1
|
Harada C, Matsui A, Irie Y, Uchino A, Chikugo A, Fujii K, Hosoi K, Nakanishi A, Kageyama Y, Naruse N, Tsukano C, Irie K, Mera Y. Sizes of amyloid-β oligomers predicted using atomic force microscopy and two-point crosslinked dimers as standards. Chem Commun (Camb) 2025; 61:9123-9126. [PMID: 40406894 DOI: 10.1039/d5cc00856e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2025]
Abstract
Herein, we investigate a two-point crosslinked amyloid-β (Aβ) dimer, which forms an intermolecular β-sheet. The atomic force microscopy statistical results indicate that the heights of these dimers are approximately 0.37 nm, providing a baseline for the Aβ peptide sizes and improving our understanding of Aβ oligomers in Alzheimer's disease.
Collapse
Affiliation(s)
- Chikara Harada
- Fundamental Bioscience (Physics), Shiga University of Medical Science, Shiga, 520-2192, Japan.
| | - Atsuya Matsui
- Fundamental Bioscience (Physics), Shiga University of Medical Science, Shiga, 520-2192, Japan.
- General Care and Education, Tenri Hospital, Nara, 632-8552, Japan
| | - Yumi Irie
- Division of Food Science & Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Ayumi Uchino
- Division of Food Science & Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Ayaka Chikugo
- Division of Food Science & Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Kotaro Fujii
- Fundamental Bioscience (Physics), Shiga University of Medical Science, Shiga, 520-2192, Japan.
| | - Katsuma Hosoi
- Human Pathology, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Akio Nakanishi
- Fundamental Bioscience (Physics), Shiga University of Medical Science, Shiga, 520-2192, Japan.
| | - Yusuke Kageyama
- Human Pathology, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Nobuyasu Naruse
- Fundamental Bioscience (Physics), Shiga University of Medical Science, Shiga, 520-2192, Japan.
| | - Chihiro Tsukano
- Division of Food Science & Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Kazuhiro Irie
- Division of Food Science & Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
- Organization for Research Initiatives and Development, Doshisha University, Kyoto, 610-0394, Japan
| | - Yutaka Mera
- Fundamental Bioscience (Physics), Shiga University of Medical Science, Shiga, 520-2192, Japan.
| |
Collapse
|
2
|
Wang Z, Ding D, Wang J, Chen L, Dong Q, Khamrai M, Zhou Y, Ishii A, Sakata K, Li W, Du J, Vaithianathan T, Zhou FM, Liao FF. Soluble β-Amyloid Oligomers Selectively Upregulate TRPC3 in Excitatory Neurons via Calcineurin-Coupled NFAT. Cells 2025; 14:843. [PMID: 40498020 PMCID: PMC12155350 DOI: 10.3390/cells14110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/28/2025] [Accepted: 06/02/2025] [Indexed: 06/19/2025] Open
Abstract
To investigate how dysregulated transient receptor potential canonical channels (TRPCs) are associated with Alzheimer's disease (AD), we challenged primary neurons with amyloid-β (Aβ). Both the naturally secreted or synthetic Aβ oligomers (AβOs) induced long-lasting increased TRPC3 and downregulated the TRPC6 expression in mature excitatory neurons (CaMKIIα-high) via a Ca2+-dependent calcineurin-coupled NFAT transcriptionally and calpain-mediated protein degradation, respectively. The TRPC3 expression was also found to be upregulated in pyramidal neurons of human AD brains. The selective downregulation of the Trpc6 gene induced synaptotoxicity, while no significant effect was observed from the Trpc3-targeting siRNA, suggesting potentially differential roles of TRPC3 and 6 in modulating the synaptic morphology and functions. Electrophysiological recordings of mouse hippocampal slices overexpressing TRPC3 revealed increased neuronal hyperactivity upon the TRPC3 channel activation by its agonist. Furthermore, the AβO-mediated synaptotoxicity appeared to be positively correlated with the degrees of the induced dendritic Ca2+ flux in neurons, which was completely prevented by the co-treatment with two pyrazole-based TRPC3-selective antagonists Pyr3 or Pyr10. Taken together, our findings suggest that the aberrantly upregulated TRPC3 is another ion channel critically contributing to the process of AβO-induced Ca2+ overload, neuronal hyperexcitation, and synaptotoxicity, thus representing a potential therapeutic target of AD.
Collapse
Affiliation(s)
- Zhengjun Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Z.W.); (D.D.); (Q.D.); (M.K.); (Y.Z.); (K.S.); (T.V.); (F.-M.Z.)
| | - Dongyi Ding
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Z.W.); (D.D.); (Q.D.); (M.K.); (Y.Z.); (K.S.); (T.V.); (F.-M.Z.)
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.W.); (W.L.)
| | - Ling Chen
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Qingming Dong
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Z.W.); (D.D.); (Q.D.); (M.K.); (Y.Z.); (K.S.); (T.V.); (F.-M.Z.)
| | - Moumita Khamrai
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Z.W.); (D.D.); (Q.D.); (M.K.); (Y.Z.); (K.S.); (T.V.); (F.-M.Z.)
| | - Yuyang Zhou
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Z.W.); (D.D.); (Q.D.); (M.K.); (Y.Z.); (K.S.); (T.V.); (F.-M.Z.)
| | - Akihiro Ishii
- Department of Neuroscience, UConn Health, Farmington, CT 06030, USA;
| | - Kazuko Sakata
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Z.W.); (D.D.); (Q.D.); (M.K.); (Y.Z.); (K.S.); (T.V.); (F.-M.Z.)
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.W.); (W.L.)
| | - Jianyang Du
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Thirumalini Vaithianathan
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Z.W.); (D.D.); (Q.D.); (M.K.); (Y.Z.); (K.S.); (T.V.); (F.-M.Z.)
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Fu-Ming Zhou
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Z.W.); (D.D.); (Q.D.); (M.K.); (Y.Z.); (K.S.); (T.V.); (F.-M.Z.)
| | - Francesca-Fang Liao
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Z.W.); (D.D.); (Q.D.); (M.K.); (Y.Z.); (K.S.); (T.V.); (F.-M.Z.)
| |
Collapse
|
3
|
Shukla M, Narayan M. Proteostasis and Its Role in Disease Development. Cell Biochem Biophys 2025; 83:1725-1741. [PMID: 39422790 PMCID: PMC12123047 DOI: 10.1007/s12013-024-01581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Proteostasis (protein homeostasis) refers to the general biological process that maintains the proper balance between the synthesis of proteins, their folding, trafficking, and degradation. It ensures proteins are functional, locally distributed, and appropriately folded inside cells. Genetic information enclosed in mRNA is translated into proteins. To ensure newly synthesized proteins take on the exact three-dimensional conformation, molecular chaperones assist in proper folding. Misfolded proteins can be refolded or targeted for elimination to stop aggregation. Cells utilize different degradation pathways, for instance, the ubiquitin-proteasome system, the autophagy-lysosome pathway, and the unfolded protein response, to degrade unwanted or damaged proteins. Quality control systems of the cell monitor the folding of proteins. These checkpoint mechanisms are aimed at degrading or refolding misfolded or damaged proteins. Under stress response pathways, such as heat shock response and unfolded protein response, which are triggered under conditions that perturb proteostasis, the capacity for folding is increased, and degradation pathways are activated to help cells handle stressful conditions. The deregulation of proteostasis is implicated in a variety of illnesses, comprising cancer, metabolic diseases, cardiovascular diseases, and neurological disorders. Therapeutic strategies with a deeper insight into the mechanism of proteostasis are crucial for the treatment of illnesses linked with proteostasis and to support cellular health. Thus, proteostasis is required not only for the maintenance of cellular homeostasis and function but also for proper protein function and prevention of injurious protein aggregation. In this review, we have covered the concept of proteostasis, its mechanism, and how disruptions to it can result in a number of disorders.
Collapse
Affiliation(s)
- Manisha Shukla
- Department of Biotechnology, Pandit S.N. Shukla University, Shahdol, Madhya Pradesh, India
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas, El Paso, TX, USA.
| |
Collapse
|
4
|
Dolgacheva LP, Zinchenko VP, Nadeev AD, Goncharov NV. Serotonergic Regulation in Alzheimer's Disease. Int J Mol Sci 2025; 26:5218. [PMID: 40508026 PMCID: PMC12154332 DOI: 10.3390/ijms26115218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/18/2025] [Accepted: 05/27/2025] [Indexed: 06/16/2025] Open
Abstract
Serotonin (5-HT) is a neurotransmitter that also plays an important role in the regulation of vascular tone and angiogenesis. This review focuses on the involvement of the 5-HT system in pathological processes leading to the development of Alzheimer's disease (AD). There is evidence that damage or dysfunction of the 5-HT system contributes to the development of AD, and different subtypes of 5-HT receptors are a potential target for the treatment of AD. A link has been established between AD, depression, stress, and 5-HT deficiency in the brain. There are new data on the role of circadian rhythms in modulating stress, depression, and the 5-HT system; amyloid β (Aβ) plaque clearance; and AD progression. Circadian disruption inhibits Aβ plaque clearance and modulates AD progression. The properties and functions of 5-HT, its receptors, and serotonergic neurons are presented. Special attention is paid to the central role of 5-HT in brain development, including neurite outgrowth, regulation of somatic morphology, motility, synaptogenesis, control of dendritic spine shape and density, neuronal plasticity determining its role in network regeneration, and changes in innervation after brain damage. The results of different studies indicate that the interaction of amyloid β oligomers (AβO) with mitochondria is a sufficient trigger for AD-related neurodegeneration. The action of 5-HT leads to an improvement in mitochondrial quality and the restoration of brain areas after traumatic brain injury, chronic stress, or developmental disorders in AD. The role of a healthy lifestyle and drugs acting on serotonin receptors in the prevention and treatment of AD is discussed.
Collapse
Affiliation(s)
- Lyudmila P. Dolgacheva
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia (V.P.Z.)
| | - Valery P. Zinchenko
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia (V.P.Z.)
| | - Alexander D. Nadeev
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia (V.P.Z.)
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia
| |
Collapse
|
5
|
Nong Y, Kim JS, Jia L, Arancio O, Wang Q. The interaction between neurotransmitter receptor activity and amyloid-β pathology in Alzheimer's disease. J Alzheimers Dis 2025:13872877251342273. [PMID: 40388923 DOI: 10.1177/13872877251342273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
The accumulation of amyloid-β (Aβ) peptides is a hallmark of Alzheimer's disease (AD). Central to AD pathology is the production of Aβ peptides through the amyloidogenic processing of amyloid-β protein precursor (AβPP) by β-secretase (BACE-1) and γ-secretase. Recent studies have shifted focus from Aβ plaque deposits to the more toxic soluble Aβ oligomers. One significant way in which Aβ peptides impair neuronal information processing is by influencing neurotransmitter receptor function. These receptors, including adrenergic, acetylcholine, dopamine, 5-HT, glutamate, and gamma-aminobutyric acid (GABA) receptors, play a crucial role in regulating synaptic transmission, which underlies perceptual and cognitive functions. This review explores how Aβ interacts with these key neurotransmitter receptors and how these interactions contribute to neural dysfunction in AD. Moreover, we examine how agonists and antagonists of these receptors influence Aβ pathology, offering new perspectives on potential therapeutic strategies to curb AD progression effectively and improve patients' quality of life.
Collapse
Affiliation(s)
- Yuhan Nong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jung Soo Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Litian Jia
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Ottavio Arancio
- Departments of Pathology & Cell Biology, and Medicine, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Neurosurgery, Columbia University, New York, NY, USA
| |
Collapse
|
6
|
Fu Y, Zhang J, Yang C, Wang Y, Yang Y, Qiu P, Xie W, Zhang S, Lǚ T. Effects of Solvent Dimethyl Sulfoxide Invites a Rethink of Its Application in Amyloid Beta Cytotoxicity. Int J Toxicol 2025:10915818251338235. [PMID: 40373217 DOI: 10.1177/10915818251338235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Dimethyl sulfoxide (DMSO) is commonly used as a solvent for preparing amyloid-beta (Aβ) peptides implicated in Alzheimer's disease. While considered relatively non-toxic at low concentrations, DMSO itself may exert biological effects that could confound experimental outcomes, especially for weakly cytotoxic substances like Aβ. Seven brain cell types (BV-2, N2a, SH-SY5Y, U87, neurons, astrocytes, microglia) were treated with varying DMSO concentrations or Aβ1-42 oligomers/protofibrils/fibrils prepared using DMSO. Cell viability was assessed by CCK-8 and LDH assays. Matched DMSO controls were prepared alongside Aβ treatments to delineate solvent effects. Low DMSO concentrations (0.0625-0.015625%) exhibited hormetic cytoprotective and growth-promoting effects, while higher concentrations (≥2%) were cytotoxic. Importantly, these hormetic solvent effects confounded the measurement of Aβ cytotoxicity. By accounting for matched DMSO controls, the study revealed that Aβ fibril toxicity may have been underestimated due to the cytoprotective solvent effects of low DMSO concentrations used in their preparation. In conclusion, DMSO exhibits complex hormetic dose-responses that can significantly influence experimental outcomes, especially for weakly cytotoxic agents like Aβ. Rigorous solvent controls are crucial to delineate genuine substance effects from potential solvent confounds and avoid erroneous interpretations.
Collapse
Affiliation(s)
- Yanhong Fu
- Department of Neurology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Center for Cognition and Sleep, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Brain and Mental Diseases, Guangxi Academy of Medical Sciences, Nanning, China
| | - Jiafa Zhang
- Department of Neurology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Canhong Yang
- Department of Neurology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yuanyuan Wang
- Department of Neurology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yunzhu Yang
- Department of Neurology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Weibing Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Shufen Zhang
- Internal Medicine Department, The Second People's Hospital of Guangzhou Nansha, Guangzhou, China
| | - Tianming Lǚ
- Department of Neurology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Divecha YA, Rampes S, Tromp S, Boyanova ST, Fleckney A, Fidanboylu M, Thomas SA. The microcirculation, the blood-brain barrier, and the neurovascular unit in health and Alzheimer disease: The aberrant pericyte is a central player. Pharmacol Rev 2025; 77:100052. [PMID: 40215558 PMCID: PMC12163501 DOI: 10.1016/j.pharmr.2025.100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/28/2025] [Indexed: 05/27/2025] Open
Abstract
High fidelity neuronal signaling is enabled by a stable local microenvironment. A high degree of homeostatic regulation of the brain microenvironment, and its separation from the variable and potentially neurotoxic contents of the blood, is brought about by the central nervous system barriers. Evidence from clinical and preclinical studies implicates brain microcirculation, cerebral hypoperfusion, blood-brain barrier dysfunction, and reduced amyloid clearance in Alzheimer pathophysiology. Studying this dysregulation is key to understanding Alzheimer disease (AD), identifying drug targets, developing treatment strategies, and improving prescribing to this vulnerable population. This review has 2 parts: part 1 describes the cerebral microcirculation, cerebral blood flow, extracellular fluid drainage, and the neurovascular unit components with an emphasis on the blood-brain barrier, and part 2 summarizes how each aspect is altered in AD. Discussing the neurovascular unit structures separately allows us to conclude that aberrant pericytes are an early contributor and central to understanding AD pathophysiology. Pericytes have multiple functions including maintenance of blood-brain barrier integrity and the control of capillary blood flow, capillary stalling, neurovascular coupling, intramural periarterial drainage, glia-lymphatic (glymphatic) drainage, and consequently amyloid and tau clearance. Pericytes are vasoactive, express cholinergic and adrenergic receptors, and exhibit apolipoprotein E isoform-specific transport pathways. Hypoperfusion in AD is linked to a pericyte-mediated response. Deficient endothelial cell-pericyte (PDGBB-PDGFRβ) signaling loops cause pericyte dysfunction, which contributes and even initiates AD degeneration. We conclude that pericytes are central to understanding AD pathophysiology, are an interesting therapeutic target in AD, and have an emerging role in regenerative therapy. SIGNIFICANCE STATEMENT: Dysregulation and dysfunction of the neurovascular unit and fluid circulation (including blood, cerebrospinal fluid, and interstitial fluid) occurs in Alzheimer disease. A central player is the aberrant pericyte. This has fundamental implications to understanding disease pathophysiology and the development of therapies.
Collapse
Affiliation(s)
- Yasmin Amy Divecha
- King's College London, Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, Waterloo, London, United Kingdom
| | - Sanketh Rampes
- King's College London, Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, Waterloo, London, United Kingdom
| | - Sabine Tromp
- King's College London, Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, Waterloo, London, United Kingdom
| | - Sevda T Boyanova
- King's College London, Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, Waterloo, London, United Kingdom
| | - Alice Fleckney
- King's College London, Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, Waterloo, London, United Kingdom
| | - Mehmet Fidanboylu
- King's College London, Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, Waterloo, London, United Kingdom
| | - Sarah Ann Thomas
- King's College London, Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, Waterloo, London, United Kingdom.
| |
Collapse
|
8
|
Passan S, Goyal S, Bhat MA, Singh R, Kaur M, Vanita V. A case-control association study of APOE promoter region variants with glaucoma in North Indian population. Hum Immunol 2025; 86:111299. [PMID: 40154097 DOI: 10.1016/j.humimm.2025.111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/02/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
PURPOSE Genetic variants in apolipoprotein E (APOE) are reported as risk factors for glaucoma in different ethnic populations, however, there is a scarcity of data from North India. Therefore, the present study aimed to investigate the association of APOE promoter region variants c.-219T > G, c.-427T > C, and c.-491A > T with glaucoma in the North Indian population. METHODS 286 primary glaucoma patients and 300 healthy controls were included in the present study. Promoter region variants (c.-219T > G, c.-427T > C, c.-491A > T) of APOE were genotyped by Sanger sequencing followed by statistical analyses. RESULTS Present case-control association analysis indicated that the GG genotype of the c.-219T > G variant is more common in glaucoma patients (18.53 %) than in controls (11.33 %) and conferred a 1.9-fold increased risk of glaucoma (OR = 1.92, 95 % CI 1.16-3.16, p = 0.010). This risk is particularly higher in females, showing a 2.7-fold increase (OR = 2.66, 95 % CI 1.10-6.41, p = 0.028). In the recessive model, the GG genotype also exhibited a 1.8-fold increased risk of glaucoma development (OR = 1.78, 95 % CI 1.12-2.83, p = 0.014). During sub-group analysis, GG genotype was more prevalent in POAG group compared to controls, with a 2.3-fold increased risk (OR = 2.27, 95 % CI 1.32-3.89, p = 0.002). However, no significant differences in genotype distribution were found between PACG and PCG vs. controls. Additionally, the genotype and allele frequency distributions for the c.-427T > C and c.-491A > T variants were not statistically significant between cases and controls. CONCLUSION Our study shows the association of the c.-219T > G variant in the development of glaucoma in the analyzed Indian population. The present study analyzed the genotype-phenotype correlation between APOE promoter region variants and glaucoma characteristics in the Indian population.
Collapse
Affiliation(s)
- Shruti Passan
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143005 Punjab, India
| | - Shiwali Goyal
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143005 Punjab, India
| | - Mohd Akbar Bhat
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143005 Punjab, India
| | - Ravijit Singh
- Dr. Daljit Singh Eye Hospital, Amritsar 143001 Punjab, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143005 Punjab, India
| | - Vanita Vanita
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143005 Punjab, India.
| |
Collapse
|
9
|
Brown CN, Chao FY, Quang D, Rumian NL, Kleinjan MS, Coultrap SJ, Bayer KU. Aβ impairs the LTP-related movement of endogenous CaMKII but not of exogenous GFP-CaMKII. Mol Biol Cell 2025; 36:ar60. [PMID: 40137857 PMCID: PMC12086577 DOI: 10.1091/mbc.e24-10-0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Amyloid β (Aβ) inhibits hippocampal long-term potentiation (LTP; a form of synaptic plasticity thought to underly learning and memory) by inhibiting the stimulation-induced synaptic accumulation of the Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII). Notably, CaMKII inhibition rescues both CaMKII movement and LTP, indicating that CaMKII mediates both LTP and the Aβ-induced LTP impairment. Somewhat counterintuitively, we found here that overexpression of GFP-CaMKII also rescued the Aβ-induced impairment of CaMKII movement. For endogenous CaMKII, we confirmed that Aβ indeed induced impairment of movement, and that previous results with live-imaging approaches were not due to Aβ-induced dissociation of the CaMKII intrabody. For exogenous GFP-CaMKII, the effect did not depend on the expression level and was thus likely caused by the N-terminal GFP label. Surprisingly, placing the GFP label instead at the C-terminus (near the association domain) still allowed CaMKII holoenzyme formation and still protected from the Aβ-induced impairment of CaMKII movement. Thus, while our method allows replacing endogenous CaMKII with similar amounts of GFP-CaMKII, our results provide a rare example for GFP-CaMKII not recapitulating the function of endogenous CaMKII.
Collapse
Affiliation(s)
- Carolyn Nicole Brown
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Fan-Yi Chao
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Daphne Quang
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Nicole L. Rumian
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Mason S. Kleinjan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Steven J. Coultrap
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - K. Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
10
|
Simões‐Pires EN, Torrente D, Singh P, Strickland S, Norris EH. Synergistic effects of the Aβ/fibrinogen complex on synaptotoxicity, neuroinflammation, and blood-brain barrier damage in Alzheimer's disease models. Alzheimers Dement 2025; 21:e70119. [PMID: 40344319 PMCID: PMC12061846 DOI: 10.1002/alz.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 01/12/2025] [Indexed: 05/11/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD) is characterized by amyloid-beta (Aβ), hyperphosphorylated tau, chronic neuroinflammation, blood-brain barrier (BBB) damage, and synaptic dysfunction, leading to neuronal loss and cognitive deficits. Vascular proteins, including fibrinogen, extravasate into the brain, further contributing to damage and inflammation. Fibrinogen's interaction with Aβ is well-established, but how this interaction contributes to synaptic dysfunction in AD is unknown. METHODS Organotypic hippocampal cultures (OHC) were exposed to Aβ42 oligomers, fibrinogen, or Aβ42/fibrinogen complexes. Synaptotoxicity was analyzed by Western blot. Aβ42 oligomers, fibrinogen, or their complexes were intracerebroventricularly injected into mice. Histopathological AD markers, synaptotoxicity, neuroinflammation, and vascular markers were observed by Western blot and immunofluorescence. RESULTS Aβ42/fibrinogen complexes led to synaptic loss, tau181 phosphorylation, neuroinflammation, and BBB disruption, independent of Mac1/CD11b receptor signaling. Blocking Aβ42/fibrinogen complex formation prevented synaptotoxicity. DISCUSSION These findings indicate that the Aβ42/fibrinogen complex has a synergistic impact on hippocampal synaptotoxicity and neuroinflammation. HIGHLIGHTS Fibrinogen binds to the central region of Aβ, forming a plasmin-resistant complex. The Aβ/fibrinogen complex induces synaptotoxicity, inflammation, and BBB disruption. Synaptotoxicity induced by the complex is independent of Mac1 receptor signaling.
Collapse
Affiliation(s)
- Elisa Nicoloso Simões‐Pires
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Daniel Torrente
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Pradeep Singh
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Erin H. Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNew YorkUSA
| |
Collapse
|
11
|
Culley G, Henriques A, Hardy D, Wojcinski A, Chabert A, El Waly B, Poindron P, Callizot N. Amyloid-beta peptide toxicity in the aged brain is a one-way journey into Alzheimer's disease. Front Aging Neurosci 2025; 17:1569181. [PMID: 40370748 PMCID: PMC12075133 DOI: 10.3389/fnagi.2025.1569181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Aging is the primary risk factor for Alzheimer's disease (AD), and the aging brain shares many characteristics with the early stages of AD. This study investigates the interplay between aging and amyloid-beta (Aβ) induced pathology. We developed an AD-like in vivo model, using the stereotactic injection of Aβ1-42 oligomers into the hippocampi of aged mice. Cognitive impairments were assessed using a Y maze. Immunohistochemical and protein analyses were conducted to evaluate neuronal survival, synaptic function and number, levels of tau hyperphosphorylation, microglial activation, autophagy, and mitochondrial function. We compared baseline aging effects in young adult (3 months) and aged (16-18 months) healthy mice. We found that aged mice displayed significant deficits in working memory, synaptic density and neurogenesis, and an increased basal inflammation. In response to acute injury to the hippocampus with Aβ oligomer injection, aged mice suffered sustained deficits, including impaired cognitive function, further reduced neurogenesis and synaptic density, increased microglial activation, astrogliosis, mitochondrial stress, and lysosomal burden. Furthermore, in the weeks following injury, the aged mice show increased amyloid accumulation, microglial activation and phosphorylated tau propagation, expanding from the injection site to adjacent hippocampal regions. In contrast, the young adult mice exhibited only acute effects without long-term progression of pathology or neurodegeneration. We conclude that the aging brain environment increases susceptibility to an acute Aβ injury, creating fertile soil for the progression of AD, whereas younger brains are able to overcome this injury. The processes of aging should be considered as an integral factor in the development of the disease. Targeting aging mechanisms may provide new strategies for AD prevention and treatment, as well as for other neurodegenerative diseases.
Collapse
|
12
|
Jeans AF, Padamsey Z, Collins H, Foster W, Allison S, Dierksmeier S, Klein WL, van den Maagdenberg AMJM, Emptage NJ. Ca V2.1 mediates presynaptic dysfunction induced by amyloid β oligomers. Cell Rep 2025; 44:115451. [PMID: 40127100 DOI: 10.1016/j.celrep.2025.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/06/2025] [Accepted: 02/28/2025] [Indexed: 03/26/2025] Open
Abstract
Synaptic dysfunction is an early pathological phenotype of Alzheimer's disease (AD) that is initiated by oligomers of amyloid β peptide (Aβos). Treatments aimed at correcting synaptic dysfunction could be beneficial in preventing disease progression, but mechanisms underlying Aβo-induced synaptic defects remain incompletely understood. Here, we uncover an epithelial sodium channel (ENaC) - CaV2.3 - protein kinase C (PKC) - glycogen synthase kinase-3β (GSK-3β) signal transduction pathway that is engaged by Aβos to enhance presynaptic CaV2.1 voltage-gated Ca2+ channel activity, resulting in pathological potentiation of action-potential-evoked synaptic vesicle exocytosis. We present evidence that the pathway is active in human APP transgenic mice in vivo and in human AD brains, and we show that either pharmacological CaV2.1 inhibition or genetic CaV2.1 haploinsufficiency is sufficient to restore normal neurotransmitter release. These findings reveal a previously unrecognized mechanism driving synaptic dysfunction in AD and identify multiple potentially tractable therapeutic targets.
Collapse
Affiliation(s)
- Alexander F Jeans
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | - Zahid Padamsey
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Helen Collins
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - William Foster
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Sally Allison
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Steven Dierksmeier
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - William L Klein
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | | | - Nigel J Emptage
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
13
|
Cavallaro F, Conti Nibali S, Cubisino SAM, Caruso P, Zimbone S, Infantino IR, Reina S, De Pinto V, Messina A, Giuffrida ML, Magrì A. VDAC1-Targeted NHK1 Peptide Recovers Mitochondrial Dysfunction Counteracting Amyloid-β Oligomers Toxicity in Alzheimer's Disease. Aging Cell 2025:e70069. [PMID: 40223243 DOI: 10.1111/acel.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025] Open
Abstract
Mitochondrial dysfunction has been implicated in a broad range of age-related pathologies and has been proposed as a causative factor in Alzheimer's disease (AD). Analysis of post-mortem brains from AD patients showed increased levels of Voltage-dependent anion-selective channel 1 (VDAC1) in the dystrophic neurites surrounding amyloid-β (Aβ) deposits, suggesting a direct association between VDAC1 and mitochondrial toxicity. VDAC1 is the most abundant pore-forming protein of the outer mitochondrial membrane and, as a channel, it plays a pivotal role in regulating cellular bioenergetics, allowing the continuous exchange of ions and metabolites (ATP/ADP, Krebs cycle intermediates) between cytosol and mitochondria. In light of this evidence, we looked into the effects of Aβ oligomers on VDAC1 functions through electrophysiological and respirometric techniques. Our findings indicate that Aβ oligomers significantly modify the conductance, voltage dependency, and kinetic features of VDAC1, as well as its slight selectivity for anions, leading to a marked preference for cations. Given that VDAC1 is mainly involved in the trafficking of charged molecules in and out of mitochondria, a general reduction of cell viability and mitochondrial respiration was detected in neuroblastoma cells and primary cortical neurons exposed to Aβ oligomers. Interestingly, the toxic effect mediated by Aβ oligomers was counteracted by the use of NHK1, a small synthetic, cell-penetrating peptide that binds and modulates VDAC1. On these results, VDAC1 emerges as a crucial molecule in mitochondrial dysfunction in AD and as a promising pharmacological target for the development of new therapeutic avenues for this devastating neurodegenerative disease still without a cure.
Collapse
Affiliation(s)
- Fabrizio Cavallaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefano Conti Nibali
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Pietro Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefania Zimbone
- Institute of Crystallography, National Research Council (CNR-IC), Catania, Italy
| | - Iolanda Rita Infantino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Simona Reina
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Angela Messina
- Department of Biological, Geological, Environmental Sciences, University of Catania, Catania, Italy
| | | | - Andrea Magrì
- Department of Biological, Geological, Environmental Sciences, University of Catania, Catania, Italy
| |
Collapse
|
14
|
Tang X, Schindler RL, Di Lucente J, Oloumi A, Tena J, Harvey D, Lebrilla CB, Zivkovic AM, Jin LW, Maezawa I. Unique N-glycosylation signatures in human iPSC derived microglia activated by Aβ oligomer and lipopolysaccharide. Sci Rep 2025; 15:12348. [PMID: 40210651 PMCID: PMC11985925 DOI: 10.1038/s41598-025-96596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Microglia are the immune cells in the central nervous system (CNS) and become pro-inflammatory/activated in Alzheimer's disease (AD). Cell surface glycosylation plays an important role in immune cells; however, the N-glycosylation and glycosphingolipid (GSL) signatures of activated microglia are poorly understood. Here, we study comprehensively combined transcriptomic and glycomic profiles using human induced pluripotent stem cells-derived microglia (hiMG). Distinct changes in N-glycosylation patterns in amyloid-β oligomer (AβO) and LPS-treated hiMG were observed. In AβO-treated cells, the relative abundance of bisecting N-acetylglucosamine (GlcNAc) N-glycans decreased, corresponding with a downregulation of MGAT3. The sialylation of N-glycans increased in response to AβO, accompanied by an upregulation of genes involved in N-glycan sialylation (ST3GAL4 and 6). Unlike AβO-induced hiMG, LPS-induced hiMG exhibited a decreased abundance of complex-type N-glycans, aligned with downregulation of mannosidase genes (MAN1A1, MAN2A2, and MAN1C1) and upregulation of ER degradation related-mannosidases (EDEM1-3). Fucosylation increased in LPS-induced hiMG, aligned with upregulated fucosyltransferase 4 (FUT4) and downregulated alpha-L-fucosidase 1 (FUCA1) gene expression, while sialofucosylation decreased, aligned with upregulated neuraminidase 4 (NEU4). Inhibition of sialylation and fucosylation in AβO- and LPS-induced hiMG alleviated pro-inflammatory responses. However, the GSL profile did not exhibit significant changes in response to AβO or LPS activation, at least in the 24-hour stimulation timeframe. AβO- and LPS- specific glycosylation changes could contribute to impaired microglia function, highlighting glycosylation pathways as potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Xinyu Tang
- Department of Nutrition, University of California, Davis, CA, 95618, USA
| | - Ryan Lee Schindler
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Jacopo Di Lucente
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA
| | - Armin Oloumi
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Jennyfer Tena
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Danielle Harvey
- Department of Public Health Sciences, University of California-Davis, Davis, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, CA, 95618, USA.
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA.
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA.
| |
Collapse
|
15
|
Homkajorn B, Nilsu T, Suntararuks S, Saparpakorn P, Ingkaninan K, Limpeanchob N, Satayavivad J, Ruchirawat S, Thasana N. Synthesis, Biological Evaluation, Molecular Docking, and In Silico ADME Predictions of Huperzine: A Derivative for the Novel Protective Application Against Neurodegenerations. Chem Asian J 2025:e202401950. [PMID: 40195677 DOI: 10.1002/asia.202401950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 04/09/2025]
Abstract
To date, there has been no effective treatment available for the Alzheimer's disease (AD); hence, novel compounds with AD inhibitory effects are highly desirable. Huperzine A (HupA), a natural Lycopodium alkaloid, is a potent acetylcholinesterase (AChE) inhibitor for AD treatment. In this study, HupA derivatives, huperzil, N-hippurylhuperzine A, pyrrolhuperzine A, maleicamide-huperzine A and phthaleicamide-huperzine A, were synthesized and their in silico computation as the central nervous system (CNS) drug was performed. All derivatives exhibited lower anti-AChE activity than HupA. However, we found other non-cholinergic functions in AD-mimicking models using differentiated SH-SY5Y. HupA and derivatives significantly suppressed the Aβ25-35 cytotoxicity and showed recovery effects against arsenic- induced AD pathologies including reactive oxygen species generation, neurite outgrowth shortening, amyloid precursor protein suppression and the elevation of β-secretase, endogenous Aβ peptide, and Tau and neurofilament light proteins. In summary, we prepared three potential compounds with dual-AChE cholinergic and non-cholinergic functions. Further development of these compounds will be beneficial for the future use as an alternate compound against AD.
Collapse
Affiliation(s)
- Benjaporn Homkajorn
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Thanasan Nilsu
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Sumitra Suntararuks
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | | | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Nanteetip Limpeanchob
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10210, Thailand
| | - Somsak Ruchirawat
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Chemical Sciences Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Nopporn Thasana
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Chemical Sciences Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| |
Collapse
|
16
|
Jia M, Wang C, Mei J, Ahmad S, Nouman MF, Ai H. Identification and Characterization of the Structure and Size of Aβ42 Oligomers Targeting the Receptor FcγRIIb. ACS Chem Neurosci 2025; 16:1335-1345. [PMID: 40094208 DOI: 10.1021/acschemneuro.4c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Kam and colleagues discovered that FcγRIIb can specifically bind to Aβ42 oligomers (AβOs). The N-terminal residues F4 and D7 of Aβ42, as well as the W115 residue in domain D2 of FcγRIIb, are involved in this binding. However, the specificity of the FcγRIIb receptor's binding sites for AβOs and their dependence on different AβO species, including dimers (D/DT), trimers (T/TT), tetramers (Te/TeT), and pentamers (P/PT) during both the primary (P1) and secondary nucleation phases (P2), remains unknown. To address this, we employed molecular dynamics (MD) simulations to investigate the interactions between the extracellular domains D1 and D2 (FDD) of FcγRIIb and AβOs of varying sizes in the two different phases. We discovered that three specific fragments (f1, f2, and f3) of domain D2 in FDD are the primary binding sites for AβO species. Furthermore, among AβOs of the same molecular weight, those from the P2 phase exhibit a stronger binding affinity for FDD than those from the P1 phase. The distinction is ascribed to the stronger dependence on the hydrophobic residues in the β1 and β2 regions for the binding of AβOs in P2 (including TT, TeT, and PT) than that (including D, Te, and P) in the P1 phase. In the P1 phase, these AβOs prefer to achieve binding to FDD through their N-terminal residues; however, by this, we identified that the species observed in Kam's experiment to bind FcγRIIb should probably be the tetrameric AβO (Te) in the P1 phase. Moreover, within both the P1 and P2 phases, we predicted that the trimeric AβO species in either the P1 or P2 phase is the strongest binding ligand for the FcγRIIb receptor. This study provides a comprehensive molecular perspective on the interaction between FcγRIIb and AβO in P2, which is of significant importance for the development of therapeutic strategies targeting Alzheimer's disease (AD) and autoimmune diseases.
Collapse
Affiliation(s)
- Mengke Jia
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Zibo City Engineering Research Center for New Pollution Monitoring and Governance, Shandong Vocational College of Light Industry, Zibo 255300, Shandong, P. R. China
| | - Chuanbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinfei Mei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Sajjad Ahmad
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Muhammad Fahad Nouman
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
17
|
Almeida ZL, Vaz DC, Brito RMM. Morphological and Molecular Profiling of Amyloid-β Species in Alzheimer's Pathogenesis. Mol Neurobiol 2025; 62:4391-4419. [PMID: 39446217 PMCID: PMC11880078 DOI: 10.1007/s12035-024-04543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia around the world (~ 65%). Here, we portray the neuropathology of AD, biomarkers, and classification of amyloid plaques (diffuse, non-cored, dense core, compact). Tau pathology and its involvement with Aβ plaques and cell death are discussed. Amyloid cascade hypotheses, aggregation mechanisms, and molecular species formed in vitro and in vivo (on- and off-pathways) are described. Aβ42/Aβ40 monomers, dimers, trimers, Aβ-derived diffusible ligands, globulomers, dodecamers, amylospheroids, amorphous aggregates, protofibrils, fibrils, and plaques are characterized (structure, size, morphology, solubility, toxicity, mechanistic steps). An update on AD-approved drugs by regulatory agencies, along with new Aβ-based therapies, is presented. Beyond prescribing Aβ plaque disruptors, cholinergic agonists, or NMDA receptor antagonists, other therapeutic strategies (RNAi, glutaminyl cyclase inhibitors, monoclonal antibodies, secretase modulators, Aβ aggregation inhibitors, and anti-amyloid vaccines) are already under clinical trials. New drug discovery approaches based on "designed multiple ligands", "hybrid molecules", or "multitarget-directed ligands" are also being put forward and may contribute to tackling this highly debilitating and fatal form of human dementia.
Collapse
Affiliation(s)
- Zaida L Almeida
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
| | - Daniela C Vaz
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
- School of Health Sciences, Polytechnic Institute of Leiria, 2411-901, Leiria, Portugal.
- LSRE-LCM, Laboratory of Separation and Reaction Engineering and Laboratory of Catalysis and Materials, Leiria, 2411-901, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, 4200-465, Porto, Portugal.
| | - Rui M M Brito
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
18
|
Cognacq G, Attwood JE, DeLuca GC. Traumatic Brain Injury and Alzheimer's Disease: A Shared Neurovascular Hypothesis. Neurosci Insights 2025; 20:26331055251323292. [PMID: 40124421 PMCID: PMC11926848 DOI: 10.1177/26331055251323292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/10/2025] [Indexed: 03/25/2025] Open
Abstract
Traumatic brain injury (TBI) is a modifiable risk factor for Alzheimer's disease (AD). TBI and AD share several histopathological hallmarks: namely, beta-amyloid aggregation, tau hyperphosphorylation, and plasma protein infiltration. The relative contributions of these proteinopathies and their interplay in the pathogenesis of both conditions remains unclear although important differences are emerging. This review synthesises emerging evidence for the critical role of the neurovascular unit in mediating protein accumulation and neurotoxicity in both TBI and AD. We propose a shared pathogenic cascade centred on a neurovascular unit, in which increased blood-brain barrier permeability induces a series of noxious mechanisms leading to neuronal loss, synaptic dysfunction and ultimately cognitive dysfunction in both conditions. We explore the application of this hypothesis to outstanding research questions and potential treatments for TBI and AD, as well as other neurodegenerative and neuroinflammatory conditions. Limitations of this hypothesis, including the challenges of establishing a causal relationship between neurovascular damage and proteinopathies, are also discussed.
Collapse
Affiliation(s)
- Gabrielle Cognacq
- John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, Oxfordshire, UK
| | - Jonathan E Attwood
- Nuffield Department of Clinical Neurosciences, Level 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, Oxfordshire, UK
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, Level 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, Oxfordshire, UK
| |
Collapse
|
19
|
Zhou X, Jing XJ, Zhang H. The Potential Role of Neurogranin in Alzheimer's Disease. J Integr Neurosci 2025; 24:25368. [PMID: 40152561 DOI: 10.31083/jin25368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 03/29/2025] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by the excessive deposition of amyloid-β (Aβ) plaques and the formation of neurofibrillary tangles. Numerous new studies also indicate that synaptic damage and loss play crucial roles in AD and form the basis of cognitive impairment. In recent years, synaptic-related proteins have emerged as important biomarkers for the early diagnosis of AD. Among these proteins, neurogranin (Ng), a postsynaptic protein widely present in the dendritic spines of the associative cortex in the brain, plays a significant role in memory, learning, synaptic plasticity, and long-term potentiation (LTP). This review aims to reveal the link between Ng and AD, as well as the potential for the diagnosis of AD, the prediction of the development of the disease, and the identification of a therapeutic target for AD.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Xiao-Jun Jing
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Hua Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| |
Collapse
|
20
|
Lee R, Kim G, Black ER, Kim S. Co-activation of selective nicotinic acetylcholine receptor subtypes is required to reverse hippocampal network dysfunction, fear memory loss, and amyloid pathology in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.08.602576. [PMID: 39026693 PMCID: PMC11257460 DOI: 10.1101/2024.07.08.602576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia with no known cause and cure. Research suggests that a reduction of GABAergic inhibitory interneurons' activity in the hippocampus by beta-amyloid peptide (Aβ) is a crucial trigger for amyloid pathology and cognitive impairment in AD via hyperexcitability. Therefore, enhancing hippocampal inhibition is thought to be protective against AD. However, hippocampal inhibitory cells are highly diverse, and these distinct interneuron subtypes differentially regulate hippocampal inhibitory circuits and cognitive processes. Moreover, Aβ unlikely affects all subtypes of inhibitory interneurons in the hippocampus equally. Hence, identifying the affected interneuron subtypes in AD to enhance hippocampal inhibition optimally is conceptually and practically challenging. We have previously found that Aβ selectively binds to two of the three major hippocampal nicotinic acetylcholine receptor (nAChR) subtypes, α7- and α4β2-nAChRs, but not α3β4-nAChRs, and inhibits these two receptors in cultured hippocampal inhibitory interneurons to decrease their activity, leading to hyperexcitation in excitatory neurons. We have also revealed that co-activation of α7- and α4β2-nAChRs is required to reverse the Aβ-induced adverse effects in hippocampal excitatory neurons. Here, we discover that α7- and α4β2-nAChRs predominantly control the nicotinic cholinergic signaling and neuronal activity in hippocampal parvalbumin-positive (PV+) and somatostatin-positive (SST+) inhibitory interneurons, respectively. Furthermore, we reveal that co-activation of these receptors is necessary to reverse hippocampal network dysfunction, amyloid pathology, and fear memory loss in the amyloid pathology model mice. This suggests that co-activation of PV+ and SST+ cells via stimulating α7- and α4β2-nAChRs together is a novel strategy for neuroprotection against AD.
Collapse
|
21
|
Johnson EA, Nowar R, Viola KL, Huang W, Zhou S, Bicca MA, Zhu W, Kranz DL, Klein WL, Silverman RB. Inhibition of amyloid beta oligomer accumulation by NU-9: A unifying mechanism for the treatment of neurodegenerative diseases. Proc Natl Acad Sci U S A 2025; 122:e2402117122. [PMID: 40030015 PMCID: PMC11912461 DOI: 10.1073/pnas.2402117122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/18/2024] [Indexed: 03/19/2025] Open
Abstract
Protein aggregation is a hallmark of neurodegenerative diseases, which connects these neuropathologies by a common phenotype. Various proteins and peptides form aggregates that are poorly degraded, and their ensuing pathological accumulation underlies these neurodegenerative diseases. Similarities may exist in the mechanisms responsible for the buildup of these aggregates. Therefore, therapeutics designed to treat one neurodegenerative disease may be beneficial to others. In ALS models, the compound NU-9 was previously shown to block neurodegeneration produced by aggregation-inducing mutations of SOD-1 and TDP-43 [B. Genç et al., Clin. Transl. Med. 11, e336 (2021)]. Here, we report that NU-9 also prevents the accumulation of amyloid beta oligomers (AβOs), small peptide aggregates that are instigators of Alzheimer's disease neurodegeneration [M. Tolar et al., Int. J. Mol. Sci. 22, 6355 (2021)]. AβO buildup was measured by immunofluorescence imaging of cultured hippocampal neurons exposed to exogenous monomeric Aβ. In this model, AβO buildup occurs via cathepsin L- and dynamin-dependent trafficking. This is prevented by NU-9 through a cellular mechanism that is cathepsin B- and lysosome-dependent, suggesting that NU-9 enhances the ability of endolysosomal trafficking to protect against AβO buildup. This possibility is strongly supported by a quantitative assay for autophagosomes that shows robust stimulation by NU-9. These results contribute additional understanding to the mechanisms of protein aggregation and suggest that multiple neurodegenerative diseases might be treatable by targeting common pathogenic mechanisms responsible for protein aggregation.
Collapse
Affiliation(s)
- Elizabeth A. Johnson
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
| | - Raghad Nowar
- Department of Neurobiology, Northwestern University, Evanston, IL60208
| | - Kirsten L. Viola
- Department of Neurobiology, Northwestern University, Evanston, IL60208
| | - Weijian Huang
- The Master of Biotechnology Program, McCormick School of Engineering, Northwestern University, Evanston, IL60208
| | - Sihang Zhou
- The Master of Biotechnology Program, McCormick School of Engineering, Northwestern University, Evanston, IL60208
| | - Maíra A. Bicca
- Department of Neurobiology, Northwestern University, Evanston, IL60208
| | - Wei Zhu
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
| | - Daniel L. Kranz
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
| | - William L. Klein
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
- Department of Neurobiology, Northwestern University, Evanston, IL60208
- Department of Neurology, Northwestern University, Chicago, IL60611
| | - Richard B. Silverman
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- Department of Pharmacology, Northwestern University, Chicago, IL60611
| |
Collapse
|
22
|
Bocchieri E, Zimbone S, Giuffrida ML, Di Natale G, Sabatino G, Vecchio G, Pappalardo G, Chiechio S. Memantine and amantadine KLVFF peptide conjugates: Synthesis, structure determination, amyloid-β interaction and effects on recognition memory in mice. Eur J Pharmacol 2025; 990:177274. [PMID: 39848528 DOI: 10.1016/j.ejphar.2025.177274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Adamantane derivatives, such as memantine (Mem) and amantadine (Ada), have distinct mechanisms and therapeutic applications. Ada is primarily utilized as an antiviral and anti-Parkinson drug without significant pro-cognitive effects, Mem is effective in various clinical conditions characterized by cognitive deficits, including Alzheimer's disease. Recent evidence highlights a neuroprotective role for Aβ monomers, suggesting that preventing their aggregation into toxic oligomers could be a promising therapeutic strategy. Based on the observation that the Lys-Leu-Val-Phe-Phe (KLVFF) peptide, can block the transition of randomly coiled Aβ monomers into toxic β-sheet aggregates, two KLVFF conjugates, the Mem-Succ-KLVFF and Ada-Succ-KLVFF were investigated. METHODS Peptides were synthesized by Microwave-Assisted Solid Phase Peptide Synthesis (MW-SPPS). Circular Dichroism (CD), Th-T fluorescence and Gel-Electrophoresis techniques were used to assess the inhibitory effect on Aβ42 fibrillogenesis. The formation of inclusion complexes with β-Cyclodextrin (β-CyD) was demonstrated by NMR Spectroscopy. The Novel Object Recognition (NOR) test, followed by double-blind analysis, was applied for in vivo response to compounds administration. In vitro effects on neurons were studied by MTT assay and WB analysis, whereas HR ESI-MS allowed the molecular detection on brain homogenates. RESULTS These compounds differently affect Aβ42 aggregation. Mem-Succ-KLVFF, and Succ-KLVFF affect pCREB levels in differentiated SH-SY5Y, a signaling pathway involved in memory processes. In the NOR test, both Mem and KLVFF exhibited pro-cognitive effects individually and synergistically when co-administered. CONCLUSION Structure-activity relationships are discussed, integrating in vivo results, memory-related cellular pathways, and HR-ESI-MS analyses. These findings support the therapeutic potential of these compounds in preserving cognitive function.
Collapse
Affiliation(s)
- Eleonora Bocchieri
- Department of Drug and Health Sciences, Pharmacology and Toxicology Section, University of Catania, Italy; Institute of Crystallography, National Research Council (CNR-IC), 95126, Catania, Italy
| | - Stefania Zimbone
- Institute of Crystallography, National Research Council (CNR-IC), 95126, Catania, Italy
| | - Maria Laura Giuffrida
- Institute of Crystallography, National Research Council (CNR-IC), 95126, Catania, Italy
| | - Giuseppe Di Natale
- Institute of Crystallography, National Research Council (CNR-IC), 95126, Catania, Italy
| | - Giuseppina Sabatino
- Institute of Crystallography, National Research Council (CNR-IC), 95126, Catania, Italy
| | | | - Giuseppe Pappalardo
- Institute of Crystallography, National Research Council (CNR-IC), 95126, Catania, Italy.
| | - Santina Chiechio
- Department of Drug and Health Sciences, Pharmacology and Toxicology Section, University of Catania, Italy; Oasi Research Institute-IRCCS, 94018, Troina, Italy.
| |
Collapse
|
23
|
Andersson E, Lindblom N, Janelidze S, Salvadó G, Gkanatsiou E, Söderberg L, Möller C, Lannfelt L, Ge J, Hanrieder J, Blennow K, Deierborg T, Mattsson-Carlgren N, Zetterberg H, Gouras G, Hansson O. Soluble cerebral Aβ protofibrils link Aβ plaque pathology to changes in CSF Aβ 42/Aβ 40 ratios, neurofilament light and tau in Alzheimer's disease model mice. NATURE AGING 2025; 5:366-375. [PMID: 39939821 PMCID: PMC11922755 DOI: 10.1038/s43587-025-00810-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/09/2025] [Indexed: 02/14/2025]
Abstract
The Aβ42/Aβ40 ratio in the cerebrospinal fluid (CSF) and the concentrations of neurofilament light (NfL) and total tau (t-tau) are changed in the early stages of Alzheimer's disease (AD)1, but their neurobiological correlates are not entirely understood. Here, we used 5xFAD transgenic mice to investigate the associations between these CSF biomarkers and measures of cerebral Aβ, including Aβ42/Aβ40 ratios in plaques, insoluble fibrillar deposits and soluble protofibrils. A high Aβ42/Aβ40 ratio in soluble protofibrils was the strongest independent predictor of low CSF Aβ42/Aβ40 ratios and high CSF NfL and t-tau concentrations when compared to Aβ42/Aβ40 ratios in plaques and insoluble fibrillar deposits. Furthermore, the Aβ42/Aβ40 ratio in soluble protofibrils fully mediated the associations between the corresponding ratio in plaques and all the investigated CSF biomarkers. In AppNL-G-F/NL-G-F knock-in mice, protofibrils fully mediated the association between plaques and the CSF Aβ42/Aβ40 ratio. Together, the results suggest that the Aβ42/Aβ40 ratio in CSF might better reflect brain levels of soluble Aβ protofibrils than insoluble Aβ fibrils in plaques in AD. Furthermore, elevated concentrations of NfL and t-tau in CSF might be triggered by increased brain levels of soluble Aβ protofibrils.
Collapse
Affiliation(s)
| | - Nils Lindblom
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | | | - Gemma Salvadó
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | | | | | | | - Lars Lannfelt
- BioArctic AB, Stockholm, Sweden
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Gunnar Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
24
|
Arndt H, Bachurski M, Yuanxiang P, Franke K, Wessjohann LA, Kreutz MR, Grochowska KM. A Screen of Plant-Based Natural Products Revealed That Quercetin Prevents Pyroglutamylated Amyloid-β (Aβ3(pE)-42) Uptake in Astrocytes As Well As Resulting Astrogliosis and Synaptic Dysfunction. Mol Neurobiol 2025; 62:3730-3745. [PMID: 39317890 PMCID: PMC11790700 DOI: 10.1007/s12035-024-04509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Two connected histopathological hallmarks of Alzheimer's disease (AD) are chronic neuroinflammation and synaptic dysfunction. The accumulation of the most prevalent posttranslationally modified form of Aβ1-42, pyroglutamylated amyloid-β (Aβ3(pE)-42) in astrocytes is directly linked to glial activation and the release of proinflammatory cytokines that in turn contribute to early synaptic dysfunction in AD. At present, the mechanisms of Aβ3(pE)-42 uptake to astrocytes are unknown and pharmacological interventions that interfere with this process are not available. Here we developed a simple screening assay to identify substances from a plant extract library that prevent astroglial Aβ3(pE)-42 uptake. We first show that this approach yields valid and reproducible results. Second, we show endocytosis of Aβ3(pE)-42 oligomers by astrocytes and that quercetin, a plant flavonol, is effective to specifically block astrocytic buildup of oligomeric Aβ3(pE)-42. Importantly, quercetin does not induce a general impairment of endocytosis. However, it efficiently protects against early synaptic dysfunction following exogenous Aβ3(pE)-42 application.
Collapse
Affiliation(s)
- Helene Arndt
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Mark Bachurski
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - PingAn Yuanxiang
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Katrin Franke
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06108, Halle, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institut Für Chemie, Chair of Natural Products Chemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Otto Von Guericke University, 39120, Magdeburg, Germany.
| | - Katarzyna M Grochowska
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
25
|
Tian Y, Torres-Flores AP, Shang Q, Zhang H, Khursheed A, Tahirbegi B, Pallier PN, Viles JH. The p3 peptides (Aβ 17-40/42) rapidly form amyloid fibrils that cross-seed with full-length Aβ. Nat Commun 2025; 16:2040. [PMID: 40016209 PMCID: PMC11868391 DOI: 10.1038/s41467-025-57341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
The p3 peptides, Aβ17-40/42, are a common alternative cleavage product of the amyloid precursor protein, and are found in diffuse amyloid deposits of Alzheimer's and Down Syndrome brains. The p3 peptides have been mis-named 'non-amyloidogenic'. Here we show p340/42 peptides rapidly form amyloid fibrils, with kinetics dominated by secondary nucleation. Importantly, cross-seeding experiments, with full-length Aβ induces a strong nucleation between p3 and Aβ peptides. The cross-seeding interaction is highly specific, and occurs only when the C-terminal residues are matched. We have imaged membrane interactions with p3, and monitored Ca2+ influx and cell viability with p3 peptide. Together this data suggests the N-terminal residues influence, but are not essential for, membrane disruption. Single particle analysis of TEM images indicates p3 peptides can form ring-like annular oligomers. Patch-clamp electrophysiology, shows p342 oligomers are capable of forming large ion-channels across cellular membranes. A role for p3 peptides in disease pathology should be considered as p3 peptides are cytotoxic and cross-seed Aβ fibril formation in vitro.
Collapse
Affiliation(s)
- Yao Tian
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Andrea P Torres-Flores
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Qi Shang
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Hui Zhang
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Anum Khursheed
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Bogachan Tahirbegi
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Patrick N Pallier
- The Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Queen Mary University of London, London, E1 2AT, UK
| | - John H Viles
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
26
|
Davis MR, Robinson E, Koronyo Y, Salobrar-Garcia E, Rentsendorj A, Gaire BP, Mirzaei N, Kayed R, Sadun AA, Ljubimov AV, Schneider LS, Hawes D, Black KL, Fuchs DT, Koronyo-Hamaoui M. Retinal ganglion cell vulnerability to pathogenic tau in Alzheimer's disease. Acta Neuropathol Commun 2025; 13:31. [PMID: 39955563 PMCID: PMC11829413 DOI: 10.1186/s40478-025-01935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/25/2025] [Indexed: 02/17/2025] Open
Abstract
Pathological tau isoforms, including hyperphosphorylated tau at serine 396 (pS396-tau) and tau oligomers (Oligo-tau), are elevated in the retinas of patients with mild cognitive impairment (MCI) due to Alzheimer's disease (AD) and AD dementia. These patients exhibit significant retinal ganglion cell (RGC) loss, however the presence of tau isoforms in RGCs and their impact on RGC integrity, particularly in early AD, have not been studied. Here, we analyzed retinal superior temporal cross-sections from 25 MCI or AD patients and 16 age- and sex-matched cognitively normal controls. Using the RGC marker ribonucleic acid binding protein with multiple splicing (RBPMS) and Nissl staining, we found a 46-56% reduction in RBPMS+ RGCs and Nissl+ neurons in the ganglion cell layer (GCL) of MCI and AD retinas (P < 0.05-0.001). RGC loss was accompanied by soma hypertrophy (10-50% enlargement, P < 0.05-0.0001), nuclear displacement, apoptosis (30-50% increase, P < 0.05-0.01), and prominent expression of granulovacuolar degeneration (GVD) bodies and GVD-necroptotic markers. Both pS396-tau and Oligo-tau were identified in RGCs, including in hypertrophic cells. PS396-tau+ and Oligo-tau+ RGC counts were significantly increased by 2.1-3.5-fold in MCI and AD retinas versus control retinas (P < 0.05-0.0001). Tauopathy-laden RGCs strongly inter-correlated (rP=0.85, P < 0.0001) and retinal tauopathy associated with RGC reduction (rP=-0.40-(-0.64), P < 0.05-0.01). Their abundance correlated with brain pathology and cognitive deficits, with higher tauopathy-laden RGCs in patients with Braak stages (V-VI), clinical dementia ratings (CDR = 3), and mini-mental state examination (MMSE ≤ 26) scores. PS396-tau+ RGCs in the central and mid-periphery showed the closest associations with disease status, while Oligo-tau+ RGCs in the mid-periphery exhibited the strongest correlations with brain pathology (NFTs, Braak stages, ABC scores; rS=0.78-0.81, P < 0.001-0.0001) and cognitive decline (MMSE; rS=-0.79, P = 0.0019). Overall, these findings identify a link between pathogenic tau in RGCs and RGC degeneration in AD, involving apoptotic and GVD-necroptotic cell death pathways. Future research should validate these results in larger and more diverse cohorts and develop RGC tauopathy as a potential noninvasive biomarker for early detection and monitoring of AD progression.
Collapse
Affiliation(s)
- Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Edward Robinson
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Elena Salobrar-Garcia
- Institute of Ophthalmologic Research Ramón Castroviejo, Complutense University of Madrid, Madrid, 28040, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute, Clinico San Carlos Hospital (IdISSC), Madrid, 28040, Spain
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Bhakta P Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Doheny Eye Institute, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars- Sinai Medical Center, Los Angeles, CA, USA
| | - Lon S Schneider
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Debra Hawes
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA.
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars- Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Aubrey LD, Radford SE. How is the Amyloid Fold Built? Polymorphism and the Microscopic Mechanisms of Fibril Assembly. J Mol Biol 2025:169008. [PMID: 39954780 DOI: 10.1016/j.jmb.2025.169008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
For a given protein sequence, many, up to sometimes hundreds of different amyloid fibril folds, can be formed in vitro. Yet, fibrils extracted from, or found in, human tissue, usually at the end of a long disease process, are often structurally homogeneous. Through monitoring of amyloid assembly reactions in vitro, the scientific community has gained a detailed understanding of the kinetic mechanisms of fibril assembly and the rates at which the different processes involved occur. However, how this kinetic information relates to the structural changes as a protein transforms from its initial, native structure to the canonical cross-β structure of amyloid remain obscure. While cryoEM has yielded a plethora of high-resolution information that portray a vast variety of fibril structures, there remains little knowledge of how and why each particular structure resulted. Recent work has demonstrated that fibril structures can change over an assembly time course, despite the different fibril types having similar thermodynamic stability. This points to kinetic control of the fibrils formed, with structures that initiate or elongate faster becoming the dominant products of assembly. Annotating kinetic assembly mechanisms alongside structural analysis of the fibrils formed is required to truly understand the molecular mechanisms of amyloid formation. However, this is a complicated task. In this review, we discuss how embracing this challenge could open new frontiers in amyloid research and new opportunities for therapy.
Collapse
Affiliation(s)
- Liam D Aubrey
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
28
|
Gao T, Yan N, Pu Y, Zhang Z, Duan Z, Tang Z, Huang D, Chen Y, Yuan S, Yan X, Yuan M. Ginger leaf polyphenols mitigate β-amyloid toxicity via JNK/FOXO pathway activation in Caenorhabditis elegans. Food Funct 2025; 16:1072-1085. [PMID: 39829385 DOI: 10.1039/d4fo03238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
β-Amyloid (Aβ) aggregation is the major pathological feature of Alzheimer's disease (AD), resulting in oxidative stress and further exacerbating Aβ aggregation. Ginger leaf polyphenols (GLP) have been found to possess antioxidant activity, evidencing their potential in addressing AD. GLP is mainly composed of 12 polyphenols, 8 organic acids, and 6 glycosides, of which polyphenols are predominantly composed of apigenin, kaempferol, and quercetin derivatives. Moreover, GLP alleviates reproductive toxicity, longevity toxicity, and neurotoxicity induced by Aβ via regulating the antioxidase system in Caenorhabditis elegans. As shown by the network pharmacology results, GLP might activate the JNK/Foxo signaling pathway to regulate the antioxidase system, which was evidenced by the up-regulation of gene expression levels of jnk-1, daf-16, sod-3, and hsp-16.2. Overall, GLP might be a potential antioxidant for combating AD.
Collapse
Affiliation(s)
- Tao Gao
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Ningning Yan
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yaying Pu
- Yaan People's Hospital, Yaan, 625099, China.
| | - Zhonghao Zhang
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Zhihao Duan
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Daojian Huang
- Dazhu County Scientific and Technical Information Institute, Dazhou, 635100, China
| | - Yanger Chen
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | | | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
29
|
Ma YD, Liu H, Chen Q, Zheng Y, Yan CR, Li YS, Wang YX, Dai YT, Jiang YH, Shi JM. Gallic acid and loganic acid attenuate amyloid-β oligomer-induced microglia damage via NF-КB signaling pathway. Neuropharmacology 2025; 263:110215. [PMID: 39536861 DOI: 10.1016/j.neuropharm.2024.110215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Amyloid β peptide (Aβ) induces neurodegeneration in the early stage of Alzheimer's disease (AD), resulting in neuroinflammation, oxidative damage, and mitochondrial impaired function. These reactions were closely associated with the pathological changes of brain microglia. Therefore, it was crucial to investigate the precise process of neuroinflammation induced by Aβ in microglia and discover therapies to alleviate its harmful consequences. This study evaluated the toxicity detection of primary microglia generated by Aβ42 ADDL. identification of inflammatory markers, measurement of ROS, and assessment of mitochondrial energy metabolism, mitochondrial membrane potential damage and mitochondrial ROS to evaluate the reparative properties of natural small molecule compounds Gallic acid and Loganic acid on primary mouse microglia. The findings indicated that Gallic acid and Loganic acid exhibited diverse reparative effects on impaired microglia. Thus, it can be provisionally predicted that Aβ42 ADDL affects microglia and promotes modifications in the NF-кB signaling pathway. Gallic acid and Loganic acid were expected to initially restore the NF-кB signaling pathway, leading to a reduction in M1-microglia and an elevation in M2-microglia, thereby decreasing various inflammatory factors and increasing anti-inflammatory factors. The mitochondrial metabolism, mitochondrial membrane potential, and mitochondrial ROS of primary microglia were restored, leading to a reduction in neuroinflammation.
Collapse
Affiliation(s)
- Yan-Dong Ma
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China
| | - Hang Liu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China
| | - Qian Chen
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China
| | - Yi Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chao-Ren Yan
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China
| | - Yan-Song Li
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China
| | - Yi-Xuan Wang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China
| | - Yu-Ting Dai
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China
| | - Yang-Hua Jiang
- Laboratory Medical Center of the First People's Hospital of Chenzhou City, Chenzhou, Hunan province, 423000, China.
| | - Jing-Ming Shi
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China.
| |
Collapse
|
30
|
Wang W, Wu X, Zhang Q, Zhang T, Jiang L, Qu L, Lu F, Liu F. Tetrahydrofolic acid accelerates amyloid fibrillization, decreases cytotoxic oligomers and suppresses their toxicity. Int J Biol Macromol 2025; 290:139041. [PMID: 39708879 DOI: 10.1016/j.ijbiomac.2024.139041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Soluble cytotoxic oligomers produced during the fibrillation of both α-synuclein (αS) and amyloid-β protein (Aβ) are key pathogenic factors in Parkinson's disease (PD) and Alzheimer's disease (AD). Reducing toxic oligomers by regulating the aggregation process of αS and Aβ is an important strategy for the treatment of PD and AD. Herein, tetrahydrofolic acid (THF) is found to accelerate amyloid fibrillization, decreases cytotoxic oligomers and suppresses their toxicity. Thioflavin T and atomic force microscopy assays results showed that THF was able to accelerate the formation of dense fibrils from αS and Aβ in a dose-dependent manner. Strikingly, this was accompanied by a reduction in the abundance of toxic oligomers, and these results were confirmed by DB. Meanwhile, MTT and FDA/PI assays demonstrated that THF-induced accelerated fibril formation was accompanied by a reduction in αS- and Aβ-induced cytotoxicity. In addition, the lifespan of genetically modified αS and Aβ expressing C. elegans was extended by feeding THF, although plaque deposits of αS and Aβ increased. These findings suggest that THF enhances the conversion of αS and Aβ oligomers into less toxic fibrils and is a potential therapeutic agent for PD and AD.
Collapse
Affiliation(s)
- Wenqian Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xinming Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Qingfu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tong Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Luying Jiang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lili Qu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
31
|
Kumar S, Ramos E, Hidalgo A, Rodarte D, Sharma B, Torres MM, Devara D, Gadad SS. Integrated Multi-Omics Analyses of Synaptosomes Revealed Synapse-Centered Novel Targets in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.631584. [PMID: 39868328 PMCID: PMC11761606 DOI: 10.1101/2025.01.09.631584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Synapse dysfunction is an early event in Alzheimer's disease (AD) caused by various factors such as Amyloid beta, p-tau, inflammation, and aging. However, the exact molecular mechanism of synapse dysfunction in AD is largely unknown. To understand this, we comprehensively analyzed the synaptosome fraction in postmortem brain samples from AD patients and cognitively normal individuals. We conducted high-throughput transcriptomic analyses to identify changes in microRNA (miRNA) and mRNA levels in synaptosomes extracted from the brains of both unaffected individuals and those with Alzheimer's disease (AD). Additionally, we performed mass spectrometry analysis of synaptosomal proteins in the same sample group. These analyses revealed significant differences in the levels of miRNAs, mRNAs, and proteins between the groups. To further understand the pathways or molecules involved, we used an integrated omics approach and studied the molecular interactions of deregulated synapse miRNAs, mRNAs, and proteins in the samples from individuals with AD and the control group, which demonstrated the impact of deregulated miRNAs on their target mRNAs and proteins. Furthermore, the DIABLO analysis highlighted complex relationships between mRNAs, miRNAs, and proteins that could be key in understanding the pathophysiology of AD. Our study identified synapse-centered novel candidates that could be critical in restoring synapse dysfunction in AD.
Collapse
|
32
|
Ghorpade KB, Agrawal S, Havelikar U. WITHDRAWN: Biomarker Detection and Therapy of Parkinson's and Alzheimer's disease using upconversion based approach: A Comprehensive Review. Ageing Res Rev 2025:102656. [PMID: 39788432 DOI: 10.1016/j.arr.2025.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
This article has been withdrawn at the request of the author(s). The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Kabirdas B Ghorpade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002 (Uttar Pradesh), India.
| | - Shivanshu Agrawal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002 (Uttar Pradesh), India
| | - Ujwal Havelikar
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India
| |
Collapse
|
33
|
Meur S, Karati D. Fyn Kinase in Alzheimer's Disease: Unraveling Molecular Mechanisms and Therapeutic Implications. Mol Neurobiol 2025; 62:643-660. [PMID: 38890236 DOI: 10.1007/s12035-024-04286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Alzheimer's disease, characterized by the accumulation of abnormal protein aggregates and neuronal damage in the brain, leads to a gradual decline in cognitive function and memory. As a complex neurodegenerative disorder, it involves disruptions in various biochemical pathways and neurotransmitter systems, contributing to the progressive loss of neurons and synaptic connections. The complexity of Alzheimer's signaling pathways complicates treatment, presenting a formidable challenge in the quest for effective therapeutic interventions. A member of the Src family of kinases (SFKs), Fyn, is a type of non-receptor tyrosine kinase that has been linked to multiple essential CNS processes, such as myelination and synaptic transmission. Fyn is an appealing target for AD treatments because it is uniquely linked to the two major pathologies in AD by its interaction with tau, in addition to being activated by amyloid-beta (Aβ) through PrPC. Fyn mediates neurotoxicity and synaptic impairments caused by Aβ and is involved in regulating the process of Aβ synthesis.Additionally, the tau protein's tyrosine phosphorylation is induced by Fyn. Fyn is also a challenging target because of its widespread body expression and strong homology with other kinases of the Src family, which could cause unintentional off-target effects. This review emphasizes signaling pathways mediated by Fyn that govern neuronal development and plasticity while also summarizing the most noteworthy recent research relevant to Fyn kinase's function in the brain. Additionally, the therapeutic inhibition of Fyn kinase has been discussed, with a focus on the Fyn kinase inhibitors that are in clinical trials, which presents a fascinating opportunity for targeting Fyn kinase in the creation of possible therapeutic approaches for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Shreyasi Meur
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
34
|
Zhang ZY, Li ZJ, Tang YH, Hou TT, Xu L, Wang ZH, Qin TY, Wang YL, Zhu MQ. Tailoring near-infrared amyloid-β probes with high-affinity and low background based on CN and amphipathic regulatory strategies and in vivo imaging of AD mice. Talanta 2025; 281:126858. [PMID: 39260248 DOI: 10.1016/j.talanta.2024.126858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Amyloid-β (Aβ) species (Aβ fibrils and Aβ plaques), as one of the typical pathological markers of Alzheimer's disease (AD), plays a crucial role in AD diagnosis. Currently, some near-infrared I (NIR I) Aβ probes have been reported in AD diagnosis. However, they still face challenges such as strong background interference and the lack of effective probe design. In this study, we propose molecular design strategy that incorporates CN group and amphiphilic modulation to synthesize a series of amphiphilic NIR I Aβ probes, surpassing the commercial probe ThT and ThS. Theoretical calculations indicate that these probes exhibit stronger interaction with amino acid residues in the cavities of Aβ. Notably, the probes containing CN group display the ability of binding two distinct sites of Aβ, which dramatically enhanced the affinity to Aβ species. Furthermore, these probes exhibit minimal fluorescence in aqueous solution and offer ultra-high signal-to-noise ratio (SNR) for in vitro labeling, even in wash-free samples. Finally, the optimal probe DM-V2CN-PYC3 was utilized for in vivo imaging of AD mice, demonstrating its rapid penetration through the blood-brain barrier and labelling to Aβ species. Moreover, it enabled long-term monitoring for a duration of 120 min. These results highlight the enhanced affinity and superior performance of the designed NIR I Aβ probe for AD diagnosis. The molecular design strategy of CN and amphiphilic modulation presents a promising avenue for the development Aβ probes with low background in vivo/in vitro imaging for Aβ species.
Collapse
Affiliation(s)
- Zhen-Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Ze-Jun Li
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Ying-Hao Tang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Ting-Ting Hou
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Liang Xu
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Zhao-Hui Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Tian-Yi Qin
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China.
| | - Ya-Long Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China.
| | - Ming-Qiang Zhu
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China; Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
35
|
Sinha S, Wal P, Goudanavar P, Divya S, Kimothi V, Jyothi D, Sharma MC, Wal A. Research on Alzheimer's Disease (AD) Involving the Use of In vivo and In vitro Models and Mechanisms. Cent Nerv Syst Agents Med Chem 2025; 25:123-142. [PMID: 38803173 DOI: 10.2174/0118715249293642240522054929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the progressive formation of extracellular amyloid plaques, intracellular neurofibrillary tangles, inflammation, and impaired antioxidant systems. Early detection and intervention are vital for managing AD effectively. OBJECTIVES This review scrutinizes both in-vivo and in-vitro screening models employed in Alzheimer's disease research. in-vivo models, including transgenic mice expressing AD-related mutations, offer profound insights into disease progression and potential therapeutic targets. A thorough understanding of these models and mechanisms will facilitate the development of novel therapies and interventions for Alzheimer's disease. This review aims to provide an overview of the current experimental models in AD research, assess their strengths and weaknesses as model systems, and underscore the future prospects of experimental AD modeling. METHODS We conducted a systematic literature search across multiple databases, such as Pub- Med, Bentham Science, Elsevier, Springer Nature, Wiley, and Research Gate. The search strategy incorporated pertinent keywords related to Alzheimer's disease, in-vivo models, in-vitro models, and screening mechanisms. Inclusion criteria were established to identify studies focused on in-vivo and in-vitro screening models and their mechanisms in Alzheimer's disease research. Studies not meeting the predefined criteria were excluded from the review. RESULTS A well-structured experimental animal model can yield significant insights into the neurobiology of AD, enhancing our comprehension of its pathogenesis and the potential for cutting-edge therapeutic strategies. Given the limited efficacy of current AD medications, there is a pressing need for the development of experimental models that can mimic the disease, particularly in pre-symptomatic stages, to investigate prevention and treatment approaches. To address this requirement, numerous experimental models replicating human AD pathology have been established, serving as invaluable tools for assessing potential treatments. CONCLUSION In summary, this comprehensive review underscores the pivotal role of in-vivo and in-vitro screening models in advancing our understanding of Alzheimer's disease. These models offer invaluable insights into disease progression, pathological mechanisms, and potential therapeutic targets. By conducting a rigorous investigation and evaluation of these models and mechanisms, effective screening and treatment methods for Alzheimer's disease can be devised. The review also outlines future research directions and areas for enhancing AD screening models.
Collapse
Affiliation(s)
- Sweta Sinha
- LCIT School of Pharmacy, Bilaspur, Chattisgarh, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy) NH19 Kanpur Agra Highway, Bhaunti Kanpur, India
| | - Prakash Goudanavar
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University B.G.Nagara, Karnataka, India
| | | | | | - Divya Jyothi
- NGSM Institute of Pharmaceutical Sciences, Nitte University, Paneer Deralakatte, Mangaluru, 575018, India
| | | | - Ankita Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy) NH19 Kanpur Agra Highway, Bhaunti Kanpur, India
| |
Collapse
|
36
|
Xie Y, Meng X, Li T, Zhang H, Zheng Y, Kim S, Zhang C, Yu X, Wang H. Plasma amyloid-β oligomerization tendency as a potential predictor for conversion from mild cognitive impairment to Alzheimer's dementia: Findings from the GMCII cohort. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2025; 17:e70064. [PMID: 39996033 PMCID: PMC11848609 DOI: 10.1002/dad2.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/26/2024] [Accepted: 11/30/2024] [Indexed: 02/26/2025]
Abstract
INTRODUCTION This study aimed to explore the association between plasma amyloid-β oligomerization tendency (OAβ) and cognitive performance in Alzheimer's disease (AD) and determine its predictive value for outcomes of mild cognitive impairment (MCI). METHODS Plasma from 727 subjects (286 AD, 260 MCI, and 181 controls) in a case registry was analyzed using the multimer detection system (MDS) to measure plasma OAβ. RESULTS Elevated plasma OAβ was strongly correlated with multidomain cognitive performance in patients with MCI and AD. Patients with MCI with high baseline plasma OAβ demonstrated a higher risk of progressing to dementia (hazard ratio = 1.083, 95% confidence interval [CI] 1.032-1.137). Baseline plasma OAβ effectively predicted MCI-dementia conversion (area under the curve [AUC] = 0.824, 95% CI 0.752-0.897). DISCUSSION The real-world findings underscore the clinical relevance of plasma OAβ as a potential predictor for the conversion from mild cognitive impairment (MCI) to dementia. Highlights We recruit study participants of Alzheimer's dementia (AD), mild cognitive impairment (MCI), and cognitively normal controls in a case registry.We use the multimer detection system (MDS) to measure plasma amyloid-β oligomerization tendency (OAβ).We observe that elevated plasma OAβ strongly correlates with multidomain cognitive performance in patients with MCI and AD.MCI individuals with high baseline plasma OAβ demonstrate a higher risk of progressing to dementia.The real-world findings underscore the clinical relevance of plasma Oaβ as a potential predictor for the conversion from MCI to dementia.
Collapse
Affiliation(s)
- Yuhan Xie
- Dementia Care & Research CenterPeking University Institute of Mental Health (Sixth Hospital)Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of DementiaBeijingChina
- National Clinical Research Center for Mental DisordersKey Laboratory for Mental HealthNational Health CommissionBeijingChina
| | - Xue Meng
- Dementia Care & Research CenterPeking University Institute of Mental Health (Sixth Hospital)Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of DementiaBeijingChina
- National Clinical Research Center for Mental DisordersKey Laboratory for Mental HealthNational Health CommissionBeijingChina
- Beijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Tao Li
- Dementia Care & Research CenterPeking University Institute of Mental Health (Sixth Hospital)Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of DementiaBeijingChina
- National Clinical Research Center for Mental DisordersKey Laboratory for Mental HealthNational Health CommissionBeijingChina
| | - Haifeng Zhang
- Dementia Care & Research CenterPeking University Institute of Mental Health (Sixth Hospital)Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of DementiaBeijingChina
- National Clinical Research Center for Mental DisordersKey Laboratory for Mental HealthNational Health CommissionBeijingChina
| | - Yaonan Zheng
- Dementia Care & Research CenterPeking University Institute of Mental Health (Sixth Hospital)Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of DementiaBeijingChina
- National Clinical Research Center for Mental DisordersKey Laboratory for Mental HealthNational Health CommissionBeijingChina
| | - SangYun Kim
- Department of NeurologySeoul National University Bundang Hospital and Seoul National University College of MedicineSeongnamSouth Korea
| | - Chen Zhang
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Xin Yu
- Dementia Care & Research CenterPeking University Institute of Mental Health (Sixth Hospital)Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of DementiaBeijingChina
- National Clinical Research Center for Mental DisordersKey Laboratory for Mental HealthNational Health CommissionBeijingChina
| | - Huali Wang
- Dementia Care & Research CenterPeking University Institute of Mental Health (Sixth Hospital)Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of DementiaBeijingChina
- National Clinical Research Center for Mental DisordersKey Laboratory for Mental HealthNational Health CommissionBeijingChina
| |
Collapse
|
37
|
Lu MN, Wang D, Ye CJ, Yan GJ, Song JF, Shi XY, Li SS, Liu LN, Zhang HX, Dong XH, Hu T, Wang XY, Xiyang YB. Navβ2 Intracellular Fragments Contribute to Aβ1-42-Induced Cognitive Impairment and Synaptic Deficit Through Transcriptional Suppression of BDNF. Mol Neurobiol 2025; 62:1165-1183. [PMID: 38965172 DOI: 10.1007/s12035-024-04317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
A pathological hallmark of Alzheimer's disease (AD) is the region-specific accumulation of the amyloid-beta protein (Aβ), which triggers aberrant neuronal excitability, synaptic impairment, and progressive cognitive decline. Previous works have demonstrated that Aβ pathology induced aberrant elevation in the levels and excessive enzymatic hydrolysis of voltage-gated sodium channel type 2 beta subunit (Navβ2) in the brain of AD models, accompanied by alteration in excitability of hippocampal neurons, synaptic deficits, and subsequently, cognitive dysfunction. However, the mechanism is unclear. In this research, by employing cell models treated with toxic Aβ1-42 and AD mice, the possible effects and potential mechanisms induced by Navβ2. The results reveal that Aβ1-42 induces remarkable increases in Navβ2 intracellular domain (Navβ2-ICD) and decreases in both BDNF exons and protein levels, as well as phosphorylated tropomyosin-related kinase B (pTrkB) expression in cells and mice, coupled with cognitive impairments, synaptic deficits, and aberrant neuronal excitability. Administration with exogenous Navβ2-ICD further enhances these effects induced by Aβ1-42, while interfering the generation of Navβ2-ICD and/or complementing BDNF neutralize the Navβ2-ICD-conducted effects. Luciferase reporter assay verifies that Navβ2-ICD regulates BDNF transcription and expression by targeting its promoter. Collectively, our findings partially elucidate that abnormal enzymatic hydrolysis of Navβ2 induced by Aβ1-42-associated AD pathology leads to intracellular Navβ2-ICD overload, which may responsible to abnormal neuronal excitability, synaptic deficit, and cognition dysfunction, through its transcriptional suppression on BDNF. Therefore, this work supplies novel evidences that Navβ2 plays crucial roles in the occurrence and progression of cognitive impairment of AD by transcriptional regulatory activity of its cleaved ICD.
Collapse
Affiliation(s)
- Min-Nan Lu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Dan Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Chen-Jun Ye
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Guo-Ji Yan
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jing-Feng Song
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xin-Ying Shi
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Shan-Shan Li
- Experimental Teaching Center, Basic Medical College, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Li-Na Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Hui-Xiang Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xiao-Han Dong
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Tao Hu
- Department of Laboratory Medicine, The Third People's Hospital of Yunnan Province, Kunming, 650000, Yunnan, China
| | - Xu-Yang Wang
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yan-Bin Xiyang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
38
|
Zimbone S, Giuffrida ML, Sciacca MFM, Carrotta R, Librizzi F, Milardi D, Grasso G. A VEGF Fragment Encompassing Residues 10-30 Inhibits Aβ1-42 Amyloid Aggregation and Exhibits Neuroprotective Properties Matching the Full-Length Protein. ACS Chem Neurosci 2024; 15:4580-4590. [PMID: 39587417 DOI: 10.1021/acschemneuro.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
The intricate relationship between brain vascular diseases and neurodegeneration has garnered increased attention in the scientific community. With an aging population, the incidence of these two conditions is likely to increase, making it imperative to understand the underlying common molecular mechanisms and unveiling novel avenues for therapy. Prompted by the observation that Aβ peptide aggregation has been implicated in the development of cerebral amyloid angiopathy (CAA) and that elevated concentrations of vascular endothelial growth factor (VEGF) in the cerebrospinal fluid (CSF) have been correlated with less cognitive decline in Alzheimer's disease (AD), we demonstrate that a small peptide (Pep9) encompassing the 10-30 sequence of VEGF exhibits significant ability to inhibit the aggregation of the Aβ1-42 peptide, as well as the formation of toxic oligomers. AFM studies confirmed this inhibitory capacity, which is also paralleled by a significant reduction of the random coil to a beta-sheet conformational transition. Further studies have shown that Pep9 protects differentiated neuroblastoma SH-SY5Y cells from Aβ toxicity, being even more effective than full-length protein in preventing amyloid-induced neuronal death. The use of a control peptide wherein two histidines are substituted with glycines (H11G and H12G) suggests a close relationship between the peptide amino acid sequence and its antiaggregating/neuroprotective activity. Overall, this study provides insight into the role of VEGF in AD and suggests that specific VEGF fragments could be beneficial in the treatment of this condition.
Collapse
Affiliation(s)
- Stefania Zimbone
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania 95126, Italy
| | - M Laura Giuffrida
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania 95126, Italy
| | - Michele F M Sciacca
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania 95126, Italy
| | - Rita Carrotta
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Palermo 90146, Italy
| | - Fabio Librizzi
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Palermo 90146, Italy
| | - Danilo Milardi
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania 95126, Italy
| | - Giulia Grasso
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania 95126, Italy
| |
Collapse
|
39
|
Beeg M, Rocutto B, Battocchio E, Dacomo L, Corbelli A, Fiordaliso F, Balducci C, Gobbi M. The Detection of Toxic Amyloid-β Fibril Fragments Through a Surface Plasmon Resonance Immunoassay. Int J Mol Sci 2024; 25:13020. [PMID: 39684731 DOI: 10.3390/ijms252313020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Amyloid-β1-42 (Aβ42) forms highly stable and insoluble fibrillar structures, representing the principal components of the amyloid plaques present in the brain of Alzheimer's disease (AD) patients. The involvement of Aβ42 in AD-associated neurodegeneration has also been demonstrated, in particular for smaller and soluble aggregates (oligomers). Based on these findings and on genetic evidence, Aβ42 aggregates are considered key players in the pathogenesis of AD and targets for novel therapies. Different approaches are currently used to detect the various aggregation states of Aβ peptide, including spectrophotometric methods, imaging techniques, and immunoassays, but all of these have specific limitations. To overcome them, we have recently exploited the peculiar properties of surface plasmon resonance (SPR) to develop an immunoassay capable of selectively detecting monomers and oligomers, discriminating them also from bigger fibrils in a mixture of different aggregated species, without any manipulation of the solution. In the present study, we extended these previous studies, showing that the SPR-based immunoassay makes it possible to unveil the fibril fragmentation induced mechanically, a result difficult to be conveniently and reliably assessed with other approaches. Moreover, we show that SPR-recognized fibril fragments are more toxic than the larger fibrillar structures, suggesting the relevance of the proposed SPR-based immunoassay.
Collapse
Affiliation(s)
- Marten Beeg
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Beatrice Rocutto
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Elisabetta Battocchio
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Letizia Dacomo
- Laboratory of Biology of Neurodegenerative Disorders, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Alessandro Corbelli
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Fabio Fiordaliso
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Claudia Balducci
- Laboratory of Biology of Neurodegenerative Disorders, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Marco Gobbi
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| |
Collapse
|
40
|
Son MK, Im D, Hyun DG, Kim S, Chun SY, Choi JM, Choi TS, Cho M, Kwak K, Kim HI. Accelerated Amyloid Aggregation Dynamics of Intrinsically Disordered Proteins in Heavy Water. J Phys Chem Lett 2024; 15:11823-11829. [PMID: 39561991 DOI: 10.1021/acs.jpclett.4c02764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
We explored the influence of D2O on the fibrillation kinetics and structural dynamics of amyloid intrinsically disordered proteins (IDPs), including α-synuclein, amyloid-β 1-42, and K18. Our findings revealed that fibrillation of IDPs was accelerated in D2O compared to that in H2O, exhibiting faster kinetics in contrast to the structured protein, insulin. Structural investigations using electrospray ionization ion mobility mass spectrometry and small-angle X-ray scattering combined with molecular dynamics simulations demonstrated that IDPs did not show significant structural changes that could influence accelerated fibrillation in D2O. Umbrella sampling of protein protofibrils verified that an increased level of hydrogen bonding of D2O and enhanced hydrophobic interactions stabilized β-sheet structured fibrils in D2O. These findings indicate that stabilizing β-sheet fibrils and a more hydrophobic microenvironment in D2O result in enhanced and faster fibrillation of IDPs. The study highlights the importance of considering D2O's differential impact on protein interactions when conducting structural and kinetic analyses, particularly for native peptides and proteins.
Collapse
Affiliation(s)
- Myung Kook Son
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Dongjoon Im
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Da Gyeong Hyun
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Soohyeong Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - So Yeon Chun
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
| | - Jeong-Mo Choi
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
- Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Tae Su Choi
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Minhaeng Cho
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
| | - Kyungwon Kwak
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
41
|
Tang X, Schindler R, Lucente J, Oloumi A, Tena J, Harvey D, Lebrilla C, Zivkovic A, Jin LW, Maezawa I. Unique N-glycosylation signatures in Aβ oligomer-and lipopolysaccharide-activated human iPSC-derived microglia. RESEARCH SQUARE 2024:rs.3.rs-5308977. [PMID: 39606433 PMCID: PMC11601871 DOI: 10.21203/rs.3.rs-5308977/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Microglia are the immune cells in the central nervous system (CNS) and become pro-inflammatory/activated in Alzheimer's disease (AD). Cell surface glycosylation plays an important role in immune cells; however, the N-glycosylation and glycosphingolipid (GSL) signatures of activated microglia are poorly understood. Here, we study comprehensive combined transcriptomic and glycomic profiles using human induced pluripotent stem cells-derived microglia (hiMG). Distinct changes in N-glycosylation patterns in amyloid-β oligomer (AβO) and LPS-treated hiMG were observed. In AβO-treated cells, the relative abundance of bisecting N-acetylglucosamine (GlcNAc) N-glycans decreased, corresponding with a downregulation of MGAT3. The sialylation of N-glycans increased in response to AβO, accompanied by an upregulation of genes involved in N-glycan sialylation (ST3GAL4 and 6). Unlike AβO-induced hiMG, LPS-induced hiMG exhibited a decreased abundance of complex-type N-glycans, aligned with downregulation of mannosidase genes (MAN1A1, MAN2A2, and MAN1C1) and upregulation of ER degradation related-mannosidases (EDEM1-3). Fucosylation increased in LPS-induced hiMG, aligned with upregulated fucosyltransferase 4 (FUT4) and downregulated alpha-L-fucosidase 1 (FUCA1) gene expression, while sialofucosylation decreased, aligned with upregulated neuraminidase 4 (NEU4). Inhibition of sialyation and fucosylation in AβO- and LPS-induced hiMG alleviated pro-inflammatory responses. However, the GSL profile did not exhibit significant changes in response to AβO or LPS activation. AβO- and LPS- specific glycosylation changes could contribute to impaired microglia function, highlighting glycosylation pathways as potential therapeutic targets for AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lee-Way Jin
- University of California Davis Medical Center
| | | |
Collapse
|
42
|
Özdemir AY, Hofbauerová K, Kopecký V, Novotný J, Rudajev V. Different amyloid β42 preparations induce different cell death pathways in the model of SH-SY5Y neuroblastoma cells. Cell Mol Biol Lett 2024; 29:143. [PMID: 39551742 PMCID: PMC11572474 DOI: 10.1186/s11658-024-00657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Amyloid β42 (Aβ42) plays a decisive role in the pathology of Alzheimer's disease. The Aβ42 peptide can aggregate into various supramolecular structures, with oligomers being the most toxic form. However, different Aβ species that cause different effects have been described. Many cell death pathways can be activated in connection with Aβ action, including apoptosis, necroptosis, pyroptosis, oxidative stress, ferroptosis, alterations in mitophagy, autophagy, and endo/lysosomal functions. In this study, we used a model of differentiated SH-SY5Y cells and applied two different Aβ42 preparations for 2 and 4 days. Although we found no difference in the shape and size of Aβ species prepared by two different methods (NaOH or NH4OH for Aβ solubilization), we observed strong differences in their effects. Treatment of cells with NaOH-Aβ42 mainly resulted in damage of mitochondrial function and increased production of reactive oxygen species, whereas application of NH4OH-Aβ42 induced necroptosis and first steps of apoptosis, but also caused an increase in protective Hsp27. Moreover, the two Aβ42 preparations differed in the mechanism of interaction with the cells, with the effect of NaOH-Aβ42 being dependent on monosialotetrahexosylganglioside (GM1) content, whereas the effect of NH4OH-Aβ42 was independent of GM1. This suggests that, although both preparations were similar in size, minor differences in secondary/tertiary structure are likely to strongly influence the resulting processes. Our work reveals, at least in part, one of the possible causes of the inconsistency in the data observed in different studies on Aβ-toxicity pathways.
Collapse
Affiliation(s)
- Alp Yigit Özdemir
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Kateřina Hofbauerová
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Vladimír Kopecký
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Vladimír Rudajev
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic.
| |
Collapse
|
43
|
Lowe VJ, Mester CT, Lundt ES, Lee J, Ghatamaneni S, Algeciras‐Schimnich A, Campbell MR, Graff‐Radford J, Nguyen A, Min H, Senjem ML, Machulda MM, Schwarz CG, Dickson DW, Murray ME, Kandimalla KK, Kantarci K, Boeve B, Vemuri P, Jones DT, Knopman D, Jack CR, Petersen RC, Mielke MM. Amyloid PET detects the deposition of brain Aβ earlier than CSF fluid biomarkers. Alzheimers Dement 2024; 20:8097-8112. [PMID: 39392211 PMCID: PMC12060152 DOI: 10.1002/alz.14317] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Understanding the relationship between amyloid beta (Aβ) positron emission tomography (PET) and Aβ cerebrospinal fluid (CSF) biomarkers will define their potential utility in Aβ treatment. Few population-based or neuropathologic comparisons have been reported. METHODS Participants 50+ years with Aβ PET and Aβ CSF biomarkers (phosphorylated tau [p-tau]181/Aβ42, n = 505, and Aβ42/40, n = 54) were included from the Mayo Clinic Study on Aging. From these participants, an autopsy subgroup was identified (n = 47). The relationships of Aβ PET and Aβ CSF biomarkers were assessed cross-sectionally in all participants and longitudinally in autopsy data. RESULTS Cross-sectionally, more participants were Aβ PET+ versus Aβ CSF- than Aβ PET- versus Aβ CSF+ with an incremental effect when using Aβ PET regions selected for early Aβ deposition. The sensitivity for the first detection of Thal phase ≥ 1 in longitudinal data was higher for Aβ PET (89%) than p-tau181/Aβ42 (64%). DISCUSSION Aβ PET can detect earlier cortical Aβ deposition than Aβ CSF biomarkers. Aβ PET+ versus Aβ CSF- findings are several-fold greater using regional Aβ PET analyses and in peri-threshold-standardized uptake value ratio participants. HIGHLIGHTS Amyloid beta (Aβ) positron emission tomography (PET) has greater sensitivity for Aβ deposition than Aβ cerebrospinal fluid (CSF) in early Aβ development. A population-based sample of participants (n = 505) with PET and CSF tests was used. Cortical regions showing early Aβ on Aβ PET were also used in these analyses. Neuropathology was used to validate detection of Aβ by Aβ PET and Aβ CSF biomarkers.
Collapse
Affiliation(s)
- Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | - Carly T. Mester
- Departments of Radiology and Health Sciences ResearchMayo ClinicRochesterMinnesotaUSA
| | - Emily S. Lundt
- Departments of Radiology and Health Sciences ResearchMayo ClinicRochesterMinnesotaUSA
| | - Jeyeon Lee
- Department of Biomedical EngineeringCollege of MedicineHanyang UniversitySeoulRepublic of Korea
| | | | | | | | | | - Aivi Nguyen
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Hoon‐Ki Min
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | - Matthew L. Senjem
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
- Department of Information TechnologyMayo ClinicRochesterMinnesotaUSA
| | | | | | | | | | - Karunya K. Kandimalla
- Department of Pharmaceutics and Brain Barriers Research CenterUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Bradley Boeve
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | | | | | - David Knopman
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | | | | | - Michelle M. Mielke
- Department of Epidemiology and Prevention at Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
44
|
Caneus J, Autar K, Akanda N, Grillo M, Long CJ, Jackson M, Lindquist S, Guo X, Morgan D, Hickman JJ. Validation of a functional human AD model with four AD therapeutics utilizing patterned ipsc-derived cortical neurons integrated with microelectrode arrays. Sci Rep 2024; 14:24875. [PMID: 39438515 PMCID: PMC11496884 DOI: 10.1038/s41598-024-73869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Preclinical methods are needed for screening potential Alzheimer's disease (AD) therapeutics that recapitulate phenotypes found in the Mild Cognitive Impairment (MCI) stage or even before this stage of the disease. This would require a phenotypic system that reproduces cognitive deficits without significant neuronal cell death to mimic the clinical manifestations of AD during these stages. Long-term potentiation (LTP), which is a correlate of learning and memory, was induced in mature human iPSC-derived cortical neurons cultured on microelectrode arrays utilizing circuit patterns connecting two adjacent electrodes. We demonstrated an LTP system that modeled the MCI and pre-MCI stages of Alzheimer's and validated this functional system utilizing four AD therapeutics, which was also verified utilizing patch-clamp electrophysiology. LTP was induced by tetanic electrical stimulation, and LTP maintenance was significantly reduced in the presence of Amyloid-Beta 42 (Aβ42) oligomers compared to the controls, however, co-treatment with AD therapeutics (Donepezil, Memantine, Rolipram and Saracatinib) corrected Aβ42-induced LTP impairment. The results illustrate the utility of the system as a validated platform to model MCI AD pathology, and potentially for the pre-MCI phase before significant neuronal death. This system also has the potential to become an ideal platform for high-content therapeutic screening for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Julbert Caneus
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA.
| | - Kaveena Autar
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Nesar Akanda
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Marcella Grillo
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | | | - Max Jackson
- Hesperos Inc., 12501 Research Pkwy #100, Orlando, FL, USA
| | | | - Xiufang Guo
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Dave Morgan
- Department of Translational Neuroscience, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
- Hesperos Inc., 12501 Research Pkwy #100, Orlando, FL, USA
| |
Collapse
|
45
|
Li H, Zhao Z, Fassini A, Lee HK, Green RJ, Gomperts SN. Impaired hippocampal functions underlying memory encoding and consolidation precede robust Aβ deposition in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595168. [PMID: 38853978 PMCID: PMC11160633 DOI: 10.1101/2024.05.26.595168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Current therapeutic strategies for Alzheimer's disease (AD) target amyloid-beta (Aβ) fibrils and high molecular weight protofibrils associated with plaques, but molecular cascades associated with AD may drive neural systems failure before Aβ plaque deposition in AD. Employing hippocampal electrophysiological recordings and dynamic calcium imaging across the sleep-wake cycle in the APP/PS1 mouse model of AD before Aβ plaques accumulated, we detected marked impairments of hippocampal systems function: In a spatial behavioral task, but not REM sleep, phase-amplitude coupling (PAC) of the hippocampal theta and gamma oscillations was impaired and place cell calcium fluctuations were hyper-synchronized with the theta oscillation. In subsequent slow wave sleep (SWS), place cell reactivation was reduced. These degraded neural functions underlying memory encoding and consolidation support targeting pathological processes of the pre-plaque phase of AD to treat and prevent hippocampal impairments.
Collapse
Affiliation(s)
- Hanyan Li
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Zhuoyang Zhao
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Aline Fassini
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Han K. Lee
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Reese J. Green
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen N. Gomperts
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Sandoval KE, Witt KA. Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting. Pharmacol Rev 2024; 76:1291-1325. [PMID: 39013601 PMCID: PMC11549939 DOI: 10.1124/pharmrev.124.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications. SIGNIFICANCE STATEMENT: Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| |
Collapse
|
47
|
Gonçalves PB, Sodero ACR, Cordeiro Y. Natural products targeting amyloid-β oligomer neurotoxicity in Alzheimer's disease. Eur J Med Chem 2024; 276:116684. [PMID: 39032401 DOI: 10.1016/j.ejmech.2024.116684] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) constitutes a major global health issue, characterized by progressive neurodegeneration and cognitive impairment, for which no curative treatment is currently available. Current therapeutic approaches are focused on symptom management, highlighting the critical need for disease-modifying therapy. The hallmark pathology of AD involves the aggregation and accumulation of amyloid-β (Aβ) peptides in the brain. Consequently, drug discovery efforts in recent decades have centered on the Aβ aggregation cascade, which includes the transition of monomeric Aβ peptides into toxic oligomers and, ultimately, mature fibrils. Historically, anti-Aβ strategies focused on the clearance of amyloid fibrils using monoclonal antibodies. However, substantial evidence has highlighted the critical role of Aβ oligomers (AβOs) in AD pathogenesis. Soluble AβOs are now recognized as more toxic than fibrils, directly contributing to synaptic impairment, neuronal damage, and the onset of AD. Targeting AβOs has emerged as a promising therapeutic approach to mitigate cognitive decline in AD. Natural products (NPs) have demonstrated promise against AβO neurotoxicity through various mechanisms, including preventing AβO formation, enhancing clearance mechanisms, or converting AβOs into non-toxic species. Understanding the mechanisms by which anti-AβO NPs operate is useful for developing disease-modifying treatments for AD. In this review, we explore the role of NPs in mitigating AβO neurotoxicity for AD drug discovery, summarizing key evidence from biophysical methods, cellular assays, and animal models. By discussing how NPs modulate AβO neurotoxicity across various experimental systems, we aim to provide valuable insights into novel therapeutic strategies targeting AβOs in AD.
Collapse
Affiliation(s)
| | | | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-900, Brazil
| |
Collapse
|
48
|
Tang Y, Park HJ, Li S, Fitzgerald MC. Analysis of Brain Protein Stability Changes in a Mouse Model of Alzheimer's Disease. J Proteome Res 2024; 23:4443-4456. [PMID: 39292827 DOI: 10.1021/acs.jproteome.4c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The stability of proteins from rates of oxidation (SPROX), thermal proteome profiling (TPP), and limited proteolysis (LiP) techniques were used to profile the stability of ∼2500 proteins in hippocampus tissue cell lysates from 2- and 8-months-old wild-type (C57BL/6J; n = 7) and transgenic (5XFAD; n = 7) mice with five Alzheimer's disease (AD)-linked mutations. Approximately 200-500 protein hits with AD-related stability changes were detected by each technique at each age point. The hit overlap from technique to technique was low, and all of the techniques generated protein hits that were more numerous and largely different from those identified in protein expression level analyses, which were also performed here. The hit proteins identified by each technique were enriched in a number of the same pathways and biological processes, many with known connections to AD. The protein stability hits included 25 high-value conformation biomarkers with AD-related stability changes detected using at least 2 techniques at both age points. Also discovered were subunit- and age-specific AD-related stability changes in the proteasome, which had reduced function at both age points. The different folding stability profiles of the proteasome at the two age points are consistent with a different mechanism for proteasome dysfunction at the early and late stages of AD.
Collapse
Affiliation(s)
- Yun Tang
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| | - Hye-Jin Park
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| | - Shengyu Li
- Department of Computational Biology & Bioinformatics, Duke University, Durham, North Carolina 27708, United States
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| |
Collapse
|
49
|
Laslo A, Laslo L, Arbănași EM, Ujlaki-Nagi AA, Chinezu L, Ivănescu AD, Arbănași EM, Cărare RO, Cordoș BA, Popa IA, Brînzaniuc K. Pathways to Alzheimer's Disease: The Intersecting Roles of Clusterin and Apolipoprotein E in Amyloid-β Regulation and Neuronal Health. PATHOPHYSIOLOGY 2024; 31:545-558. [PMID: 39449522 PMCID: PMC11503414 DOI: 10.3390/pathophysiology31040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
One of the hallmarks of Alzheimer's disease (AD) is the deposition of amyloid-β (Aβ) within the extracellular spaces of the brain as plaques and along the blood vessels in the brain, a condition also known as cerebral amyloid angiopathy (CAA). Clusterin (CLU), or apolipoprotein J (APOJ), is a multifunctional glycoprotein that has a role in many physiological and neurological conditions, including AD. The apolipoprotein E (APOE) is a significant genetic factor in AD, and while the primary physiological role of APOE in the brain and peripheral tissues is to regulate lipid transport, it also participates in various other biological processes, having three basic human forms: APOE2, APOE3, and APOE4. Notably, the APOE4 allele substantially increases the risk of developing late-onset AD. The main purpose of this review is to examine the roles of CLU and APOE in AD pathogenesis in order to acquire a better understanding of AD pathogenesis from which to develop targeted therapeutic approaches.
Collapse
Affiliation(s)
- Alexandru Laslo
- Department of Urology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Laura Laslo
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (L.L.); (B.A.C.)
| | - Eliza-Mihaela Arbănași
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Regenerative Medicine Laboratory, Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | | | - Laura Chinezu
- Department of Histology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Adrian Dumitru Ivănescu
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
| | - Emil-Marian Arbănași
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Regenerative Medicine Laboratory, Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | | | - Bogdan Andrei Cordoș
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (L.L.); (B.A.C.)
- Centre for Experimental Medical and Imaging Studies, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Ioana Adriana Popa
- Clinic of Radiology, Mures County Emergency Hospital, 540136 Targu Mures, Romania;
| | - Klara Brînzaniuc
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
| |
Collapse
|
50
|
Granzotto A, Vissel B, Sensi SL. Lost in translation: Inconvenient truths on the utility of mouse models in Alzheimer's disease research. eLife 2024; 13:e90633. [PMID: 39329365 PMCID: PMC11434637 DOI: 10.7554/elife.90633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
The recent, controversial approval of antibody-based treatments for Alzheimer's disease (AD) is fueling a heated debate on the molecular determinants of this condition. The discussion should also incorporate a critical revision of the limitations of preclinical mouse models in advancing our understanding of AD. We critically discuss the limitations of animal models, stressing the need for careful consideration of how experiments are designed and results interpreted. We identify the shortcomings of AD models to recapitulate the complexity of the human disease. We dissect these issues at the quantitative, qualitative, temporal, and context-dependent levels. We argue that these models are based on the oversimplistic assumptions proposed by the amyloid cascade hypothesis (ACH) of AD and fail to account for the multifactorial nature of the condition. By shedding light on the constraints of current experimental tools, this review aims to foster the development and implementation of more clinically relevant tools. While we do not rule out a role for preclinical models, we call for alternative approaches to be explored and, most importantly, for a re-evaluation of the ACH.
Collapse
Affiliation(s)
- Alberto Granzotto
- Center for Advanced Studies and Technology – CAST, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-PescaraChietiItaly
| | - Bryce Vissel
- St Vincent’s Hospital Centre for Applied Medical Research, St Vincent’s HospitalDarlinghurstAustralia
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyAustralia
| | - Stefano L Sensi
- Center for Advanced Studies and Technology – CAST, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Institute for Advanced Biomedical Technologies – ITAB, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Institute of Neurology, SS Annunziata University Hospital, University G. d’Annunzio of Chieti-PescaraChietiItaly
| |
Collapse
|