1
|
Diorio C, Teachey DT, Grupp SA. Allogeneic chimeric antigen receptor cell therapies for cancer: progress made and remaining roadblocks. Nat Rev Clin Oncol 2025; 22:10-27. [PMID: 39548270 DOI: 10.1038/s41571-024-00959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Chimeric antigen receptor (CAR) T cells are revolutionizing cancer therapy, particularly for haematological malignancies, conferring durable and sometimes curative responses in patients with advanced-stage disease. The CAR T cell products currently approved for clinical use are all autologous and are often effective; however, in patients who are lymphopenic and/or heavily pretreated with chemotherapy, autologous T cells can be difficult to harvest in sufficient numbers or have functional impairments that might ultimately render them less efficacious. Moreover, autologous products take several weeks to produce, and each product can be used in only one patient. By contrast, allogeneic CAR T cells can be produced for many patients using T cells from a single healthy donor, can be optimized for safety and efficacy, can be instantly available for 'off-the-shelf' use and, therefore, might also be more cost-effective. Despite these potential advantages, the development of allogeneic CAR T cells has lagged behind that of autologous products, owing to the additional challenges such as avoiding graft-versus-host disease and host-mediated graft rejection. Over the past few years, the development of advanced genome-editing techniques has facilitated the generation of novel allogeneic CAR T cell products. Furthermore, CAR cell products derived from other cell types such as induced pluripotent stem cells and natural killer cells are being investigated for clinical use. In this Review, we discuss the potential of allogeneic CAR cell products to expand life-saving immunotherapy to a much broader population of patients in the coming years, the progress made to date and strategies to overcome remaining hurdles.
Collapse
Affiliation(s)
- Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Department of Paediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Susan S. and Stephen P. Kelly Center for Cancer Immunotherapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David T Teachey
- Division of Oncology and Center for Childhood Cancer Research, Department of Paediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Susan S. and Stephen P. Kelly Center for Cancer Immunotherapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephan A Grupp
- Division of Oncology and Center for Childhood Cancer Research, Department of Paediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Susan S. and Stephen P. Kelly Center for Cancer Immunotherapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Derakhshandeh R, Zhu Y, Li J, Hester D, Younis R, Koka R, Jones LP, Sun W, Goloubeva O, Tkaczuk K, Bates J, Reader J, Webb TJ. Identification of Functional Immune Biomarkers in Breast Cancer Patients. Int J Mol Sci 2024; 25:12309. [PMID: 39596374 PMCID: PMC11595306 DOI: 10.3390/ijms252212309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer immunotherapy has emerged as an effective, personalized treatment for certain patients, particularly for those with hematological malignancies. However, its efficacy in breast cancer has been marginal-perhaps due to cold, immune-excluded, or immune-desert tumors. Natural killer T (NKT) cells play a critical role in cancer immune surveillance and are reduced in cancer patients. Thus, we hypothesized that NKT cells could serve as a surrogate marker for immune function. In order to assess which breast cancer patients would likely benefit from immune cell-based therapies, we have developed a quantitative method to rapidly assess NKT function using stimulation with artificial antigen presenting cells followed by quantitative real-time PCR for IFN-γ. We observed a significant reduction in the percentage of circulating NKT cells in breast cancer patients, compared to healthy donors; however, the majority of patients had functional NKT cells. When we compared BC patients with highly functional NKT cells, as indicated by high IFN-γ induction, to those with little to no induction, following stimulation of NKT cells, there was no significant difference in NKT cell number between the groups, suggesting functional loss has more impact than physical loss of this subpopulation of T cells. In addition, we assessed the percentage of tumor-infiltrating lymphocytes and PD-L1 expression within the tumor microenvironment in the low and high responders. Further characterization of immune gene signatures in these groups identified a concomitant decrease in the induction of TNFα, LAG3, and LIGHT in the low responders. We next investigated the mechanisms by which breast cancers suppress NKT-mediated anti-tumor immune responses. We found that breast cancers secrete immunosuppressive lipids, and treatment with commonly prescribed medications that modulate lipid metabolism, can reduce tumor growth and restore NKT cell responses.
Collapse
Affiliation(s)
- Roshanak Derakhshandeh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (R.D.); (Y.Z.); (J.L.); (D.H.); (W.S.); (J.B.)
| | - Yuyi Zhu
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (R.D.); (Y.Z.); (J.L.); (D.H.); (W.S.); (J.B.)
| | - Junxin Li
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (R.D.); (Y.Z.); (J.L.); (D.H.); (W.S.); (J.B.)
| | - Danubia Hester
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (R.D.); (Y.Z.); (J.L.); (D.H.); (W.S.); (J.B.)
| | - Rania Younis
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA;
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA; (R.K.); (L.P.J.); (O.G.); (K.T.); (J.R.)
| | - Rima Koka
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA; (R.K.); (L.P.J.); (O.G.); (K.T.); (J.R.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Laundette P. Jones
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA; (R.K.); (L.P.J.); (O.G.); (K.T.); (J.R.)
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wenji Sun
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (R.D.); (Y.Z.); (J.L.); (D.H.); (W.S.); (J.B.)
| | - Olga Goloubeva
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA; (R.K.); (L.P.J.); (O.G.); (K.T.); (J.R.)
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Katherine Tkaczuk
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA; (R.K.); (L.P.J.); (O.G.); (K.T.); (J.R.)
| | - Joshua Bates
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (R.D.); (Y.Z.); (J.L.); (D.H.); (W.S.); (J.B.)
| | - Jocelyn Reader
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA; (R.K.); (L.P.J.); (O.G.); (K.T.); (J.R.)
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tonya J. Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (R.D.); (Y.Z.); (J.L.); (D.H.); (W.S.); (J.B.)
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD 21201, USA; (R.K.); (L.P.J.); (O.G.); (K.T.); (J.R.)
| |
Collapse
|
3
|
Romanò C, Jiang H, Tahvili S, Wei P, Keiding UB, Clergeaud G, Skovbakke SL, Blomberg AL, Hafkenscheid L, Henriksen JR, Andresen TL, Goletz S, Hansen AE, Christensen D, Clausen MH. Chemical synthesis and immunological evaluation of cancer vaccines based on ganglioside antigens and α-galactosylceramide. RSC Med Chem 2024; 15:2718-2728. [PMID: 39149099 PMCID: PMC11324045 DOI: 10.1039/d4md00387j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024] Open
Abstract
iNKT cells - often referred as the "Swiss Army knife" of the immune system - have emerged as central players in cancer vaccine therapies. Glycolipids activating iNKT cells, such as α-galactosylceramide (αGalCer), can enhance the immune response against co-delivered cancer antigens and have been applied in the design of self-adjuvanting anti-tumor vaccines. In this context, this work focuses on the chemical synthesis of ganglioside tumor-associated carbohydrate antigens (TACAs), namely GM3 and (Neu5Gc)GM3 antigens, their conjugation to αGalCer, and their formulation into liposomes as an efficient platform for their in vivo delivery. Liposomes containing GM3-αGalCer, (Neu5Gc)GM3-αGalCer, and equimolar amounts of the two conjugates have been fully characterized and their ability to activate iNKT cell has been confirmed ex vivo in mouse and human cell assays. The candidates were tested in in vivo immunization studies, demonstrating an ability to induce both TH1 and TH2 cytokines leading to the production of all subclasses of IgG antibodies. Notably, the study also demonstrated that serum antibodies raised against the two TACAs, alone and in combination, were cross-reactive. This finding has consequences for future vaccine designs - even if a highly tumor-selective antigen is chosen, the resulting antibody response may be broader than anticipated.
Collapse
Affiliation(s)
- Cecilia Romanò
- Center for Nanomedicine & Theranostics, Department of Chemistry, Technical University of Denmark Kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Hao Jiang
- Center for Nanomedicine & Theranostics, Department of Chemistry, Technical University of Denmark Kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Sahar Tahvili
- Center for Nanomedicine & Theranostics, Department of Chemistry, Technical University of Denmark Kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Peng Wei
- Center for Nanomedicine & Theranostics, Department of Chemistry, Technical University of Denmark Kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Ulrik B Keiding
- Center for Nanomedicine & Theranostics, Department of Chemistry, Technical University of Denmark Kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Gael Clergeaud
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark Ørsteds Plads 2800 Kgs Lyngby Denmark
| | - Sarah Line Skovbakke
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark Søltofts Plads 2800 Kgs Lyngby Denmark
| | - Anne Louise Blomberg
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark Søltofts Plads 2800 Kgs Lyngby Denmark
| | - Lise Hafkenscheid
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark Søltofts Plads 2800 Kgs Lyngby Denmark
| | - Jonas R Henriksen
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark Ørsteds Plads 2800 Kgs Lyngby Denmark
| | - Thomas L Andresen
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark Ørsteds Plads 2800 Kgs Lyngby Denmark
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark Søltofts Plads 2800 Kgs Lyngby Denmark
| | - Anders E Hansen
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark Ørsteds Plads 2800 Kgs Lyngby Denmark
| | - Dennis Christensen
- Adjuvant Systems Research & Development, Croda Pharma 2800 Lyngby Denmark
| | - Mads H Clausen
- Center for Nanomedicine & Theranostics, Department of Chemistry, Technical University of Denmark Kemitorvet 207 2800 Kgs. Lyngby Denmark
| |
Collapse
|
4
|
Baiu DC, Sharma A, Schehr JL, Basu J, Smith KA, Ohashi M, Johannsen EC, Kenney SC, Gumperz JE. Human CD4 + iNKT cell adoptive immunotherapy induces anti-tumour responses against CD1d-negative EBV-driven B lymphoma. Immunology 2024; 172:627-640. [PMID: 38736328 PMCID: PMC11223969 DOI: 10.1111/imm.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are a conserved population of innate T lymphocytes that are uniquely suitable as off-the-shelf cellular immunotherapies due to their lack of alloreactivity. Two major subpopulations of human iNKT cells have been delineated, a CD4- subset that has a TH1/cytolytic profile, and a CD4+ subset that appears polyfunctional and can produce both regulatory and immunostimulatory cytokines. Whether these two subsets differ in anti-tumour effects is not known. Using live cell imaging, we found that CD4- iNKT cells limited growth of CD1d+ Epstein-Barr virus (EBV)-infected B-lymphoblastoid spheroids in vitro, whereas CD4+ iNKT cells showed little or no direct anti-tumour activity. However, the effects of the two subsets were reversed when we tested them as adoptive immunotherapies in vivo using a xenograft model of EBV-driven human B cell lymphoma. We found that EBV-infected B cells down-regulated CD1d in vivo, and administering CD4- iNKT cells had no discernable impact on tumour mass. In contrast, xenotransplanted mice bearing lymphomas showed rapid reduction in tumour mass after administering CD4+ iNKT cells. Immunotherapeutic CD4+ iNKT cells trafficked to both spleen and tumour and were associated with subsequently enhanced responses of xenotransplanted human T cells against EBV. CD4+ iNKT cells also had adjuvant-like effects on monocyte-derived DCs and promoted antigen-dependent responses of human T cells in vitro. These results show that allogeneic CD4+ iNKT cellular immunotherapy leads to marked anti-tumour activity through indirect pathways that do not require tumour cell CD1d expression and that are associated with enhanced activity of antigen-specific T cells.
Collapse
Affiliation(s)
- Dana C. Baiu
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Akshat Sharma
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Jennifer L. Schehr
- Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Jayati Basu
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kelsey A. Smith
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Makoto Ohashi
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Eric C. Johannsen
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Shannon C. Kenney
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jenny E. Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
5
|
Yang AYP, Wistuba-Hamprecht K, Greten TF, Ruf B. Innate-like T cells in liver disease. Trends Immunol 2024; 45:535-548. [PMID: 38879436 DOI: 10.1016/j.it.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 07/14/2024]
Abstract
Mammalian innate-like T cells (ILTCs), including mucosal-associated invariant T (MAIT), natural killer T (NKT), and γδ T cells, are abundant tissue-resident lymphocytes that have recently emerged as orchestrators of hepatic inflammation, tissue repair, and immune homeostasis. This review explores the involvement of different ILTC subsets in liver diseases. We explore the mechanisms underlying the pro- and anti-inflammatory effector functions of ILTCs in a context-dependent manner. We highlight latest findings regarding the dynamic interplay between ILTC functional subsets and other immune and parenchymal cells which may inform candidate immunomodulatory strategies to achieve improved clinical outcomes in liver diseases. We present new insights into how distinct gene expression programs in hepatic ILTCs are induced, maintained, and reprogrammed in a context- and disease stage-dependent manner.
Collapse
Affiliation(s)
- Albert Ying-Po Yang
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Kilian Wistuba-Hamprecht
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) - Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany; Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology, and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Center for Cancer Research (CCR) Liver Cancer Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Ruf
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) - Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
6
|
Boonchalermvichian C, Yan H, Gupta B, Rubin A, Baker J, Negrin RS. invariant Natural Killer T cell therapy as a novel therapeutic approach in hematological malignancies. FRONTIERS IN TRANSPLANTATION 2024; 3:1353803. [PMID: 38993780 PMCID: PMC11235242 DOI: 10.3389/frtra.2024.1353803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 07/13/2024]
Abstract
Invariant Natural Killer T cell therapy is an emerging platform of immunotherapy for cancer treatment. This unique cell population is a promising candidate for cell therapy for cancer treatment because of its inherent cytotoxicity against CD1d positive cancers as well as its ability to induce host CD8 T cell cross priming. Substantial evidence supports that iNKT cells can modulate myelomonocytic populations in the tumor microenvironment to ameliorate immune dysregulation to antagonize tumor progression. iNKT cells can also protect from graft-versus-host disease (GVHD) through several mechanisms, including the expansion of regulatory T cells (Treg). Ultimately, iNKT cell-based therapy can retain antitumor activity while providing protection against GVHD simultaneously. Therefore, these biological properties render iNKT cells as a promising "off-the-shelf" therapy for diverse hematological malignancies and possible solid tumors. Further the introduction of a chimeric antigen recetor (CAR) can further target iNKT cells and enhance function. We foresee that improved vector design and other strategies such as combinatorial treatments with small molecules or immune checkpoint inhibitors could improve CAR iNKT in vivo persistence, functionality and leverage anti-tumor activity along with the abatement of iNKT cell dysfunction or exhaustion.
Collapse
|
7
|
Das R. T Cell Receptor-Engaging Monoclonal Antibodies Mobilize the Anti-Tumor Functions of Invariant Natural Killer T Cells. Crit Rev Oncog 2024; 29:69-81. [PMID: 38421715 PMCID: PMC11062185 DOI: 10.1615/critrevoncog.2023049947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Invariant natural killer T cells (iNKTs) are innate-type T lymphocytes that directly kill tumor cells or tumor-growth promoting immunosuppressive cells such astumor-associated macrophages. Additionally, iNKTs robustly transactivate the antitumor functions of T, B, natural killer, and dendritic cells as well as reinvigorate exhausted immune cells in the tumor microenvironment. As such, iNKTs make excellent candidates for inclusion in anti-cancer cellular therapies. However, to capitalize on the potential benefits of iNKT cell-based approaches, it is imperative that we develop new and clinically viable strategies to enhance their antitumor function. To that end, two novel monoclonal antibodies (mAbs) that selectively bind to the human (NKTT320) or murine (NKT14m) invariant T cell receptor have been recently developed and characterized. Studies using purified human iNKTs (in vitro) and a model of non-human primate (in vivo) reveal that NKTT320 promotes swift, vigorous and sustained iNKT cell activation that is accompanied by robust production of inflammatory mediators and bystander immune cell activation. Furthermore, NKTT320 augments expression of cytotoxic markers and human iNKT cell degranulation. Similarly, NKT14m prompts dramatic murine iNKT cell activation and functional response both in vitro and in vivo. However, antitumor efficacy of a single dose of NKT14m injection in tumor-bearing mice is limited and tumor-model dependent. In contrast, combination treatment of NKT14m with either low dose interleukin (IL)-12 or the chemotherapeutic agent, cyclophosphamide results in a superior antitumor response in vivo. This is evident by activation of both iNKTs and other immune cells, prolonged survival of the tumor-challenged mice, and long-lasting immunity. Collectively, these recent studies justify further development of anti-iTCR mAbs that can be used alone or in conjunction with immunomodulatory agents to enhance iNKT cell antitumor immunity against various cancers.
Collapse
Affiliation(s)
- Rupali Das
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
McCord B, Day RM. Cytotoxic immune cells do not affect TDP-43 and p62 sarcoplasmic aggregation but influence TDP-43 localisation. Sci Rep 2023; 13:15935. [PMID: 37741931 PMCID: PMC10517962 DOI: 10.1038/s41598-023-42824-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023] Open
Abstract
Sporadic inclusion body myositis (sIBM) is an idiopathic inflammatory myopathy with invasion of CD8 T cells in muscle and aggregation of proteins in the sarcoplasm. TDP-43 and p62 are two proteins that aggregate in affected muscle, and have been suggested as specific markers for sIBM over other inflammatory myopathies. TDP-43 is also mislocalised from the nucleus to the sarcoplasm in sIBM. It is not clear if inflammation precedes protein aggregation in sIBM. This study investigated if exposure to cytotoxic inflammatory cells caused TDP-43 and p62 aggregation or TDP-43 mislocalisation in cultured myotubes. TALL-104 coculture was highly cytotoxic to myotubes after 24 h. Secretion of IFNγ and TNFα were higher in cocultures compared to monocultured TALL-104 cells, indicating activation. TALL-104 cells attached to and infiltrated myotubes. There was no effect of TALL-104 coculture on TDP-43 or p62 sarcoplasmic aggregate size or frequency. However, there was decreased localisation of TDP-43 to the nucleus with TALL-104 coculture compared to control. In an in vitro setting, cytotoxic immune cells did not cause TDP-43 or p62 sarcoplasmic aggregation, suggesting cellular cytotoxicity may not trigger aggregation of these proteins. However TALL-104 coculture influenced TDP-43 localisation, suggesting cytotoxic immune cells may contribute to TDP-43 localisation shifts which is observed in sIBM.
Collapse
Affiliation(s)
- Bryony McCord
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London, WC1E 6JF, UK
| | - Richard M Day
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London, WC1E 6JF, UK.
| |
Collapse
|
9
|
Aoki T, Motohashi S, Koseki H. Regeneration of invariant natural killer T (iNKT) cells: application of iPSC technology for iNKT cell-targeted tumor immunotherapy. Inflamm Regen 2023; 43:27. [PMID: 37170375 PMCID: PMC10176773 DOI: 10.1186/s41232-023-00275-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/29/2023] [Indexed: 05/13/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a subset of innate-like T cells restricted by a major histocompatibility complex (MHC) class I-like molecule, CD1d. iNKT cells express an invariant T cell receptor (TCR) encoded by Vα14 Jα18 in mice and Vα24 Jα18 in humans and are activated by recognizing glycolipid antigens, such as α-galactosylceramide (αGalCer), presented by CD1d. iNKT cells exhibit anti-tumor activity via their NK-like cytotoxicity and adjuvant activity. Although iNKT cell-targeted immunotherapy is a conceptually promising approach, we still found a technical hurdle for its clinical implementation which is mainly due to the low frequency of iNKT cells, particularly in humans. To compensate for this, we proposed to generate adequate numbers of clinically competent NKT cells from induced pluripotent stem cells (iPSCs) for cancer immunotherapy. Toward this goal, we first obtained the proof of concept (POC) for this approach in mice. We developed a technology to differentiate iPSCs into iNKT cells (iPSC-iNKT cells) and found iPSC-iNKT cells efficiently rejected a syngeneic experimental thymoma by inducing antigen-specific CD8 T cells. After achieving the POC in mice, we developed human iPSC-iNKT cells, which had a high correlation in their gene expression profiles with parental iNKT cells. Human iPSC-iNKT cells also exhibited anti-tumor activity and adjuvant activity for human NK cells in vivo. Based on this supporting evidence for the anti-tumor activity of human iPSC-iNKT cells, we began to generate good manufacturing practice (GMP)-grade iPSC-iNKT cells. As of now, the first-in-human clinical trial of iPSC-iNKT cell therapy is ongoing as a single-agent, dose-escalation study for patients with advanced head and neck cancer. Demonstration of the safety of iPSC-iNKT cell therapy may allow us to improve the strategy by further reinforcing the therapeutic activity of iPSC-iNKT, cells either by gene-editing or combinatorial use with other immune cell products such as dendritic cells. Sixteen years after the establishment of the iPSC technology, we are reaching the first checkpoint to evaluate the clinical efficacy of iPSC-derived immune cells.
Collapse
Affiliation(s)
- Takahiro Aoki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan.
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
10
|
Ruf B, Greten TF, Korangy F. Innate lymphoid cells and innate-like T cells in cancer - at the crossroads of innate and adaptive immunity. Nat Rev Cancer 2023; 23:351-371. [PMID: 37081117 DOI: 10.1038/s41568-023-00562-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
Immunotherapies targeting conventional T cells have revolutionized systemic treatment for many cancers, yet only a subset of patients benefit from these approaches. A better understanding of the complex immune microenvironment of tumours is needed to design the next generation of immunotherapeutics. Innate lymphoid cells (ILCs) and innate-like T cells (ILTCs) are abundant, tissue-resident lymphocytes that have recently been shown to have critical roles in many types of cancers. ILCs and ILTCs rapidly respond to changes in their surrounding environment and act as the first responders to bridge innate and adaptive immunity. This places ILCs and ILTCs as pivotal orchestrators of the final antitumour immune response. In this Review, we outline hallmarks of ILCs and ILTCs and discuss their emerging role in antitumour immunity, as well as the pathophysiological adaptations leading to their pro-tumorigenic function. We explore the pleiotropic, in parts redundant and sometimes opposing, mechanisms that underlie the delicate interplay between the different subsets of ILCs and ILTCs. Finally, we highlight their role in amplifying and complementing conventional T cell functions and summarize immunotherapeutic strategies for targeting ILCs and ILTCs in cancer.
Collapse
Affiliation(s)
- Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Look A, Burns D, Tews I, Roghanian A, Mansour S. Towards a better understanding of human iNKT cell subpopulations for improved clinical outcomes. Front Immunol 2023; 14:1176724. [PMID: 37153585 PMCID: PMC10154573 DOI: 10.3389/fimmu.2023.1176724] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique T lymphocyte population expressing semi-invariant T cell receptors (TCRs) that recognise lipid antigens presented by CD1d. iNKT cells exhibit potent anti-tumour activity through direct killing mechanisms and indirectly through triggering the activation of other anti-tumour immune cells. Because of their ability to induce potent anti-tumour responses, particularly when activated by the strong iNKT agonist αGalCer, they have been the subject of intense research to harness iNKT cell-targeted immunotherapies for cancer treatment. However, despite potent anti-tumour efficacy in pre-clinical models, the translation of iNKT cell immunotherapy into human cancer patients has been less successful. This review provides an overview of iNKT cell biology and why they are of interest within the context of cancer immunology. We focus on the iNKT anti-tumour response, the seminal studies that first reported iNKT cytotoxicity, their anti-tumour mechanisms, and the various described subsets within the iNKT cell repertoire. Finally, we discuss several barriers to the successful utilisation of iNKT cells in human cancer immunotherapy, what is required for a better understanding of human iNKT cells, and the future perspectives facilitating their exploitation for improved clinical outcomes.
Collapse
Affiliation(s)
- Alex Look
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Daniel Burns
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ivo Tews
- Biological Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Salah Mansour
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
12
|
Antitumor Immunity Exerted by Natural Killer and Natural Killer T Cells in the Liver. J Clin Med 2023; 12:jcm12030866. [PMID: 36769513 PMCID: PMC9917438 DOI: 10.3390/jcm12030866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The liver plays crucial roles in systemic immunity and greatly contributes to the systemic defense mechanism. Antitumor immunity in the liver is especially critical for the defense against systemic tumor cell dissemination. To achieve effective defense against metastatic tumor cells, liver immune cells with powerful cytotoxic activities construct a potent defense mechanism. In the liver, as compared with other organs, there is a significantly more intense percentage of innate immune lymphocytes, such as natural killer (NK) and NKT cells. These characteristic lymphocytes survey the portal blood transferred to the liver from the alimentary tract and eliminate malignant cells with their robust cytotoxic ability. Additionally, with their active cytokine-producing capacity, these innate lymphocytes initiate immunological sequences by adaptive immune cells. Therefore, they are crucial contributors to systemic antitumor immunity. These attractive immune cells help conduct a fundamental investigation of tumor immunity and act as a target of clinical measures for cancer therapies. This review discusses the mechanisms of these innate lymphocytes regarding recognition and cytotoxicity against tumor cells and the possibility of clinical applications for therapeutic measures.
Collapse
|
13
|
Early Activation of iNKT Cells Increased Survival Time of BALB/c Mice in a Murine Model of Melioidosis. Infect Immun 2022; 90:e0026822. [PMID: 36374098 PMCID: PMC9753712 DOI: 10.1128/iai.00268-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Melioidosis is an infectious disease caused by Burkholderia pseudomallei. High interferon gamma (IFN-γ) levels in naive mice were reported to mediate protection against B. pseudomallei infection. Invariant natural killer T (iNKT) cells can produce and secrete several cytokines, including IFN-γ. When iNKT cell-knockout (KO) BALB/c mice were infected with B. pseudomallei, their survival time was significantly shorter than wild-type mice. Naive BALB/c mice pretreated intraperitoneally with α-galactosylceramide (α-GalCer), an iNKT cell activator, 24 h before infection demonstrated 62.5% survival at the early stage, with prolonged survival time compared to nonpretreated infected control mice (14 ± 1 days versus 6 ± 1 days, respectively). At 4 h after injection with α-GalCer, treated mice showed significantly higher levels of serum IFN-γ, interleukin-4 (IL-4), IL-10, and IL-12 than control mice. Interestingly, the IFN-γ levels in the α-GalCer-pretreated group were decreased at 4, 24, and 48 h after infection, while they were highly increased in the control group. At 24 h postinfection in the α-GalCer group, bacterial loads were significantly lower in blood (no growth and 1,780.00 ± 51.21, P < 0.0001), spleens (no growth and 34,300 ± 1,106.04, P < 0.0001), and livers (1,550 ± 68.72 and 13,400 ± 1,066.67, P < 0.0001) than in the control group, but not in the lungs (15,300 ± 761.10 and 1,320 ± 41.63, P < 0.0001), and almost all were negative at 48 h postinfection. This study for the first time shows that early activation of iNKT cells by α-GalCer helps clearance of B. pseudomallei and prolongs mouse survival.
Collapse
|
14
|
Cui G, Shimba A, Jin J, Ogawa T, Muramoto Y, Miyachi H, Abe S, Asahi T, Tani-Ichi S, Dijkstra JM, Iwamoto Y, Kryukov K, Zhu Y, Takami D, Hara T, Kitano S, Xu Y, Morita H, Zhang M, Zreka L, Miyata K, Kanaya T, Okumura S, Ito T, Hatano E, Takahashi Y, Watarai H, Oike Y, Imanishi T, Ohno H, Ohteki T, Minato N, Kubo M, Holländer GA, Ueno H, Noda T, Shiroguchi K, Ikuta K. A circulating subset of iNKT cells mediates antitumor and antiviral immunity. Sci Immunol 2022; 7:eabj8760. [PMID: 36269840 DOI: 10.1126/sciimmunol.abj8760] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Invariant natural killer T (iNKT) cells are a group of innate-like T lymphocytes that recognize lipid antigens. They are supposed to be tissue resident and important for systemic and local immune regulation. To investigate the heterogeneity of iNKT cells, we recharacterized iNKT cells in the thymus and peripheral tissues. iNKT cells in the thymus were divided into three subpopulations by the expression of the natural killer cell receptor CD244 and the chemokine receptor CXCR6 and designated as C0 (CD244-CXCR6-), C1 (CD244-CXCR6+), or C2 (CD244+CXCR6+) iNKT cells. The development and maturation of C2 iNKT cells from C0 iNKT cells strictly depended on IL-15 produced by thymic epithelial cells. C2 iNKT cells expressed high levels of IFN-γ and granzymes and exhibited more NK cell-like features, whereas C1 iNKT cells showed more T cell-like characteristics. C2 iNKT cells were influenced by the microbiome and aging and suppressed the expression of the autoimmune regulator AIRE in the thymus. In peripheral tissues, C2 iNKT cells were circulating that were distinct from conventional tissue-resident C1 iNKT cells. Functionally, C2 iNKT cells protected mice from the tumor metastasis of melanoma cells by enhancing antitumor immunity and promoted antiviral immune responses against influenza virus infection. Furthermore, we identified human CD244+CXCR6+ iNKT cells with high cytotoxic properties as a counterpart of mouse C2 iNKT cells. Thus, this study reveals a circulating subset of iNKT cells with NK cell-like properties distinct from conventional tissue-resident iNKT cells.
Collapse
Affiliation(s)
- Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jianshi Jin
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR) , Osaka, Japan
| | - Taisaku Ogawa
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR) , Osaka, Japan
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takuma Asahi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shizue Tani-Ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | - Yayoi Iwamoto
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kirill Kryukov
- Biomedical Informatics Laboratory, Department of Molecular Life Science, Tokai University, Kanagawa, Japan
- Biological Networks Laboratory, Department of Informatics, National Institute of Genetics, Shizuoka, Japan
| | - Yuanbo Zhu
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Daichi Takami
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, Japan
| | - Takahiro Hara
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yan Xu
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hajime Morita
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Moyu Zhang
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Lynn Zreka
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Kanaya
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Shinya Okumura
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Ito
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Watarai
- Department of Immunology and Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tadashi Imanishi
- Biomedical Informatics Laboratory, Department of Molecular Life Science, Tokai University, Kanagawa, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nagahiro Minato
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masato Kubo
- Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Chiba, Japan
| | - Georg A Holländer
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Pediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Hideki Ueno
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Katsuyuki Shiroguchi
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR) , Osaka, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Ikeda M, Ide T, Matsushima S, Ikeda S, Okabe K, Ishikita A, Tadokoro T, Sada M, Abe K, Sato M, Hanada A, Arai S, Ohtani K, Nonami A, Mizuno S, Morimoto S, Motohashi S, Akashi K, Taniguchi M, Tsutsui H. Immunomodulatory Cell Therapy Using αGalCer-Pulsed Dendritic Cells Ameliorates Heart Failure in a Murine Dilated Cardiomyopathy Model. Circ Heart Fail 2022; 15:e009366. [PMID: 36268712 PMCID: PMC9760469 DOI: 10.1161/circheartfailure.122.009366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a life-threatening disease, resulting in refractory heart failure. An immune disorder underlies the pathophysiology associated with heart failure progression. Invariant natural killer T (iNKT) cell activation is a prospective therapeutic strategy for ischemic heart disease. However, its efficacy in nonischemic cardiomyopathy, such as DCM, remains to be elucidated, and the feasible modality for iNKT cell activation in humans is yet to be validated. METHODS Dendritic cells isolated from human volunteers were pulsed with α-galactosylceramide ex vivo, which were used as α-galactosylceramide-pulsed dendritic cells (αGCDCs). We treated DCM mice harboring mutated troponin TΔK210/ΔK210 with αGCDCs and evaluated the efficacy of iNKT cell activation on heart failure in DCM mice. Furthermore, we investigated the molecular basis underlying its therapeutic effects in these mice and analyzed primary cardiac cells under iNKT cell-secreted cytokines. RESULTS The number of iNKT cells in the spleens of DCM mice was reduced compared with that in wild-type mice, whereas αGCDC treatment activated iNKT cells, prolonged survival of DCM mice, and prevented decline in the left ventricular ejection fraction for 4 weeks, accompanied by suppressed interstitial fibrosis. Mechanistically, αGCDC treatment suppressed TGF (transforming growth factor)-β signaling and expression of fibrotic genes and restored vasculature that was impaired in DCM hearts by upregulating angiopoietin 1 (Angpt1) expression. Consistently, IFNγ (interferon gamma) suppressed TGF-β-induced Smad2/3 signaling and the expression of fibrotic genes in cardiac fibroblasts and upregulated Angpt1 expression in cardiomyocytes via Stat1. CONCLUSIONS Immunomodulatory cell therapy with αGCDCs is a novel therapeutic strategy for heart failure in DCM.
Collapse
Affiliation(s)
- Masataka Ikeda
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Immunoregulatory Cardiovascular Medicine (M.I., T.I.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Immunoregulatory Cardiovascular Medicine (M.I., T.I.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Soichiro Ikeda
- Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Okabe
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihito Ishikita
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomonori Tadokoro
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masashi Sada
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ko Abe
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Midori Sato
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiko Hanada
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinobu Arai
- Department of Early Childhood and Elementary Education, Faculty of Education, Nakamura Gakuen University, Fukuoka, Japan (S.A.)
| | - Kisho Ohtani
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsushi Nonami
- Center for Advanced Medical Innovation, Kyushu University Hospital, Fukuoka, Japan (A.N.)
| | - Shinichi Mizuno
- Department of Health Sciences (S. Mizuno), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sachio Morimoto
- Department of Health Sciences at Fukuoka, International University of Health and Welfare, Japan (S. Morimoto)
| | - Shinichiro Motohashi
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Medical Immunology, Graduate School of Medicine, Chiba University, Japan (S. Motohashi)
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science (K. Akashi), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaru Taniguchi
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan (M.T.)
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Cardiovascular Medicine, Research Institute of Angiocardiology (M.I., T.I., S.M., S.I., K.O., A.I., T.T., M.S., K. Abe, M.S., A.H., K.O., H.T.), Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
Loureiro JP, Cruz MS, Cardoso AP, Oliveira MJ, Macedo MF. Human iNKT Cells Modulate Macrophage Survival and Phenotype. Biomedicines 2022; 10:1723. [PMID: 35885028 PMCID: PMC9313099 DOI: 10.3390/biomedicines10071723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
CD1d-restricted invariant Natural Killer T (iNKT) cells are unconventional innate-like T cells whose functions highly depend on the interactions they establish with other immune cells. Although extensive studies have been reported on the communication between iNKT cells and macrophages in mice, less data is available regarding the relevance of this crosstalk in humans. Here, we dove into the human macrophage-iNKT cell axis by exploring how iNKT cells impact the survival and polarization of pro-inflammatory M1-like and anti-inflammatory M2-like monocyte-derived macrophages. By performing in vitro iNKT cell-macrophage co-cultures followed by flow cytometry analysis, we demonstrated that antigen-stimulated iNKT cells induce a generalized activated state on all macrophage subsets, leading to upregulation of CD40 and CD86 expression. CD40L blocking with a specific monoclonal antibody prior to co-cultures abrogated CD40 and CD86 upregulation, thus indicating that iNKT cells required CD40-CD40L co-stimulation to trigger macrophage activation. In addition, activated iNKT cells were cytotoxic towards macrophages in a CD1d-dependent manner, killing M1-like macrophages more efficiently than their naïve M0 or anti-inflammatory M2-like counterparts. Hence, this work highlighted the role of human iNKT cells as modulators of macrophage survival and phenotype, untangling key features of the human macrophage-iNKT cell axis and opening perspectives for future therapeutic modulation.
Collapse
Affiliation(s)
- J. Pedro Loureiro
- Cell Activation and Gene Expression Group, Institute for Molecular and Cell Biology (IBMC), Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (J.P.L.); (M.S.C.)
- Experimental Immunology Group, Department of Biomedicine (DBM), University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Mariana S. Cruz
- Cell Activation and Gene Expression Group, Institute for Molecular and Cell Biology (IBMC), Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (J.P.L.); (M.S.C.)
- Department of Medical Sciences, University of Aveiro (UA), 3810-193 Aveiro, Portugal
| | - Ana P. Cardoso
- Tumour and Microenvironment Interactions Group, Institute of Biomedical Engineering (INEB), Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.C.); (M.J.O.)
| | - Maria J. Oliveira
- Tumour and Microenvironment Interactions Group, Institute of Biomedical Engineering (INEB), Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.C.); (M.J.O.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - M. Fátima Macedo
- Cell Activation and Gene Expression Group, Institute for Molecular and Cell Biology (IBMC), Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (J.P.L.); (M.S.C.)
- Department of Medical Sciences, University of Aveiro (UA), 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Burn OK, Farrand K, Pritchard T, Draper S, Tang CW, Mooney AH, Schmidt AJ, Yang SH, Williams GM, Brimble MA, Kandasamy M, Marshall AJ, Clarke K, Painter GF, Hermans IF, Weinkove R. Glycolipid-peptide conjugate vaccines elicit CD8 + T-cell responses and prevent breast cancer metastasis. Clin Transl Immunology 2022; 11:e1401. [PMID: 35795321 PMCID: PMC9250805 DOI: 10.1002/cti2.1401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/08/2022] Open
Abstract
Objectives Metastasis is the principal cause of breast cancer mortality. Vaccines targeting breast cancer antigens have yet to demonstrate clinical efficacy, and there remains an unmet need for safe and effective treatment to reduce the risk of metastasis, particularly for people with triple-negative breast cancer (TNBC). Certain glycolipids can act as vaccine adjuvants by specifically stimulating natural killer T (NKT) cells to provide a universal form of T-cell help. Methods We designed and made a series of conjugate vaccines comprising a prodrug of the NKT cell-activating glycolipid α-galactosylceramide covalently linked to tumor-expressed peptides, and assessed these using E0771- and 4T1-based breast cancer models in vivo. We employed peptides from the model antigen ovalbumin and from clinically relevant breast cancer antigens HER2 and NY-ESO-1. Results Glycolipid-peptide conjugate vaccines that activate NKT cells led to antigen-presenting cell activation, induced inflammatory cytokines, and, compared with peptide alone or admixed peptide and α-galactosylceramide, specifically enhanced CD8+ T-cell responses against tumor-associated peptides. Primary tumor growth was delayed by vaccination in all tumor models. Using 4T1-based cell lines expressing HER2 or NY-ESO-1, a single administration of the relevant conjugate vaccine prevented tumor colonisation of the lung following intravenous inoculation of tumor cells or spontaneous metastasis from breast, respectively. Conclusion Glycolipid-peptide conjugate vaccines that activate NKT cells prevent lung metastasis in breast cancer models and warrant investigation as adjuvant therapies for high-risk breast cancer.
Collapse
Affiliation(s)
- Olivia K Burn
- Malaghan Institute of Medical Research Wellington New Zealand.,Department of Pathology & Molecular Medicine University of Otago Wellington Wellington New Zealand
| | - Kathryn Farrand
- Malaghan Institute of Medical Research Wellington New Zealand
| | - Tara Pritchard
- Malaghan Institute of Medical Research Wellington New Zealand
| | - Sarah Draper
- Ferrier Research Institute Victoria University of Wellington Wellington New Zealand
| | - Ching-Wen Tang
- Malaghan Institute of Medical Research Wellington New Zealand
| | - Anna H Mooney
- Malaghan Institute of Medical Research Wellington New Zealand
| | | | - Sung H Yang
- School of Chemical Sciences University of Auckland Auckland New Zealand
| | | | - Margaret A Brimble
- School of Chemical Sciences University of Auckland Auckland New Zealand.,School of Biological Sciences University of Auckland Auckland New Zealand.,Maurice Wilkins Centre Auckland New Zealand
| | - Matheswaran Kandasamy
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine University of Oxford Oxford UK
| | - Andrew J Marshall
- Ferrier Research Institute Victoria University of Wellington Wellington New Zealand
| | - Kate Clarke
- Wellington Blood & Cancer Centre Capital & Coast District Health Board Wellington New Zealand
| | - Gavin F Painter
- Ferrier Research Institute Victoria University of Wellington Wellington New Zealand.,Maurice Wilkins Centre Auckland New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research Wellington New Zealand.,Maurice Wilkins Centre Auckland New Zealand
| | - Robert Weinkove
- Malaghan Institute of Medical Research Wellington New Zealand.,Department of Pathology & Molecular Medicine University of Otago Wellington Wellington New Zealand.,Wellington Blood & Cancer Centre Capital & Coast District Health Board Wellington New Zealand
| |
Collapse
|
18
|
Wang Y, Wang J. Intravital Imaging of Inflammatory Response in Liver Disease. Front Cell Dev Biol 2022; 10:922041. [PMID: 35837329 PMCID: PMC9274191 DOI: 10.3389/fcell.2022.922041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
The healthy liver requires a strictly controlled crosstalk between immune and nonimmune cells to maintain its function and homeostasis. A well-conditioned immune system can effectively recognize and clear noxious stimuli by a self-limited, small-scale inflammatory response. This regulated inflammatory process enables the liver to cope with daily microbial exposure and metabolic stress, which is beneficial for hepatic self-renewal and tissue remodeling. However, the failure to clear noxious stimuli or dysregulation of immune response can lead to uncontrolled liver inflammation, liver dysfunction, and severe liver disease. Numerous highly dynamic circulating immune cells and sessile resident immune and parenchymal cells interact and communicate with each other in an incredibly complex way to regulate the inflammatory response in both healthy and diseased liver. Intravital imaging is a powerful tool to visualize individual cells in vivo and has been widely used for dissecting the behavior and interactions between various cell types in the complex architecture of the liver. Here, we summarize some new findings obtained with the use of intravital imaging, which enhances our understanding of the complexity of immune cell behavior, cell–cell interaction, and spatial organization during the physiological and pathological liver inflammatory response.
Collapse
|
19
|
Hadjigol S, Shah BA, O’Brien-Simpson NM. The 'Danse Macabre'-Neutrophils the Interactive Partner Affecting Oral Cancer Outcomes. Front Immunol 2022; 13:894021. [PMID: 35784290 PMCID: PMC9243430 DOI: 10.3389/fimmu.2022.894021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022] Open
Abstract
Over the past few decades, tremendous advances in the prevention, diagnosis, and treatment of cancer have taken place. However for head and neck cancers, including oral cancer, the overall survival rate is below 50% and they remain the seventh most common malignancy worldwide. These cancers are, commonly, aggressive, genetically complex, and difficult to treat and the delay, which often occurs between early recognition of symptoms and diagnosis, and the start of treatment of these cancers, is associated with poor prognosis. Cancer development and progression occurs in concert with alterations in the surrounding stroma, with the immune system being an essential element in this process. Despite neutrophils having major roles in the pathology of many diseases, they were thought to have little impact on cancer development and progression. Recent studies are now challenging this notion and placing neutrophils as central interactive players with other immune and tumor cells in affecting cancer pathology. This review focuses on how neutrophils and their sub-phenotypes, N1, N2, and myeloid-derived suppressor cells, both directly and indirectly affect the anti-tumor and pro-tumor immune responses. Emphasis is placed on what is currently known about the interaction of neutrophils with myeloid innate immune cells (such as dendritic cells and macrophages), innate lymphoid cells, natural killer cells, and fibroblasts to affect the tumor microenvironment and progression of oral cancer. A better understanding of this dialog will allow for improved therapeutics that concurrently target several components of the tumor microenvironment, increasing the possibility of constructive and positive outcomes for oral cancer patients. For this review, PubMed, Web of Science, and Google Scholar were searched for manuscripts using keywords and combinations thereof of "oral cancer, OSCC, neutrophils, TANs, MDSC, immune cells, head and neck cancer, and tumor microenvironment" with a focus on publications from 2018 to 2021.
Collapse
Affiliation(s)
- Sara Hadjigol
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, Carlton, VIC, Australia
| | | | - Neil M. O’Brien-Simpson
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, Carlton, VIC, Australia
| |
Collapse
|
20
|
Díaz‐Basabe A, Burrello C, Lattanzi G, Botti F, Carrara A, Cassinotti E, Caprioli F, Facciotti F. Human intestinal and circulating invariant natural killer T cells are cytotoxic against colorectal cancer cells via the perforin-granzyme pathway. Mol Oncol 2021; 15:3385-3403. [PMID: 34535957 PMCID: PMC8637555 DOI: 10.1002/1878-0261.13104] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Accepted: 09/16/2021] [Indexed: 11/05/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are lipid-specific T lymphocytes endowed with cytotoxic activities and are thus considered important in antitumor immunity. While several studies have demonstrated iNKT cell cytotoxicity against different tumors, very little is known about their cell-killing activities in human colorectal cancer (CRC). Our aim was to assess whether human iNKT cells are cytotoxic against colon cancer cells and the mechanisms underlying this activity. For this purpose, we generated stable iNKT cell lines from peripheral blood and colon specimens and used NK-92 and peripheral blood natural killer cells as cell-mediated cytotoxicity controls. In vitro cytotoxicity was assessed using a panel of well-characterized human CRC cell lines, and the cellular requirements for iNKT cell cytotoxic functions were evaluated. We demonstrated that both intestinal and circulating iNKT cells were cytotoxic against the entire panel of CRC lines, as well as against freshly isolated patient-derived colonic epithelial cancer cells. Perforin and/or granzyme inhibition impaired iNKT cell cytotoxicity, whereas T-cell receptor (TCR) signaling was a less stringent requirement for efficient killing. This study is the first evidence of tissue-derived iNKT cell cytotoxic activity in humans, as it shows that iNKT cells depend on the perforin-granzyme pathway and both adaptive and innate signal recognition for proper elimination of colon cancer cells.
Collapse
Affiliation(s)
- Angélica Díaz‐Basabe
- Department of Experimental OncologyIEO European Institute of Oncology IRCCSMilanItaly
- Department of Oncology and Hemato‐oncologyUniversità degli Studi di MilanoMilanItaly
| | - Claudia Burrello
- Department of Experimental OncologyIEO European Institute of Oncology IRCCSMilanItaly
| | - Georgia Lattanzi
- Department of Experimental OncologyIEO European Institute of Oncology IRCCSMilanItaly
- Department of Oncology and Hemato‐oncologyUniversità degli Studi di MilanoMilanItaly
| | - Fiorenzo Botti
- Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanItaly
- Department of SurgeryFondazione IRCCS Cà GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Alberto Carrara
- Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanItaly
- Department of SurgeryFondazione IRCCS Cà GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Elisa Cassinotti
- Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanItaly
| | - Flavio Caprioli
- Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanItaly
- Gastroenterology and Endoscopy UnitFondazione IRCCS Cà GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Federica Facciotti
- Department of Experimental OncologyIEO European Institute of Oncology IRCCSMilanItaly
| |
Collapse
|
21
|
Babes L, Shim R, Kubes P. Imaging α-GalCer-activated iNKT cells in a hepatic metastatic environment. Cancer Immunol Res 2021; 10:12-25. [PMID: 34785505 DOI: 10.1158/2326-6066.cir-21-0445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/12/2021] [Accepted: 11/15/2021] [Indexed: 01/10/2023]
Abstract
Colorectal cancer patients frequently develop liver metastases after, and perhaps as a consequence of, lifesaving surgical resection of the primary tumor. This creates a potential opportunity for prophylactic metastatic treatment with novel immunostimulatory molecules. Here, we used state-of-the-art intravital imaging of an experimental liver metastasis model to visualize the early behavior and function of invariant (i)NKT cells stimulated with α-galactosylceramide (α-GalCer). Intravenous α-GalCer prior to tumor cell seeding in the liver significantly inhibited tumor growth. However, some seeding tumor cells survived. A multiple dosing regimen reduced tumor burden and prolonged the life of mice, whereas tumors returned within 5 days after a single dose of α-GalCer. With multiple doses of α-GalCer, iNKT cells increased in number and granularity (as did NK cells). As a result, the total number of contacts and time in contact with tumors increased substantially. In the absence of iNKT cells, the beneficial effect of α-GalCer was lost. Robust cytokine production dissipated over time. Repeated therapy, even after cytokine dissipation, led to reduced tumor burden and prolonged survival. Serial transplantation of tumors exposed to α-GalCer-activated iNKT cells did not induce greater resistance, suggesting no obvious epigenetic or genetic immunoediting in tumors exposed to activated iNKT cells. Very few tumor cells expressed CD1d in this model, and as such, adding monomers of CD1d-α-GalCer further reduced tumor growth. The data suggest early and repeated stimulation of iNKT cells with α-GalCer could have direct therapeutic benefit for colorectal cancer patients that develop metastatic liver disease.
Collapse
Affiliation(s)
- Liane Babes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute and Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Raymond Shim
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Nelson A, Lukacs JD, Johnston B. The Current Landscape of NKT Cell Immunotherapy and the Hills Ahead. Cancers (Basel) 2021; 13:cancers13205174. [PMID: 34680322 PMCID: PMC8533824 DOI: 10.3390/cancers13205174] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Natural killer T (NKT) cells are a subset of lipid-reactive T cells that enhance anti-tumor immunity. While preclinical studies have shown NKT cell immunotherapy to be safe and effective, clinical studies lack predictable therapeutic efficacy and no approved treatments exist. In this review, we outline the current strategies, challenges, and outlook for NKT cell immunotherapy. Abstract NKT cells are a specialized subset of lipid-reactive T lymphocytes that play direct and indirect roles in immunosurveillance and anti-tumor immunity. Preclinical studies have shown that NKT cell activation via delivery of exogenous glycolipids elicits a significant anti-tumor immune response. Furthermore, infiltration of NKT cells is associated with a good prognosis in several cancers. In this review, we aim to summarize the role of NKT cells in cancer as well as the current strategies and status of NKT cell immunotherapy. This review also examines challenges and future directions for improving the therapy.
Collapse
Affiliation(s)
- Adam Nelson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Jordan D. Lukacs
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
23
|
Yokoyama N, Hanafusa K, Hotta T, Oshima E, Iwabuchi K, Nakayama H. Multiplicity of Glycosphingolipid-Enriched Microdomain-Driven Immune Signaling. Int J Mol Sci 2021; 22:9565. [PMID: 34502474 PMCID: PMC8430928 DOI: 10.3390/ijms22179565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Glycosphingolipids (GSLs), together with cholesterol, sphingomyelin (SM), and glycosylphosphatidylinositol (GPI)-anchored and membrane-associated signal transduction molecules, form GSL-enriched microdomains. These specialized microdomains interact in a cis manner with various immune receptors, affecting immune receptor-mediated signaling. This, in turn, results in the regulation of a broad range of immunological functions, including phagocytosis, cytokine production, antigen presentation and apoptosis. In addition, GSLs alone can regulate immunological functions by acting as ligands for immune receptors, and exogenous GSLs can alter the organization of microdomains and microdomain-associated signaling. Many pathogens, including viruses, bacteria and fungi, enter host cells by binding to GSL-enriched microdomains. Intracellular pathogens survive inside phagocytes by manipulating intracellular microdomain-driven signaling and/or sphingolipid metabolism pathways. This review describes the mechanisms by which GSL-enriched microdomains regulate immune signaling.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kei Hanafusa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Tomomi Hotta
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Eriko Oshima
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| | - Hitoshi Nakayama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| |
Collapse
|
24
|
Carrión B, Liu Y, Hadi M, Lundstrom J, Christensen JR, Ammitzbøll C, Dziegiel MH, Sørensen PS, Comabella M, Montalban X, Sellebjerg F, Issazadeh-Navikas S. Transcriptome and Function of Novel Immunosuppressive Autoreactive Invariant Natural Killer T Cells That Are Absent in Progressive Multiple Sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/6/e1065. [PMID: 34385365 PMCID: PMC8362604 DOI: 10.1212/nxi.0000000000001065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/16/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to determine whether natural killer T (NKT) cells, including invariant (i) NKT cells, have clinical value in preventing the progression of multiple sclerosis (MS) by examining the mechanisms by which a distinct self-peptide induces a novel, protective invariant natural killer T cell (iNKT cell) subset. METHODS We performed a transcriptomic and functional analysis of iNKT cells that were reactive to a human collagen type II self-peptide, hCII707-721, measuring differentially induced genes, cytokines, and suppressive capacity. RESULTS We report the first transcriptomic profile of human conventional vs novel hCII707-721-reactive iNKT cells. We determined that hCII707-721 induces protective iNKT cells that are found in the blood of healthy individuals but not progressive patients with MS (PMS). By transcriptomic analysis, we observed that hCII707-721 promotes their development and proliferation, favoring the splicing of full-length AKT serine/threonine kinase 1 (AKT1) and effector function of this unique lineage by upregulating tumor necrosis factor (TNF)-related genes. Furthermore, hCII707-721-reactive iNKT cells did not upregulate interferon (IFN)-γ, interleukin (IL)-4, IL-10, IL-13, or IL-17 by RNA-seq or at the protein level, unlike the response to the glycolipid alpha-galactosylceramide. hCII707-721-reactive iNKT cells increased TNFα only at the protein level and suppressed autologous-activated T cells through FAS-FAS ligand (FAS-FASL) and TNFα-TNF receptor I signaling but not TNF receptor II. DISCUSSION Based on their immunomodulatory properties, NKT cells have a potential value in the treatment of autoimmune diseases, such as MS. These significant findings suggest that endogenous peptide ligands can be used to expand iNKT cells, without causing a cytokine storm, constituting a potential immunotherapy for autoimmune conditions, including PMS.
Collapse
Affiliation(s)
- Belinda Carrión
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Yawei Liu
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Mahdieh Hadi
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Jon Lundstrom
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Jeppe Romme Christensen
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Cecilie Ammitzbøll
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Morten Hanefeld Dziegiel
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Per Soelberg Sørensen
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Manuel Comabella
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Xavier Montalban
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Finn Sellebjerg
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark
| | - Shohreh Issazadeh-Navikas
- From the Biotech Research and Innovation Centre (BRIC) (B.C., Y.L., M.H., J.L., S.I.-N.), University of Copenhagen; Danish Multiple Sclerosis Center (J.R.C., C.A., P.S.S.), University of Copenhagen and Department of Neurology, Rigshospitalet; Blood Bank (M.H.D.), Copenhagen University Hospital, Denmark; Centre d'Esclerosi Múltiple de Catalunya (M.C.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Barcelona, Spain; and Centre d'Esclerosi Múltiple de Catalunya (X.M.), Cemcat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH) - Universitat Autònoma de Barcelona, Spain; Danish Multiple Sclerosis Center, University of Copenhagen and Department of Neurology, Rigshospitalet, Denmark.
| |
Collapse
|
25
|
Gao Y, Guo J, Bao X, Xiong F, Ma Y, Tan B, Yu L, Zhao Y, Lu J. Adoptive Transfer of Autologous Invariant Natural Killer T Cells as Immunotherapy for Advanced Hepatocellular Carcinoma: A Phase I Clinical Trial. Oncologist 2021; 26:e1919-e1930. [PMID: 34255901 PMCID: PMC8571770 DOI: 10.1002/onco.13899] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/08/2021] [Indexed: 12/17/2022] Open
Abstract
Lessons Learned Administration of autologous invariant natural killer T (iNKT) cells was safe and well‐tolerated in patients with hepatocellular carcinoma (Barcelona Clinic Liver Cancer stage B/C). Expanded iNKT cells produced T‐helper 1–like responses with possible antitumor activity. No severe adverse events were observed in any of the enrolled patients, including one patient who received 1010 in vitro–expanded autologous iNKT cells as a single infusion.
Background Invariant natural killer T cells co‐express T‐cell antigen receptor and natural killer (NK) cell receptors. Invariant natural killer T (iNKT) cells exhibit antitumor activity, but their numbers and functions are impaired in patients with hepatocellular carcinoma (HCC). The adoptive transfer of iNKT cells might treat advanced HCC. Methods This phase I study (NCT03175679) enrolled 10 patients with HCC (Barcelona Clinic Liver Cancer [BCLC] stage B/C) at Beijing YouAn Hospital (April 2017 to May 2018). iNKT cells isolated from peripheral blood mononuclear cells (PBMCs) were expanded and alpha‐galactosylceramide (α‐GalCer)–pulsed. Dosage escalated from 3 × 107 to 6 × 107 to 9 × 107 cells/m2 (3+3 design). An exploratory dose trial (1 × 1010 cells/m2) was conducted in one patient. Results Expanded iNKT cells produced greater quantities of T‐helper 1 (Th1) cytokines (e.g., interferon‐gamma, perforin, and granzyme B) but less interleukin‐4 than nonexpanded iNKT cells. Circulating numbers of iNKT cells and activated NK cells were increased after iNKT cell infusion. Most treatment‐related adverse events were grade 1–2, and three grade 3 adverse events were reported; all resolved without treatment. Four patients were progression‐free at 5.5, 6, 7, and 11 months after therapy, and one patient was alive and without tumor recurrence at the last follow‐up. Five patients died at 1.5 to 11 months after treatment. Conclusion Autologous iNKT cell treatment is safe and well‐tolerated. Expanded iNKT cells produce Th1‐like responses with possible antitumor activity. The antitumor effects of iNKT cell infusion in patients with advanced HCC merit further investigation.
Collapse
Affiliation(s)
- Yao Gao
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jia Guo
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xuli Bao
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Fang Xiong
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yanpin Ma
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Bingqin Tan
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lele Yu
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yong Zhao
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jun Lu
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
26
|
Naruo M, Negishi Y, Okuda T, Katsuyama M, Okazaki K, Morita R. Alcohol consumption induces murine osteoporosis by downregulation of natural killer T-like cell activity. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1370-1382. [PMID: 34214248 PMCID: PMC8589379 DOI: 10.1002/iid3.485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022]
Abstract
Introduction Chronic alcohol consumption (CAC) can induce several deleterious effects on the body, including the promotion of osteoporosis; however, the immunological mechanism underlying alcohol‐induced osteoporosis is still unclear. Methods We administered alcohol to mice for 4 weeks as the experimental CAC model and analyzed the bone and immune cells that are located in the vicinity of a bone. Results IL‐4 is known to be a suppressive factor for osteoclastogenesis, and we found that natural killer T (NKT)‐like cells, which showed NK1.1‐positive, CD3‐positive, and α‐galactosylceramide‐loaded CD1d tetramer‐negative, produced IL‐4 more effectively than CD4+ T and natural killer (NK) cells. The alcohol consumption facilitated a significant decrease of bone mineral density with the upregulation of nuclear factor of activated T cells 1 and receptor activator of NF‐κB ligand expression. Meanwhile, we confirmed that alcohol consumption suppressed the activity of antigen‐presenting cells (APCs) and NKT‐like cells, leading to decreased IL‐4 secretion. Moreover, these harmful effects of alcohol consumption were reduced by simultaneous treatment with a glycolipid antigen OCH. Conclusions Our results indicate that the inactivation of innate immune cells, APCs, and NKT‐like cells are likely to be crucial for alcohol‐induced osteoporosis and provide a new therapeutic approach for preventing osteoporosis.
Collapse
Affiliation(s)
- Munehiro Naruo
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan.,Department of Orthopaedic Surgery, Tokyo Women's Medical University, Tokyo, Japan.,Department of Orthopaedic Surgery, Tomei Atsugi Hospital, Kanagawa, Japan
| | - Yasuyuki Negishi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Takahisa Okuda
- Department of Legal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Midori Katsuyama
- Department of Legal Medicine Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ken Okazaki
- Department of Orthopaedic Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
27
|
Brettschneider EES, Terabe M. The Role of NKT Cells in Glioblastoma. Cells 2021; 10:cells10071641. [PMID: 34208864 PMCID: PMC8307781 DOI: 10.3390/cells10071641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma is an aggressive and deadly cancer, but to date, immunotherapies have failed to make significant strides in improving prognoses for glioblastoma patients. One of the current challenges to developing immunological interventions for glioblastoma is our incomplete understanding of the numerous immunoregulatory mechanisms at play in the glioblastoma tumor microenvironment. We propose that Natural Killer T (NKT) cells, which are unconventional T lymphocytes that recognize lipid antigens presented by CD1d molecules, may play a key immunoregulatory role in glioblastoma. For example, evidence suggests that the activation of type I NKT cells can facilitate anti-glioblastoma immune responses. On the other hand, type II NKT cells are known to play an immunosuppressive role in other cancers, as well as to cross-regulate type I NKT cell activity, although their specific role in glioblastoma remains largely unclear. This review provides a summary of our current understanding of NKT cells in the immunoregulation of glioblastoma as well as highlights the involvement of NKT cells in other cancers and central nervous system diseases.
Collapse
Affiliation(s)
- Emily E. S. Brettschneider
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA;
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 7DQ, UK
| | - Masaki Terabe
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA;
- Correspondence: ; Tel.: +1-240-760-6731
| |
Collapse
|
28
|
Aoyama S, Nakagawa R, Nemoto S, Perez-Villarroel P, Mulé JJ, Mailloux AW. Checkpoint blockade accelerates a novel switch from an NKT-driven TNFα response toward a T cell driven IFN-γ response within the tumor microenvironment. J Immunother Cancer 2021; 9:jitc-2020-002269. [PMID: 34135102 PMCID: PMC8211075 DOI: 10.1136/jitc-2020-002269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 11/21/2022] Open
Abstract
Background The temporal response to checkpoint blockade (CB) is incompletely understood. Here, we profiled the tumor infiltrating lymphocyte (TIL) landscape in response to combination checkpoint blockade at two distinct timepoints of solid tumor growth. Methods C57BL/6 mice bearing subcutaneous MC38 tumors were treated with anti-PD-1 and/or anti-CTLA-4 antibodies. At 11 or 21 days, TIL phenotype and effector function were analyzed in excised tumor digests using high parameter flow cytometry. The contributions of major TIL populations toward overall response were then assessed using ex vivo cytotoxicity and in vivo tumor growth assays. Results The distribution and effector function among 37 distinct TIL populations shifted dramatically between early and late MC38 growth. At 11 days, the immune response was dominated by Tumor necrosis factor alpha (TNFα)-producing NKT, representing over half of all TIL. These were accompanied by modest frequencies of natural killer (NK), CD4+, or CD8+ T cells, producing low levels of IFN-γ. At 21 days, NKT populations were reduced to a combined 20% of TIL, giving way to increased NK, CD4+, and CD8+ T cells, with increased IFN-γ production. Treatment with CB accelerated this switch. At day 11, CB reduced NKT to less than 20% of all TIL, downregulated TNFα across NKT and CD4+ T cell populations, increased CD4+ and CD8+ TIL frequencies, and significantly upregulated IFN-γ production. Degranulation was largely associated with NK and NKT TIL. Blockade of H-2kb and/or CD1d during ex vivo cytotoxicity assays revealed NKT has limited direct cytotoxicity against parent MC38. However, forced CD1d overexpression in MC38 cells significantly diminished tumor growth, suggesting NKT TIL exerts indirect control over MC38 growth. Conclusions Despite an indirect benefit of early NKT activity, CB accelerates a switch from TNFα, NKT-driven immune response toward an IFN-γ driven CD4+/CD8+ T cell response in MC38 tumors. These results uncover a novel NKT/T cell switch that may be a key feature of CB response in CD1d+ tumors.
Collapse
Affiliation(s)
- Shota Aoyama
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA.,Department of Gastroenterology and General Surgery, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | - Ryosuke Nakagawa
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA.,Department of Gastroenterology and General Surgery, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | - Satoshi Nemoto
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA.,Department of Gastroenterology and General Surgery, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | | | - James J Mulé
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA.,Cutaneous Oncology Program, Moffitt Cancer Center, Tampa, Florida, USA
| | - Adam William Mailloux
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
29
|
Chao HC, McLuckey SA. In-Depth Structural Characterization and Quantification of Cerebrosides and Glycosphingosines with Gas-Phase Ion Chemistry. Anal Chem 2021; 93:7332-7340. [PMID: 33957046 DOI: 10.1021/acs.analchem.1c01021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cerebrosides (n-HexCer) and glycosphingosines (n-HexSph) constitute two sphingolipid subclasses. Both are comprised of a monosaccharide headgroup (glucose or galactose in mammalian cells) linked via either an α- or β-glycosidic linkage to the sphingoid backbone (n = α or β, depending upon the nature of the linkage to the anomeric carbon of the sugar). Cerebrosides have an additional amide-bonded fatty acyl chain linked to the sphingoid backbone. While differentiating the multiple isomers (i.e. glucose vs galactose, α- vs β-linkage) is difficult, it is crucial for understanding their specific biological roles in health and disease states. Shotgun tandem mass spectrometry has been a powerful tool in both lipidomics and glycomics analysis but is often limited in its ability to distinguish isomeric species. This work describes a new strategy combining shotgun tandem mass spectrometry with gas-phase ion chemistry to achieve both differentiation and quantification of isomeric cerebrosides and glycosphingosines. Briefly, deprotonated cerebrosides, [n-HexCer-H]-, or glycosphingosines, [n-HexSph-H]-, are reacted with terpyridine (Terpy) magnesium complex dications, [Mg(Terpy)2]2+, in the gas phase to produce a charge-inverted complex cation, [n-HexCer-H+MgTerpy]+ or [n-HexSph-H+MgTerpy]+. The collision-induced dissociation (CID) of the charge-inverted complex cations leads to significant spectral differences between the two groups of isomers, α-GalCer, β-GlcCer, and β-GalCer for cerebrosides and α-GlcSph, α-GalSph, β-GlcSph, and β-GalSph for glycosphingosines, which allows for isomer distinction. Moreover, we describe a quantification strategy with the normalized percent area extracted from selected diagnostic ions that quantify either three isomeric cerebroside or four isomeric glycosphingosine mixtures. The analytical performance was also evaluated in terms of accuracy, repeatability, and interday precision. Furthermore, CID of the product ions resulting from 443 Da loss from the charge-inverted complex cations ([n-HexCer-H+MgTerpy]+) has been performed and demonstrated for localization of the double-bond position on the amide-bonded monounsaturated fatty acyl chain in the cerebroside structure. The proposed strategy was successfully applied to the analysis of total cerebroside extracts from the porcine brain, providing in-depth structural information on cerebrosides from a biological mixture.
Collapse
Affiliation(s)
- Hsi-Chun Chao
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette, Indiana 47907, United States
| | - Scott A McLuckey
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette, Indiana 47907, United States
| |
Collapse
|
30
|
Schmid H, Ribeiro EM, Secker KA, Duerr-Stoerzer S, Keppeler H, Dong R, Munz T, Schulze-Osthoff K, Hailfinger S, Schneidawind C, Schneidawind D. Human invariant natural killer T cells promote tolerance by preferential apoptosis induction of conventional dendritic cells. Haematologica 2021; 107:427-436. [PMID: 33440919 PMCID: PMC8804566 DOI: 10.3324/haematol.2020.267583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 11/20/2022] Open
Abstract
Graft-versus-host disease (GvHD) is a major cause of morbidity and mortality after allogeneic hematopoietic cell transplantation. We recently showed in murine studies and in vitro human models that adoptively transferred invariant natural killer T (iNKT) cells protect from GvHD and promote graft-versus-leukemia effects. The cellular mechanisms underlying GvHD prevention by iNKT cells in humans, however, remain unknown. In order to study relevant cellular interactions, dendritic cells (DC) were either generated from monocytes or isolated directly from blood of healthy donors or GvHD patients and co-cultured in a mixed lymphocyte reaction (MLR) with T cells obtained from healthy donors or transplantation bags. Addition of culture-expanded iNKT cells to the MLR-induced DC apoptosis in a cell contact-dependent manner, thereby preventing T-cell activation and proliferation. Annexin V/propidium iodide staining and image stream assays showed that CD4+CD8–, CD4–CD8+ and double negative iNKT cells are similarly able to induce DC apoptosis. Further MLR assays revealed that conventional DC (cDC) but not plasmacytoid DC (pDC) could induce alloreactive T-cell activation and proliferation. Interestingly, cDC were also more susceptible to apoptosis induced by iNKT cells, which correlates with their higher CD1d expression, leading to a bias in favor of pDC. Remarkably, these results could also be observed in GvHD patients. We propose a new mechanism how ex vivo expanded human iNKT cells prevent alloreactivity of T cells. iNKT cells modulate T-cell responses by selective apoptosis of DC subsets, resulting in suppression of T-cell activation and proliferation while enabling beneficial immune responses through pDC.
Collapse
Affiliation(s)
- Hannes Schmid
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, Tuebingen
| | - Emmanuelle M Ribeiro
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, Tuebingen
| | - Kathy-Ann Secker
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, Tuebingen
| | - Silke Duerr-Stoerzer
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, Tuebingen
| | - Hildegard Keppeler
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, Tuebingen
| | - Ruoyun Dong
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, Tuebingen
| | - Timo Munz
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, Tuebingen
| | | | - Stephan Hailfinger
- Interfaculty Institute of Biochemistry, Eberhard Karls University, Tuebingen
| | - Corina Schneidawind
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, Tuebingen
| | - Dominik Schneidawind
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, Tuebingen.
| |
Collapse
|
31
|
Ruf B, Heinrich B, Greten TF. Immunobiology and immunotherapy of HCC: spotlight on innate and innate-like immune cells. Cell Mol Immunol 2021; 18:112-127. [PMID: 33235387 PMCID: PMC7852696 DOI: 10.1038/s41423-020-00572-w] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
Immune-based therapies such as immune checkpoint inhibitors have revolutionized the systemic treatment of various cancer types. The therapeutic application of monoclonal antibodies targeting inhibitory pathways such as programmed cell death-1(PD-1)/programmed cell death ligand 1 (PD-L1) and CTLA-4 to cells of the adaptive immune system has recently been shown to generate meaningful improvement in the clinical outcome of hepatocellular carcinoma (HCC). Nevertheless, current immunotherapeutic approaches induce durable responses in only a subset of HCC patients. Since immunologic mechanisms such as chronic inflammation due to chronic viral hepatitis or alcoholic and nonalcoholic fatty liver disease play a crucial role in the initiation, development, and progression of HCC, it is important to understand the underlying mechanisms shaping the unique tumor microenvironment of liver cancer. The liver is an immunologic organ with large populations of innate and innate-like immune cells and is exposed to bacterial, viral, and fungal antigens through the gut-liver axis. Here, we summarize and highlight the role of these cells in liver cancer and propose strategies to therapeutically target them. We also discuss current immunotherapeutic strategies in HCC and outline recent advances in our understanding of how the therapeutic potential of these agents might be enhanced.
Collapse
Affiliation(s)
- Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bernd Heinrich
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
32
|
Kato M, Negishi Y, Shima Y, Kuwabara Y, Morita R, Takeshita T. Inappropriate activation of invariant natural killer T cells and antigen-presenting cells with the elevation of HMGB1 in preterm births without acute chorioamnionitis. Am J Reprod Immunol 2020; 85:e13330. [PMID: 32852122 DOI: 10.1111/aji.13330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Acute chorioamnionitis (aCAM) associated with microbial infection is a primary cause of preterm birth (PB). However, recent studies have demonstrated that innate immunity and sterile inflammation are causes of PB in the absence of aCAM. Therefore, we analyzed immune cells in the decidua of early to moderate PB without aCAM. METHOD OF STUDY Deciduas were obtained from patients with PB at a gestational age of 24+0 to 33+6 weeks without aCAM in pathological diagnosis. The patients were divided into two groups as follows: patients with labor and/or rupture of membrane (ROM) (no aCAM with labor and/or ROM: nCAM-w-LR), and patients without labor and/or ROM (no aCAM without labor and/or ROM: nCAM-w/o-LR). The immune cells and high mobility group box 1 (HMGB1) levels in the decidua were analyzed using flow cytometry. Co-culture of CD56+ cells with dendritic cells (DCs) and macrophages obtained from the decidua was also performed in the presence of HMGB1. RESULTS The nCAM-w-LR group demonstrated an accumulation of iNKT cells, and increased expression of HMGB1, TLR4, receptors for advanced glycation end products, and CD1d on DCs and macrophages. HMGB1 facilitated the proliferation of iNKT cells co-cultured with DCs and macrophages, which was found to be inhibited by heparin. CONCLUSIONS Inappropriate activation of innate immune cells and increased HMGB1 expression may represent parturition signs in human pregnancy. Therefore, control of these cells and HMGB1 antigenicity may be represent a potential therapeutic target for the prevention of PB.
Collapse
Affiliation(s)
- Masahiko Kato
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.,Department of Obstetrics and Gynecology, Nippon Medical School Musashikosugi Hospital, Kanagawa, Japan
| | - Yasuyuki Negishi
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.,Department of Microbiology and immunology, Nippon Medical School, Tokyo, Japan
| | - Yoshio Shima
- Department of Pediatrics, Nippon Medical School Musashikosugi Hospital, Kanagawa, Japan
| | - Yoshimitsu Kuwabara
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | - Rimpei Morita
- Department of Microbiology and immunology, Nippon Medical School, Tokyo, Japan
| | - Toshiyuki Takeshita
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
33
|
Negishi Y, Shima Y, Takeshita T, Morita R. Harmful and beneficial effects of inflammatory response on reproduction: sterile and pathogen-associated inflammation. Immunol Med 2020; 44:98-115. [PMID: 32838688 DOI: 10.1080/25785826.2020.1809951] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In reproduction, inflammatory processes play important roles in the development of many pregnancy complications such as preterm labor/birth, recurrent pregnancy loss, recurrent implantation failure, and preeclampsia. Inflammation can be initiated by both microbial and non-microbial causes. Bacterial infection in the feto-maternal interface and uterus can provoke preterm labor/birth, miscarriage, and chronic endometritis. By contrast, inflammation without infection, or 'sterile inflammation,' can also lead to many kinds of complications, such as preterm labor/birth, miscarriage, or preeclampsia. Aberrant inflammation is facilitated by immune cells such as macrophages, dendritic cells, natural killer cells, and invariant natural killer T cells. In addition, cytokines, chemokines, and several kinds of inflammatory mediators are involved. On the other hand, appropriate inflammation is required for a successful offspring during the progression of the entire pregnancy. Herein, we discuss the relation between pregnancy and inflammation with immunological alterations. Understanding the role of inflammation in complications during pregnancy may establish new perspectives of the progress of normal pregnancy as well as treatments during pregnancy complications.
Collapse
Affiliation(s)
- Yasuyuki Negishi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan.,Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | - Yoshio Shima
- Department of Pediatrics, Nippon Medical School Musashikosugi Hospital, Kanagawa, Japan
| | - Toshiyuki Takeshita
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
34
|
Guan P, Schaub R, Nichols KE, Das R. Combination of NKT14m and Low Dose IL-12 Promotes Invariant Natural Killer T Cell IFN-γ Production and Tumor Control. Int J Mol Sci 2020; 21:ijms21145085. [PMID: 32708464 PMCID: PMC7404385 DOI: 10.3390/ijms21145085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are innate-like T lymphocytes characterized by the expression of an invariant T cell receptor (iTCR) that recognizes glycolipid antigens presented by the MHC I-like CD1d molecule. Following antigenic stimulation, iNKT cells rapidly produce large amounts of cytokines that can trans-activate dendritic cells (DC) and promote the anti-tumor functions of cytotoxic lymphocytes, such as natural killer (NK) and CD8 T cells. Additionally, iNKT cells can mediate robust and direct cytotoxicity against CD1d+ tumor targets. However, many tumors down-regulate CD1d and evade iNKT cell attack. To circumvent this critical barrier to iNKT cell anti-tumor activity, a novel monoclonal antibody (mAb), NKT14 has been recently developed. This agonistic antibody binds directly and specifically to the iTCR of murine iNKT cells. In the current study, we demonstrate that NKT14m mediates robust activation, cytokine production and degranulation of murine iNKT cells, in vitro. Consistently, NKT14m also promoted iNKT cell activation and immunomodulatory functions, in vivo. Finally, administration of NKT14m with low dose interleukin (IL)-12 further augmented iNKT cell IFN-γ production in vivo, and this combination conferred superior suppression of tumor cell growth compared to NKT14m or IL-12 alone. Together, these data demonstrate that a combination treatment consisting of low dose IL-12 and iTCR-specific mAb may be an attractive alternative to activate iNKT cell anti-tumor functions.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD1d/immunology
- Cell Line, Tumor
- Cytokines/metabolism
- Cytotoxicity, Immunologic/drug effects
- Drug Synergism
- Drug Therapy, Combination/methods
- Immunomodulation/drug effects
- Interferon-gamma/metabolism
- Interleukin-12/pharmacology
- Lymphoma/drug therapy
- Lymphoma/immunology
- Mice
- Mice, Inbred C57BL
- Natural Killer T-Cells/drug effects
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Peng Guan
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Robert Schaub
- RGS Consulting, 118 Jeremy Hill Road Pelham, Pelham, NH 03076, USA;
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Rupali Das
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: ; Tel.: +1-517-884-5049; Fax: +1-517-355-5125
| |
Collapse
|
35
|
Jafarpour R, Pashangzadeh S, Mehdizadeh S, Bayatipoor H, Shojaei Z, Motallebnezhad M. Functional significance of lymphocytes in pregnancy and lymphocyte immunotherapy in infertility: A comprehensive review and update. Int Immunopharmacol 2020; 87:106776. [PMID: 32682255 DOI: 10.1016/j.intimp.2020.106776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
During pregnancy, the fetal-maternal interface underlies several dynamic alterations to permit the fetus to be cultivated and developed in the uterus, in spite of being identifies by the maternal immune system. A large variety of decidual leukocyte populations, including natural killer cells, NKT cells, innate lymphoid cells, dendritic cells, B cells, T cells, subpopulations of helper T cells play a vital role in controlling the trophoblast invasion, angiogenesis as well as vascular remodeling. In contrast, several regulatory immunosuppressive mechanisms, including regulatory T cells, regulatory B cells, several cytokines and mediators are involved in maintain the homeostasis of immune system in the fetal-maternal interface. Nonetheless, aberrant alterations in the balance of immune inflammatory or immunosuppressive arms have been associated with various pregnancy losses and infertilities. As a result, numerous strategies have been developed to revers dysregulated balance of immune players to increase the chance of successful pregnancy. Lymphocyte immunotherapy has been developed through utilization of peripheral white blood cells of the husband or others and administered into the mother to confer an immune tolerance for embryo's antigens. However, the results have not always been promising, implying to further investigations to improve the approach. This review attempts to clarify the involvement of lymphocytes in contributing to the pregnancy outcome and the potential of lymphocyte immunotherapy in treatment of infertilities with dysregulated immune system basis.
Collapse
Affiliation(s)
- Roghayeh Jafarpour
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saber Mehdizadeh
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hashem Bayatipoor
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Shojaei
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Motallebnezhad
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Cancer Immunotherapeutic Potential of NKTT320, a Novel, Invariant, Natural Killer T Cell-Activating, Humanized Monoclonal Antibody. Int J Mol Sci 2020; 21:ijms21124317. [PMID: 32560408 PMCID: PMC7352964 DOI: 10.3390/ijms21124317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
Invariant natural killer T cells (iNKTs) directly kill tumor cells and trans-activate the anti-tumor functions of dendritic cells (DC), natural killer (NK) cells, and T and B cells. As such, iNKTs serve as a powerful tool for use in cell-based cancer immunotherapy. iNKT cell activation commonly requires engagement of the invariant T cell receptor (iTCR) by CD1d presenting glycolipid antigens. However, transformed cells often down-regulate CD1d expression, which results in a reduction of iNKT cell anti-tumor functions. One approach to circumvent this critical barrier to iNKT cell activation is to develop an agonistic antibody that binds directly to the iTCR without the requirement for CD1d-mediated antigen presentation. To this end, we have characterized the iNKT cell stimulatory properties of NKTT320, a novel, recombinant, humanized, monoclonal antibody that binds selectively and with high affinity to human iTCRs. Strikingly, immobilized NKTT320 mediated robust iNKT cell activation (upregulation of CD25 and CD69) and proliferation (carboxyfluorescein succinimidyl ester (CFSE) dilution), as well as Th1 and Th2 cytokine production. Additionally, iNKTs stimulated by plate-bound NKTT320 exhibited increased intracellular levels of granzyme B and degranulation (exposure of CD107 on the cell surface). Furthermore, both soluble and immobilized NKTT320 induced iNKT cell-mediated activation of bystander immune cells, suggesting that this novel anti-iTCR antibody facilitates both direct and indirect iNKT cell cytotoxicity. These studies are significant, as they provide a framework by which iNKT cell anti-cancer functions could be enhanced for therapeutic purposes.
Collapse
|
37
|
License to Kill: When iNKT Cells Are Granted the Use of Lethal Cytotoxicity. Int J Mol Sci 2020; 21:ijms21113909. [PMID: 32486268 PMCID: PMC7312231 DOI: 10.3390/ijms21113909] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Invariant Natural Killer T (iNKT) cells are a non-conventional, innate-like, T cell population that recognize lipid antigens presented by the cluster of differentiation (CD)1d molecule. Although iNKT cells are mostly known for mediating several immune responses due to their massive and diverse cytokine release, these cells also work as effectors in various contexts thanks to their cytotoxic potential. In this Review, we focused on iNKT cell cytotoxicity; we provide an overview of iNKT cell subsets, their activation cues, the mechanisms of iNKT cell cytotoxicity, the specific roles and outcomes of this activity in various contexts, and how iNKT killing functions are currently activated in cancer immunotherapies. Finally, we discuss the future perspectives for the better understanding and potential uses of iNKT cell killing functions in tumor immunosurveillance.
Collapse
|
38
|
Sphingosine Kinase Blockade Leads to Increased Natural Killer T Cell Responses to Mantle Cell Lymphoma. Cells 2020; 9:cells9041030. [PMID: 32326225 PMCID: PMC7226300 DOI: 10.3390/cells9041030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 12/22/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive subtype of non-Hodgkin’s lymphoma. Despite being responsive to combination chemotherapy, median survival remains around 5 years due to high rates of relapse. Sphingolipid metabolism regulates MCL survival and proliferation and we found that sphingosine-1-phosphate (S1P) is upregulated in MCL cells. Therapeutic targeting of the S1P1 receptor or knockdown of sphingosine kinase 1 (SK1), the enzyme responsible for generating S1P, in human MCL cells results in a significant increase in Natural Killer T (NKT) cell activation. NKT cells recognize glycolipid antigens presented on CD1d and can reduce MCL tumor burden in vivo. Lipidomic studies identified cardiolipin, which has been reported to bind to CD1d molecules, as being upregulated in SK1 knockdown cells. We found that the pretreatment of antigen presenting cells with cardiolipin leads to increased cytokine production by NKT cell hybridomas. Furthermore, the ability of cardiolipin to activate NKT cells was dependent on the structure of its acyl chains. Collectively, these studies delineate novel pathways important for immune recognition of malignant cells and could lead to the development of new treatments for lymphoma.
Collapse
|
39
|
Melo AM, Maher SG, O'Leary SM, Doherty DG, Lysaght J. Selective effects of radiotherapy on viability and function of invariant natural killer T cells in vitro. Radiother Oncol 2020; 145:128-136. [PMID: 31962255 DOI: 10.1016/j.radonc.2019.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/09/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Immunotherapies involving the adoptive transfer of ex vivo expanded autologous invariant natural killer (iNKT) cells are a potential option for cancer patients and are under investigation in clinical trials. Most cancer patients receive radiotherapy at some point during their treatment. We investigated the effects of therapeutic doses of radiation on the viability and function of human primary cultures of iNKT cells in vitro. MATERIALS AND METHODS iNKT cell lines generated from 6 healthy donors were subjected to therapeutically-relevant doses of radiation. Cell cycle arrest and cell death were assessed by flow cytometry. Double strand DNA breaks were analysed by measuring phosphorylated histone H2AX expression by fluorescence microscopy. Cytolytic degranulation, cytokine production and cytotoxicity by antigen-stimulated iNKT cells were assessed by flow cytometry. RESULTS Radiation inhibited viability of iNKT cells in a dose-dependent manner. Radiation caused double strand DNA breaks, which were rapidly repaired, and affected the cell cycle at high doses. Moderate doses of radiation did not inhibit degranulation or cytotoxicity by iNKT cells, but induced perforin expression and inhibited proliferation and interferon-γ production by surviving iNKT cells. DISCUSSION Exposure of iNKT cell to radiation can negatively affect their viability and function.
Collapse
Affiliation(s)
- Ashanty M Melo
- Department of Immunology, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland; Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Stephen G Maher
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Seónadh M O'Leary
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Derek G Doherty
- Department of Immunology, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland.
| | - Joanne Lysaght
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| |
Collapse
|
40
|
Sag D, Ayyildiz ZO, Gunalp S, Wingender G. The Role of TRAIL/DRs in the Modulation of Immune Cells and Responses. Cancers (Basel) 2019; 11:cancers11101469. [PMID: 31574961 PMCID: PMC6826877 DOI: 10.3390/cancers11101469] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/26/2022] Open
Abstract
Expression of TRAIL (tumor necrosis factor–related apoptosis–inducing ligand) by immune cells can lead to the induction of apoptosis in tumor cells. However, it becomes increasingly clear that the interaction of TRAIL and its death receptors (DRs) can also directly impact immune cells and influence immune responses. Here, we review what is known about the role of TRAIL/DRs in immune cells and immune responses in general and in the tumor microenvironment in particular.
Collapse
Affiliation(s)
- Duygu Sag
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova/Izmir, Turkey.
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| | - Zeynep Ozge Ayyildiz
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| | - Sinem Gunalp
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| | - Gerhard Wingender
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova/Izmir, Turkey.
- Department of Biomedicine and Health Technologies, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| |
Collapse
|
41
|
SLAM-SAP-Fyn: Old Players with New Roles in iNKT Cell Development and Function. Int J Mol Sci 2019; 20:ijms20194797. [PMID: 31569599 PMCID: PMC6801923 DOI: 10.3390/ijms20194797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/25/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique T cell lineage that develop in the thymus and emerge with a memory-like phenotype. Accordingly, following antigenic stimulation, they can rapidly produce copious amounts of Th1 and Th2 cytokines and mediate activation of several immune cells. Thus, it is not surprising that iNKT cells play diverse roles in a broad range of diseases. Given their pivotal roles in host immunity, it is crucial that we understand the mechanisms that govern iNKT cell development and effector functions. Over the last two decades, several studies have contributed to the current knowledge of iNKT cell biology and activity. Collectively, these studies reveal that the thymic development of iNKT cells, their lineage expansion, and functional properties are tightly regulated by a complex network of transcription factors and signaling molecules. While prior studies have clearly established the importance of the SLAM-SAP-Fyn signaling axis in iNKT cell ontogenesis, recent studies provide exciting mechanistic insights into the role of this signaling cascade in iNKT cell development, lineage fate decisions, and functions. Here we summarize the previous literature and discuss the more recent studies that guide our understanding of iNKT cell development and functional responses.
Collapse
|
42
|
3,4-Dideoxy-3,3,4,4-tetrafluoro- and 4-OH epimeric 3-deoxy-3,3-difluoro-α-GalCer analogues: Synthesis and biological evaluation on human iNKT cells stimulation. Eur J Med Chem 2019; 178:195-213. [PMID: 31185411 DOI: 10.1016/j.ejmech.2019.05.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
iNKT cells recognize CD1d/α-galactosylceramide (α-GalCer) complexes via their invariant TCR receptor and stimulate the immune response. Many α-GalCer analogues have been investigated to interrogate this interaction. Following our previous work related to the modification of the hydrogen bond network between α-GalCer and CD1d, we have now focused our attention on the synthesis of 3-deoxy-3,3-difluoro- and 3,4-dideoxy-3,3,4,4-tetrafluoro-α-GalCer analogues, and studied their ability to stimulate human iNKT cells. In each case, deoxygenation at the indicated positions was accompanied by difluoro introduction in order to evaluate the resulting electronic effect on the stability of the ternary CD1d/Galcer/TCR complex which has been rationalized by modeling study. With deoxy-difluorination at the 3-position, the two epimeric 4-OH analogues were investigated to establish their capacity to compensate for the lack of the hydrogen bond donating group at the 3-position. The 3,4-dideoxytetrafluoro analogue was of interest to highlight the amide NH-bond hydrogen bond properties.
Collapse
|
43
|
Choi J, Rudak PT, Lesage S, Haeryfar SMM. Glycolipid Stimulation of Invariant NKT Cells Expands a Unique Tissue-Resident Population of Precursors to Mature NK Cells Endowed with Oncolytic and Antimetastatic Properties. THE JOURNAL OF IMMUNOLOGY 2019; 203:1808-1819. [PMID: 31462506 DOI: 10.4049/jimmunol.1900487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/24/2019] [Indexed: 01/30/2023]
Abstract
Invariant NKT (iNKT) cells are innate-like T lymphocytes that recognize and respond to glycolipid Ags such as α-galactosylceramide (α-GalCer). This unique property has been exploited in clinical trials for multiple malignancies. While investigating mouse iNKT cell responses to α-GalCer in vivo, we found a dramatically enlarged tissue-resident population surprisingly coexpressing select dendritic cell, NK cell, and B cell markers. Further phenotypic and functional analyses revealed the identity of this B220+CD11c+MHC class II+NK1.1+ population as precursors to mature NK (pre-mNK) cells, which also expressed high levels of proliferation and tissue retention markers but diminished sphingosine-1-phosphate receptor 1, a receptor that facilitates tissue trafficking. Accordingly, FTY720, a sphingosine-1-phosphate receptor 1 antagonist, failed to prevent pre-mNK cells' intrahepatic accumulation. We found iNKT cell-driven expansion of pre-mNK cells to be dependent on IL-12 and IL-18. Although α-GalCer-transactivated pre-mNK cells lost their capacity to process a model tumor Ag, they selectively expressed granzyme A and directly lysed YAC-1 thymoma cells through granule exocytosis. They also contributed to β2 microglobulin-deficient target cell destruction in vivo. Therefore, α-GalCer treatment skewed pre-mNK cell responses away from an APC-like phenotype and toward killer cell-like functions. Finally, the ability of α-GalCer to reduce the pulmonary metastatic burden of B16-F10 mouse melanoma was partially reversed by in vivo depletion of pre-mNK cells. To our knowledge, our findings shed new light on iNKT cells' mechanism of action and glycolipid-based immunotherapies. Therefore, we introduce pre-mNK cells as a novel downstream effector cell type whose anticancer properties may have been overlooked in previous investigations.
Collapse
Affiliation(s)
- Joshua Choi
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Patrick T Rudak
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Sylvie Lesage
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada; .,Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario N6A 5A5, Canada.,Division of General Surgery, Department of Surgery, Western University, London, Ontario N6A 5A5, Canada; and.,Centre for Human Immunology, Western University, London, Ontario N6A 5C1, Canada
| |
Collapse
|
44
|
Paul S, Chhatar S, Mishra A, Lal G. Natural killer T cell activation increases iNOS +CD206 - M1 macrophage and controls the growth of solid tumor. J Immunother Cancer 2019; 7:208. [PMID: 31387637 PMCID: PMC6685184 DOI: 10.1186/s40425-019-0697-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/30/2019] [Indexed: 01/12/2023] Open
Abstract
Background NKT cells play an important role in anti-tumor immunity. Alpha-galactosylceramide (α-GalCer), a synthetic glycolipid is presented to natural killer T (NKT) cells by most antigen-presenting cells through CD1d molecules leading to activation of NKT cells. However, the precise mechanisms of how α-GalCer-activated NKT regulate the polarization of the macrophages and effector T cells in the solid tumor are not studied adequately. Methods We induced solid tumor in C57BL/6 mice by subcutaneous injection of B16F10 cell line (1 X 106 cells) and monitored the tumor growth. Animals were given an intraperitoneal injection of α-GalCer (2 μg/injection) in 200 μl PBS on day + 1, + 5, + 10, + 15, and + 20 (with respect to tumor cell injection). Immune cells were characterized using flow cytometry and immunofluorescence staining. NK cells, Gr1+ cells, and F4/80+ macrophages in the mice were depleted by intravenous injection of cell-specific antibodies. Statistical analysis was performed using Student’s t-test or one-way ANOVA. Results Our results showed that intratumoral NKT cells have a lower frequency of CD69, CD25, CD122, and IFN-γR expression; produced less inflammatory cytokines such as IFN-γ, TNF-α, and GM-CSF; higher frequency CD62L+ NKT cells; and also showed reduced proliferation as compared to the splenic NKT cells. Mice treated with α-GalCer showed a significantly increased frequency of IFN-γ-producing NKT cells, CD8+ T cells, and effector Th1 cells. Depletion of NK cells in α-GalCer-treated mice showed a lower frequency of IFN-γ-producing CD4+ and CD8+ T cells in the tumor and prevented the α-GalCer-induced tumor growth. NKT cell activation with α-GalCer treatment significantly increased the iNOS+CD206− M1-macrophages and reduced the iNOS−CD206+ M2-macrophages in the spleen and tumor, and depletion of F4/80+ macrophages prevented the α-GalCer-induced reduction in the tumor growth. Conclusions We showed that activation of NKT cell with α-GalCer modulates the frequency of M1-macrophages and effector Th1 cells in the secondary lymphoid tissues and tumor microenvironment and inhibit tumor growth. The finding suggests that activation of NKT cells with α-GalCer may provide an effective anti-cancer outcome. Electronic supplementary material The online version of this article (10.1186/s40425-019-0697-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sourav Paul
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune, MH-411007, India
| | - Sushanta Chhatar
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune, MH-411007, India
| | - Amrita Mishra
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune, MH-411007, India
| | - Girdhari Lal
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune, MH-411007, India.
| |
Collapse
|
45
|
Madera-Sandoval RL, Tóvári J, Lövey J, Ranđelović I, Jiménez-Orozco A, Hernández-Chávez VG, Reyes-Maldonado E, Vega-López A. Combination of pentoxifylline and α-galactosylceramide with radiotherapy promotes necro-apoptosis and leukocyte infiltration and reduces the mitosis rate in murine melanoma. Acta Histochem 2019; 121:680-689. [PMID: 31213291 DOI: 10.1016/j.acthis.2019.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022]
Abstract
Despite the success for the treatment of melanoma such as targeted molecular therapy, the use of such treatments are expensive For this reason, this study was carried out to explore the anti-cancer properties of available drugs that are able to modify the melanoma prognosis. The study was conducted in two phases: Evaluation of pharmacological effects of pentoxifylline (PTX) administered above (60 mg/kg) which is the therapeutic dose that is aimed at reducing the side-effect of radiotherapy, and of α- galactosylceramide (GalCer) administered at 100 μg/kg, as well as their combination using a murine model (BDF1 mice) of melanoma cell line (B16-F1, ATCC). For the radiotherapy phase, 9 Gy was applied in the tumor area, before (3 days), during (30 min) and after (3 days) the PTX + GalCer treatment. In both study phases, the mitosis rate, leukocyte infiltration and necro-apoptosis were assessed using histological and immunohistochemical approach and tumor volume evaluation as biomarkers. All treatments showed good prognosis results estimated as reduction of mitosis rate (PTX + GalCer after radiotherapy and GalCer), increased leukocyte infiltrate (PTX + GalCer after radiotherapy and GalCer) and necro-apoptosis augmentation (PTX + GalCer after radiotherapy and radiotherapy control). Nevertheless, a lower development of tumor volume was found in GalCer treatment. In this way, it is possible to suggest that the integrated treatment with immuno-stimulators such as GalCer, plus drug used for peripheral vascular disease (PTX) after radiotherapy is probably an alternative for controlling aggressive melanoma in murine model.
Collapse
Affiliation(s)
- Ruth L Madera-Sandoval
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City, CP 07320, Mexico
| | - József Tóvári
- National Institute of Oncology, Department of Experimental Pharmacology, Budapest, Hungary
| | - József Lövey
- National Institute of Oncology, Center of Radiotherapy, Budapest, Hungary
| | - Ivan Ranđelović
- National Institute of Oncology, Department of Experimental Pharmacology, Budapest, Hungary
| | - Alejandro Jiménez-Orozco
- Universidad Nacional Autónoma de México, Facultad de Medicina, Laboratorio de Farmacología Celular y Molecular, Mexico City, Mexico
| | - Victor G Hernández-Chávez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hematopatología. Carpio y Plan de Ayala s/n, Casco de Santo Tomás, Mexico City, CP 11340, Mexico
| | - Elba Reyes-Maldonado
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hematopatología. Carpio y Plan de Ayala s/n, Casco de Santo Tomás, Mexico City, CP 11340, Mexico
| | - Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City, CP 07320, Mexico.
| |
Collapse
|
46
|
Zhang Y, Springfield R, Chen S, Li X, Feng X, Moshirian R, Yang R, Yuan W. α-GalCer and iNKT Cell-Based Cancer Immunotherapy: Realizing the Therapeutic Potentials. Front Immunol 2019; 10:1126. [PMID: 31244823 PMCID: PMC6562299 DOI: 10.3389/fimmu.2019.01126] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/03/2019] [Indexed: 01/15/2023] Open
Abstract
NKT cells are CD1d-restricted innate-like T cells expressing both T cell receptor and NK cell markers. The major group of NKT cells in both human and mice is the invariant NKT (iNKT) cells and the best-known function of iNKT cells is their potent anti-tumor function in mice. Since its discovery 25 years ago, the prototype ligand of iNKT cells, α-galactosylceramide (α-GalCer) has been used in over 30 anti-tumor clinical trials with mostly suboptimal outcomes. To realize its therapeutic potential, numerous preclinical models have been developed to optimize the scheme and strategies for α-GalCer-based cancer immunotherapies. Nevertheless, since there is no standard protocol for α-GalCer delivery, we reviewed the preclinical studies with a focus on B16 melanoma model in the goal of identifying the best treatment schemes for α-GalCer treatment. We then reviewed the current progress in developing more clinically relevant mouse models for these preclinical studies, most notably the generation of new mouse models with a humanized CD1d/iNKT cell system. With ever-emerging novel iNKT cell ligands, invention of novel α-GalCer delivery strategies and significantly improved preclinical models for optimizing these new strategies, one can be hopeful that the full potential of anti-tumor potential for α-GalCer will be realized in the not too distant future.
Collapse
Affiliation(s)
- Yingting Zhang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ryan Springfield
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Siyang Chen
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xin Li
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xiaotian Feng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rosa Moshirian
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rirong Yang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
47
|
Bae EA, Seo H, Kim IK, Jeon I, Kang CY. Roles of NKT cells in cancer immunotherapy. Arch Pharm Res 2019; 42:543-548. [DOI: 10.1007/s12272-019-01139-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/28/2019] [Indexed: 01/22/2023]
|
48
|
Wang Y, Sedimbi SK, Löfbom L, Besra GS, Porcelli SA, Cardell SL. Promotion or Suppression of Murine Intestinal Polyp Development by iNKT Cell Directed Immunotherapy. Front Immunol 2019; 10:352. [PMID: 30881361 PMCID: PMC6405695 DOI: 10.3389/fimmu.2019.00352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/11/2019] [Indexed: 01/23/2023] Open
Abstract
The glycosphingolipid α-galactosylceramide (α-GalCer) is a well-described immune activator with strong anti-tumor properties in animal models. It is presented on CD1d and acts by stimulating the invariant, type I, natural killer T (iNKT) lymphocytes to rapidly secrete TH1 and TH2 associated cytokines. This in turn promotes activation of a diversity of immune cells including natural killer (NK) cells with anti-tumor functions. Prior to tumor development, iNKT cells can also perform tumor surveillance and naturally protect from emergence of cancer. In contrast, we have recently demonstrated that iNKT cells naturally promote polyps in the spontaneous murine adenomatous polyposis coli (Apc) ApcMin/+ model for colon cancer, associated with suppressed TH1 immunity and enhanced immunoregulation. Here we investigated whether iNKT cell directed immunotherapy could subvert the polyp promoting function of iNKT cells and reduce polyp growth in this model. We treated ApcMin/+ mice with α-GalCer, or synthetic derivatives of this ligand (C-glycoside and C20:2) that have enhanced immunoregulatory properties. Treatment with iNKT cell ligands led to increased iNKT cell division, but reduced iNKT cell frequencies, lower NK1.1 expression and elevation of PD-1. ApcMin/+ mice that had been treated either long-term (5–15 weeks of age), or short-term (12–15 weeks of age) with α-GalCer demonstrated a significant decrease in polyp burden. Surprisingly, long-term treatment with the TH1 biasing ligand C-glycoside did not have significant effects on polyps, while long-term treatment with the TH2 biasing ligand C20:2 enhanced polyp growth. In stark contrast, short-term treatment with C20:2 led to reduction in polyp numbers and size. Reduced polyp burden after long-term treatment was associated with increased expression of genes indicating a pro-inflammatory polyp microenvironment. Polyp-reducing short-term treatment led to CD8 T cell activation specifically in polyps, and decreased tumor infiltrating and splenic macrophages, and a switch toward a pro-inflammatory phenotype. Thus, iNKT cell directed therapy could subvert the natural polyp enhancing function of iNKT cells, overcome immunosuppression, and reduce polyps. However, different iNKT cell activating ligands had opposite effects, and the timing of treatment had a major influence on outcomes.
Collapse
Affiliation(s)
- Ying Wang
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Saikiran K Sedimbi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Linda Löfbom
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Gurdyal S Besra
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Steven A Porcelli
- Department of Microbiology and Immunology, and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Susanna L Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
49
|
Impairment of Vα24-Jα18+Vβ11+ natural killer T cells in adult acute lymphoblastic leukemia patients. Exp Cell Res 2019; 374:69-75. [DOI: 10.1016/j.yexcr.2018.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 11/19/2022]
|
50
|
Nakayama H, Nagafuku M, Suzuki A, Iwabuchi K, Inokuchi JI. The regulatory roles of glycosphingolipid-enriched lipid rafts in immune systems. FEBS Lett 2018; 592:3921-3942. [PMID: 30320884 DOI: 10.1002/1873-3468.13275] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/04/2023]
Abstract
Lipid rafts formed by glycosphingolipids (GSLs) on cellular membranes play important roles in innate and adaptive immunity. Lactosylceramide (LacCer) forms lipid rafts on plasma and granular membranes of human neutrophils. These LacCer-enriched lipid rafts bind directly to pathogenic components, such as pathogenic fungi-derived β-glucan and Mycobacteria-derived lipoarabinomannan via carbohydrate-carbohydrate interactions, and mediate innate immune responses to these pathogens. In contrast, a-series and o-series gangliosides form distinct rafts on CD4+ and CD8+ T cell subsets, respectively, contributing to the respective functions of these cells and stimulating adaptive immune responses through T cell receptors. These findings suggest that gangliosides play indispensable roles in T cell selection and activation. This Review introduces the involvement of GSL-enriched lipid rafts in innate and adaptive immunity.
Collapse
Affiliation(s)
- Hitoshi Nakayama
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Japan.,Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
| | - Masakazu Nagafuku
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Akemi Suzuki
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuhisa Iwabuchi
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Japan.,Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan.,Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|