1
|
Iyer S, Tarique M, Sahay P, Giri S, Bava EP, Guan J, Jain T, Vaish U, Jin X, Moon S, Crossman DK, Dudeja V. Inhibition of hedgehog signaling ameliorates severity of chronic pancreatitis in experimental mouse models. Am J Physiol Gastrointest Liver Physiol 2025; 328:G342-G363. [PMID: 39499252 DOI: 10.1152/ajpgi.00212.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/07/2024]
Abstract
Chronic pancreatitis (CP) is a fibro-inflammatory disease of the pancreas with no specific cure. Research highlighting the pathogenesis and especially the therapeutic aspect remains limited. Aberrant activation of developmental pathways in adults has been implicated in several diseases. Hedgehog pathway is a notable embryonic signaling pathway, known to promote fibrosis of various organs when overactivated. The aim of this study is to explore the role of the hedgehog pathway in the progression of CP and evaluate its inhibition as a novel therapeutic strategy against CP. CP was induced in mice by repeated injections of l-arginine or caerulein in two separate models. Mice were administered with the FDA-approved pharmacological hedgehog pathway inhibitor, vismodegib during or after establishing the disease condition to inhibit hedgehog signaling. Various parameters of CP were analyzed to determine the effect of hedgehog pathway inhibition on the severity and progression of the disease. Our study shows that hedgehog signaling was overactivated during CP and its inhibition was effective in improving the histopathological parameters associated with CP. Vismodegib administration not only halted the progression of CP but was also able to resolve already-established fibrosis. In addition, inhibition of hedgehog signaling resulted in the reversal of pancreatic stellate cell activation ex vivo. Findings from our study justify conducting clinical trials using vismodegib against CP and, thus, could lead to the development of a novel therapeutic strategy for the treatment of CP.NEW & NOTEWORTHY Hedgehog signaling is activated in human and experimental models of CP. Inhibition of hedgehog signaling using an FDA-approved inhibitor, vismodegib, leads to the resolution of fibrosis and improves CP. This study has immense and immediate translational benefits.
Collapse
Affiliation(s)
- Srikanth Iyer
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mohammad Tarique
- Department of Pediatrics, University of Missouri, Columbia, Missouri, United States
| | - Preeti Sahay
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Sagnik Giri
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ejas P Bava
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - JiaShiung Guan
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Tejeshwar Jain
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Utpreksha Vaish
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Xiuwen Jin
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Sabrina Moon
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Birmingham Veteran Affairs Medical Center, Birmingham, Alabama, United States
| |
Collapse
|
2
|
Huang P, Zhu Y, Qin J. Research advances in understanding crosstalk between organs and pancreatic β-cell dysfunction. Diabetes Obes Metab 2024; 26:4147-4164. [PMID: 39044309 DOI: 10.1111/dom.15787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Obesity has increased dramatically worldwide. Being overweight or obese can lead to various conditions, including dyslipidaemia, hypertension, glucose intolerance and metabolic syndrome (MetS), which may further lead to type 2 diabetes mellitus (T2DM). Previous studies have identified a link between β-cell dysfunction and the severity of MetS, with multiple organs and tissues affected. Identifying the associations between pancreatic β-cell dysfunction and organs is critical. Research has focused on the interaction between the liver, gut and pancreatic β-cells. However, the mechanisms and related core targets are still not perfectly elucidated. The aims of this review were to summarize the mechanisms of β-cell dysfunction and to explore the potential pathogenic pathways and targets that connect the liver, gut, adipose tissue, muscle, and brain to pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yunling Zhu
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jian Qin
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Ashok A, Kalthur G, Kumar A. Degradation meets development: Implications in β-cell development and diabetes. Cell Biol Int 2024; 48:759-776. [PMID: 38499517 DOI: 10.1002/cbin.12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Pancreatic development is orchestrated by timely synthesis and degradation of stage-specific transcription factors (TFs). The transition from one stage to another stage is dependent on the precise expression of the developmentally relevant TFs. Persistent expression of particular TF would impede the exit from the progenitor stage to the matured cell type. Intracellular protein degradation-mediated protein turnover contributes to a major extent to the turnover of these TFs and thereby dictates the development of different tissues. Since even subtle changes in the crucial cellular pathways would dramatically impact pancreatic β-cell performance, it is generally acknowledged that the biological activity of these pathways is tightly regulated by protein synthesis and degradation process. Intracellular protein degradation is executed majorly by the ubiquitin proteasome system (UPS) and Lysosomal degradation pathway. As more than 90% of the TFs are targeted to proteasomal degradation, this review aims to examine the crucial role of UPS in normal pancreatic β-cell development and how dysfunction of these pathways manifests in metabolic syndromes such as diabetes. Such understanding would facilitate designing a faithful approach to obtain a therapeutic quality of β-cells from stem cells.
Collapse
Affiliation(s)
- Akshaya Ashok
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Guruprasad Kalthur
- Division of Reproductive and Developmental Biology, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
4
|
Verhoeff K, Cuesta-Gomez N, Jasra I, Marfil-Garza B, Dadheech N, Shapiro AMJ. Optimizing Generation of Stem Cell-Derived Islet Cells. Stem Cell Rev Rep 2022; 18:2683-2698. [PMID: 35639237 DOI: 10.1007/s12015-022-10391-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 02/06/2023]
Abstract
Islet transplantation is a highly effective treatment for select patients with type 1 diabetes. Unfortunately, current use is limited to those with brittle disease due to donor limitations and immunosuppression requirements. Discovery of factors for induction of pluripotent stem cells from adult somatic cells into a malleable state has reinvigorated the possibility of autologous-based regenerative cell therapies. Similarly, recent progress in allogeneic human embryonic stem cell islet products is showing early success in clinical trials. Describing safe and standardized differentiation protocols with clear pathways to optimize yield and minimize off-target growth is needed to efficiently move the field forward. This review discusses current islet differentiation protocols with a detailed break-down of differentiation stages to guide step-wise controlled generation of functional islet products.
Collapse
Affiliation(s)
- Kevin Verhoeff
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Nerea Cuesta-Gomez
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ila Jasra
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Braulio Marfil-Garza
- National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, and CHRISTUS-LatAm Hub - Excellence and Innovation Center, Monterrey, Mexico
| | - Nidheesh Dadheech
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - A M James Shapiro
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.
- 1-002 Li Ka Shing Centre for Health Research Innovation, 112 St. NW & 87 Ave NW, Edmonton, Alberta, T6G 2E1, Canada.
| |
Collapse
|
5
|
Jin W, Jiang W. Stepwise differentiation of functional pancreatic β cells from human pluripotent stem cells. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:24. [PMID: 35909206 PMCID: PMC9339430 DOI: 10.1186/s13619-022-00125-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
Pancreatic β cells differentiated from stem cells provide promise for cell replacement therapy of diabetes. Human pluripotent stem cells could be differentiated into definitive endoderm, followed by pancreatic progenitors, and then subjected to endocrinal differentiation and maturation in a stepwise fashion. Many achievements have been made in making pancreatic β cells from human pluripotent stem cells in last two decades, and a couple of phase I/II clinical trials have just been initiated. Here, we overview the major progresses in differentiating pancreatic β cells from human pluripotent stem cells with the focus on recent technical advances in each differentiation stage, and briefly discuss the current limitations as well.
Collapse
Affiliation(s)
- Wenwen Jin
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
6
|
Li X, He J, Xie K. Molecular signaling in pancreatic ductal metaplasia: emerging biomarkers for detection and intervention of early pancreatic cancer. Cell Oncol (Dordr) 2022; 45:201-225. [PMID: 35290607 DOI: 10.1007/s13402-022-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal metaplasia (PDM) is the transformation of potentially various types of cells in the pancreas into ductal or ductal-like cells, which eventually replace the existing differentiated somatic cell type(s). PDM is usually triggered by and manifests its ability to adapt to environmental stimuli and genetic insults. The development of PDM to atypical hyperplasia or dysplasia is an important risk factor for pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDA). Recent studies using genetically engineered mouse models, cell lineage tracing, single-cell sequencing and others have unraveled novel cellular and molecular insights in PDM formation and evolution. Those novel findings help better understand the cellular origins and functional significance of PDM and its regulation at cellular and molecular levels. Given that PDM represents the earliest pathological changes in PDA initiation and development, translational studies are beginning to define PDM-associated cell and molecular biomarkers that can be used to screen and detect early PDA and to enable its effective intervention, thereby truly and significantly reducing the dreadful mortality rate of PDA. This review will describe recent advances in the understanding of PDM biology with a focus on its underlying cellular and molecular mechanisms, and in biomarker discovery with clinical implications for the management of pancreatic regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Xiaojia Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jie He
- Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, 510006, China.
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, China.
| |
Collapse
|
7
|
Li S, Xie K. Ductal metaplasia in pancreas. Biochim Biophys Acta Rev Cancer 2022; 1877:188698. [DOI: 10.1016/j.bbcan.2022.188698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
|
8
|
Pierreux CE. Shaping the thyroid: From peninsula to de novo lumen formation. Mol Cell Endocrinol 2021; 531:111313. [PMID: 33961919 DOI: 10.1016/j.mce.2021.111313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/06/2023]
Abstract
A challenging and stimulating question in biology deals with the formation of organs from groups of undifferentiated progenitor cells. Most epithelial organs indeed derive from the endodermal monolayer and evolve into various shape and tridimensional organization adapted to their specialized adult function. Thyroid organogenesis is no exception. In most mammals, it follows a complex and sequential process initiated from the endoderm and leading to the development of a multitude of independent closed spheres equipped and optimized for the synthesis, storage and production of thyroid hormones. The first sign of thyroid organogenesis is visible as a thickening of the anterior foregut endoderm. This group of thyroid progenitors then buds and detaches from the foregut to migrate caudally and then laterally. Upon reaching their final destination in the upper neck region on both sides of the trachea, thyroid progenitors mix with C cell progenitors and finally organize into hormone-producing thyroid follicles. Intrinsic and extrinsic factors controlling thyroid organogenesis have been identified in several species, but the fundamental cellular processes are not sufficiently considered. This review focuses on the cellular aspects of the key morphogenetic steps during thyroid organogenesis and highlights similarities and common mechanisms with developmental steps elucidated in other endoderm-derived organs, despite different final architecture and functions.
Collapse
|
9
|
Korzh S, Winata CL, Gong Z, Korzh V. The development of zebrafish pancreas affected by deficiency of Hedgehog signaling. Gene Expr Patterns 2021; 41:119185. [PMID: 34087472 DOI: 10.1016/j.gep.2021.119185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/29/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
The pancreas development depends on complex regulation of several signaling pathways, including the Hedgehog (Hh) signaling via a receptor complex component, Smoothened, which deficiency blocks the Hh signaling. Such a defect in birds and mammals results in an annular pancreas. We showed that in developing zebrafish, the mutation of Smoothened or inhibition of Hh signaling by its antagonist cyclopamine caused developmental defects of internal organs, liver, pancreas, and gut. In particular, the pancreatic primordium was duplicated. The two exocrine pancreatic primordia surround the gut. This phenomenon correlates with a significant reduction of the gut's diameter, causing the annular pancreas phenotype.
Collapse
Affiliation(s)
- Svitlana Korzh
- -Department of Biological Sciences, National University of Singapore, Singapore
| | - Cecilia L Winata
- -International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Zhiyuan Gong
- -Department of Biological Sciences, National University of Singapore, Singapore.
| | - Vladimir Korzh
- -International Institute of Molecular and Cell Biology in Warsaw, Poland; -Institute of Molecular and Cell Biology, Singapore.
| |
Collapse
|
10
|
Mai HN, Kim EJ, Jung HS. Application of hiPSCs in tooth regeneration via cellular modulation. J Oral Biosci 2021; 63:225-231. [PMID: 34033906 DOI: 10.1016/j.job.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Induced pluripotent stem cell (iPSC)-based technology provides limitless resources for customized development of organs without any ethical concerns. In theory, iPSCs generated from terminally differentiated cells can be induced to further differentiate into all types of organs that are derived from the embryonic germ layers. Since iPSC reprogramming technology is relatively new, extensive efforts by the researchers have been put together to optimize the protocols to establish in vitro differentiation of human iPSCs (hiPSCs) into various desirable cell types/organs. HIGHLIGHTS In the present study, we review the potential application of iPSCs as an efficient alternative to primary cells for modulating signal molecules. Furthermore, an efficient culture system that promotes the differentiation of cell lineages and tissue formation has been reviewed. We also summarize the recent studies wherein tissue engineering of the three germ layers has been explored. Particularly, we focus on the current research strategies for iPSC-based tooth regeneration via molecular modulation. CONCLUSION In recent decades, robust knowledge regarding the hiPSC-based regenerative therapy has been accumulated, especially focusing on cellular modulation. This review provides the optimization of the procedures designed to regenerate specific organs.
Collapse
Affiliation(s)
- Han Ngoc Mai
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Eun-Jung Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
11
|
Dumasia NP, Khanna AP, Pethe PS. Sonic hedgehog signals hinder the transcriptional network necessary for pancreatic endoderm formation from human embryonic stem cells. Genes Cells 2021; 26:282-297. [PMID: 33599359 DOI: 10.1111/gtc.12839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 02/05/2023]
Abstract
Hedgehog morphogens govern multiple aspects of pancreas organogenesis and functioning with diverse outcomes across species. Although most current differentiation protocols repress Sonic hedgehog (SHH) signals during in vitro endocrine specification, the role and mechanisms through which the SHH pathway antagonizes pancreas development during in vitro human embryonic stem (hES) cell differentiation remain unclear. We modulated SHH signaling at transitory stages of hES cell-derived pancreatic progenitors and analyzed the effect on cellular fate decisions. We identify the Hedgehog pathway as a negative regulator of pancreatic endoderm formation through up-regulation of a set of pancreatobiliary markers required for ductal specification, including SOX17, FOXA2, HNF1β, HNF6, PDX1, and SOX9. Surprisingly, active Hedgehog signals impeded a group of pancreatic epithelium markers, including HNF4α, HHEX, PAX6, and PTF1α. To understand how SHH signals repress the transcription of these specific markers, we analyzed Polycomb group proteins. We found differential expression of Polycomb Repressive Complex 1 subunit, BMI1 upon Shh pathway modulation in the pancreatic progenitors. Ectopic activation of Sonic hedgehog results in over-expression of BMI1 and its associated repressive histone mark, H2AK119Ub1, in the multipotent progenitors. Our data suggest that Sonic hedgehog restricts the pancreatic differentiation program by limiting progenitor cells acquiring pancreatic epithelial fates and instead promotes pancreatobiliary differentiation. We further provide mechanistic cues of an association between Hedgehog signaling and epigenetic silencers during pancreatic lineage decisions.
Collapse
Affiliation(s)
- Niloufer P Dumasia
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (deemed to-be) University, Mumbai, India
| | - Aparna P Khanna
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (deemed to-be) University, Mumbai, India
- Centre for Computational Biology & Translational Research, Amity Institute of Biotechnology (AIB), Amity University, Mumbai, India
| | - Prasad S Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University, Pune, India
| |
Collapse
|
12
|
Pethe PS, Dumasia NP, Bhartiya D. Effect of Sonic hedgehog pathway inhibition on PDX1 expression during pancreatic differentiation of human embryonic stem cells. Mol Biol Rep 2021; 48:1615-1623. [PMID: 33484392 DOI: 10.1007/s11033-021-06147-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Differentiation processes for generating pancreatic progenitors from pluripotent stem cells inhibit Sonic hedgehog signaling through synthetic antagonists. However, the effect of sonic hedgehog inhibition in differentiating human embryonic stem cells remains unclear. The primary aim of this study was to understand the effect of Sonic hedgehog inhibition on key pancreas-specific transcription factors during differentiation of human embryonic stem cells towards a pancreatic lineage. We differentiated human embryonic stem (ES) cells towards the pancreatic progenitor stage. To analyze the effect of Sonic hedgehog inhibition, we differentiated human ES cells in the presence or absence of pathway antagonist, cyclopamine, using the same concentration (0.25 µM) as reported earlier. Changes in gene expression between the groups were examined by quantitative reverse-transcription PCR and immunoblot analyses. Surprisingly, we found that expression of key transcription factors, PDX1 and SOX9, was not majorly affected by inhibition of Sonic hedgehog signals. Effects of inhibiting Hedgehog signals on pancreas-specific markers in differentiating human embryonic stem cells were analyzed in the study. We identified that the expression of pancreas-specific PDX1 and SOX9 was not affected by the Sonic hedgehog pathway in pancreatic progenitor populations from human ES cells. Thus, the restrictive nature of Hedgehog signaling during the early stages of pancreas formation could be facilitated through a transcriptional network beyond PDX1 and SOX9.
Collapse
Affiliation(s)
- Prasad S Pethe
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, 400 012, India.
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University (SIU), Lavale, Mulshi, Pune, 412 115, India.
| | - Niloufer P Dumasia
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to-be) University, Mumbai, 400 056, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
13
|
Helman A, Melton DA. A Stem Cell Approach to Cure Type 1 Diabetes. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a035741. [PMID: 32122884 PMCID: PMC7778150 DOI: 10.1101/cshperspect.a035741] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Treatment of type 1 diabetes with insulin injection is expensive, complicated, and insufficient. While cadaveric islet transplantations coupled with immunosuppressants can cure diabetes, the scarcity of acceptable islets is problematic. Developmental research on pancreas formation has informed in vitro differentiation of human pluripotent stem cells into functional islets. Although generating β cells from stem cells offers a potential cure for type 1 diabetes, several challenges remain, including protecting the cells from the immune system.
Collapse
|
14
|
Insulin/Glucose-Responsive Cells Derived from Induced Pluripotent Stem Cells: Disease Modeling and Treatment of Diabetes. Cells 2020; 9:cells9112465. [PMID: 33198288 PMCID: PMC7696367 DOI: 10.3390/cells9112465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes, characterized by dysfunction of pancreatic β-cells and insulin resistance in peripheral organs, accounts for more than 90% of all diabetes. Despite current developments of new drugs and strategies to prevent/treat diabetes, there is no ideal therapy targeting all aspects of the disease. Restoration, however, of insulin-producing β-cells, as well as insulin-responsive cells, would be a logical strategy for the treatment of diabetes. In recent years, generation of transplantable cells derived from stem cells in vitro has emerged as an important research area. Pluripotent stem cells, either embryonic or induced, are alternative and feasible sources of insulin-secreting and glucose-responsive cells. This notwithstanding, consistent generation of robust glucose/insulin-responsive cells remains challenging. In this review, we describe basic concepts of the generation of induced pluripotent stem cells and subsequent differentiation of these into pancreatic β-like cells, myotubes, as well as adipocyte- and hepatocyte-like cells. Use of these for modeling of human disease is now feasible, while development of replacement therapies requires continued efforts.
Collapse
|
15
|
Ho WJ, Jaffee EM, Zheng L. The tumour microenvironment in pancreatic cancer - clinical challenges and opportunities. Nat Rev Clin Oncol 2020; 17:527-540. [PMID: 32398706 PMCID: PMC7442729 DOI: 10.1038/s41571-020-0363-5] [Citation(s) in RCA: 742] [Impact Index Per Article: 148.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Metastatic pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid tumours despite the use of multi-agent conventional chemotherapy regimens. Such poor outcomes have fuelled ongoing efforts to exploit the tumour microenvironment (TME) for therapy, but strategies aimed at deconstructing the surrounding desmoplastic stroma and targeting the immunosuppressive pathways have largely failed. In fact, evidence has now shown that the stroma is multi-faceted, which illustrates the complexity of exploring features of the TME as isolated targets. In this Review, we describe ways in which the PDAC microenvironment has been targeted and note the current understanding of the clinical outcomes that have unexpectedly contradicted preclinical observations. We also consider the more sophisticated therapeutic strategies under active investigation - multi-modal treatment approaches and exploitation of biologically integrated targets - which aim to remodel the TME against PDAC.
Collapse
Affiliation(s)
- Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Pancreatic Cancer Center for Clinical Research and Care, and The Bloomberg-Kimmel Institute for Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Huang H, Bader TN, Jin S. Signaling Molecules Regulating Pancreatic Endocrine Development from Pluripotent Stem Cell Differentiation. Int J Mol Sci 2020; 21:E5867. [PMID: 32824212 PMCID: PMC7461594 DOI: 10.3390/ijms21165867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/24/2022] Open
Abstract
Diabetes is one of the leading causes of death globally. Currently, the donor pancreas is the only source of human islets, placing extreme constraints on supply. Hence, it is imperative to develop renewable islets for diabetes research and treatment. To date, extensive efforts have been made to derive insulin-secreting cells from human pluripotent stem cells with substantial success. However, the in vitro generation of functional islet organoids remains a challenge due in part to our poor understanding of the signaling molecules indispensable for controlling differentiation pathways towards the self-assembly of functional islets from stem cells. Since this process relies on a variety of signaling molecules to guide the differentiation pathways, as well as the culture microenvironments that mimic in vivo physiological conditions, this review highlights extracellular matrix proteins, growth factors, signaling molecules, and microenvironments facilitating the generation of biologically functional pancreatic endocrine cells from human pluripotent stem cells. Signaling pathways involved in stepwise differentiation that guide the progression of stem cells into the endocrine lineage are also discussed. The development of protocols enabling the generation of islet organoids with hormone release capacities equivalent to native adult islets for clinical applications, disease modeling, and diabetes research are anticipated.
Collapse
Affiliation(s)
- Hui Huang
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA; (H.H.); (T.N.B.)
| | - Taylor N. Bader
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA; (H.H.); (T.N.B.)
| | - Sha Jin
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA; (H.H.); (T.N.B.)
- Center of Biomanufacturing for Regenerative Medicine, State University of New York at Binghamton, Binghamton, NY 13902, USA
| |
Collapse
|
17
|
Thakur G, Lee HJ, Jeon RH, Lee SL, Rho GJ. Small Molecule-Induced Pancreatic β-Like Cell Development: Mechanistic Approaches and Available Strategies. Int J Mol Sci 2020; 21:E2388. [PMID: 32235681 PMCID: PMC7178115 DOI: 10.3390/ijms21072388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes is a metabolic disease which affects not only glucose metabolism but also lipid and protein metabolism. It encompasses two major types: type 1 and 2 diabetes. Despite the different etiologies of type 1 and 2 diabetes mellitus (T1DM and T2DM, respectively), the defining features of the two forms are insulin deficiency and resistance, respectively. Stem cell therapy is an efficient method for the treatment of diabetes, which can be achieved by differentiating pancreatic β-like cells. The consistent generation of glucose-responsive insulin releasing cells remains challenging. In this review article, we present basic concepts of pancreatic organogenesis, which intermittently provides a basis for engineering differentiation procedures, mainly based on the use of small molecules. Small molecules are more auspicious than any other growth factors, as they have unique, valuable properties like cell-permeability, as well as a nonimmunogenic nature; furthermore, they offer immense benefits in terms of generating efficient functional beta-like cells. We also summarize advances in the generation of stem cell-derived pancreatic cell lineages, especially endocrine β-like cells or islet organoids. The successful induction of stem cells depends on the quantity and quality of available stem cells and the efficient use of small molecules.
Collapse
Affiliation(s)
- Gitika Thakur
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| | - Hyeon-Jeong Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| | - Ryoung-Hoon Jeon
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| |
Collapse
|
18
|
Sufu- and Spop-mediated downregulation of Hedgehog signaling promotes beta cell differentiation through organ-specific niche signals. Nat Commun 2019; 10:4647. [PMID: 31604927 PMCID: PMC6789033 DOI: 10.1038/s41467-019-12624-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 09/20/2019] [Indexed: 12/22/2022] Open
Abstract
Human embryonic stem cell-derived beta cells offer a promising cell-based therapy for diabetes. However, efficient stem cell to beta cell differentiation has proven difficult, possibly due to the lack of cross-talk with the appropriate mesenchymal niche. To define organ-specific niche signals, we isolated pancreatic and gastrointestinal stromal cells, and analyzed their gene expression during development. Our genetic studies reveal the importance of tightly regulated Hedgehog signaling in the pancreatic mesenchyme: inactivation of mesenchymal signaling leads to annular pancreas, whereas stroma-specific activation of signaling via loss of Hedgehog regulators, Sufu and Spop, impairs pancreatic growth and beta cell genesis. Genetic rescue and transcriptome analyses show that these Sufu and Spop knockout defects occur through Gli2-mediated activation of gastrointestinal stromal signals such as Wnt ligands. Importantly, inhibition of Wnt signaling in organoid and human stem cell cultures significantly promotes insulin-producing cell generation, altogether revealing the requirement for organ-specific regulation of stromal niche signals.
Collapse
|
19
|
Niyaz M, Khan MS, Mudassar S. Hedgehog Signaling: An Achilles' Heel in Cancer. Transl Oncol 2019; 12:1334-1344. [PMID: 31352196 PMCID: PMC6664200 DOI: 10.1016/j.tranon.2019.07.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Hedgehog signaling pathway originally identified in the fruit fly Drosophila is an evolutionarily conserved signaling mechanism with crucial roles in embryogenesis, growth and patterning. It exerts its biological effect through a signaling mechanism that terminates at glioma-associated oncogene (GLI) transcription factors which alternate between activator and repressor forms and mediate various responses. The important components of the pathway include the hedgehog ligands (SHH), the Patched (PTCH) receptor, Smoothened (SMO), Suppressor of Fused (SuFu) and GLI transcription factors. Activating or inactivating mutations in key genes cause uncontrolled activation of the pathway in a ligand independent manner. The ligand-dependent aberrant activation of the hedgehog pathway causing overexpression of hedgehog pathway components and its target genes occurs in autocrine as well as paracrine fashion. In adults, aberrant activation of hedgehog signaling has been linked to birth defects and multiple solid cancers. In this review, we assimilate data from recent studies to understand the mechanism of functioning of the hedgehog signaling pathway, role in cancer, its association in various solid malignancies and the current strategies being used to target this pathway for cancer treatment.
Collapse
Affiliation(s)
- Madiha Niyaz
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, - 190011 Srinagar, Kashmir
| | - Mosin S Khan
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, - 190011 Srinagar, Kashmir
| | - Syed Mudassar
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, - 190011 Srinagar, Kashmir.
| |
Collapse
|
20
|
EMT and Stemness-Key Players in Pancreatic Cancer Stem Cells. Cancers (Basel) 2019; 11:cancers11081136. [PMID: 31398893 PMCID: PMC6721598 DOI: 10.3390/cancers11081136] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Metastasis and tumor progression are the major cause of death in patients suffering from pancreatic ductal adenocarcinoma. Tumor growth and especially dissemination are typically associated with activation of an epithelial-to-mesenchymal transition (EMT) program. This phenotypic transition from an epithelial to a mesenchymal state promotes migration and survival both during development and in cancer progression. When re-activated in pathological contexts such as cancer, this type of developmental process confers additional stemness properties to specific subsets of cells. Cancer stem cells (CSCs) are a subpopulation of cancer cells with stem-like features that are responsible for the propagation of the tumor as well as therapy resistance and cancer relapse, but also for circulating tumor cell release and metastasis. In support of this concept, EMT transcription factors generate cells with stem cell properties and mediate chemoresistance. However, their role in pancreatic ductal adenocarcinoma metastasis remains controversial. As such, a better characterization of CSC populations will be crucial in future development of therapies targeting these cells. In this review, we will discuss the latest updates on the mechanisms common to pancreas development and CSC-mediated tumor progression.
Collapse
|
21
|
Randolph LN, Bhattacharyya A, Lian XL. Human beta cells generated from pluripotent stem cells or cellular reprogramming for curing diabetes. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019; 5:42-52. [PMID: 30984818 PMCID: PMC6457681 DOI: 10.1007/s40883-018-0082-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
Diabetes is a group of metabolic diseases characterized by aberrantly high blood glucose levels caused by defects in insulin secretion, its action, or both, which affects approximately 30.3 million people (9.4% of the population) in the United States. This review will focus on using human β cells to treat and cure diabetes because β cells are absent, due to an autoimmune destruction, in Type 1 diabetes or dysfunctional in Type 2 diabetes. In order to generate enough functional β cells for diabetes treatment (0.1 to 1 billion cells to treat one patient), a basic science approach by mimicking what happens in normal pancreatic development must be closely aligned with engineering. Two general approaches are discussed here. The first one uses human pluripotent stem cells (hPSCs) to perform directed differentiation of hPSCs to β cells. This is advantageous because hPSCs grow indefinitely, providing a virtually unlimited source of material. Therefore, if we develop an efficient β cell differentiation protocol, we can essentially generate an unlimited amount of β cells for disease modeling and diabetes treatment. The second approach is cellular reprogramming, with which we may begin with any cell type and covert it directly into a β cell. The success of this cellular reprogramming approach, however, depends on the discovery of a robust and efficient transcription factor cocktail that can ignite this process, similar to what has been achieved in generating induced pluripotent stem cells. This discovery should be possible through identifying the important transcription factors and pioneer factors via recent advances in single-cell RNA sequencing. In short, a new renaissance in pancreas developmental biology, stem cell engineering, and cellular reprogramming for curing diabetes appears to be on the horizon.
Collapse
Affiliation(s)
- Lauren N. Randolph
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Agamoni Bhattacharyya
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
22
|
Yu J, Wu R, Wang Z, Chen S, Chen S, Guo G, Liu Z. Cyclopamine Suppresses Human Esophageal Carcinoma Cell Growth by Inhibiting Glioma-Associated Oncogene Protein-1, a Marker of Human Esophageal Carcinoma Progression. Med Sci Monit 2019; 25:1518-1525. [PMID: 30807555 PMCID: PMC6400020 DOI: 10.12659/msm.912858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/02/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Esophageal carcinoma is a common gastrointestinal tumor in humans. Cyclopamine, a Hedgehog (Hh)-pathway-specific inhibitor, is an effective chemotherapeutic drug for suppressing tumor cell differentiation, with unclear mechanisms. We investigated glioma-associated oncogene protein-1 (Gli-1) expression in human esophageal carcinoma tissue and the inhibition of cyclopamine on EC9706 esophageal carcinoma cell growth. MATERIAL AND METHODS Gli-1 in tumor tissue was measured by immunohistochemistry (IHC). EC9706 cells were treated with different concentrations of cyclopamine and incubated for different times. MTT method, flow cytometry, and Acridine orange/ethidium bromide (AO/EB) double-fluorescence staining were applied to detect cell proliferation and apoptosis. Western blot (WB) analysis was performed to assess Gli-1 expression. RESULTS Gli-1 was associated with patient age, gender, lymphatic metastasis, tumor recurrence, and stage, with significantly (P<0.05) positive correlations with age, lymphatic metastasis, tumor recurrence, and stage. At 12 h (F=214.57), 24 h (F=76.832), 48 h (F=236.90), and 72 h (F=164.55), the higher the concentration of cyclopamine, the higher the inhibition rate of suppressing EC9706 proliferation, and this effect was significant (P<0.05). The number of early-apoptosis cells increased as the concentration of cyclopamine increased. Morphology of EC9706 cells appeared as round with rough edges, karyopyknosis, and karyorrhexis. After 48 h, apoptosis rates of EC9706 cells treated with different concentrations of cyclopamine were (7.73±1.25)% at 2.5 μM, (13.37±1.42)% at 5.0 μM, (22.3±2.92)% at 10.0 μM, and (33.57±1.75)% at 20.0 μM, and the effect was dose-dependent. Gli-1 was obviously reduced after cyclopamine treatment and the effect was dose-dependent. CONCLUSIONS Gli-1 is highly expressed in human esophageal carcinoma, and could be a marker for use in assessing tumor stage and the deciding on treatment target.
Collapse
Affiliation(s)
- Jing Yu
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Ruinuan Wu
- Department of Pathology, The Second People’s Hospital of Shenzhen, Shenzhen, Guangdong, P.R. China
| | - Zhenyu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Shuxian Chen
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Suzuan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Guanghua Guo
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Zhaohui Liu
- Department of Gastroenterology, The Second People’s Hospital of Shenzhen, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
23
|
Mesodermal induction of pancreatic fate commitment. Semin Cell Dev Biol 2018; 92:77-88. [PMID: 30142440 DOI: 10.1016/j.semcdb.2018.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/29/2018] [Accepted: 08/20/2018] [Indexed: 12/27/2022]
Abstract
The pancreas is a compound gland comprised of both exocrine acinar and duct cells as well as endocrine islet cells. Most notable amongst the latter are the insulin-synthesizing β-cells, loss or dysfunction of which manifests in diabetes mellitus. All exocrine and endocrine cells derive from multipotent pancreatic progenitor cells arising from the primitive gut epithelium via inductive interactions with adjacent mesodermal tissues. Research in the last two decades has revealed the identity of many of these extrinsic cues and they include signaling molecules used in many other developmental contexts such as retinoic acid, fibroblast growth factors, and members of the TGF-β superfamily. As important as these inductive cues is the absence of other signaling molecules such as hedgehog family members. Much has been learned about the interactions of extrinsic factors with fate regulators intrinsic to the pancreatic endoderm. This new knowledge has had tremendous impact on the development of directed differentiation protocols for converting pluripotent stem cells to β-cells in vitro.
Collapse
|
24
|
Rezvani M, Menias C, Sandrasegaran K, Olpin JD, Elsayes KM, Shaaban AM. Heterotopic Pancreas: Histopathologic Features, Imaging Findings, and Complications. Radiographics 2017; 37:484-499. [PMID: 28287935 DOI: 10.1148/rg.2017160091] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heterotopic pancreas is a congenital anomaly in which pancreatic tissue is anatomically separate from the main gland. The most common locations of this displacement include the upper gastrointestinal tract-specifically, the stomach, duodenum, and proximal jejunum. Less common sites are the esophagus, ileum, Meckel diverticulum, biliary tree, mesentery, and spleen. Uncomplicated heterotopic pancreas is typically asymptomatic, with the lesion being discovered incidentally during an unrelated surgery, during an imaging examination, or at autopsy. The most common computed tomographic appearance of heterotopic pancreas is that of a small oval intramural mass with microlobulated margins and an endoluminal growth pattern. The attenuation and enhancement characteristics of these lesions parallel their histologic composition. Acinus-dominant lesions demonstrate avid homogeneous enhancement after intravenous contrast material administration, whereas duct-dominant lesions are hypovascular and heterogeneous. At magnetic resonance imaging, the heterotopic pancreas is isointense to the orthotopic pancreas, with characteristic T1 hyperintensity and early avid enhancement after intravenous gadolinium-based contrast material administration. Heterotopic pancreatic tissue has a rudimentary ductal system in which an orifice is sometimes visible at imaging as a central umbilication of the lesion. Complications of heterotopic pancreas include pancreatitis, pseudocyst formation, malignant degeneration, gastrointestinal bleeding, bowel obstruction, and intussusception. Certain complications may be erroneously diagnosed as malignancy. Paraduodenal pancreatitis is thought to be due to cystic degeneration of heterotopic pancreatic tissue in the medial wall of the duodenum. Recognizing the characteristic imaging features of heterotopic pancreas aids in differentiating it from cancer and thus in avoiding unnecessary surgery. © RSNA, 2017.
Collapse
Affiliation(s)
- Maryam Rezvani
- From the Department of Radiology, University of Utah, 30 North 1900 East, #1A71, Salt Lake City, UT 84132 (M.R., J.D.O., A.M.S.); Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.M.); Department of Radiology, Indiana University School of Medicine, Indianapolis, Ind (K.S.); and Department of Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Christine Menias
- From the Department of Radiology, University of Utah, 30 North 1900 East, #1A71, Salt Lake City, UT 84132 (M.R., J.D.O., A.M.S.); Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.M.); Department of Radiology, Indiana University School of Medicine, Indianapolis, Ind (K.S.); and Department of Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Kumaresan Sandrasegaran
- From the Department of Radiology, University of Utah, 30 North 1900 East, #1A71, Salt Lake City, UT 84132 (M.R., J.D.O., A.M.S.); Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.M.); Department of Radiology, Indiana University School of Medicine, Indianapolis, Ind (K.S.); and Department of Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Jeffrey D Olpin
- From the Department of Radiology, University of Utah, 30 North 1900 East, #1A71, Salt Lake City, UT 84132 (M.R., J.D.O., A.M.S.); Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.M.); Department of Radiology, Indiana University School of Medicine, Indianapolis, Ind (K.S.); and Department of Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Khaled M Elsayes
- From the Department of Radiology, University of Utah, 30 North 1900 East, #1A71, Salt Lake City, UT 84132 (M.R., J.D.O., A.M.S.); Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.M.); Department of Radiology, Indiana University School of Medicine, Indianapolis, Ind (K.S.); and Department of Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Akram M Shaaban
- From the Department of Radiology, University of Utah, 30 North 1900 East, #1A71, Salt Lake City, UT 84132 (M.R., J.D.O., A.M.S.); Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.M.); Department of Radiology, Indiana University School of Medicine, Indianapolis, Ind (K.S.); and Department of Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| |
Collapse
|
25
|
Roberts KJ, Kershner AM, Beachy PA. The Stromal Niche for Epithelial Stem Cells: A Template for Regeneration and a Brake on Malignancy. Cancer Cell 2017; 32:404-410. [PMID: 29017054 PMCID: PMC5679442 DOI: 10.1016/j.ccell.2017.08.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/06/2017] [Accepted: 08/11/2017] [Indexed: 12/31/2022]
Abstract
Stromal restraint of cancer growth and progression-emerging as a widespread phenomenon in epithelial cancers such as bladder, pancreas, colon, and prostate-appears rooted in stromal cell niche activity. During normal tissue repair, stromal niche signals, often Hedgehog-induced, promote epithelial stem cell differentiation as well as self-renewal, thus specifying a regenerating epithelial pattern. In the case of cancerous tissue, stromal cell-derived differentiation signals in particular may provide a brake on malignant growth. Understanding and therapeutic harnessing of the role of stroma in cancer restraint may hinge on our knowledge of the signaling programs elaborated by the stromal niche.
Collapse
Affiliation(s)
- Kelsey J Roberts
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron M Kershner
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip A Beachy
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Abstract
Thyroid hormones are crucial for organismal development and homeostasis. In humans, untreated congenital hypothyroidism due to thyroid agenesis inevitably leads to cretinism, which comprises irreversible brain dysfunction and dwarfism. Elucidating how the thyroid gland - the only source of thyroid hormones in the body - develops is thus key for understanding and treating thyroid dysgenesis, and for generating thyroid cells in vitro that might be used for cell-based therapies. Here, we review the principal mechanisms involved in thyroid organogenesis and functional differentiation, highlighting how the thyroid forerunner evolved from the endostyle in protochordates to the endocrine gland found in vertebrates. New findings on the specification and fate decisions of thyroid progenitors, and the morphogenesis of precursor cells into hormone-producing follicular units, are also discussed.
Collapse
Affiliation(s)
- Mikael Nilsson
- Sahlgrenska Cancer Center, Institute of Biomedicine, University of Gothenburg, Göteborg SE-40530, Sweden
| | - Henrik Fagman
- Sahlgrenska Cancer Center, Institute of Biomedicine, University of Gothenburg, Göteborg SE-40530, Sweden.,Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Göteborg SE-41345, Sweden
| |
Collapse
|
27
|
Al-Khawaga S, Memon B, Butler AE, Taheri S, Abou-Samra AB, Abdelalim EM. Pathways governing development of stem cell-derived pancreatic β cells: lessons from embryogenesis. Biol Rev Camb Philos Soc 2017. [DOI: 10.1111/brv.12349] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sara Al-Khawaga
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Alexandra E. Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine; University of California; Los Angeles CA 90095 U.S.A
| | - Shahrad Taheri
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Abdul B. Abou-Samra
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Essam M. Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| |
Collapse
|
28
|
Merchant JL, Ding L. Hedgehog Signaling Links Chronic Inflammation to Gastric Cancer Precursor Lesions. Cell Mol Gastroenterol Hepatol 2017; 3:201-210. [PMID: 28275687 PMCID: PMC5331830 DOI: 10.1016/j.jcmgh.2017.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/11/2017] [Indexed: 12/24/2022]
Abstract
Since its initial discovery in Drosophila, Hedgehog (HH) signaling has long been associated with foregut development. The mammalian genome expresses 3 HH ligands, with sonic hedgehog (SHH) levels highest in the mucosa of the embryonic foregut. More recently, interest in the pathway has shifted to improving our understanding of its role in gastrointestinal cancers. The use of reporter mice proved instrumental in our ability to probe the expression pattern of SHH ligand and the cell types responding to canonical HH signaling during homeostasis, inflammation, and neoplastic transformation. SHH is highly expressed in parietal cells and is required for these cells to produce gastric acid. Furthermore, myofibroblasts are the predominant cell type responding to HH ligand in the uninfected stomach. Chronic infection caused by Helicobacter pylori and associated inflammation induces parietal cell atrophy and the expansion of metaplastic cell types, a precursor to gastric cancer in human subjects. During Helicobacter infection in mice, canonical HH signaling is required for inflammatory cells to be recruited from the bone marrow to the stomach and for metaplastic development. Specifically, polarization of the invading myeloid cells to myeloid-derived suppressor cells requires the HH-regulated transcription factor GLI1, thereby creating a microenvironment favoring wound healing and neoplastic transformation. In mice, GLI1 mediates the phenotypic shift to gastric myeloid-derived suppressor cells by directly inducing Schlafen 4 (slfn4). However, the human homologs of SLFN4, designated SLFN5 and SLFN12L, also correlate with intestinal metaplasia and could be used as biomarkers to predict the subset of individuals who might progress to gastric cancer and benefit from treatment with HH antagonists.
Collapse
Key Words
- ATPase, adenosine triphosphatase
- DAMP, damage-associated molecular pattern
- DAMPs
- GLI, glioma-associated protein
- GLI1
- Gr-MDSC, granulocytic myeloid-derived suppressor cell
- HH, hedgehog
- HHIP, hedgehog-interacting protein
- IFN, interferon
- IL, interleukin
- MDSC, myeloid-derived suppressor cell
- MDSCs
- Metaplasia
- Mo-MDSC, monocytic myeloid-derived suppressor cell
- PTCH, Patched
- SHH
- SHH, sonic hedgehog
- SLFN4, Schlafen 4
- SMO, Smoothened
- SP, spasmolytic polypeptide
- SPEM
- SPEM, spasmolytic polypeptide–expressing mucosa
- SST, somatostatin
- TLR, Toll-like receptor
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Juanita L. Merchant
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Correspondence Address correspondence to: Juanita L. Merchant, MD, PhD, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109-2200. fax: (734) 763-4686.University of Michigan109 Zina Pitcher PlaceAnn ArborMichigan 48109-2200
| | - Lin Ding
- Department of Internal Medicine-Gastroenterology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
29
|
Scavuzzo MA, Borowiak M. Editing genetics, stem cells are prophetic, what's the best way to model cells of diabetics? Stem Cell Investig 2017; 3:81. [PMID: 28066783 DOI: 10.21037/sci.2016.11.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/21/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Malgorzata Borowiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA;; Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
30
|
Kasai K. GLI1, a master regulator of the hallmark of pancreatic cancer. Pathol Int 2016; 66:653-660. [PMID: 27862693 DOI: 10.1111/pin.12476] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/24/2022]
Abstract
Hedgehog signaling is highly conserved across species and governs proper embryonic development. Germline gene mutations that reduce this signaling activity cause a variety of developmental abnormalities such as holoprosencephaly, while those that enhance Hedgehog signaling activity induce a tumor-predisposition condition Nevoid basal cell carcinoma syndrome. Furthermore, dysregulated activation of Hedgehog signaling has been recognized in various sporadic malignancies, including pancreatic adenocarcinoma. Pancreatic adenocarcinoma develops through a multistep carcinogenesis starting with oncogenic mutation of the KRAS gene. During this process, precancerous or cancer cells secrete Hedgehog ligand proteins to promote characteristic desmoplastic stroma around the cells, which in turn activates the expression of the downstream transcription factor GLI1 inside the cells. The quantitative and spatiotemporal dysregulation of GLI1 subsequently leads to the expression of transcriptional target genes of GLI1 that govern the hallmark of malignant properties. Here, after a brief introductory outline, a perspective is offered of Hedgehog signaling with a special focus on the role of GLI1 in pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| |
Collapse
|
31
|
Massumi M, Pourasgari F, Nalla A, Batchuluun B, Nagy K, Neely E, Gull R, Nagy A, Wheeler MB. An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells. PLoS One 2016; 11:e0164457. [PMID: 27755557 PMCID: PMC5068782 DOI: 10.1371/journal.pone.0164457] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/26/2016] [Indexed: 12/28/2022] Open
Abstract
The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here, through the sequential in vitro targeting of selected signaling pathways, we have developed an abbreviated five-stage protocol (25–30 days) to generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs). We showed that Geltrex, as an extracellular matrix, could support the generation of ES-DBCs more efficiently than that of the previously described culture systems. The activation of FGF and Retinoic Acid along with the inhibition of BMP, SHH and TGF-beta led to the generation of 75% NKX6.1+/NGN3+ Endocrine Progenitors. The inhibition of Notch and tyrosine kinase receptor AXL, and the treatment with Exendin-4 and T3 in the final stage resulted in 35% mono-hormonal insulin positive cells, 1% insulin and glucagon positive cells and 30% insulin and NKX6.1 co-expressing cells. Functionally, ES-DBCs were responsive to high glucose in static incubation and perifusion studies, and could secrete insulin in response to successive glucose stimulations. Mitochondrial metabolic flux analyses using Seahorse demonstrated that the ES-DBCs could efficiently metabolize glucose and generate intracellular signals to trigger insulin secretion. In conclusion, targeting selected signaling pathways for 25–30 days was sufficient to generate ES-DBCs in vitro. The ability of ES-DBCs to secrete insulin in response to glucose renders them a promising model for the in vitro screening of drugs, small molecules or genes that may have potential to influence beta-cell function.
Collapse
Affiliation(s)
- Mohammad Massumi
- Departments of Medicine and Physiology, Faculty of Medicine, University of Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Farzaneh Pourasgari
- Departments of Medicine and Physiology, Faculty of Medicine, University of Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Amarnadh Nalla
- Departments of Medicine and Physiology, Faculty of Medicine, University of Toronto, ON, Canada.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Battsetseg Batchuluun
- Departments of Medicine and Physiology, Faculty of Medicine, University of Toronto, ON, Canada
| | - Kristina Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Eric Neely
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rida Gull
- Departments of Medicine and Physiology, Faculty of Medicine, University of Toronto, ON, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Michael B Wheeler
- Departments of Medicine and Physiology, Faculty of Medicine, University of Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
32
|
Gu D, Schlotman KE, Xie J. Deciphering the role of hedgehog signaling in pancreatic cancer. J Biomed Res 2016; 30:353-360. [PMID: 27346466 PMCID: PMC5044707 DOI: 10.7555/jbr.30.20150107] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/11/2015] [Accepted: 12/25/2015] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer, mostly pancreatic ductal adenocarcinoma (PDAC), is a leading cause of cancer-related death in the US, with a dismal median survival of 6 months. Thus, there is an urgent unmet need to identify ways to diagnose and to treat this deadly cancer. Although a number of genetic changes have been identified in pancreatic cancer, their mechanisms of action in tumor development, progression and metastasis are not completely understood. Hedgehog signaling, which plays a major role in embryonic development and stem cell regulation, is known to be activated in pancreatic cancer; however, specific inhibitors targeting the smoothened molecule failed to improve the condition of pancreatic cancer patients in clinical trials. Furthermore, results regarding the role of Hh signaling in pancreatic cancer are controversial with some reporting tumor promoting activities whereas others tumor suppressive actions. In this review, we will summarize what we know about hedgehog signaling in pancreatic cancer, and try to explain the contradicting roles of hedgehog signaling as well as the reason(s) behind the failed clinical trials. In addition to the canonical hedgehog signaling, we will also discuss several non-canonical hedgehog signaling mechanisms.
Collapse
Affiliation(s)
- Dongsheng Gu
- Wells Center for Pediatric Research, Division of Hematology and Oncology, Department of Pediatrics, Indiana University Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - Kelly E Schlotman
- Wells Center for Pediatric Research, Division of Hematology and Oncology, Department of Pediatrics, Indiana University Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - Jingwu Xie
- Wells Center for Pediatric Research, Division of Hematology and Oncology, Department of Pediatrics, Indiana University Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA;
| |
Collapse
|
33
|
Takahashi Y, Takebe T, Taniguchi H. Engineering pancreatic tissues from stem cells towards therapy. Regen Ther 2016; 3:15-23. [PMID: 31245468 PMCID: PMC6581807 DOI: 10.1016/j.reth.2016.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/17/2015] [Accepted: 01/20/2016] [Indexed: 12/20/2022] Open
Abstract
Pancreatic islet transplantation is performed as a potential treatment for type 1 diabetes mellitus. However, this approach is significantly limited due to the critical shortage of islet sources. Recently, a number of publications have developed protocols for directed β-cell differentiation of pluripotent cells, such as embryonic stem (ES) or induced pluripotent stem (iPS) cells. Decades of studies have led to the development of modified protocols that recapitulate molecular developmental cues by combining various growth factors and small molecules with improved efficiency. However, the later step of pancreatic differentiation into functional β-cells has yet to be satisfactory in vitro, highlighting alternative approach by recapitulating spatiotemporal multicellular interaction in three-dimensional (3D) culture. Here, we summarize recent progress in the directed differentiation into pancreatic β-cells with a focus on both two-dimensional (2D) and 3D differentiation settings. We also discuss the potential transplantation strategies in combination with current bioengineering approaches towards diabetes therapy. Transplantation of stem cell derived pancreatic progenitors is a possible approach for generating mature β-cell in vivo. Promise of 3-D (or 4-D) culture has started to be explored by reconstituting pancreatic tissue structures. Self-condensation culture is a basic technique of integrating multiple heterotypic lineages including vasculatures. Bioengineering approach has been combined for developing effective transplant strategies.
Collapse
Key Words
- 2D, two-dimensional
- 3D, three-dimensional
- BMP, bone morphogenic protein
- Diabetes
- ES, embryonic stem
- FGF, fibroblast growth factors
- Heterotypic cellular interaction
- IBMIR, instant blood-mediated reaction
- ILV, indolactam V
- Ngn3, neurogenin 3
- PEG, polyethylene glycol
- PI3K, phosphatidylinositol-3 kinase
- PIPAAm, poly-N-isopropylacrylamide
- PVA, polyvinyl alcohol
- Pancreas
- Pdx1, pancreatic and duodenal homeobox 1
- Ptf1a, pancreatic transcription factor 1a
- Regenerative medicine
- VEGF, vascular endothelial growth factor
- Vascularization
- iPS, induced pluripotent stem
- iPS/ES cell
Collapse
Affiliation(s)
- Yoshinobu Takahashi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan
| | - Takanori Takebe
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan.,Advanced Medical Research Center, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012, Japan.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229- 3039, USA
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan.,Advanced Medical Research Center, Yokohama City University, Kanazawa-ku 3-9, Yokohama, Kanagawa, 236-0004, Japan
| |
Collapse
|
34
|
Masjkur J, Poser SW, Nikolakopoulou P, Chrousos G, McKay RD, Bornstein SR, Jones PM, Androutsellis-Theotokis A. Endocrine Pancreas Development and Regeneration: Noncanonical Ideas From Neural Stem Cell Biology. Diabetes 2016; 65:314-30. [PMID: 26798118 DOI: 10.2337/db15-1099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Loss of insulin-producing pancreatic islet β-cells is a hallmark of type 1 diabetes. Several experimental paradigms demonstrate that these cells can, in principle, be regenerated from multiple endogenous sources using signaling pathways that are also used during pancreas development. A thorough understanding of these pathways will provide improved opportunities for therapeutic intervention. It is now appreciated that signaling pathways should not be seen as "on" or "off" but that the degree of activity may result in wildly different cellular outcomes. In addition to the degree of operation of a signaling pathway, noncanonical branches also play important roles. Thus, a pathway, once considered as "off" or "low" may actually be highly operational but may be using noncanonical branches. Such branches are only now revealing themselves as new tools to assay them are being generated. A formidable source of noncanonical signal transduction concepts is neural stem cells because these cells appear to have acquired unusual signaling interpretations to allow them to maintain their unique dual properties (self-renewal and multipotency). We discuss how such findings from the neural field can provide a blueprint for the identification of new molecular mechanisms regulating pancreatic biology, with a focus on Notch, Hes/Hey, and hedgehog pathways.
Collapse
Affiliation(s)
- Jimmy Masjkur
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Steven W Poser
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | | | - George Chrousos
- First Department of Pediatrics, University of Athens Medical School and Aghia Sophia Children's Hospital, Athens, Greece
| | | | - Stefan R Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Peter M Jones
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, London, U.K
| | - Andreas Androutsellis-Theotokis
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany Center for Regenerative Therapies Dresden, Dresden, Germany Department of Stem Cell Biology, Centre for Biomolecular Sciences, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, U.K.
| |
Collapse
|
35
|
Thies RS, Murry CE. The advancement of human pluripotent stem cell-derived therapies into the clinic. Development 2016; 142:3077-84. [PMID: 26395136 DOI: 10.1242/dev.126482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human pluripotent stem cells (hPSCs) offer many potential applications for drug screening and 'disease in a dish' assay capabilities. However, a more ambitious goal is to develop cell therapeutics using hPSCs to generate and replace somatic cells that are lost as a result of disease or injury. This Spotlight article will describe the state of progress of some of the hPSC-derived therapeutics that offer the most promise for clinical use. Lessons from developmental biology have been instrumental in identifying signaling molecules that can guide these differentiation processes in vitro, and will be described in the context of these cell therapy programs.
Collapse
Affiliation(s)
- R Scott Thies
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Charles E Murry
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA Department of Pathology, University of Washington, Seattle, WA 98195, USA Department of Bioengineering, University of Washington, Seattle, WA 98195, USA Department of Medicine/Cardiology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
36
|
Pin CL, Ryan JF, Mehmood R. Acinar cell reprogramming: a clinically important target in pancreatic disease. Epigenomics 2015; 7:267-81. [PMID: 25942535 DOI: 10.2217/epi.14.83] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acinar cells of the pancreas produce the majority of enzymes required for digestion and make up >90% of the cells within the pancreas. Due to a common developmental origin and the plastic nature of the acinar cell phenotype, these cells have been identified as a possible source of β cells as a therapeutic option for Type I diabetes. However, recent evidence indicates that acinar cells are the main source of pancreatic intraepithelial neoplasias (PanINs), the predecessor of pancreatic ductal adenocarcinoma (PDAC). The conversion of acinar cells to either β cells or precursors to PDAC is dependent on reprogramming of the cells to a more primitive, progenitor-like phenotype, which involves changes in transcription factor expression and activity, and changes in their epigenetic program. This review will focus on the mechanisms that promote acinar cell reprogramming, as well as the factors that may affect these mechanisms.
Collapse
Affiliation(s)
- Christopher L Pin
- Department of Paediatrics, Physiology & Pharmacology, & Oncology, University of Western Ontario, London, ON N6C 2V5, Canada
| | | | | |
Collapse
|
37
|
Yu T, Qing Q, Deng N, Min XH, Zhao LN, Li JY, Xia ZS, Chen QK. CXCR4 positive cell-derived Pdx1-high/Shh-low cells originated from embryonic stem cells improve the repair of pancreatic injury in mice. Cell Biol Int 2015; 39:995-1006. [PMID: 25820869 DOI: 10.1002/cbin.10470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/14/2015] [Accepted: 03/18/2015] [Indexed: 01/05/2023]
Abstract
Treatments for pancreatic injuries have been significantly improved recently, but full recovery of pancreatic function remains difficult. Embryonic stem cells have great potentialities for self-renewal and multiple differentiations. In this study, we explored an approach to induce the differentiation of pancreatic progenitor cells from embryonic stem cells in vitro. Male mouse embryonic stem cells were cultured by the hanging-drop method to form embryoid bodies. The definitive endoderm marked by CXCR4 in embryoid bodies was sorted by magnetic activated cell sorting and subsequently administrated with b-FGF, exendin-4, and cyclopamine to induce the differentiation of putative pancreatic progenitor cells, which was monitored by Pdx1, and Shh expressions. The putative pancreatic progenitor cells were transplanted into female BALB/c mice with pancreatitis induced by L-Arginine. Male donor cells were located by detecting sex-determining region of Y-chromosome DNA. Definitive endoderm cells (CXCR4(+) cells) were sorted from 5-day embryoid bodies. After 3-day administration with b-FGF, exendin-4, and cyclopamine, Pdx1-high/Shh-low cells were differentiated from CXCR4(+) cells. These cells developed into more amylase-secreted cells in vitro and could specifically reside in the damaged pancreas acinar area in mice with acute pancreatitis to enhance the regeneration. The putative pancreatic progenitor cells (Pdx1-high/Shh-low cells) derived from mouse embryonic stem cells through the administration of b-FGF, exendin-4, and cyclopamine on the CXCR4(+) cells in vitro could improve the regeneration of injured pancreatic acini in vivo.
Collapse
Affiliation(s)
- Tao Yu
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qing Qing
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Na Deng
- Department of Gastroenterology, Yuebei People's Hospital, Shaoguan, Guangdong, People's Republic of China
| | - Xiao-Hui Min
- Department of Infectious Disease, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Li-Na Zhao
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jie-Yao Li
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhong-Sheng Xia
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qi-Kui Chen
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
38
|
Soria B, Gauthier BR, Martín F, Tejedo JR, Bedoya FJ, Rojas A, Hmadcha A. Using stem cells to produce insulin. Expert Opin Biol Ther 2015; 15:1469-89. [PMID: 26156425 DOI: 10.1517/14712598.2015.1066330] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Tremendous progress has been made in generating insulin-producing cells from pluripotent stem cells. The best outcome of the refined protocols became apparent in the first clinical trial announced by ViaCyte, based on the implantation of pancreatic progenitors that would further mature into functional insulin-producing cells inside the patient's body. AREAS COVERED Several groups, including ours, have contributed to improve strategies to generate insulin-producing cells. Of note, the latest results have gained a substantial amount of interest as a method to create a potentially functional and limitless supply of β-cell to revert diabetes mellitus. This review analyzes the accomplishments that have taken place over the last few decades, summarizes the state-of-art methods for β-cell replacement therapies based on the differentiation of embryonic stem cells into glucose-responsive and insulin-producing cells in a dish and discusses alternative approaches to obtain new sources of insulin-producing cells. EXPERT OPINION Undoubtedly, recent events preface the beginning of a new era in diabetes therapy. However, in our opinion, a number of significant hurdles still stand in the way of clinical application. We believe that the combination of the private and public sectors will accelerate the process of obtaining the desired safe and functional β-cell surrogates.
Collapse
Affiliation(s)
- Bernat Soria
- a 1 CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine , Avda. Americo Vespucio s/n, 41092 Seville, Spain ; .,b 2 CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders , 08036 Barcelona, Spain
| | - Benoit R Gauthier
- a 1 CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine , Avda. Americo Vespucio s/n, 41092 Seville, Spain ;
| | - Franz Martín
- a 1 CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine , Avda. Americo Vespucio s/n, 41092 Seville, Spain ; .,b 2 CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders , 08036 Barcelona, Spain
| | - Juan R Tejedo
- a 1 CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine , Avda. Americo Vespucio s/n, 41092 Seville, Spain ; .,b 2 CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders , 08036 Barcelona, Spain
| | - Francisco J Bedoya
- a 1 CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine , Avda. Americo Vespucio s/n, 41092 Seville, Spain ; .,b 2 CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders , 08036 Barcelona, Spain
| | - Anabel Rojas
- a 1 CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine , Avda. Americo Vespucio s/n, 41092 Seville, Spain ; .,b 2 CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders , 08036 Barcelona, Spain
| | - Abdelkrim Hmadcha
- a 1 CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine , Avda. Americo Vespucio s/n, 41092 Seville, Spain ; .,b 2 CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders , 08036 Barcelona, Spain
| |
Collapse
|
39
|
Hu K, Zhou H, Liu Y, Liu Z, Liu J, Tang J, Li J, Zhang J, Sheng W, Zhao Y, Wu Y, Chen C. Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells. NANOSCALE 2015; 7:8607-8618. [PMID: 25898852 DOI: 10.1039/c5nr01084e] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cancer stem cells (CSCs) have the ability to transform into bulk cancer cells, to promote tumor growth and establish tumor metastasis. To effectively inhibit tumor growth and prevent metastasis, treatments with conventional chemotherapy drugs should be combined with CSC targeted drugs. In this study, we describe the synthesis and characterization of a new amphiphilic polymer, hyaluronic acid-cystamine-polylactic-co-glycolic acid (HA-SS-PLGA), composed of a hydrophobic PLGA head and a hydrophilic HA segment linked by a bioreducible disulfide bond. With a double emulsion method, a nano delivery system was constructed to deliver doxorubicin (DOX) and cyclopamine (CYC, a primary inhibitor of the hedgehog signaling pathway of CSCs) to both a CD44-overexpressing breast CSC subpopulation and bulk breast cancer cells and allow an on-demand release. The resulting drug-loaded NPs exhibited a redox-responsive drug release profile. Dual drug-loaded particles potently diminished the number and size of tumorspheres and HA showed a targeting effect towards breast CSCs. In vivo combination therapy further demonstrated a remarkable synergistic anti-tumor effect and prolonged survival compared to mono-therapy using the orthotopic mammary fat pad tumor growth model. The co-delivery of drug and the CSC specific inhibitor towards targeted cancer chemotherapeutics provides an insight into anticancer strategy with facile control and high efficacy.
Collapse
Affiliation(s)
- Kelei Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Xu EE, Krentz NAJ, Tan S, Chow SZ, Tang M, Nian C, Lynn FC. SOX4 cooperates with neurogenin 3 to regulate endocrine pancreas formation in mouse models. Diabetologia 2015; 58:1013-23. [PMID: 25652387 DOI: 10.1007/s00125-015-3507-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 01/09/2015] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS The sex-determining region Y (SRY)-related high mobility group (HMG) box (SOX) family of transcription factors is essential for normal organismal development. Despite the longstanding knowledge that many SOX family members are expressed during pancreas development, a role for many of these factors in the establishment of insulin-producing beta cell fate remains to be determined. The aim of this study is to elucidate the role of SOX4 during beta cell development. METHODS We used pancreas and endocrine progenitor mouse knockouts of Sox4 to uncover the roles of SOX4 during pancreas development. Lineage tracing and in vitro models were used to determine how SOX4 regulates beta cell formation and understand the fate of Sox4-null endocrine lineage cells. RESULTS This study demonstrates a progenitor cell-autonomous role for SOX4 in regulating the genesis of beta cells and shows that it is required at multiple stages of the process. SOX4 deletion in the multipotent pancreatic progenitors resulted in impaired endocrine progenitor cell differentiation. Deletion of SOX4 later in the Neurog3-expressing cells also caused reductions in beta cells. Lineage studies showed loss of Sox4 in endocrine progenitors resulted in a block in terminal islet cell differentiation that was attributed to reduction in the production of key beta cell specification factors. CONCLUSIONS/INTERPRETATION These results demonstrate that SOX4 is essential for normal endocrine pancreas development both concomitant with, and downstream of, the endocrine fate decision. In conclusion, these studies position Sox4 temporally in the endocrine differentiation programme and provide a new target for improving in vitro differentiation of glucose-responsive pancreatic beta cells.
Collapse
Affiliation(s)
- Eric E Xu
- Diabetes Research Program, Child and Family Research Institute, A4-184, 950 West 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Pezzolla D, López-Beas J, Lachaud CC, Domínguez-Rodríguez A, Smani T, Hmadcha A, Soria B. Resveratrol ameliorates the maturation process of β-cell-like cells obtained from an optimized differentiation protocol of human embryonic stem cells. PLoS One 2015; 10:e0119904. [PMID: 25774684 PMCID: PMC4361612 DOI: 10.1371/journal.pone.0119904] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/03/2015] [Indexed: 12/11/2022] Open
Abstract
Human embryonic stem cells (hESCs) retain the extraordinary capacity to differentiate into different cell types of an adult organism, including pancreatic β-cells. For this particular lineage, although a lot of effort has been made in the last ten years to achieve an efficient and reproducible differentiation protocol, it was not until recently that this aim was roughly accomplished. Besides, several studies evidenced the impact of resveratrol (RSV) on insulin secretion, even though the mechanism by which this polyphenol potentiates glucose-stimulated insulin secretion (GSIS) is still not clear. The aim of this study was to optimize an efficient differentiation protocol that mimics in vivo pancreatic organogenesis and to investigate whether RSV may improve the final maturation step to obtain functional insulin-secreting cells. Our results indicate that treatment of hESCs (HS-181) with activin-A induced definitive endoderm differentiation as detected by the expression of SOX17 and FOXA2. Addition of retinoic acid (RA), Noggin and Cyclopamine promoted pancreatic differentiation as indicated by the expression of the early pancreatic progenitor markers ISL1, NGN3 and PDX1. Moreover, during maturation in suspension culture, differentiating cells assembled in islet-like clusters, which expressed specific endocrine markers such as PDX1, SST, GCG and INS. Similar results were confirmed with the human induced Pluripotent Stem Cell (hiPSC) line MSUH-001. Finally, differentiation protocols incorporating RSV treatment yielded numerous insulin-positive cells, induced significantly higher PDX1 expression and were able to transiently normalize glycaemia when transplanted in streptozotocin (STZ) induced diabetic mice thus promoting its survival. In conclusion, our strategy allows the efficient differentiation of hESCs into pancreatic endoderm capable of generating β-cell-like cells and demonstrates that RSV improves the maturation process.
Collapse
Affiliation(s)
- Daniela Pezzolla
- Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)—Fundación Progreso y Salud (FPS), Sevilla, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
| | - Javier López-Beas
- Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)—Fundación Progreso y Salud (FPS), Sevilla, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
| | - Christian C. Lachaud
- Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)—Fundación Progreso y Salud (FPS), Sevilla, Spain
| | | | - Tarik Smani
- Cardiovascular Pathophysiology, Institute of Biomedicine of Seville (IBIS), Sevilla, Spain
| | - Abdelkrim Hmadcha
- Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)—Fundación Progreso y Salud (FPS), Sevilla, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
- * E-mail:
| | - Bernat Soria
- Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)—Fundación Progreso y Salud (FPS), Sevilla, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
| |
Collapse
|
42
|
Wong AP, Chin S, Xia S, Garner J, Bear CE, Rossant J. Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells. Nat Protoc 2015; 10:363-81. [DOI: 10.1038/nprot.2015.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
43
|
Willet SG, Hale MA, Grapin-Botton A, Magnuson MA, MacDonald RJ, Wright CVE. Dominant and context-specific control of endodermal organ allocation by Ptf1a. Development 2015; 141:4385-94. [PMID: 25371369 DOI: 10.1242/dev.114165] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The timing and gene regulatory logic of organ-fate commitment from within the posterior foregut of the mammalian endoderm is largely unexplored. Transient misexpression of a presumed pancreatic-commitment transcription factor, Ptf1a, in embryonic mouse endoderm (Ptf1a(EDD)) dramatically expanded the pancreatic gene regulatory network within the foregut. Ptf1a(EDD) temporarily suppressed Sox2 broadly over the anterior endoderm. Pancreas-proximal organ territories underwent full tissue conversion. Early-stage Ptf1a(EDD) rapidly expanded the endogenous endodermal Pdx1-positive domain and recruited other pancreas-fate-instructive genes, thereby spatially enlarging the potential for pancreatic multipotency. Early Ptf1a(EDD) converted essentially the entire glandular stomach, rostral duodenum and extrahepatic biliary system to pancreas, with formation of many endocrine cell clusters of the type found in normal islets of Langerhans. Sliding the Ptf1a(EDD) expression window through embryogenesis revealed differential temporal competencies for stomach-pancreas respecification. The response to later-stage Ptf1a(EDD) changed radically towards unipotent, acinar-restricted conversion. We provide strong evidence, beyond previous Ptf1a inactivation or misexpression experiments in frog embryos, for spatiotemporally context-dependent activity of Ptf1a as a potent gain-of-function trigger of pro-pancreatic commitment.
Collapse
Affiliation(s)
- Spencer G Willet
- Program in Developmental Biology and Center for Stem Cell Biology, Nashville, TN 37232, USA Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael A Hale
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3B Blegdamsvej, Copenhagen N, DK-2200, Denmark
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics and Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Raymond J MacDonald
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christopher V E Wright
- Program in Developmental Biology and Center for Stem Cell Biology, Nashville, TN 37232, USA Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
44
|
Bose B, Sudheer PS. In Vitro Differentiation of Pluripotent Stem Cells into Functional β Islets Under 2D and 3D Culture Conditions and In Vivo Preclinical Validation of 3D Islets. Methods Mol Biol 2015; 1341:257-84. [PMID: 25783769 DOI: 10.1007/7651_2015_230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since the advent of pluripotent stem cells, (embryonic and induced pluripotent stem cells), applications of such pluripotent stem cells are of prime importance. Indeed, scientists are involved in studying the basic biology of pluripotent stem cells, but equal impetus is there to direct the pluripotent stem cells into multiple lineages for cell therapy applications. Scientists across the globe have been successful, to a certain extent, in obtaining cells of definitive endoderm and also pancreatic β islets by differentiating human pluripotent stem cells. Pluripotent stem cell differentiation protocols aim at mimicking in vivo embryonic development. As in vivo embryonic development is a complex process and involves interplay of multiple cytokines, the differentiation protocols also involve a stepwise use of multiple cytokines. Indeed the novel markers for pancreas organogenesis serve as the roadmaps to develop new protocols for pancreatic differentiation from pluripotent stem cells. Earliest developed protocols for pancreas differentiation involved "Nestin selection pathway," a pathway common for both neuronal and pancreatic differentiation lead to the generation of cells that were a combination of cells from neuronal lineage. Eventually with the discovery of hierarchy of β cell transcription factors like Pdx1, Pax4, and Nkx2.2, forced expression of such transcription factors proved successful in converting a pluripotent stem cell into a β cell. Protocols developed almost half a decade ago to the recent ones rather involve stepwise differentiations involving various cytokines and could generate as high as 25 % functional insulin-positive cells in vitro. Most advanced protocols for β islet differentiations from human pluripotent stem cells focused on 3D culture conditions, which reportedly produced 60-65 % functional β islet cells. Here, we describe the protocol for differentiation of human pluripotent stem cells into functional β cells under both 2D and 3D culture conditions.
Collapse
Affiliation(s)
- Bipasha Bose
- Level 03, Stem Cell Biology and Tissue Engineering Division, Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore, 575018, Karnataka, India.
| | - P Shenoy Sudheer
- Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, NTU/SBS Lab location @ Level 2, Singapore Institute for Clinical Sciences Brenner Centre for Molecular Medicine 30 Medical Drive, Singapore, 117609, Singapore
| |
Collapse
|
45
|
Riley KG, Gannon M. Pancreas Development and Regeneration. PRINCIPLES OF DEVELOPMENTAL GENETICS 2015:565-590. [DOI: 10.1016/b978-0-12-405945-0.00031-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
46
|
Kumar SS, Alarfaj AA, Munusamy MA, Singh AJAR, Peng IC, Priya SP, Hamat RA, Higuchi A. Recent developments in β-cell differentiation of pluripotent stem cells induced by small and large molecules. Int J Mol Sci 2014; 15:23418-47. [PMID: 25526563 PMCID: PMC4284775 DOI: 10.3390/ijms151223418] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 12/21/2022] Open
Abstract
Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold promise as novel therapeutic tools for diabetes treatment because of their self-renewal capacity and ability to differentiate into beta (β)-cells. Small and large molecules play important roles in each stage of β-cell differentiation from both hESCs and hiPSCs. The small and large molecules that are described in this review have significantly advanced efforts to cure diabetic disease. Lately, effective protocols have been implemented to induce hESCs and human mesenchymal stem cells (hMSCs) to differentiate into functional β-cells. Several small molecules, proteins, and growth factors promote pancreatic differentiation from hESCs and hMSCs. These small molecules (e.g., cyclopamine, wortmannin, retinoic acid, and sodium butyrate) and large molecules (e.g. activin A, betacellulin, bone morphogentic protein (BMP4), epidermal growth factor (EGF), fibroblast growth factor (FGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), noggin, transforming growth factor (TGF-α), and WNT3A) are thought to contribute from the initial stages of definitive endoderm formation to the final stages of maturation of functional endocrine cells. We discuss the importance of such small and large molecules in uniquely optimized protocols of β-cell differentiation from stem cells. A global understanding of various small and large molecules and their functions will help to establish an efficient protocol for β-cell differentiation.
Collapse
Affiliation(s)
- S Suresh Kumar
- Department of Medical Microbiology and Parasitology, Universities Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Murugan A Munusamy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - A J A Ranjith Singh
- Department of Bioscience, Jacintha Peter College of Arts and Sciences, Ayakudi, Tenkasi, Tamilnadu 627852, India.
| | - I-Chia Peng
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan 32001, Taiwan.
| | - Sivan Padma Priya
- Department of Basic Science and Department of Surgical Sciences, Ajman University of Science and Technology-Fujairah Campus, P.O. Box 9520, Al Fujairah, United Arab Emirates.
| | - Rukman Awang Hamat
- Department of Medical Microbiology and Parasitology, Universities Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Akon Higuchi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
47
|
Janardhan KS, Rebolloso Y, Hurlburt G, Olson D, Lyght O, Clayton NP, Gruebbel M, Picut C, Shackelford C, Herbert RA. Histopathological and Immunohistochemical Characterization of Methyl Eugenol-induced Nonneoplastic and Neoplastic Neuroendocrine Cell Lesions in Glandular Stomach of Rats. Toxicol Pathol 2014; 43:681-93. [PMID: 25452433 DOI: 10.1177/0192623314560030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Methyl eugenol induces neuroendocrine (NE) cell hyperplasia and tumors in F344/N rat stomach. Detailed histopathological and immunohistochemical (IHC) characterization of these tumors has not been previously reported. The objective of this study was to fill that data gap. Archived slides and paraffin blocks were retrieved from the National Toxicology Program Archives. NE hyperplasias and tumors were stained with chromogranin A, synaptophysin, amylase, gastrin, H(+)/K(+) adenosine triphosphatase (ATPase), pepsinogen, somatostatin, and cytokeratin 18 (CK18) antibodies. Many of the rats had gastric mucosal atrophy, due to loss of chief and parietal cells. The hyperplasias and tumors were confined to fundic stomach, and females were more affected than the males. Hyperplasia of NE cells was not observed in the pyloric region. Approximately one-third of the females with malignant NE tumors had areas of pancreatic acinar differentiation. The rate of metastasis was 21%, with liver being the most common site of metastasis. Immunohistochemically, the hyperplasias and tumors stained consistently with chromogranin A and synaptophysin. Neoplastic cells were also positive for amylase and CK18 and negative for gastrin, somatostatin, H(+)/K(+) ATPase, and pepsinogen. Metastatic neoplasms histologically similar to the primary neoplasm stained positively for chromogranin A and synaptophysin. Based on the histopathological and IHC features, the neoplasms appear to arise from enterochromaffin-like cells.
Collapse
Affiliation(s)
| | - Yvette Rebolloso
- Cellular and Molecular Pathology Branch, Division of National Toxicology Program, Research Triangle Park, North Carolina, USA
| | | | - David Olson
- Charles River Pathology Associates, Durham, North Carolina, USA
| | - Otis Lyght
- Integrated Laboratory Systems Inc., Research Triangle Park, North Carolina, USA
| | - Natasha P Clayton
- Cellular and Molecular Pathology Branch, Division of National Toxicology Program, Research Triangle Park, North Carolina, USA
| | | | | | | | - Ronald A Herbert
- Cellular and Molecular Pathology Branch, Division of National Toxicology Program, Research Triangle Park, North Carolina, USA
| |
Collapse
|
48
|
Shim JH, Kim J, Han J, An SY, Jang YJ, Son J, Woo DH, Kim SK, Kim JH. Pancreatic Islet-Like Three-Dimensional Aggregates Derived From Human Embryonic Stem Cells Ameliorate Hyperglycemia in Streptozotocin-Induced Diabetic Mice. Cell Transplant 2014; 24:2155-68. [PMID: 25397866 DOI: 10.3727/096368914x685438] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We previously reported the in vitro differentiation of human embryonic stem cells (hESCs) into pancreatic endoderm. Here we demonstrate that islet-like three-dimensional (3D) aggregates can be derived from the pancreatic endoderm by optimizing our previous protocol. Sequential treatment with Wnt3a, activin A, and noggin induced a transient upregulation of T and MixL1, followed by increased expression of endodermal genes, including FOXA2, SOX17, and CXCR4. Subsequent treatment with retinoic acid highly upregulated PDX1 expression. We also show that inhibition of sonic hedgehog signaling by bFGF/activin βB and cotreatment with VEGF and FGF7 produced many 3D cellular clusters that express both SOX17 and PDX1. We found for the first time that proteoglycans and vimentin(+) mesenchymal cells were mainly localized in hESC-derived PDX1(+) clusters. Importantly, treatment with chlorate, an inhibitor of proteoglycan sulfation, together with inhibition of Notch signaling significantly increased the expression of Neurog3 and NeuroD1, promoting a transition from PDX1(+) progenitor cells toward mature pancreatic endocrine cells. Purified dithizone(+) 3D aggregates generated by our refined protocol produced pancreatic hormones and released insulin in response to both glucose and pharmacological drugs in vitro. Furthermore, the islet-like 3D aggregates decreased blood glucose levels and continued to exhibit pancreatic features after transplantation into diabetic mice. Generation of islet-like 3D cell aggregates from human pluripotent stem cells may overcome the shortage of cadaveric donor islets for future cases of clinical islet transplantation.
Collapse
Affiliation(s)
- Joong-Hyun Shim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Quintero-Rivera F, Woo JS, Bomberg EM, Wallace WD, Peredo J, Dipple KM. Duodenal atresia in 17q12 microdeletion includingHNF1B: A new associated malformation in this syndrome. Am J Med Genet A 2014; 164A:3076-82. [DOI: 10.1002/ajmg.a.36767] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/14/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine; David Geffen School of Medicine; Los Angeles California
- UCLA Clinical Genomics Center; Los Angeles California
| | - Jennifer S. Woo
- Department of Pathology and Laboratory Medicine; David Geffen School of Medicine; Los Angeles California
| | - Eric M. Bomberg
- Department of Pediatrics; David Geffen School of Medicine at UCLA; Los Angeles California
| | - W. Dean Wallace
- Department of Pathology and Laboratory Medicine; David Geffen School of Medicine; Los Angeles California
| | - Jane Peredo
- Department of Pediatrics; David Geffen School of Medicine at UCLA; Los Angeles California
| | - Katrina M. Dipple
- UCLA Clinical Genomics Center; Los Angeles California
- Department of Pediatrics; David Geffen School of Medicine at UCLA; Los Angeles California
- Department of Human Genetics; David Geffen School of Medicine at UCLA; Los Angeles California
| |
Collapse
|
50
|
Jaramillo M, Mathew S, Mamiya H, Goh SK, Banerjee I. Endothelial cells mediate islet-specific maturation of human embryonic stem cell-derived pancreatic progenitor cells. Tissue Eng Part A 2014; 21:14-25. [PMID: 24943736 DOI: 10.1089/ten.tea.2014.0013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is well recognized that in vitro differentiation of embryonic stem cells (ESC) can be best achieved by closely recapitulating the in vivo developmental niche. Thus, implementation of directed differentiation strategies has yielded encouraging results in the area of pancreatic islet differentiation. These strategies have concentrated on direct addition of chemical signals, however, other aspect of the developmental niche are yet to be explored. During development, pancreatic progenitor (PP) cells grow as an epithelial sheet, which aggregates with endothelial cells (ECs) during the final stages of maturation. Several findings suggest that the interactions with EC play a role in pancreatic development. In this study, we recapitulated this phenomenon in an in vitro environment by maturing the human ESC (hESC)-derived PP cells in close contact with ECs. We find that co-culture with different ECs (but not fibroblast) alone results in pancreatic islet-specific differentiation of hESC-derived PP cells even in the absence of additional chemical induction. The differentiated cells responded to exogenous glucose levels by enhanced C-peptide synthesis. The co-culture system aligned well with endocrine development as determined by comprehensive analysis of involved signaling pathways. By recapitulating cell-cell interaction aspects of the developmental niche we achieved a differentiation model that aligns closely with islet organogenesis.
Collapse
Affiliation(s)
- Maria Jaramillo
- 1 Department of Bioengineering, University of Pittsburgh, Pittsburgh , Pennsylvania
| | | | | | | | | |
Collapse
|