1
|
Joseph D. The Unified Theory of Neurodegeneration Pathogenesis Based on Axon Deamidation. Int J Mol Sci 2025; 26:4143. [PMID: 40362380 PMCID: PMC12071446 DOI: 10.3390/ijms26094143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Until now, neurodegenerative diseases like Alzheimer's and Parkinson's have been studied separately in biochemistry and therapeutic drug development, and no causal link has ever been established between them. This study has developed a Unified Theory, which establishes that the regulation of axon and dendrite-specific 4E-BP2 deamidation rates controls the occurrence and progression of neurodegenerative diseases. This is based on identifying axon-specific 4E-BP2 deamidation as a universal denominator for the biochemical processes of deamidation, translational control, oxidative stress, and neurodegeneration. This was achieved by conducting a thorough and critical review of 224 scientific publications regarding (a) deamidation, (b) translational control in protein synthesis initiation, (c) neurodegeneration and (d) oxidative stress, and by applying my discovery of the fundamental neurobiological mechanism behind neuron-specific 4E-BP2 deamidation to practical applications in medicine. Based on this newly developed Unified Theory and my critical review of the scientific literature, I also designed three biochemical flowsheets of (1) in-vivo deamidation, (2) protein synthesis initiation and translational control, and (3) 4E-BP2 deamidation as a control system of the four biochemical processes. The Unified Theory of Neurodegeneration Pathogenesis based on axon deamidation, developed in this work, paves the way to controlling the occurrence and progression of neurodegenerative diseases such as Alzheimer's and Parkinson's through a unique, neuron-specific regulatory system that is 4E-BP2 deamidation, caused by the proteasome-poor environment in neuronal projections, consisting mainly of axons.
Collapse
Affiliation(s)
- Davis Joseph
- Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada;
- Flogen Technologies Inc., Mount Royal, QC H3P 2T1, Canada
| |
Collapse
|
2
|
Michail C, Rodrigues Lima F, Viguier M, Deshayes F. Structure and function of the lysine methyltransferase SETD2 in cancer: From histones to cytoskeleton. Neoplasia 2025; 59:101090. [PMID: 39591760 PMCID: PMC11626819 DOI: 10.1016/j.neo.2024.101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
SETD2 is known to be the unique histone methyltransferase responsible for the trimethylation of the lysine 36 of histone H3 thus generating H3K36me3. This epigenetic mark is critical for transcriptional activation and elongation, DNA repair, mRNA splicing, and DNA methylation. Recurrent SETD2-inactivating mutations and altered H3K36me3 levels are found in cancer at high frequency and numerous studies indicate that SETD2 acts as a tumor suppressor. Recently, SETD2 was further shown to methylate non-histone proteins particularly the cytoskeletal proteins tubulin and actin with subsequent impacts on cytoskeleton structure, mitosis and cell migration. Herein, we provide a review of the role of SETD2 in different cancers with special emphasis on the structural basis of the functions of this key lysine methyltransferase. Moreover, beyond the role of this enzyme in epigenetics and H3K36me3-dependent processes, we highlight the putative role of "non-epigenetic/H3K36me3" functions of SETD2 in cancer, particularly those involving the cytoskeleton.
Collapse
Affiliation(s)
- Christina Michail
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Fernando Rodrigues Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Mireille Viguier
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France.
| | - Frédérique Deshayes
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France.
| |
Collapse
|
3
|
Anderson FL, Biggs KE, Rankin BE, Havrda MC. NLRP3 inflammasome in neurodegenerative disease. Transl Res 2023; 252:21-33. [PMID: 35952982 PMCID: PMC10614656 DOI: 10.1016/j.trsl.2022.08.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 01/14/2023]
Abstract
Neurodegenerative diseases are characterized by a dysregulated neuro-glial microenvironment, culminating in functional deficits resulting from neuronal cell death. Inflammation is a hallmark of the neurodegenerative microenvironment and despite a critical role in tissue homeostasis, increasing evidence suggests that chronic inflammatory insult can contribute to progressive neuronal loss. Inflammation has been studied in the context of neurodegenerative disorders for decades but few anti-inflammatory treatments have advanced to clinical use. This is likely due to the related challenges of predicting and mitigating off-target effects impacting the normal immune response while detecting inflammatory signatures that are specific to the progression of neurological disorders. Inflammasomes are pro-inflammatory cytosolic pattern recognition receptors functioning in the innate immune system. Compelling pre-clinical data has prompted an intense interest in the role of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in neurodegenerative disease. NLRP3 is typically inactive but can respond to sterile triggers commonly associated with neurodegenerative disorders including protein misfolding and aggregation, mitochondrial and oxidative stress, and exposure to disease-associated environmental toxicants. Clear evidence of enhanced NLRP3 inflammasome activity in common neurodegenerative diseases has coincided with rapid advancement of novel small molecule therapeutics making the NLRP3 inflammasome an attractive target for near-term interventional studies. In this review, we highlight evidence from model systems and patients indicating inflammasome activity in neurodegenerative disease associated with the NLRP3 inflammasome's ability to recognize pathologic forms of amyloid-β, tau, and α-synuclein. We discuss inflammasome-driven pyroptotic processes highlighting the potential utility of evaluating extracellular inflammasome-related proteins in the context of biomarker discovery. We complete the report by pointing out gaps in our understanding of intracellular modifiers of inflammasome activity and mechanisms regulating the resolution of inflammasome activation. The literature review and perspectives provide a conceptual platform for continued analysis of inflammation in neurodegenerative diseases through the study of inflammasomes and pyroptosis, mechanisms of inflammation and cell death now recognized to function in multiple highly prevalent neurological disorders.
Collapse
Affiliation(s)
- Faith L Anderson
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Karl E Biggs
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Brynn E Rankin
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Matthew C Havrda
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire.
| |
Collapse
|
4
|
Wang L, Yong YL, Wang KK, Xie YX, Qian YC, Zhou FM, Qiu JG, Jiang BH. MKRN2 knockout causes male infertility through decreasing STAT1, SIX4, and TNC expression. Front Endocrinol (Lausanne) 2023; 14:1138096. [PMID: 36967804 PMCID: PMC10036822 DOI: 10.3389/fendo.2023.1138096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Makorin-2 (Mkrn2) is an evolutionarily conserved gene whose biological functions are not fully known. Although recent studies have shed insights on the potential causes of male infertility, its underlining mechanisms still remain to be elucidated. We developed a Mrkn2 knockout mice model to study this gene and found that deletion of Mkrn2 in mice led to male infertility. Interestingly, the expression level of signal transducer and activator of the transcription (STAT)1 was significantly decreased in MKRN2 knockout testis and MEF cells. Co-IP assay showed an interaction between MKRN2 and STAT1. Moreover, our results further indicated that MKRN2 regulated the expression level of SIX4 and tenascin C (TNC) via the EBF transcription factor 2 (EBF2) in mice. The results of our study will provide insights into a new mechanism of male infertility.
Collapse
Affiliation(s)
- Lin Wang
- The First Affiliated Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan-Ling Yong
- The First Affiliated Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Kun-Kun Wang
- The First Affiliated Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yun-Xia Xie
- The First Affiliated Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying-Chen Qian
- The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng-Mei Zhou
- The First Affiliated Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Jian-Ge Qiu
- The First Affiliated Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Bing-Hua Jiang, ; Jian-Ge Qiu,
| | - Bing-Hua Jiang
- The First Affiliated Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Bing-Hua Jiang, ; Jian-Ge Qiu,
| |
Collapse
|
5
|
Cristiano L. The pseudogenes of eukaryotic translation elongation factors (EEFs): Role in cancer and other human diseases. Genes Dis 2022; 9:941-958. [PMID: 35685457 PMCID: PMC9170609 DOI: 10.1016/j.gendis.2021.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
The eukaryotic translation elongation factors (EEFs), i.e. EEF1A1, EEF1A2, EEF1B2, EEF1D, EEF1G, EEF1E1 and EEF2, are coding-genes that play a central role in the elongation step of translation but are often altered in cancer. Less investigated are their pseudogenes. Recently, it was demonstrated that pseudogenes have a key regulatory role in the cell, especially via non-coding RNAs, and that the aberrant expression of ncRNAs has an important role in cancer development and progression. The present review paper, for the first time, collects all that published about the EEFs pseudogenes to create a base for future investigations. For most of them, the studies are in their infancy, while for others the studies suggest their involvement in normal cell physiology but also in various human diseases. However, more investigations are needed to understand their functions in both normal and cancer cells and to define which can be useful biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Luigi Cristiano
- R&D Division, Prestige, 18 via Vecchia, Terranuova Bracciolini, AR 52028, Italy
| |
Collapse
|
6
|
Fu L, Crawford L, Tong A, Luu N, Tanizaki Y, Shi YB. Sperm associated antigen 7 is activated by T3 during Xenopus tropicalis metamorphosis via a thyroid hormone response element within the first intron. Dev Growth Differ 2022; 64:48-58. [PMID: 34862790 PMCID: PMC8810736 DOI: 10.1111/dgd.12764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 01/03/2023]
Abstract
Thyroid hormone (T3) affects many diverse physiological processes such as metabolism, organogenesis, and growth. The two highly related frog species, diploid Xenopus tropicalis and pseudo tetraploid Xenopus laevis, have been used as models for analyzing the effects of T3 during vertebrate development. T3 regulates T3-inducible gene transcription through T3 receptor (TR)-binding to T3-response elements (TREs). We have previously identified sperm associated antigen 7 (spag7) as a candidate T3 target gene that is potentially involved in adult stem cell development and/or proliferation during intestinal metamorphosis. To investigate whether T3 regulates spag7 directly at the transcriptional level via TR, we first conducted qRT-PCR to analyze its expression during natural and T3-induced metamorphosis and found that spag7 was up-regulated during natural metamorphosis in the intestine, tail, brain and hindlimb, peaking at the climax of metamorphosis in all those organs, and upon T3 treatment of premetamorphic tadpoles. Next, we demonstrated that an intronic TRE in spag7, first identified through bioinformatic analysis, could bind to TR in vitro and in vivo during metamorphosis. A dual luciferase assay utilizing a reconstituted frog oocyte transcription system showed that the TRE could mediate promoter activation by liganded TR. These results indicate that spag7 expression is directly regulated by T3 through the TRE in the first intron during metamorphosis, implicating a role for spag7 early during T3-regulated tissue remodeling and resorption.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| | - LaTaijah Crawford
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew Tong
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| | - Nga Luu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
SETD2-mediated H3K14 trimethylation promotes ATR activation and stalled replication fork restart in response to DNA replication stress. Proc Natl Acad Sci U S A 2021; 118:2011278118. [PMID: 34074749 PMCID: PMC8201831 DOI: 10.1073/pnas.2011278118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ataxia telangiectasia and Rad3 related (ATR) activation after replication stress involves a cascade of reactions, including replication protein A (RPA) complex loading onto single-stranded DNA and ATR activator loading onto chromatin. The contribution of histone modifications to ATR activation, however, is unclear. Here, we report that H3K14 trimethylation responds to replication stress by enhancing ATR activation. First, we confirmed that H3K14 monomethylation, dimethylation, and trimethylation all exist in mammalian cells, and that both SUV39H1 and SETD2 methyltransferases can catalyze H3K14 trimethylation in vivo and in vitro. Interestingly, SETD2-mediated H3K14 trimethylation markedly increases in response to replication stress induced with hydroxyurea, a replication stress inducer. Under these conditions, SETD2-mediated H3K14me3 recruited the RPA complex to chromatin via a direct interaction with RPA70. The increase in H3K14me3 levels was abolished, and RPA loading was attenuated when SETD2 was depleted or H3K14 was mutated. Rather, the cells were sensitive to replication stress such that the replication forks failed to restart, and cell-cycle progression was delayed. These findings help us understand how H3K14 trimethylation links replication stress with ATR activation.
Collapse
|
8
|
|
9
|
Wang X, Gao M, Zhang J, Ma Y, Qu W, Liang J, Wu H, Wen H. Peperomin E and its orally bioavailable analog induce oxidative stress-mediated apoptosis of acute myeloid leukemia progenitor cells by targeting thioredoxin reductase. Redox Biol 2019; 24:101153. [PMID: 30909158 PMCID: PMC6434189 DOI: 10.1016/j.redox.2019.101153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 01/03/2023] Open
Abstract
The early immature CD34+ acute myeloid leukemia (AML) cell subpopulation-acute myeloid leukemia progenitor cells (APCs), is often resistant to conventional chemotherapy, making them largely responsible for the relapse of AML. However, to date, the eradication of APCs remains a major challenge. We previously reported a naturally occurring secolignan- Peperomin E (PepE) and its analog 6-methyl (hydroxyethyl) amino-2, 6-dihydropeperomin E (DMAPE) that selectively target and induce oxidative stress-mediated apoptosis in KG-1a CD34+ cells (an APCs-like cell line) in vitro. We therefore further evaluated the efficacy and the mechanism of action of these compounds in this study. We found that PepE and DMAPE have similar potential to eliminate primary APCs, with no substantial toxicities to the normal cells in vitro and in vivo. Mechanistically, these agents selectively inhibit TrxR1, an antioxidant enzyme aberrantly expressed in APCs, by covalently binding to its selenocysteine residue at the C-terminal redox center. TrxR1 inhibition mediated by PepE (DMAPE) leads to the formation of cellular selenium compromised thioredoxin reductase-derived apoptotic protein (SecTRAP), oxidation of Trx, induction of oxidative stress and finally activation of apoptosis of APCs. Our results demonstrate a potential anti-APCs molecular target – TrxR1 and provide valuable insights into the mechanism underlying PepE (DMAPE)-induced cytotoxicity of APCs, and support the further preclinical investigations on PepE (DMAPE)-related therapies for the treatment of relapsed AML.
Collapse
Affiliation(s)
- Xinzhi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing 210023, People's Republic of China.
| | - Ming Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing 210023, People's Republic of China
| | - Jiyun Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing 210023, People's Republic of China
| | - Ying Ma
- Nanjing University of Science and Technology Hospital, Nanjing University of Science and Technology, Xiaolinwei Lane No. 200, Nanjing 210094, People's Republic of China
| | - Wenshu Qu
- People's Liberation Army Cancer Center, Nanjing Bayi Hospital, Yanggongjing Street No. 34, Nanjing 210002, People's Republic of China
| | - Jingyu Liang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Tongjia Lane No.24, Nanjing 210009, People's Republic of China
| | - Hao Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing 210023, People's Republic of China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing 210023, People's Republic of China.
| |
Collapse
|
10
|
Skucha A, Ebner J, Grebien F. Roles of SETD2 in Leukemia-Transcription, DNA-Damage, and Beyond. Int J Mol Sci 2019; 20:ijms20051029. [PMID: 30818762 PMCID: PMC6429614 DOI: 10.3390/ijms20051029] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 01/07/2023] Open
Abstract
The non-redundant histone methyltransferase SETD2 (SET domain containing 2; KMT3A) is responsible for tri-methylation of lysine 36 on histone H3 (H3K36me3). Presence of the H3K36me3 histone mark across the genome has been correlated with transcriptional activation and elongation, but also with the regulation of DNA mismatch repair, homologous recombination and alternative splicing. The role of SETD2 and the H3K36me3 histone mark in cancer is controversial. SETD2 is lost or mutated in various cancers, supporting a tumor suppressive role of the protein. Alterations in the SETD2 gene are also present in leukemia patients, where they are associated with aggressive disease and relapse. In line, heterozygous SETD2 loss caused chemotherapy resistance in leukemia cell lines and mouse models. In contrast, other studies indicate that SETD2 is critically required for the proliferation of leukemia cells. Thus, although studies of SETD2-dependent processes in cancer have contributed to a better understanding of the SETD2⁻H3K36me3 axis, many open questions remain regarding its specific role in leukemia. Here, we review the current literature about critical functions of SETD2 in the context of hematopoietic malignancies.
Collapse
Affiliation(s)
- Anna Skucha
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria.
| | - Jessica Ebner
- Ludwig Boltzmann Institute for Cancer Research, Waehringer Strasse 13A, 1090 Vienna, Austria.
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Waehringer Strasse 13A, 1090 Vienna, Austria.
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
11
|
Goode BL, Sweeney MO, Eskin JA. GMF as an Actin Network Remodeling Factor. Trends Cell Biol 2018; 28:749-760. [PMID: 29779865 DOI: 10.1016/j.tcb.2018.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 10/24/2022]
Abstract
Glia maturation factor (GMF) has recently been established as a regulator of the actin cytoskeleton with a unique role in remodeling actin network architecture. Conserved from yeast to mammals, GMF is one of five members of the ADF-H family of actin regulatory proteins, which includes ADF/cofilin, Abp1/Drebrin, Twinfilin, and Coactosin. GMF does not bind actin, but instead binds the Arp2/3 complex with high affinity. Through this association, GMF catalyzes the debranching of actin filament networks and inhibits actin nucleation by Arp2/3 complex. Here, we discuss GMF's emerging role in controlling actin filament spatial organization and dynamics underlying cell motility, endocytosis, and other biological processes. Further, we attempt to reconcile these functions with its earlier characterization as a cell differentiation factor.
Collapse
Affiliation(s)
- Bruce L Goode
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454 USA.
| | - Meredith O Sweeney
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454 USA
| | - Julian A Eskin
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454 USA
| |
Collapse
|
12
|
Zhou Y, Yan X, Feng X, Bu J, Dong Y, Lin P, Hayashi Y, Huang R, Olsson A, Andreassen PR, Grimes HL, Wang QF, Cheng T, Xiao Z, Jin J, Huang G. Setd2 regulates quiescence and differentiation of adult hematopoietic stem cells by restricting RNA polymerase II elongation. Haematologica 2018; 103:1110-1123. [PMID: 29650642 PMCID: PMC6029524 DOI: 10.3324/haematol.2018.187708] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/06/2018] [Indexed: 12/27/2022] Open
Abstract
SET domain containing 2 (Setd2), encoding a histone methyltransferase, is associated with many hematopoietic diseases when mutated. By generating a novel exon 6 conditional knockout mouse model, we describe an essential role of Setd2 in maintaining the adult hematopoietic stem cells. Loss of Setd2 results in leukopenia, anemia, and increased platelets accompanied by hypocellularity, erythroid dysplasia, and mild fibrosis in bone marrow. Setd2 knockout mice show significantly decreased hematopoietic stem and progenitor cells except for erythroid progenitors. Setd2 knockout hematopoietic stem cells fail to establish long-term bone marrow reconstitution after transplantation because of the loss of quiescence, increased apoptosis, and reduced multiple-lineage terminal differentiation potential. Bioinformatic analysis revealed that the hematopoietic stem cells exit from quiescence and commit to differentiation, which lead to hematopoietic stem cell exhaustion. Mechanistically, we attribute an important Setd2 function in murine adult hematopoietic stem cells to the inhibition of the Nsd1/2/3 transcriptional complex, which recruits super elongation complex and controls RNA polymerase II elongation on a subset of target genes, including Myc. Our results reveal a critical role of Setd2 in regulating quiescence and differentiation of hematopoietic stem cells through restricting the NSDs/SEC mediated RNA polymerase II elongation.
Collapse
Affiliation(s)
- Yile Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Xiaomei Yan
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Xiaomin Feng
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Jiachen Bu
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA.,Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China
| | - Yunzhu Dong
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Peipei Lin
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Yoshihiro Hayashi
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Rui Huang
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Andre Olsson
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Paul R Andreassen
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - H Leighton Grimes
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Qian-Fei Wang
- Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Huang
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| |
Collapse
|
13
|
Li J, Duns G, Westers H, Sijmons R, van den Berg A, Kok K. SETD2: an epigenetic modifier with tumor suppressor functionality. Oncotarget 2018; 7:50719-50734. [PMID: 27191891 PMCID: PMC5226616 DOI: 10.18632/oncotarget.9368] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/05/2016] [Indexed: 11/25/2022] Open
Abstract
In the past decade important progress has been made in our understanding of the epigenetic regulatory machinery. It has become clear that genetic aberrations in multiple epigenetic modifier proteins are associated with various types of cancer. Moreover, targeting the epigenome has emerged as a novel tool to treat cancer patients. Recently, the first drugs have been reported that specifically target SETD2-negative tumors. In this review we discuss the studies on the associated protein, Set domain containing 2 (SETD2), a histone modifier for which mutations have only recently been associated with cancer development. Our review starts with the structural characteristics of SETD2 and extends to its corresponding function by combining studies on SETD2 function in yeast, Drosophila, Caenorhabditis elegans, mice, and humans. SETD2 is now generally known as the single human gene responsible for trimethylation of lysine 36 of Histone H3 (H3K36). H3K36me3 readers that recruit protein complexes to carry out specific processes, including transcription elongation, RNA processing, and DNA repair, determine the impact of this histone modification. Finally, we describe the prevalence of SETD2-inactivating mutations in cancer, with the highest frequency in clear cell Renal Cell Cancer, and explore how SETD2-inactivation might contribute to tumor development.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Gerben Duns
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada
| | - Helga Westers
- Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Rolf Sijmons
- Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Klaas Kok
- Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
14
|
Identification, Characterization and Expression Profiling of Stress-Related Genes in Easter Lily (Lilium formolongi). Genes (Basel) 2017. [PMCID: PMC5541305 DOI: 10.3390/genes8070172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biotic and abiotic stresses are the major causes of crop loss in lily worldwide. In this study, we retrieved 12 defense-related expressed sequence tags (ESTs) from the NCBI database and cloned, characterized, and established seven of these genes as stress-induced genes in Lilium formolongi. Using rapid amplification of cDNA ends PCR (RACE-PCR), we successfully cloned seven full-length mRNA sequences from L. formolongi line Sinnapal lily. Based on the presence of highly conserved characteristic domains and phylogenetic analysis using reference protein sequences, we provided new nomenclature for the seven nucleotide and protein sequences and submitted them to GenBank. The real-time quantitative PCR (qPCR) relative expression analysis of these seven genes, including LfHsp70-1, LfHsp70-2, LfHsp70-3, LfHsp90, LfUb, LfCyt-b5, and LfRab, demonstrated that they were differentially expressed in all organs examined, possibly indicating functional redundancy. We also investigated the qPCR relative expression levels under two biotic and four abiotic stress conditions. All seven genes were induced by Botrytis cinerea treatment, and all genes except LfHsp70-3 and LfHsp90 were induced by Botrytis elliptica treatment; these genes might be associated with disease tolerance mechanisms in L. formolongi. In addition, LfHsp70-1, LfHsp70-2, LfHsp70-3, LfHsp90, LfUb, and LfCyt-b5 were induced by heat treatment, LfHsp70-1, LfHsp70-2, LfHsp70-3, LfHsp90, and LfCyt-b5 were induced by cold treatment, and LfHsp70-1, LfHsp70-2, LfHsp70-3, LfHsp90, LfCy-b5, and LfRab were induced by drought and salt stress, indicating their likely association with tolerance to these stress conditions. The stress-induced candidate genes identified in this study provide a basis for further functional analysis and the development of stress-resistant L. formolongi cultivars.
Collapse
|
15
|
Wang H, Chen Z, Chang H, Mu X, Deng W, Yuan Z, Yao F, Liu Y, Mai R, Wu B. Expression of glia maturation factor γ is associated with colorectal cancer metastasis and its downregulation suppresses colorectal cancer cell migration and invasion in vitro. Oncol Rep 2017; 37:929-936. [PMID: 28075454 DOI: 10.3892/or.2017.5361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/11/2016] [Indexed: 11/05/2022] Open
Abstract
Glia maturation factor γ (GMFG) functions to reorganize the actin cytoskeleton and appears to play a causative role in cell migration and adherence. The present study assessed GMFG expression in colorectal cancer cells and tissue specimens and then explored the role of GMFG in colorectal cancer progression in vitro. GMFG protein was highly expressed in colorectal cancer tissues and a metastatic colon cancer cell line. Knockdown of GMFG expression using GMFG siRNA or anti-GMFG antibody decreased the capacity of colon cancer LoVo cell migration and invasion in vitro, while recombinant GMFG treatment induced LoVo cell migration. Furthermore, GMFG knockdown also decreased expression of MMP2 protein and reversed epithelial-mesenchymal transition (EMT) phenotypes in LoVo cells. Co-culture of LoVo cells with human umbilical vein endothelial cells (HUVECs) and exogenous GMFG treatment promoted LoVo cell migration and invasion. The data from the present study indicate that GMFG should be further evaluated as a biomarker for detection of colorectal cancer metastasis and that the targeting of GMFG expression or function could be a novel strategy in the future control of colorectal cancer.
Collapse
Affiliation(s)
- Huili Wang
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510000, P.R. China
| | - Zhijiang Chen
- Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou 510000, P.R. China
| | - Hongen Chang
- Department of Neurology, Liuzhou Hospital of Traditional Chinese Medicine, Guangxi 545001, P.R. China
| | - Xiaoping Mu
- Guangdong Women and Children Hospital, Guangzhou 510000, P.R. China
| | - Wenyu Deng
- Guangdong Women and Children Hospital, Guangzhou 510000, P.R. China
| | - Zhaohu Yuan
- Department of Blood Transfusion Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510000, P.R. China
| | - Fang Yao
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510000, P.R. China
| | - Yan Liu
- Guangdong Women and Children Hospital, Guangzhou 510000, P.R. China
| | - Rongjia Mai
- Guangdong Women and Children Hospital, Guangzhou 510000, P.R. China
| | - Bingyi Wu
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510000, P.R. China
| |
Collapse
|
16
|
Shafaghat F, Abbasi-Kenarsari H, Majidi J, Movassaghpour AA, Shanehbandi D, Kazemi T. Preparation of Proper Immunogen by Cloning and Stable Expression of cDNA coding for Human Hematopoietic Stem Cell Marker CD34 in NIH-3T3 Mouse Fibroblast Cell Line. Adv Pharm Bull 2015; 5:69-75. [PMID: 25789221 PMCID: PMC4352225 DOI: 10.5681/apb.2015.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/02/2014] [Accepted: 09/09/2014] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Transmembrane CD34 glycoprotein is the most important marker for identification, isolation and enumeration of hematopoietic stem cells (HSCs). We aimed in this study to clone the cDNA coding for human CD34 from KG1a cell line and stably express in mouse fibroblast cell line NIH-3T3. Such artificial cell line could be useful as proper immunogen for production of mouse monoclonal antibodies. METHODS CD34 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy TA-cloning vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. RESULTS 1158 bp specific band was aligned completely to reference sequence in NCBI database corresponding to long isoform of human CD34. Transient and stable expression of human CD34 on transfected NIH-3T3 mouse fibroblast cells was achieved (25% and 95%, respectively) as shown by flow cytometry. CONCLUSION Cloning and stable expression of human CD34 cDNA was successfully performed and validated by standard flow cytometric analysis. Due to murine origin of NIH-3T3 cell line, CD34-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD34. This approach could bypass the need for purification of recombinant proteins produced in eukaryotic expression systems.
Collapse
Affiliation(s)
- Farzaneh Shafaghat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, International Branch of Aras, Tabriz University of Medical Sciences, Tabriz, Iran
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Abbasi-Kenarsari
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
H3K36 Histone Methyltransferase Setd2 Is Required for Murine Embryonic Stem Cell Differentiation toward Endoderm. Cell Rep 2014; 8:1989-2002. [DOI: 10.1016/j.celrep.2014.08.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/06/2014] [Accepted: 08/04/2014] [Indexed: 11/17/2022] Open
|
18
|
Ubiquitous expression of MAKORIN-2 in normal and malignant hematopoietic cells and its growth promoting activity. PLoS One 2014; 9:e92706. [PMID: 24675897 PMCID: PMC3968021 DOI: 10.1371/journal.pone.0092706] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/25/2014] [Indexed: 11/19/2022] Open
Abstract
Makorin-2 (MKRN2) is a highly conserved protein and yet its functions are largely unknown. We investigated the expression levels of MKRN2 and RAF1 in normal and malignant hematopoietic cells, and leukemia cell lines. We also attempted to delineate the role of MKRN2 in umbilical cord blood CD34+ stem/progenitor cells and K562 cell line by over-expression and inhibition of MKRN2 through lentivirus transduction and shRNA nucleofection, respectively. Our results provided the first evidence on the ubiquitous expression of MKRN2 in normal hematopoietic cells, embryonic stem cell lines, primary leukemia and leukemic cell lines of myeloid, lymphoid, erythroid and megakaryocytic lineages. The expression levels of MKRN2 were generally higher in primary leukemia samples compared with those in age-matched normal BM cells. In all leukemia subtypes, there was no significant correlation between expression levels of MKRN2 and RAF1. sh-MKRN2-silenced CD34+ cells had a significantly lower proliferation capacity and decreased levels of the early stem/progenitor subpopulation (CFU-GEMM) compared with control cultures. Over-expression of MKRN2 in K562 cells increased cell proliferation. Our results indicated possible roles of MKRN2 in normal and malignant hematopoiesis.
Collapse
|
19
|
Bens S, Zichner T, Stütz AM, Caliebe A, Wagener R, Hoff K, Korbel JO, von Bismarck P, Siebert R. SPAG7 is a candidate gene for the periodic fever, aphthous stomatitis, pharyngitis and adenopathy (PFAPA) syndrome. Genes Immun 2014; 15:190-4. [PMID: 24452265 DOI: 10.1038/gene.2013.73] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 12/15/2013] [Accepted: 12/16/2013] [Indexed: 12/20/2022]
Abstract
Periodic fever, aphthous stomatitis, pharyngitis and adenopathy (PFAPA) syndrome is an auto-inflammatory disease for which a genetic basis has been postulated. Nevertheless, in contrast to the other periodic fever syndromes, no candidate genes have yet been identified. By cloning, following long insert size paired-end sequencing, of a de novo chromosomal translocation t(10;17)(q11.2;p13) in a patient with typical PFAPA syndrome lacking mutations in genes associated with other periodic fever syndromes we identified SPAG7 as a candidate gene for PFAPA. SPAG7 protein is expressed in tissues affected by PFAPA and has been functionally linked to antiviral and inflammatory responses. Haploinsufficiency of SPAG7 due to a microdeletion at the translocation breakpoint leading to loss of exons 2-7 from one allele was associated with PFAPA in the index. Sequence analyses of SPAG7 in additional patients with PFAPA point to genetic heterogeneity or alternative mechanisms of SPAG7 deregulation, such as somatic or epigenetic changes.
Collapse
Affiliation(s)
- S Bens
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Kiel, Germany
| | - T Zichner
- European Molecular Biology Laboratory (EMBL), Genome Biology Research Unit, Heidelberg, Germany
| | - A M Stütz
- European Molecular Biology Laboratory (EMBL), Genome Biology Research Unit, Heidelberg, Germany
| | - A Caliebe
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Kiel, Germany
| | - R Wagener
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Kiel, Germany
| | - K Hoff
- 1] Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Kiel, Germany [2] Department of Congenital Heart Disease and Pediatric Cardiology, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Kiel, Germany
| | - J O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Research Unit, Heidelberg, Germany
| | - P von Bismarck
- Department of Pediatrics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Kiel, Germany
| | - R Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
20
|
Ayhan Ö, Balkan M, Guven A, Hazan R, Atar M, Tok A, Tolun A. Truncating mutations in TAF4B and ZMYND15 causing recessive azoospermia. J Med Genet 2014; 51:239-44. [PMID: 24431330 DOI: 10.1136/jmedgenet-2013-102102] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Azoospermia is the absence of a measurable level of spermatozoa in the semen. It affects approximately 1% of all men, and the genetic basis of the majority of idiopathic cases is unknown. We investigated two unrelated consanguineous families with idiopathic azoospermia. In family 1, there were three azoospermic brothers and one oligozoospermic brother; and in family 2, there were three azoospermic brothers. Testis biopsy in the brothers in family 2 had led to the diagnosis of maturation arrest in the spermatid stage. METHODS Candidate disease loci were found via linkage mapping using data from single nucleotide polymorphism genome scans. Exome sequencing was applied to find the variants at the loci. RESULTS We identified two candidate loci in each family and homozygous truncating mutations p.R611X in TAF4B in family 1 and p.K507Sfs*3 in ZMYND15 in family 2. We did not detect any mutations in these genes in a cohort of 45 azoospermic and 15 oligozoospermic men. Expression studies for ZMYND15 showed that the highest expression was in the testis. CONCLUSIONS Both genes are known to have roles in spermatogenesis in mice but neither has been studied in humans. To our knowledge, they are the first genes identified for recessive idiopathic spermatogenic failure in men. Assuming that recessive genes for isolated azoospermia are as numerous in men as in mice, each gene is possibly responsible for only a small fraction of all cases.
Collapse
Affiliation(s)
- Özgecan Ayhan
- Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
21
|
Isolation and Identification of CXCR4-positive Cells from Human Dental Pulp Cells. J Endod 2012; 38:791-5. [DOI: 10.1016/j.joen.2012.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 01/09/2023]
|
22
|
Furusawa J, Zhang H, Vural E, Stone A, Fukuda S, Oridate N, Fang H, Ye Y, Suen JY, Fan CY. Distinct epigenetic profiling in head and neck squamous cell carcinoma stem cells. Otolaryngol Head Neck Surg 2011; 144:900-9. [PMID: 21493336 DOI: 10.1177/0194599811398786] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To identify unique epigenetic signature in cancer stem cells (CSCs) in head and neck squamous cell carcinoma (HNSCC). STUDY DESIGN Molecular and microarray studies. SETTING Tertiary referral center. SUBJECTS AND METHODS Head and neck CSCs were isolated in HNSCC cells by CD44 staining and flow cytometry sorting. CSCs with highest CD44 expression (CD44(hi)) and non-stem cells (non-SCs) with lowest CD44 expression (CD44(low)) were then characterized for stemness gene expression and their responses to chemotherapeutic agents, followed by high-throughput epigenetic profiling using the Illumina BeadChip Array, targeting 28,544 CpG sites covering more than 14,956 genes. RESULTS CD44(hi) CSCs expressed higher levels of stem cell markers and were more resistant to chemotherapeutic agents as compared to CD44(low) non-SCs. By DNA methylation microarray analysis, 17 hypomethylated and 9 hypermethylated genes were identified in CD44(hi) CSCs as compared to non-SCs in most HNSCC cell lines. Cluster analysis using these 26 genes showed that CD44(hi) CSCs were epigenetically distinct from the CD44(low) non-SCs in all 5 HNSCC cell lines. CONCLUSION A unique epigenetic profile consisting of 17 hypomethylated and 9 hypermethylated genes was seen in HNSCC CSCs. These genes may be critically required in maintaining the stemness or pluripotency of CSCs and may represent novel molecular targets for anticancer therapies aimed at eradicating CSCs in HNSCC.
Collapse
Affiliation(s)
- Jun Furusawa
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang X, Liotta L. Clinical bioinformatics: a new emerging science. J Clin Bioinforma 2011; 1:1. [PMID: 21884620 PMCID: PMC3097094 DOI: 10.1186/2043-9113-1-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 01/20/2011] [Indexed: 11/10/2022] Open
Affiliation(s)
- Xiangdong Wang
- Department of Respiratory Medicine, Biomedical Research Center, Fudan University Zhongshan Hospital, Shanghai, PR China.
| | | |
Collapse
|
24
|
De Molfetta GA, Lucíola Zanette D, Alexandre Panepucci R, Dos Santos ARD, da Silva WA, Antonio Zago M. Role of NFKB2 on the early myeloid differentiation of CD34+ hematopoietic stem/progenitor cells. Differentiation 2010; 80:195-203. [PMID: 20708837 DOI: 10.1016/j.diff.2010.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 06/02/2010] [Accepted: 07/24/2010] [Indexed: 12/11/2022]
Abstract
To better understand the early events regulating lineage-specific hematopoietic differentiation, we analyzed the transcriptional profiles of CD34+ human hematopoietic stem and progenitor cells (HSPCs) subjected to differentiation stimulus. CD34+ cells were cultured for 12 and 40h in liquid cultures with supplemented media favoring myeloid or erythroid commitment. Serial analysis of gene expression (SAGE) was employed to generate four independent libraries. By analyzing the differentially expressed regulated transcripts between the un-stimulated and the stimulated CD34+ cells, we observed a set of genes that was initially up-regulated at 12h but were then down-regulated at 40h, exclusively after myeloid stimulus. Among those we found transcripts for NFKB2, RELB, IL1B, LTB, LTBR, TNFRSF4, TGFB1, and IKBKA. Also, the inhibitor NFKBIA (IKBA) was more expressed at 12h. All those transcripts code for signaling proteins of the nuclear factor kappa B pathway. NFKB2 is a subunit of the NF-κB transcription factor that with RELB mediates the non-canonical NF-κB pathway. Interference RNA (RNAi) against NFKB1, NFKB2 and control RNAi were transfected into bone marrow CD34+HSPC. The percentage and the size of the myeloid colonies derived from the CD34+ cells decreased after inhibition of NFKB2. Altogether, our results indicate that NFKB2 gene has a role in the early commitment of CD34+HSPC towards the myeloid lineage.
Collapse
Affiliation(s)
- Greice Andreotti De Molfetta
- Center for Cell Therapy, Blood Center of the University of Sao Paulo, Rua Tenente Catão Roxo 2501, 14051-140 Ribeirão Preto - SP, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Wang SM, Zhang MQ. Transcriptome study for early hematopoiesis--achievement, challenge and new opportunity. J Cell Physiol 2010; 223:549-52. [PMID: 20143329 PMCID: PMC2875260 DOI: 10.1002/jcp.22065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hematopoietic stem progenitor cells are the source for the entire hematopoietic system. Studying gene expression in hematopoietic stem progenitor cells will provide information to understand the genetic programs controlling early hematopoiesis, and to identify the gene targets to interfere hematopoietic disorders. Extensive efforts using cell biology, molecular biology, and genomics approaches have generated rich knowledge for the genes and functional pathways involving in early hematopoiesis. Challenges remain, however, including the rarity of the hematopoietic stem progenitor cells that set physical limitation for the study, the difficulty for reaching comprehensive transcriptome detection under the conventional genomics technologies, and the difficulty for using conventional biological methods to identify the key genes among large number of expressed genes controlling stem cell self-renewal and differentiation. The newly developed single-cell transcriptome method and the next-generation DNA sequencing technology provide new opportunities for transcriptome study for early hematopoietic. Using systems biology approach may reveal the insight of the genetic mechanisms controlling early hematopoiesis.
Collapse
Affiliation(s)
- San Ming Wang
- Northshore University HealthSystem Research Institute, University of Chicago Pritzker School of Medicine, Evanston, Illinois, USA.
| | | |
Collapse
|
26
|
Duns G, van den Berg E, van Duivenbode I, Osinga J, Hollema H, Hofstra RMW, Kok K. Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res 2010; 70:4287-91. [PMID: 20501857 DOI: 10.1158/0008-5472.can-10-0120] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sporadic clear cell renal cell carcinoma (cRCC) is genetically characterized by the recurrent loss of the short arm of chromosome 3, with a hotspot for copy number loss in the 3p21 region. We applied a method called "gene identification by nonsense-mediated mRNA decay inhibition" to a panel of 10 cRCC cell lines with 3p21 copy number loss to identify biallelic inactivated genes located at 3p21. This revealed inactivation of the histone methyltransferase gene SETD2, located on 3p21.31, as a common event in cRCC cells. SETD2 is nonredundantly responsible for trimethylation of the histone mark H3K36. Consistent with this function, we observed loss or a decrease of H3K36me3 in 7 out of the 10 cRCC cell lines. Identification of missense mutations in 2 out of 10 primary cRCC tumor samples added support to the involvement of loss of SETD2 function in the development of cRCC tumors.
Collapse
Affiliation(s)
- Gerben Duns
- Departments of Genetics and Pathology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
27
|
D'Alessandro A, Liumbruno G, Grazzini G, Pupella S, Lombardini L, Zolla L. Umbilical cord blood stem cells: Towards a proteomic approach. J Proteomics 2010; 73:468-82. [DOI: 10.1016/j.jprot.2009.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 06/04/2009] [Accepted: 06/16/2009] [Indexed: 02/07/2023]
|
28
|
The transcriptome of human CD34+ hematopoietic stem-progenitor cells. Proc Natl Acad Sci U S A 2009; 106:8278-83. [PMID: 19416867 DOI: 10.1073/pnas.0903390106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Studying gene expression at different hematopoietic stages provides insights for understanding the genetic basis of hematopoiesis. We analyzed gene expression in human CD34(+) hematopoietic cells that represent the stem-progenitor population (CD34(+) cells). We collected >459,000 transcript signatures from CD34(+) cells, including the de novo-generated 3' ESTs and the existing sequences of full-length cDNAs, ESTs, and serial analysis of gene expression (SAGE) tags, and performed an extensive annotation on this large set of CD34(+) transcript sequences. We determined the genes expressed in CD34(+) cells, verified the known genes and identified the new genes of different functional categories involved in hematopoiesis, dissected the alternative gene expression including alternative transcription initiation, splicing, and adenylation, identified the antisense and noncoding transcripts, determined the CD34(+) cell-specific gene expression signature, and developed the CD34(+) cell-transcription map in the human genome. Our study provides a current view on gene expression in human CD34(+) cells and reveals that early hematopoiesis is an orchestrated process with the involvement of over half of the human genes distributed in various functions. The data generated from our study provide a comprehensive and uniform resource for studying hematopoiesis and stem cell biology.
Collapse
|
29
|
Shen Y, Xu Q, Han Z, Liu H, Zhou GB. Analysis of phenotype-genotype connection: the story of dissecting disease pathogenesis in genomic era in China, and beyond. Philos Trans R Soc Lond B Biol Sci 2007; 362:1043-61. [PMID: 17327209 PMCID: PMC2435570 DOI: 10.1098/rstb.2007.2033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA is the ultimate depository of biological complexity. Thus, in order to understand life and gain insights into disease pathogenesis, genetic information embedded in the sequence of DNA base pairs comprising chromosomes should be deciphered. The stories of investigating the association between phenotype and genotype in China and other countries further demonstrate that genomics can serve as a probe for disease biology. We now know that in Mendelian disorders, one gene is not only a dictator of one phenotype but also a dictator of two or more distinct disorders. Dissecting genetic abnormalities of complex diseases, including diabetes, hypertension, mental diseases, coronary heart disease and cancer, may unravel the complicated networks and crosstalks, and help to simplify the complexity of the disease. The transcriptome and proteomic analysis for medicine not only deepen our understanding of disease pathogenesis, but also provide novel diagnostic and therapeutic strategies. Taken together, genomic research offers a new opportunity for determining how diseases occur, by taking advantage of experiments of nature and a growing array of sophisticated research tools to identify the molecular abnormalities underlying disease processes. We should be ready for the advent of genomic medicine, and put the genome into the doctors' bag, so that we can help patients to conquer diseases.
Collapse
Affiliation(s)
- Yan Shen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences100005 Beijing, People's Republic of China
- Chinese National Human Genome Center at Beijing100176 Beijing, People's Republic of China
- Authors for correspondence () ()
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences100005 Beijing, People's Republic of China
| | - Zeguang Han
- Chinese National Human Genome Center at Shanghai201203 Shanghai, People's Republic of China
| | - Han Liu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology200025 Shanghai, People's Republic of China
| | - Guang-Biao Zhou
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences510663 Guangzhou, People's Republic of China
- Authors for correspondence () ()
| |
Collapse
|
30
|
Zhao Y, Raouf A, Kent D, Khattra J, Delaney A, Schnerch A, Asano J, McDonald H, Chan C, Jones S, Marra MA, Eaves CJ. A Modified Polymerase Chain Reaction-Long Serial Analysis of Gene Expression Protocol Identifies Novel Transcripts in Human CD34+Bone Marrow Cells. Stem Cells 2007; 25:1681-9. [PMID: 17412892 DOI: 10.1634/stemcells.2006-0794] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transcriptome profiling offers a powerful approach to investigating developmental processes. Long serial analysis of gene expression (LongSAGE) is particularly attractive for this purpose because of its inherent quantitative features and independence of both hybridization variables and prior knowledge of transcript identity. Here, we describe the validation and initial application of a modified protocol for amplifying cDNA preparations from <10 ng of RNA (<10(3) cells) to allow representative LongSAGE libraries to be constructed from rare stem cell-enriched populations. Quantitative real-time polymerase chain reaction (Q-RT-PCR) analyses and comparison of tag frequencies in replicate LongSAGE libraries produced from amplified and nonamplified cDNA preparations demonstrated preservation of the relative levels of different transcripts originally present at widely varying levels. This PCR-LongSAGE protocol was then used to obtain a 200,000-tag library from the CD34+ subset of normal adult human bone marrow cells. Analysis of this library revealed many anticipated transcripts, as well as transcripts not previously known to be present in CD34+ hematopoietic cells. The latter included numerous novel tags that mapped to unique and conserved sites in the human genome but not previously identified as transcribed elements in human cells. Q-RT-PCR was used to demonstrate that 10 of these novel tags were expressed in cDNA pools and present in extracts of other sources of normal human CD34+ hematopoietic cells. These findings illustrate the power of LongSAGE to identify new transcripts in stem cell-enriched populations and indicate the potential of this approach to be extended to other sources of rare cells. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Yun Zhao
- Terry Fox Laboratory, Vancouver, BC, Canada V5Z 1L3
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
MacKenzie JA, Payne RM. Mitochondrial protein import and human health and disease. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:509-23. [PMID: 17300922 PMCID: PMC2702852 DOI: 10.1016/j.bbadis.2006.12.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 12/06/2006] [Accepted: 12/07/2006] [Indexed: 12/31/2022]
Abstract
The targeting and assembly of nuclear-encoded mitochondrial proteins are essential processes because the energy supply of humans is dependent upon the proper functioning of mitochondria. Defective import of mitochondrial proteins can arise from mutations in the targeting signals within precursor proteins, from mutations that disrupt the proper functioning of the import machinery, or from deficiencies in the chaperones involved in the proper folding and assembly of proteins once they are imported. Defects in these steps of import have been shown to lead to oxidative stress, neurodegenerative diseases, and metabolic disorders. In addition, protein import into mitochondria has been found to be a dynamically regulated process that varies in response to conditions such as oxidative stress, aging, drug treatment, and exercise. This review focuses on how mitochondrial protein import affects human health and disease.
Collapse
Affiliation(s)
- James A MacKenzie
- Department of Biological Sciences, 133 Piez Hall, State University of New York at Oswego, Oswego, NY 13126, USA.
| | | |
Collapse
|
32
|
Qiao H, McMillan JR. Gelsolin segment 5 inhibits HIV-induced T-cell apoptosis via Vpr-binding to VDAC. FEBS Lett 2007; 581:535-40. [PMID: 17254575 DOI: 10.1016/j.febslet.2006.12.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 12/19/2006] [Accepted: 12/28/2006] [Indexed: 11/24/2022]
Abstract
Viral protein R (Vpr) from the human immunodeficiency virus induces cell cycle arrest in proliferating cells, stimulates virus transcription, and regulates activation and apoptosis of infected T-lymphocytes. We report that Jurkat cells overexpressing full-length gelsolin show resistance to Vpr-induced T-cell apoptosis with abrogation of mitochondrial membrane potential loss and the release of cytochrome c. Co-immunoprecipitation assays in HEK293T cells demonstrated that overexpression of full-length or segment 5 (G5) but not G5-deleted gelsolin (DeltaG5) bound to the voltage-dependent anion channel (VDAC), and that the G5 subunit can inhibit HIV-1-Vpr-binding to VDAC. We also confirmed that full-length gelsolin has the same effect in Jurkat cells. Clonogenic analysis showed that transfection of G5 but not DeltaG5 cDNA protects Jurkat T cells from HIV-Vpr-Tet induced T-cell apoptosis and promoted cell survival, as did full-length gelsolin. These results suggest that the gelsolin G5 domain inhibits HIV-Vpr-induced T-cell apoptosis by blocking the interaction between Vpr and VDAC, and might be used as a protective treatment against HIV-Vpr-induced T-cell apoptosis.
Collapse
Affiliation(s)
- Hongjiang Qiao
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan.
| | | |
Collapse
|
33
|
Shi Y, Chen L, Liotta LA, Wan HH, Rodgers GP. Glia maturation factor gamma (GMFG): a cytokine-responsive protein during hematopoietic lineage development and its functional genomics analysis. GENOMICS PROTEOMICS & BIOINFORMATICS 2007; 4:145-55. [PMID: 17127212 PMCID: PMC5054077 DOI: 10.1016/s1672-0229(06)60027-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human hematopoiesis was evaluated using the techniques of controlled stem cell differentiation, two-dimensional gel electrophoresis-based proteomics, and functional genomics. We provide the first report that glia maturation factor gamma (GMFG) is a cytokine-responsive protein in erythropoietin-induced and granulocyte-colony stimulating factor-induced hematopoietic lineage development. Results from global functional genomics analysis indicate that GMFG possesses several other features: hematopoietic tissue-specific gene expression, a promoter concentrated with high-score hematopoiesis-specific transcription factors, and possible molecular coevolution with a rudimentary blood/immune system. On the basis of our findings, we hypothesize that GMFG is a hematopoietic-specific protein that may mediate the pluripotentiality and lineage commitment of human hematopoietic stem cells.
Collapse
Affiliation(s)
- Ying Shi
- Molecular and Clinical Hematology Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD20892-1822, USA
| | - Ling Chen
- Molecular and Clinical Hematology Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD20892-1822, USA
| | - Lance A. Liotta
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD20892-7412, USA
- Current address: The Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA20110, USA
| | - Hong-Hui Wan
- Maryland Institute of Genomics and Department of Computer Science, University of Maryland, Silver Spring, MD20906, USA
| | - Griffin P. Rodgers
- Molecular and Clinical Hematology Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD20892-1822, USA
- Corresponding authors.
| |
Collapse
|
34
|
Omi T, Kumada M, Kamesaki T, Okuda H, Munkhtulga L, Yanagisawa Y, Utsumi N, Gotoh T, Hata A, Soma M, Umemura S, Ogihara T, Takahashi N, Tabara Y, Shimada K, Mano H, Kajii E, Miki T, Iwamoto S. An intronic variable number of tandem repeat polymorphisms of the cold-induced autoinflammatory syndrome 1 (CIAS1) gene modifies gene expression and is associated with essential hypertension. Eur J Hum Genet 2006; 14:1295-305. [PMID: 16868559 DOI: 10.1038/sj.ejhg.5201698] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cold-induced autoinflammatory syndrome 1 (CIAS1) gene is a member of the NALP subfamily of the CATERPILLER protein family that is expressed predominantly in peripheral blood leukocytes, which is to regulate apoptosis or inflammation through the activation of NF-kappaB and caspase. Recent genetic analyses suggested an association between inflammation and oxidative stress-related genes in the development of hypertension. This is the first genetic study indicating an association between the CIAS1 gene and susceptibility to essential hypertension (EH). The frequency of subject with the homozygote of 12 repeat allele was significantly higher in patients with hypertension compared with control subjects (987 cases, 924 controls) (P=0.030; odds ratio=1.24) at a novel VNTR polymorphism of CIAS1 intron 4 loci. We also found that the mean of systolic blood pressure of homozygotes of 12 repeat allele was 6.4 mmHg higher than those of homozygotes of non-12 repeat allele in male random population (P=0.009). The frequency of six SNPs spanning of the CIAS1 gene was not significantly between patients and controls. The real-time PCR analysis showed that among healthy young adults, 12-12 subjects expressed CIAS1 mRNA in peripheral leukocytes significantly more abundantly than homozygote of non-12 repeat alleles subjects (P<0.05). Reporter gene assay of the CIAS1-VNTR in HL60 stimulated by lipopolysaccharides showed that the intronic sequence involving 12 repeat increased the expression of luciferase compared with 9, 7, and 6 repeats. Thus, we propose here the CIAS1 is associated with EH through the dominant expression of transcripts, which may depend on the CIAS1-VNTR genotype.
Collapse
Affiliation(s)
- Toshinori Omi
- Division of Human Genetics, Center for Community Medicine, Jichi Medical School, Minamikawachi-machi, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Su Z, Dong X, Zhang B, Zeng Y, Fu Y, Yu J, Hu S. Gene expression profiling in porcine mammary gland during lactation and identification of breed- and developmental-stage-specific genes. ACTA ACUST UNITED AC 2006; 49:26-36. [PMID: 16544573 DOI: 10.1007/s11427-005-0181-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A total of 28941 ESTs were sequenced from five 5'-directed non-normalized cDNA libraries, which were assembled into 2212 contigs and 5642 singlets using CAP3. These sequences were annotated and clustered into 6857 unique genes, 2072 of which having no functional annotations were considered as novel genes. These genes were further classified into Gene Ontology categories. By comparing the expression profiles, we identified some breed- and developmental-stage-specific gene groups. These genes may be relative to reproductive performance or play important roles in milk synthesis, secretion and mammary involution. The unknown EST sequences and expression profiles at different developmental stages and breeds are very important resources for further research.
Collapse
Affiliation(s)
- Zhixi Su
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310008, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Flaus A, Martin DMA, Barton GJ, Owen-Hughes T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 2006; 34:2887-905. [PMID: 16738128 PMCID: PMC1474054 DOI: 10.1093/nar/gkl295] [Citation(s) in RCA: 534] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/18/2006] [Accepted: 04/05/2006] [Indexed: 12/14/2022] Open
Abstract
The Snf2 family of helicase-related proteins includes the catalytic subunits of ATP-dependent chromatin remodelling complexes found in all eukaryotes. These act to regulate the structure and dynamic properties of chromatin and so influence a broad range of nuclear processes. We have exploited progress in genome sequencing to assemble a comprehensive catalogue of over 1300 Snf2 family members. Multiple sequence alignment of the helicase-related regions enables 24 distinct subfamilies to be identified, a considerable expansion over earlier surveys. Where information is known, there is a good correlation between biological or biochemical function and these assignments, suggesting Snf2 family motor domains are tuned for specific tasks. Scanning of complete genomes reveals all eukaryotes contain members of multiple subfamilies, whereas they are less common and not ubiquitous in eubacteria or archaea. The large sample of Snf2 proteins enables additional distinguishing conserved sequence blocks within the helicase-like motor to be identified. The establishment of a phylogeny for Snf2 proteins provides an opportunity to make informed assignments of function, and the identification of conserved motifs provides a framework for understanding the mechanisms by which these proteins function.
Collapse
Affiliation(s)
- Andrew Flaus
- Division of Gene Regulation and Expression, University of DundeeDundee DD1 5EH, Scotland, UK
- Bioinformatics and Computational Biology Research Group, School of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| | - David M. A. Martin
- Bioinformatics and Computational Biology Research Group, School of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| | - Geoffrey J. Barton
- Bioinformatics and Computational Biology Research Group, School of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| | - Tom Owen-Hughes
- To whom correspondence should be addressed. Tel: +44 0 1382 385796; Fax: +44 0 1382 388702;
| |
Collapse
|
37
|
Liu F, Lu J, Fan HH, Wang ZQ, Cui SJ, Zhang GA, Chi M, Zhang X, Yang PY, Chen Z, Han ZG. Insights into human CD34+ hematopoietic stem/progenitor cells through a systematically proteomic survey coupled with transcriptome. Proteomics 2006; 6:2673-92. [PMID: 16596711 DOI: 10.1002/pmic.200500032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hematopoietic stem cells are capable of self-renewal and differentiation into different hematopoietic lineages. To gain a comprehensive understanding of hematopoietic stem/progenitor cells, a systematic proteomic survey of human CD34+ cells collected from human umbilical cord blood was performed, in which the proteins were separated by 1- and 2-DE, as well as by nano-LC, and subsequently identified by MS. A total of 370 distinct proteins identified from those cells provided new insights into the potential of the stem/progenitor cells because the nerve, gonad, and eye-associated proteins were reliably identified. Interestingly, the transcripts of 133 (35.9%) identified proteins were not found by the prevalent transcriptome approaches, although several selected transcripts could be detected by RT-PCR. Moreover, the heterogeneity of 33 proteins identified from 2-DE was attributable primarily to post-translational processes rather than to alternative splicing at transcriptional level. Furthermore, the biosyntheses of 15 proteins identified in this study appears not to be completely interrupted in spite of the fact that corresponding antisense RNAs were found in the existing transcriptome data. The integrated proteomic and transcriptomic analyses employed here provided a unique view of the human stem/progenitor cells.
Collapse
Affiliation(s)
- Feng Liu
- Chinese National Human Genome Center at Shanghai, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yu ACH, Sun CX, Li Q, Liu HD, Wang CR, Zhao GP, Jin M, Lau LT, Fung YWW, Liu S. Identification of a mouse synaptic glycoprotein gene in cultured neurons. Neurochem Res 2006; 30:1289-94. [PMID: 16341590 DOI: 10.1007/s11064-005-8800-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2005] [Indexed: 12/19/2022]
Abstract
Neuronal differentiation and aging are known to involve many genes, which may also be differentially expressed during these developmental processes. From primary cultured cerebral cortical neurons, we have previously identified various differentially expressed gene transcripts from cultured cortical neurons using the technique of arbitrarily primed PCR (RAP-PCR). Among these transcripts, clone 0-2 was found to have high homology to rat and human synaptic glycoprotein. By in silico analysis using an EST database and the FACTURA software, the full-length sequence of 0-2 was assembled and the clone was named as mouse synaptic glycoprotein homolog 2 (mSC2). DNA sequencing revealed transcript size of mSC2 being smaller than the human and rat homologs. RT-PCR indicated that mSC2 was expressed differentially at various culture days. The mSC2 gene was located in various tissues with higher expression in brain, lung, and liver. Functions of mSC2 in neurons and other tissues remain elusive and will require more investigation.
Collapse
|
39
|
Ghiso J, Rostagno A, Tomidokoro Y, Lashley T, Bojsen-Møller M, Braendgaard H, Plant G, Holton J, Lal R, Revesz T, Frangione B. Genetic alterations of the BRI2 gene: familial British and Danish dementias. Brain Pathol 2006; 16:71-9. [PMID: 16612984 PMCID: PMC8095812 DOI: 10.1111/j.1750-3639.2006.tb00563.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Classic arguments sustaining the importance of amyloid in the pathogenesis of dementia are usually centered on amyloid beta (Abeta) and its role in neuronal loss characteristic of Alzheimer disease, the most common form of human cerebral amyloidosis. Two non-Abeta cerebral amyloidoses, familial British and Danish dementias, share many aspects of Alzheimer disease, including the presence of neurofibrillary tangles, parenchymal pre-amyloid and amyloid deposits, cerebral amyloid angiopathy, and a widespread inflammatory response. Both early-onset conditions are linked to specific mutations in the BRI2 gene, causing the generation of longer-than-normal protein products and the release of 2 de novo created peptides ABri and ADan, the main components of amyloid fibrils in these inherited dementias. Although the molecular mechanisms and signal transduction pathways elicited by the amyloid deposits and their relation to cognitive impairment remain to be clarified, new evidence indicates that, independent of the differences in their primary structures, Abeta, ABri, and ADan subunits are able to form morphologically compatible ion-channel-like structures and elicit single ion-channel currents in reconstituted lipid membranes. These findings reaffirm the notion that non-Abeta amyloidosis constitute suitable alternative models to study the role of amyloid deposition in the mechanism of neuronal cell death.
Collapse
Affiliation(s)
- J Ghiso
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sun XJ, Wei J, Wu XY, Hu M, Wang L, Wang HH, Zhang QH, Chen SJ, Huang QH, Chen Z. Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J Biol Chem 2005; 280:35261-71. [PMID: 16118227 DOI: 10.1074/jbc.m504012200] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone methylation plays an important role in eukaryotic transcriptional regulation. A number of histone methyltransferases (HMTases) with distinct functions have been identified. The HSPC069/HYPB gene was originally isolated from the human hematopoietic stem/progenitor cells (HSPCs), and it was also identified as a huntingtin interacting protein, implicated in the pathogenesis of Huntington disease (HD). However, its biochemical function is poorly understood. Here we report the structural and functional characterization of the huntingtin interacting protein B (HYPB). 1) The triplicate AWS-SET-PostSET domains mediate a histone H3 lysine 36 specific HMTase activity. 2) A low charged region that is rich in glutamine and proline has been characterized as a novel transcriptional activation domain. The structural features of this region are evolutionarily conserved in vertebrates. 3) Coimmunoprecipitation assays indicate that HYPB protein associates with hyperphosphorylated RNA polymerase II (RNAPII) but not the unphosphorylated form. Furthermore, the RNAPII-association region of HYPB protein has been identified to encompass the C-terminal 142 amino acids. Thus, our results suggest that HYPB HMTase may coordinate histone methylation and transcriptional regulation in mammals and open perspective for the further study of the potential roles of HYPB protein in hematopoiesis and pathogenesis of HD.
Collapse
Affiliation(s)
- Xiao-Jian Sun
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Second Medical University, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zheng PZ, Wang KK, Zhang QY, Huang QH, Du YZ, Zhang QH, Xiao DK, Shen SH, Imbeaud S, Eveno E, Zhao CJ, Chen YL, Fan HY, Waxman S, Auffray C, Jin G, Chen SJ, Chen Z, Zhang J. Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A 2005; 102:7653-8. [PMID: 15894607 PMCID: PMC1140456 DOI: 10.1073/pnas.0502825102] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the complexity and dynamics of cancer cells in response to effective therapy requires hypothesis-driven, quantitative, and high-throughput measurement of genes and proteins at both spatial and temporal levels. This study was designed to gain insights into molecular networks underlying the clinical synergy between retinoic acid (RA) and arsenic trioxide (ATO) in acute promyelocytic leukemia (APL), which results in a high-quality disease-free survival in most patients after consolidation with conventional chemotherapy. We have applied an approach integrating cDNA microarray, 2D gel electrophoresis with MS, and methods of computational biology to study the effects on APL cell line NB4 treated with RA, ATO, and the combination of the two agents and collected in a time series. Numerous features were revealed that indicated the coordinated regulation of molecular networks from various aspects of granulocytic differentiation and apoptosis at the transcriptome and proteome levels. These features include an array of transcription factors and cofactors, activation of calcium signaling, stimulation of the IFN pathway, activation of the proteasome system, degradation of the PML-RARalpha oncoprotein, restoration of the nuclear body, cell-cycle arrest, and gain of apoptotic potential. Hence, this investigation has provided not only a detailed understanding of the combined therapeutic effects of RA/ATO in APL but also a road map to approach hematopoietic malignancies at the systems level.
Collapse
Affiliation(s)
- Pei-Zheng Zheng
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Second Medical University, 197 Rui Jin Road II, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang WB, Hao F, Song ZQ, Yang XC, Ni B. Apoptosis of the dermal papilla cells of hair follicle associated with the expression of gene HSPCO16 in vitro. Exp Dermatol 2005; 14:209-14. [PMID: 15740594 DOI: 10.1111/j.0906-6705.2005.00268.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The epithelial-mesenchymal interactions have an important role in the folliculomorphogenesis and mature hair follicle cycling. The dermal papilla, a dense aggregate of specialized dermis-derived stromal cells located at the bottom of the hair follicle, is a major component of hair, which signals the follicular epithelial cells to prolong the hair growth process. However, to date, little is known about the significance of the specific gene(s) expression in the dermal papilla cells with regard to their aggregative behaviour and hair cycling. In our previous study, the differentially gene-expressed cDNAs library had been determined by means of suppression subtractive hybridization technique between the aggregated human dermal papilla cells and control cells. Among those cDNAs library, the haematopoietic stem/progenitor cell (HSPC)-related gene HSPC016 was found. In this study, the gene HSPC016 was confirmed to express in the human dermal papilla cells by means of in situ hybridization and reverse transcriptase-polymerase chain reaction. In order to rudimentarily elucidate its biological function, a recombinant eucaryotic expressing plasmid pcDNA3.1(+)/HSPC016 was constructed and was transfected into the human dermal papilla cells and 3T3 fibroblast cells by means of Nucleofector(TM) technique (Amaxa, Cologne, Germany). Terminal deoxynucleotidyl transferase-mediated d-UTP nick end Labelling (TUNEL) assay showed that the expression of gene HSPCO16 resulted in the apoptosis of these cells, which suggested that the apoptosis of dermal papilla cells might be associated with the expression of gene HSPC016 in vitro.
Collapse
Affiliation(s)
- Wei B Yang
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | |
Collapse
|
43
|
Tsangaris G, Weitzdörfer R, Pollak D, Lubec G, Fountoulakis M. The amniotic fluid cell proteome. Electrophoresis 2005; 26:1168-73. [PMID: 15706572 DOI: 10.1002/elps.200406183] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Proteomic analysis of amniotic fluid cells may lead to the discovery of novel markers for embryonic abnormalities. A two-dimensional database for proteins of normal human amniotic fluid cells was constructed. The amniotic fluid cell extract was analyzed by two-dimensional gel electrophoresis and the proteins were identified by matrix-assisted laser desorption ionisation-time of flight-mass spectrometry. The database comprises 432 different gene products, which are in the majority enzymes, structural proteins, heat shock proteins, and proteins related to signal transduction. The obtained data show that the amniotic fluid population maybe either heterogeneous, originating from different fetal compartments and embryo tissues or is still pluripotent. Many proteins which are known to belong to certain cell types were found in the amnion cell fluid. This indicates that some types of fetal cells are already differentiated at the time of amniocentesis (about the 16(th) week of gestation). Moreover, the finding of proteins highly expressed in embryonic stem cells suggests that amniotic fluid could be used as a cell pool for transplantation therapy.
Collapse
Affiliation(s)
- George Tsangaris
- F. Hoffmann-La Roche Ltd., Center of Medical Genomics, Basel, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Yang YS, Lin Y, Yu HM, Song HD, Li XY, Ning G, Chen JL. Structure and functional analysis of unclassified genes strongly expressed in human visceral adipose tissue. Endocrine 2005; 26:45-54. [PMID: 15805585 DOI: 10.1385/endo:26:1:045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 01/28/2005] [Accepted: 02/01/2005] [Indexed: 11/11/2022]
Abstract
Our previous work has described the gene expression patterns of human visceral adipose tissue (VAT) at the transcriptome level and reported that the strongly expressed genes in VAT showed an uneven distribution throughout the genome. The aim of the present work was to focus on the unclassified genes and known expressed sequence tags (ESTs) strongly expressed in VAT and analyze their structure and function with bioinformatics. Among the 400 ESTs strongly expressed in the VAT, 340 clones were classified into known genes through searching the latest Genbank database. Functional classification showed that 85 clones were unclassified known genes, and approx 90% of them were found to be expressed in adipose tissue for the first time. Among the 85 unclassified genes, only two share similarities in the coding sequences with all species examined, and six genes had so far no obvious similarity to any genes across different species. The protein products of 7 genes had putative signal peptide and 11 had transmembrane domains. The protein products of 39 genes had relative specific motifs or prosites on primary structure. In silico Northern blot showed that 21 known ESTs were abundantly specifically expressed in adipose tissue, which may provide clues to identify novel genes closely related to adipocyte function with potential pathophysiological implications.
Collapse
Affiliation(s)
- Yi-Sheng Yang
- Shanghai Clinical Center for Endocrine & Metabolic Disease, Rui-Jin Hospital, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Second Medical University, 197 Rui-Jin Road II, Shanghai, 200025, China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Kim NS, Hahn Y, Oh JH, Lee JY, Oh KJ, Kim JM, Park HS, Kim S, Song KS, Rho SM, Yoo HS, Kim YS. Gene cataloging and expression profiling in human gastric cancer cells by expressed sequence tags. Genomics 2005; 83:1024-45. [PMID: 15177556 DOI: 10.1016/j.ygeno.2003.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 12/04/2003] [Indexed: 12/14/2022]
Abstract
To understand the molecular mechanism associated with gastric carcinogenesis, we identified genes expressed in gastric cancer cell lines and tissues. Of 97,609 high-quality ESTs sequenced from 36 cDNA libraries, 92,545 were coalesced into 10,418 human Unigene clusters (Build 151). The gene expression profile was produced by counting the cluster frequencies in each library. Although the profiles of highly expressed genes varied greatly from library to library, those genes related to cell structure formation, heat shock proteins, the glycolysis pathway, and the signaling pathway were highly represented in human gastric cancer cell lines and in primary tumors. Conversely, the genes encoding immunoglobulins, ribosomal proteins, and digestive proteins were down-regulated in gastric cancer cell lines and tissues compared to normal tissues. The transcription levels of some of these genes were confirmed by RT-PCR. We found that genes related to cell adhesion, apoptosis, and cytoskeleton formation were particularly up-regulated in the gastric cancer cell lines established from malignant ascites compared to those from primary tumors. This comprehensive molecular profiling of human gastric cancer should be useful for elucidating the genetic events associated with human gastric cancer.
Collapse
Affiliation(s)
- Nam-Soon Kim
- Laboratory of Human Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Song HD, Sun XJ, Deng M, Zhang GW, Zhou Y, Wu XY, Sheng Y, Chen Y, Ruan Z, Jiang CL, Fan HY, Zon LI, Kanki JP, Liu TX, Look AT, Chen Z. Hematopoietic gene expression profile in zebrafish kidney marrow. Proc Natl Acad Sci U S A 2004; 101:16240-5. [PMID: 15520368 PMCID: PMC528959 DOI: 10.1073/pnas.0407241101] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The zebrafish kidney marrow is considered to be the organ of definitive hematopoiesis, analogous to the mammalian bone marrow. We have sequenced 26,143 ESTs and isolated 304 cDNAs with putative full-length ORF from a zebrafish kidney marrow cDNA library. The ESTs formed 7,742 assemblies, representing both previously identified zebrafish ESTs (56%) and recently discovered zebrafish ESTs (44%). About 30% of these EST assemblies have orthologues in humans, including 1,282 disease-associated genes in the Online Mendelian Inheritance in Man (OMIM) database. Comparison of the effective and regulatory molecules related to erythroid functions across species suggests a good conservation from zebrafish to human. Interestingly, both embryonic and adult zebrafish globin genes showed higher homology to the human embryonic globin genes than to the human fetal/adult ones, consistent with evo-devo correlation hypothesis. In addition, conservation of a whole set of transcription factors involved in globin gene switch suggests the regulatory network for such remodeling mechanism existed before the divergence of the teleost and the ancestor of mammals. We also carried out whole-mount mRNA in situ hybridization assays for 493 cDNAs and identified 80 genes (16%) with tissue-specific expression during the first five days of zebrafish development. Twenty-six of these genes were specifically expressed in hematopoietic or vascular tissues, including three previously unidentified zebrafish genes: coro1a, nephrosin, and dab2. Our results indicate that conserved genetic programs regulate vertebrate hematopoiesis and vasculogenesis, and support the role of the zebrafish as an important animal model for studying both normal development and the molecular pathogenesis of human blood diseases.
Collapse
Affiliation(s)
- Huai-Dong Song
- State Key Lab for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Second Medical University, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Vacuolar H(+)-ATPases are ubiquitous multisubunit complexes mediating the ATP-dependent transport of protons. In addition to their role in acidifying the lumen of various intracellular organelles, vacuolar H(+)-ATPases fulfill special tasks in the kidney. Vacuolar H(+)-ATPases are expressed in the plasma membrane in the kidney almost along the entire length of the nephron with apical and/or basolateral localization patterns. In the proximal tubule, a high number of vacuolar H(+)-ATPases are also found in endosomes, which are acidified by the pump. In addition, vacuolar H(+)-ATPases contribute to proximal tubular bicarbonate reabsorption. The importance in final urinary acidification along the collecting system is highlighted by monogenic defects in two subunits (ATP6V0A4, ATP6V1B1) of the vacuolar H(+)-ATPase in patients with distal renal tubular acidosis. The activity of vacuolar H(+)-ATPases is tightly regulated by a variety of factors such as the acid-base or electrolyte status. This regulation is at least in part mediated by various hormones and protein-protein interactions between regulatory proteins and multiple subunits of the pump.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, Univ. of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
48
|
Vidal R, Delisle MB, Ghetti B. Neurodegeneration Caused by Proteins with an Aberrant Carboxyl-Terminus. J Neuropathol Exp Neurol 2004; 63:787-800. [PMID: 15330334 DOI: 10.1093/jnen/63.8.787] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In recent years, 2 groups of hereditary neurodegenerative diseases have been recognized in which different genetic defects lead to the accumulation of proteins that contain a carboxyl-terminus that is abnormal in length and primary sequence. In this paper, we review the current knowledge on the molecular basis of diseases from these 2 groups. The first group includes familial British and Danish dementias, in which the molecular genetic defect resides in the BRI2 gene located on chromosome 13. In this group, carboxyl-terminal proteolytic products of the mutant BRI2 proteins aggregate in the extracellular space of the brain and in blood vessels. The second group includes 2 recently described ferritinopathies, in which the molecular genetic defect resides in the ferritin light polypeptide gene located on chromosome 19. In this group, full-length ferritin polypeptides aggregate intracellularly. The study of these conditions has led to the discovery of the BRI2 gene and to the finding of an unsuspected role for ferritin in neurodegeneration. These diseases provide new models in which to study the relationship between abnormal protein aggregation, neuronal cell death, and dementia.
Collapse
Affiliation(s)
- Ruben Vidal
- Indiana Alzheimer Disease Center and Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
49
|
Gong WM, Liu HY, Niu LW, Shi YY, Tang YJ, Teng MK, Wu JH, Liang DC, Wang DC, Wang JF, Ding JP, Hu HY, Huang QH, Zhang QH, Lu SY, An JL, Liang YH, Zheng XF, Gu XC, Su XD. Structural genomics efforts at the Chinese Academy of Sciences and Peking University. ACTA ACUST UNITED AC 2004; 4:137-9. [PMID: 14649298 DOI: 10.1023/a:1026152612590] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Structural genomics efforts at the Chinese Academy of Sciences and Peking University are reported in this article. The major targets for the structural genomics project are targeted proteins expressed in human hematopoietic stem/progenitor cells, proteins related to blood diseases and other human proteins. Up to now 328 target genes have been constructed in expression vectors. Among them, more than 50% genes have been expressed in Escherichia coli, approximately 25% of the resulting proteins are soluble, and 35 proteins have been purified. Crystallization, data collection and structure determination are continuing. Experiences accumulated during this initial stage are useful for designing and applying high-throughput approaches in structural genomics.
Collapse
Affiliation(s)
- W M Gong
- Key Laboratory of Structural Biology of Chinese Academy of Science, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schlee M, Krug T, Gires O, Zeidler R, Hammerschmidt W, Mailhammer R, Laux G, Sauer G, Lovric J, Bornkamm GW. Identification of Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) target proteins by proteome analysis: activation of EBNA2 in conditionally immortalized B cells reflects early events after infection of primary B cells by EBV. J Virol 2004; 78:3941-52. [PMID: 15047810 PMCID: PMC374249 DOI: 10.1128/jvi.78.8.3941-3952.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous B-lymphotropic herpesvirus associated with several malignant tumors, e.g., Burkitt's lymphoma and Hodgkin's disease, and is able to efficiently immortalize primary B lymphocytes in vitro. The growth program of infected B cells is initiated and maintained by the viral transcription factor EBV nuclear antigen 2 (EBNA2), which regulates viral and cellular genes, including the proto-oncogene c-myc. In our study, patterns of protein expression in B cells with and without EBNA2 were analyzed by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. For this purpose, we used a conditional immortalization system for EBV, a B cell line (EREB2-5) that expresses an estrogen receptor-EBNA2 fusion protein. In order to discriminate downstream targets of c-Myc from c-Myc-independent EBNA2 targets, we used an EREB2-5-derived cell line, P493-6, in which c-Myc is expressed under the control of a tetracycline-regulated promoter. Of 20 identified EBNA2 target proteins, 11 were c-Myc dependent and therefore most probably associated with proliferation, and one of these proteins was a posttranslationally modified protein, i.e., hypusinylated eIF5a. Finally, to estimate the relevance of EBNA2 targets during early EBV infection, we analyzed the proteomes of primary B cells before and after infection with EBV. The protein expression pattern induced upon EBV infection was similar to that following EBNA2 activation. These findings underscore the value of EREB2-5 cells as an appropriate model system for the analysis of early events in the process of EBV-mediated B-cell immortalization.
Collapse
Affiliation(s)
- Martin Schlee
- Institute of Clinical Molecular Biology and Tumor Genetics, GSF-National Research Center for EnvironmentHealth, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|