1
|
Devarakonda SS, Basha S, Pithakumar A, L B T, Mukunda DC, Rodrigues J, K A, Biswas S, Pai AR, Belurkar S, Mahato KK. Molecular mechanisms of neurofilament alterations and its application in assessing neurodegenerative disorders. Ageing Res Rev 2024; 102:102566. [PMID: 39481763 DOI: 10.1016/j.arr.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Neurofilaments are intermediate filaments present in neurons. These provide structural support and maintain the size and shape of the neurons. Dysregulation, mutation, and aggregation of neurofilaments raise the levels of these proteins in the blood and cerebrospinal fluid (CSF), which are characteristic features of axonal damage and certain rare neurological diseases, such as Giant Axonal Neuropathy and Charcot-Mare-Tooth disease. Understanding the structure, dynamics, and function of neurofilaments has been greatly enhanced by a diverse range of biochemical and preclinical investigations conducted over more than four decades. Recently, there has been a resurgence of interest in post-translational modifications of neurofilaments, such as phosphorylation, aggregation, mutation, oxidation, etc. Over the past twenty years, several rare disorders have been studied from structural alterations of neurofilaments. These disorders are monitored by fluid biomarkers such as neurofilament light chains. Currently, there are many tools, such as Enzyme-Linked Immunosorbent Assay, Electrochemiluminescence Assay, Single-Molecule Array, Western/immunoblotting, etc., in use to assess the neurofilament proteins in Blood and CSF. However, all these techniques utilize expensive, non-specific, or antibody-based methods, which make them unsuitable for routine screening of neurodegenerative disorders. This provides room to search for newer sensitive, cost-effective, point-of-care tools for rapid screening of the disease. For a long time, the molecular mechanisms of neurofilaments have been poorly understood due to insufficient research attempts, and a deeper understanding of them remains elusive. Therefore, this review aims to highlight the available literature on molecular mechanisms of neurofilaments and the function of neurofilaments in axonal transport, axonal conduction, axonal growth, and neurofilament aggregation, respectively. Further, this review discusses the role of neurofilaments as potential biomarkers for the identification of several neurodegenerative diseases in clinical laboratory practice.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Anjana Pithakumar
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Thoshna L B
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Ameera K
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Shimul Biswas
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Sushma Belurkar
- Department of Pathology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India.
| |
Collapse
|
2
|
Zhou L, Xie M, Wang X, Xu R. The usage and advantages of several common amyotrophic lateral sclerosis animal models. Front Neurosci 2024; 18:1341109. [PMID: 38595972 PMCID: PMC11002901 DOI: 10.3389/fnins.2024.1341109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/29/2024] [Indexed: 04/11/2024] Open
Abstract
Amyotrophic lateral sclerosis is a fatal, multigenic, multifactorial neurodegenerative disease characterized by upper and lower motor neuron loss. Animal models are essential for investigating pathogenesis and reflecting clinical manifestations, particularly in developing reasonable prevention and therapeutic methods for human diseases. Over the decades, researchers have established a host of different animal models in order to dissect amyotrophic lateral sclerosis (ALS), such as yeast, worms, flies, zebrafish, mice, rats, pigs, dogs, and more recently, non-human primates. Although these models show different peculiarities, they are all useful and complementary to dissect the pathological mechanisms of motor neuron degeneration in ALS, contributing to the development of new promising therapeutics. In this review, we describe several common animal models in ALS, classified by the naturally occurring and experimentally induced, pointing out their features in modeling, the onset and progression of the pathology, and their specific pathological hallmarks. Moreover, we highlight the pros and cons aimed at helping the researcher select the most appropriate among those common experimental animal models when designing a preclinical ALS study.
Collapse
Affiliation(s)
- Lijun Zhou
- Department of Neurology, Jiangxi Provincial People’s Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Meng Xie
- Health Management Center, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Xinxin Wang
- Department of Neurology, Jiangxi Provincial People’s Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People’s Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|
4
|
Allison RL, Adelman JW, Abrudan J, Urrutia RA, Zimmermann MT, Mathison AJ, Ebert AD. Microglia Influence Neurofilament Deposition in ALS iPSC-Derived Motor Neurons. Genes (Basel) 2022; 13:241. [PMID: 35205286 PMCID: PMC8871895 DOI: 10.3390/genes13020241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which upper and lower motor neuron loss is the primary phenotype, leading to muscle weakness and wasting, respiratory failure, and death. Although a portion of ALS cases are linked to one of over 50 unique genes, the vast majority of cases are sporadic in nature. However, the mechanisms underlying the motor neuron loss in either familial or sporadic ALS are not entirely clear. Here, we used induced pluripotent stem cells derived from a set of identical twin brothers discordant for ALS to assess the role of astrocytes and microglia on the expression and accumulation of neurofilament proteins in motor neurons. We found that motor neurons derived from the affected twin which exhibited increased transcript levels of all three neurofilament isoforms and increased expression of phosphorylated neurofilament puncta. We further found that treatment of the motor neurons with astrocyte-conditioned medium and microglial-conditioned medium significantly impacted neurofilament deposition. Together, these data suggest that glial-secreted factors can alter neurofilament pathology in ALS iPSC-derived motor neurons.
Collapse
Affiliation(s)
- Reilly L. Allison
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.L.A.); (J.W.A.)
| | - Jacob W. Adelman
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.L.A.); (J.W.A.)
| | - Jenica Abrudan
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA; (J.A.); (R.A.U.); (M.T.Z.); (A.J.M.)
| | - Raul A. Urrutia
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA; (J.A.); (R.A.U.); (M.T.Z.); (A.J.M.)
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael T. Zimmermann
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA; (J.A.); (R.A.U.); (M.T.Z.); (A.J.M.)
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Angela J. Mathison
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA; (J.A.); (R.A.U.); (M.T.Z.); (A.J.M.)
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.L.A.); (J.W.A.)
| |
Collapse
|
5
|
Castellanos-Montiel MJ, Chaineau M, Durcan TM. The Neglected Genes of ALS: Cytoskeletal Dynamics Impact Synaptic Degeneration in ALS. Front Cell Neurosci 2020; 14:594975. [PMID: 33281562 PMCID: PMC7691654 DOI: 10.3389/fncel.2020.594975] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that selectively affects motor neurons (MNs) of the cortex, brainstem, and spinal cord. Several genes have been linked to both familial (fALS) and sporadic (sALS) cases of ALS. Among all the ALS-related genes, a group of genes known to directly affect cytoskeletal dynamics (ALS2, DCTN1, PFN1, KIF5A, NF-L, NF-H, PRPH, SPAST, and TUBA4A) is of high importance for MN health and survival, considering that MNs are large polarized cells with axons that can reach up to 1 m in length. In particular, cytoskeletal dynamics facilitate the transport of organelles and molecules across the long axonal distances within the cell, playing a key role in synapse maintenance. The majority of ALS-related genes affecting cytoskeletal dynamics were identified within the past two decades, making it a new area to explore for ALS. The purpose of this review is to provide insights into ALS-associated cytoskeletal genes and outline how recent studies have pointed towards novel pathways that might be impacted in ALS. Further studies making use of extensive analysis models to look for true hits, the newest technologies such as CRIPSR/Cas9, human induced pluripotent stem cells (iPSCs) and axon sequencing, as well as the development of more transgenic animal models could potentially help to: differentiate the variants that truly act as a primary cause of the disease from the ones that act as risk factors or disease modifiers, identify potential interactions between two or more ALS-related genes in disease onset and progression and increase our understanding of the molecular mechanisms leading to cytoskeletal defects. Altogether, this information will give us a hint on the real contribution of the cytoskeletal ALS-related genes during this lethal disease.
Collapse
Affiliation(s)
| | - Mathilde Chaineau
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Zucchi E, Lu CH, Cho Y, Chang R, Adiutori R, Zubiri I, Ceroni M, Cereda C, Pansarasa O, Greensmith L, Malaspina A, Petzold A. A motor neuron strategy to save time and energy in neurodegeneration: adaptive protein stoichiometry. J Neurochem 2019; 146:631-641. [PMID: 29959860 PMCID: PMC6175430 DOI: 10.1111/jnc.14542] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023]
Abstract
Neurofilament proteins (Nf) are a biomarker of disease progression in amyotrophic lateral sclerosis (ALS). This study investigated whether there are major differences in expression from in vivo measurements of neurofilament isoforms, from the light chain, NfL (68 kDa), compared with larger proteins, the medium chain (NfM, 150 kDa) and the heavy (NfH, 200‐210 kDa) chains in ALS patients and healthy controls. New immunological methods were combined with Nf subunit stoichiometry calculations and Monte Carlo simulations of a coarse‐grained Nf brush model. Based on a physiological Nf subunit stoichiometry of 7 : 3 : 2 (NfL:NfM:NfH), we found an ‘adaptive’ Nf subunit stoichiometry of 24 : 2.4 : 1.6 in ALS. Adaptive Nf stoichiometry preserved NfL gyration radius in the Nf brush model. The energy and time requirements for Nf translation were 56 ± 27k ATP (5.6 h) in control subjects compared to 123 ± 102k (12.3 h) in ALS with ‘adaptive’ (24:2.4:1.6) Nf stoichiometry (not significant) and increased significantly to 355 ± 330k (35.5 h) with ‘luxury’ (7:3:2) Nf subunit stoichiometry (p < 0.0001 for each comparison). Longitudinal disease progression‐related energy consumption was highest with a ‘luxury’ (7:3:2) Nf stoichiometry. Therefore, an energy and time‐saving option for motor neurons is to shift protein expression from larger to smaller (cheaper) subunits, at little or no costs on a protein structural level, to compensate for increased energy demands. ![]()
Collapse
Affiliation(s)
- Elisabetta Zucchi
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Center of Genomic and post-Genomic, IRCCS Mondino Foundation, Pavia, Italy
| | - Ching-Hua Lu
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Neurology, China Medical University Hospital, Taichung City, Taiwan
| | - Yunju Cho
- Department of Chemistry, Kwangwoon University, Seoul, Korea
| | - Rakwoo Chang
- Department of Chemistry, Kwangwoon University, Seoul, Korea
| | - Rocco Adiutori
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Irene Zubiri
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mauro Ceroni
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,General Neurology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Cereda
- Center of Genomic and post-Genomic, IRCCS Mondino Foundation, Pavia, Italy
| | - Orietta Pansarasa
- Center of Genomic and post-Genomic, IRCCS Mondino Foundation, Pavia, Italy
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, University College London, London, UK
| | - Andrea Malaspina
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Axel Petzold
- Department of Neuromuscular Diseases, MRC Centre for Neuromuscular Diseases, Queen Square, London, UK.,The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.,Moorfields Eye Hospital, London, UK.,Amsterdam UMC, Departments of Neurology and Ophthalmology, De Boelelaan, Amsterdam, NL
| |
Collapse
|
7
|
Tung YT, Peng KC, Chen YC, Yen YP, Chang M, Thams S, Chen JA. Mir-17∼92 Confers Motor Neuron Subtype Differential Resistance to ALS-Associated Degeneration. Cell Stem Cell 2019; 25:193-209.e7. [PMID: 31155482 DOI: 10.1016/j.stem.2019.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/14/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
Abstract
Progressive degeneration of motor neurons (MNs) is the hallmark of amyotrophic lateral sclerosis (ALS). Limb-innervating lateral motor column MNs (LMC-MNs) seem to be particularly vulnerable and are among the first MNs affected in ALS. Here, we report association of this differential susceptibility with reduced expression of the mir-17∼92 cluster in LMC-MNs prior to disease onset. Reduced mir-17∼92 is accompanied by elevated nuclear PTEN in spinal MNs of presymptomatic SOD1G93A mice. Selective dysregulation of the mir-17∼92/nuclear PTEN axis in degenerating SOD1G93A LMC-MNs was confirmed in a double-transgenic embryonic stem cell system and recapitulated in human SOD1+/L144F-induced pluripotent stem cell (iPSC)-derived MNs. We further show that overexpression of mir-17∼92 significantly rescues human SOD1+/L144F MNs, and intrathecal delivery of adeno-associated virus (AAV)9-mir-17∼92 improves motor deficits and survival in SOD1G93A mice. Thus, mir-17∼92 may have value as a prognostic marker of MN degeneration and is a candidate therapeutic target in SOD1-linked ALS. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Ying-Tsen Tung
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Kuan-Chih Peng
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yen-Chung Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ya-Ping Yen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Mien Chang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Sebastian Thams
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
8
|
Gomez M, Germain D. Cross talk between SOD1 and the mitochondrial UPR in cancer and neurodegeneration. Mol Cell Neurosci 2019; 98:12-18. [PMID: 31028834 DOI: 10.1016/j.mcn.2019.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 01/23/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is rapidly gaining attention. While the CHOP (ATF4/5) axis of the UPRmt was the first to be described, other axes have subsequently been reported. Validation of this complex pathway in C. elegans has been extensively studied. However, validation of the UPRmt in mouse models of disease known to implicate mitochondrial reprogramming or dysfunction, such as cancer and neurodegeneration, respectively, is only beginning to emerge. This review summarizes recent findings and highlights the major role of the superoxide dismutase SOD1 in the communication between the mitochondria and the nucleus in these settings. While SOD1 has mostly been studied in the context of familial amyotrophic lateral sclerosis (fALS), recent studies suggest that SOD1 may be a potentially important mediator of the UPRmt and converge to emphasize an increasingly vital role of SOD1 as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Maria Gomez
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Department of Medicine, Division of Hematology/Oncology, New York, 10029, NY, USA
| | - Doris Germain
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Department of Medicine, Division of Hematology/Oncology, New York, 10029, NY, USA.
| |
Collapse
|
9
|
Poesen K, Van Damme P. Diagnostic and Prognostic Performance of Neurofilaments in ALS. Front Neurol 2019; 9:1167. [PMID: 30713520 PMCID: PMC6345692 DOI: 10.3389/fneur.2018.01167] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/17/2018] [Indexed: 01/03/2023] Open
Abstract
There is a need for biomarkers for amyotrophic lateral sclerosis (ALS), to support the diagnosis of the disease, to predict disease progression and to track disease activity and treatment responses. Over the last decade multiple studies have investigated the potential of neurofilament levels, both in cerebrospinal fluid and blood, as biomarker for ALS. The most widely studied neurofilament subunits are neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (pNfH). Neurofilament levels are reflecting neuronal injury and therefore potentially of value in ALS and other neurological disorders. In this mini-review, we summarize and discuss the available evidence about neurofilaments as diagnostic and prognostic biomarker for human ALS.
Collapse
Affiliation(s)
- Koen Poesen
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, KU Leuven, Leuven, Belgium.,Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Philip Van Damme
- Laboratory of Neurobiology, Department of Neurosciences, KU Leuven and Center for Brain & Disease Research VIB Leuven, Leuven, Belgium.,Department of Neurology, Neuromuscular Reference Centre, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Kounakis K, Tavernarakis N. The Cytoskeleton as a Modulator of Aging and Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:227-245. [PMID: 31493230 DOI: 10.1007/978-3-030-25650-0_12] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cytoskeleton consists of filamentous protein polymers that form organized structures, contributing to a multitude of cell life aspects. It includes three types of polymers: the actin microfilaments, the microtubules and the intermediate filaments. Decades of research have implicated the cytoskeleton in processes that regulate cellular and organismal aging, as well as neurodegeneration associated with injury or neurodegenerative disease, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic Lateral Sclerosis, or Charcot Marie Tooth disease. Here, we provide a brief overview of cytoskeletal structure and function, and discuss experimental evidence linking cytoskeletal function and dynamics with aging and neurodegeneration.
Collapse
Affiliation(s)
- Konstantinos Kounakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece. .,Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece.
| |
Collapse
|
11
|
Yanagi KS, Wu Z, Amaya J, Chapkis N, Duffy AM, Hajdarovic KH, Held A, Mathur AD, Russo K, Ryan VH, Steinert BL, Whitt JP, Fallon JR, Fawzi NL, Lipscombe D, Reenan RA, Wharton KA, Hart AC. Meta-analysis of Genetic Modifiers Reveals Candidate Dysregulated Pathways in Amyotrophic Lateral Sclerosis. Neuroscience 2019; 396:A3-A20. [PMID: 30594291 PMCID: PMC6549511 DOI: 10.1016/j.neuroscience.2018.10.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that has significant overlap with frontotemporal dementia (FTD). Mutations in specific genes have been identified that can cause and/or predispose patients to ALS. However, the clinical variability seen in ALS patients suggests that additional genes impact pathology, susceptibility, severity, and/or progression of the disease. To identify molecular pathways involved in ALS, we undertook a meta-analysis of published genetic modifiers both in patients and in model organisms, and undertook bioinformatic pathway analysis. From 72 published studies, we generated a list of 946 genes whose perturbation (1) impacted ALS in patient populations, (2) altered defects in laboratory models, or (3) modified defects caused by ALS gene ortholog loss of function. Herein, these are all called modifier genes. We found 727 modifier genes that encode proteins with human orthologs. Of these, 43 modifier genes were identified as modifiers of more than one ALS gene/model, consistent with the hypothesis that shared genes and pathways may underlie ALS. Further, we used a gene ontology-based bioinformatic analysis to identify pathways and associated genes that may be important in ALS. To our knowledge this is the first comprehensive survey of ALS modifier genes. This work suggests that shared molecular mechanisms may underlie pathology caused by different ALS disease genes. Surprisingly, few ALS modifier genes have been tested in more than one disease model. Understanding genes that modify ALS-associated defects will help to elucidate the molecular pathways that underlie ALS and provide additional targets for therapeutic intervention.
Collapse
Affiliation(s)
- Katherine S Yanagi
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Zhijin Wu
- Department of Biostatistics, Brown University, Providence, Rhode Island 02912, United States.
| | - Joshua Amaya
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Natalie Chapkis
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Amanda M Duffy
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Kaitlyn H Hajdarovic
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Aaron Held
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Arjun D Mathur
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Kathryn Russo
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Veronica H Ryan
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Beatrice L Steinert
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Joshua P Whitt
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Justin R Fallon
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Diane Lipscombe
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Robert A Reenan
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Kristi A Wharton
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Anne C Hart
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| |
Collapse
|
12
|
Genome-wide RNA-seq of iPSC-derived motor neurons indicates selective cytoskeletal perturbation in Brown-Vialetto disease that is partially rescued by riboflavin. Sci Rep 2017; 7:46271. [PMID: 28382968 PMCID: PMC5382781 DOI: 10.1038/srep46271] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
Abstract
Riboflavin is essential in numerous cellular oxidation/reduction reactions but is not synthesized by mammalian cells. Riboflavin absorption occurs through the human riboflavin transporters RFVT1 and RFVT3 in the intestine and RFVT2 in the brain. Mutations in these genes are causative for the Brown–Vialetto–Van Laere (BVVL), childhood-onset syndrome characterized by a variety of cranial nerve palsies as well as by spinal cord motor neuron (MN) degeneration. Why mutations in RFVTs result in a neural cell–selective disorder is unclear. As a novel tool to gain insights into the pathomechanisms underlying the disease, we generated MNs from induced pluripotent stem cells (iPSCs) derived from BVVL patients as an in vitro disease model. BVVL-MNs explained a reduction in axon elongation, partially improved by riboflavin supplementation. RNA sequencing profiles and protein studies of the cytoskeletal structures showed a perturbation in the neurofilament composition in BVVL-MNs. Furthermore, exploring the autophagy–lysosome pathway, we observed a reduced autophagic/mitophagic flux in patient MNs. These features represent emerging pathogenetic mechanisms in BVVL-associated neurodegeneration, partially rescued by riboflavin supplementation. Our data showed that this therapeutic strategy could have some limits in rescuing all of the disease features, suggesting the need to develop complementary novel therapeutic strategies.
Collapse
|
13
|
|
14
|
Aronica E, Baas F, Iyer A, ten Asbroek AL, Morello G, Cavallaro S. Molecular classification of amyotrophic lateral sclerosis by unsupervised clustering of gene expression in motor cortex. Neurobiol Dis 2015; 74:359-76. [DOI: 10.1016/j.nbd.2014.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/12/2014] [Accepted: 12/02/2014] [Indexed: 12/15/2022] Open
|
15
|
Ahuja A, Dev K, Tanwar RS, Selwal KK, Tyagi PK. Copper mediated neurological disorder: visions into amyotrophic lateral sclerosis, Alzheimer and Menkes disease. J Trace Elem Med Biol 2015; 29:11-23. [PMID: 24975171 DOI: 10.1016/j.jtemb.2014.05.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/16/2014] [Accepted: 05/08/2014] [Indexed: 12/31/2022]
Abstract
Copper (Cu) is a vital redox dynamic metal that is possibly poisonous in superfluous. Metals can traditionally or intricately cause propagation in reactive oxygen species (ROS) accretion in cells and this may effect in programmed cell death. Accumulation of Cu causes necrosis that looks to be facilitated by DNA damage, followed by activation of P53. Cu dyshomeostasis has also been concerned in neurodegenerative disorders such as Alzheimer, Amyotrophic lateral sclerosis (ALS) or Menkes disease and is directly related to neurodegenerative syndrome that usually produces senile dementia. These mortal syndromes are closely related with an immense damage of neurons and synaptic failure in the brain. This review focuses on copper mediated neurological disorders with insights into amyotrophic lateral sclerosis, Alzheimer and Menkes disease.
Collapse
Affiliation(s)
- Anami Ahuja
- Department of Biotechnology, NIMS University, Jaipur, India.
| | - Kapil Dev
- Faculty of Medicine in Hradec Kralove, University of Charles, Prague, Czech Republic
| | - Ranjeet S Tanwar
- Department of Biotechnology, N.C. College of Engineering, Israna, India
| | - Krishan K Selwal
- Department of Biotechnology, Deenbandhu Chotu Ram University of Science and Technology, Murthal, India
| | - Pankaj K Tyagi
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut, India
| |
Collapse
|
16
|
Papa L, Manfredi G, Germain D. SOD1, an unexpected novel target for cancer therapy. Genes Cancer 2014; 5:15-21. [PMID: 24955214 PMCID: PMC4063254 DOI: 10.18632/genesandcancer.4] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 04/22/2014] [Indexed: 11/25/2022] Open
Abstract
Cancer cells have elevated levels of reactive oxygen species (ROS), which are generated in majority by the mitochondria. In the mitochondrial matrix, the manganese dismutase SOD2 acts as a major anti-oxidant enzyme. The deacetylase SIRT3 regulates the activity of SOD2. Recently, SIRT3 was reported to be decreased in 87% of breast cancers, resulting therefore in a decrease in the activity of SOD2 and an elevation in ROS. In addition to SIRT3, we recently reported that SOD2 itself is down-regulated in breast cancer cell lines upon activation of oncogenes, such as Ras. Since in absence of SOD2, superoxide levels are elevated and may cause irreversible damage, mechanisms must exist to retain superoxide below a critical threshold and maintain viability of cancer cells. The copper/zinc dismutase SOD1 localizes in the cytoplasm, the inter-membrane space of the mitochondria and the nucleus. Emerging evidences from several groups now indicate that SOD1 is overexpressed in cancers and that the activity of SOD1 may be essential to maintain cellular ROS under this critical threshold. This review summarizes the studies reporting important roles of SOD1 in cancer and addresses the potential cross-talk between the overexpression of SOD1 and the regulation of the mitochondrial unfolded protein response (UPR(mt)). While mutations in SOD1 is the cause of 20% of cases of familial amyotrophic lateral sclerosis (fALS), a devastating neurodegenerative disease, these new studies expand the role of SOD1 to cancer.
Collapse
Affiliation(s)
- Luena Papa
- From the Department of Medicine, Division of Hematology/Oncology, Tisch Cancer Institute Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY
| | - Giovanni Manfredi
- The Weill Cornell Medical College, Department of Neurology and Neuroscience, New York, New York
| | - Doris Germain
- From the Department of Medicine, Division of Hematology/Oncology, Tisch Cancer Institute Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY
| |
Collapse
|
17
|
Chen H, Qian K, Du Z, Cao J, Petersen A, Liu H, Blackbourn LW, Huang CL, Errigo A, Yin Y, Lu J, Ayala M, Zhang SC. Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell 2014; 14:796-809. [PMID: 24704493 DOI: 10.1016/j.stem.2014.02.004] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 01/12/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) presents motoneuron (MN)-selective protein inclusions and axonal degeneration but the underlying mechanisms of such are unknown. Using induced pluripotent cells (iPSCs) from patients with mutation in the Cu/Zn superoxide dismutase (SOD1) gene, we show that spinal MNs, but rarely non-MNs, exhibited neurofilament (NF) aggregation followed by neurite degeneration when glia were not present. These changes were associated with decreased stability of NF-L mRNA and binding of its 3' UTR by mutant SOD1 and thus altered protein proportion of NF subunits. Such MN-selective changes were mimicked by expression of a single copy of the mutant SOD1 in human embryonic stem cells and were prevented by genetic correction of the SOD1 mutation in patient's iPSCs. Importantly, conditional expression of NF-L in the SOD1 iPSC-derived MNs corrected the NF subunit proportion, mitigating NF aggregation and neurite degeneration. Thus, NF misregulation underlies mutant SOD1-mediated NF aggregation and axonal degeneration in ALS MNs.
Collapse
Affiliation(s)
- Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Kun Qian
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Zhongwei Du
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Jingyuan Cao
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Andrew Petersen
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Huisheng Liu
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | | | | | - Anthony Errigo
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Yingnan Yin
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Jianfeng Lu
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Melvin Ayala
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA; Department of Neuroscience and Department of Neurology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
18
|
Hitchler MJ, Domann FE. Regulation of CuZnSOD and its redox signaling potential: implications for amyotrophic lateral sclerosis. Antioxid Redox Signal 2014; 20:1590-8. [PMID: 23795822 PMCID: PMC3960847 DOI: 10.1089/ars.2013.5385] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Molecular oxygen is a Janus-faced electron acceptor for biological systems, serving as a reductant for respiration, or as the genesis for oxygen-derived free radicals that damage macromolecules. Superoxide is well known to perturb nonheme iron proteins, including Fe/S proteins such as aconitase and succinate dehydrogenase, as well as other enzymes containing labile iron such as the prolyl hydroxylase domain-containing family of enzymes; whereas hydrogen peroxide is more specific for two-electron reactions with thiols on glutathione, glutaredoxin, thioredoxin, and the peroxiredoxins. RECENT ADVANCES Over the past two decades, familial cases of amyotrophic lateral sclerosis (ALS) have been shown to have an association with commonly altered superoxide dismutase 1 (SOD1) activity, expression, and protein structure. This has led to speculation that an altered redox balance may have a role in creating the ALS phenotype. CRITICAL ISSUES While SOD1 alterations in familial ALS are manifold, they generally create perturbations in the flux of electrons. The nexus of SOD1 between one- and two-electron signaling processes places it at a key signaling regulatory checkpoint for governing cellular responses to physiological and environmental cues. FUTURE DIRECTIONS The manner in which ALS-associated mutations adjust SOD1's role in controlling the flow of electrons between one- and two-electron signaling processes remains obscure. Here, we discuss the ways in which SOD1 mutations influence the form and function of copper zinc SOD, the consequences of these alterations on free radical biology, and how these alterations might influence cell signaling during the onset of ALS.
Collapse
Affiliation(s)
- Michael J Hitchler
- 1 Department of Radiation Oncology, Kaiser Permanente Los Angeles Medical Center , Los Angeles, California
| | | |
Collapse
|
19
|
Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration. Neuron 2014; 81:333-48. [PMID: 24462097 DOI: 10.1016/j.neuron.2013.12.009] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2013] [Indexed: 11/24/2022]
Abstract
Selective neuronal loss is the hallmark of neurodegenerative diseases. In patients with amyotrophic lateral sclerosis (ALS), most motor neurons die but those innervating extraocular, pelvic sphincter, and slow limb muscles exhibit selective resistance. We identified 18 genes that show >10-fold differential expression between resistant and vulnerable motor neurons. One of these, matrix metalloproteinase-9 (MMP-9), is expressed only by fast motor neurons, which are selectively vulnerable. In ALS model mice expressing mutant superoxide dismutase (SOD1), reduction of MMP-9 function using gene ablation, viral gene therapy, or pharmacological inhibition significantly delayed muscle denervation. In the presence of mutant SOD1, MMP-9 expressed by fast motor neurons themselves enhances activation of ER stress and is sufficient to trigger axonal die-back. These findings define MMP-9 as a candidate therapeutic target for ALS. The molecular basis of neuronal diversity thus provides significant insights into mechanisms of selective vulnerability to neurodegeneration.
Collapse
|
20
|
Chen S, Sayana P, Zhang X, Le W. Genetics of amyotrophic lateral sclerosis: an update. Mol Neurodegener 2013; 8:28. [PMID: 23941283 PMCID: PMC3766231 DOI: 10.1186/1750-1326-8-28] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder involving both upper motor neurons (UMN) and lower motor neurons (LMN). Enormous research has been done in the past few decades in unveiling the genetics of ALS, successfully identifying at least fifteen candidate genes associated with familial and sporadic ALS. Numerous studies attempting to define the pathogenesis of ALS have identified several plausible determinants and molecular pathways leading to motor neuron degeneration, which include oxidative stress, glutamate excitotoxicity, apoptosis, abnormal neurofilament function, protein misfolding and subsequent aggregation, impairment of RNA processing, defects in axonal transport, changes in endosomal trafficking, increased inflammation, and mitochondrial dysfunction. This review is to update the recent discoveries in genetics of ALS, which may provide insight information to help us better understanding of the disease neuropathogenesis.
Collapse
Affiliation(s)
- Sheng Chen
- Institute of Neurology, Jiao Tong University School of Medicine, 1201 Room, 11 Building, Ruijin Er Road, Shanghai 200025, China.
| | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, NY 10962, USA.
| | | | | | | |
Collapse
|
22
|
Liu JX, Brännström T, Andersen PM, Pedrosa-Domellöf F. Distinct changes in synaptic protein composition at neuromuscular junctions of extraocular muscles versus limb muscles of ALS donors. PLoS One 2013; 8:e57473. [PMID: 23468993 PMCID: PMC3582511 DOI: 10.1371/journal.pone.0057473] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/21/2013] [Indexed: 12/11/2022] Open
Abstract
The pathophysiology of amyotrophic lateral sclerosis (ALS) is very complex and still rather elusive but in recent years evidence of early involvement of the neuromuscular junctions (NMJs) has accumulated. We have recently reported that the human extraocular muscles (EOMs) are far less affected than limb muscles at the end-stage of ALS from the same donor. The present study aimed to compare the differences in synaptic protein composition at NMJ and in nerve fibers between EOM and limb muscles from ALS donors and controls. Neurofilament light subunit and synaptophysin decreased significantly at NMJs and in nerve fibers in limb muscles with ALS whereas they were maintained in ALS EOMs. S100B was significantly decreased at NMJs and in nerve fibers in both EOMs and limb muscles of ALS donors, but other markers confirmed the presence of terminal Schwann cells in these NMJs. p75 neurotrophin receptor was present in nerve fibers but absent at NMJs in ALS limb muscles. The EOMs were able to maintain the integrity of their NMJs to a very large extent until the end-stage of ALS, in contrast to the limb muscles. Changes in Ca2+ homeostasis, reflected by altered S100B distribution, might be involved in the breakdown of nerve-muscle contact at NMJs in ALS.
Collapse
Affiliation(s)
- Jing-Xia Liu
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden.
| | | | | | | |
Collapse
|
23
|
|
24
|
Redler RL, Dokholyan NV. The complex molecular biology of amyotrophic lateral sclerosis (ALS). PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:215-62. [PMID: 22482452 DOI: 10.1016/b978-0-12-385883-2.00002-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder that causes selective death of motor neurons followed by paralysis and death. A subset of ALS cases is caused by mutations in the gene for Cu, Zn superoxide dismutase (SOD1), which impart a toxic gain of function to this antioxidant enzyme. This neurotoxic property is widely believed to stem from an increased propensity to misfold and aggregate caused by decreased stability of the native homodimer or a tendency to lose stabilizing posttranslational modifications. Study of the molecular mechanisms of SOD1-related ALS has revealed a complex array of interconnected pathological processes, including glutamate excitotoxicity, dysregulation of neurotrophic factors and axon guidance proteins, axonal transport defects, mitochondrial dysfunction, deficient protein quality control, and aberrant RNA processing. Many of these pathologies are directly exacerbated by misfolded and aggregated SOD1 and/or cytosolic calcium overload, suggesting the primacy of these events in disease etiology and their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rachel L Redler
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
25
|
Paratore S, Pezzino S, Cavallaro S. Identification of pharmacological targets in amyotrophic lateral sclerosis through genomic analysis of deregulated genes and pathways. Curr Genomics 2012; 13:321-33. [PMID: 23204922 PMCID: PMC3394120 DOI: 10.2174/138920212800793366] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/30/2012] [Accepted: 04/04/2012] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive and disabling neurodegenerative disorder characterized by upper and lower motor neuron loss, leading to respiratory insufficiency and death after 3-5 years. Riluzole is currently the only FDA approved drug for ALS, but it has only modest effects on survival. The majority of ALS cases are sporadic and probably associated to a multifactorial etiology. With the completion of genome sequencing in humans and model organisms, together with the advent of DNA microarray technology, the transcriptional cascades and networks underlying neurodegeneration in ALS are being elucidated providing new potential pharmacological targets. The main challenge now is the effective screening of the myriad of targets to identify those with the most therapeutic utility. The present review will illustrate how the identification, prioritization and validation of preclinical therapeutics can be achieved through genomic analysis of critical pathways and networks deregulated in ALS pathology.
Collapse
Affiliation(s)
- Sabrina Paratore
- Functional Genomics Center, Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
- Policlinico-Vittorio Emanuele, University Hospital, Catania, Italy
| | - Salvatore Pezzino
- Functional Genomics Center, Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
| | - Sebastiano Cavallaro
- Functional Genomics Center, Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
- Policlinico-Vittorio Emanuele, University Hospital, Catania, Italy
| |
Collapse
|
26
|
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease that results in increasing disability and that is uniformly fatal. Since its approval in the 1990s, riluzole remains the sole treatment for ALS offering modest survival benefit. While significant advances have been made in the symptomatic management of the disease, more effective drug therapy targeting disease progression is sorely needed. AREAS COVERED Advances in the understanding of pathogenic mechanisms involved in disease development and progression have provided multiple avenues for developing effective treatment strategies. This review highlights recent discoveries relating to these diverse mechanisms and their implications for the development of drug therapy. Previous human clinical trials that have targeted these pathways are mentioned and ongoing drug trials are discussed. EXPERT OPINION The search for effective drug therapy faces important challenges in the areas of basic science and animal research, translation of these results into human clinical trials, inherent bias in human studies and issues related to delays in clinical diagnosis. How these issues may be addressed and why ALS research constitutes fertile grounds for drug development not only for this devastating disease, but also for other more prevalent neurodegenerative diseases, is discussed in this review.
Collapse
Affiliation(s)
- Ali Aamer Habib
- The Neurological Institute of Columbia University, Eleanor and Lou Gehrig MDA/ALS Center, NY 10032, USA.
| | | |
Collapse
|
27
|
Nayagam BA, Muniak MA, Ryugo DK. The spiral ganglion: connecting the peripheral and central auditory systems. Hear Res 2011; 278:2-20. [PMID: 21530629 PMCID: PMC3152679 DOI: 10.1016/j.heares.2011.04.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/26/2011] [Accepted: 04/03/2011] [Indexed: 12/15/2022]
Abstract
In mammals, the initial bridge between the physical world of sound and perception of that sound is established by neurons of the spiral ganglion. The cell bodies of these neurons give rise to peripheral processes that contact acoustic receptors in the organ of Corti, and the central processes collect together to form the auditory nerve that projects into the brain. In order to better understand hearing at this initial stage, we need to know the following about spiral ganglion neurons: (1) their cell biology including cytoplasmic, cytoskeletal, and membrane properties, (2) their peripheral and central connections including synaptic structure; (3) the nature of their neural signaling; and (4) their capacity for plasticity and rehabilitation. In this report, we will update the progress on these topics and indicate important issues still awaiting resolution.
Collapse
Affiliation(s)
- Bryony A Nayagam
- Department of Otolaryngology, University of Melbourne, Melbourne, VIC Australia
| | - Michael A Muniak
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD USA
| | - David K Ryugo
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD USA
- Garvan Institute, Darlinghurst, NSW Australia
| |
Collapse
|
28
|
Riboldi G, Nizzardo M, Simone C, Falcone M, Bresolin N, Comi GP, Corti S. ALS genetic modifiers that increase survival of SOD1 mice and are suitable for therapeutic development. Prog Neurobiol 2011; 95:133-48. [PMID: 21816207 DOI: 10.1016/j.pneurobio.2011.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/19/2011] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a frequently fatal motor neuron disease without any cure. To find molecular therapeutic targets, several studies crossed transgenic ALS murine models with animals transgenic for some ALS target genes. We aimed to revise the new discoveries and new works in this field. We selected the 10 most promising genes, according to their capability when down-regulated or up-regulated in ALS animal models, for increasing life span and mitigating disease progression: XBP-1, NogoA and NogoB, dynein, heavy and medium neurofilament, NOX1 and NOX2, MLC-mIGF-1, NSE-VEGF, and MMP-9. Interestingly, some crucial modifier genes have been described as being involved in common pathways, the most significant of which are inflammation and cytoskeletal activities. The endoplasmic reticulum also seems to play an important role in ALS pathogenesis, as it is involved in different selected gene pathways. In addition, these genes have evident links to each other, introducing the hypothesis of a single unknown, common pathway involving all of these identified genes and others to be discovered.
Collapse
Affiliation(s)
- Giulietta Riboldi
- Department of Neurological Sciences, Dino Ferrari Centre, University of Milan, IRCCS Fondazione Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Szaro BG, Strong MJ. Regulation of Cytoskeletal Composition in Neurons: Transcriptional and Post-transcriptional Control in Development, Regeneration, and Disease. ADVANCES IN NEUROBIOLOGY 2011. [DOI: 10.1007/978-1-4419-6787-9_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
30
|
Stifanese R, Averna M, De Tullio R, Pedrazzi M, Beccaria F, Salamino F, Milanese M, Bonanno G, Pontremoli S, Melloni E. Adaptive modifications in the calpain/calpastatin system in brain cells after persistent alteration in Ca2+ homeostasis. J Biol Chem 2009; 285:631-43. [PMID: 19880516 DOI: 10.1074/jbc.m109.031674] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Persistent dysregulation in Ca(2+) homeostasis is a pervasive pathogenic mechanism in most neurodegenerative diseases, and accordingly, calpain activation has been implicated in neuronal cells dysfunction and death. In this study we examined the intracellular functional state of the calpain-calpastatin system in -G93A(+) SOD1 transgenic mice to establish if and how uncontrolled activation of calpain can be prevented in vivo during the course of prolonged [Ca(2+)](i) elevation. The presented data indicate that 1) calpain activation is more extensive in motor cortex, in lumbar, and sacral spinal cord segments compared with the lower or almost undetectable activation of the protease in other brain areas, 2) direct measurements of the variations of Ca(2+) levels established that the degree of the protease activation is correlated to the extent of elevation of [Ca(2+)](i), 3) intracellular activation of calpain is always associated with diffusion of calpastatin from perinuclear aggregated forms into the cytosol and the formation of a calpain-calpastatin complex, and 4) a conservative fragmentation of calpastatin is accompanied by its increased expression and inhibitory capacity in conditions of prolonged increase in [Ca(2+)](i). Thus, calpastatin diffusion and formation of the calpain-calpastatin complex together with an increased synthesis of the inhibitor protein represent a cellular defense response to conditions of prolonged dysregulation in intracellular Ca(2+) homeostasis. Altogether these findings provide a new understanding of the in vivo molecular mechanisms governing calpain activation that can be extended to many neurodegenerative diseases, potentially useful for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Roberto Stifanese
- Department of Experimental Medicine, Biochemistry Section, and Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 1-16132 Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vickers JC, King AE, Woodhouse A, Kirkcaldie MT, Staal JA, McCormack GH, Blizzard CA, Musgrove RE, Mitew S, Liu Y, Chuckowree JA, Bibari O, Dickson TC. Axonopathy and cytoskeletal disruption in degenerative diseases of the central nervous system. Brain Res Bull 2009; 80:217-23. [DOI: 10.1016/j.brainresbull.2009.08.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 08/03/2009] [Accepted: 08/05/2009] [Indexed: 12/11/2022]
|
32
|
Abstract
The causes of amyotrophic lateral sclerosis (ALS) are poorly understood. A small proportion, about 2%, is associated with a mutation in the superoxide dismutase (SOD1) gene, and mice expressing this mutant gene exhibit a progressive, ALS-like neurodegenerative disease. Studies of these animals, as well as of human post mortem tissue, reveal the presence of multiple pathological processes, including oxidative stress, glutamate excitotoxicity, neuroinflammation, mitochondrial degeneration, alterations in neurofilaments and neurotubules, mitochondrial damage, aggregation of proteins, abnormalities in growth factors, and apoptosis. We propose that alterations in the disposition of zinc ions may be important in the initiation and development of ALS. SOD1 binds zinc, and many of the mutant forms of this enzyme associated with ALS show altered zinc binding. Alterations in the expression of metallothioneins (MTs), which regulate cellular levels of zinc, have been reported in mutant SOD1 mice, and deletion of MTs in these animals accelerates disease progression. Zinc plays a key role in all the pathological processes associated with ALS. Our zinc hypothesis also may help explain evidence for environmental factors in some cases of ALS, such as in the Chamorro tribe in Guam and in the Gulf War.
Collapse
Affiliation(s)
- Andrew P Smith
- The Forbes Norris ALS Research Center, California Pacific Medical Center Research Institute, California 94115, USA
| | | |
Collapse
|
33
|
Trumbull KA, Beckman JS. A role for copper in the toxicity of zinc-deficient superoxide dismutase to motor neurons in amyotrophic lateral sclerosis. Antioxid Redox Signal 2009; 11:1627-39. [PMID: 19309264 PMCID: PMC2842582 DOI: 10.1089/ars.2009.2574] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 03/22/2009] [Indexed: 10/21/2022]
Abstract
In the 16 years since mutations to copper, zinc superoxide dismutase (SOD1) were first linked to familial amyotrophic lateral sclerosis (ALS), a multitude of apparently contradictory results have prevented any general consensus to emerge about the mechanism of toxicity. A decade ago, we showed that the loss of zinc from SOD1 results in the remaining copper in SOD1 to become extremely toxic to motor neurons in culture by a mechanism requiring nitric oxide. The loss of zinc causes SOD1 to become more accessible, more redox reactive, and a better catalyst of tyrosine nitration. Although SOD1 mutant proteins have a modestly reduced affinity for zinc, wild-type SOD1 can be induced to lose zinc by dialysis at slightly acidic pH. Our zinc-deficient hypothesis offers a compelling explanation for how mutant SOD1s have an increased propensity to become selectively toxic to motor neurons and also explains how wild-type SOD1 can be toxic in nonfamilial ALS patients. One critical prediction is that a therapeutic agent directed at zinc-deficient mutant SOD1 could be even more effective in treating sporadic ALS patients. Although transgenic mice experiments have yielded contradictory evidence to the zinc-deficient hypothesis, we will review more recent studies that support a role for copper in ALS. A more careful examination of the role of copper and zinc binding to SOD1 may help counter the growing disillusion in the ALS field about understanding the pathological role of SOD1.
Collapse
Affiliation(s)
- Kari A. Trumbull
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon
| | - Joseph S. Beckman
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon
- Environmental Health Science Center, Oregon State University, Corvallis, Oregon
| |
Collapse
|
34
|
Perrot R, Eyer J. Neuronal intermediate filaments and neurodegenerative disorders. Brain Res Bull 2009; 80:282-95. [PMID: 19539727 DOI: 10.1016/j.brainresbull.2009.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/05/2009] [Accepted: 06/05/2009] [Indexed: 12/12/2022]
Abstract
Intermediate filaments represent the most abundant cytoskeletal element in mature neurons. Mutations and/or accumulations of neuronal intermediate filament proteins are frequently observed in several human neurodegenerative disorders. Although it is now admitted that disorganization of the neurofilament network may be directly involved in neurodegeneration, certain type of perikaryal intermediate filament aggregates confer protection in motor neuron disease. The use of various mouse models provided a better knowledge of the role played by the disorganization of intermediate filaments in the pathogenesis of neurodegenerative disorders, but the mechanisms leading to the formation of these aggregates remain elusive. Here, we will review some neurodegenerative diseases involving intermediate filaments abnormalities and possible mechanisms susceptible to provoke them.
Collapse
Affiliation(s)
- Rodolphe Perrot
- Department of Anatomy and Physiology of Laval University, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | | |
Collapse
|
35
|
Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 2009; 65 Suppl 1:S3-9. [PMID: 19191304 DOI: 10.1002/ana.21543] [Citation(s) in RCA: 504] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanisms involved in selective motor neuron degeneration in amyotrophic lateral sclerosis remain unknown more than 135 years after the disease was first described. Although most cases have no known cause, mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) have been implicated in a fraction of familial cases of the disease. Transgenic mouse models with mutations in the SOD1 gene and other ALS genes develop pathology reminiscent of the disorder, including progressive death of motor neurons, and have provided insight into the pathogenesis of the disease but have consistently failed to predict therapeutic efficacy in humans. However, emerging research has demonstrated that mutations and pathology associated with the TDP-43 gene and protein may be more common than SOD1 mutations in familial and sporadic ALS. Putative mechanisms of toxicity targeting motor neurons include oxidative damage, accumulation of intracellular aggregates, mitochondrial dysfunction, defects in axonal transport, growth factor deficiency, aberrant RNA metabolism, glial cell pathology, and glutamate excitotoxicity. Convergence of these pathways is likely to mediate disease onset and progression.
Collapse
Affiliation(s)
- Jeffrey D Rothstein
- Department of Neurology and Neuroscience, Brain Science Institute, Johns Hopkins University, Baltimore, MD 21287, USA.
| |
Collapse
|
36
|
Vosler PS, Brennan CS, Chen J. Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. Mol Neurobiol 2008; 38:78-100. [PMID: 18686046 PMCID: PMC2726710 DOI: 10.1007/s12035-008-8036-x] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 07/17/2008] [Indexed: 12/19/2022]
Abstract
Calpain is a ubiquitous calcium-sensitive protease that is essential for normal physiologic neuronal function. However, alterations in calcium homeostasis lead to persistent, pathologic activation of calpain in a number of neurodegenerative diseases. Pathologic activation of calpain results in the cleavage of a number of neuronal substrates that negatively affect neuronal structure and function, leading to inhibition of essential neuronal survival mechanisms. In this review, we examine the mechanistic underpinnings of calcium dysregulation resulting in calpain activation in the acute neurodegenerative diseases such as cerebral ischemia and in the chronic neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, prion-related encephalopathy, and amylotrophic lateral sclerosis. The premise of this paper is that analysis of the signaling and transcriptional consequences of calpain-mediated cleavage of its various substrates for any neurodegenerative disease can be extrapolated to all of the neurodegenerative diseases vulnerable to calcium dysregulation.
Collapse
Affiliation(s)
- P S Vosler
- Department of Neurology, University of Pittsburgh School of Medicine, S-507, Biomedical Science Tower, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
37
|
Dequen F, Bomont P, Gowing G, Cleveland DW, Julien JP. Modest loss of peripheral axons, muscle atrophy and formation of brain inclusions in mice with targeted deletion of gigaxonin exon 1. J Neurochem 2008; 107:253-64. [PMID: 18680552 DOI: 10.1111/j.1471-4159.2008.05601.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mutations in the gigaxonin gene are responsible for giant axonal neuropathy (GAN), a progressive neurodegenerative disorder associated with abnormal accumulations of Intermediate Filaments (IFs). Gigaxonin is the substrate-specific adaptor for a new Cul3-E3-ubiquitin ligase family that promotes the proteasome dependent degradation of its partners MAP1B, MAP8 and tubulin cofactor B. Here, we report the generation of a mouse model with targeted deletion of Gan exon 1 (Gan(Deltaexon1;Deltaexon1)). Analyses of the Gan(Deltaexon1;Deltaexon1) mice revealed increased levels of various IFs proteins in the nervous system and the presence of IFs inclusion bodies in the brain. Despite deficiency of full length gigaxonin, the Gan(Deltaexon1;Deltaexon1) mice do not develop overt neurological phenotypes and giant axons reminiscent of the human GAN disease. Nonetheless, at 6 months of age the Gan(Deltaexon1;Deltaexon1) mice exhibit a modest hind limb muscle atrophy, a 10% decrease of muscle innervation and a 27% axonal loss in the L5 ventral roots. This new mouse model should provide a useful tool to test potential therapeutic approaches for GAN disease.
Collapse
Affiliation(s)
- Florence Dequen
- CHUL Research Centre and Department of Anatomy and Physiology, Laval University, Québec City, Québec, Canada
| | | | | | | | | |
Collapse
|
38
|
Perrot R, Berges R, Bocquet A, Eyer J. Review of the Multiple Aspects of Neurofilament Functions, and their Possible Contribution to Neurodegeneration. Mol Neurobiol 2008; 38:27-65. [DOI: 10.1007/s12035-008-8033-0] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 06/14/2008] [Indexed: 10/21/2022]
|
39
|
Abstract
Many major human neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS), display axonal pathologies including abnormal accumulations of proteins and organelles. Such pathologies highlight damage to the axon as part of the pathogenic process and, in particular, damage to transport of cargoes through axons. Indeed, we now know that disruption of axonal transport is an early and perhaps causative event in many of these diseases. Here, we review the role of axonal transport in neurodegenerative disease.
Collapse
Affiliation(s)
- Kurt J De Vos
- MRC Center for Neurodegeneration Research, Institute of Psychiatry, King's College, London SE5 8AF, United Kingdom.
| | | | | | | |
Collapse
|
40
|
Zetterberg H, Jacobsson J, Rosengren L, Blennow K, Andersen PM. Cerebrospinal fluid neurofilament light levels in amyotrophic lateral sclerosis: impact ofSOD1genotype. Eur J Neurol 2007; 14:1329-33. [PMID: 17903209 DOI: 10.1111/j.1468-1331.2007.01972.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative syndrome with familial and sporadic forms. Most ALS-associated mutations are found in the superoxide dismutase 1 (SOD1) gene. We conducted a study including 60 sporadic and 19 familial ALS patients, 206 reference patients with other neurological disorders and 40 age- and sex-matched healthy controls to test the hypothesis that cerebrospinal fluid (CSF) levels of neurofilament light (NF-L) protein, a marker of axonal degeneration, might provide diagnostic and prognostic information on the disease. All ALS patients were screened for SOD1 mutations. Ten of the familial and five of the sporadic cases carried SOD1 mutations. NF-L concentration [median (range)] was strongly elevated in ALS [2110 (255-10 800) ng/l] compared with reference patients and healthy controls [277 (<125-15 506) and 175 (<125-710) ng/l, respectively, P < 0.001] and correlated inversely with disease duration (Spearman R = -0.518, P = 0.001). NF-L levels were lower in SOD1 mutation-associated ALS compared with SOD1 wild-type (wt) ALS (P = 0.03). In conclusion, CSF NF-L levels may provide both diagnostic and prognostic information, particularly in SOD1 wt ALS.
Collapse
Affiliation(s)
- H Zetterberg
- Department of Neurochemistry and Psychiatry, Sahlgrenska University Hospital, Göteborg University, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
41
|
Hu X, Shi Q, Zhou X, He W, Yi H, Yin X, Gearing M, Levey A, Yan R. Transgenic mice overexpressing reticulon 3 develop neuritic abnormalities. EMBO J 2007; 26:2755-67. [PMID: 17476306 PMCID: PMC1888669 DOI: 10.1038/sj.emboj.7601707] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 03/23/2007] [Indexed: 11/09/2022] Open
Abstract
Dystrophic neurites are swollen dendrites or axons recognizable near amyloid plaques as a part of important pathological feature of Alzheimer's disease (AD). We report herein that reticulon 3 (RTN3) is accumulated in a distinct population of dystrophic neurites named as RTN3 immunoreactive dystrophic neurites (RIDNs). The occurrence of RIDNs is concomitant with the formation of high-molecular-weight RTN3 aggregates in brains of AD cases and mice expressing mutant APP. Ultrastructural analysis confirms accumulation of RTN3-containing aggregates in RIDNs. It appears that the protein level of RTN3 governs the formation of RIDNs because transgenic mice expressing RTN3 will develop RIDNs, initially in the hippocampal CA1 region, and later in other hippocampal and cortical regions. Importantly, we show that the presence of dystrophic neurites in Tg-RTN3 mice causes impairments in spatial learning and memory, as well as synaptic plasticity, implying that RIDNs potentially contribute to AD cognitive dysfunction. Together, we demonstrate that aggregation of RTN3 contributes to AD pathogenesis by inducing neuritic dystrophy. Inhibition of RTN3 aggregation is likely a therapeutic approach for reducing neuritic dystrophy.
Collapse
Affiliation(s)
- Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Qi Shi
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Xiangdong Zhou
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Wanxia He
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Hong Yi
- Microscopy Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Xinghua Yin
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Marla Gearing
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA. Tel.: +1 216 445 2690; Fax: +1 216 444 7927; E-mail:
| |
Collapse
|
42
|
Gonzalez de Aguilar JL, Echaniz-Laguna A, Fergani A, René F, Meininger V, Loeffler JP, Dupuis L. Amyotrophic lateral sclerosis: all roads lead to Rome. J Neurochem 2007; 101:1153-60. [PMID: 17250677 DOI: 10.1111/j.1471-4159.2006.04408.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most frequent adult-onset motor neuron disease characterized by degeneration of upper and lower motor neurons, generalized weakness and muscle atrophy. Most cases of ALS appear sporadically but some forms of the disease result from mutations in the gene encoding the antioxidant enzyme Cu/Zn superoxide dismutase (SOD1). Several other mutated genes have also been found to predispose to ALS including, among others, one that encodes the regulator of axonal retrograde transport dynactin. As all roads lead to the proverbial Rome, we discuss here how distinct molecular pathways may converge to the same final result that is motor neuron death. We critically review the basic research on SOD1-linked ALS to propose a pioneering model of a 'systemic' form of the disease, causally involving multiple cell types, either neuronal or non-neuronal. Contrasting this, we also postulate that other neuron-specific defects, as those triggered by dynactin dysfunction, may account for a primary motor neuron disease that would represent 'pure' neuronal forms of ALS. Identifying different disease subtypes is an unavoidable step toward the understanding of the physiopathology of ALS and will hopefully help to design specific treatments for each subset of patients.
Collapse
Affiliation(s)
- Jose-Luis Gonzalez de Aguilar
- Inserm, U692, Laboratoire de Signalisations Moléculaires et Neurodégénérescence, Université Louis Pasteur, Faculté de Médecine, UMRS692, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Maragakis NJ, Rothstein JD. Amyotrophic Lateral Sclerosis: Idiopathic and Inherited. Neurobiol Dis 2007. [DOI: 10.1016/b978-012088592-3/50048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
44
|
Abstract
A major question in the pathogenesis of motor neuron disease is why motor neurons are selectively susceptible to mutations in widely expressed gene products. Reexamination of motor neuron degeneration due to alterations of neurofilament (NF) expression suggests that disruption of assembly with aggregation of the light neurofilament (NFL) protein may be an upstream event and contributing factor leading to the preferential degeneration of motor neurons. The implications of these findings are that aggregation of NFL is not only a triggering mechanism to account for the hallmark aggregates of NF protein in sporadic and familial forms of amyotrophic lateral sclerosis, but that aggregates of NFL may also promote aggregation of wildly expressed proteins that are destabilized by missense mutations, such as by mutations in superoxide dismutase-1 protein. This review examines the potential role of NFs in determining and promoting the preferential degeneration of motor neurons in motor neuron disease. The underlying premise is that motor neurons are selectively susceptible to alterations in NF expression, that alterations in NF expression lead to NF aggregates in motor neurons, and that elevated levels of NF aggregates provide a favorable microenvironment for the formation of neurotoxic aggregation and degeneration of motor neurons.
Collapse
Affiliation(s)
- Hong Lin
- Division of Neuropathology, University of Pennsylvania Medical School, Philadelphia, PA 19104-6100, USA
| | | |
Collapse
|
45
|
Gowing G, Dequen F, Soucy G, Julien JP. Absence of tumor necrosis factor-alpha does not affect motor neuron disease caused by superoxide dismutase 1 mutations. J Neurosci 2006; 26:11397-402. [PMID: 17079668 PMCID: PMC6674545 DOI: 10.1523/jneurosci.0602-06.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An increase in the expression of the proinflammatory cytokine tumor necrosis factor alpha (TNF-alpha) has been observed in patients with amyotrophic lateral sclerosis (ALS) and in the mice models of the disease. TNF-alpha is a potent activator of macrophages and microglia and, under certain conditions, can induce or exacerbate neuronal cell death. Here, we assessed the contribution of TNF-alpha in motor neuron disease in mice overexpressing mutant superoxide dismutase 1 (SOD1) genes linked to familial ALS. This was accomplished by the generation of mice expressing SOD1(G37R) or SOD1(G93A) mutants in the context of TNF-alpha gene knock out. Surprisingly, the absence of TNF-alpha did not affect the lifespan or the extent of motor neuron loss in SOD1 transgenic mice. These results provide compelling evidence indicating that TNF-alpha does not directly contribute to motor neuron degeneration caused by SOD1 mutations.
Collapse
Affiliation(s)
- Geneviève Gowing
- Laboratory of Molecular Endocrinology, Centre de Recherche du Centre Hospitalier de l'Université Laval Research Center, and Department of Anatomy and Physiology, Laval University 2705, Québec, Canada G1V 4G2
| | - Florence Dequen
- Laboratory of Molecular Endocrinology, Centre de Recherche du Centre Hospitalier de l'Université Laval Research Center, and Department of Anatomy and Physiology, Laval University 2705, Québec, Canada G1V 4G2
| | - Geneviève Soucy
- Laboratory of Molecular Endocrinology, Centre de Recherche du Centre Hospitalier de l'Université Laval Research Center, and Department of Anatomy and Physiology, Laval University 2705, Québec, Canada G1V 4G2
| | - Jean-Pierre Julien
- Laboratory of Molecular Endocrinology, Centre de Recherche du Centre Hospitalier de l'Université Laval Research Center, and Department of Anatomy and Physiology, Laval University 2705, Québec, Canada G1V 4G2
| |
Collapse
|
46
|
Abstract
Amyotrophic lateral sclerosis is a late-onset progressive neurodegenerative disease affecting motor neurons. The etiology of most ALS cases remains unknown, but 2% of instances are due to mutations in Cu/Zn superoxide dismutase (SOD1). Since sporadic and familial ALS affects the same neurons with similar pathology, it is hoped that therapies effective in mutant SOD1 models will translate to sporadic ALS. Mutant SOD1 induces non-cell-autonomous motor neuron killing by an unknown gain of toxicity. Selective vulnerability of motor neurons likely arises from a combination of several mechanisms, including protein misfolding, mitochondrial dysfunction, oxidative damage, defective axonal transport, excitotoxicity, insufficient growth factor signaling, and inflammation. Damage within motor neurons is enhanced by damage incurred by nonneuronal neighboring cells, via an inflammatory response that accelerates disease progression. These findings validate therapeutic approaches aimed at nonneuronal cells.
Collapse
Affiliation(s)
- Séverine Boillée
- Ludwig Institute for Cancer Research and Departments of Medicine and Neuroscience, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
47
|
DiBernardo AB, Cudkowicz ME. Translating preclinical insights into effective human trials in ALS. Biochim Biophys Acta Mol Basis Dis 2006; 1762:1139-49. [PMID: 16713196 DOI: 10.1016/j.bbadis.2006.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 03/29/2006] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, adult-onset neurodegenerative disease characterized by selective dysfunction and death of motor neurons in the brain and spinal cord. The disease is typically fatal within 3-5 years of symptom onset. There is no known cure and only riluzole, which was approved by the FDA in 1996 for treatment of ALS, has shown some efficacy in humans. Preclinical insights from model systems continue to furnish ample therapeutic targets, however, translation into effective therapies for humans remains challenging. We present an overview of clinical trial methodology for ALS, including a summary rationale for target selection and challenges to ALS clinical research.
Collapse
|
48
|
Abstract
Catalytic antioxidants are comprised of specialised classes of organometallic complexes that can catalyse the decomposition of injurious biological oxidants. These complexes have been shown to prevent the formation of several oxidative markers in spinal cord of G93A amyotropic lateral sclerosis mice and markedly extend survival, even when administered at symptom onset; however, it is now clear that some complexes lacking in antioxidant activity are also protective. New proteomics data suggest that these complexes also induce a broad spectrum of endogenous cellular defense mechanisms. The combination of antioxidant and adaptive resistance effects may explain the remarkable potency of these compounds and may also suggest wide applicability for them in a number of neurodegenerative diseases.
Collapse
Affiliation(s)
- John P Crow
- University of Arkansas for Medical Sciences, College of Medicine, 4301 W. Markham Slot 638, Little Rock, AR 72205, USA.
| |
Collapse
|
49
|
Roeber S, Bäzner H, Hennerici M, Porstmann R, Kretzschmar HA. Neurodegeneration with features of NIFID and ALS--extended clinical and neuropathological spectrum. Brain Pathol 2006; 16:228-34. [PMID: 16911480 PMCID: PMC8095771 DOI: 10.1111/j.1750-3639.2006.00013.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Heterogeneous clinical and neuropathological features have been observed in the recently described neuronal intermediate filament inclusion disease (NIFID). The immunohistological findings common to all cases are alpha-internexin and neurofilament-positive neuronal cytoplasmic inclusions, which have not been found in comparable density in other neurodegenerative disorders. Notwithstanding these common features, the cases reported so far have shown differences concerning age at onset, constellation and dominance of symptoms as well as type and distribution of additional neuropathological findings. Here we present the first NIFID case that exhibits severe involvement of lower motor neurons. Also, this patient may have had a clinical onset of disease in early childhood, as she was diagnosed as having dysarthria, which could not be attributed to any other cause at the age of 3 years. This case is a further contribution to the spectrum of this novel neurodegenerative disease.
Collapse
Affiliation(s)
- Sigrun Roeber
- Center for Neuropathology and Prion Research, Ludwig‐Maximilians‐Universität Muenchen, Germany
| | | | | | - Romy Porstmann
- Institute of Pathology, Universitätsklinikum Mannheim, Ruprecht‐Karls‐Universität Heidelberg, Germany
| | - Hans A. Kretzschmar
- Center for Neuropathology and Prion Research, Ludwig‐Maximilians‐Universität Muenchen, Germany
| |
Collapse
|
50
|
Xiao S, McLean J, Robertson J. Neuronal intermediate filaments and ALS: a new look at an old question. Biochim Biophys Acta Mol Basis Dis 2006; 1762:1001-12. [PMID: 17045786 DOI: 10.1016/j.bbadis.2006.09.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 08/31/2006] [Accepted: 09/05/2006] [Indexed: 01/15/2023]
Abstract
One of the pathological hallmarks of ALS is the presence of axonal spheroids and perikaryal accumulations/aggregations comprised of the neuronal intermediate filament proteins, neurofilaments and peripherin. These abnormalities represent a point of convergence of both familial and sporadic forms of the disease and understanding their formation may reveal shared pathways in what is otherwise considered a highly heterogeneous disorder. Here we provide a review of the basic biology of neurofilaments and peripherin and the evidence linking them with ALS disease pathogenesis.
Collapse
Affiliation(s)
- Shangxi Xiao
- Department of Laboratory Medicine and Pathobiology, Centre for Research in Neurodegenerative Diseases, University of Toronto, Tanz Neuroscience Building, 6, Queen's Park Crescent West, Toronto, ON, Canada M5S 3H2
| | | | | |
Collapse
|