1
|
Langlois GA, Rueckert S. In memoriam: Thomas Cavalier-Smith (1942-2021). J Eukaryot Microbiol 2024; 71:e13013. [PMID: 38059499 DOI: 10.1111/jeu.13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 12/08/2023]
Abstract
Thomas Cavalier-Smith, born in London, U.K., on October 21, 1942, was a Professor of Evolutionary Biology in the Department of Zoology at the University of Oxford at the time of his death on March 19, 2021. Credited with at least 235 research works and over 20,000 citations, Cavalier-Smith was a well-known and widely respected scientist who took a bold and detailed approach to understanding major transitions in evolution, including the role of endosymbiosis. He was noted for his willingness to question theories and constantly accumulate and evaluate data, motivated by science for the sake of science. This paper reviews Thomas Cavalier-Smith's major accomplishments, examines his theoretical approaches, and provides highlights from the "Tree of Life Symposium" sponsored by the International Society of Protistologists (ISOP) and the International Society of Evolutionary Protistology (ISEP) on June 21, 2021, to celebrate Tom's life and work.
Collapse
Affiliation(s)
- Gaytha A Langlois
- Marine Microbial Research Laboratory, Bryant University, Smithfield, Rhode Island, USA
| | - Sonja Rueckert
- Department of Eukaryotic Microbiology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Baum B, Spang A. On the origin of the nucleus: a hypothesis. Microbiol Mol Biol Rev 2023; 87:e0018621. [PMID: 38018971 PMCID: PMC10732040 DOI: 10.1128/mmbr.00186-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
SUMMARYIn this hypothesis article, we explore the origin of the eukaryotic nucleus. In doing so, we first look afresh at the nature of this defining feature of the eukaryotic cell and its core functions-emphasizing the utility of seeing the eukaryotic nucleoplasm and cytoplasm as distinct regions of a common compartment. We then discuss recent progress in understanding the evolution of the eukaryotic cell from archaeal and bacterial ancestors, focusing on phylogenetic and experimental data which have revealed that many eukaryotic machines with nuclear activities have archaeal counterparts. In addition, we review the literature describing the cell biology of representatives of the TACK and Asgardarchaeaota - the closest known living archaeal relatives of eukaryotes. Finally, bringing these strands together, we propose a model for the archaeal origin of the nucleus that explains much of the current data, including predictions that can be used to put the model to the test.
Collapse
Affiliation(s)
- Buzz Baum
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
| |
Collapse
|
3
|
Mazancová E, Zadrobílková E, Yubuki N, Čepička I. Phylogenetic and morphological diversity of free-living diplomonads. Eur J Protistol 2023; 91:126024. [PMID: 37774457 DOI: 10.1016/j.ejop.2023.126024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
Diplomonadida is a lineage of anaerobic protists belonging to Fornicata, Metamonada. Most diplomonads are endobiotic or parasitic, such as Giardia intestinalis, which is a famous human pathogen, but several free-living species exist as well. Although it has been proposed that the free-living diplomonads are descendants of endobiotic organisms and thus interesting from the evolutionary point of view, they have been largely neglected. We obtained 58 cultures of free-living diplomonads belonging to four genera (Hexamita, Trepomonas, Gyromonas, and Trimitus) and six strains of endobiotic diplomonads and analyzed their SSU rRNA gene sequences. We also studied light-microscopic morphology of selected strains and the ultrastructure of Trepomonas rotans for the first time. Our phylogenetic analysis showed that the genus Hexamita, and, possibly, also the genus Trepomonas, are polyphyletic. Trepomonas rotans, which may represent a novel genus, is unique among Diplomonadida by having the cell covered in scales. Our results suggest that the evolution of the endobiotic life style and cell organization in diplomonads is more complicated than previously thought.
Collapse
Affiliation(s)
- Eva Mazancová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czech Republic
| | - Eliška Zadrobílková
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czech Republic
| | - Naoji Yubuki
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czech Republic.
| |
Collapse
|
4
|
Benchimol M, Gadelha AP, de Souza W. Unusual Cell Structures and Organelles in Giardia intestinalis and Trichomonas vaginalis Are Potential Drug Targets. Microorganisms 2022; 10:2176. [PMID: 36363768 PMCID: PMC9698047 DOI: 10.3390/microorganisms10112176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 09/29/2023] Open
Abstract
This review presents the main cell organelles and structures of two important protist parasites, Giardia intestinalis, and Trichomonas vaginalis; many are unusual and are not found in other eukaryotic cells, thus could be good candidates for new drug targets aimed at improvement of the chemotherapy of diseases caused by these eukaryotic protists. For example, in Giardia, the ventral disc is a specific structure to this parasite and is fundamental for the adhesion and pathogenicity to the host. In Trichomonas, the hydrogenosome, a double membrane-bounded organelle that produces ATP, also can be a good target. Other structures include mitosomes, ribosomes, and proteasomes. Metronidazole is the most frequent compound used to kill many anaerobic organisms, including Giardia and Trichomonas. It enters the cell by passive diffusion and needs to find a highly reductive environment to be reduced to the nitro radicals to be active. However, it provokes several side effects, and some strains present metronidazole resistance. Therefore, to improve the quality of the chemotherapy against parasitic protozoa is important to invest in the development of highly specific compounds that interfere with key steps of essential metabolic pathways or in the functional macromolecular complexes which are most often associated with cell structures and organelles.
Collapse
Affiliation(s)
- Marlene Benchimol
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Centro de Ciêcias da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitaria, Rio de Janeiro 96200-000, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Ana Paula Gadelha
- Diretoria de Metrologia Aplicada as Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro 25250-020, Brazil
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- CMABio, Escola Superior de Saúde, Universidade do Estado do Amazonas-UEA, Manaus 69850-000, Brazil
| |
Collapse
|
5
|
Import of Entamoeba histolytica Mitosomal ATP Sulfurylase Relies on Internal Targeting Sequences. Microorganisms 2020; 8:microorganisms8081229. [PMID: 32806678 PMCID: PMC7465240 DOI: 10.3390/microorganisms8081229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial matrix proteins synthesized in the cytosol often contain amino (N)-terminal targeting sequences (NTSs), or alternately internal targeting sequences (ITSs), which enable them to be properly translocated to the organelle. Such sequences are also required for proteins targeted to mitochondrion-related organelles (MROs) that are present in a few species of anaerobic eukaryotes. Similar to other MROs, the mitosomes of the human intestinal parasite Entamoeba histolytica are highly degenerate, because a majority of the components involved in various processes occurring in the canonical mitochondria are either missing or modified. As of yet, sulfate activation continues to be the only identified role of the relic mitochondria of Entamoeba. Mitosomes influence the parasitic nature of E. histolytica, as the downstream cytosolic products of sulfate activation have been reported to be essential in proliferation and encystation. Here, we investigated the position of the targeting sequence of one of the mitosomal matrix enzymes involved in the sulfate activation pathway, ATP sulfurylase (AS). We confirmed by immunofluorescence assay and subcellular fractionation that hemagluttinin (HA)-tagged EhAS was targeted to mitosomes. However, its ortholog in the δ-proteobacterium Desulfovibrio vulgaris, expressed as DvAS-HA in amoebic trophozoites, indicated cytosolic localization, suggesting a lack of recognizable mitosome targeting sequence in this protein. By expressing chimeric proteins containing swapped sequences between EhAS and DvAS in amoebic cells, we identified the ITSs responsible for mitosome targeting of EhAS. This observation is similar to other parasitic protozoans that harbor MROs, suggesting a convergent feature among various MROs in favoring ITS for the recognition and translocation of targeted proteins.
Collapse
|
6
|
Verdaguer IB, Zafra CA, Crispim M, Sussmann RA, Kimura EA, Katzin AM. Prenylquinones in Human Parasitic Protozoa: Biosynthesis, Physiological Functions, and Potential as Chemotherapeutic Targets. Molecules 2019; 24:molecules24203721. [PMID: 31623105 PMCID: PMC6832408 DOI: 10.3390/molecules24203721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Human parasitic protozoa cause a large number of diseases worldwide and, for some of these diseases, there are no effective treatments to date, and drug resistance has been observed. For these reasons, the discovery of new etiological treatments is necessary. In this sense, parasitic metabolic pathways that are absent in vertebrate hosts would be interesting research candidates for the identification of new drug targets. Most likely due to the protozoa variability, uncertain phylogenetic origin, endosymbiotic events, and evolutionary pressure for adaptation to adverse environments, a surprising variety of prenylquinones can be found within these organisms. These compounds are involved in essential metabolic reactions in organisms, for example, prevention of lipoperoxidation, participation in the mitochondrial respiratory chain or as enzymatic cofactors. This review will describe several prenylquinones that have been previously characterized in human pathogenic protozoa. Among all existing prenylquinones, this review is focused on ubiquinone, menaquinone, tocopherols, chlorobiumquinone, and thermoplasmaquinone. This review will also discuss the biosynthesis of prenylquinones, starting from the isoprenic side chains to the aromatic head group precursors. The isoprenic side chain biosynthesis maybe come from mevalonate or non-mevalonate pathways as well as leucine dependent pathways for isoprenoid biosynthesis. Finally, the isoprenic chains elongation and prenylquinone aromatic precursors origins from amino acid degradation or the shikimate pathway is reviewed. The phylogenetic distribution and what is known about the biological functions of these compounds among species will be described, as will the therapeutic strategies associated with prenylquinone metabolism in protozoan parasites.
Collapse
Affiliation(s)
- Ignasi B. Verdaguer
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
| | - Camila A. Zafra
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
| | - Marcell Crispim
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
| | - Rodrigo A.C. Sussmann
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
- Centro de Formação em Ciências Ambientais, Universidade Federal do Sul da Bahia, Porto Seguro 45810-000 Bahia, Brazil
| | - Emília A. Kimura
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
| | - Alejandro M. Katzin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508000, Brazil; (I.B.V.); (C.A.Z.); (M.C.); (E.A.K.)
- Correspondence: ; Tel.: +55-11-3091-7330; Fax: +5511-3091-7417
| |
Collapse
|
7
|
Affiliation(s)
- Lenka Cernikova
- Laboratory of Molecular Parasitology, Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
| | - Carmen Faso
- Laboratory of Molecular Parasitology, Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
| | - Adrian B. Hehl
- Laboratory of Molecular Parasitology, Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
- * E-mail:
| |
Collapse
|
8
|
Sui B, Tang S, Woodward AW, Kim B, Belfield KD. A BODIPY‐Based Water‐Soluble Fluorescent Probe for Mitochondria Targeting. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600238] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Binglin Sui
- College of Science and Liberal ArtsNew Jersey Institute of Technology07102NewarkNew JerseyUSA
| | - Simon Tang
- Department of ChemistryUniversity of Central Florida32816OrlandoFloridaUSA
| | - Adam W. Woodward
- Department of ChemistryUniversity of Central Florida32816OrlandoFloridaUSA
| | - Bosung Kim
- Department of ChemistryUniversity of Central Florida32816OrlandoFloridaUSA
| | - Kevin D. Belfield
- College of Science and Liberal ArtsNew Jersey Institute of Technology07102NewarkNew JerseyUSA
- School of Chemistry and Chemical EngineeringShaanxi Normal University710062Xi'anP. R. China
| |
Collapse
|
9
|
Marreiros BC, Calisto F, Castro PJ, Duarte AM, Sena FV, Silva AF, Sousa FM, Teixeira M, Refojo PN, Pereira MM. Exploring membrane respiratory chains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1039-1067. [PMID: 27044012 DOI: 10.1016/j.bbabio.2016.03.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 01/20/2023]
Abstract
Acquisition of energy is central to life. In addition to the synthesis of ATP, organisms need energy for the establishment and maintenance of a transmembrane difference in electrochemical potential, in order to import and export metabolites or to their motility. The membrane potential is established by a variety of membrane bound respiratory complexes. In this work we explored the diversity of membrane respiratory chains and the presence of the different enzyme complexes in the several phyla of life. We performed taxonomic profiles of the several membrane bound respiratory proteins and complexes evaluating the presence of their respective coding genes in all species deposited in KEGG database. We evaluated 26 quinone reductases, 5 quinol:electron carriers oxidoreductases and 18 terminal electron acceptor reductases. We further included in the analyses enzymes performing redox or decarboxylation driven ion translocation, ATP synthase and transhydrogenase and we also investigated the electron carriers that perform functional connection between the membrane complexes, quinones or soluble proteins. Our results bring a novel, broad and integrated perspective of membrane bound respiratory complexes and thus of the several energetic metabolisms of living systems. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Bruno C Marreiros
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Paulo J Castro
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Afonso M Duarte
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Andreia F Silva
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal.
| |
Collapse
|
10
|
Stairs CW, Leger MM, Roger AJ. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140326. [PMID: 26323757 PMCID: PMC4571565 DOI: 10.1098/rstb.2014.0326] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 12/27/2022] Open
Abstract
Across the diversity of life, organisms have evolved different strategies to thrive in hypoxic environments, and microbial eukaryotes (protists) are no exception. Protists that experience hypoxia often possess metabolically distinct mitochondria called mitochondrion-related organelles (MROs). While there are some common metabolic features shared between the MROs of distantly related protists, these organelles have evolved independently multiple times across the breadth of eukaryotic diversity. Until recently, much of our knowledge regarding the metabolic potential of different MROs was limited to studies in parasitic lineages. Over the past decade, deep-sequencing studies of free-living anaerobic protists have revealed novel configurations of metabolic pathways that have been co-opted for life in low oxygen environments. Here, we provide recent examples of anaerobic metabolism in the MROs of free-living protists and their parasitic relatives. Additionally, we outline evolutionary scenarios to explain the origins of these anaerobic pathways in eukaryotes.
Collapse
Affiliation(s)
- Courtney W Stairs
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - Michelle M Leger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| |
Collapse
|
11
|
Corradi N. Microsporidia: Eukaryotic Intracellular Parasites Shaped by Gene Loss and Horizontal Gene Transfers. Annu Rev Microbiol 2015. [PMID: 26195306 DOI: 10.1146/annurev-micro-091014-104136] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microsporidia are eukaryotic parasites of many animals that appear to have adapted to an obligate intracellular lifestyle by modifying the morphology and content of their cells. Living inside other cells, they have lost many, or all, metabolic functions, resulting in genomes that are always gene poor and often very small. The minute content of microsporidian genomes led many to assume that these parasites are biochemically static and uninteresting. However, recent studies have demonstrated that these organisms can be surprisingly complex and dynamic. In this review I detail the most significant recent advances in microsporidian genomics and discuss how these have affected our understanding of many biological aspects of these peculiar eukaryotic intracellular pathogens.
Collapse
Affiliation(s)
- Nicolas Corradi
- Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Ontario, Canada K1N 6N5;
| |
Collapse
|
12
|
Probing the Biology of Giardia intestinalis Mitosomes Using In Vivo Enzymatic Tagging. Mol Cell Biol 2015; 35:2864-74. [PMID: 26055323 DOI: 10.1128/mcb.00448-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/03/2015] [Indexed: 11/20/2022] Open
Abstract
Giardia intestinalis parasites contain mitosomes, one of the simplest mitochondrion-related organelles. Strategies to identify the functions of mitosomes have been limited mainly to homology detection, which is not suitable for identifying species-specific proteins and their functions. An in vivo enzymatic tagging technique based on the Escherichia coli biotin ligase (BirA) has been introduced to G. intestinalis; this method allows for the compartment-specific biotinylation of a protein of interest. Known proteins involved in the mitosomal protein import were in vivo tagged, cross-linked, and used to copurify complexes from the outer and inner mitosomal membranes in a single step. New proteins were then identified by mass spectrometry. This approach enabled the identification of highly diverged mitosomal Tim44 (GiTim44), the first known component of the mitosomal inner membrane translocase (TIM). In addition, our subsequent bioinformatics searches returned novel diverged Tim44 paralogs, which mediate the translation and mitosomal insertion of mitochondrially encoded proteins in other eukaryotes. However, most of the identified proteins are specific to G. intestinalis and even absent from the related diplomonad parasite Spironucleus salmonicida, thus reflecting the unique character of the mitosomal metabolism. The in vivo enzymatic tagging also showed that proteins enter the mitosome posttranslationally in an unfolded state and without vesicular transport.
Collapse
|
13
|
Inaba K. Calcium sensors of ciliary outer arm dynein: functions and phylogenetic considerations for eukaryotic evolution. Cilia 2015; 4:6. [PMID: 25932323 PMCID: PMC4415241 DOI: 10.1186/s13630-015-0015-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 03/23/2015] [Indexed: 12/31/2022] Open
Abstract
The motility of eukaryotic cilia and flagella is modulated in response to several extracellular stimuli. Ca(2+) is the most critical intracellular factor for these changes in motility, directly acting on the axonemes and altering flagellar asymmetry. Calaxin is an opisthokont-specific neuronal calcium sensor protein first described in the sperm of the ascidian Ciona intestinalis. It binds to a heavy chain of two-headed outer arm dynein in a Ca(2+)-dependent manner and regulates 'asymmetric' wave propagation at high concentrations of Ca(2+). A Ca(2+)-binding subunit of outer arm dynein in Chlamydomonas reinhardtii, the light chain 4 (LC4), which is a Ca(2+)-sensor phylogenetically different from calaxin, shows Ca(2+)-dependent binding to a heavy chain of three-headed outer arm dynein. However, LC4 appears to participate in 'symmetric' wave propagation at high concentrations of Ca(2+). LC4-type dynein light chain is present in bikonts, except for some subclasses of the Excavata. Thus, flagellar asymmetry-symmetry conversion in response to Ca(2+) concentration represents a 'mirror image' relationship between Ciona and Chlamydomonas. Phylogenetic analyses indicate the duplication, divergence, and loss of heavy chain and Ca(2+)-sensors of outer arm dynein among excavate species. These features imply a divergence point with respect to Ca(2+)-dependent regulation of outer arm dynein in cilia and flagella during the evolution of eukaryotic supergroups.
Collapse
Affiliation(s)
- Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025 Japan
| |
Collapse
|
14
|
McInerney JO, O'Connell MJ, Pisani D. The hybrid nature of the Eukaryota and a consilient view of life on Earth. Nat Rev Microbiol 2014; 12:449-55. [DOI: 10.1038/nrmicro3271] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Plasmid vectors for proteomic analyses in Giardia: purification of virulence factors and analysis of the proteasome. EUKARYOTIC CELL 2012; 11:864-73. [PMID: 22611020 DOI: 10.1128/ec.00092-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In recent years, proteomics has come of age with the development of efficient tools for purification, identification, and characterization of gene products predicted by genome projects. The intestinal protozoan Giardia intestinalis can be transfected, but there is only a limited set of vectors available, and most of them are not user friendly. This work delineates the construction of a suite of cassette-based expression vectors for use in Giardia. Expression is provided by the strong constitutive ornithine carbamoyltransferase (OCT) promoter, and tagging is possible in both N- and C-terminal configurations. Taken together, the vectors are capable of providing protein localization and production of recombinant proteins, followed by efficient purification by a novel affinity tag combination, streptavidin binding peptide-glutathione S-transferase (SBP-GST). The option of removing the tags from purified proteins was provided by the inclusion of a PreScission protease site. The efficiency and feasibility of producing and purifying endogenous recombinant Giardia proteins with the developed vectors was demonstrated by the purification of active recombinant arginine deiminase (ADI) and OCT from stably transfected trophozoites. Moreover, we describe the tagging, purification by StrepTactin affinity chromatography, and compositional analysis by mass spectrometry of the G. intestinalis 26S proteasome by employing the Strep II-FLAG-tandem affinity purification (SF-TAP) tag. This is the first report of efficient production and purification of recombinant proteins in and from Giardia, which will allow the study of specific parasite proteins and protein complexes.
Collapse
|
16
|
Heinz E, Lithgow T. Back to basics: a revealing secondary reduction of the mitochondrial protein import pathway in diverse intracellular parasites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:295-303. [PMID: 22366436 DOI: 10.1016/j.bbamcr.2012.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/09/2012] [Accepted: 02/09/2012] [Indexed: 12/31/2022]
Abstract
Mitochondria are present in all eukaryotes, but remodeling of their metabolic contribution has in some cases left them almost unrecognizable and they are referred to as mitochondria-like organelles, hydrogenosomes or, in the case where evolution has led to a great deal of simplification, as mitosomes. Mitochondria rely on the import of proteins encoded in the nucleus and the protein import machinery has been investigated in detail in yeast: several sophisticated molecular machines act in concert to import substrate proteins across the outer mitochondrial membrane and deliver them to a precise sub-mitochondrial compartment. Because these machines are so sophisticated, it has been a major challenge to conceptualize the first phase of their evolution. Here we review recent studies on the protein import pathway in parasitic species that have mitosomes: in the course of their evolution for highly specialized niches these parasites, particularly Cryptosporidia and Microsporidia, have secondarily lost numerous protein functions, in accordance with the evolution of their genomes towards a minimal size. Microsporidia are related to fungi, Cryptosporidia are apicomplexans and kin to the malaria parasite Plasmodium; and this great phylogenetic distance makes it remarkable that Microsporidia and Cryptosporidia have independently evolved skeletal protein import pathways that are almost identical. We suggest that the skeletal pathway reflects the protein import machinery of the first eukaryotes, and defines the essential roles of the core elements of the mitochondrial protein import machinery. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Eva Heinz
- Department of Biochemistry & Molecular Biology, Monash University, Clayton Campus, Melbourne 3800, Australia.
| | | |
Collapse
|
17
|
Histone H2A (H2A.X and H2A.Z) variants in molluscs: molecular characterization and potential implications for chromatin dynamics. PLoS One 2012; 7:e30006. [PMID: 22253857 PMCID: PMC3256202 DOI: 10.1371/journal.pone.0030006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/11/2011] [Indexed: 11/28/2022] Open
Abstract
Histone variants are used by the cell to build specialized nucleosomes, replacing canonical histones and generating functionally specialized chromatin domains. Among many other processes, the specialization imparted by histone H2A (H2A.X and H2A.Z) variants to the nucleosome core particle constitutes the earliest response to DNA damage in the cell. Consequently, chromatin-based genotoxicity tests have been developed in those cases where enough information pertaining chromatin structure and dynamics is available (i.e., human and mouse). However, detailed chromatin knowledge is almost absent in most organisms, specially protostome animals. Molluscs (which represent sentinel organisms for the study of pollution) are not an exception to this lack of knowledge. In the present work we first identified the existence of functionally differentiated histone H2A.X and H2A.Z variants in the mussel Mytilus galloprovincialis (MgH2A.X and MgH2A.Z), a marine organism widely used in biomonitoring programs. Our results support the functional specialization of these variants based on: a) their active expression in different tissues, as revealed by the isolation of native MgH2A.X and MgH2A.Z proteins in gonad and hepatopancreas; b) the evolutionary conservation of different residues encompassing functional relevance; and c) their ability to confer specialization to nucleosomes, as revealed by nucleosome reconstitution experiments using recombinant MgH2A.X and MgH2A.Z histones. Given the seminal role of these variants in maintaining genomic integrity and regulating gene expression, their preliminary characterization opens up new potential applications for the future development of chromatin-based genotoxicity tests in pollution biomonitoring programs.
Collapse
|
18
|
Kamikawa R, Inagaki Y, Hashimoto T. A novel spliceosome-mediated trans-splicing can change our view on genome complexity of the divergent eukaryote Giardia intestinalis. Biophys Rev 2011; 3:193-197. [PMID: 28510047 DOI: 10.1007/s12551-011-0058-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/29/2011] [Indexed: 11/30/2022] Open
Abstract
Although spliceosomal introns are an abundant landmark in eukaryotic genomes, the nuclear genome of the divergent eukaryote Giardia intestinalis, the causative agent of giardiasis, has been considered as "intron-poor" with only five canonical (cis-spliced) introns. However, three research groups (including ours) have independently reported a novel class of spliceosomal introns in the G. intestinalis genome. Three protein-coding genes are split into pieces in the G. intestinalis genome, and each of the partial coding regions was independently transcribed into polyadenylated premature mRNAs (pre-mRNAs). The two pre-mRNAs directly interact with each other by an intermolecular-stem structure formed between their non-coding portions, and are then processed into mature mRNAs by spliceosome-mediated trans-splicing. Here, we summarize the recently published works on split introns ("splintrons") in the G. intestinalis genome, and then provide our speculation on the functional property of the Giardia spliceosomes based on the putative ratio of splintrons to canonical introns. Finally, we discuss a scenario for the transition from typical GT-AG boundaries to non-typical AT-AC boundaries in a particular splintron of Giardia.
Collapse
Affiliation(s)
- Ryoma Kamikawa
- Center for Computational Sciences and Institute of Biological Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Yuji Inagaki
- Center for Computational Sciences and Institute of Biological Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Tetsuo Hashimoto
- Center for Computational Sciences and Institute of Biological Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
19
|
|
20
|
Roy SW, Hudson AJ, Joseph J, Yee J, Russell AG. Numerous fragmented spliceosomal introns, AT-AC splicing, and an unusual dynein gene expression pathway in Giardia lamblia. Mol Biol Evol 2011; 29:43-9. [PMID: 21482665 DOI: 10.1093/molbev/msr063] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spliceosomal introns are hallmarks of eukaryotic genomes, dividing coding regions into separate exons, which are joined during mRNA intron removal catalyzed by the spliceosome. With few known exceptions, spliceosomal introns are cis-spliced, that is, removed from one contiguous pre-mRNA transcript. The protistan intestinal parasite Giardia lamblia exhibits one of the most reduced eukaryotic genomes known, with short intergenic regions and only four known spliceosomal introns. Our genome-wide search for additional introns revealed four unusual cases of spliceosomal intron fragmentation, with consecutive exons of conserved protein-coding genes being dispersed to distant genomic sites. Independent transcripts are trans-spliced to yield contiguous mature mRNAs. Most strikingly, a dynein heavy chain subunit is both interrupted by two fragmented introns and also predicted to be assembled as two separately translated polypeptides, a remarkably complex expression pathway for a nuclear-encoded sequence. For each case, we observe extensive base-pairing potential between intron halves. This base pairing provides both a rationale for the in vivo association of independently transcribed mRNAs transcripts and the apparent specificity of splicing. Similar base-pairing potential in two cis-spliced G. lamblia introns suggests an evolutionary pathway whereby intron fragmentation of cis-spliced introns is permissible and a preliminary evolutionary step to complete gene fission. These results reveal remarkably complex genome dynamics in a severely genomically reduced parasite.
Collapse
Affiliation(s)
- Scott W Roy
- Department of Biology, Stanford University, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
SUMMARYSingle-celled parasites like Entamoeba, Trypanosoma, Phytophthora and Plasmodium wreak untold havoc on human habitat and health. Understanding the position of the various protistan pathogens in the larger context of eukaryotic diversity informs our study of how these parasites operate on a cellular level, as well as how they have evolved. Here, we review the literature that has brought our understanding of eukaryotic relationships from an idea of parasites as primitive cells to a crystallized view of diversity that encompasses 6 major divisions, or supergroups, of eukaryotes. We provide an updated taxonomic scheme (for 2011), based on extensive genomic, ultrastructural and phylogenetic evidence, with three differing levels of taxonomic detail for ease of referencing and accessibility (see supplementary material at Cambridge Journals On-line). Two of the most pressing issues in cellular evolution, the root of the eukaryotic tree and the evolution of photosynthesis in complex algae, are also discussed along with ideas about what the new generation of genome sequencing technologies may contribute to the field of eukaryotic systematics. We hope that, armed with this user's guide, cell biologists and parasitologists will be encouraged about taking an increasingly evolutionary point of view in the battle against parasites representing real dangers to our livelihoods and lives.
Collapse
|
22
|
Kolisko M, Silberman JD, Cepicka I, Yubuki N, Takishita K, Yabuki A, Leander BS, Inouye I, Inagaki Y, Roger AJ, Simpson AGB. A wide diversity of previously undetected free-living relatives of diplomonads isolated from marine/saline habitats. Environ Microbiol 2011; 12:2700-10. [PMID: 20482740 DOI: 10.1111/j.1462-2920.2010.02239.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over the last 15 years classical culturing and environmental PCR techniques have revealed a modest number of genuinely new major lineages of protists; however, some new groups have greatly influenced our understanding of eukaryote evolution. We used culturing techniques to examine the diversity of free-living protists that are relatives of diplomonads and retortamonads, a group of evolutionary and parasitological importance. Until recently, a single organism, Carpediemonas membranifera, was the only representative of this region of the tree. We report 18 new isolates of Carpediemonas-like organisms (CLOs) from anoxic marine sediments. Only one is a previously cultured species. Eleven isolates are conspecific and were classified within a new genus, Kipferlia n. gen. The remaining isolates include representatives of three other lineages that likely represent additional undescribed genera (at least). Small-subunit ribosomal RNA gene phylogenies show that CLOs form a cloud of six major clades basal to the diplomonad-retortamonad grouping (i.e. each of the six CLO clades is potentially as phylogenetically distinct as diplomonads and retortamonads). CLOs will be valuable for tracing the evolution of diplomonad cellular features, for example, their extremely reduced mitochondrial organelles. It is striking that the majority of CLO diversity was undetected by previous light microscopy surveys and environmental PCR studies, even though they inhabit a commonly sampled environment. There is no reason to assume this is a unique situation - it is likely that undersampling at the level of major lineages is still widespread for protists.
Collapse
Affiliation(s)
- Martin Kolisko
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The discovery of mitochondrion-type genes in organisms thought to lack mitochondria led to the demonstration that hydrogenosomes share a common ancestry with mitochondria, as well as the discovery of mitosomes in multiple eukaryotic lineages. No examples of examined eukaryotes lacking a mitochondrion-related organelle exist, implying that the endosymbiont that gave rise to the mitochondrion was present in the first eukaryote. These organelles, known as hydrogenosomes, mitosomes, or mitochondrion-like organelles, are typically reduced, both structurally and biochemically, relative to classical mitochondria. However, despite their diversification and adaptation to different niches, all appear to play a role in Fe-S cluster assembly, as observed for mitochondria. Although evidence supports the use of common protein targeting mechanisms in the biogenesis of these diverse organelles, divergent features are also apparent. This review examines the metabolism and biogenesis of these organelles in divergent unicellular microbes, with a focus on parasitic protists.
Collapse
Affiliation(s)
- April M Shiflett
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095-1489, USA
| | | |
Collapse
|
24
|
Upcroft JA, Krauer KG, Upcroft P. Chromosome sequence maps of the Giardia lamblia assemblage A isolate WB. Trends Parasitol 2010; 26:484-91. [PMID: 20739222 DOI: 10.1016/j.pt.2010.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 12/11/2022]
Abstract
Two genotypes, assemblages A and B, of the pathogenic gut protozoan parasite Giardia lamblia infect humans. Symptoms of infection range from asymptomatic to chronic diarrhea. Giardia chromosomes have long been characterized but not until the publication of the first Giardia genome sequence was chromosome mapping work, commenced nearly two decades ago, completed. Initial mapping studies identified and ordered Not I chromosome segments (summating to 1.8 Mb) of the estimated 2 Mb chromosome 3. The resulting map was confirmed with the release of the Giardia genome sequence and this revitalized mapping. The result is that 93% of the WB isolate genome sequence has now been assigned to one of five major chromosomes, and community access to these data has been made available through GiardiaDB, the database for Giardia genomes.
Collapse
|
25
|
Abstract
The eukaryotic intestinal parasite Giardia intestinalis was first described in 1681, when Antonie van Leeuwenhoek undertook a microscopic examination of his own diarrhoeal stool. Nowadays, although G. intestinalis is recognized as a major worldwide contributor to diarrhoeal disease in humans and other mammals, the disease mechanisms are still poorly understood. Owing to its reduced complexity and proposed early evolutionary divergence, G. intestinalis is used as a model eukaryotic system for studying many basic cellular processes. In this Review we discuss recent discoveries in the molecular cell biology and pathogenesis of G. intestinalis.
Collapse
|
26
|
Localization and targeting of an unusual pyridine nucleotide transhydrogenase in Entamoeba histolytica. EUKARYOTIC CELL 2010; 9:926-33. [PMID: 20382757 DOI: 10.1128/ec.00011-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pyridine nucleotide transhydrogenase (PNT) catalyzes the direct transfer of a hydride-ion equivalent between NAD(H) and NADP(H) in bacteria and the mitochondria of eukaryotes. PNT was previously postulated to be localized to the highly divergent mitochondrion-related organelle, the mitosome, in the anaerobic/microaerophilic protozoan parasite Entamoeba histolytica based on the potential mitochondrion-targeting signal. However, our previous proteomic study of isolated phagosomes suggested that PNT is localized to organelles other than mitosomes. An immunofluorescence assay using anti-E. histolytica PNT (EhPNT) antibody raised against the NADH-binding domain showed a distribution to the membrane of numerous vesicles/vacuoles, including lysosomes and phagosomes. The domain(s) required for the trafficking of PNT to vesicles/vacuoles was examined by using amoeba transformants expressing a series of carboxyl-terminally truncated PNTs fused with green fluorescent protein or a hemagglutinin tag. All truncated PNTs failed to reach vesicles/vacuoles and were retained in the endoplasmic reticulum. These data indicate that the putative targeting signal is not sufficient for the trafficking of PNT to the vesicular/vacuolar compartments and that full-length PNT is necessary for correct transport. PNT displayed a smear of >120 kDa on SDS-PAGE gels. PNGase F and tunicamycin treatment, chemical degradation of carbohydrates, and heat treatment of PNT suggested that the apparent aberrant mobility of PNT is likely attributable to its hydrophobic nature. PNT that is compartmentalized to the acidic compartments is unprecedented in eukaryotes and may possess a unique physiological role in E. histolytica.
Collapse
|
27
|
Xiao Y, Yin J, Jiang N, Xiang M, Hao L, Lu H, Sang H, Liu X, Xu H, Ankarklev J, Lindh J, Chen Q. Seroepidemiology of human Toxoplasma gondii infection in China. BMC Infect Dis 2010; 10:4. [PMID: 20055991 PMCID: PMC2818656 DOI: 10.1186/1471-2334-10-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 01/07/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Toxoplasmosis is an important zoonotic parasitic disease worldwide. In immune competent individuals, Toxoplasma gondii preferentially infects tissues of central nervous systems, which might be an adding factor of certain psychiatric disorders. Congenital transmission of T. gondii during pregnancy has been regarded as a risk factor for the health of newborn infants. While in immune-compromised individuals, the parasite can cause life-threatening infections. This study aims to investigate the prevalence of T. gondii infection among clinically healthy individuals and patients with psychiatric disorders in China and to identify the potential risk factors related to the vulnerability of infection in the population. METHODS Serum samples from 2634 healthy individuals and 547 patients with certain psychiatric disorders in Changchun and Daqing in the northeast, and in Shanghai in the south of China were examined respectively for the levels of anti-T. gondii IgG by indirect ELISA and a direct agglutination assay. Prevalence of T. gondii infection in the Chinese population in respect of gender, age, residence and health status was systematically analyzed. RESULTS The overall anti-T. gondii IgG prevalence in the study population was 12.3%. In the clinically healthy population 12.5% was sero-positive and in the group with psychiatric disorders 11.3% of these patients were positive with anti-T. gondii IgG. A significant difference (P = 0.004) was found between male and female in the healthy population, the seroprevalence was 10.5% in men versus 14.3% in women. Furthermore, the difference of T. gondii infection rate between male and female in the 20-19 year's group was more obvious, with 6.4% in male population and 14.6% in female population. CONCLUSION A significant higher prevalence of T. gondii infection was observed in female in the clinically healthy population. No correlation was found between T. gondii infection and psychiatric disorders in this study. Results suggest that women are more exposed to T. gondii infection than men in China. The data argue for deeper investigations for the potential risk factors that threat the female populations.
Collapse
Affiliation(s)
- Yue Xiao
- Key Laboratory of Zoonosis, Ministry of Education, Jilin University, Xi An Da Lu 5333, Changchun 130062, PR China
| | - Jigang Yin
- Key Laboratory of Zoonosis, Ministry of Education, Jilin University, Xi An Da Lu 5333, Changchun 130062, PR China
| | - Ning Jiang
- Key Laboratory of Zoonosis, Ministry of Education, Jilin University, Xi An Da Lu 5333, Changchun 130062, PR China
| | - Mei Xiang
- The Second Hospital of Jilin University, Ziqiang Street 218, Changchun 10041, PR China
| | - Lili Hao
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, Dong Dan San Tiao, Beijing 100730, PR China
| | - Huijun Lu
- Key Laboratory of Zoonosis, Ministry of Education, Jilin University, Xi An Da Lu 5333, Changchun 130062, PR China
| | - Hong Sang
- The Sixth Hospital of Changchun City, North Round Road 4596, Changchun 130040, PR China
| | - Xianying Liu
- The Second Hospital of Jilin University, Ziqiang Street 218, Changchun 10041, PR China
| | - Huiji Xu
- Changzheng Hospital, Shanghai, Fengyang Road 415, Shanghai 200003, PR China
| | - Johan Ankarklev
- Department of Parasitology, Mycology and Environmental Microbiology, Swedish Institute for Infectious Disease Control, Nobels väg 18, 171 82 Solna, Sweden
| | - Johan Lindh
- Department of Parasitology, Mycology and Environmental Microbiology, Swedish Institute for Infectious Disease Control, Nobels väg 18, 171 82 Solna, Sweden
| | - Qijun Chen
- Key Laboratory of Zoonosis, Ministry of Education, Jilin University, Xi An Da Lu 5333, Changchun 130062, PR China
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, Dong Dan San Tiao, Beijing 100730, PR China
- Department of Parasitology, Mycology and Environmental Microbiology, Swedish Institute for Infectious Disease Control, Nobels väg 18, 171 82 Solna, Sweden
| |
Collapse
|
28
|
Corrêa G, Vilela R, Menna-Barreto RF, Midlej V, Benchimol M. Cell death induction in Giardia lamblia: Effect of beta-lapachone and starvation. Parasitol Int 2009; 58:424-37. [DOI: 10.1016/j.parint.2009.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 07/28/2009] [Accepted: 08/10/2009] [Indexed: 12/18/2022]
|
29
|
Lukashenko NP. Molecular evolution of ciliates (Ciliophora) and some related groups of protozoans. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409080018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
PARK JONGSOO, KOLISKO MARTIN, HEISS AARONA, SIMPSON ALASTAIRG. Light Microscopic Observations, Ultrastructure, and Molecular Phylogeny ofHicanonectes teleskoposn. g., n. sp., a Deep-Branching Relative of Diplomonads. J Eukaryot Microbiol 2009; 56:373-84. [DOI: 10.1111/j.1550-7408.2009.00412.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
VAN DER GIEZEN MARK. Hydrogenosomes and Mitosomes: Conservation and Evolution of Functions. J Eukaryot Microbiol 2009; 56:221-31. [DOI: 10.1111/j.1550-7408.2009.00407.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Particularities of mitochondrial structure in parasitic protists (Apicomplexa and Kinetoplastida). Int J Biochem Cell Biol 2009; 41:2069-80. [PMID: 19379828 DOI: 10.1016/j.biocel.2009.04.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 11/20/2022]
Abstract
Without mitochondria, eukaryotic cells would depend entirely on anaerobic glycolysis for ATP generation. This also holds true for protists, both free-living and parasitic. Parasitic protists include agents of human and animal diseases that have a huge impact on world populations. In the phylum Apicomplexa, several species of Plasmodium cause malaria, whereas Toxoplasma gondii is a cosmopolite parasite found on all continents. Flagellates of the order Kinetoplastida include the genera Leishmania and Trypanosoma causative agents of human leishmaniasis and (depending on the species) African trypanosomiasis and Chagas disease. Although clearly distinct in many aspects, the members of these two groups bear a single and usually well developed mitochondrion. The single mitochondrion of Apicomplexa has a dense matrix and many cristae with a circular profile. The organelle is even more peculiar in the order Kinetoplastida, exhibiting a condensed network of DNA at a specific position, always close to the flagellar basal body. This arrangement is known as Kinetoplast and the name of the order derived from it. Kinetoplastids also bear glycosomes, peroxisomes that concentrate enzymes of the glycolytic cycle. Mitochondrial volume and activity is maximum when glycosomal is low and vice versa. In both Apicomplexa and trypanosomatids, mitochondria show particularities that are absent in other eukaryotic organisms. These peculiar features make them an attractive target for therapeutic drugs for the diseases they cause.
Collapse
|
33
|
Eirín-López JM, González-Romero R, Dryhurst D, Ishibashi T, Ausió J. The evolutionary differentiation of two histone H2A.Z variants in chordates (H2A.Z-1 and H2A.Z-2) is mediated by a stepwise mutation process that affects three amino acid residues. BMC Evol Biol 2009; 9:31. [PMID: 19193230 PMCID: PMC2644675 DOI: 10.1186/1471-2148-9-31] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 02/04/2009] [Indexed: 11/16/2022] Open
Abstract
Background The histone H2A family encompasses the greatest number of core histone variants of which the replacement variant H2A.Z is currently one of the most heavily studied. No clear mechanism for the functional variability that H2A.Z imparts to chromatin has yet been proposed. While most of the past studies have referred to H2A.Z generically as a single protein, in vertebrates it is a mixture of two protein forms H2A.Z-1 (previously H2A.Z) and H2A.Z-2 (previously H2A.F/Z or H2A.V) that differ by three amino acids. Results We have performed an extensive study on the long-term evolution of H2A.Z across metazoans with special emphasis on the possible selective mechanisms responsible for the differentiation between H2A.Z-1 and H2A.Z-2. Our results reveal a common origin of both forms early in chordate evolution. The evolutionary process responsible for the differentiation involves refined stepwise mutation change within the codons of the three differential residues. This eventually led to differences in the intensity of the selective constraints acting upon the different H2A.Z forms in vertebrates. Conclusion The results presented in this work definitively reveal that the existence of H2A.Z-1 and H2A.Z-2 is not a whim of random genetic drift. Our analyses demonstrate that H2A.Z-2 is not only subject to a strong purifying selection but it is significantly more evolutionarily constrained than H2A.Z-1. Whether or not the evolutionary drift between H2A.Z-1 and H2A.Z-2 has resulted in a functional diversification of these proteins awaits further research. Nevertheless, the present work suggests that in the process of their differently constrained evolutionary pathways, these two forms may have acquired new or complementary functions.
Collapse
Affiliation(s)
- José M Eirín-López
- Departamento de Biología Celular y Molecular, Universidade da Coruña, Coruña, Spain.
| | | | | | | | | |
Collapse
|
34
|
Giardia, Entamoeba, and Trichomonas enzymes activate metronidazole (nitroreductases) and inactivate metronidazole (nitroimidazole reductases). Antimicrob Agents Chemother 2008; 53:458-64. [PMID: 19015349 DOI: 10.1128/aac.00909-08] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Infections with Giardia lamblia, Entamoeba histolytica, and Trichomonas vaginalis, which cause diarrhea, dysentery, and vaginitis, respectively, are each treated with metronidazole. Here we show that Giardia, Entamoeba, and Trichomonas have oxygen-insensitive nitroreductase (ntr) genes which are homologous to those genes that have nonsense mutations in metronidazole-resistant Helicobacter pylori isolates. Entamoeba and Trichomonas also have nim genes which are homologous to those genes expressed in metronidazole-resistant Bacteroides fragilis isolates. Recombinant Giardia, Entamoeba, and Trichomonas nitroreductases used NADH rather than the NADPH used by Helicobacter, and two recombinant Entamoeba nitroreductases increased the metronidazole sensitivity of transformed Escherichia coli strains. Conversely, the recombinant nitroimidazole reductases (NIMs) of Entamoeba and Trichmonas conferred very strong metronidazole resistance to transformed bacteria. The Ehntr1 gene of the genome project HM-1:IMSS strain of Entamoeba histolytica had a nonsense mutation, and the same nonsense mutation was present in 3 of 22 clinical isolates of Entamoeba. While ntr and nim mRNAs were variably expressed by cultured Entamoeba and Trichomonas isolates, there was no relationship to metronidazole sensitivity. We conclude that microaerophilic protists have bacterium-like enzymes capable of activating metronidazole (nitroreductases) and inactivating metronidazole (NIMs). While Entamoeba and Trichomonas displayed some of the changes (nonsense mutations and gene overexpression) associated with metronidazole resistance in bacteria, these changes did not confer metronidazole resistance to the microaerophilic protists examined here.
Collapse
|
35
|
Cardiolipin, a lipid found in mitochondria, hydrogenosomes and bacteria was not detected in Giardia lamblia. Exp Parasitol 2008; 120:215-20. [DOI: 10.1016/j.exppara.2008.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Revised: 06/22/2008] [Accepted: 07/16/2008] [Indexed: 11/23/2022]
|
36
|
Brinkmann H, Philippe H. The Diversity Of Eukaryotes And The Root Of The Eukaryotic Tree. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 607:20-37. [DOI: 10.1007/978-0-387-74021-8_2] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Jékely G. Origin of the nucleus and Ran-dependent transport to safeguard ribosome biogenesis in a chimeric cell. Biol Direct 2008; 3:31. [PMID: 18652645 PMCID: PMC2503971 DOI: 10.1186/1745-6150-3-31] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 07/24/2008] [Indexed: 11/18/2022] Open
Abstract
Background The origin of the nucleus is a central problem about the origin of eukaryotes. The common ancestry of nuclear pore complexes (NPC) and vesicle coating complexes indicates that the nucleus evolved via the modification of a pre-existing endomembrane system. Such an autogenous scenario is cell biologically feasible, but it is not clear what were the selective or neutral mechanisms that had led to the origin of the nuclear compartment. Results A key selective force during the autogenous origin of the nucleus could have been the need to segregate ribosome factories from the cytoplasm where ribosomal proteins (RPs) of the protomitochondrium were synthesized. After its uptake by an anuclear cell the protomitochondrium transferred several of its RP genes to the host genome. Alphaproteobacterial RPs and archaebacterial-type host ribosomes were consequently synthesized in the same cytoplasm. This could have led to the formation of chimeric ribosomes. I propose that the nucleus evolved when the host cell compartmentalised its ribosome factories and the tightly linked genome to reduce ribosome chimerism. This was achieved in successive stages by first evolving karyopherin and RanGTP dependent chaperoning of RPs, followed by the evolution of a membrane network to serve as a diffusion barrier, and finally a hydrogel sieve to ensure selective permeability at nuclear pores. Computer simulations show that a gradual segregation of cytoplasm and nucleoplasm via these steps can progressively reduce ribosome chimerism. Conclusion Ribosome chimerism can provide a direct link between the selective forces for and the mechanisms of evolving nuclear transport and compartmentalisation. The detailed molecular scenario presented here provides a solution to the gradual evolution of nuclear compartmentalization from an anuclear stage. Reviewers This article was reviewed by Eugene V Koonin, Martijn Huynen, Anthony M. Poole and Patrick Forterre.
Collapse
Affiliation(s)
- Gáspár Jékely
- Max Planck Institute for Developmental Biology, Spemannstrasse 35. 72076 Tübingen, Germany.
| |
Collapse
|
38
|
Kolisko M, Cepicka I, Hampl V, Leigh J, Roger AJ, Kulda J, Simpson AGB, Flegr J. Molecular phylogeny of diplomonads and enteromonads based on SSU rRNA, alpha-tubulin and HSP90 genes: implications for the evolutionary history of the double karyomastigont of diplomonads. BMC Evol Biol 2008; 8:205. [PMID: 18627633 PMCID: PMC2496913 DOI: 10.1186/1471-2148-8-205] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 07/15/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fornicata is a relatively recently established group of protists that includes the diplokaryotic diplomonads (which have two similar nuclei per cell), and the monokaryotic enteromonads, retortamonads and Carpediemonas, with the more typical one nucleus per cell. The monophyly of the group was confirmed by molecular phylogenetic studies, but neither the internal phylogeny nor its position on the eukaryotic tree has been clearly resolved. RESULTS Here we have introduced data for three genes (SSU rRNA, alpha-tubulin and HSP90) with a wide taxonomic sampling of Fornicata, including ten isolates of enteromonads, representing the genera Trimitus and Enteromonas, and a new undescribed enteromonad genus. The diplomonad sequences formed two main clades in individual gene and combined gene analyses, with Giardia (and Octomitus) on one side of the basal divergence and Spironucleus, Hexamita and Trepomonas on the other. Contrary to earlier evolutionary scenarios, none of the studied enteromonads appeared basal to diplokaryotic diplomonads. Instead, the enteromonad isolates were all robustly situated within the second of the two diplomonad clades. Furthermore, our analyses suggested that enteromonads do not constitute a monophyletic group, and enteromonad monophyly was statistically rejected in 'approximately unbiased' tests of the combined gene data. CONCLUSION We suggest that all higher taxa intended to unite multiple enteromonad genera be abandoned, that Trimitus and Enteromonas be considered as part of Hexamitinae, and that the term 'enteromonads' be used in a strictly utilitarian sense. Our result suggests either that the diplokaryotic condition characteristic of diplomonads arose several times independently, or that the monokaryotic cell of enteromonads originated several times independently by secondary reduction from the diplokaryotic state. Both scenarios are evolutionarily complex. More comparative data on the similarity of the genomes of the two nuclei of diplomonads will be necessary to resolve which evolutionary scenario is more probable.
Collapse
Affiliation(s)
- Martin Kolisko
- Department of Biology, Dalhousie University, Life Sciences Centre, 1355 Oxford Street, Halifax, NS, B3H 4J1, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Early Evolution of Histone Genes: Prevalence of an ‘Orphon’ H1 Lineage in Protostomes and Birth-and-Death Process in the H2A Family. J Mol Evol 2008; 66:505-18. [DOI: 10.1007/s00239-008-9109-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/17/2008] [Accepted: 04/10/2008] [Indexed: 11/26/2022]
|
40
|
Green JB, Young JPW. Slipins: ancient origin, duplication and diversification of the stomatin protein family. BMC Evol Biol 2008; 8:44. [PMID: 18267007 PMCID: PMC2258279 DOI: 10.1186/1471-2148-8-44] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 02/11/2008] [Indexed: 12/27/2022] Open
Abstract
Background Stomatin is a membrane protein that was first isolated from human red blood cells. Since then, a number of stomatin-like proteins have been identified in all three domains of life. The conservation among these proteins is remarkable, with bacterial and human homologs sharing 50 % identity. Despite being associated with a variety of diseases such as cancer, kidney failure and anaemia, precise functions of these proteins remain unclear. Results We have constructed a comprehensive phylogeny of all 'stomatin-like' sequences that share a 150 amino acid domain. We show these proteins comprise an ancient family that arose early in prokaryotic evolution, and we propose a new nomenclature that reflects their phylogeny, based on the name "slipin" (stomatin-like protein). Within prokaryotes there are two distinct subfamilies that account for the two different origins of the eight eukaryotic stomatin subfamilies, one of which gave rise to eukaryotic SLP-2, renamed here "paraslipin". This was apparently acquired through the mitochondrial endosymbiosis and is widely distributed amongst the major kingdoms. The other prokaryotic subfamily gave rise to the ancestor of the remaining seven eukaryotic subfamilies. The highly diverged "alloslipin" subfamily is represented only by fungal, viral and ciliate sequences. The remaining six subfamilies, collectively termed "slipins", are confined to metazoa. Protostome stomatin, as well as a newly reported arthropod subfamily slipin-4, are restricted to invertebrate groups, whilst slipin-1 (previously SLP-1) is present in nematodes and higher metazoa. In vertebrates, the stomatin family expanded considerably, with at least two duplication events giving rise to podocin and slipin-3 subfamilies (previously SLP-3), with the retained ancestral sequence giving rise to vertebrate stomatin. Conclusion Stomatin-like proteins have their origin in an ancient duplication event that occurred early on in the evolution of prokaryotes. By constructing a phylogeny of this family, we have identified and named a number of orthologous groups: these can now be used to infer function of stomatin subfamilies in a meaningful way.
Collapse
|
41
|
Møller AB, Asp T, Holm PB, Palmgren MG. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps. Mol Phylogenet Evol 2008; 46:619-34. [DOI: 10.1016/j.ympev.2007.10.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 09/20/2007] [Accepted: 10/26/2007] [Indexed: 01/26/2023]
|
42
|
Williams BA, Haferkamp I, Keeling PJ. An ADP/ATP-Specific Mitochondrial Carrier Protein in the Microsporidian Antonospora locustae. J Mol Biol 2008; 375:1249-57. [DOI: 10.1016/j.jmb.2007.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 11/01/2007] [Accepted: 11/05/2007] [Indexed: 11/27/2022]
|
43
|
Hampl V, Silberman JD, Stechmann A, Diaz-Triviño S, Johnson PJ, Roger AJ. Genetic evidence for a mitochondriate ancestry in the 'amitochondriate' flagellate Trimastix pyriformis. PLoS One 2008; 3:e1383. [PMID: 18167542 PMCID: PMC2148110 DOI: 10.1371/journal.pone.0001383] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 12/07/2007] [Indexed: 11/24/2022] Open
Abstract
Most modern eukaryotes diverged from a common ancestor that contained the α-proteobacterial endosymbiont that gave rise to mitochondria. The ‘amitochondriate’ anaerobic protist parasites that have been studied to date, such as Giardia and Trichomonas harbor mitochondrion-related organelles, such as mitosomes or hydrogenosomes. Yet there is one remaining group of mitochondrion-lacking flagellates known as the Preaxostyla that could represent a primitive ‘pre-mitochondrial’ lineage of eukaryotes. To test this hypothesis, we conducted an expressed sequence tag (EST) survey on the preaxostylid flagellate Trimastix pyriformis, a poorly-studied free-living anaerobe. Among the ESTs we detected 19 proteins that, in other eukaryotes, typically function in mitochondria, hydrogenosomes or mitosomes, 12 of which are found exclusively within these organelles. Interestingly, one of the proteins, aconitase, functions in the tricarboxylic acid cycle typical of aerobic mitochondria, whereas others, such as pyruvate:ferredoxin oxidoreductase and [FeFe] hydrogenase, are characteristic of anaerobic hydrogenosomes. Since Trimastix retains genetic evidence of a mitochondriate ancestry, we can now say definitively that all known living eukaryote lineages descend from a common ancestor that had mitochondria.
Collapse
Affiliation(s)
- Vladimir Hampl
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jeffrey D. Silberman
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Alexandra Stechmann
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sara Diaz-Triviño
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Patricia J. Johnson
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Dacks JB, Walker G, Field MC. Implications of the new eukaryotic systematics for parasitologists. Parasitol Int 2007; 57:97-104. [PMID: 18180199 DOI: 10.1016/j.parint.2007.11.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 11/15/2007] [Accepted: 11/16/2007] [Indexed: 11/24/2022]
Abstract
An accurate understanding of evolutionary relationships is central in biology. For parasitologists, understanding the relationships among eukaryotic organisms allows the prediction of virulence mechanisms, reconstruction of metabolic pathways, identification of potential drug targets, elucidation of parasite-specific cellular processes and understanding of interactions with the host or vector. Here we consider the impact of major recent revisions of eukaryotic systematics and taxonomy on parasitology. The previous, ladder-like model placed some protists as early diverging, with the remaining eukaryotes "progressing" towards a "crown radiation" of animals, plants, Fungi and some additional protistan lineages. This model has been robustly disproven. The new model is based on vastly increased amounts of molecular sequence data, integration with morphological information and the rigorous application of phylogenetic methods to those data. It now divides eukaryotes into six major supergroups; the relationships between those groups and the order of branching remain unknown. This new eukaryotic phylogeny emphasizes that organisms including Giardia, Trypanosoma and Trichomonas are not primitive, but instead highly evolved and specialised for their specific environments. The wealth of newly available comparative genomic data has also allowed the reconstruction of ancient suites of characteristics and mapping of character evolution in diverse parasites. For example, the last common eukaryotic ancestor was apparently complex, suggesting that lineage-specific adaptations and secondary losses have been important in the evolution of protistan parasites. Referring to the best evidence-based models for eukaryotic evolution will allow parasitologists to make more accurate and reliable inferences about pathogens that cause significant morbidity and mortality.
Collapse
Affiliation(s)
- Joel B Dacks
- The Molteno Building, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | |
Collapse
|
45
|
Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ, Best AA, Cande WZ, Chen F, Cipriano MJ, Davids BJ, Dawson SC, Elmendorf HG, Hehl AB, Holder ME, Huse SM, Kim UU, Lasek-Nesselquist E, Manning G, Nigam A, Nixon JEJ, Palm D, Passamaneck NE, Prabhu A, Reich CI, Reiner DS, Samuelson J, Svard SG, Sogin ML. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 2007; 317:1921-6. [PMID: 17901334 DOI: 10.1126/science.1143837] [Citation(s) in RCA: 580] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The genome of the eukaryotic protist Giardia lamblia, an important human intestinal parasite, is compact in structure and content, contains few introns or mitochondrial relics, and has simplified machinery for DNA replication, transcription, RNA processing, and most metabolic pathways. Protein kinases comprise the single largest protein class and reflect Giardia's requirement for a complex signal transduction network for coordinating differentiation. Lateral gene transfer from bacterial and archaeal donors has shaped Giardia's genome, and previously unknown gene families, for example, cysteine-rich structural proteins, have been discovered. Unexpectedly, the genome shows little evidence of heterozygosity, supporting recent speculations that this organism is sexual. This genome sequence will not only be valuable for investigating the evolution of eukaryotes, but will also be applied to the search for new therapeutics for this parasite.
Collapse
|
46
|
Hehl AB, Regos A, Schraner E, Schneider A. Bax function in the absence of mitochondria in the primitive protozoan Giardia lamblia. PLoS One 2007; 2:e488. [PMID: 17534438 PMCID: PMC1871612 DOI: 10.1371/journal.pone.0000488] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 05/05/2007] [Indexed: 11/18/2022] Open
Abstract
Bax-induced permeabilization of the mitochondrial outer membrane and release of cytochrome c are key events in apoptosis. Although Bax can compromise mitochondria in primitive unicellular organisms that lack a classical apoptotic machinery, it is still unclear if Bax alone is sufficient for this, or whether additional mitochondrial components are required. The protozoan parasite Giardia lamblia is one of the earliest branching eukaryotes and harbors highly degenerated mitochondrial remnant organelles (mitosomes) that lack a genome. Here we tested whether human Bax expressed in Giardia can be used to ablate mitosomes. We demonstrate that these organelles are neither targeted, nor compromised, by Bax. However, specialized compartments of the regulated secretory pathway are completely ablated by Bax. As a consequence, maturing cyst wall proteins that are sorted into these organelles are released into the cytoplasm, causing a developmental arrest and cell death. Interestingly, this ectopic cargo release is dependent on the carboxy-terminal 22 amino acids of Bax, and can be prevented by the Bax-inhibiting peptide Ku70. A C-terminally truncated Bax variant still localizes to secretory organelles, but is unable to permeabilize these membranes, uncoupling membrane targeting and cargo release. Even though mitosomes are too diverged to be recognized by Bax, off-target membrane permeabilization appears to be conserved and leads to cell death completely independently of mitochondria.
Collapse
Affiliation(s)
- Adrian B Hehl
- Institute of Parasitology, University of Zürich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
47
|
Yee J, Tang A, Lau WL, Ritter H, Delport D, Page M, Adam RD, Müller M, Wu G. Core histone genes of Giardia intestinalis: genomic organization, promoter structure, and expression. BMC Mol Biol 2007; 8:26. [PMID: 17425802 PMCID: PMC1872034 DOI: 10.1186/1471-2199-8-26] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 04/10/2007] [Indexed: 11/19/2022] Open
Abstract
Background Giardia intestinalis is a protist found in freshwaters worldwide, and is the most common cause of parasitic diarrhea in humans. The phylogenetic position of this parasite is still much debated. Histones are small, highly conserved proteins that associate tightly with DNA to form chromatin within the nucleus. There are two classes of core histone genes in higher eukaryotes: DNA replication-independent histones and DNA replication-dependent ones. Results We identified two copies each of the core histone H2a, H2b and H3 genes, and three copies of the H4 gene, at separate locations on chromosomes 3, 4 and 5 within the genome of Giardia intestinalis, but no gene encoding a H1 linker histone could be recognized. The copies of each gene share extensive DNA sequence identities throughout their coding and 5' noncoding regions, which suggests these copies have arisen from relatively recent gene duplications or gene conversions. The transcription start sites are at triplet A sequences 1–27 nucleotides upstream of the translation start codon for each gene. We determined that a 50 bp region upstream from the start of the histone H4 coding region is the minimal promoter, and a highly conserved 15 bp sequence called the histone motif (him) is essential for its activity. The Giardia core histone genes are constitutively expressed at approximately equivalent levels and their mRNAs are polyadenylated. Competition gel-shift experiments suggest that a factor within the protein complex that binds him may also be a part of the protein complexes that bind other promoter elements described previously in Giardia. Conclusion In contrast to other eukaryotes, the Giardia genome has only a single class of core histone genes that encode replication-independent histones. Our inability to locate a gene encoding the linker histone H1 leads us to speculate that the H1 protein may not be required for the compaction of Giardia's small and gene-rich genome.
Collapse
Affiliation(s)
- Janet Yee
- Departments of Biology and Chemistry, Biochemistry Program, Trent University, Peterborough, Ontario, K9J 7B8, Canada
| | - Anita Tang
- Departments of Biology and Chemistry, Biochemistry Program, Trent University, Peterborough, Ontario, K9J 7B8, Canada
| | - Wei-Ling Lau
- Departments of Biology and Chemistry, Biochemistry Program, Trent University, Peterborough, Ontario, K9J 7B8, Canada
| | - Heather Ritter
- Departments of Biology and Chemistry, Biochemistry Program, Trent University, Peterborough, Ontario, K9J 7B8, Canada
| | - Dewald Delport
- Departments of Biology and Chemistry, Biochemistry Program, Trent University, Peterborough, Ontario, K9J 7B8, Canada
| | - Melissa Page
- Departments of Biology and Chemistry, Biochemistry Program, Trent University, Peterborough, Ontario, K9J 7B8, Canada
| | - Rodney D Adam
- Departments of Immunobiology and Medicine, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Miklós Müller
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
- Collegium Budapest, H 1012 Budapest, Hungary
| | - Gang Wu
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
- Haskins Laboratories and Department of Chemistry and Physical Sciences, Pace University, 41 Park Row, New York, NY 10038, USA
| |
Collapse
|
48
|
Hwang UW. Prokaryotic and eukaryotic features observed on the secondary structures of Giardia SSU rRNAs and its phylogenetic implications. Parasitol Res 2007; 100:1159-63. [PMID: 17279392 DOI: 10.1007/s00436-007-0471-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
Phylogenetic position of a diplomonad protist Giardia, a principle cause of diarrhea, among eukaryotes has been vigorously debated so far. Through the comparisons of primary and secondary structures of SSU rRNAs of G. intestinalis, G. microti, G. ardeae, and G. muris, I found two major indel regions (a 6-nt indel and a 22-26-nt indel), which correspond to the helix 10 of the V2 region and helices E23-8 to E23-9 of the V4 region, respectively. As generally shown in eukaryotes, G. intestinalis and G. microti have commonly a relatively longer helix 10 (a 7-bp stem and a 4-nt loop), and also the eukaryote-specific helices E23-6 to E23-9. On the other hand, G. muris and G. ardeae have a shorter helix 10: a 2-bp stem and a 6-nt loop in G. ardeae and a 3-bp stem and a 6-nt loop in G. muris. In the V4, they have a single long helix (like the P23-1 helix in prokaryotes) instead of the helices E23-6 to E23-9. Among the four Giardia species, co-appearance of prokaryote- and eukaryote-typical features might be significant evidence to suggest that Giardia (Archezoa) is a living fossil showing an "intermediate stage" during the evolution from prokaryotes to eukaryotes.
Collapse
Affiliation(s)
- Ui Wook Hwang
- Department of Biology, Teachers College, Kyungpook National University, Daegu 702-701, South Korea.
| |
Collapse
|
49
|
Jékely G. Origin of phagotrophic eukaryotes as social cheaters in microbial biofilms. Biol Direct 2007; 2:3. [PMID: 17239231 PMCID: PMC1794243 DOI: 10.1186/1745-6150-2-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 01/19/2007] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The origin of eukaryotic cells was one of the most dramatic evolutionary transitions in the history of life. It is generally assumed that eukaryotes evolved later then prokaryotes by the transformation or fusion of prokaryotic lineages. However, as yet there is no consensus regarding the nature of the prokaryotic group(s) ancestral to eukaryotes. Regardless of this, a hardly debatable fundamental novel characteristic of the last eukaryotic common ancestor was the ability to exploit prokaryotic biomass by the ingestion of entire cells, i.e. phagocytosis. The recent advances in our understanding of the social life of prokaryotes may help to explain the origin of this form of total exploitation. PRESENTATION OF THE HYPOTHESIS Here I propose that eukaryotic cells originated in a social environment, a differentiated microbial mat or biofilm that was maintained by the cooperative action of its members. Cooperation was costly (e.g. the production of developmental signals or an extracellular matrix) but yielded benefits that increased the overall fitness of the social group. I propose that eukaryotes originated as selfish cheaters that enjoyed the benefits of social aggregation but did not contribute to it themselves. The cheaters later evolved into predators that lysed other cells and eventually became professional phagotrophs. During several cycles of social aggregation and dispersal the number of cheaters was contained by a chicken game situation, i.e. reproductive success of cheaters was high when they were in low abundance but was reduced when they were over-represented. Radical changes in cell structure, including the loss of the rigid prokaryotic cell wall and the development of endomembranes, allowed the protoeukaryotes to avoid cheater control and to exploit nutrients more efficiently. Cellular changes were buffered by both the social benefits and the protective physico-chemical milieu of the interior of biofilms. Symbiosis with the mitochondial ancestor evolved after phagotrophy as alphaproteobacterial prey developed post-ingestion defence mechanisms to circumvent digestion in the food vacuole. Mitochondrial symbiosis triggered the origin of the nucleus. Cilia evolved last and allowed eukaryotes to predate also on planktonic prey. I will discuss how this scenario may possibly fit into the contrasting phylogenetic frameworks that have been proposed. TESTING THE HYPOTHESIS Some aspects of the hypothesis can be tested experimentally by studying the level of exploitation cheaters can reach in social microbes. It would be interesting to test whether absorption of nutrients from lysed fellow colony members can happen and if cheaters can evolve into predators that actively digest neighbouring cells. IMPLICATIONS OF THE HYPOTHESIS The hypothesis highlights the importance of social exploitation in cell evolution and how a social environment can buffer drastic cellular transformations that would be lethal for planktonic forms.
Collapse
Affiliation(s)
- Gáspár Jékely
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
50
|
Burri L, Keeling PJ. Protein targeting in parasites with cryptic mitochondria. Int J Parasitol 2006; 37:265-72. [PMID: 17250838 DOI: 10.1016/j.ijpara.2006.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 12/05/2006] [Accepted: 12/11/2006] [Indexed: 11/22/2022]
Abstract
Many highly specialised parasites have adapted to their environments by simplifying different aspects of their morphology or biochemistry. One interesting case is the mitochondrion, which has been subject to strong reductive evolution in parallel in several different parasitic groups. In extreme cases, mitochondria have degenerated so much in physical size and functional complexity that they were not immediately recognised as mitochondria, and are now referred to as 'cryptic'. Cryptic mitochondrion-derived organelles can be classified as either hydrogenosomes or mitosomes. In nearly all cases they lack a genome and all organellar proteins are nucleus-encoded and expressed in the cytosol. The same is true for the majority of proteins in canonical mitochondria, where the proteins are directed to the organelle by specific targeting sequences (transit peptides) that are recognised by translocases in the mitochondrial membrane. In this review, we compare targeting sequences of different parasitic systems with highly reduced mitochondria and give an overview of how the import machinery has been modified in hydrogenosomes and mitosomes.
Collapse
Affiliation(s)
- Lena Burri
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | | |
Collapse
|