) injection using EGFP-expressing cells (EGFP-KCs) and normal KCs. The novel method is easier and less invasive than conventional methods so that it is not only technically advantageous but also ethically preferable for experiments using animals. We demonstrated that KCs migrated to the liver following i.p. Injection. Engraftment in the liver was not observed for peritoneal macrophages (pMPs). This suggests that KCs migrate to the liver via a sorting mechanism. KC injection decreased the KC number at 24 h and then recovered the KCs at 10 days to a normal level. Additionally, recovery to the normal level by KC injection was observed in mice with KC depletion induced by GdCl3. These results suggest that a regulatory mechanism exists for controlling the number of KCs.
Collapse
Affiliation(s)
- Wen-Ling Lin
- Institute for Health Sciences, Tokushima Bunri University, 180 Nishihama-bouji, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Mizuki Mizobuchi
- Institute for Health Sciences, Tokushima Bunri University, 180 Nishihama-bouji, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Mina Kawahigashi
- Institute for Health Sciences, Tokushima Bunri University, 180 Nishihama-bouji, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Otoki Nakahashi
- Institute for Health Sciences, Tokushima Bunri University, 180 Nishihama-bouji, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Yuuki Maekawa
- Institute for Health Sciences, Tokushima Bunri University, 180 Nishihama-bouji, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Takashi Sakai
- Institute for Health Sciences, Tokushima Bunri University, 180 Nishihama-bouji, Yamashiro-cho, Tokushima, 770-8514, Japan
| |
Collapse
|
24
|
Nishimura N, Kaji K, Kitagawa K, Sawada Y, Furukawa M, Ozutsumi T, Fujinaga Y, Tsuji Y, Takaya H, Kawaratani H, Moriya K, Namisaki T, Akahane T, Fukui H, Yoshiji H. Intestinal Permeability Is a Mechanical Rheostat in the Pathogenesis of Liver Cirrhosis. Int J Mol Sci 2021; 22:6921. [PMID: 34203178 PMCID: PMC8267717 DOI: 10.3390/ijms22136921] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies have suggested that an alteration in the gut microbiota and their products, particularly endotoxins derived from Gram-negative bacteria, may play a major role in the pathogenesis of liver diseases. Gut dysbiosis caused by a high-fat diet and alcohol consumption induces increased intestinal permeability, which means higher translocation of bacteria and their products and components, including endotoxins, the so-called "leaky gut". Clinical studies have found that plasma endotoxin levels are elevated in patients with chronic liver diseases, including alcoholic liver disease and nonalcoholic liver disease. A decrease in commensal nonpathogenic bacteria including Ruminococaceae and Lactobacillus and an overgrowth of pathogenic bacteria such as Bacteroidaceae and Enterobacteriaceae are observed in cirrhotic patients. The decreased diversity of the gut microbiota in cirrhotic patients before liver transplantation is also related to a higher incidence of post-transplant infections and cognitive impairment. The exposure to endotoxins activates macrophages via Toll-like receptor 4 (TLR4), leading to a greater production of proinflammatory cytokines and chemokines including tumor necrosis factor-alpha, interleukin (IL)-6, and IL-8, which play key roles in the progression of liver diseases. TLR4 is a major receptor activated by the binding of endotoxins in macrophages, and its downstream signal induces proinflammatory cytokines. The expression of TLR4 is also observed in nonimmune cells in the liver, such as hepatic stellate cells, which play a crucial role in the progression of liver fibrosis that develops into hepatocarcinogenesis, suggesting the importance of the interaction between endotoxemia and TLR4 signaling as a target for preventing liver disease progression. In this review, we summarize the findings for the role of gut-derived endotoxemia underlying the progression of liver pathogenesis.
Collapse
Affiliation(s)
- Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (K.K.); (K.K.); (Y.S.); (M.F.); (T.O.); (Y.F.); (Y.T.); (H.T.); (H.K.); (K.M.); (T.N.); (T.A.); (H.F.); (H.Y.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jiang L, Schnabl B. Gut Microbiota in Liver Disease: What Do We Know and What Do We Not Know? Physiology (Bethesda) 2021; 35:261-274. [PMID: 32490750 DOI: 10.1152/physiol.00005.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The gut and the liver have a bidirectional communication via the biliary system and the portal vein. The intestinal microbiota and microbial products play an important role for modulating liver diseases such as alcohol-associated liver disease, non-alcoholic fatty liver disease and steatohepatitis, and cholestatic liver diseases. Here, we review the role of the gut microbiota and its products for the pathogenesis and therapy of chronic liver diseases.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Medicine, University of California San Diego, La Jolla, California; and Department of Medicine, VA San Diego Healthcare System, San Diego, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California; and Department of Medicine, VA San Diego Healthcare System, San Diego, California
| |
Collapse
|
26
|
Zhao L, Mehmood A, Yuan D, Usman M, Murtaza MA, Yaqoob S, Wang C. Protective Mechanism of Edible Food Plants against Alcoholic Liver Disease with Special Mention to Polyphenolic Compounds. Nutrients 2021; 13:nu13051612. [PMID: 34064981 PMCID: PMC8151346 DOI: 10.3390/nu13051612] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Alcoholic liver disease (ALD) is one type of liver disease, causing a global healthcare problem and mortality. The liver undergoes tissue damage by chronic alcohol consumption because it is the main site for metabolism of ethanol. Chronic alcohol exposure progresses from alcoholic fatty liver (AFL) to alcoholic steatohepatitis (ASH), which further lead to fibrosis, cirrhosis, and even hepatocellular cancer. Therapeutic interventions to combat ALD are very limited such as use of corticosteroids. However, these therapeutic drugs are not effective for long-term usage. Therefore, additional effective and safe therapies to cope with ALD are urgently needed. Previous studies confirmed that edible food plants and their bioactive compounds exert a protective effect against ALD. In this review article, we summarized the hepatoprotective potential of edible food plants and their bioactive compounds. The underlying mechanism for the prevention of ALD by edible food plants was as follows: anti-oxidation, anti-inflammation, lipid regulation, inhibition of apoptosis, gut microbiota composition modulation, and anti-fibrosis.
Collapse
Affiliation(s)
- Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Dongdong Yuan
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: ; Tel.: +86-10-6898-4547
| | - Muhammad Usman
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Mian Anjum Murtaza
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan;
| | - Sanabil Yaqoob
- Department of Food Science and Technology, University of Central Punjab, Punjab 54590, Pakistan;
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
27
|
Pyo JH, Kim TJ, Lee H, Choi SC, Cho SJ, Choi YH, Min YW, Min BH, Lee JH, Kang M, Lee YC, Kim JJ. Proton pump inhibitors use and the risk of fatty liver disease: A nationwide cohort study. J Gastroenterol Hepatol 2021; 36:1235-1243. [PMID: 32886822 DOI: 10.1111/jgh.15236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/03/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Proton pump inhibitor (PPI)-induced hypochondria can change the composition of the gut microbiota, inducing overgrowth of small bowel bacteria, which has been suggested to promote the development of fatty liver disease through the gut-liver axis. In this study, we aimed to investigate the association between PPI use and the risk of fatty liver disease. METHODS A retrospective cohort study was conducted using the Korean National Health Insurance Service-National Sample Cohort, a nationwide population-based representative sample, from January 1, 2002, to December 31, 2015. PPI use was identified from treatment claims and considered as a time-varying variable. RESULTS During 1 463 556 person-years of follow-up, 75 727 patients had at least one PPI prescription, and 3735 patients developed fatty liver disease. The hazard ratio for fatty liver disease comparing PPI users with non-PPI users was 1.68 (95% confidence interval, 1.61-1.75). When adjusted for multiple confounders, including age, sex, body mass index, smoking, alcohol intake, exercise, income level, and comorbidities, the association was still significant (hazard ratio, 1.50; 95% confidence interval, 1.44-1.57). After considering the amounts of PPIs stratified by cumulative defined daily dose, the dose-response effect was observed until 180 days. Subgroup analysis also revealed that PPI use was correlated to an increased risk of fatty liver disease. CONCLUSIONS This current national wide cohort study suggests that PPI use was associated with an increased risk of fatty liver disease compared with non-use of PPIs. Clinicians should consider fatty liver as a potential risk when prescribing PPI.
Collapse
Affiliation(s)
- Jeung Hui Pyo
- Center for Health Promotion, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Tae Jun Kim
- Department of Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Hyuk Lee
- Department of Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Sung Chul Choi
- Center for Health Promotion, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Soo-Jin Cho
- Center for Health Promotion, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Yoon-Ho Choi
- Center for Health Promotion, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Yang Won Min
- Department of Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Byung-Hoon Min
- Department of Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Jun Haeng Lee
- Department of Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Minwoong Kang
- Department of Digital Health, SAIHST, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Yeong Chan Lee
- Department of Digital Health, SAIHST, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Jae J Kim
- Department of Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
28
|
Dixon ED, Nardo AD, Claudel T, Trauner M. The Role of Lipid Sensing Nuclear Receptors (PPARs and LXR) and Metabolic Lipases in Obesity, Diabetes and NAFLD. Genes (Basel) 2021; 12:genes12050645. [PMID: 33926085 PMCID: PMC8145571 DOI: 10.3390/genes12050645] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are metabolic disorders characterized by metabolic inflexibility with multiple pathological organ manifestations, including non-alcoholic fatty liver disease (NAFLD). Nuclear receptors are ligand-dependent transcription factors with a multifaceted role in controlling many metabolic activities, such as regulation of genes involved in lipid and glucose metabolism and modulation of inflammatory genes. The activity of nuclear receptors is key in maintaining metabolic flexibility. Their activity depends on the availability of endogenous ligands, like fatty acids or oxysterols, and their derivatives produced by the catabolic action of metabolic lipases, most of which are under the control of nuclear receptors. For example, adipose triglyceride lipase (ATGL) is activated by peroxisome proliferator-activated receptor γ (PPARγ) and conversely releases fatty acids as ligands for PPARα, therefore, demonstrating the interdependency of nuclear receptors and lipases. The diverse biological functions and importance of nuclear receptors in metabolic syndrome and NAFLD has led to substantial effort to target them therapeutically. This review summarizes recent findings on the roles of lipases and selected nuclear receptors, PPARs, and liver X receptor (LXR) in obesity, diabetes, and NAFLD.
Collapse
Affiliation(s)
| | | | | | - Michael Trauner
- Correspondence: ; Tel.: +43-140-4004-7410; Fax: +43-14-0400-4735
| |
Collapse
|
29
|
Croci S, D’Apolito LI, Gasperi V, Catani MV, Savini I. Dietary Strategies for Management of Metabolic Syndrome: Role of Gut Microbiota Metabolites. Nutrients 2021; 13:nu13051389. [PMID: 33919016 PMCID: PMC8142993 DOI: 10.3390/nu13051389] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Metabolic syndrome (MetS) is a complex pathophysiological state with incidence similar to that of a global epidemic and represents a risk factor for the onset of chronic non-communicable degenerative diseases (NCDDs), including cardiovascular disease (CVD), type 2 diabetes mellitus, chronic kidney disease, and some types of cancer. A plethora of literature data suggest the potential role of gut microbiota in interfering with the host metabolism, thus influencing several MetS risk factors. Perturbation of the gut microbiota’s composition and activity, a condition known as dysbiosis, is involved in the etiopathogenesis of multiple chronic diseases. Recent studies have shown that some micro-organism-derived metabolites (including trimethylamine N-oxide (TMAO), lipopolysaccharide (LPS) of Gram-negative bacteria, indoxyl sulfate and p-cresol sulfate) induce subclinical inflammatory processes involved in MetS. Gut microbiota’s taxonomic species or abundance are modified by many factors, including diet, lifestyle and medications. The main purpose of this review is to highlight the correlation between different dietary strategies and changes in gut microbiota metabolites. We mainly focus on the validity/inadequacy of specific dietary patterns to reduce inflammatory processes, including leaky gut and subsequent endotoxemia. We also describe the chance of probiotic supplementation to interact with the immune system and limit negative consequences associated with MetS.
Collapse
Affiliation(s)
| | | | - Valeria Gasperi
- Correspondence: (V.G.); (M.V.C.); Tel.: +39-06-72596465 (V.G. & M.V.C.)
| | | | | |
Collapse
|
30
|
Nonalcoholic Fatty Liver Disease: Focus on New Biomarkers and Lifestyle Interventions. Int J Mol Sci 2021; 22:ijms22083899. [PMID: 33918878 PMCID: PMC8069944 DOI: 10.3390/ijms22083899] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered a hepatic manifestation of metabolic syndrome, characterized from pathological changes in lipid and carbohydrate metabolism. Its main characteristics are excessive lipid accumulation and oxidative stress, which create a lipotoxic environment in hepatocytes leading to liver injury. Recently, many studies have focused on the identification of the genetic and epigenetic modifications that also contribute to NAFLD pathogenesis and their prognostic implications. The present review is aimed to discuss on cellular and metabolic alterations associated with NAFLD, which can be helpful to identify new noninvasive biomarkers. The identification of accumulated lipids in the cell membranes, as well as circulating cytokeratins and exosomes, provides new insights in understanding of NAFLD. This review also suggests that lifestyle modifications remain the main prevention and/or treatment for NAFLD.
Collapse
|
31
|
Scapaticci S, D’Adamo E, Mohn A, Chiarelli F, Giannini C. Non-Alcoholic Fatty Liver Disease in Obese Youth With Insulin Resistance and Type 2 Diabetes. Front Endocrinol (Lausanne) 2021; 12:639548. [PMID: 33889132 PMCID: PMC8056131 DOI: 10.3389/fendo.2021.639548] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Currently, Non-Alcoholic Fatty Liver Disease (NAFLD) is the most prevalent form of chronic liver disease in children and adolescents worldwide. Simultaneously to the epidemic spreading of childhood obesity, the rate of affected young has dramatically increased in the last decades with an estimated prevalence of NAFLD of 3%-10% in pediatric subjects in the world. The continuous improvement in NAFLD knowledge has significantly defined several risk factors associated to the natural history of this complex liver alteration. Among them, Insulin Resistance (IR) is certainly one of the main features. As well, not surprisingly, abnormal glucose tolerance (prediabetes and diabetes) is highly prevalent among children/adolescents with biopsy-proven NAFLD. In addition, other factors such as genetic, ethnicity, gender, age, puberty and lifestyle might affect the development and progression of hepatic alterations. However, available data are still lacking to confirm whether IR is a risk factor or a consequence of hepatic steatosis. There is also evidence that NAFLD is the hepatic manifestation of Metabolic Syndrome (MetS). In fact, NAFLD often coexist with central obesity, impaired glucose tolerance, dyslipidemia, and hypertension, which represent the main features of MetS. In this Review, main aspects of the natural history and risk factors of the disease are summarized in children and adolescents. In addition, the most relevant scientific evidence about the association between NAFLD and metabolic dysregulation, focusing on clinical, pathogenetic, and histological implication will be provided with some focuses on the main treatment options.
Collapse
Affiliation(s)
| | | | | | | | - Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| |
Collapse
|
32
|
Zhang L, Zhou X, Dai Y, Lv C, Wu J, Wu Q, Li T, Wang Y, Xia P, Pei H, Huang B. Establishment of interleukin-18 time-resolved fluorescence immunoassay and its preliminary application in liver disease. J Clin Lab Anal 2021; 35:e23758. [PMID: 33720453 PMCID: PMC8128310 DOI: 10.1002/jcla.23758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/01/2021] [Accepted: 02/27/2021] [Indexed: 12/30/2022] Open
Abstract
Background To establish a time‐resolved fluorescence immunoassay of interleukin (IL)‐18 (IL‐18‐TRFIA) and detect its concentration in different liver disease serum samples. Methods The IL‐18 coating antibody and the Eu3+‐labeled detection antibody were used for the IL‐18‐TRFIA to detect serum IL‐18 concentration in patients with liver cancer, hepatitis B, hepatitis C, autoimmune hepatitis, fatty liver disease, and healthy controls. The double‐antibody sandwich method was used and methodological evaluation was performed. Results The average intra‐ and inter‐assay coefficient of variation for IL‐18‐TRFIA was 4.80% and 5.90%, respectively. The average recovery rate was 106.19 ± 3.44%. The sensitivity (10.96 pg/mL) was higher than that obtained using the ELISA method (62.5 pg/mL). The detection range was 10.96–1000 pg/mL. IL‐6 and galectin‐3 did not cross‐react with IL‐18‐TRFIA. The serum concentration of IL‐18 was (776.99; 653.48–952.39 pg/mL) in hepatitis C, (911; 775.55–1130.03 pg/mL) in fatty liver, (1048.88; 730.04–1185.10 pg/mL) in liver cancer, and (949.12; 723.70–1160.28 pg/mL) in hepatitis B. Moreover, IL‐18 serum levels were significantly higher in patients than the healthy controls (483.09; 402.52–599.70/mL) (p < 0.0001). Autoimmune hepatitis with a serum IL‐18 concentration of 571.62; 502.47–730.31 pg/mL was not significantly different from the healthy controls (p > 0.05). Conclusion We established a highly sensitive IL‐18‐TRFIA method that successfully detected serum IL‐18 concentrations in different liver diseases. Furthermore, IL‐18 serum concentration was higher in patients with liver cancer, hepatitis C, hepatitis B, and fatty liver disease compared to healthy controls.
Collapse
Affiliation(s)
- Li Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiumei Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yaping Dai
- Wuxi No. 5 People's Hospital, Wuxi, China
| | - Chunyan Lv
- Wuxi No. 5 People's Hospital, Wuxi, China
| | - Jian Wu
- Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, China
| | - Qingqing Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ting Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Penguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hao Pei
- Wuxi No. 5 People's Hospital, Wuxi, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
33
|
Co-Treatment with Cefotaxime and High-Fructose Diet Inducing Nonalcoholic Fatty Liver Disease and Gut Microbial Dysbiosis in Mice. Processes (Basel) 2021. [DOI: 10.3390/pr9030434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
High fructose diet causes metabolic syndrome and induces host gut microbial dysbiosis and related obesity and nonalcoholic fatty liver disease (NAFLD). Several antibiotic treatments could prevent fatty liver. However, there are studies that have demonstrated that a high-fructose diet could influence the gut microbial dysbiosis and induce fatty liver. The purpose of this study was performed to partially modify the gut bacterial composition with a single cefotaxime treatment, which might affect the fructose-induced NAFLD severity. The C57BL/6JNarl male mice were divided into four groups including vehicle/chow diet (VE-CD), vehicle/high-fructose diet (VE-FD), antibiotic (cefotaxime (CF))/CD, and CF/FD. The results showed that body weight gain, moderate hepatic steatosis severity, epididymal white adipose tissue hypertrophy, and insulin resistance occurrence with NAFLD-related symptoms were observed only in the CF-FD group. The raised protein expression of hepatic lipogenesis was observed in the CF-FD group, but lipolysis protein expression was no difference. The diversity and composition of microbiota were significantly reduced in the CF-FD group. The Erysipelatoclostridium, Enterobacteriaceae, Lachnospiraceae, and Escherichia Shigella were in increased abundance in the feces of CF-FD group compared with VE-FD group. The novel model reveals that particular antibiotics such as cefotaxime co-treatment with high-fructose diet may affect the gut microbiota accelerating the NAFLD and obesity.
Collapse
|
34
|
Liu Y, Cavallaro PM, Kim BM, Liu T, Wang H, Kühn F, Adiliaghdam F, Liu E, Vasan R, Samarbafzadeh E, Farber MZ, Li J, Xu M, Mohad V, Choi M, Hodin RA. A role for intestinal alkaline phosphatase in preventing liver fibrosis. Theranostics 2021; 11:14-26. [PMID: 33391458 PMCID: PMC7681079 DOI: 10.7150/thno.48468] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Rationale: Liver fibrosis is frequently associated with gut barrier dysfunction, and the lipopolysaccharides (LPS) -TLR4 pathway is common to the development of both. Intestinal alkaline phosphatase (IAP) has the ability to detoxify LPS, as well as maintain intestinal tight junction proteins and gut barrier integrity. Therefore, we hypothesized that IAP may function as a novel therapy to prevent liver fibrosis. Methods: Stool IAP activity from cirrhotic patients were determined. Common bile duct ligation (CBDL) and Carbon Tetrachloride-4 (CCl4)-induced liver fibrosis models were used in WT, IAP knockout (KO), and TLR4 KO mice supplemented with or without exogenous IAP in their drinking water. The gut barrier function and liver fibrosis markers were tested. Results: Human stool IAP activity was decreased in the setting of liver cirrhosis. In mice, IAP activity and genes expression decreased after CBDL and CCl4 exposure. Intestinal tight junction related genes and gut barrier function were impaired in both models of liver fibrosis. Oral IAP supplementation attenuated the decrease in small intestine tight junction protein gene expression and gut barrier function. Liver fibrosis markers were significantly higher in IAP KO compared to WT mice in both models, while oral IAP rescued liver fibrosis in both WT and IAP KO mice. In contrast, IAP supplementation did not attenuate fibrosis in TLR4 KO mice in either model. Conclusions: Endogenous IAP is decreased during liver fibrosis, perhaps contributing to the gut barrier dysfunction and worsening fibrosis. Oral IAP protects the gut barrier and further prevents the development of liver fibrosis via a TLR4-mediated mechanism.
Collapse
Affiliation(s)
- Yang Liu
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
| | - Paul M. Cavallaro
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
| | - Byeong-Moo Kim
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
| | - Tao Liu
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
- Department of Gastroenterological Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyan Wang
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
- Department of Gastroenterological Surgery, People's Hospital of Liaoning Province, Shenyang, China
| | - Florian Kühn
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fatemeh Adiliaghdam
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
| | - Enyu Liu
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
- Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, Jian, China
| | - Robin Vasan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
- Department of Surgery, University-Pittsburgh Medical Center, Pittsburgh, PA, US
| | - Ehsan Samarbafzadeh
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
| | - Matthew Z. Farber
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
| | - Junhui Li
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Meng Xu
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Vidisha Mohad
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
| | - Michael Choi
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
| | - Richard A. Hodin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
| |
Collapse
|
35
|
Kozaczek M, Bottje W, Kong B, Dridi S, Albataineh D, Lassiter K, Hakkak R. Long-Term Soy Protein Isolate Consumption Reduces Liver Steatosis Through Changes in Global Transcriptomics in Obese Zucker Rats. Front Nutr 2020; 7:607970. [PMID: 33363197 PMCID: PMC7759473 DOI: 10.3389/fnut.2020.607970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
To determine how soy protein isolate (SPI) ameliorated liver steatosis in male obese Zucker rats, we conducted global transcriptomic expression (RNAseq) analysis on liver samples of male rats fed either the SPI or a control casein (CAS)-based diet (n = 8 per group) for 16 weeks. Liver transcriptomics were analyzed using an Ilumina HiSeq system with 2 × 100 base pair paired-end reads method. Bioinformatics was conducted using Ingenuity Pathway Analysis (IPA) software (Qiagen, CA) with P < 0.05 and 1.3-fold differential expression cutoff values. Regression analysis between RNAseq data and targeted mRNA expression analysis of 12 top differentially expressed genes (from the IPA program) using quantitative PCR (qPCR) revealed a significant regression analysis (r2 = 0.69, P = 0.0008). In addition, all qPCR values had qualitatively similar direction of up- or down-regulation compared to the RNAseq transcriptomic data. Diseases and function analyses that were based on differentially expressed target molecules in the dataset predicted that lipid metabolism would be enhanced whereas inflammation was predicted to be inhibited in SPI-fed compared to CAS-fed rats at 16 weeks. Combining upstream regulator and regulator effects functions in IPA facilitates the prediction of upstream regulators (e.g., transcription regulators) that could play important roles in attenuating or promoting liver steatosis due to SPI or CAS diets. Upstream regulators that were predicted to be activated (from expression of down-stream targets) linked to increased conversion of lipid and transport of lipid in SPI-fed rats included hepatocyte nuclear factor 4 alpha (HNF4A) and aryl hydrocarbon receptor (AHR). Upstream regulators that were predicted to be activated in CAS-fed rats linked to activation of phagocytosis and neutrophil chemotaxis included colony stimulating factor 2 and tumor necrosis factor. The results provide clear indication that long-term SPI-fed rats exhibited diminished inflammatory response and increased lipid transport in liver compared to CAS-fed rats that likely would contribute to reduced liver steatosis in this obese Zucker rat model.
Collapse
Affiliation(s)
- Melisa Kozaczek
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Poultry Science & The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Walter Bottje
- Department of Poultry Science & The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Byungwhi Kong
- Department of Poultry Science & The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Department of Poultry Science & The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Diyana Albataineh
- Department of Poultry Science & The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Kentu Lassiter
- Department of Poultry Science & The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Reza Hakkak
- Department of Poultry Science & The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| |
Collapse
|
36
|
Jennison E, Byrne CD. The role of the gut microbiome and diet in the pathogenesis of non-alcoholic fatty liver disease. Clin Mol Hepatol 2020; 27:22-43. [PMID: 33291863 PMCID: PMC7820212 DOI: 10.3350/cmh.2020.0129] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease, with a prevalence that is increasing in parallel with the global rise in obesity and type 2 diabetes mellitus. The pathogenesis of NAFLD is complex and multifactorial, involving environmental, genetic and metabolic factors. The role of the diet and the gut microbiome is gaining interest as a significant factor in NAFLD pathogenesis. Dietary factors induce alterations in the composition of the gut microbiome (dysbiosis), commonly reflected by a reduction of the beneficial species and an increase in pathogenic microbiota. Due to the close relationship between the gut and liver, altering the gut microbiome can affect liver functions; promoting hepatic steatosis and inflammation. This review summarises the current evidence supporting an association between NAFLD and the gut microbiome and dietary factors. The review also explores potential underlying mechanisms underpinning these associations and whether manipulation of the gut microbiome is a potential therapeutic strategy to prevent or treat NAFLD.
Collapse
Affiliation(s)
- Erica Jennison
- Department of Chemical Pathology, Southampton General Hospital, University Hospital Southampton, Southampton, UK
| | - Christopher D Byrne
- Department of Nutrition and Metabolism, Faculty of Medicine, University of Southampton, Southampton, UK.,Southampton National Institute for Health Research Biomedical Research Centre, Southampton General Hospital, University Hospital Southampton, Southampton, UK
| |
Collapse
|
37
|
GUIMARÃES VM, SANTOS VN, BORGES PSDA, DE FARIAS JLR, GRILLO P, PARISE ER. PERIPHERAL BLOOD ENDOTOXIN LEVELS ARE NOT ASSOCIATED WITH SMALL INTESTINAL BACTERIAL OVERGROWTH IN NONALCOHOLIC FATTY LIVER DISEASE WITHOUT CIRRHOSIS. ARQUIVOS DE GASTROENTEROLOGIA 2020; 57:471-476. [DOI: 10.1590/s0004-2803.202000000-82] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is one of the most common forms of chronic liver disease worldwide. Approximately 20% of individuals with NAFLD develop nonalcoholic steatohepatitis (NASH), which is associated with increased risk of cirrhosis, portal hypertension, and hepatocellular carcinoma. Intestinal microflora, including small intestinal bacterial overgrowth (SIBO), appear to play an important role in the pathogenesis of the disease, as demonstrated in several clinical and experimental studies, by altering intestinal permeability and allowing bacterial endotoxins to enter the circulation. OBJECTIVE: To determine the relationship between SIBO and endotoxin serum levels with clinical, laboratory, and histopathological aspects of NAFLD and the relationship between SIBO and endotoxin serum levels before and after antibiotic therapy. METHODS: Adult patients with a histological diagnosis of NAFLD, without cirrhosis were included. A comprehensive biochemistry panel, lactulose breath test (for diagnosis of SIBO), and serum endotoxin measurement (chromogenic LAL assay) were performed. SIBO was treated with metronidazole 250 mg q8h for 10 days and refractory cases were given ciprofloxacin 500 mg q12h for 10 days. RESULTS: Overall, 42 patients with a histopathological diagnosis of NAFLD were examined. The prevalence of SIBO was 26.2%. Comparison of demographic and biochemical parameters between patients with SIBO and those without SIBO revealed no statistically significant differences, except for use of proton pump inhibitors, which was significantly more frequent in patients with positive breath testing. The presence of SIBO was also associated with greater severity of hepatocellular ballooning on liver biopsy. Although the sample, as a whole, have elevated circulating endotoxin levels, we found no significant differences in this parameter between the groups with and without SIBO. Endotoxin values before and after antibiotic treatment did not differ, even on paired analysis, suggesting absence of any relationship between these factors. Serum endotoxin levels were inversely correlated with HDL levels, and directly correlated with triglyceride levels. CONCLUSION: Serum endotoxin levels did not differ between patients with and without SIBO, nor did these levels change after antibacterial therapy, virtually ruling out the possibility that elevated endotoxinemia in non-cirrhotic patients with NAFLD is associated with SIBO. Presence of SIBO was associated with greater severity of ballooning degeneration on liver biopsy, but not with a significantly higher prevalence of NASH. Additional studies are needed to evaluate the reproducibility and importance of this finding in patients with NAFLD and SIBO.
Collapse
|
38
|
de Barros F, Fonseca ABM. Bariatric surgery during the evolution of fatty liver-A randomized clinical trial comparing gastric bypass and sleeve gastrectomy based on transient elastography. Clin Obes 2020; 10:e12393. [PMID: 32885600 DOI: 10.1111/cob.12393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is closely related to patients with obesity. For patients with NAFLD, bariatric surgery is the best treatment. However, the best technique to patient with severe NAFLD is still unknown. Currently available, the imaging methods for assessing and monitoring NAFLD are of limited use for diagnosing. In contrast, compared with liver biopsy and transient hepatic elastography (THE) has shown good accuracy in individuals with obesity. To prospectively compare the evolution of THE parameters of NAFLD right after the procedures: gastric bypass vs sleeve gastrectomy. Patients with obesity were randomized into two groups: gastric bypass and sleeve gastrectomy in a previous study. Iin a previous study one week before and three months after surgery the patients underwent evaluation by THE. The patients were also analyzed with controlled attenuation parameter (CAP), which assesses the degree of hepatic steatosis using the same device. Sleeve gastrectomy group showed a greater decrease in THE values (from 8.13 to 5.53 kPa) compared to the gastric bypass group (from 9.25 to 8.81 kPa; P = .004). CAP also revealed a greater decrease in sleeve subjects (from 287 to 242 dB/m) compared to gastric bypass subjects (from 290 to 276 dB/m; P < .0001). The absolute values of these differences also had a largest decrease with both methods in sleeve gastrectomy group (P = .013 and P = .005 for THE and CAP, respectively).Sleeve gastrectomy showed a greater decrease in both parameters (THE and CAP) than gastric bypass in the first months.
Collapse
Affiliation(s)
- Fernando de Barros
- Department of General Surgery, Fluminense Federal University, Niterói, RJ, Brazil
| | | |
Collapse
|
39
|
Fukushima H, Kono H, Hirayama K, Akazawa Y, Nakata Y, Wakana H, Fujii H. Changes in Function and Dynamics in Hepatic and Splenic Macrophages in Non-Alcoholic Fatty Liver Disease. Clin Exp Gastroenterol 2020; 13:305-314. [PMID: 32922061 PMCID: PMC7457821 DOI: 10.2147/ceg.s248635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
Background The aim of this study was to investigate the populations and functions of hepatic and splenic macrophages (Mfs) in non-alcoholic fatty liver disease (NAFLD). Materials and Methods Experiment 1: Wild-type and STAM® mice were given chow or high-fat diets for designated periods. In isolated Mfs, phagocytosis and cytokine production were assessed. Immunohistochemistry for CD68 and F4/80 and expression of CD14 and CD16 were assessed. Experiment 2: Bone marrow cells harvested from enhanced green fluorescent protein (EGFP) mice were transplanted into wild-type mice with or without splenectomy after total body irradiation that was kept on methionine- and choline-deficient diets. Results Experiment 1: The number of CD68-positive cells and the percentage of F4/80-positive/CD68-positive cells increased with the progression of NAFLD. Production of TNF-α and IL-6 by hepatic Mfs was greater than that by splenic Mfs in mice with NASH. The number of CD14+CD16− Mfs increased in the spleen and decreased in the liver in animals that had progressed to NASH. Furthermore, the number of CD14+CD16+ hepatic Mfs was increased in animals that had progressed to NASH with fibrosis. Experiment 2: EGFP-positive cells were observed in the liver after transplantation. In the splenectomy group, EGFP-positive Mfs were also observed; however, the number was significantly less than that in the sham operation group. Conclusion The populations and functions of hepatic and splenic Mfs are altered during the progression of NAFLD. In addition, increased hepatic Mfs during the progression of NAFLD may migrate from bone marrow to the liver via the spleen.
Collapse
Affiliation(s)
- Hisataka Fukushima
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroshi Kono
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kazuyoshi Hirayama
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yoshihiro Akazawa
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yuuki Nakata
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroyuki Wakana
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hideki Fujii
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.,Department of Surgery, Kofu Municipal Hospital, Yamanashi, Japan
| |
Collapse
|
40
|
Chopyk DM, Grakoui A. Contribution of the Intestinal Microbiome and Gut Barrier to Hepatic Disorders. Gastroenterology 2020; 159:849-863. [PMID: 32569766 PMCID: PMC7502510 DOI: 10.1053/j.gastro.2020.04.077] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Intestinal barrier dysfunction and dysbiosis contribute to development of diseases in liver and other organs. Physical, immunologic, and microbiologic (bacterial, fungal, archaeal, viral, and protozoal) features of the intestine separate its nearly 100 trillion microbes from the rest of the human body. Failure of any aspect of this barrier can result in translocation of microbes into the blood and sustained inflammatory response that promote liver injury, fibrosis, cirrhosis, and oncogenic transformation. Alterations in intestinal microbial populations or their functions can also affect health. We review the mechanisms that regulate intestinal permeability and how changes in the intestinal microbiome contribute to development of acute and chronic liver diseases. We discuss individual components of the intestinal barrier and how these are disrupted during development of different liver diseases. Learning more about these processes will increase our understanding of the interactions among the liver, intestine, and its flora.
Collapse
Affiliation(s)
- Daniel M. Chopyk
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA
| | - Arash Grakoui
- Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
41
|
|
42
|
Lv H, Liu Y, Zhang B, Zheng Y, Ji H, Li S. The improvement effect of gastrodin on LPS/GalN-induced fulminant hepatitis via inhibiting inflammation and apoptosis and restoring autophagy. Int Immunopharmacol 2020; 85:106627. [PMID: 32473572 DOI: 10.1016/j.intimp.2020.106627] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/29/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
Fulminant hepatitis (FH), characterized by overwhelmed inflammation and massive hepatocyte apoptosis, is a life-threatening and high mortality rate. Gastrodin (GTD), a phenolic glucoside extracted from Gastrodiaelata Blume, exerts anti-apoptosis, and anti-inflammatory activities. In the present study, we aimed to evaluate whether GTD treatment could alleviate lipopolysaccharide and d-galactosamine (LPS/GalN)-induced FH in mice and its potential mechanisms. These data suggested that GTD treatment remarkably protected against LPS/GalN-induced FH by enhancing the survival rate of mice, reducing ALT and AST levels, attenuating histopathological changes, and suppressing interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α secretion. In addition, GTD treatment relieved hepatic apoptosis by the regulation of peroxisome proliferator-activated receptors (PPARs), P53 and caspase-3/9. Furthermore, GTD treatment could significantly inhibit inflammation-related signaling pathways activated by LPS/GalN, including the suppression of nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) and nuclear factor-kappa B (NF-κB) activation. Importantly, GTD treatment effectively restored but not induced LPS/GalN-reduced the expression of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, as well as the level of pro-autophagy proteins. Taken together, our investigation indicated that GTD played an essential role in liver protection by relieving hepatocyte apoptosis and inflammation reaction, which may be closely involved in the inhibition of NLRP3 inflammasome and NF-κB activation, regulation of apoptosis-related proteins expression, and the recovery of AMPK/ACC/autophagy.
Collapse
Affiliation(s)
- Hongming Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Yuanyuan Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Boxi Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Yuwei Zheng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China.
| |
Collapse
|
43
|
Isaacson RH, Beier JI, Khoo NK, Freeman BA, Freyberg Z, Arteel GE. Olanzapine-induced liver injury in mice: aggravation by high-fat diet and protection with sulforaphane. J Nutr Biochem 2020; 81:108399. [PMID: 32388251 DOI: 10.1016/j.jnutbio.2020.108399] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Olanzapine is effective to treat for schizophrenia and other mood disorders, but limited by side effects such as weight gain, dyslipidemia, and liver injury. Obesity in the US is at epidemic levels, and is a significant risk factor for drug-induced liver injury. Obesity incidence in the psychiatric population is even higher than in the US population as a whole. The purpose of this study was to test the hypothesis that obesity worsens olanzapine-induced hepatic injury, and to investigate the potential protective effects of sulforaphane. 8-week old female C57BL/6 mice were fed either a high-fat or low-fat control diet (HFD and LFD). Mice also received either olanzapine (8 mg/kg/d) or vehicle by osmotic minipump for 4 weeks. A subset of mice in the HFD + olanzapine group was administered sulforaphane, a prototypical Nrf2 inducer (90 mg/kg/d). Olanzapine alone increased body weight, without a commensurate increase in food consumption. Olanzapine also caused hepatic steatosis and injury. Combining olanzapine and HFD caused further dysregulation of glucose and lipid metabolism. Liver damage from concurrent HFD and olanzapine was worse than liver damage from high-fat diet or olanzapine alone. Sulforaphane alleviated many metabolic side effects of olanzapine and HFD. Taken together, these data show that olanzapine dysregulates glucose and lipid metabolism and exacerbates hepatic changes caused by eating a HFD. Activation of the intrinsic antioxidant defense pathway with sulforaphane can partially prevent these effects of olanzapine and may represent a useful strategy to protect against liver injury.
Collapse
Affiliation(s)
- Robin H Isaacson
- Department of Cell Biology, Emory University School of Medicine Atlanta, GA
| | - Juliane I Beier
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition; Pittsburgh Liver Research Center
| | | | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology; Vascular Medicine Institute
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Gavin E Arteel
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition; Pittsburgh Liver Research Center.
| |
Collapse
|
44
|
Hassan NF, Nada SA, Hassan A, El-Ansary MR, Al-Shorbagy MY, Abdelsalam RM. Saroglitazar Deactivates the Hepatic LPS/TLR4 Signaling Pathway and Ameliorates Adipocyte Dysfunction in Rats with High-Fat Emulsion/LPS Model-Induced Non-alcoholic Steatohepatitis. Inflammation 2019; 42:1056-1070. [PMID: 30737662 DOI: 10.1007/s10753-019-00967-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The most epidemic liver disorder non-alcoholic steatohepatitis (NASH) is characterized by hepatic steatosis and inflammation with hepatocellular damage. Recently, it is predictable to be the extensive cause for liver transplantation. The absence of an approved therapeutic agent for NASH is the reason for investigating saroglitazar (SAR) which showed promising effects as a dual PPAR-α/γ agonist in recent studies on NASH. Here, we aimed to investigate the effect of SAR on NASH induced in rats by the administration of high-fat emulsion (HFE) and small doses of lipopolysaccharides (LPS) for 5 weeks. Rats were divided into three groups: negative control group (saline and standard rodent chow), model group (HFE(10 ml/kg/day, oral gavage) + LPS(0.5 mg/kg/week, i.p)), and SAR-treated group (HFE(10 ml/kg/day, oral gavage) + LPS(0.5 mg/kg/week, i.p.) + SAR(4 mg/kg/day, oral gavage) starting at week 3.Treatment with SAR successfully ameliorated the damaging effects of HFE with LPS, by counteracting body weight gain and biochemically by normalization of liver function parameters activity, glucose, insulin, homeostasis model of assessment (HOMA-IR) score, lipid profile levels, and histopathological examination. Significant changes in adipokine levels were perceived, resulting in a significant decline in serum leptin and tumor necrosis factor-α (TNF-α) level concurrent with adiponectin normalization. The positive effects observed for SAR on NASH are due to the downregulation of the LPS/TLR4 pathway, as indicated by the suppression of hepatic Toll-like receptor 4 (TLR4), NF-κB, TNF-α, and transforming growth factor-β1 (TGF-β1) expression. In conclusion, this work verified that SAR ameliorates NASH through deactivation of the hepatic LPS/TLR4 pathway and inhibition of adipocyte dysfunction.
Collapse
Affiliation(s)
- Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Somaia A Nada
- Department of Pharmacology and Toxicology, National Research Centre, Giza, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mona R El-Ansary
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Al-Mokattam, Cairo, Egypt.
| | - Muhammad Y Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,School of Pharmacy, Newgiza University, Giza, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
45
|
Non-alcoholic fatty liver diseases: from role of gut microbiota to microbial-based therapies. Eur J Clin Microbiol Infect Dis 2019; 39:613-627. [PMID: 31828683 DOI: 10.1007/s10096-019-03746-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the well-known disease of the liver in adults and children throughout the world. The main manifestations related to NAFLD are an unusual storage of lipid in hepatocytes (hepatic steatosis) and progression of inflammation for non-alcoholic steatohepatitis (NASH). NAFLD is described as a multifactorial complication due to the genetic predisposition, metabolic functions, inflammatory, gut microbiota (GM), and environmental factors. The GM dysregulation among these factors is correlated to NAFLD development. In recent decades, advanced microbial profiling methods are continuing to shed light on the nature of the changes in the GM caused by NASH and NAFLD. In the current review, we aim to perform a literature review in different library databases and electronic searches (Science Direct, PubMed, and Google Scholar) which were randomly obtained. This will be done in order to provide an overview of the relation between GM and NAFLD, and the role of prebiotics, probiotics, and fecal microbiota transplantation (FMT), as potential therapeutic challenges for NAFLD.
Collapse
|
46
|
Lang AL, Krueger AM, Schnegelberger RD, Kaelin BR, Rakutt MJ, Chen L, Arteel GE, Beier JI. Rapamycin attenuates liver injury caused by vinyl chloride metabolite chloroethanol and lipopolysaccharide in mice. Toxicol Appl Pharmacol 2019; 382:114745. [PMID: 31499194 PMCID: PMC6823165 DOI: 10.1016/j.taap.2019.114745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/26/2019] [Accepted: 09/04/2019] [Indexed: 01/09/2023]
Abstract
Vinyl chloride (VC) is a prevalent environmental toxicant that is rapidly metabolized within the liver. Its metabolites have been shown to directly cause hepatic injury at high exposure levels. We have previously reported that VC metabolite, chloroethanol (CE), potentiates liver injury caused by lipopolysaccharide (LPS). Importantly, that study showed that CE alone, while not causing damage per se, was sufficient to alter hepatic metabolism and increase mTOR phosphorylation in mice, suggesting a possible role for the mTOR pathway. Here, we explored the effect of an mTOR inhibitor, rapamycin, in this model. C57BL/6 J mice were administered CE, followed by rapamycin 1 h and LPS 24 h later. As observed previously, the combination of CE and LPS significantly enhanced liver injury, inflammation, oxidative stress, and metabolic dysregulation. Rapamycin attenuated not only inflammation, but also restored the metabolic phenotype and protected against CE + LPS-induced oxidative stress. Importantly, rapamycin protected against mitochondrial damage and subsequent production of reactive oxygen species (ROS). The protective effect on mitochondrial function by rapamycin was mediated, by restoring the integrity of the electron transport chain at least in part, by blunting the deactivation of mitochondrial c-src, which is involved mitochondrial ROS production by electron transport chain leakage. Taken together, these results further demonstrate a significant role of mTOR-mediated pathways in VC-metabolite induced liver injury and provide further insight into VC-associated hepatic damage. As mTOR mediated pathways are very complex and rapamycin is a more global inhibitor, more specific mTOR (i.e. mTORC1) inhibitors should be considered in future studies.
Collapse
Affiliation(s)
- Anna L Lang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States of America; Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 40292, United States of America.
| | - Austin M Krueger
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States of America.
| | - Regina D Schnegelberger
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| | - Brenna R Kaelin
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States of America.
| | - Maxwell J Rakutt
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States of America.
| | - Liya Chen
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States of America; Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 40292, United States of America.
| | - Gavin E Arteel
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| | - Juliane I Beier
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| |
Collapse
|
47
|
Srinivasan MP, Bhopale KK, Amer SM, Wan J, Kaphalia L, Ansari GS, Kaphalia BS. Linking Dysregulated AMPK Signaling and ER Stress in Ethanol-Induced Liver Injury in Hepatic Alcohol Dehydrogenase Deficient Deer Mice. Biomolecules 2019; 9:biom9100560. [PMID: 31581705 PMCID: PMC6843321 DOI: 10.3390/biom9100560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/23/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
Ethanol (EtOH) metabolism itself can be a predisposing factor for initiation of alcoholic liver disease (ALD). Therefore, a dose dependent study to evaluate liver injury was conducted in hepatic alcohol dehydrogenase (ADH) deficient (ADH−) and ADH normal (ADH+) deer mice fed 1%, 2% or 3.5% EtOH in the liquid diet daily for 2 months. Blood alcohol concentration (BAC), liver injury marker (alanine amino transferase (ALT)), hepatic lipids and cytochrome P450 2E1 (CYP2E1) activity were measured. Liver histology, endoplasmic reticulum (ER) stress, AMP-activated protein kinase (AMPK) signaling and cell death proteins were evaluated. Significantly increased BAC, plasma ALT, hepatic lipids and steatosis were found only in ADH− deer mice fed 3.5% EtOH. Further, a significant ER stress and increased un-spliced X-box binding protein 1 were evident only in ADH− deer mice fed 3.5% EtOH. Both strains fed 3.5% EtOH showed deactivation of AMPK, but increased acetyl Co-A carboxylase 1 and decreased carnitine palmitoyltransferase 1A favoring lipogenesis were found only in ADH− deer mice fed 3.5% EtOH. Therefore, irrespective of CYP2E1 overexpression; EtOH dose and hepatic ADH deficiency contribute to EtOH-induced steatosis and liver injury, suggesting a linkage between ER stress, dysregulated hepatic lipid metabolism and AMPK signaling.
Collapse
Affiliation(s)
- Mukund P Srinivasan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kamlesh K Bhopale
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Samir M Amer
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Forensic Medicine and Clinical Toxicology, Tanta University, Tanta 31512, Egypt
| | - Jie Wan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Lata Kaphalia
- Division of Pulmonary, Critical Care Medicine, Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ghulam S Ansari
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bhupendra S Kaphalia
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
48
|
Cai J, Zhang XJ, Li H. The Role of Innate Immune Cells in Nonalcoholic Steatohepatitis. Hepatology 2019; 70:1026-1037. [PMID: 30653691 DOI: 10.1002/hep.30506] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/05/2019] [Indexed: 02/06/2023]
Abstract
Inflammation and metabolic dysfunction are hallmarks of nonalcoholic steatohepatitis (NASH), which is one of the fastest-growing liver diseases worldwide. Emerging evidence indicates that innate immune mechanisms are pivotal drivers of inflammation and other pathological manifestations observed in NASH, such as hepatosteatosis, insulin resistance (IR), and fibrosis. This robust innate immune reaction is intrinsic to the liver, which is an important immunological organ that contains a coordinated network of innate immune cells, including Kupffer cells (KCs), dendritic cells (DCs), and lymphocytes. Hepatocytes and liver sinusoidal endothelial cells (LSECs) are not formally innate immune cells, but they take on immune cell function when stressed. These cells can sense excess metabolites and bacterial products and translate those signals into immune responses and pathological hepatic changes during the development of NASH. In this review, we take a historical perspective in describing decades of research that aimed to identify the key molecular and cellular players in the innate immune system in the setting of NASH. Furthermore, we summarize the innate immune cells that are involved in the progression of NASH and illustrate how they sense disturbances in circulating metabolic factors by innate immune receptors and subsequently initiate the intercellular signaling cascades that lead to persistent inflammation and progression of hepatic complications.
Collapse
Affiliation(s)
- Jingjing Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of cardiometabolic syndrome, which often also includes obesity, diabetes, and dyslipidemia. It is rapidly becoming the most prevalent liver disease worldwide. A sizable minority of NAFLD patients develop nonalcoholic steatohepatitis (NASH), which is characterized by inflammatory changes that can lead to progressive liver damage, cirrhosis, and hepatocellular carcinoma. Recent studies have shown that in addition to genetic predisposition and diet, the gut microbiota affects hepatic carbohydrate and lipid metabolism as well as influences the balance between pro‐inflammatory and anti‐inflammatory effectors in the liver, thereby impacting NAFLD and its progression to NASH. In this review, we will explore the impact of gut microbiota and microbiota‐derived compounds on the development and progression of NAFLD and NASH, and the unexplored factors related to potential microbiome contributions to this common liver disease.
Collapse
Affiliation(s)
| | - Danping Zheng
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,Department of Gastroenterology, The First Affiliated Hospital Sun Yat-sen University, Guangzhou, China
| | - Oren Shibolet
- Department of Gastroenterology and Liver Disease, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
50
|
Meng Z, Wang D, Liu W, Li R, Yan S, Jia M, Zhang L, Zhou Z, Zhu W. Perinatal exposure to Bisphenol S (BPS) promotes obesity development by interfering with lipid and glucose metabolism in male mouse offspring. ENVIRONMENTAL RESEARCH 2019; 173:189-198. [PMID: 30921577 DOI: 10.1016/j.envres.2019.03.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 05/27/2023]
Abstract
Bisphenol S (BPS), a substitute of bisphenol A (BPA), is widely used for manufacturing different polymers. Due to its wide range of applications, BPS has been frequently detected in the foodstuffs, environment and human blood and excreta. In this study, we examined the effects of the perinatal exposure to BPS on obesity development using 1H NMR based on metabolomics strategy combined with gene expression analysis in male mouse offspring at a dosage of 100 ng/g bw/day. We found that perinatal exposure to BPS significantly increased the body weight, the weights of liver and epididymal white adipose tissue (epiWAT), serum alanine aminotransferase (ALT) activity, and the contents of triglyceride (TG) and cholesterol (T-Cho) in the liver. Histopathological analysis showed that lipids were accumulated significantly in liver tissues and epiWAT with BPS exposure. Furthermore, expressions of genes involved in the inflammatory pathways were significantly increased in liver tissues and epiWAT. Meanwhile, serum metabolomics study showed significant changes in the contents of metabolites associated with lipid and glucose metabolism. Correspondingly, the relative expression levels of genes involved in lipid and glucose metabolism were significantly changed in the liver tissue and epiWAT of male mouse offspring. In conclusion, these results showed that perinatal exposure to BPS may increase the risk of obesity by interfering with lipid and glucose metabolism in male mouse offspring. The potential health risks of BPS in the human required further detailed studies evaluating.
Collapse
Affiliation(s)
- Zhiyuan Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Wan Liu
- Department of Digestive, The Traditional Chinese Medicine Hospital of Xuzhou City Affiliated to Nanjing University of Chinese, Xuzhou, 221003, China
| | - Ruisheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Sen Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Ming Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Luyao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|