1
|
Chen J, Lu Y, Ye X, Emam M, Zhang H, Wang H. Current advances in Vibrio harveyi quorum sensing as drug discovery targets. Eur J Med Chem 2020; 207:112741. [PMID: 32871343 DOI: 10.1016/j.ejmech.2020.112741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 12/25/2022]
Abstract
Vibrio harveyi is a marine bacterial pathogen which infects a wide range of marine organisms and results in severe loss. Antibiotics have been used for prophylaxis and treatment of V. harveyi infection. However, antibiotic resistance is a major public health threat to both human and animals. Therefore, there is an urgent need for novel antimicrobial agents with new modes of action. In V. harveyi, many virulence factors production and bioluminescence formation depend on its quorum sensing (QS) network. Therefore, the QS system has been widely investigated as an effective potential target for the treatment of V. harveyi infection. This perspective focuses on the quorum sensing inhibitors (QSIs) of V. harveyi QS systems (LuxM/N, LuxS/PQ, and CqsA/S) and evaluates medicinal chemistry strategies.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yaojia Lu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mahmoud Emam
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China; Phytochemistry and Plant Systematics Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Huawei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
2
|
McLean TC, Lo R, Tschowri N, Hoskisson PA, Al Bassam MM, Hutchings MI, Som NF. Sensing and responding to diverse extracellular signals: an updated analysis of the sensor kinases and response regulators of Streptomyces species. MICROBIOLOGY-SGM 2020; 165:929-952. [PMID: 31334697 DOI: 10.1099/mic.0.000817] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Streptomyces venezuelae is a Gram-positive, filamentous actinomycete with a complex developmental life cycle. Genomic analysis revealed that S. venezuelae encodes a large number of two-component systems (TCSs): these consist of a membrane-bound sensor kinase (SK) and a cognate response regulator (RR). These proteins act together to detect and respond to diverse extracellular signals. Some of these systems have been shown to regulate antimicrobial biosynthesis in Streptomyces species, making them very attractive to researchers. The ability of S. venezuelae to sporulate in both liquid and solid cultures has made it an increasingly popular model organism in which to study these industrially and medically important bacteria. Bioinformatic analysis identified 58 TCS operons in S. venezuelae with an additional 27 orphan SK and 18 orphan RR genes. A broader approach identified 15 of the 58 encoded TCSs to be highly conserved in 93 Streptomyces species for which high-quality and complete genome sequences are available. This review attempts to unify the current work on TCS in the streptomycetes, with an emphasis on S. venezuelae.
Collapse
Affiliation(s)
- Thomas C McLean
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Rebecca Lo
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Natalia Tschowri
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Mahmoud M Al Bassam
- Department of Paediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Nicolle F Som
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
3
|
Kenney LJ, Anand GS. EnvZ/OmpR Two-Component Signaling: An Archetype System That Can Function Noncanonically. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0001-2019. [PMID: 32003321 PMCID: PMC7192543 DOI: 10.1128/ecosalplus.esp-0001-2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Indexed: 01/09/2023]
Abstract
Two-component regulatory systems represent the major paradigm for signal transduction in prokaryotes. The simplest systems are composed of a sensor kinase and a response regulator. The sensor is often a membrane protein that senses a change in environmental conditions and is autophosphorylated by ATP on a histidine residue. The phosphoryl group is transferred onto an aspartate of the response regulator, which activates the regulator and alters its output, usually resulting in a change in gene expression. In this review, we present a historical view of the archetype EnvZ/OmpR two-component signaling system, and then we provide a new view of signaling based on our recent experiments. EnvZ responds to cytoplasmic signals that arise from changes in the extracellular milieu, and OmpR acts canonically (requiring phosphorylation) to regulate the porin genes and noncanonically (without phosphorylation) to activate the acid stress response. Herein, we describe how insights gleaned from stimulus recognition and response in EnvZ are relevant to nearly all sensor kinases and response regulators.
Collapse
Affiliation(s)
- Linda J Kenney
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Mechanobiology Institute, T-Lab, National University of Singapore, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
4
|
The role of polyproline motifs in the histidine kinase EnvZ. PLoS One 2018; 13:e0199782. [PMID: 29953503 PMCID: PMC6023141 DOI: 10.1371/journal.pone.0199782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
Although distinct amino acid motifs containing consecutive prolines (polyP) cause ribosome stalling, which necessitates recruitment of the translation elongation factor P (EF-P), they occur strikingly often in bacterial proteomes. For example, polyP motifs are found in more than half of all histidine kinases in Escherichia coli K-12, which raises the question of their role(s) in receptor function. Here we have investigated the roles of two polyP motifs in the osmosensor and histidine kinase EnvZ. We show that the IPPPL motif in the HAMP domain is required for dimerization of EnvZ. Moreover, replacement of the prolines in this motif by alanines disables the receptor’s sensor function. The second motif, VVPPA, which is located in the periplasmic domain, was found to be required for interaction with the modulator protein MzrA. Our study also reveals that polyP-dependent stalling has little effect on EnvZ levels. Hence, both polyP motifs in EnvZ are primarily involved in protein-protein interaction. Furthermore, while the first motif occurs in almost all EnvZ homologues, the second motif is only found in species that have MzrA, indicating co-evolution of the two proteins.
Collapse
|
5
|
Foo YH, Gao Y, Zhang H, Kenney LJ. Cytoplasmic sensing by the inner membrane histidine kinase EnvZ. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:119-29. [PMID: 25937465 DOI: 10.1016/j.pbiomolbio.2015.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/22/2022]
Abstract
Two-component regulatory systems drive signal transduction in bacteria. The simplest of these employs a membrane sensor kinase and a cytoplasmic response regulator. Environmental sensing is typically coupled to gene regulation. The histidine kinase EnvZ and its cognate response regulator OmpR regulate expression of outer membrane proteins (porins) in response to osmotic stress. We used hydrogen:deuterium exchange mass spectrometry to identify conformational changes in the cytoplasmic domain of EnvZ (EnvZc) that were associated with osmosensing. The osmosensor localized to a seventeen amino acid region of the four-helix bundle of the cytoplasmic domain and flanked the His(243) autophosphorylation site. High osmolality increased autophosphorylation of His(243), suggesting that these two events were linked. The transmembrane domains were not required for osmosensing, but mutants in the transmembrane domains altered EnvZ activity. A photoactivatable fusion protein composed of EnvZc fused to the fluorophore mEos2 (EnvZc-mEos2) was as capable as EnvZc in supporting OmpR-dependent ompF and ompC transcription. Over-expression of EnvZc reduced activity, indicating that the EnvZ/OmpR system is not robust. Our results support a model in which osmolytes stabilize helix one in the four-helix bundle of EnvZ by increased hydrogen bonding of the peptide backbone, increasing autophosphorylation and downstream signaling. The likelihood that additional histidine kinases use similar cytoplasmic sensing mechanisms is discussed.
Collapse
Affiliation(s)
- Yong Hwee Foo
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Yunfeng Gao
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Hongfang Zhang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Linda J Kenney
- Mechanobiology Institute, National University of Singapore, Singapore; Jesse Brown Veterans Affairs Medical Center, Chicago, USA; University of Illinois-Chicago, USA.
| |
Collapse
|
6
|
Abstract
Microorganisms live in fluctuating environments, requiring stress response pathways to resist environmental insults and stress. These pathways dynamically monitor cellular status, and mediate adaptive changes by remodeling the proteome, largely accomplished by remodeling transcriptional networks and protein degradation. The complementarity of fast, specific proteolytic degradation and slower, broad transcriptomic changes gives cells the mechanistic repertoire to dynamically adjust cellular processes and optimize response behavior. Together, this enables cells to minimize the 'cost' of the response while maximizing the ability to survive environmental stress. Here we highlight recent progress in our understanding of transcriptional networks and proteolysis that illustrates the design principles used by bacteria to generate the complex behaviors required to resist stress.
Collapse
|
7
|
Abstract
Two-component systems (TCS) comprise histidine kinases and their cognate response regulators and allow bacteria to sense and respond to a wide variety of signals. Histidine kinases (HKs) phosphorylate and dephosphorylate their cognate response regulators (RRs) in response to stimuli. In general, these reactions appear to be highly specific and require an appropriate association between the HK and RR proteins. The Myxococcus xanthus genome encodes one of the largest repertoires of signaling proteins in bacteria (685 open reading frames [ORFs]), including at least 127 HKs and at least 143 RRs. Of these, 27 are bona fide NtrC-family response regulators, 21 of which are encoded adjacent to their predicted cognate kinases. Using system-wide profiling methods, we determined that the HK-NtrC RR pairs display a kinetic preference during both phosphotransfer and phosphatase functions, thereby defining cognate signaling systems in M. xanthus. Isothermal titration calorimetry measurements indicated that cognate HK-RR pairs interact with dissociation constants (Kd) of approximately 1 µM, while noncognate pairs had no measurable binding. Lastly, a chimera generated between the histidine kinase, CrdS, and HK1190 revealed that residues conferring phosphotransfer and phosphatase specificity dictate binding affinity, thereby establishing discrete protein-protein interactions which prevent cross talk. The data indicate that binding affinity is a critical parameter governing system-wide signaling fidelity for bacterial signal transduction proteins. Using in vitro phosphotransfer and phosphatase profiling assays and isothermal titration calorimetry, we have taken a system-wide approach to demonstrate specificity for a family of two-component signaling proteins in Myxococcus xanthus. Our results demonstrate that previously identified specificity residues dictate binding affinity and that phosphatase specificity follows phosphotransfer specificity for cognate HK-RR pairs. The data indicate that preferential binding affinity is the basis for signaling fidelity in bacterial two-component systems.
Collapse
|
8
|
Amin M, Porter SL, Soyer OS. Split histidine kinases enable ultrasensitivity and bistability in two-component signaling networks. PLoS Comput Biol 2013; 9:e1002949. [PMID: 23505358 PMCID: PMC3591291 DOI: 10.1371/journal.pcbi.1002949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 01/11/2013] [Indexed: 11/19/2022] Open
Abstract
Bacteria sense and respond to their environment through signaling cascades generally referred to as two-component signaling networks. These networks comprise histidine kinases and their cognate response regulators. Histidine kinases have a number of biochemical activities: ATP binding, autophosphorylation, the ability to act as a phosphodonor for their response regulators, and in many cases the ability to catalyze the hydrolytic dephosphorylation of their response regulator. Here, we explore the functional role of "split kinases" where the ATP binding and phosphotransfer activities of a conventional histidine kinase are split onto two distinct proteins that form a complex. We find that this unusual configuration can enable ultrasensitivity and bistability in the signal-response relationship of the resulting system. These dynamics are displayed under a wide parameter range but only when specific biochemical requirements are met. We experimentally show that one of these requirements, namely segregation of the phosphatase activity predominantly onto the free form of one of the proteins making up the split kinase, is met in Rhodobacter sphaeroides. These findings indicate split kinases as a bacterial alternative for enabling ultrasensitivity and bistability in signaling networks. Genomic analyses reveal that up 1.7% of all identified histidine kinases have the potential to be split and bifunctional.
Collapse
Affiliation(s)
- Munia Amin
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- Systems Biology Program, College of Engineering, Computing and Mathematics, University of Exeter, Exeter, United Kingdom
| | - Steven L. Porter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- * E-mail: (SLP); (OSS)
| | - Orkun S. Soyer
- Systems Biology Program, College of Engineering, Computing and Mathematics, University of Exeter, Exeter, United Kingdom
- * E-mail: (SLP); (OSS)
| |
Collapse
|
9
|
Mutational activation of the AmgRS two-component system in aminoglycoside-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2013; 57:2243-51. [PMID: 23459488 DOI: 10.1128/aac.00170-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The amgRS operon encodes a presumed membrane stress-responsive two-component system linked to intrinsic aminoglycoside resistance in Pseudomonas aeruginosa. Genome sequencing of a lab isolate showing modest pan-aminoglycoside resistance, strain K2979, revealed a number of mutations, including a substitution in amgS that produced an R182C change in the AmgS sensor kinase product of this gene. Introduction of this mutation into an otherwise wild-type strain recapitulated the resistance phenotype, while correcting the mutation in the resistant mutant abrogated the resistant phenotype, confirming that the amgS mutation is responsible for the aminoglycoside resistance of strain K2979. The amgSR182 mutation promoted an AmgR-dependent, 2- to 3-fold increase in expression of the AmgRS target genes htpX and PA5528, mirroring the impact of aminoglycoside exposure of wild-type cells on htpX and PA5528 expression. This suggests that amgSR182 is a gain-of-function mutation that activates AmgS and the AmgRS two-component system in promoting modest resistance to aminoglycosides. Screening of several pan-aminoglycoside-resistant clinical isolates of P. aeruginosa revealed three that showed elevated htpX and PA5528 expression and harbored single amino acid-altering mutations in amgS (V121G or D106N) and no mutations in amgR. Introduction of the amgSV121G mutation into wild-type P. aeruginosa generated a resistance phenotype reminiscent of the amgSR182 mutant and produced a 2- to 3-fold increase in htpX and PA5528 expression, confirming that it, too, is a gain-of-function aminoglycoside resistance-promoting mutation. These results highlight the contribution of amgS mutations and activation of the AmgRS two-component system to acquired aminoglycoside resistance in lab and clinical isolates of P. aeruginosa.
Collapse
|
10
|
Willett JW, Kirby JR. Genetic and biochemical dissection of a HisKA domain identifies residues required exclusively for kinase and phosphatase activities. PLoS Genet 2012; 8:e1003084. [PMID: 23226719 PMCID: PMC3510030 DOI: 10.1371/journal.pgen.1003084] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 09/25/2012] [Indexed: 02/04/2023] Open
Abstract
Two-component signal transduction systems, composed of histidine kinases (HK) and response regulators (RR), allow bacteria to respond to diverse environmental stimuli. The HK can control both phosphorylation and subsequent dephosphorylation of its cognate RR. The majority of HKs utilize the HisKA subfamily of dimerization and histidine phosphotransfer (DHp) domains, which contain the phospho-accepting histidine and directly contact the RR. Extensive genetics, biochemistry, and structural biology on several prototypical TCS systems including NtrB-NtrC and EnvZ-OmpR have provided a solid basis for understanding the function of HK–RR signaling. Recently, work on NarX, a HisKA_3 subfamily protein, indicated that two residues in the highly conserved region of the DHp domain are responsible for phosphatase activity. In this study we have carried out both genetic and biochemical analyses on Myxococcus xanthus CrdS, a member of the HisKA subfamily of bacterial HKs. CrdS is required for the regulation of spore formation in response to environmental stress. Following alanine-scanning mutagenesis of the α1 helix of the DHp domain of CrdS, we determined the role for each mutant protein for both kinase and phosphatase activity. Our results indicate that the conserved acidic residue (E372) immediately adjacent to the site of autophosphorylation (H371) is specifically required for kinase activity but not for phosphatase activity. Conversely, we found that the conserved Thr/Asn residue (N375) was required for phosphatase activity but not for kinase activity. We extended our biochemical analyses to two CrdS homologs from M. xanthus, HK1190 and HK4262, as well as Thermotoga maritima HK853. The results were similar for each HisKA family protein where the conserved acidic residue is required for kinase activity while the conserved Thr/Asn residue is required for phosphatase activity. These data are consistent with conserved mechanisms for kinase and phosphatase activities in the broadly occurring HisKA family of sensor kinases in bacteria. Bacterial histidine kinases (HK) serve as bifunctional enzymes capable of both phosphorylation and dephosphorylation of their cognate response regulators (RR). The majority of HKs (77%) belong to the HisKA subfamily. While both kinase and phosphatase functions have been assayed for HisKA proteins, relatively few examples have been studied to determine which residues are required for kinase and phosphatase activity. Recent studies on NarX, a HisKA_3 family protein, and the dedicated phosphatases CheZ and CheX illustrate requirements for two amino acids for phosphatase function. In this study, we undertook saturating mutagenesis of the proposed interaction surface between the HK and its cognate RR and conclude that only one residue (T/N) is required exclusively for phosphatase activity for HisKA family proteins in evolutionarily distant organisms Myxococcus xanthus and Thermotoga maritima. In addition, we identified only one residue (E/D), adjacent to the conserved site of phosphorylation, required exclusively for kinase activity within the highly conserved motif H-E/D-x-x-T/N. Because similar sequences are found in nearly all HisKA kinases, these residues provide excellent targets for dissection of kinase and phosphatase activities within this broadly occurring family of bacterial kinases.
Collapse
Affiliation(s)
| | - John R. Kirby
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
11
|
The inner membrane histidine kinase EnvZ senses osmolality via helix-coil transitions in the cytoplasm. EMBO J 2012; 31:2648-59. [PMID: 22543870 DOI: 10.1038/emboj.2012.99] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 03/14/2012] [Indexed: 11/08/2022] Open
Abstract
Two-component systems mediate bacterial signal transduction, employing a membrane sensor kinase and a cytoplasmic response regulator (RR). Environmental sensing is typically coupled to gene regulation. Understanding how input stimuli activate kinase autophosphorylation remains obscure. The EnvZ/OmpR system regulates expression of outer membrane proteins in response to osmotic stress. To identify EnvZ conformational changes associated with osmosensing, we used HDXMS to probe the effects of osmolytes (NaCl, sucrose) on the cytoplasmic domain of EnvZ (EnvZ(c)). Increasing osmolality decreased deuterium exchange localized to the four-helix bundle containing the autophosphorylation site (His(243)). EnvZ(c) exists as an ensemble of multiple conformations and osmolytes favoured increased helicity. High osmolality increased autophosphorylation of His(243), suggesting that these two events are linked. In-vivo analysis showed that the cytoplasmic domain of EnvZ was sufficient for osmosensing, transmembrane domains were not required. Our results challenge existing claims of robustness in EnvZ/OmpR and support a model where osmolytes promote intrahelical H-bonding enhancing helix stabilization, increasing autophosphorylation and downstream signalling. The model provides a conserved mechanism for signalling proteins that respond to diverse physical and mechanical stimuli.
Collapse
|
12
|
Determinants of homodimerization specificity in histidine kinases. J Mol Biol 2011; 413:222-35. [PMID: 21854787 DOI: 10.1016/j.jmb.2011.08.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 12/28/2022]
Abstract
Two-component signal transduction pathways consisting of a histidine kinase and a response regulator are used by prokaryotes to respond to diverse environmental and intracellular stimuli. Most species encode numerous paralogous histidine kinases that exhibit significant structural similarity. Yet in almost all known examples, histidine kinases are thought to function as homodimers. We investigated the molecular basis of dimerization specificity, focusing on the model histidine kinase EnvZ and RstB, its closest paralog in Escherichia coli. Direct binding studies showed that the cytoplasmic domains of these proteins each form specific homodimers in vitro. Using a series of chimeric proteins, we identified specificity determinants at the base of the four-helix bundle in the dimerization and histidine phosphotransfer domain. Guided by molecular coevolution predictions and EnvZ structural information, we identified sets of residues in this region that are sufficient to establish homospecificity. Mutating these residues in EnvZ to the corresponding residues in RstB produced a functional kinase that preferentially homodimerized over interacting with EnvZ. EnvZ and RstB likely diverged following gene duplication to yield two homodimers that cannot heterodimerize, and the mutants we identified represent possible evolutionary intermediates in this process.
Collapse
|
13
|
Slutzker A, Vyazmensky M, Chipman DM, Barak Z. Role of the C-terminal domain of the regulatory subunit of AHAS isozyme III: Use of random mutagenesis with in vivo reconstitution (REM-ivrs). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:449-55. [DOI: 10.1016/j.bbapap.2011.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/06/2010] [Accepted: 01/04/2011] [Indexed: 11/28/2022]
|
14
|
Abstract
Mistic is a small Bacillus subtilis protein which is of current interest to the field of structural biology and biochemistry because of its unique ability to increase integral membrane protein yields in Escherichia coli expression. Using the osmosensing histidine kinase receptor, EnvZ, an E. coli two-component system, and its cytoplasmic cognate response regulator, OmpR, we provide the first evidence that a Mistic-fused integral membrane protein maintains functionality both in vitro and in vivo. When the purified and detergent-solubilized receptor EnvZ is fused to Mistic, it maintains the ability to autophosphorylate on residue His(243) and phosphotransfers to residue Asp(55) located on OmpR. Functionality was also observed in vivo by means of a β-galactosidase assay in which RU1012 [Φ(ompC-lacZ)10-15, ΔenvZ::Km(r)] cells transformed with Mistic-fused EnvZ led to an increase in downstream signal transduction events detected by the activation of ompC gene expression. These findings illustrate that Mistic preserves the functionality of the Mistic-fused cargo protein and thus provides a beneficial alternate approach to study integral membrane proteins not only by improving expression levels but also for direct use in functional characterization.
Collapse
Affiliation(s)
- Katherine Y. Blain
- Structural Biology Laboratory, The Salk Institute, La Jolla, CA 92037, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Witek Kwiatkowski
- Structural Biology Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | - Senyon Choe
- Structural Biology Laboratory, The Salk Institute, La Jolla, CA 92037, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
15
|
How do bacteria sense and respond to low temperature? Arch Microbiol 2010; 192:85-95. [DOI: 10.1007/s00203-009-0539-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/19/2009] [Accepted: 12/21/2009] [Indexed: 11/30/2022]
|
16
|
Structural plasticity and catalysis regulation of a thermosensor histidine kinase. Proc Natl Acad Sci U S A 2009; 106:16185-90. [PMID: 19805278 DOI: 10.1073/pnas.0906699106] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Temperature sensing is essential for the survival of living cells. A major challenge is to understand how a biological thermometer processes thermal information to optimize cellular functions. Using structural and biochemical approaches, we show that the thermosensitive histidine kinase, DesK, from Bacillus subtilis is cold-activated through specific interhelical rearrangements in its central four-helix bundle domain. As revealed by the crystal structures of DesK in different functional states, the plasticity of this helical domain influences the catalytic activities of the protein, either by modifying the mobility of the ATP-binding domains for autokinase activity or by modulating binding of the cognate response regulator to sustain the phosphotransferase and phosphatase activities. The structural and biochemical data suggest a model in which the transmembrane sensor domain of DesK promotes these structural changes through conformational signals transmitted by the membrane-connecting two-helical coiled-coil, ultimately controlling the alternation between output autokinase and phosphatase activities. The structural comparison of the different DesK variants indicates that incoming signals can take the form of helix rotations and asymmetric helical bends similar to those reported for other sensing systems, suggesting that a similar switching mechanism could be operational in a wide range of sensor histidine kinases.
Collapse
|
17
|
Significant enhanced expression and solubility of human proteins in Escherichia coli by fusion with protein S from Myxococcus xanthus. Appl Environ Microbiol 2009; 75:5356-62. [PMID: 19542330 DOI: 10.1128/aem.00691-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein S is a major spore coat protein of Myxococcus xanthus, consisting of two homologous domains, the N-terminal domain (NTD) and the C-terminal domain, both of which contain a Ca(2+)-binding site. Protein S tightly binds to myxospores in a Ca(2+)-dependent manner. Here, we constructed a novel expression vector, pCold-PST, encoding two tandem repeat NTDs (PrS2). By using this vector, a number of human proteins that were expressed at low levels or in insoluble forms by a pET vector were expressed not only at high levels but also in soluble forms. We also demonstrated that an Escherichia coli protein tagged with PrS2 fully retained its function, indicating that it is folded independently from the tag. This technology not only allows simple, one-step protein purification using myxospores, but can also be used for the identification of proteins interacting with a protein of interest and will prove immensely useful for structural studies of proteins which are difficult to produce or are insoluble.
Collapse
|
18
|
Sun S, Negrea A, Rhen M, Andersson DI. Genetic analysis of colistin resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 2009; 53:2298-305. [PMID: 19332669 PMCID: PMC2687247 DOI: 10.1128/aac.01016-08] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 09/29/2008] [Accepted: 03/23/2009] [Indexed: 11/20/2022] Open
Abstract
Colistin is a cyclic cationic peptide that kills gram-negative bacteria by interacting with and disrupting the outer membrane. We isolated 44 independent mutants in Salmonella enterica serovar Typhimurium with reduced susceptibility to colistin and identified 27 different missense mutations located in the pmrA and pmrB genes (encoding the regulator and sensor of a two-component regulatory system) that conferred increased resistance. By comparison of the two homologous sensor kinases, PmrB and EnvZ, the 22 missense mutations identified in pmrB were shown to be located in four different structural domains of the protein. All five pmrA mutations were located in the phosphate receiver domain of the regulator protein. The mutants appeared at a mutation rate of 0.6 x 10(-6) per cell per generation. The MICs of colistin for the mutants increased 2- to 35-fold, and the extent of killing was reduced several orders of magnitude compared to the susceptible strain. The growth rates of the mutants were slightly reduced in both rich medium and M9-glycerol minimal medium, whereas growth in mice appeared unaffected by the pmrA and pmrB mutations. The low fitness costs and the high mutation rate suggest that mutants with reduced susceptibility to colistin could emerge in clinical settings.
Collapse
Affiliation(s)
- Song Sun
- Department of Medical Biochemistry and Microbiology, Uppsala University, S-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
19
|
Oropeza R, Calva E. The cysteine 354 and 277 residues ofSalmonella entericaserovar Typhi EnvZ are determinants of autophosphorylation and OmpR phosphorylation. FEMS Microbiol Lett 2009; 292:282-90. [DOI: 10.1111/j.1574-6968.2009.01502.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
20
|
Cunningham KA, Burkholder WF. The histidine kinase inhibitor Sda binds near the site of autophosphorylation and may sterically hinder autophosphorylation and phosphotransfer to Spo0F. Mol Microbiol 2008; 71:659-77. [PMID: 19040634 DOI: 10.1111/j.1365-2958.2008.06554.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Histidine kinases are widely used by bacteria, fungi and plants to sense and respond to changing environmental conditions. Signals in addition to those directly sensed by the kinase are often integrated by proteins that fine-tune the biological response by modulating the activity of the kinase or its targets. The Bacillus subtilis histidine kinase KinA promotes the initiation of sporulation when nutrients are limiting, but sporulation can be delayed by two inhibitors of KinA, Sda (when DNA replication is perturbed) or KipI (under unknown conditions). We have identified residues in the dimerization/histidine-phosphotransfer (DHp) domain of KinA that are functionally important for inhibition by Sda and KipI and overlapping surface-exposed residues that lie close to or comprise the Sda binding site. Sda inhibits the intermolecular transfer of phosphate from the catalytic ATP-binding (CA) domain of KinA to the autophosphorylation site in the DHp domain when the domains are split into separate polypeptides, either by steric hindrance or by altering the conformation of the DHp domain. Sda also slows the rate of phosphotransfer from KinA approximately P to its target, Spo0F, consistent with our finding that a KinA residue important for Sda function overlaps with the predicted Spo0F binding site on KinA.
Collapse
|
21
|
Swem LR, Swem DL, Wingreen NS, Bassler BL. Deducing receptor signaling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in Vibrio harveyi. Cell 2008; 134:461-73. [PMID: 18692469 PMCID: PMC2585989 DOI: 10.1016/j.cell.2008.06.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 05/01/2008] [Accepted: 06/11/2008] [Indexed: 12/18/2022]
Abstract
Quorum sensing, a process of bacterial cell-cell communication, relies on production, detection, and response to autoinducer signaling molecules. LuxN, a nine-transmembrane domain protein from Vibrio harveyi, is the founding example of membrane-bound receptors for acyl-homoserine lactone (AHL) autoinducers. We used mutagenesis and suppressor analyses to identify the AHL-binding domain of LuxN and discovered LuxN mutants that confer both decreased and increased AHL sensitivity. Our analysis of dose-response curves of multiple LuxN mutants pins these inverse phenotypes on quantifiable opposing shifts in the free-energy bias of LuxN for occupying its kinase and phosphatase states. To understand receptor activation and to characterize the pathway signaling parameters, we exploited a strong LuxN antagonist, one of fifteen small-molecule antagonists we identified. We find that quorum-sensing-mediated communication can be manipulated positively and negatively to control bacterial behavior and, more broadly, that signaling parameters can be deduced from in vivo data.
Collapse
Affiliation(s)
- Lee R. Swem
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Danielle L. Swem
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Ned S. Wingreen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| |
Collapse
|
22
|
Abstract
Two-component signal transduction systems enable bacteria to sense, respond, and adapt to a wide range of environments, stressors, and growth conditions. In the prototypical two-component system, a sensor histidine kinase catalyzes its autophosphorylation and then subsequently transfers the phosphoryl group to a response regulator, which can then effect changes in cellular physiology, often by regulating gene expression. The utility of these signaling systems is underscored by their prevalence throughout the bacterial kingdom and by the fact that many bacteria contain dozens, or sometimes hundreds, of these signaling proteins. The presence of so many highly related signaling proteins in individual cells creates both an opportunity and a challenge. Do cells take advantage of the similarity between signaling proteins to integrate signals or diversify responses, and thereby enhance their ability to process information? Conversely, how do cells prevent unwanted cross-talk and maintain the insulation of distinct pathways? Here we address both questions by reviewing the cellular and molecular mechanisms that dictate the specificity of two-component signaling pathways.
Collapse
Affiliation(s)
- Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
23
|
Yoshida T, Phadtare S, Inouye M. Functional and structural characterization of EnvZ, an osmosensing histidine kinase of E. coli. Methods Enzymol 2008; 423:184-202. [PMID: 17609132 DOI: 10.1016/s0076-6879(07)23008-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
EnvZ is an osmosensing histidine kinase located in the inner membrane, and one of the most extensively studied Escherichia coli histidine kinases. Because of its structural complexity, functional and structural studies have been quite challenging. It is a multidomain transmembrane protein consisting of 450 amino acid residues. In addition, it must form a dimer to function as a histidine kinase like all the other histidine kinases. EnvZ consists of the 115-residue periplasmic domain, two transmembrane domains (TM1 and TM2), and the cytoplasmic domain consisting of the 43-residue linker (HAMP) domain and the 228-residue kinase domain. It has been shown that the kinase domain of EnvZ, responsible for its enzymatic activities, contains all of the conserved regions of histidine kinases such as H, F, N, G1, G2, and G3 boxes. Therefore, the 271-residue cytoplasmic domain of EnvZ (termed EnvZc) has been used as a model system to establish fundamental characteristics of histidine kinases. The DNA fragment encoding EnvZc was cloned in pET vector and EnvZc was expressed and purified. It is highly soluble and retains all the enzymatic activities of EnvZ. We demonstrated that it consists of two functional domains, domain A and domain B. NMR spectroscopic studies of these two domains revealed, for the first time, the structure of a histidine kinase. Domain A is responsible for dimerization of EnvZc forming a four-helical bundle containing two alpha-helical hairpin structures, while domain B is a monomer and has an ATP-binding pocket formed by regions conserved among the histidine kinases. In this chapter, we describe functional and structural studies of EnvZc, which can be applied to characterize other histidine kinases.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | | | |
Collapse
|
24
|
Kishii R, Falzon L, Yoshida T, Kobayashi H, Inouye M. Structural and Functional Studies of the HAMP Domain of EnvZ, an Osmosensing Transmembrane Histidine Kinase in Escherichia coli. J Biol Chem 2007; 282:26401-8. [PMID: 17635923 DOI: 10.1074/jbc.m701342200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HAMP domain plays an essential role in signal transduction not only in histidine kinase but also in a number of other signal-transducing receptor proteins. Here we expressed the EnvZ HAMP domain (Arg(180)-Thr(235)) with the R218K mutation (termed L(RK)) or with L(RK) connected with domain A (Arg(180)-Arg(289)) (termed LA(RK)) of EnvZ, an osmosensing transmembrane histidine kinase in Escherichia coli, by fusing it with protein S. The L(RK) and LA(RK) proteins were purified after removing protein S. The CD analysis of the isolated L protein revealed that it consists of a random structure or is unstructured. This suggests that the EnvZ HAMP domain by itself is unable to form a stable structure and that this structural fragility may be important for its role in signal transduction. Interestingly the substitution of Ala(193) in the EnvZ HAMP domain with valine or leucine in Tez1A1, a chimeric protein of Tar and EnvZ, caused a constitutive OmpC phenotype. The CD analysis of LA(RK)(A193L) revealed that this mutated HAMP domain possesses considerable secondary structures and that the thermostability of this entire LA(RK)(A193L) became substantially lower than that of LA(RK) or just domain A, indicating that the structure of the HAMP domain with the A193L mutation affects the stability of downstream domain A. This results in cooperative thermodenaturation of domain A with the mutated HAMP domain. These results are discussed in light of the recently solved NMR structure of the HAMP domain from a thermophilic bacterium (Hulko, M., Berndt, F., Gruber, M., Linder, J. U., Truffault, V., Schultz, A., Martin, J., Schultz, J. E., Lupas, A. N., and Coles, M. (2006) Cell 126, 929-940).
Collapse
Affiliation(s)
- Ryuta Kishii
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd., Shimotsuga, Tochigi 329-0114, Japan
| | | | | | | | | |
Collapse
|
25
|
Xiao Y, Lan L, Yin C, Deng X, Baker D, Zhou JM, Tang X. Two-component sensor RhpS promotes induction of Pseudomonas syringae type III secretion system by repressing negative regulator RhpR. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:223-34. [PMID: 17378425 DOI: 10.1094/mpmi-20-3-0223] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The Pseudomonas syringae type III secretion system (T3SS) is induced during interaction with the plant or culture in minimal medium (MM). How the bacterium senses these environments to activate the T3SS is poorly understood. Here, we report the identification of a novel two-component system (TCS), RhpRS, that regulates the induction of P. syringae T3SS genes. The rhpR and rhpS genes are organized in an operon with rhpR encoding a putative TCS response regulator and rhpS encoding a putative biphasic sensor kinase. Transposon insertion in rhpS severely reduced the induction of P. syringae T3SS genes in the plant as well as in MM and significantly compromised the pathogenicity on host plants and hypersensitive response-inducing activity on nonhost plants. However, deletion of the rhpRS locus allowed the induction of T3SS genes to the same level as in the wild-type strain and the recovery of pathogenicity upon infiltration into plants. Overexpression of RhpR in the deltarhpRS deletion strain abolished the induction of T3SS genes. However, overexpression of RhpR in the wild-type strain or overexpression of RhpR(D70A), a mutant of the predicted phosphorylation site of RhpR, in the deltarhpRS deletion strain only slightly reduced the induction of T3SS genes. Based on these results, we propose that the phosphorylated RhpR represses the induction of T3SS genes and that RhpS reverses phosphorylation of RhpR under the T3SS-inducing conditions. Epistasis analysis indicated that rhpS and rhpR act upstream of hrpR to regulate T3SS genes.
Collapse
Affiliation(s)
- Yanmei Xiao
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506-5502, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Laub MT, Biondi EG, Skerker JM. Phosphotransfer Profiling: Systematic Mapping of Two‐Component Signal Transduction Pathways and Phosphorelays. Methods Enzymol 2007; 423:531-48. [PMID: 17609150 DOI: 10.1016/s0076-6879(07)23026-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two-component signal transduction systems, composed of histidine kinases and response regulators, enable bacteria to sense, respond, and adapt to changes in their internal and external conditions. The importance of these signaling systems is reflected in their widespread distribution and prevalence in the bacterial kingdom, with some organisms encoding as many as 250 two-component signaling proteins. In many cases, a histidine kinase and a response regulator are encoded in the same operon and, in such cases, the two molecules usually interact in an exclusive one-to-one fashion. However, in many organisms, the vast majority of two-component signaling genes are encoded as orphan genes, precluding the mapping of signaling pathways based on sequence information and genome position alone. There is also a growing number of examples of two-component signaling pathways with more complicated topologies, including one-to-many and many-to-one relationships, which cannot be inferred from sequence. To address these problems, we have developed an in vitro technique called phosphotransfer profiling, which enables the systematic identification of two-component signaling pathways. Purified histidine kinases are tested for their ability to transfer a phosphoryl group to each response regulator encoded in a genome of interest. As histidine kinases typically exhibit a strong kinetic preference in vitro for their in vivo cognate substrates, this technique allows the rapid mapping of cognate pairs and is applicable to any organism containing two-component signaling genes. The technique can be further extended to mapping phosphorelays and the cognate partners of histidine phosphotransferases. Here, we describe protocols and strategies for the successful implementation of this system-level technique.
Collapse
Affiliation(s)
- Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
27
|
Seok JS, Kaplan S, Oh JI. Interacting specificity of a histidine kinase and its cognate response regulator: the PrrBA system of Rhodobacter sphaeroides. MICROBIOLOGY-SGM 2006; 152:2479-2490. [PMID: 16849810 DOI: 10.1099/mic.0.28961-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using a yeast two-hybrid assay system, it was demonstrated that the four-helix bundle of the Rhodobacter sphaeroides PrrB histidine kinase both serves as the interaction site for the regulatory domain of its cognate response regulator PrrA and is the primary determinant of the interaction specificity. The alpha-helix 1 and its flanking turn region within the dimerization domain (DD) of the PrrB histidine kinase appear to play an important role in conferring the recognition specificity for the PrrA response regulator on the DD. The catalytic ATP-binding domain of the histidine kinase, which functions as the catalytic unit for the phosphotransfer reaction from ATP to the conserved histidine residue in the DD, also appears to contribute to the enhancement of the recognition specificity conferred by the DD. It was also revealed that replacement of Asp-63 and Lys-113 of the PrrA response regulator by alanine abolished protein-protein interactions between PrrA and its cognate histidine kinase PrrB, whereas mutations of Asp-19, Asp-20 and Thr-87 to alanine did not affect protein-protein interactions, indicating that among the active site residues of PrrA, Asp-63 and Lys-113 are important not only in the function of PrrA but also for protein-protein interactions between PrrA and PrrB.
Collapse
Affiliation(s)
- Jin-Sook Seok
- Department of Microbiology, Pusan National University, 609-735 Busan, South Korea
| | - Samuel Kaplan
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center Medical School, 6431 Fannin, Houston, TX 77030, USA
| | - Jeong-Il Oh
- Department of Microbiology, Pusan National University, 609-735 Busan, South Korea
| |
Collapse
|
28
|
Malpica R, Sandoval GRP, Rodríguez C, Franco B, Georgellis D. Signaling by the arc two-component system provides a link between the redox state of the quinone pool and gene expression. Antioxid Redox Signal 2006; 8:781-95. [PMID: 16771670 DOI: 10.1089/ars.2006.8.781] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Arc two-component system is a complex signal transduction system that plays a key role in regulating energy metabolism at the level of transcription in bacteria. This system comprises the ArcB protein, a tripartite membrane-associated sensor kinase, and the ArcA protein, a typical response regulator. Under anoxic growth conditions, ArcB autophosphorylates and transphosphorylates ArcA, which in turn represses or activates the expression of its target operons. Under aerobic conditions, ArcB acts as a phosphatase that catalyzes the dephosphorylation of ArcA-P and thereby releasing its transcriptional regulation. The events for Arc signaling, including signal reception and kinase regulation, signal transmission, amplification, as well as signal output and decay are discussed.
Collapse
Affiliation(s)
- Roxana Malpica
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | | | | | | | | |
Collapse
|
29
|
Michalodimitrakis KM, Sourjik V, Serrano L. Plasticity in amino acid sensing of the chimeric receptor Taz. Mol Microbiol 2006; 58:257-66. [PMID: 16164563 DOI: 10.1111/j.1365-2958.2005.04821.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Taz is a chimeric receptor consisting of the periplasmic, transmembrane and most of the HAMP linker domains of the Escherichia coli aspartate receptor (Tar(Ec)) and the cytoplasmic signalling domain of the E. coli osmosensor EnvZ. Aspartate is one of several attractant ligands normally sensed by Tar and it interacts with Taz to induce OmpR-dependent transcription from the ompC promoter--albeit with reduced sensitivity relative to the chemotactic response it evokes via Tar. By combining Taz with a reporter system that expresses green fluorescent protein (GFP) from the ompC promoter, we were able to examine the interaction of Taz with all 20 natural amino acids. Some amino acids (Leu, Met, Val and Ser) reduced GFP expression, which in the case of leucine is likely attributed to a direct effect on the receptor, rather than an indirect effect through the leucine responsive protein (Lrp). Surprisingly, amino acids like Met and Ser--which are also attractants for Tar--'inhibited' Taz. Moreover, Taz exhibits a higher sensitivity to Leu compared with Asp, which is the inverse of Tar. Our results show the exquisite sensitivity of chemotactic receptors. Small conformational changes induced by making the chimera may have changed the way it responds to different amino acids.
Collapse
|
30
|
Wang HA, Qin L, Lu P, Pang ZX, Deng ZX, Zhao GP. cvhA gene of Streptomyces hygroscopicus 10-22 encodes a negative regulator for mycelia development. Acta Biochim Biophys Sin (Shanghai) 2006; 38:271-80. [PMID: 16604267 DOI: 10.1111/j.1745-7270.2006.00160.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
A five-gene cluster cvhABCDE was identified from Streptomyces hygroscopicus 10-22. As the first gene of this cluster, cvhA encoded a putative sensor histidine kinase with a predicted sensor domain consisting of two trans-membrane segments at the N-terminus and a conserved HATPase_c domain at the C-terminus. The C-terminus polypeptide of CvhA expressed in Escherichia coli was purified and shown to be autophosphorylated with [gamma-32P]ATP in vitro. The phosphoryl group was acid-labile and basic-stable, which supported histidine as the phosphorylation residue. No obvious difference of mycelia development was observed between the null mutant of cvhA generated by targeted gene replacement and the wild-type parental strain 10-22 grown on solid soya flour medium with 2%-8% glucose or sucrose, but the cvhA mutant could form much more abundant aerial mycelia and spores than the wild-type strain on solid soya flour medium supplemented with 6%-8% mannitol, 6%-8% sorbitol, 4%-6% mannose, or 4%-6% fructose. This phenotype was complemented by the cloned wild-type cvhA gene, and no difference was observed for growth curves of the cvhA mutant and the wild strain in liquid minimal medium with the tested sugars at a concentration of 4%, 6% and 8%. We thus propose that CvhA is likely a sensor histidine kinase and negatively regulates the morphological differentiation in a sugar-dependent manner in S. hygroscopicus 10-22.
Collapse
Affiliation(s)
- Heng-An Wang
- Biotechnology Institute, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 201101, China
| | | | | | | | | | | |
Collapse
|
31
|
Mathiesen G, Axelsen GW, Axelsson L, Eijsink VGH. Isolation of constitutive variants of a subfamily 10 histidine protein kinase (SppK) from Lactobacillus using random mutagenesis. Arch Microbiol 2005; 184:327-34. [PMID: 16283250 DOI: 10.1007/s00203-005-0049-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 10/03/2005] [Accepted: 10/06/2005] [Indexed: 10/25/2022]
Abstract
The histidine protein kinase SppK is a peptide pheromone-activated kinase that regulates the production of the bacteriocin sakacin P in Lactobacillus sakei. SppK belongs to subfamily 10 of histidine protein kinases (HPKs), which regulate important processes in Gram-positive bacteria, including virulence, competence and bacteriocin production. To obtain insight into the functional properties of this relatively unknown class of HPKs, we have subjected SppK to random mutagenesis by error-prone PCR, followed by selection for mutants displaying a constitutive phenotype. Most identified mutations were clustered in a predicted coiled coil-like region, which is an important part of the HPK dimer interface and which includes the autophosphorylated histidine. Other mutations were located in the junctions between the dimerization domain and the membrane receptor domain or the catalytic kinase domain. Interestingly, two previously identified constitutive variants of ComD, an SppK homologue involved in competence regulation in Streptococcus pneumoniae, contained single mutations in the same regions.
Collapse
Affiliation(s)
- Geir Mathiesen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Chr. M. Falsensvei 1, PO Box 5003, 1432 As, Norway
| | | | | | | |
Collapse
|
32
|
Ma Q, Johnson MS, Taylor BL. Genetic analysis of the HAMP domain of the Aer aerotaxis sensor localizes flavin adenine dinucleotide-binding determinants to the AS-2 helix. J Bacteriol 2005; 187:193-201. [PMID: 15601703 PMCID: PMC538817 DOI: 10.1128/jb.187.1.193-201.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 09/17/2004] [Indexed: 11/20/2022] Open
Abstract
HAMP domains are signal transduction domains typically located between the membrane anchor and cytoplasmic signaling domain of the proteins in which they occur. The prototypical structure consists of two helical amphipathic sequences (AS-1 and AS-2) connected by a region of undetermined structure. The Escherichia coli aerotaxis receptor, Aer, has a HAMP domain and a PAS domain with a flavin adenine dinucleotide (FAD) cofactor that senses the intracellular energy level. Previous studies reported mutations in the HAMP domain that abolished FAD binding to the PAS domain. In this study, using random and site-directed mutagenesis, we identified the distal helix, AS-2, as the component of the HAMP domain that stabilizes FAD binding. AS-2 in Aer is not amphipathic and is predicted to be buried. Mutations in the sequence coding for the contiguous proximal signaling domain altered signaling by Aer but did not affect FAD binding. The V264M residue replacement in this region resulted in an inverted response in which E. coli cells expressing the mutant Aer protein were repelled by oxygen. Bioinformatics analysis of aligned HAMP domains indicated that the proximal signaling domain is conserved in other HAMP domains that are not involved in chemotaxis or aerotaxis. Only one null mutation was found in the coding sequence for the HAMP AS-1 and connector regions, suggesting that these are not active signal transduction sites. We consider a model in which the signal from FAD is transmitted across a PAS-HAMP interface to AS-2 or the proximal signaling domain.
Collapse
Affiliation(s)
- Qinhong Ma
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
33
|
Khorchid A, Inouye M, Ikura M. Structural characterization of Escherichia coli sensor histidine kinase EnvZ: the periplasmic C-terminal core domain is critical for homodimerization. Biochem J 2005; 385:255-64. [PMID: 15357641 PMCID: PMC1134694 DOI: 10.1042/bj20041125] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 08/11/2004] [Accepted: 09/09/2004] [Indexed: 11/17/2022]
Abstract
Escherichia coli EnvZ is a membrane sensor histidine kinase that plays a pivotal role in cell adaptation to changes in extracellular osmolarity. Although the cytoplasmic histidine kinase domain of EnvZ has been extensively studied, both biochemically and structurally, little is known about the structure of its periplasmic domain, which has been implicated in the mechanism underlying its osmosensing function. In the present study, we report the biochemical and biophysical characterization of the periplasmic region of EnvZ (Ala38-Arg162). This region was found to form a dimer in solution, and to consist of two well-defined domains: an N-terminal a-helical domain and a C-terminal core domain (Glu83-Arg162) containing both a-helical and b-sheet secondary structures. Our pull-down assays and analytical ultracentrifugation analysis revealed that dimerization of the periplasmic region is highly sensitive to the presence of CHAPS, but relatively insensitive to salt concentration, thus suggesting the significance of hydrophobic interactions between the homodimeric subunits. Periplasmic homodimerization is mediated predominantly by the C-terminal core domain, while a regulatory function may be attributed mainly to the N-terminal a-helical domain, whose mutations have been shown previously to produce a high-osmolarity phenotype.
Collapse
Affiliation(s)
- Ahmad Khorchid
- *Division of Molecular and Structural Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | - Masayori Inouye
- †Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, U.S.A
| | - Mitsuhiko Ikura
- *Division of Molecular and Structural Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| |
Collapse
|
34
|
Watts KJ, Ma Q, Johnson MS, Taylor BL. Interactions between the PAS and HAMP domains of the Escherichia coli aerotaxis receptor Aer. J Bacteriol 2004; 186:7440-9. [PMID: 15489456 PMCID: PMC523216 DOI: 10.1128/jb.186.21.7440-7449.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 07/27/2004] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli energy-sensing Aer protein initiates aerotaxis towards environments supporting optimal cellular energy. The Aer sensor is an N-terminal, FAD-binding, PAS domain. The PAS domain is linked by an F1 region to a membrane anchor, and in the C-terminal half of Aer, a HAMP domain links the membrane anchor to the signaling domain. The F1 region, membrane anchor, and HAMP domain are required for FAD binding. Presumably, alterations in the redox potential of FAD induce conformational changes in the PAS domain that are transmitted to the HAMP and C-terminal signaling domains. In this study we used random mutagenesis and intragenic pseudoreversion analysis to examine functional interactions between the HAMP domain and the N-terminal half of Aer. Missense mutations in the HAMP domain clustered in the AS-2 alpha-helix and abolished FAD binding to Aer, as previously reported. Three amino acid replacements in the Aer-PAS domain, S28G, A65V, and A99V, restored FAD binding and aerotaxis to the HAMP mutants. These suppressors are predicted to surround a cleft in the PAS domain that may bind FAD. On the other hand, suppression of an Aer-C253R HAMP mutant was specific to an N34D substitution with a predicted location on the PAS surface, suggesting that residues C253 and N34 interact or are in close proximity. No suppressor mutations were identified in the F1 region or membrane anchor. We propose that functional interactions between the PAS domain and the HAMP AS-2 helix are required for FAD binding and aerotactic signaling by Aer.
Collapse
Affiliation(s)
- Kylie J Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
35
|
Zhang ZG, Zhou HL, Chen T, Gong Y, Cao WH, Wang YJ, Zhang JS, Chen SY. Evidence for serine/threonine and histidine kinase activity in the tobacco ethylene receptor protein NTHK2. PLANT PHYSIOLOGY 2004; 136:2971-81. [PMID: 15466243 PMCID: PMC523359 DOI: 10.1104/pp.103.034686] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 08/29/2004] [Accepted: 09/09/2004] [Indexed: 05/19/2023]
Abstract
Ethylene plays important roles in plant growth, development, and stress responses. Two ethylene receptors, ETR1 from Arabidopsis and NTHK1 from tobacco (Nicotiana tabacum), have been found to have His kinase (HK) activity and Ser/Thr kinase activity, respectively, although both show similarity to bacterial two-component HK. Here, we report the characterization of another ethylene receptor homolog gene, NTHK2, from tobacco. This gene also encodes a HK-like protein and is induced by dehydration and CaCl(2) but not significantly affected by NaCl and abscisic acid treatments. The biochemical properties of the yeast (Schizosaccharomyces pombe)-expressed NTHK2 domains were further characterized. We found that NTHK2 possessed Ser/Thr kinase activity in the presence of Mn(2+) and had HK activity in the presence of Ca(2+). Several lines of evidence supported this conclusion, including hydrolytic stability, phosphoamino acid analysis, mutation, deletion, and substrate analysis. These properties have implications in elucidation of the complexity of the ethylene signal transduction pathway and understanding of ethylene functions in plants.
Collapse
Affiliation(s)
- Zhi-Gang Zhang
- National Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Brencic A, Xia Q, Winans SC. VirA of Agrobacterium tumefaciens is an intradimer transphosphorylase and can actively block vir gene expression in the absence of phenolic signals. Mol Microbiol 2004; 52:1349-62. [PMID: 15165238 DOI: 10.1111/j.1365-2958.2004.04057.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The VirA-VirG two-component system regulates the 30-gene vir regulon in response to host-released chemical signals. VirA is a homodimeric membrane-spanning histidine protein kinase. Here, we show that mutations in two essential VirA residues, His-474 and Gly-657, can be complemented by the formation of mixed heterodimers, indicating that each subunit of a VirA dimer transphosphorylates the opposite subunit. VirA contains a receiver domain that inhibits kinase activity. We use the forced heterodimer system to show that the two receiver domains of a VirA dimer act independently and that each inhibits the phosphoacceptor subdomain of the opposite subunit. We also demonstrate that merodiploid strains co-expressing constitutive VirA mutants and wild-type VirA show levels of vir gene expression far lower than haploid strains expressing just the constitutive alleles. The fact that wild-type VirA can actively block vir gene expression in the absence of phenolic signals suggests that it might have a phospho-VirG phosphatase activity. The receiver domain of VirA is essential for this activity, whereas residues H474 and G657 of the kinase domain are not required. Merodiploid strains co-expressing a constitutive VirA allele and an allele that is kinase inactive but proficient in the inhibitory activity show strongly inducible vir gene expression, indicating that the inhibitory activity is modulated by environmental signals.
Collapse
Affiliation(s)
- Anja Brencic
- Department of Microbiology, 360A Wing Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
37
|
Perron K, Caille O, Rossier C, Van Delden C, Dumas JL, Köhler T. CzcR-CzcS, a Two-component System Involved in Heavy Metal and Carbapenem Resistance in Pseudomonas aeruginosa. J Biol Chem 2004; 279:8761-8. [PMID: 14679195 DOI: 10.1074/jbc.m312080200] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa is an environmental bacterium involved in mineralization of organic matter. It is also an opportunistic pathogen able to cause serious infections in immunocompromised hosts. As such, it is exposed to xenobiotics including solvents, heavy metals, and antimicrobials. We studied the response of P. aeruginosa upon exposure to heavy metals or antibiotics to investigate whether common regulatory mechanisms govern resistance to both types of compounds. We showed that sublethal zinc concentrations induced resistance to zinc, cadmium, and cobalt, while lethal zinc concentrations selected mutants constitutively resistant to these heavy metals. Both zinc-induced and stable zinc-resistant strains were also resistant to the carbapenem antibiotic imipenem. On the other hand, only 20% of clones selected on imipenem were also resistant to zinc. Heavy metal resistance in the mutants could be correlated by quantitative real time PCR with increased expression of the heavy metal efflux pump CzcCBA and its cognate two-component regulator genes czcR-czcS. Western blot analysis revealed reduced expression of the basic amino acid and carbapenem-specific OprD porin in all imipenem-resistant mutants. Sequencing of the czcR-czcS DNA region in eight independent zinc- and imipenem-resistant mutants revealed the presence of the same V194L mutation in the CzcS sensor protein. Overexpression in a susceptible wild type strain of the mutated CzsS protein, but not of the wild type form, resulted in decreased oprD and increased czcC expression. We further show that zinc is released from latex urinary catheters into urine in amounts sufficient to induce carbapenem resistance in P. aeruginosa, possibly compromising treatment of urinary tract infections by this class of antibiotics.
Collapse
Affiliation(s)
- Karl Perron
- Laboratory of Bacteriology and Microbial Ecology, Department of Botany and Plant Biology Sciences III, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
38
|
Ohta N, Newton A. The core dimerization domains of histidine kinases contain recognition specificity for the cognate response regulator. J Bacteriol 2003; 185:4424-31. [PMID: 12867451 PMCID: PMC165744 DOI: 10.1128/jb.185.15.4424-4431.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histidine kinases DivJ and PleC initiate signal transduction pathways that regulate an early cell division cycle step and the gain of motility later in the Caulobacter crescentus cell cycle, respectively. The essential single-domain response regulator DivK functions downstream of these kinases to catalyze phosphotransfer from DivJ and PleC. We have used a yeast two-hybrid screen to investigate the molecular basis of DivJ and PleC interaction with DivK and to identify other His-Asp signal transduction proteins that interact with DivK. The only His-Asp proteins identified in the two-hybrid screen were five members of the histidine kinase superfamily. The finding that most of the kinase clones isolated correspond to either DivJ or PleC supports the previous conclusion that DivJ and PleC are cognate DivK kinases. A 66-amino-acid sequence common to all cloned DivJ and PleC fragments contains the conserved helix 1, helix 2 sequence that forms a four-helix bundle in histidine kinases required for dimerization, autophosphorylation and phosphotransfer. We present results that indicate that the four-helix bundle subdomain is not only necessary for binding of the response regulator but also sufficient for in vivo recognition specificity between DivK and its cognate histidine kinases. The other three kinases identified in this study correspond to DivL, an essential tyrosine kinase belonging to the same kinase subfamily as DivJ and PleC, and the two previously uncharacterized, soluble histidine kinases CckN and CckO. We discuss the significance of these results as they relate to kinase response regulator recognition specificity and the fidelity of phosphotransfer in signal transduction pathways.
Collapse
Affiliation(s)
- Noriko Ohta
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
39
|
Castelli ME, Cauerhff A, Amongero M, Soncini FC, Vescovi EG. The H box-harboring domain is key to the function of the Salmonella enterica PhoQ Mg2+-sensor in the recognition of its partner PhoP. J Biol Chem 2003; 278:23579-85. [PMID: 12702718 DOI: 10.1074/jbc.m303042200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In two-component signaling systems, the transduction strategy relies on a conserved His-Asp phosphoryl exchange between the sensor histidine kinase and its cognate response-regulator, and structural and functional consensus motifs are found when comparing either the diverse histidine kinases or response regulators present in a single cell. Therefore, the mechanism that guarantees the specific recognition between partners of an individual pair is essential to unequivocally generate the appropriate adaptive response. Based on sequence alignments with other histidine kinases, we dissected the Salmonella enterica Mg2+-sensor PhoQ in different subdomains and examined by in vivo and in vitro assays its interaction with the associated response regulator PhoP. This signal transduction system allows Salmonella to withstand environmental Mg2+ limitation by triggering gene expression that is vital throughout the infective cycle in the host. Using resonant mirror biosensor technology, we calculated the kinetic and equilibrium binding constants and determined that the His-phosphotransfer domain is essential for the PhoQ specific recognition and interaction with PhoP. Additionally, we show the role of this domain in the bimolecular transphosphorylation and provide evidence that this region undergoes dimerization.
Collapse
Affiliation(s)
- María E Castelli
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | |
Collapse
|
40
|
Zhu Y, Inouye M. Analysis of the role of the EnvZ linker region in signal transduction using a chimeric Tar/EnvZ receptor protein, Tez1. J Biol Chem 2003; 278:22812-9. [PMID: 12672798 DOI: 10.1074/jbc.m300916200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tez1 is a chimeric protein in which the periplasmic and transmembrane domains of Tar, a chemosensor, are fused to the cytoplasmic catalytic domain of EnvZ, an osmosensing histidine kinase, through the EnvZ linker. Unlike Taz1 (a similar hybrid with the Tar linker), Tez1 could not respond to Tar ligand, aspartate, whereas single Ala insertion at the transmembrane/linker junction, as seen in Tez1A1, restored the aspartate-regulatable phenotype. Analysis of the Ala insertion site requirement and the nature of the insertion residue on the phenotype of Tez1 indicated that a junction region between the transmembrane domain and the predicted helix I in the linker is critical to signal transduction. Random mutagenesis revealed that P185Q mutation in the Tez1 linker restored the aspartate-regulatable phenotype. Substitution mutations at Pro-185 further demonstrated that specific residues are required at this site for an aspartate response. None of the hybrid receptors constructed with different Tar/EnvZ fusion sites in the linker could respond to aspartate, suggesting that specific interactions between the two predicted helices in the linker are important for the linker function. In addition, a mutation (F220D) known to cause an OmpCc phenotype in EnvZ resulted in similar OmpCc phenotypes in both Tez1A1 and Tez1, indicating the importance of the predicted helix II in signal propagation. Together, we propose that the N-terminal junction region modulates the alignment between the two helices in the linker upon signal input. In turn helix II propagates the resultant conformational signal into the downstream catalytic domain of EnvZ to regulate its bifunctional enzymatic activities.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
41
|
Cai SJ, Inouye M. Spontaneous subunit exchange and biochemical evidence for trans-autophosphorylation in a dimer of Escherichia coli histidine kinase (EnvZ). J Mol Biol 2003; 329:495-503. [PMID: 12767831 DOI: 10.1016/s0022-2836(03)00446-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The EnvZ/OmpR histidyl-aspartyl phosphorelay (HAP) system in Escherichia coli regulates the expression of ompF and ompC, the major outer membrane porin genes, in response to environmental osmolarity changes. Here, we report that dimers of EnvZc, the cytoplasmic domain of EnvZ, undergo spontaneous subunit exchange in solution. By introducing a cysteine substitution (S260C) in the dimerization domain of EnvZc, we were able to crosslink the two subunits in a dimer and trap the heterodimer formed between two different mutant EnvZc. By using a complementing system with two autophosphorylation-defective EnvZc mutants, one containing the H243V mutation at the autophosphorylation site and the other containing the G405A mutation in the ATP-binding domain, we demonstrated that an EnvZc(G405A) subunit can be phosphorylated by an EnvZc(H243V) subunit only when a heterodimer is formed. The rate of subunit exchange is concentration-dependent, with higher rates at higher concentrations of protein. The disulfide-crosslinked EnvZc(G405A) homodimer could not be phosphorylated by EnvZc(H243V), since the heterodimer formation between the two mutant proteins was blocked, indicating that autophosphorylation cannot occur by dimer-dimer interaction. By using MBP-deltaL-EnvZc(S260C) fusion protein (deltaL: the linker region, spanning residues 180-222, was deleted), it was found that in the disulfide-crosslinked MBP-deltaL-EnvZc(S260C)/deltaL-EnvZc(S260C/G405A) heterodimer, only the deltaL-EnvZc(S260C/G405A) subunit was phosphorylated but not the MBP-deltaL-EnvZc(S260C) subunit. Together, the present results provide biochemical evidence that EnvZ autophosphorylation occurs in trans and only within an EnvZ dimer.
Collapse
Affiliation(s)
- Sheng-Jian Cai
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA
| | | |
Collapse
|
42
|
Qin L, Cai S, Zhu Y, Inouye M. Cysteine-scanning analysis of the dimerization domain of EnvZ, an osmosensing histidine kinase. J Bacteriol 2003; 185:3429-35. [PMID: 12754242 PMCID: PMC155382 DOI: 10.1128/jb.185.11.3429-3435.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EnvZ and OmpR are a transmembrane sensor and its cognate response regulator, respectively, regulating the transcription of porin genes in response to medium osmolarity in Escherichia coli. The cytoplasmic domain of EnvZ (EnvZc) possesses both kinase and phosphatase activities and can be dissected into two functional domains, A and B. Here, we performed a cysteine-scanning analysis of domain A, a 67-residue central dimerization and phosphatase domain containing His-243 as the phosphorylation site, and we examined the effects of the cysteine substitution mutations on the enzymatic activities of domain A. The substitution mutations were made at 31 residues, from which 24 mutant domain A proteins were biochemically characterized. From the analysis of the phosphatase activity of purified mutant proteins, it was found that there are two regions in domain A which are important for this activity. Cysteine mutations in these regions dramatically reduce or completely abolish the phosphatase activity of domain A. The mutations that have the most-severe effects on domain A phosphatase activity also significantly reduce the phosphatase activity of EnvZc containing the same mutation. Using an in vitro complementation system with EnvZc(H243V), these cysteine mutants were further characterized for their autophosphorylation activities as well as their phosphotransfer activities. The results indicate that some mutations are specific either for the phosphatase activity or for the kinase activity.
Collapse
Affiliation(s)
- Ling Qin
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
43
|
Cai SJ, Khorchid A, Ikura M, Inouye M. Probing catalytically essential domain orientation in histidine kinase EnvZ by targeted disulfide crosslinking. J Mol Biol 2003; 328:409-18. [PMID: 12691749 DOI: 10.1016/s0022-2836(03)00275-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
EnvZ, a dimeric transmembrane histidine kinase, belongs to the family of His-Asp phosphorelay signal transduction systems. The cytoplasmic kinase domain of EnvZ can be dissected into two independently functioning domains, A and B, whose NMR solution structures have been individually determined. Here, we examined the topological arrangement of these two domains in the EnvZ dimer, a structure that is key to understanding the mechanism underlying the autophosphorylation activity of the kinase. A series of cysteine substitution mutants were constructed to test the feasibility of chemical crosslinking between the two domains. These crosslinking data demonstrate that helix I of domain A of one subunit in the EnvZc dimer is in close proximity to domain B of the other subunit in the same dimer, while helix II of domain A of one subunit interacts with domain B of the same subunit in the EnvZc dimer. This is the first demonstration of the topological arrangement between the central dimerization domain containing the active center His residues (domain A) and the ATP-binding catalysis assisting domain (domain B) in a class I histidine kinase.
Collapse
Affiliation(s)
- Sheng-Jian Cai
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, NJ 08854, USA
| | | | | | | |
Collapse
|
44
|
Saito K, Ito E, Hosono K, Nakamura K, Imai K, Iizuka T, Shiro Y, Nakamura H. The uncoupling of oxygen sensing, phosphorylation signalling and transcriptional activation in oxygen sensor FixL and FixJ mutants. Mol Microbiol 2003; 48:373-83. [PMID: 12675798 DOI: 10.1046/j.1365-2958.2003.03446.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The rhizobial FixL/FixJ system, a member of the superfamily of bacterial two-component signal transducing systems, regulates the expression of nitrogen fixation-related genes by sensing environmental oxygen tension. Oxygen-free (deoxy) FixL is autophosphorylated at an invariant histidine residue with ATP, and the phosphoryl group is transferred to FixJ, leading to an enhancement in transcriptional activity at low oxygen tensions, but the histidine kinase activity of the oxygen-bound (oxy) form is inhibited. To investigate the mechanism of oxygen sensing, we established a FixL/FixJ-mediated PfixK-lacZ reporter system in Escherichia coli, and isolated FixL and FixJ mutations conferring an upregulation of lacZ gene expression on the reporter cells even under aerobic conditions. FixL mutant proteins, which contain single amino acid changes near the autophosphorylation site, showed elevated levels of autophosphorylation and a concomitant phosphoryl transfer to FixJ in the presence of oxygen, although their oxygen-binding affinities were unimpaired. These mutational analyses suggest that the autophosphorylation domain plays a crucial role in regulatory coupling between oxygen binding and kinase activity. FixJ mutants in helix alpha1 and strand beta5 of the N-terminal half exhibited the formation of a stable acyl phosphate bond. In contrast, those in helices alpha4 and alpha5 constitutively bound to the fixK promoter in a monomeric form, suggesting that the alpha4 and alpha5 helices may be involved in the post-phosphorylation/dimerization signal transfer to liberate the DNA-binding activity of the C-terminal domain, not only serving as a dimerization interface.
Collapse
Affiliation(s)
- Ken Saito
- RIKEN Harima Institute/SPring-8, Mikazuki, Hyogo 679-5148, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Carmany DO, Hollingsworth K, McCleary WR. Genetic and biochemical studies of phosphatase activity of PhoR. J Bacteriol 2003; 185:1112-5. [PMID: 12533489 PMCID: PMC142828 DOI: 10.1128/jb.185.3.1112-1115.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, PhoR is the histidine kinase of the phosphate regulon. It has been postulated that PhoR may function as a phospho-PhoB phosphatase. Experiments with four precise phoR deletion mutants supported this hypothesis and suggested that this activity resides within the histidine phosphorylation domain. This biochemical activity was confirmed by using a separately expressed histidine phosphorylation domain.
Collapse
Affiliation(s)
- Daniel O Carmany
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT 84602-5253, USA
| | | | | |
Collapse
|
46
|
Yoshida T, Qin L, Inouye M. Formation of the stoichiometric complex of EnvZ, a histidine kinase, with its response regulator, OmpR. Mol Microbiol 2002; 46:1273-82. [PMID: 12453214 DOI: 10.1046/j.1365-2958.2002.03239.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
EnvZ, a histidine kinase, and its cognate response regulator OmpR of Escherichia coli are responsible for adaptation to external osmotic changes by regulating the levels of the outer membrane porin proteins, OmpF and OmpC. The osmosensor, EnvZ, has dual enzymatic functions with OmpR kinase and OmpR-P phosphatase. Here, we demonstrate that the cytoplasmic kinase domain of EnvZ (EnvZc) and OmpR are able to form a 1:1 complex detected by native PAGE. This indicates that two OmpR molecules can bind to one EnvZc dimer. As this 1:1 EnvZc/OmpR complex is formed even in the presence of a large excess of EnvZc, OmpR binding to EnvZc is co-operative. The complex formation is also observed between EnvZc and phosphorylated OmpR for the phosphatase reaction. OmpR-P bound to EnvZc was readily released upon the addition of OmpR, indicating that OmpR and OmpR-P can compete for the binding to EnvZ. On the basis of these results, a model is discussed to explain how cellular OmpR-P concentrations are regulated in response to medium osmolarity.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
47
|
Yoshida T, Cai SJ, Inouye M. Interaction of EnvZ, a sensory histidine kinase, with phosphorylated OmpR, the cognate response regulator. Mol Microbiol 2002; 46:1283-94. [PMID: 12453215 DOI: 10.1046/j.1365-2958.2002.03240.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
EnvZ is a sensory histidine kinase in Escherichia coli to regulate the phosphorylation of OmpR, its cognate response regulator, required for the expression of genes for outer membrane porin proteins. Here, we re-examined the recent paper Mattison and Kenney, in which the authors reported that phosphorylated OmpR (OmpR-P) is unable to bind to EnvZ, thus casting doubts on the role of the EnvZ phosphatase activity in vivo. Using an identical method, the Kd value for the interaction of the fluorescein-labelled OmpR (Fl-OmpR) with EnvZc was determined to be 1.96 +/- 0.28 micro M. We demonstrated that OmpR-P as well as OmpR inhibited the interaction of Fl-OmpR with EnvZc. Their 50% inhibitory concentrations were 1.09 +/- 0.25 micro M and 0.89 +/- 0.14 micro M, respectively, under the conditions used. The interaction between His-10-OmpR and EnvZc was also inhibited almost equally with OmpR-P and OmpR. Fluorescein labelling of OmpR was highly heterogeneous as detected by mass spectrometry, even though it slightly affected the OmpR phosphorylation (kinase) and the dephosphorylation of OmpR-P (phosphatase), indicating that EnvZc is able to interact with Fl-OmpR or Fl-OmpR-P as well as with OmpR or OmpR-P as a substrate. We demonstrated that OmpR-P is able to interact with EnvZc with a similar affinity to OmpR and serves as an effective substrate for the EnvZ phosphatase. These findings support the hypothesis that osmotic signals regulate the level of the cellular concentration of OmpR-P by modulating the ratio of kinase to phosphatase activity of the bifunctional enzymatic activities of EnvZ.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
48
|
Deery WJ, Gao T, Ammann R, Gomer RH. A single cell density-sensing factor stimulates distinct signal transduction pathways through two different receptors. J Biol Chem 2002; 277:31972-9. [PMID: 12070170 DOI: 10.1074/jbc.m204539200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Dictyostelium discoideum, cell density is monitored by levels of a secreted protein, conditioned medium factor (CMF). CMFR1 is a putative CMF receptor necessary for CMF-induced G protein-independent accumulation of the SP70 prespore protein but not for CMF-induced G protein-dependent inositol 1,4,5-trisphosphate production. Using recombinant fragments of CMF, we find that stimulation of the inositol 1,4,5-trisphosphate pathway requires amino acids 170-180, whereas SP70 accumulation does not, corroborating a two-receptor model. Cells lacking CMFR1 do not aggregate, due to the lack of expression of several important early developmentally regulated genes, including gp80. Although many aspects of early developmental cAMP-stimulated signal transduction are mediated by CMF, CMFR1 is not essential for cAMP-stimulated cAMP and cGMP production or Ca(2+) uptake, suggesting the involvement of a second CMF receptor. Exogenous application of antibodies against either the region between a first and second or a second and third possible transmembrane domain of CMFR1 induces SP70 accumulation. Antibody- and CMF-induced gene expression can be inhibited by recombinant CMFR1 corresponding to the region between the first and third potential transmembrane domains, indicating that this region is extracellular and probably contains the CMF binding site. These observations support a model where a one- or two-transmembrane CMFR1 regulates gene expression and a G protein-coupled CMF receptor mediates cAR1 signal transduction.
Collapse
Affiliation(s)
- William J Deery
- Howard Hughes Medical Institute, Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | |
Collapse
|
49
|
Zhu Y, Inouye M. The role of the G2 box, a conserved motif in the histidine kinase superfamily, in modulating the function of EnvZ. Mol Microbiol 2002; 45:653-63. [PMID: 12139613 DOI: 10.1046/j.1365-2958.2002.03061.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Histidine kinase EnvZ, a transmembrane osmotic sensor for Escherichia coli, is a bifunctional enzyme having OmpR (its cognate response regulator) kinase and phosphorylated OmpR (OmpR-P) phosphatase activities. Its cytoplasmic domain consists of domain A responsible for dimerization of EnvZ, histidine phosphotransfer and phosphatase activities, and domain B responsible for ATP binding. Here, we have constructed a number of substitution mutations at the G2 box, one of the conserved motifs in domain B, and demonstrated that they influence the phosphatase activity of EnvZ over a wide range. The effects of ADP, a cofactor for the phosphatase activity, were found to be substantially different depending upon the mutations. The effects of these mutations were also examined in vivo using a chimeric Tar-EnvZ construct (Taz1-1), and the results agreed with the in vitro data for the phosphatase and kinase activities for all mutations. Using Taz1-1 carrying the T402A mutation, three independent intragenic suppressor mutations (T235M, S269L and E276K) were isolated, and all were found in domain A. Together, the present results demonstrate for the first time that domain A and domain B are functionally co-ordinated and topologically arranged in a specific manner. The G2 box may modulate the interaction between these two domains in response to extracellular osmolarity.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
50
|
Abstract
EnvZ, a histidine kinase/phosphatase in Escherichia coli, responds to the osmolarity changes in the medium by regulating the phosphorylation state of the transcription factor OmpR, which controls the expression levels of outer membrane porin proteins OmpF and OmpC. Although both ompR and envZ genes are located on the ompB locus under the control of the ompB promoter and transcribed as a single polycistronic mRNA, the expression of envZ is known to be significantly less than ompR. However, to date no accurate estimation for the amounts of EnvZ and OmpR in the cell has been carried out. Here we examined the levels of EnvZ and OmpR in the wild-type strain MC4100 by quantitative Western blot analysis using anti-OmpR and anti-EnvZc (cytoplasmic domain of EnvZ) antisera. It was observed that during exponential growth in L-broth medium there were approximately 3500 and 100 molecules per cell of OmpR and EnvZ, respectively. The levels of OmpR and EnvZ in MC4100 cells grown in a high osmolarity medium (nutrient broth with 20% sucrose) were about the same as those grown in L-broth, whereas they were 1.7-fold higher than those in a low osmolarity medium (nutrient broth). With His10-OmpR, we also determined that the K(d) value for the EnvZc-OmpR complex formation is 1.20 +/- 0.17 microm. On the basis of these results, the molecular mechanism of osmoregulation of ompF and ompC is discussed.
Collapse
Affiliation(s)
- Sheng Jian Cai
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|