1
|
Hua W, Li F, Yang P, Lu Z, Liu Y, Zhong B, Shen B. Resveratrol derivative modified Ru(II) complexes: Synthesis, characterization, in vitro and in vivo anticancer study. J Inorg Biochem 2025; 267:112873. [PMID: 40048805 DOI: 10.1016/j.jinorgbio.2025.112873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/15/2025]
Abstract
The diversification of ligands provides more opportunities to adjust the photophysical performance as well as the bio-function of Ru(II) complexes as novel photosensitizers. Herein, a kind of Ru(II) complexes carrying resveratrol derivative, amino-Res, as ligand was designed and synthesized. The representative complex (named Ru4) showed potent anticancer activity under the trigger of 520 nm-light. Lipophilicity and cellular accumulation experiments indicated that Ru4 possessed higher LogPO/W value and cell up-take than Ru1-Ru3 and [Ru(bpy)3]2+. Mechanism study revealed that Ru4 could inhibit cancer cell migration, invasion and cancer stemness. The bio-function of Ru4 was mainly inherited from the amino-Res ligand. The in vivo study demonstrated that Ru4 could inhibit the tumor growth without significant system toxicity.
Collapse
Affiliation(s)
- Wuyang Hua
- School of Food Science and Nutrition Engineering, Jilin Agricultural Science and Technology University, 77(th) Han Lin Road, Jilin City 132101, China; Jilin Province Brewing Technology Science and Technology Innovation Center, 77(th) Han Lin Road, Jilin City 132101, China.
| | - Fenglin Li
- School of Food Science and Nutrition Engineering, Jilin Agricultural Science and Technology University, 77(th) Han Lin Road, Jilin City 132101, China; Jilin Province Brewing Technology Science and Technology Innovation Center, 77(th) Han Lin Road, Jilin City 132101, China
| | - Ping Yang
- School of Food Science and Nutrition Engineering, Jilin Agricultural Science and Technology University, 77(th) Han Lin Road, Jilin City 132101, China; Jilin Province Brewing Technology Science and Technology Innovation Center, 77(th) Han Lin Road, Jilin City 132101, China
| | - Zhongkui Lu
- School of Food Science and Nutrition Engineering, Jilin Agricultural Science and Technology University, 77(th) Han Lin Road, Jilin City 132101, China; Jilin Province Brewing Technology Science and Technology Innovation Center, 77(th) Han Lin Road, Jilin City 132101, China
| | - Yanxia Liu
- School of Food Science and Nutrition Engineering, Jilin Agricultural Science and Technology University, 77(th) Han Lin Road, Jilin City 132101, China; Jilin Province Brewing Technology Science and Technology Innovation Center, 77(th) Han Lin Road, Jilin City 132101, China
| | - Bao Zhong
- School of Food Science and Nutrition Engineering, Jilin Agricultural Science and Technology University, 77(th) Han Lin Road, Jilin City 132101, China; Jilin Province Brewing Technology Science and Technology Innovation Center, 77(th) Han Lin Road, Jilin City 132101, China
| | - Baoxing Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2(nd) Xue Lin Road, Nanjing 210023, China.
| |
Collapse
|
2
|
Peeney D, Kumar S, Singh TP, Liu Y, Jensen SM, Chowdhury A, Coates-Park S, Rich J, Gurung S, Fan Y, Meerzaman D, Stetler-Stevenson WG. Timp2 loss-of-function mutation and TIMP2 treatment in a murine model of NSCLC: Modulation of immunosuppression and oncogenic signaling. Transl Oncol 2025; 53:102309. [PMID: 39904284 PMCID: PMC11846589 DOI: 10.1016/j.tranon.2025.102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/06/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
Mounting evidence suggests that the tissue inhibitor of metalloproteinases-2 (TIMP2) can reduce tumor burden and metastasis. However, the demonstration of such anti-tumor activity and associated mechanisms using in vivo tumor models is lacking. The effects of a Timp2 functional mutation and administration of recombinant TIMP2 were examined in both orthotopic and heterotopic murine models of lung cancer using C57Bl/6 syngeneic Lewis Lung 2-luciferase 2 cells (LL2-Luc2) cells. Mice harboring a functional mutation of TIMP2 (mT2) display markedly increased primary lung tumor growth, increased mortality, enriched vasculature, and enhanced infiltration of pro-tumorigenic, immunosuppressive myeloid cells. Treatment with recombinant TIMP2 reduced primary tumor growth in both mutant and wild-type (wt) mice. Comparison of transcriptional profiles of lung tissues from tumor-free, wt versus mT2 mice reveals only minor changes. However, lung tumor-bearing mice of both genotypes demonstrate significant genotype-dependent changes in gene expression following treatment with TIMP. In tumor-bearing wt mice, TIMP2 treatment reduced the expression of upstream oncogenic mediators, whereas treatment of mT2 mice resulted in an immunomodulatory phenotype. A heterotopic subcutaneous model generating metastatic pulmonary tumors demonstrated that daily administration of recombinant TIMP2 significantly reduces the expression of heat shock proteins, suggesting a reduction of cell-stress responses. In summary, we describe how TIMP2 exerts novel, anti-tumor effects in a murine model of lung cancer and that rTIMP2 treatment supports a normalizing effect on the tumor microenvironment. Our findings show that TIMP2 treatment demonstrates significant potential as an adjuvant in the treatment of NSCLC.
Collapse
Affiliation(s)
- David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA.
| | - Sarvesh Kumar
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Tej Pratap Singh
- Laboratory of Molecular Immunology, National Institute for Allergy, and Infectious Disease (NIAID), Bethesda, MD 20892, USA
| | - Yueqin Liu
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Sandra M Jensen
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Ananda Chowdhury
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Sasha Coates-Park
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Joshua Rich
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Sadeechya Gurung
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Yu Fan
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Rockville, MD 20850, USA
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Rockville, MD 20850, USA
| | - William G Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Qin Y, Liao S, Sun J, Ye H, Li J, Pan J, He J, Xia Z, Shao Y. RECK as a Potential Crucial Molecule for the Targeted Treatment of Sepsis. J Inflamm Res 2025; 18:1787-1813. [PMID: 39931174 PMCID: PMC11809362 DOI: 10.2147/jir.s501856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/19/2025] [Indexed: 02/13/2025] Open
Abstract
Reversion inducing cysteine rich protein with kazal motifs (RECK), a Kazal motif-containing protein, regulates pro-inflammatory cytokines production, migration of inflammatory cells, vascular endothelial growth factor (VEGF) and Wnt pathways and plays critical roles in septic inflammatory storms and vascular endothelial dysfunction. Recently, RECK has been defined as the negative regulator of adisintegrin and metalloproteinases (ADAMs) and matrix metalloproteinases (MMPs), which are both membrane "molecular scissors" and aggravate the poor prognosis of sepsis. To better understand the roles of RECK and the related mechanisms, we make here a systematic and in-depth review of RECK. We first summarize the findings on structural characteristics of RECK protein and the regulation at the transcription, post-transcription, or protein level of RECK. Then, we discuss the roles of RECK in inflammation, infection, and vascular injury by focusing on the RECK function on ADAMs and MMPs, as well as the pathways of VEGF, WNT, angiopoietin, and notch signaling. In conclusion, RECK participation as a guardian in the development of sepsis provides insight into the strategies of precisely intervening in RECK dysregulationfor the treatment of sepsis.
Collapse
Affiliation(s)
- Yuting Qin
- Dongguan Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, People’s Republic of China
| | - Shuanglin Liao
- Dongguan Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, People’s Republic of China
| | - Jianbo Sun
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, People’s Republic of China
| | - Huiyun Ye
- Dongguan Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, People’s Republic of China
| | - Jiafu Li
- Dongguan Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, People’s Republic of China
| | - Jiahui Pan
- Dongguan Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, People’s Republic of China
| | - Junbing He
- The Key Laboratory of Organ Dysfunction and Protection Translational Medicine, Jieyang Medical Research Center, Jieyang People’s Hospital, Jieyang, Guangdong, People’s Republic of China
| | - Zhengyuan Xia
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People’s Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, People’s Republic of China
| | - Yiming Shao
- Dongguan Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, People’s Republic of China
- The Key Laboratory of Sepsis Translational Medicine, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| |
Collapse
|
4
|
Dos Santos PRM, da Silva Gomes PR, Romão P, Maluf FC, Guimarães VR, Candido P, Gonçalves GL, de Camargo JA, Dos Santos GA, Silva I, Leite KRM, Nahas W, Reis ST, Pimenta R, Viana NI. Enhancing RECK Expression Through miR-21 Inhibition: A Promising Strategy for Bladder Carcinoma Control. Biochem Genet 2025; 63:817-831. [PMID: 38522065 DOI: 10.1007/s10528-024-10714-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/23/2024] [Indexed: 03/25/2024]
Abstract
Bladder carcinoma (BC) is the tenth most frequent malignancy worldwide, with high morbidity and mortality rates. Despite recent treatment advances, high-grade BC and muscle-invasive BC present with significant progression and recurrence rates, urging the need for alternative treatments. The microRNA-21 (miR-21) has superexpression in many malignancies and is associated with cellular invasion and progression. One of its mechanisms of action is the regulation of RECK, a tumor suppressor gene responsible for inhibiting metalloproteinases, including MMP9. In a high-grade urothelial cancer cell line, we aimed to assess if miR-21 downregulation would promote RECK expression and decrease MMP9 expression. We also evaluated cellular migration and proliferation potential by inhibition of this pathway. In a T24 cell line, we inhibited miR-21 expression by transfection of a specific microRNA inhibitor (anti-miR-21). There were also control and scramble groups, the last with a negative microRNA transfected. After the procedure, we performed a genetic expression analysis of miR-21, RECK, and MMP9 through qPCR. Migration, proliferation, and protein expression were evaluated via wound healing assay, colony formation assay, flow cytometry, and immunofluorescence.After anti-miR-21 transfection, miR-21 expression decreased with RECK upregulation and MMP9 downregulation. The immunofluorescence assay showed a significant increase in RECK protein expression (p < 0.0001) and a decrease in MMP9 protein expression (p = 0.0101). The anti-miR-21 transfection significantly reduced cellular migration in the wound healing assay (p < 0.0001). Furthermore, in the colony formation assay, the anti-miR-21 group demonstrated reduced cellular proliferation (p = 0.0008), also revealed in the cell cycle analysis by flow cytometry (p = 0.0038). Our results corroborate the hypothesis that miR-21 is associated with BC cellular migration and proliferation, revealing its potential as a new effective treatment for this pathology.
Collapse
Affiliation(s)
- Paulo Rodolfo Moraes Dos Santos
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Faculdade de Medicina, Universidade Anhembi Morumbi, São Paulo, SP, Brazil
| | - Paulo Ricardo da Silva Gomes
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Faculdade de Medicina, Universidade Federal do Pará, Belém, PA, Brazil
| | - Poliana Romão
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Feres Camargo Maluf
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Vanessa Ribeiro Guimarães
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Patrícia Candido
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Moriah Institute of Science and Education (MISE), Hospital Moriah, São Paulo, SP, Brazil
| | - Guilherme Lopes Gonçalves
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Juliana Alves de Camargo
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Gabriel Arantes Dos Santos
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Iran Silva
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Katia Ramos Moreira Leite
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - William Nahas
- Uro-Oncology Group, Urology Department, University of Sao Paulo Medical School and Institute of Cancer Estate of Sao Paulo (ICESP), Sao Paulo, Brazil
| | - Sabrina T Reis
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Moriah Institute of Science and Education (MISE), Hospital Moriah, São Paulo, SP, Brazil
| | - Ruan Pimenta
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- D'Or Institute for Research and Education (IDOR), Sao Paulo, Brazil
- Precision Immunology Institute, Department of Immunology and Immunotherapy, and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Nayara Izabel Viana
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
- Universidade do Estado de Minas Gerais - UEMG, Passos, MG, Brazil.
| |
Collapse
|
5
|
Wei B, Huang J, Zhang Y, Hu X, Ma C, Li Y, Chen P. Restoration of RECK expression attenuates liver fibrosis induced by carbon tetrachloride through the Nrf2-MMP9 axis. Int Immunopharmacol 2024; 143:113475. [PMID: 39476567 DOI: 10.1016/j.intimp.2024.113475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
Liver fibrosis is a reversible process that can be delayed or even reversed through appropriate intervention during its development. The protein RECK, encoded by the Reck gene, regulates matrix metalloproteinase (MMP) activity and plays a crucial role in extracellular matrix (ECM) degradation and remodeling. Reduced RECK expression is found in various fibrotic tissues. However, the impact of restoring RECK expression on the development and progression of liver fibrosis has not yet been determined. This study found that the restoration of RECK expression attenuated TGF-β1-induced hepatic stellate cell (HSC) activation and mitigated carbon tetrachloride (CCl4)-induced acute liver injury. In a mouse model of liver fibrosis induced by CCl4, restoration of RECK expression reduced the degree of fibrosis, collagen deposition, and level of oxidative stress. RECK competes with Nrf2 for binding to Keap1, resulting in a decrease in the degradation of Nrf2 by Keap1 and an increase in the accumulation of Nrf2 in the cytoplasm. Under oxidative stress conditions, Nrf2 can be translocated to the nucleus for expression, initiating an antioxidant stress response, furthermore, Nrf2 can also activate MMP-9 and degrade the over-deposited collagen, thereby achieving the effect of alleviating liver fibrosis. Our study reveals a novel mechanism by which restoration of RECK expression ameliorates liver fibrosis, providing a promising target for combating liver fibrosis.
Collapse
Affiliation(s)
- Bizhen Wei
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Jing Huang
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China; Department of Respiratory and Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yu Zhang
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Xiuxiu Hu
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Cao Ma
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China; Department of Pathology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yiping Li
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China.
| | - Pingsheng Chen
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China; Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
6
|
Dorta S, Alexandre-Silva V, Popolin CP, de Sousa DB, Grigoli MM, Pelegrini LNDC, Manzine PR, Camins A, Marcello E, Endres K, Cominetti MR. ADAM10 isoforms: Optimizing usage of antibodies based on protein regulation, structural features, biological activity and clinical relevance to Alzheimer's disease. Ageing Res Rev 2024; 101:102464. [PMID: 39173916 DOI: 10.1016/j.arr.2024.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/21/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
A Disintegrin and Metalloproteinase 10 (ADAM10) is a crucial transmembrane protein involved in diverse cellular processes, including cell adhesion, migration, and proteolysis. ADAM10's ability to cleave over 100 substrates underscores its significance in physiological and pathological contexts, particularly in Alzheimer's disease (AD). This review comprehensively examines ADAM10's multifaceted roles, highlighting its critical function in the non-amyloidogenic processing of the amyloid precursor protein (APP), which mitigates amyloid beta (Aβ) production, a critical factor in AD development. We summarize the regulation of ADAM10 at multiple levels: transcriptional, translational, and post-translational, revealing the complexity and responsiveness of its expression to various cellular signals. A standardized nomenclature for ADAM10 isoforms is proposed to improve clarity and consistency in research, facilitating better comparison and replication of findings across studies. We address the challenges in detecting ADAM10 isoforms using antibodies, advocating for standardized detection protocols to resolve discrepancies in results from different biological matrices. By highlighting these issues, this review underscores the potential of ADAM10 as a biomarker for early diagnosis and a therapeutic target in AD. By consolidating current knowledge on ADAM10's regulation and function, we aim to provide insights that will guide future research and therapeutic strategies in the AD context.
Collapse
Affiliation(s)
- Sabrina Dorta
- Department of Gerontology, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | | | | | | | | | | | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Milan, Italy
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Marcia Regina Cominetti
- Department of Gerontology, Federal University of São Carlos, São Carlos, SP, Brazil; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
7
|
Gozdz A, Maksym RB, Ścieżyńska A, Götte M, Kieda C, Włodarski PK, Malejczyk J. Expression of Reversion-Inducing Cysteine-Rich Protein with Kazal Motifs ( RECK) Gene and Its Regulation by miR200b in Ovarian Endometriosis. Int J Mol Sci 2024; 25:11594. [PMID: 39519143 PMCID: PMC11547164 DOI: 10.3390/ijms252111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Endometriosis is a common chronic disorder characterized by the growth of endometrium-like tissue outside the uterine cavity. The disease is associated with chronic inflammation and pelvic pain and may have an impact on the patient's fertility. The causative factors and pathophysiology of the disease are still poorly recognized. The dysregulation of the immune system, aberrant tissue remodeling, and angiogenesis contribute to the disease progression. In endometriosis patients, the proteins regulating the breakdown and reorganization of the connective tissue, e.g., collagenases, and other proteases, as well as their inhibitors, show an incorrect pattern of expression. Here, we report that the expression of reversion-inducing cysteine-rich protein with Kazal motifs (RECK), one of the inhibitors of connective tissue proteases, is elevated in endometrioma cysts as compared to normal endometrium from unaffected women. We also demonstrate a reduced level of miR200b in endometriotic tissue that correlates with RECK mRNA levels. Furthermore, we employ the 12Z cell line, derived from a peritoneal endometriotic lesion, and the Ishikawa cell line, originating from endometrial adenocarcinoma to identify RECK as a direct target of miR200b. The described effect of miR200b on RECK, together with the aberrant expression of both genes in endometrioma, may help to understand the role played by the tissue remodeling system in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Agata Gozdz
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, ul. T. Chałubińskiego 5, 02-004 Warsaw, Poland; (R.B.M.); (A.Ś.); (P.K.W.)
| | - Radosław B. Maksym
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, ul. T. Chałubińskiego 5, 02-004 Warsaw, Poland; (R.B.M.); (A.Ś.); (P.K.W.)
- 1st Department of Obstetrics and Gynecology, Centre for Postgraduate Medical Education, ul. Żelazna 90, 01-004 Warsaw, Poland
- Center for Molecular Biophysics UPR 4301 CNRS, 45071 Orleans, France;
| | - Aneta Ścieżyńska
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, ul. T. Chałubińskiego 5, 02-004 Warsaw, Poland; (R.B.M.); (A.Ś.); (P.K.W.)
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland
| | - Martin Götte
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany;
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany
| | - Claudine Kieda
- Center for Molecular Biophysics UPR 4301 CNRS, 45071 Orleans, France;
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, ul. T. Chałubińskiego 5, 02-004 Warsaw, Poland; (R.B.M.); (A.Ś.); (P.K.W.)
| | - Jacek Malejczyk
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, ul. T. Chałubińskiego 5, 02-004 Warsaw, Poland; (R.B.M.); (A.Ś.); (P.K.W.)
| |
Collapse
|
8
|
Higashi Y, Dashek R, Delafontaine P, Rector RS, Chandrasekar B. EF24, a Curcumin Analog, Reverses Interleukin-18-Induced miR-30a or miR-342-Dependent TRAF3IP2 Expression, RECK Suppression, and the Proinflammatory Phenotype of Human Aortic Smooth Muscle Cells. Cells 2024; 13:1673. [PMID: 39451191 PMCID: PMC11505909 DOI: 10.3390/cells13201673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Curcumin, a polyphenolic compound derived from the widely used spice Curcuma longa, has shown anti-atherosclerotic effects in animal models and cultured vascular cells. Inflammation is a major contributor to atherosclerosis development and progression. We previously reported that the induction of the proinflammatory molecule TRAF3IP2 (TRAF3 Interacting Protein 2) or inhibition of the matrix metallopeptidase (MMP) regulator RECK (REversion Inducing Cysteine Rich Protein with Kazal Motifs) contributes to pro-oxidant, proinflammatory, pro-mitogenic and pro-migratory effects in response to external stimuli in vascular smooth muscle cells. Here we hypothesized that EF24, a curcumin analog with a better bioavailability and bioactivity profile, reverses interleukin (IL)-18-induced TRAF3IP2 induction, RECK suppression and the proinflammatory phenotype of primary human aortic smooth muscle cells (ASMC). The exposure of ASMC to functionally active recombinant human IL-18 (10 ng/mL) upregulated TRAF3IP2 mRNA and protein expression, but markedly suppressed RECK in a time-dependent manner. Further investigations revealed that IL-18 inhibited both miR-30a and miR-342 in a p38 MAPK- and JNK-dependent manner, and while miR-30a mimic blunted IL-18-induced TRAF3IP2 expression, miR-342 mimic restored RECK expression. Further, IL-18 induced ASMC migration, proliferation and proinflammatory phenotype switching, and these effects were attenuated by TRAF3IP2 silencing, and the forced expression of RECK or EF24. Together, these results suggest that the curcumin analog EF24, either alone or as an adjunctive therapy, has the potential to delay the development and progression of atherosclerosis and other vascular inflammatory and proliferative diseases by differentially regulating TRAF3IP2 and RECK expression in ASMC.
Collapse
Affiliation(s)
- Yusuke Higashi
- Medicine/Cardiology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Ryan Dashek
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA; (R.D.); (R.S.R.)
- Comparative Medicine Program, University of Missouri, Columbia, MO 65211, USA
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65201, USA
| | - Patrice Delafontaine
- Medicine/Cardiology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Randy Scott Rector
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA; (R.D.); (R.S.R.)
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65201, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65201, USA
| | - Bysani Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA
- Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65201, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65201, USA
- Dalton Cardiovascular Center, University of Missouri, Columbia, MO 65203, USA
| |
Collapse
|
9
|
Yu H, Kohno S, Voon DC, Hussein NH, Zhang Y, Nakayama J, Takegami Y, Takahashi C. RECK/GPR124-driven WNT signaling in pancreatic and gastric cancer cells. Cancer Sci 2024; 115:3013-3025. [PMID: 38923741 PMCID: PMC11462976 DOI: 10.1111/cas.16258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
RECK has been described to modulate extracellular matrix components through negative regulation of MMP activities. Recently, RECK was demonstrated to bind to an orphan G protein-coupled receptor GPR124 to mediate WNT7 signaling in nontumor contexts. Here, we attempted to clarify the role of RECK in driving WNT signaling in cancer cells. RECK and GPR124 formed a complex in 293T cells, and when both were expressed, WNT signaling was significantly enhanced in a WNT7-dependent manner. This cooperation was abolished when RECK mutants unable to bind to GPR124 were transduced. RECK stimulated the growth of KRAS-mutated pancreatic ductal adenocarcinoma (PDAC) cells with increased sensitivity to WNT inhibitor in a GPR124-dependent manner. A gastric cancer cell line SH10TC endogenously expresses both RECK and GPR124 under regular culture conditions. In this cell line, inhibited cell growth and WNT signaling as well as increased apoptosis in the GPR124 depletion was dominantly found over those in the RECK deletion. These findings suggest that RECK promotes tumor cell growth by positively modulating WNT signaling through GPR124. This study proposes that the RECK/GPR124 complex might be a good therapeutic target in PDAC and gastric cancer.
Collapse
Affiliation(s)
- Hai Yu
- Division of Oncology and Molecular Biology, Cancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Susumu Kohno
- Division of Oncology and Molecular Biology, Cancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | | | - Nada Hamdy Hussein
- Division of Oncology and Molecular Biology, Cancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Yuanyuan Zhang
- Division of Oncology and Molecular Biology, Cancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | - Joji Nakayama
- Division of Oncology and Molecular Biology, Cancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| | | | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research InstituteKanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
10
|
Matsuzaki T, Inoue J, Minato N, Noda M. Non-cell-autonomous suppression of tumor growth by RECK in immunocompetent mice. J Cell Physiol 2024; 239:e31396. [PMID: 39104026 DOI: 10.1002/jcp.31396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
RECK is a candidate tumor suppressor gene isolated as a gene that induces flat reversion in a cell line transformed by the KRAS oncogene. Since RECK knockout mice die in utero, they are not suitable for studying the effects of RECK on tumor formation. In this study, we found an increased incidence of spontaneous pulmonary adenomas in mice with reduced RECK expression (RECK-Hypo mice). To evaluate the effects of RECK expressed by either tumor cells or host cells on tumor growth, we established a tumorigenic cell line (MKER) from the kidney of a C57BL/6 mouse and performed syngeneic transplantation experiments. Our results indicate that when RECK expression is low in host cells, transplanted MKER cells grow faster and kill the animal more rapidly. Since RECK is required for the formation of proper fibrillin fibers that serve as a tissue reservoir for precursors of TGFβ-family cytokines, we assessed the levels of TGFβ1 in the peripheral blood. We found a significant increase in TGFβ1 in RECK-Hypo mice compared to wild-type mice. We also found that the proportion of FOXP3-positive regulatory T (Treg) cells among splenocytes was higher in RECK-Hypo mice compared to the control mice. Furthermore, the number of FOXP3-positive cells in spontaneous hematopoietic neoplasms in the lungs as well as tumors that formed after MKER transplantation was significantly higher in RECK-Hypo mice compared to the control mice. These findings indicate that RECK-mediated tumor suppression involves a non-cell-autonomous mechanism and that possible roles of TGFβ1 and Treg cells in such a mechanism warrant further study.
Collapse
Affiliation(s)
- Tomoko Matsuzaki
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute of Laboratory Animals, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Joe Inoue
- Departments of Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nagahiro Minato
- Departments of Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Makoto Noda
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
11
|
Zhu N, Smallwood PM, Rattner A, Chang TH, Williams J, Wang Y, Nathans J. Utility of protein-protein binding surfaces composed of anti-parallel alpha-helices and beta-sheets selected by phage display. J Biol Chem 2024; 300:107283. [PMID: 38608728 PMCID: PMC11107207 DOI: 10.1016/j.jbc.2024.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Over the past 3 decades, a diverse collection of small protein domains have been used as scaffolds to generate general purpose protein-binding reagents using a variety of protein display and enrichment technologies. To expand the repertoire of scaffolds and protein surfaces that might serve this purpose, we have explored the utility of (i) a pair of anti-parallel alpha-helices in a small highly disulfide-bonded 4-helix bundle, the CC4 domain from reversion-inducing Cysteine-rich Protein with Kazal Motifs and (ii) a concave beta-sheet surface and two adjacent loops in the human FN3 domain, the scaffold for the widely used monobody platform. Using M13 phage display and next generation sequencing, we observe that, in both systems, libraries of ∼30 million variants contain binding proteins with affinities in the low μM range for baits corresponding to the extracellular domains of multiple mammalian proteins. CC4- and FN3-based binding proteins were fused to the N- and/or C-termini of Fc domains and used for immunostaining of transfected cells. Additionally, FN3-based binding proteins were inserted into VP1 of AAV to direct AAV infection to cells expressing a defined surface receptor. Finally, FN3-based binding proteins were inserted into the Pvc13 tail fiber protein of an extracellular contractile injection system particle to direct protein cargo delivery to cells expressing a defined surface receptor. These experiments support the utility of CC4 helices B and C and of FN3 beta-strands C, D, and F together with adjacent loops CD and FG as surfaces for engineering general purpose protein-binding reagents.
Collapse
Affiliation(s)
- Ningyu Zhu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Philip M Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Tao-Hsin Chang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
12
|
WANG XIAOXI, JIA YANFEI, LI QIANG, YANG QIANG, LIU YINGFENG, WEI BEIFENG, NIU XIANG, ZHANG YINJIE, LUO XIAODONG, ZHAO ZIYU, WANG PENG. miR-200b-3p accelerates progression of pituitary adenomas by negatively regulating expression of RECK. Oncol Res 2024; 32:933-941. [PMID: 38686051 PMCID: PMC11055999 DOI: 10.32604/or.2023.042581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/12/2023] [Indexed: 05/02/2024] Open
Abstract
MicroRNA (miR)-200b-3p has been associated with many tumors, but its involvement in pituitary adenoma is unclear. This study investigated the molecular mechanism underlying miR-200b-3p regulation in pituitary adenomas to provide a theoretical basis for treatment. Bioinformatics was used to analyze pituitary adenoma-related genes and screen new targets related to RECK and miRNA. As well, the relationship between miR-200b-3p and RECK protein was verified using a double-luciferase reporter gene assay. The expression of miR-200b-3p in clinical samples was analyzed by in situ hybridization. Transfection of the miR-200b-3p inhibitor and small interfering-RECK (si-RECK) was verified by qPCR. GH3 cell viability and proliferation were detected using CCK8 and EdU assays. Apoptosis was detected by flow cytometry and western blotting. Wound healing and Transwell assays were used to detect cell migration and invasion. The effects of miR-200b-3p and RECK on GH3 cells were verified using salvage experiments. miR-200b-3p was highly expressed in pituitary tumor tissue. Inhibitors of miR-200b-3p inhibited cell proliferation promoted cell apoptosis, inhibited invasion and migration, and inhibited the expression of matrix metalloproteinases. Interestingly, miR-200b-3p negatively regulated RECK. The expression of RECK in pituitary adenoma tissues was lower than that in neighboring tissues. Si-RECK rescued the function of miR-200b-3p inhibitors in the above cellular behaviors, and miR-200b-3p accelerated the development of pituitary adenoma by negatively regulating RECK expression. In summary, this study investigated the molecular mechanism by which miR-200b-3p regulates the progression of pituitary adenoma through the negative regulation of RECK. The findings provide a new target for the treatment of pituitary adenoma.
Collapse
Affiliation(s)
- XIAOXI WANG
- Department of Neurosurgery, Tianshui First People’s Hospital, Tianshui, China
| | - YANFEI JIA
- Department of Neurosurgery, The Second Affiliated Hospital of Lanzhou University, Lanzhou, China
| | - QIANG LI
- Department of Neurosurgery, The Second Affiliated Hospital of Lanzhou University, Lanzhou, China
| | - QIANG YANG
- Department of Neurosurgery, The Second Affiliated Hospital of Lanzhou University, Lanzhou, China
| | - YINGFENG LIU
- Department of Neurosurgery, Tianshui First People’s Hospital, Tianshui, China
| | - BEIFENG WEI
- Department of Neurosurgery, Tianshui First People’s Hospital, Tianshui, China
| | - XIANG NIU
- Department of Neurosurgery, Tianshui First People’s Hospital, Tianshui, China
| | - YINJIE ZHANG
- Department of Neurosurgery, Tianshui First People’s Hospital, Tianshui, China
| | - XIAODONG LUO
- Department of Neurosurgery, The Second Affiliated Hospital of Lanzhou University, Lanzhou, China
| | - ZIYU ZHAO
- Department of Neurosurgery, Tianshui First People’s Hospital, Tianshui, China
| | - PENG WANG
- Department of Neurosurgery, Tianshui First People’s Hospital, Tianshui, China
| |
Collapse
|
13
|
Aguilar-Martínez SY, Campos-Viguri GE, Medina-García SE, García-Flores RJ, Deas J, Gómez-Cerón C, Pedroza-Torres A, Bautista-Rodríguez E, Fernández-Tilapa G, Rodríguez-Dorantes M, Pérez-Plasencia C, Peralta-Zaragoza O. MiR-21 Regulates Growth and Migration of Cervical Cancer Cells by RECK Signaling Pathway. Int J Mol Sci 2024; 25:4086. [PMID: 38612895 PMCID: PMC11012906 DOI: 10.3390/ijms25074086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Expression of miR-21 has been found to be altered in almost all types of cancers, and it has been classified as an oncogenic microRNA. In addition, the expression of tumor suppressor gene RECK is associated with miR-21 overexpression in high-grade cervical lesions. In the present study, we analyze the role of miR-21 in RECK gene regulation in cervical cancer cells. To identify the downstream cellular target genes of upstream miR-21, we silenced endogenous miR-21 expression using siRNAs. We analyzed the expression of miR-21 and RECK, as well as functional effects on cell proliferation and migration. We found that in cervical cancer cells, there was an inverse correlation between miR-21 expression and RECK mRNA and protein expression. SiRNAs to miR-21 increased luciferase reporter activity in construct plasmids containing the RECK-3'-UTR microRNA response elements MRE21-1, MRE21-2, and MRE21-3. The role of miR-21 in cell proliferation was also analyzed, and cancer cells transfected with siRNAs exhibited a markedly reduced cell proliferation and migration. Our findings indicate that miR-21 post-transcriptionally down-regulates the expression of RECK to promote cell proliferation and cell migration inhibition in cervical cancer cell survival. Therefore, miR-21 and RECK may be potential therapeutic targets in gene therapy for cervical cancer.
Collapse
Affiliation(s)
- Seidy Y. Aguilar-Martínez
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| | - Gabriela E. Campos-Viguri
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| | - Selma E. Medina-García
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| | - Ricardo J. García-Flores
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| | - Jessica Deas
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| | - Claudia Gómez-Cerón
- Department of Epidemiology of Cancer, Research Center Population Health, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Abraham Pedroza-Torres
- Programa Investigadoras e Investigadores por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías, México City 14080, Mexico;
- Hereditary Cancer Clinic, Instituto Nacional de Cancerología, México City 14080, Mexico
| | | | - Gloria Fernández-Tilapa
- Clinical Research Laboratory, Faculty of Chemical Biological Sciences, Universidad Autónoma de Guerrero, Chilpancingo 39070, Mexico;
| | | | - Carlos Pérez-Plasencia
- Oncogenomics Laboratory, Instituto Nacional de Cancerología, México City 14080, Mexico;
- Biomedicine Unit, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | - Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| |
Collapse
|
14
|
Wang J, Su Y, Liu H, Li Y, Fang X, Yu X, Li Q, Han W. Association between the Reduced Expression of RECK and Neutrophilic Inflammation in Chronic Obstructive Pulmonary Disease. Int Arch Allergy Immunol 2024; 185:480-488. [PMID: 38387446 DOI: 10.1159/000536021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/27/2023] [Indexed: 02/24/2024] Open
Abstract
INTRODUCTION Reversion-inducing cysteine-rich protein with Kazal motifs (RECK), a recently discovered inhibitor of matrix metalloproteinase (MMP). There is a large number of chronic obstructive pulmonary disease (COPD) patients worldwide; however, the role of RECK on COPD has not been studied. This study explored the expression of RECK in COPD patients and its effect on neutrophil function to provide a new scientific basis for the prevention and treatment of COPD. METHOD Fifty patients with acute exacerbation of COPD and fifty healthy controls were enrolled in the study. RECK was detected in lung tissue, sputum, and plasma of subjects as well as in BEAS-2B cells stimulated with cigarette smoke extract (CSE) by immunohistochemistry, ELISA, and qRT-PCR. Meanwhile, lung function (FEV1%pred) and inflammatory cytokines (IL-6 and IL-8) were examined, and correlation analysis was performed with RECK expression. The effect of RECK on proliferation, apoptosis, migration, and inflammatory cytokines and its potential mechanism was further quantified by neutrophil stimulated with recombinant human RECK protein (rhRECK) combined with CSE using CCK8, flow cytometry, Transwell assay, qRT-PCR, ELISA, and Western analysis. RESULTS RECK was mainly expressed on airway epithelial cells in normal lung tissue and was significantly diminished in COPD patients. The levels of RECK in sputum and plasma were also significantly decreased in COPD patients. Pearson correlation analysis showed that RECK level in plasma was positively correlated with FEV1%pred (r = 0.458, p < 0.001) and negatively correlated with IL-6 and IL-8 (r = -0.386, -0.437; p = 0.006, 0.002) in COPD patients. The expression of RECK was decreased in BEAS-2B stimulated with CSE. The migration, inflammation, and MMP-9 expression of neutrophils were promoted by CSE, while inhibited by rhRECK. CONCLUSION RECK is low expressed in COPD patients and negatively correlated with inflammation. It may inhibit the inflammation and migration of neutrophils by downregulating MMP-9.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yi Su
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Hong Liu
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yongchun Li
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Xuejie Fang
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
- School of Clinical Medicine, Shandong Second Medical University, Wei Fang, China
| | - Xinjuan Yu
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
- Clinical Research Center, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Qinghai Li
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Wei Han
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
15
|
Di Pasqua LG, Cagna M, Palladini G, Croce AC, Cadamuro M, Fabris L, Perlini S, Adorini L, Ferrigno A, Vairetti M. FXR agonists INT-787 and OCA increase RECK and inhibit liver steatosis and inflammation in diet-induced ob/ob mouse model of NASH. Liver Int 2024; 44:214-227. [PMID: 37904642 DOI: 10.1111/liv.15767] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND AND AIMS We have previously shown in a model of hepatic ischaemia/reperfusion injury that the farnesoid X receptor (FXR) agonist obeticholic acid (OCA) restores reversion-inducing-cysteine-rich protein with Kazal motifs (RECK), an inverse modulator of metalloproteases (MMPs) and inhibitor of the sheddases ADAM10 and ADAM17 involved in inflammation and fibrogenesis. Here, the effects of FXR agonists OCA and INT-787 on hepatic levels of RECK, MMPs, ADAM10 and ADAM17 were compared in a diet-induced ob/ob mouse model of non-alcoholic steatohepatitis (NASH). METHODS Lep ob/ob NASH mice fed a high-fat diet (HFD) or control diet (CD) for 9 weeks (wks) were treated with OCA or INT-787 0.05% dosed via HFD admixture (30 mg/kg/day) or HFD for further 12 wks. Serum alanine transaminase (ALT) and inflammatory cytokines, liver RECK, MMP-2 and MMP-9 activity as well as ADAM10, ADAM17, collagen deposition (Sirius red), hepatic stellate cell activation (α-SMA) and pCK+ reactive biliary cells were quantified. RESULTS Only INT-787 significantly reduced serum ALT, IL-1β and TGF-β. A downregulation of RECK expression and protein levels observed in HFD groups (at 9 and 21 wks) was counteracted by both OCA and INT-787. HFD induced a significant increase in liver MMP-2 and MMP-9; OCA administration reduced both MMP-2 and MMP-9 while INT-787 markedly reduced MMP-2 expression. OCA and INT-787 reduced both ADAM10 and ADAM17 expression and number of pCK+ cells. INT-787 was superior to OCA in decreasing collagen deposition and α-SMA levels. CONCLUSION INT-787 is superior to OCA in controlling specific cell types and clinically relevant anti-inflammatory and antifibrotic molecular mechanisms in NASH.
Collapse
Affiliation(s)
- Laura G Di Pasqua
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Marta Cagna
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Giuseppina Palladini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Internal Medicine Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anna C Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Pavia, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
- Department of Internal Medicine, Liver Center and Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA
| | - Stefano Perlini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Emergency Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| |
Collapse
|
16
|
Peeney D, Kumar S, Singh TP, Liu Y, Jensen SM, Chowdhury A, Coates-Park S, Rich J, Gurung S, Fan Y, Meerzaman D, Stetler-Stevenson WG. Timp2 loss-of-function mutation and TIMP2 treatment in murine model of NSCLC: modulation of immunosuppression and oncogenic signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.29.573636. [PMID: 38234759 PMCID: PMC10793420 DOI: 10.1101/2023.12.29.573636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Mounting evidence suggests that the tissue inhibitor of metalloproteinases-2 (TIMP2) can reduce tumor burden and metastasis. However, the demonstration of such anti-tumor activity and associated mechanisms using in vivo tumor models is lacking. The effects of a Timp2 functional mutation and administration of recombinant TIMP2 were examined in both orthotopic and heterotopic murine models of lung cancer using C57Bl/6 syngeneic Lewis Lung 2-luciferase 2 cells (LL2-luc2) cells. Mice harboring a functional mutation of TIMP2 (mT2) display markedly increased primary lung tumor growth, increased mortality, enriched vasculature, and enhanced infiltration of pro-tumorigenic, immunosuppressive myeloid cells. Treatment with recombinant TIMP2 reduced primary tumor growth in both mutant and wild-type (wt) mice. Comparison of transcriptional profiles of lung tissues from tumor-free, wt versus mT2 mice reveals only minor changes. However, lung tumor-bearing mice of both genotypes demonstrate significant genotype-dependent changes in gene expression following treatment with TIMP. In tumor-bearing wt mice, TIMP2 treatment reduced the expression of upstream oncogenic mediators, whereas treatment of mT2 mice resulted in an immunomodulatory phenotype. A heterotopic subcutaneous model generating metastatic pulmonary tumors demonstrated that daily administration of recombinant TIMP2 significantly downregulates the expression of heat shock proteins, suggesting a reduction of cell-stress responses. In summary, we describe how TIMP2 exerts novel, anti-tumor effects in a murine model of lung cancer and that rTIMP2 treatment supports a normalizing effect on the tumor microenvironment. Our findings show that TIMP2 treatment demonstrates significant potential as an adjuvant in the treatment of NSCLC.
Collapse
Affiliation(s)
- David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Sarvesh Kumar
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Tej Pratap Singh
- Laboratory of Molecular Immunology, National Institute for Allergy, and Infectious Disease (NIAID); Bethesda, MD 20892
| | - Yueqin Liu
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Sandra M. Jensen
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Ananda Chowdhury
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Sasha Coates-Park
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Joshua Rich
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Sadeechya Gurung
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Yu Fan
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute; Rockville, MD 20850
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute; Rockville, MD 20850
| | - William G. Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| |
Collapse
|
17
|
Chandrasekar B, Mummidi S, DeMarco VG, Higashi Y. Empagliflozin Reverses Oxidized LDL-Induced RECK Suppression, Cardiotrophin-1 Expression, MMP Activation, and Human Aortic Smooth Muscle Cell Proliferation and Migration. Mediators Inflamm 2023; 2023:6112301. [PMID: 37830075 PMCID: PMC10567511 DOI: 10.1155/2023/6112301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
Persistent oxidative stress and inflammation contribute causally to smooth muscle cell (SMC) proliferation and migration, the characteristic features of vascular proliferative diseases. Oxidatively modified low-density lipoproteins (OxLDL) elevate oxidative stress levels, inflammatory responses, and matrix metallopeptidase (MMP) activation, resulting ultimately in SMC migration, proliferation, and phenotype change. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a membrane-anchored MMP inhibitor. Empagliflozin is an SGLT2 inhibitor and exerts pleiotropic cardiovascular protective effects, including antioxidant and anti-inflammatory effects. Here, we investigated (i) whether OxLDL regulates RECK expression, (ii) whether ectopic expression of RECK reverses OxLDL-induced SMC migration and proliferation, and (iii) whether pretreatment with empagliflozin reverses OxLDL-induced RECK suppression, MMP activation, and SMC migration, proliferation, and differentiation. Indeed, results show that OxLDL at pathophysiological concentration promotes SMC migration and proliferation via NF-κB/miR-30b-dependent RECK suppression. Moreover, OxLDL changed the SMC phenotype to a more pro-inflammatory type, and this effect is blunted by RECK overexpression. Further, treatment with empagliflozin reversed OxLDL-induced miR-30b induction, RECK suppression, MMP activation, SMC migration, proliferation, and proinflammatory phenotype changes. OxLDL-induced cardiotrophin (CT)-1 expression and CT-1 stimulated SMC proliferation and migration in part via leukemia inhibitory factor receptor (LIFR) and glycoprotein 130 (gp130). Ectopic expression of RECK inhibited these effects by physically associating with LIFR and gp130, as evidenced by immunoprecipitation/immunoblotting and double immunofluorescence. Importantly, empagliflozin inhibited CT-1-induced mitogenic and migratory effects. Together, these results suggest the therapeutic potential of sustaining RECK expression or empagliflozin in vascular diseases characterized by SMC proliferation and migration.
Collapse
Affiliation(s)
- Bysani Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
- Medicine, University of Missouri School of Medicine, Columbia, MO, USA
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Center, University of Missouri, Columbia, MO, USA
| | - Srinivas Mummidi
- Life Sciences, Texas A&M University-San Antonio, San Antonio, TX, USA
| | - Vincent G. DeMarco
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
- Medicine, University of Missouri School of Medicine, Columbia, MO, USA
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Yusuke Higashi
- Medicine/Cardiology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
18
|
Wendt TS, Gonzales RJ. Ozanimod differentially preserves human cerebrovascular endothelial barrier proteins and attenuates matrix metalloproteinase-9 activity following in vitro acute ischemic injury. Am J Physiol Cell Physiol 2023; 325:C951-C971. [PMID: 37642239 DOI: 10.1152/ajpcell.00342.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Endothelial integrity is critical in mitigating a vicious cascade of secondary injuries following acute ischemic stroke (AIS). Matrix metalloproteinase-9 (MMP-9), a contributor to endothelial integrity loss, is elevated during stroke and is associated with worsened stroke outcome. We investigated the FDA-approved selective sphingosine-1-phosphate receptor 1 (S1PR1) ligand, ozanimod, on the regulation/activity of MMP-9 as well as endothelial barrier components [platelet endothelial cell adhesion molecule 1 (PECAM-1), claudin-5, and zonula occludens 1 (ZO-1)] in human brain microvascular endothelial cells (HBMECs) following hypoxia plus glucose deprivation (HGD). We previously reported that S1PR1 activation improves HBMEC integrity; however, mechanisms underlying S1PR1 involvement in endothelial cell barrier integrity have not been clearly elucidated. We hypothesized that ozanimod would attenuate an HGD-induced increase in MMP-9 activity that would concomitantly attenuate the loss of integral barrier components. Male HBMECs were treated with ozanimod or vehicle and exposed to 3 h of normoxia (21% O2) or HGD (1% O2). Immunoblotting, zymography, qRT-PCR, and immunocytochemical labeling techniques assessed processes related to MMP-9 and barrier markers. We observed that HGD acutely increased MMP-9 activity and reduced claudin-5 and PECAM-1 levels, and ozanimod attenuated these responses. In situ analysis, via PROSPER, suggested that attenuation of MMP-9 activity may be a primary factor in maintaining these integral barrier proteins. We also observed that HGD increased intracellular mechanisms associated with augmented MMP-9 activation; however, ozanimod had no effect on these select factors. Thus, we conclude that ozanimod has the potential to attenuate HGD-mediated decreases in HBMEC integrity in part by decreasing MMP-9 activity as well as preserving barrier properties.NEW & NOTEWORTHY We have identified a potential novel mechanism by which ozanimod, a selective sphingosine-1-phosphate receptor 1 (S1PR1) agonist, attenuates hypoxia plus glucose deprivation (HGD)-induced matrix metalloproteinase-9 (MMP-9) activity and disruptions in integral human brain endothelial cell barrier proteins. Our results suggest that ischemic-like injury elicits increased MMP-9 activity and alterations of barrier integrity proteins in human brain microvascular endothelial cells (HBMECs) and that ozanimod via S1PR1 attenuates these HGD-induced responses, adding to its therapeutic potential in cerebrovascular protection during the acute phase of ischemic stroke.
Collapse
Affiliation(s)
- Trevor S Wendt
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| | - Rayna J Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| |
Collapse
|
19
|
Masuda T, Fukuda A, Yamakawa G, Omatsu M, Namikawa M, Sono M, Fukunaga Y, Nagao M, Araki O, Yoshikawa T, Ogawa S, Masuo K, Goto N, Hiramatsu Y, Muta Y, Tsuda M, Maruno T, Nakanishi Y, Masui T, Hatano E, Matsuzaki T, Noda M, Seno H. Pancreatic RECK inactivation promotes cancer formation, epithelial-mesenchymal transition, and metastasis. J Clin Invest 2023; 133:e161847. [PMID: 37712427 PMCID: PMC10503799 DOI: 10.1172/jci161847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
RECK is downregulated in various human cancers; however, how RECK inactivation affects carcinogenesis remains unclear. We addressed this issue in a pancreatic ductal adenocarcinoma (PDAC) mouse model and found that pancreatic Reck deletion dramatically augmented the spontaneous development of PDAC with a mesenchymal phenotype, which was accompanied by increased liver metastases and decreased survival. Lineage tracing revealed that pancreatic Reck deletion induced epithelial-mesenchymal transition (EMT) in PDAC cells, giving rise to inflammatory cancer-associated fibroblast-like cells in mice. Splenic transplantation of Reck-null PDAC cells resulted in numerous liver metastases with a mesenchymal phenotype, whereas reexpression of RECK markedly reduced metastases and changed the PDAC tumor phenotype into an epithelial one. Consistently, low RECK expression correlated with low E-cadherin expression, poor differentiation, metastasis, and poor prognosis in human PDAC. RECK reexpression in the PDAC cells was found to downregulate MMP2 and MMP3, with a concomitant increase in E-cadherin and decrease in EMT-promoting transcription factors. An MMP inhibitor recapitulated the effects of RECK on the expression of E-cadherin and EMT-promoting transcription factors and invasive activity. These results establish the authenticity of RECK as a pancreatic tumor suppressor, provide insights into its underlying mechanisms, and support the idea that RECK could be an important therapeutic effector against human PDAC.
Collapse
Affiliation(s)
| | | | - Go Yamakawa
- Department of Gastroenterology and Hepatology
| | | | | | - Makoto Sono
- Department of Gastroenterology and Hepatology
| | - Yuichi Fukunaga
- Department of Gastroenterology and Hepatology
- Department of Drug Discovery Medicine, Medical Innovation Center
| | | | - Osamu Araki
- Department of Gastroenterology and Hepatology
| | | | | | - Kenji Masuo
- Department of Gastroenterology and Hepatology
| | | | | | - Yu Muta
- Department of Gastroenterology and Hepatology
| | | | | | | | - Toshihiko Masui
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, and
| | - Etsuro Hatano
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, and
| | - Tomoko Matsuzaki
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Makoto Noda
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
20
|
Tanaka N, Sakamoto T. MT1-MMP as a Key Regulator of Metastasis. Cells 2023; 12:2187. [PMID: 37681919 PMCID: PMC10486781 DOI: 10.3390/cells12172187] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Membrane type1-matrix metalloproteinase (MT1-MMP) is a member of metalloproteinases that is tethered to the transmembrane. Its major function in cancer progression is to directly degrade the extracellular matrix components, which are mainly type I-III collagen or indirectly type IV collagen through the activation of MMP-2 with a cooperative function of the tissue inhibitor of metalloproteinase-2 (TIMP-2). MT1-MMP is expressed as an inactive form (zymogen) within the endoplasmic reticulum (ER) and receives truncation processing via furin for its activation. Upon the appropriate trafficking of MT1-MMP from the ER, the Golgi apparatus to the cell surface membrane, MT1-MMP exhibits proteolytic activities to the surrounding molecules such as extracellular matrix components and cell surface molecules. MT1-MMP also retains a non-proteolytic ability to activate hypoxia-inducible factor 1 alpha (HIF-1A) via factors inhibiting the HIF-1 (FIH-1)-Mint3-HIF-1 axis, resulting in the upregulation of glucose metabolism and oxygen-independent ATP production. Through various functions of MT1-MMP, cancer cells gain motility on migration/invasion, thus causing metastasis. Despite the long-time efforts spent on the development of MT1-MMP interventions, none have been accomplished yet due to the side effects caused by off-target effects. Recently, MT1-MMP-specific small molecule inhibitors or an antibody have been reported and these inhibitors could potentially be novel agents for cancer treatment.
Collapse
Affiliation(s)
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan;
| |
Collapse
|
21
|
Dolmatov IY, Nizhnichenko VA. Extracellular Matrix of Echinoderms. Mar Drugs 2023; 21:417. [PMID: 37504948 PMCID: PMC10381214 DOI: 10.3390/md21070417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
This review considers available data on the composition of the extracellular matrix (ECM) in echinoderms. The connective tissue in these animals has a rather complex organization. It includes a wide range of structural ECM proteins, as well as various proteases and their inhibitors. Members of almost all major groups of collagens, various glycoproteins, and proteoglycans have been found in echinoderms. There are enzymes for the synthesis of structural proteins and their modification by polysaccharides. However, the ECM of echinoderms substantially differs from that of vertebrates by the lack of elastin, fibronectins, tenascins, and some other glycoproteins and proteoglycans. Echinoderms have a wide variety of proteinases, with serine, cysteine, aspartic, and metal peptidases identified among them. Their active centers have a typical structure and can break down various ECM molecules. Echinoderms are also distinguished by a wide range of proteinase inhibitors. The complex ECM structure and the variety of intermolecular interactions evidently explain the complexity of the mechanisms responsible for variations in the mechanical properties of connective tissue in echinoderms. These mechanisms probably depend not only on the number of cross-links between the molecules, but also on the composition of ECM and the properties of its proteins.
Collapse
Affiliation(s)
- Igor Yu Dolmatov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevsky 17, 690041 Vladivostok, Russia
| | - Vladimir A Nizhnichenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevsky 17, 690041 Vladivostok, Russia
| |
Collapse
|
22
|
Zhang Q, Wang C, Li R, Liu J, Wang J, Wang T, Wang B. The BAP31/miR-181a-5p/RECK axis promotes angiogenesis in colorectal cancer via fibroblast activation. Front Oncol 2023; 13:1056903. [PMID: 36895489 PMCID: PMC9989165 DOI: 10.3389/fonc.2023.1056903] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Background B-cell receptor-associated protein 31 (BAP31) has been recognized as a tumor-associated protein and has largely been shown to promote metastasis in a variety of cancers. Cancer metastasis arises through multistep pathways, and the induction of angiogenesis is shown to be a rate-limiting step in the process of tumor metastasis. Methods and results This study explored the effect of BAP31 on colorectal cancer (CRC) angiogenesis by regulating the tumor microenvironment. First, exosomes from BAP31-regulated CRCs affected the transition of normal fibroblasts to proangiogenic cancer-associated fibroblasts (CAFs) in vivo and in vitro. Next, microRNA sequencing was performed to analyze the microRNA expression profile of exosomes secreted from BAP31- overexpressing CRCs. The results indicated that the expression of BAP31 in CRCs significantly altered the levels of exosomal microRNAs, such as miR-181a- 5p. Meanwhile, an in vitro tube formation assay showed that fibroblasts with high levels of miR-181a-5p significantly promoted endothelial cell angiogenesis. Critically, we first identified that miR-181a-5p directly targeted the 3'-untranslated region (3'UTR) of reversion-inducing cysteine-rich protein with kazal motifs (RECK) using the dual-luciferase activity assay, which drove fibroblast transformation into proangiogenic CAFs by upregulating matrix metalloproteinase-9 (MMP-9) and phosphorylation of mothers against decapentaplegic homolog 2/Mothers against decapentaplegic homolog 3 (Smad2/3). Conclusion Exosomes from BAP31-overexpressing/BAP31-knockdown CRCs are found to manipulate the transition of fibroblasts into proangiogenic CAFs by the miR-181a-5p/RECK axis.
Collapse
Affiliation(s)
- Qi Zhang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Changli Wang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Ruijia Li
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Jingjing Liu
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Jiyu Wang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Tianyi Wang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Bing Wang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| |
Collapse
|
23
|
Alseksek RK, Ramadan WS, Saleh E, El-Awady R. The Role of HDACs in the Response of Cancer Cells to Cellular Stress and the Potential for Therapeutic Intervention. Int J Mol Sci 2022; 23:8141. [PMID: 35897717 PMCID: PMC9331760 DOI: 10.3390/ijms23158141] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Throughout the process of carcinogenesis, cancer cells develop intricate networks to adapt to a variety of stressful conditions including DNA damage, nutrient deprivation, and hypoxia. These molecular networks encounter genomic instability and mutations coupled with changes in the gene expression programs due to genetic and epigenetic alterations. Histone deacetylases (HDACs) are important modulators of the epigenetic constitution of cancer cells. It has become increasingly known that HDACs have the capacity to regulate various cellular systems through the deacetylation of histone and bounteous nonhistone proteins that are rooted in complex pathways in cancer cells to evade death pathways and immune surveillance. Elucidation of the signaling pathways involved in the adaptive responses to cellular stress and the role of HDACs may lead to the development of novel therapeutic agents. In this article, we overview the dominant stress types including metabolic, oxidative, genotoxic, and proteotoxic stress imposed on cancer cells in the context of HDACs, which guide stress adaptation responses. Next, we expose a closer view on the therapeutic interventions and clinical trials that involve HDACs inhibitors, in addition to highlighting the impact of using HDAC inhibitors in combination with stress-inducing agents for the management of cancer and to overcome the resistance to current cancer therapy.
Collapse
Affiliation(s)
- Rahma K. Alseksek
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S. Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ekram Saleh
- Clinical Biochemistry and Molecular Biology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt;
| | - Raafat El-Awady
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
24
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
25
|
Reinhold AK, Krug SM, Salvador E, Sauer RS, Karl-Schöller F, Malcangio M, Sommer C, Rittner HL. MicroRNA-21-5p functions via RECK/MMP9 as a proalgesic regulator of the blood nerve barrier in nerve injury. Ann N Y Acad Sci 2022; 1515:184-195. [PMID: 35716075 DOI: 10.1111/nyas.14816] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Both nerve injury and complex regional pain syndrome (CRPS) can result in chronic pain. In traumatic neuropathy, the blood nerve barrier (BNB) shielding the nerve is impaired-partly due to dysregulated microRNAs (miRNAs). Upregulation of microRNA-21-5p (miR-21) has previously been documented in neuropathic pain, predominantly due to its proinflammatory features. However, little is known about other functions. Here, we characterized miR-21 in neuropathic pain and its impact on the BNB in a human-murine back translational approach. MiR-21 expression was elevated in plasma of patients with CRPS as well as in nerves of mice after transient and persistent nerve injury. Mice presented with BNB leakage, as well as loss of claudin-1 in both injured and spared nerves. Moreover, the putative miR-21 target RECK was decreased and downstream Mmp9 upregulated, as was Tgfb. In vitro experiments in human epithelial cells confirmed a downregulation of CLDN1 by miR-21 mimics via inhibition of the RECK/MMP9 pathway but not TGFB. Perineurial miR-21 mimic application in mice elicited mechanical hypersensitivity, while local inhibition of miR-21 after nerve injury reversed it. In summary, the data support a novel role for miR-21, independent of prior inflammation, in elicitation of pain and impairment of the BNB via RECK/MMP9.
Collapse
Affiliation(s)
- Ann Kristin Reinhold
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Würzburg, Germany
| | - Susanne M Krug
- Institute of Clinical Physiology/Nutritional Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ellaine Salvador
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Würzburg, Germany.,Section Experimental Neurosurgery, Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Reine S Sauer
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Würzburg, Germany
| | | | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Heike L Rittner
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Center for Interdisciplinary Pain Medicine, Würzburg, Germany
| |
Collapse
|
26
|
Targeted therapy of cognitive deficits in fragile X syndrome. Mol Psychiatry 2022; 27:2766-2776. [PMID: 35354925 PMCID: PMC7612812 DOI: 10.1038/s41380-022-01527-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 11/08/2022]
Abstract
Breaking an impasse in finding mechanism-based therapies of neuropsychiatric disorders requires a strategic shift towards alleviating individual symptoms. Here we present a symptom and circuit-specific approach to rescue deficits of reward learning in Fmr1 knockout mice, a model of Fragile X syndrome (FXS), the most common monogenetic cause of inherited mental disability and autism. We use high-throughput, ecologically-relevant automated tests of cognition and social behavior to assess effectiveness of the circuit-targeted injections of designer nanoparticles, loaded with TIMP metalloproteinase inhibitor 1 protein (TIMP-1). Further, to investigate the impact of our therapeutic strategy on neuronal plasticity we perform long-term potentiation recordings and high-resolution electron microscopy. We show that central amygdala-targeted delivery of TIMP-1 designer nanoparticles reverses impaired cognition in Fmr1 knockouts, while having no impact on deficits of social behavior, hence corroborating symptom-specificity of the proposed approach. Moreover, we elucidate the neural correlates of the highly specific behavioral rescue by showing that the applied therapeutic intervention restores functional synaptic plasticity and ultrastructure of neurons in the central amygdala. Thus, we present a targeted, symptom-specific and mechanism-based strategy to remedy cognitive deficits in Fragile X syndrome.
Collapse
|
27
|
Wang Y, Venkatesh A, Xu J, Xu M, Williams J, Smallwood PM, James A, Nathans J. The WNT7A/WNT7B/GPR124/RECK signaling module plays an essential role in mammalian limb development. Development 2022; 149:275368. [PMID: 35552394 PMCID: PMC9148564 DOI: 10.1242/dev.200340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/20/2022] [Indexed: 12/04/2022]
Abstract
In central nervous system vascular endothelial cells, signaling via the partially redundant ligands WNT7A and WNT7B requires two co-activator proteins, GPR124 and RECK. WNT7A and RECK have been shown previously to play a role in limb development, but the mechanism of RECK action in this context is unknown. The roles of WNT7B and GPR124 in limb development have not been investigated. Using combinations of conventional and/or conditional loss-of-function alleles for mouse Wnt7a, Wnt7b, Gpr124 and Reck, including a Reck allele that codes for a protein that is specifically defective in WNT7A/WNT7B signaling, we show that reductions in ligand and/or co-activator function synergize to cause reduced and dysmorphic limb bone growth. Two additional limb phenotypes – loss of distal Lmx1b expression and ectopic growth of nail-like structures – occur with reduced Wnt7a/Wnt7b gene copy number and, respectively, with Reck mutations and with combined Reck and Gpr124 mutations. A third limb phenotype – bleeding into a digit – occurs with the most severe combinations of Wnt7a/Wnt7b, Reck and Gpr124 mutations. These data imply that the WNT7A/WNT7B-FRIZZLED-LRP5/LRP6-GPR124-RECK signaling system functions as an integral unit in limb development. Summary: Genetic analyses in mice show that the WNT7A/WNT7B-FRIZZLED-LRP5/LRP6-GPR124-RECK signaling system, first defined in the context of CNS angiogenesis and barrier development, also functions as an integral unit in limb development.
Collapse
Affiliation(s)
- Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Arjun Venkatesh
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mingxin Xu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philip M. Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aaron James
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
28
|
Yoshida Y, Yuki K, Dan S, Yamazaki K, Noda M. Suppression of tumor metastasis by a RECK-activating small molecule. Sci Rep 2022; 12:2319. [PMID: 35149728 PMCID: PMC8837781 DOI: 10.1038/s41598-022-06288-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
RECK encodes a membrane-anchored protease-regulator which is often downregulated in a wide variety of cancers, and reduced RECK expression often correlates with poorer prognoses. In mouse models, forced expression of RECK in tumor xenografts results in suppression of tumor angiogenesis, invasion, and metastasis. RECK mutations, however, are rare in cancer genomes, suggesting that agents that re-activate dormant RECK may be of clinical value. We found a potent RECK-inducer, DSK638, that inhibits spontaneous lung metastasis in our mouse xenograft model. Induction of RECK expression involves SP1 sites in its promoter and may be mediated by KLF2. DSK638 also upregulates MXI1, an endogenous MYC-antagonist, and inhibition of metastasis by DSK638 is dependent on both RECK and MXI1. This study demonstrates the utility of our approach (using a simple reporter assay followed by multiple phenotypic assays) and DSK638 itself (as a reference compound) in finding potential metastasis-suppressing drugs.
Collapse
Affiliation(s)
- Yoko Yoshida
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8501, Japan. .,Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan.
| | - Kanako Yuki
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan
| | - Kanami Yamazaki
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan
| | - Makoto Noda
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
29
|
Steil GJ, Buzzo JLA, de Oliveira Ribeiro CA, Filipak Neto F. Polybrominated diphenyl ethers BDE-47 and BDE-99 modulate murine melanoma cell phenotype in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11291-11303. [PMID: 34535858 DOI: 10.1007/s11356-021-16455-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Cancer is one of the leading causes of mortality worldwide. Even with the advances of pharmaceutical industry and treatments, the mortality rate for various types of cancer remains high. In particular, phenotypic alterations of tumor cells concerning drug efflux, migratory and invasive capabilities may represent a hurdle for cancer treatment and contribute to poor prognosis. In the present study, we investigated the effects of polybrominated diphenyl ethers (PBDEs) used as flame retardants on phenotypic features of melanoma cells that are important for cancer. Murine melanoma B16-F1 (less metastatic) and B16-F10 (more metastatic) cells were exposed to 0.01-1.0 nM of BDE-47 (2,2',4,4'-tetrabromodiphenyl ether), BDE-99 (2,2',4,4',5-pentabromodiphenyl ether), and the mixture of both (at 0.01 nM) for 24 h (acute exposure) and 15 days (chronic exposure). The polybrominated diphenyl ethers (PBDEs) did not affect cell viability but led to increased drug efflux transporter activity, cell migration, and colony formation, as well as overexpression of Abcc2 (ATP-binding cassette subfamily C member 2), Mmp-2 (matrix metalloproteinase-2), Mmp-9 (matrix metalloproteinase-9), and Tp53 (tumor protein p53) genes and downregulation of Timp-3 (tissue inhibitor of metalloproteinase 3) gene in B16-F10 cells. These effects are consistent with increased aggressiveness and malignancy of tumors due to exposure to the flame retardants and raise some concerns on the effects such chemicals may have on melanoma treatment and cancer prognosis.
Collapse
Affiliation(s)
- Gisleine Jarenko Steil
- Departamento de Biologia Celular, Universidade Federal do Paraná, PO Box: 19031, CEP, Curitiba, PR, 81531-980, Brazil
| | - João Luiz Aldinucci Buzzo
- Departamento de Biologia Celular, Universidade Federal do Paraná, PO Box: 19031, CEP, Curitiba, PR, 81531-980, Brazil
| | | | - Francisco Filipak Neto
- Departamento de Biologia Celular, Universidade Federal do Paraná, PO Box: 19031, CEP, Curitiba, PR, 81531-980, Brazil.
| |
Collapse
|
30
|
Lin S, Jiang X, Zhang G, Xiao X, Ma X, Wu J, Qiu D, Li X, Yan X, Ma M. The Chinese Herbal Formula Ruyan Neixiao Cream Inhibits Angiogenesis of Precancerous Breast Lesions via Regulation of Ras/Raf/MEK/ERK Signaling Pathway. Integr Cancer Ther 2022; 21:15347354211069397. [PMID: 35094593 PMCID: PMC8811422 DOI: 10.1177/15347354211069397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ruyan Neixiao Cream (RUc) is a traditional Chinese herbal formula which can effectively inhibit the angiogenesis of breast precancerous lesions. In order to reveal the specific mechanism, we carried out experiments in vitro and in vivo. We found that the conditioned medium of MCF-10AT cells treated with RUc transdermal solution (RUt) could significantly inhibit the proliferation, migration, invasion, tube formation of HUVECs and the capillary formation of rat aortic rings. RUt may down-regulate the expression of VEGF, MMP2, and MMP9 in MCF-10AT medium by down-regulating miR-21 and up-regulating TIMP-3 and RECK. We further confirmed in rats that the microvascular density of precancerous lesions decreased significantly after external use of RUc, which may be related to the inhibition of Ras/Raf/MEK/ERK signaling pathway related proteins. Presumptively, RUc may inhibit the angiogenesis of breast precancerous lesions by inhibiting Ras/Raf/MEK/ERK signaling pathway, thus relieving the inhibition of miR-21 on TIMP-3 and RECK, then down-regulating the secretion of angiogenic factors.
Collapse
Affiliation(s)
- Shujun Lin
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xuefeng Jiang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Guijuan Zhang
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinqin Xiao
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xinyi Ma
- Southern Medical University (No.3210090112), Guangzhou, China
| | - Jieyan Wu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Dan Qiu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xinyuan Li
- School of Medicine, Jinan University, Guangzhou, China
| | - Xianxin Yan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Min Ma
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
31
|
Xu D, Dai R, Chi H, Ge W, Rong J. Long Non-Coding RNA MEG8 Suppresses Hypoxia-Induced Excessive Proliferation, Migration and Inflammation of Vascular Smooth Muscle Cells by Regulation of the miR-195-5p/RECK Axis. Front Mol Biosci 2021; 8:697273. [PMID: 34790697 PMCID: PMC8592128 DOI: 10.3389/fmolb.2021.697273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
It has been recognized that rebalancing the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) helps relieve vascular injury. Presently, we aim to investigate whether long non-coding RNA (lncRNA) maternally expressed 8 (MEG8) plays a role in affecting the excessive proliferation and migration of VSMCs following hypoxia stimulation. A percutaneous transluminal angioplasty balloon dilatation catheter was adopted to establish vascular intimal injury, the levels of MEG8 and miR-195-5p in the carotid artery were tested by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Hypoxia was used to stimulate VSMCs, then the cell counting kit-8 (CCK-8) assay, Transnwell assay, and wound healing assay were conducted to evaluate the proliferation, and migration of VSMCs. The protein levels of RECK (reversion inducing cysteine rich protein with kazal motifs), MMP (matrix metalloproteinase) 3/9/13, COX2 (cytochrome c oxidase subunit II), macrophage inflammatory protein (MIP)-1beta, VCAM-1 (vascular cell adhesion molecule 1), ICAM-1 (intercellular adhesion molecule 1), and HIF-1α (hypoxia inducible factor 1 subunit alpha) were determined by western blot or cellular immunofluorescence. As the data showed, MEG8 was down-regulated in the carotid artery after balloon injury in rats and hypoxia-treated VSMCs, and miR-195-5p was overexpressed. Forced MEG8 overexpression or inhibiting miR-195-5p attenuated hypoxia-promoted cell proliferation and migration of VSMCs. In addition, miR-195-5p up-regulation reversed MEG8-mediated effects. Hypoxia hindered the RECK expression while boosted MMP3/9/13 levels, and the effect was markedly reversed with MEG8 up-regulation or miR-195-5p down-regulation. Mechanistically, MEG8 functioned as a competitive endogenous (ceRNA) by sponging miR-195-5p which targeted RECK. Moreover, the HIF-1α inhibitor PX478 prevented hypoxia-induced proliferation, and migration of VSMCs, upregulated MEG8, and restrained miR-195-5p expression. Overall, lncRNA MEG8 participated in hypoxia-induced excessive proliferation, inflammation and migration of VSMCs through the miR-195-5p/RECK axis.
Collapse
Affiliation(s)
- Dexing Xu
- Department of Cardiology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Ruozhu Dai
- Department of Cardiology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Hao Chi
- Department of Cardiothoracic Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen Ge
- Department of Cardiothoracic Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingfeng Rong
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
32
|
Kisby BR, Farris SP, McManus MM, Varodayan FP, Roberto M, Harris RA, Ponomarev I. Alcohol Dependence in Rats Is Associated with Global Changes in Gene Expression in the Central Amygdala. Brain Sci 2021; 11:1149. [PMID: 34573170 PMCID: PMC8468792 DOI: 10.3390/brainsci11091149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/06/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol dependence is associated with adverse consequences of alcohol (ethanol) use and is evident in most severe cases of alcohol use disorder (AUD). The central nucleus of the amygdala (CeA) plays a critical role in the development of alcohol dependence and escalation of alcohol consumption in dependent subjects. Molecular mechanisms underlying the CeA-driven behavioral changes are not well understood. Here, we examined the effects of alcohol on global gene expression in the CeA using a chronic intermittent ethanol (CIE) vapor model in rats and RNA sequencing (RNA-Seq). The CIE procedure resulted in robust changes in CeA gene expression during intoxication, as the number of differentially expressed genes (DEGs) was significantly greater than those expected by chance. Over-representation analysis of cell types, functional groups and molecular pathways revealed biological categories potentially important for the development of alcohol dependence in our model. Genes specific for astrocytes, myelinating oligodendrocytes, and endothelial cells were over-represented in the DEG category, suggesting that these cell types were particularly affected by the CIE procedure. The majority of the over-represented functional groups and molecular pathways were directly related to the functions of glial and endothelial cells, including extracellular matrix (ECM) organization, myelination, and the regulation of innate immune response. A coordinated regulation of several ECM metalloproteinases (e.g., Mmp2; Mmp14), their substrates (e.g., multiple collagen genes and myelin basic protein; Mbp), and a metalloproteinase inhibitor, Reck, suggests a specific mechanism for ECM re-organization in response to chronic alcohol, which may modulate neuronal activity and result in behavioral changes, such as an escalation of alcohol drinking. Our results highlight the importance of glial and endothelial cells in the effects of chronic alcohol exposure on the CeA, and demonstrate further insight into the molecular mechanisms of alcohol dependence in rats. These molecular targets may be used in future studies to develop therapeutics to treat AUD.
Collapse
Affiliation(s)
- Brent R. Kisby
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| | - Sean P. Farris
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78715, USA; (S.P.F.); (R.A.H.)
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Michelle M. McManus
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| | - Florence P. Varodayan
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902, USA;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - R. Adron Harris
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78715, USA; (S.P.F.); (R.A.H.)
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78741, USA
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| |
Collapse
|
33
|
Vancheri C, Morini E, Prandi FR, Alkhoury E, Celotto R, Romeo F, Novelli G, Amati F. Two RECK Splice Variants (Long and Short) Are Differentially Expressed in Patients with Stable and Unstable Coronary Artery Disease: A Pilot Study. Genes (Basel) 2021; 12:genes12060939. [PMID: 34205376 PMCID: PMC8234100 DOI: 10.3390/genes12060939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Primary prevention is crucial for coronary heart disease (CAD) and the identification of new reliable biomarkers might help risk stratification or predict adverse coronary events. Alternative splicing (AS) is a less investigated genetic factors implicated in CAD etiology. We performed an RNA-seq study on PBMCs from CAD patients and control subjects (CTR) and observed 113 differentially regulated AS events (24 up and 89 downregulated) in 86 genes. The RECK (Reversion-inducing-cysteine-rich protein with Kazal motifs) gene was further analyzed in a larger case study (24 CTR subjects, 72 CAD and 32 AMI patients) for its Splicing-Index FC (FC = −2.64; p = 0.0217), the AS event involving an exon (exon 18), and its role in vascular inflammation and remodeling. We observed a significant downregulation of Long RECK splice variant (containing exon 18) in PBMCs of AMI compared to CTR subjects (FC = −3.3; p < 0.005). Interestingly, the Short RECK splice variant (lacking exon 18) was under-expressed in AMI compared to both CTR (FC = −4.5; p < 0.0001) and CAD patients (FC = −4.2; p < 0.0001). A ROC curve, constructed combining Long and Short RECK expression data, shows an AUC = 0.81 (p < 0.001) to distinguish AMI from stable CAD patients. A significant negative correlation between Long RECK and triglycerides in CTR group and a positive correlation in the AMI group was found. The combined evaluation of Long and Short RECK expression levels is a potential genomic biomarker for the discrimination of AMI from CAD patients. Our results underline the relevance of deeper studies on the expression of these two splice variants to elucidate their functional role in CAD development and progression.
Collapse
Affiliation(s)
- Chiara Vancheri
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.V.); (E.M.); (G.N.)
| | - Elena Morini
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.V.); (E.M.); (G.N.)
| | - Francesca Romana Prandi
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy; (F.R.P.); (E.A.); (R.C.); (F.R.)
| | - Elie Alkhoury
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy; (F.R.P.); (E.A.); (R.C.); (F.R.)
| | - Roberto Celotto
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy; (F.R.P.); (E.A.); (R.C.); (F.R.)
| | - Francesco Romeo
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy; (F.R.P.); (E.A.); (R.C.); (F.R.)
- Unicamillus International Medical University, 00131 Rome, Italy
| | - Giuseppe Novelli
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.V.); (E.M.); (G.N.)
- Medical Genetics Laboratories, Tor Vergata University Hospital, PTV, 00133 Rome, Italy
- Neuromed IRCCS Institute, 86077 Pozzilli, Italy
- School of Medicine, Reno University of Nevada, Reno, NV 1664, USA
| | - Francesca Amati
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.V.); (E.M.); (G.N.)
- Department for the Promotion of Human Science and Quality of Life, University San Raffaele, 00166 Rome, Italy
- Correspondence:
| |
Collapse
|
34
|
The alternatively spliced RECK transcript variant 3 is a predictor of poor survival for melanoma patients being upregulated in aggressive cell lines and modulating MMP gene expression in vitro. Melanoma Res 2021; 30:223-234. [PMID: 31764436 DOI: 10.1097/cmr.0000000000000650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The reversion-inducing cysteine-rich protein with kazal motifs (RECK) gene was described as a tumor suppressor gene two decades ago. Recently, novel alternatively spliced products of this gene have been identified. Of these, the transcript variant 3 (RECKVar3) was shown to display tumor-facilitating effects in astrocytoma cells in vitro, with a higher RECKVar3/canonical RECK expression ratio being correlated with lower survival rates of patients. However, the regulatory mechanisms through which the cell controls the production and maintenance of these alternative transcripts, as well as their expression in other tumor types, remain elusive. Thus, the aim of this study is to investigate the role of the alternatively spliced transcripts from the RECK gene in melanoma progression as well as their regulation mechanism. To this end, we analyzed data from the Cancer Genome Atlas network and experimental data obtained from a panel of cell lines to show that high levels of RECKVar3 are predictive of poor survival. We also show that the MAPK and PI3K signaling pathways clearly play a role in determining the alternative-to-canonical ratio in vitro. Finally, we show that overexpression of the RECKVar3 protein upregulates matrix metalloproteinases (MMP)-9 and MMP-14 mRNA, while downregulating their inhibitor, tissue inhibitor of metalloproteinase (TIMP)3, and that RECKVar3-specific knockdown in the 1205Lu melanoma cell line hampered upregulation of the MMP9 mRNA promoted by the MEK1/2 inhibitor U0126. Taken together, our data complement the evidence that the RECK gene has a dual role in cancer, contributing to better understanding of the signaling cues, which dictate the melanoma invasive potential.
Collapse
|
35
|
Low RECK Expression Is Part of the Cervical Carcinogenesis Mechanisms. Cancers (Basel) 2021; 13:cancers13092217. [PMID: 34066355 PMCID: PMC8124470 DOI: 10.3390/cancers13092217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
Human papillomavirus (HPV)-induced carcinogenesis comprises alterations in the expression and activity of matrix metalloproteinases (MMP) and their regulators. Reversion-inducing Cysteine-rich protein with Kazal motifs (RECK) inhibits the activation of specific metalloproteinases and its expression is frequently lost in human cancers. Here we analyzed the role of RECK in cervical carcinogenesis. Cervical cancer derived cell lines over expressing RECK were used to determine tumor kinetics as well as, cellular, immune and molecular properties in vivo. Besides, we analyzed RECK expression in cervical cancer samples. RECK over expression (RECK+) delayed tumor growth and increased overall survival in vivo. RECK+ tumors displayed an increase in lymphoid-like inflammatory infiltrating cells, reduced number and viability of tumor and endothelial cells and lower collagenase activity. RECK+ tumors exhibited an enrichment of cell adhesion processes both in the mouse model and cervical cancer clinical samples. Finally, we found that lower RECK mRNA levels were associated with cervical lesions progression and worse response to chemotherapy in cervical cancer patients. Altogether, we show that increased RECK expression reduced the tumorigenic potential of HPV-transformed cells both in vitro and in vivo, and that RECK down regulation is a consistent and clinically relevant event in the natural history of cervical cancer.
Collapse
|
36
|
Dong ZR, Chen ZQ, Yang XY, Ding ZN, Liu KX, Yan LJ, Meng GX, yang YF, Yan YC, Yao SY, Yang CC, Zhi XT, Li T. RECK expression is associated with angiogenesis and immunogenic Tumor Microenvironment in Hepatocellular Carcinoma, and is a prognostic factor for better survival. J Cancer 2021; 12:3827-3840. [PMID: 34093791 PMCID: PMC8176247 DOI: 10.7150/jca.56167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/25/2021] [Indexed: 12/24/2022] Open
Abstract
Angiogenesis and immunosuppression have been described as closely related processes that can occur in parallel. As an inhibitor of matrix metalloproteinase, whether the level of reversion-inducing cysteine-rich protein with Kazal motifs (RECK) in hepatocellular carcinoma (HCC) reflects a link between angiogenesis and immunosuppression is still unknown. We analyzed RNA expression, immune infiltration and survival of HCC from The Cancer Genome Atlas databases. Immune scores and stromal scores were calculated based on the ESTIMATE algorithm to quantify the immune and stromal components in HCC. The association between RECK and clinicopathological features was further investigated by immunohistochemistry on tissue microarray. We found that the prognosis of patients with high RECK expression was significantly better than that of patients with low RECK expression. High RECK expression was associated with high ESTIMATE Score, recruitment of more tumor-infiltrating lymphocytes, low tumor purity, and high PD-L1 expression. In addition, positive RECK expression was associated with a lower incidence of vascular invasion and recurrence, a lower level of alpha fetoprotein (AFP) and microvessel density and a better tumor differentiation. Multivariate analyses revealed that reduced RECK expression was an independent prognostic factor for recurrence and poor prognosis. In conclusion, high RECK expression reflects an immunogenic and hypovascularity status in HCC. RECK is a promising prognostic marker for survival of HCC and may act as a complementary indicator for patients to receive anti-angiogenic therapy or immunotherapy.
Collapse
Affiliation(s)
- Zhao-Ru Dong
- Department of general surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Zhi-Qiang Chen
- Department of general surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Xiao-Yun Yang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Zi-Niu Ding
- Department of general surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Kai-Xuan Liu
- Department of general surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Lun-Jie Yan
- Department of general surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Guang-Xiao Meng
- Department of general surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Ya-Fei yang
- Department of general surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Yu-Chuan Yan
- Department of general surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Sheng-Yu Yao
- Department of general surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Chun-Cheng Yang
- Department of general surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Xu-Ting Zhi
- Department of general surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Tao Li
- Department of general surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| |
Collapse
|
37
|
Russell JJ, Grisanti LA, Brown SM, Bailey CA, Bender SB, Chandrasekar B. Reversion inducing cysteine rich protein with Kazal motifs and cardiovascular diseases: The RECKlessness of adverse remodeling. Cell Signal 2021; 83:109993. [PMID: 33781845 DOI: 10.1016/j.cellsig.2021.109993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022]
Abstract
The Reversion Inducing Cysteine Rich Protein With Kazal Motifs (RECK) is a glycosylphosphatidylinositol (GPI) anchored membrane-bound regulator of matrix metalloproteinases (MMPs). It is expressed throughout the body and plays a role in extracellular matrix (ECM) homeostasis and inflammation. In initial studies, RECK expression was found to be downregulated in various invasive cancers and associated with poor prognostic outcome. Restoring RECK, however, has been shown to reverse the metastatic phenotype. Downregulation of RECK expression is also reported in non-malignant diseases, such as periodontal disease, renal fibrosis, and myocardial fibrosis. As such, RECK induction has therapeutic potential in several chronic diseases. Mechanistically, RECK negatively regulates various matrixins involved in cell migration, proliferation, and adverse remodeling by targeting the expression and/or activation of multiple MMPs, A Disintegrin And Metalloproteinase Domain-Containing Proteins (ADAMs), and A Disintegrin And Metalloproteinase With Thrombospondin Motifs (ADAMTS). Outside of its role in remodeling, RECK has also been reported to exert anti-inflammatory effects. In cardiac diseases, for example, it has been shown to counteract several downstream effectors of Angiotensin II (Ang-II) that play a role in adverse cardiac and vascular remodeling, such as Interleukin-6 (IL-6)/IL-6 receptor (IL-6R)/glycoprotein 130 (IL-6 signal transducer) signaling and Epidermal Growth Factor Receptor (EGFR) transactivation. This review article focuses on the current understanding of the multifunctional effects of RECK and how its downregulation may contribute to adverse cardiovascular remodeling.
Collapse
Affiliation(s)
- Jacob J Russell
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America.
| | - Laurel A Grisanti
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America.
| | - Scott M Brown
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America.
| | - Chastidy A Bailey
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America.
| | - Shawn B Bender
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America; Dalton Cardiovascular Center, University of Missouri, Columbia, MO, United States of America.
| | - B Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America; Medicine, University of Missouri School of Medicine, Columbia, MO, United States of America; Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States of America; Dalton Cardiovascular Center, University of Missouri, Columbia, MO, United States of America.
| |
Collapse
|
38
|
Matsuzaki T, Keene DR, Nishimoto E, Noda M. Reversion-inducing cysteine-rich protein with Kazal motifs and MT1-MMP promote the formation of robust fibrillin fibers. J Cell Physiol 2021; 236:1980-1995. [PMID: 32730638 PMCID: PMC7818472 DOI: 10.1002/jcp.29982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/30/2023]
Abstract
Fibrillins (FBNs) form mesh-like structures of microfibrils in various elastic tissues. RECK and FBN1 are co-expressed in many human tissues, suggesting a functional relationship. We found that dermal FBN1 fibers show atypical morphology in mice with reduced RECK expression (RECK-Hypo mice). Dermal FBN1 fibers in mice-lacking membrane-type 1-matrix metalloproteinase (MT1-MMP) show a similar atypical morphology, despite the current notion that MT1-MMP (a membrane-bound protease) and RECK (a membrane-bound protease inhibitor) have opposing functions. Our experiments using dermal fibroblasts indicated that RECK promotes pro-MT1-MMP activation, increases cell-associated gelatinase/collagenase activity, and decreases diffusible gelatinase/collagenase activity, while MT1-MMP stabilizes RECK in these cells. Experiments using purified proteins indicate that RECK and its binding partner ADAMTS10 keep the proteolytic activity of MT1-MMP within a certain range. These findings suggest that RECK, ADAMTS10, and MT1-MMP cooperate to support the formation of robust FBN1 fibers.
Collapse
Affiliation(s)
- Tomoko Matsuzaki
- Department of Molecular OncologyKyoto University Graduate School of MedicineKyotoJapan
| | - Douglas R. Keene
- Departments of Medical Genetics, and Biochemistry and Molecular Biology, Shriners Hospital for ChildrenOregon Health and Science UniversityPortlandOregon
| | - Emi Nishimoto
- Department of Molecular OncologyKyoto University Graduate School of MedicineKyotoJapan
| | - Makoto Noda
- Department of Molecular OncologyKyoto University Graduate School of MedicineKyotoJapan
| |
Collapse
|
39
|
Trombetta-Lima M, Assis-Ribas T, Cintra RC, Campeiro JD, Guerreiro JR, Winnischofer SMB, Nascimento ICC, Ulrich H, Hayashi MAF, Sogayar MC. Impact of Reck expression and promoter activity in neuronal in vitro differentiation. Mol Biol Rep 2021; 48:1985-1994. [PMID: 33619662 DOI: 10.1007/s11033-021-06175-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Reck (REversion-inducing Cysteine-rich protein with Kazal motifs) tumor suppressor gene encodes a multifunctional glycoprotein which inhibits the activity of several matrix metalloproteinases (MMPs), and has the ability to modulate the Notch and canonical Wnt pathways. Reck-deficient neuro-progenitor cells undergo precocious differentiation; however, modulation of Reck expression during progression of the neuronal differentiation process is yet to be characterized. In the present study, we demonstrate that Reck expression levels are increased during in vitro neuronal differentiation of PC12 pheochromocytoma cells and P19 murine teratocarcinoma cells and characterize mouse Reck promoter activity during this process. Increased Reck promoter activity was found upon induction of differentiation in PC12 cells, in accordance with its increased mRNA expression levels in mouse in vitro models. Interestingly, Reck overexpression, prior to the beginning of the differentiation protocol, led to diminished efficiency of the neuronal differentiation process. Taken together, our findings suggest that increased Reck expression at early stages of differentiation diminishes the number of neuron-like cells, which are positive for the beta-3 tubulin marker. Our data highlight the importance of Reck expression evaluation to optimize in vitro neuronal differentiation protocols.
Collapse
Affiliation(s)
- Marina Trombetta-Lima
- Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de Medicina, Universidade de São Paulo (USP), Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil
| | - Thais Assis-Ribas
- Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de Medicina, Universidade de São Paulo (USP), Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil
| | - Ricardo C Cintra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Joana D Campeiro
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua 3 de Maio 100, Ed INFAR, 3º andar, São Paulo, SP, 04044-020, Brazil
| | - Juliano R Guerreiro
- Faculdade de Farmácia, Universidade Paulista (UNIP), São Paulo, SP, 05347-020, Brazil
| | - Sheila M B Winnischofer
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, PR, 81531-990, Brazil
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba, PR, 81531-990, Brazil
| | - Isis C C Nascimento
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil
| | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua 3 de Maio 100, Ed INFAR, 3º andar, São Paulo, SP, 04044-020, Brazil.
| | - Mari C Sogayar
- Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de Medicina, Universidade de São Paulo (USP), Rua Pangaré, 100 (Cidade Universitária), São Paulo, SP, 05360-130, Brazil.
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
40
|
Hiraku Y, Watanabe J, Kaneko A, Ichinose T, Murata M. MicroRNA expression in lung tissues of asbestos-exposed mice: Upregulation of miR-21 and downregulation of tumor suppressor genes Pdcd4 and Reck. J Occup Health 2021; 63:e12282. [PMID: 34679210 PMCID: PMC8535435 DOI: 10.1002/1348-9585.12282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 08/18/2021] [Accepted: 09/04/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Asbestos causes lung cancer and malignant mesothelioma in humans, but the precise mechanism has not been well understood. MicroRNA (miRNA) is a short non-coding RNA that suppresses gene expression and participates in human diseases including cancer. In this study, we examined the expression levels of miRNA and potential target genes in lung tissues of asbestos-exposed mice by microarray analysis. METHODS We intratracheally administered asbestos (chrysotile and crocidolite, 0.05 or 0.2 mg/instillation) to 6-week-old ICR male mice four times weekly. We extracted total RNA from lung tissues and performed microarray analysis for miRNA and gene expression. We also carried out real-time polymerase chain reaction (PCR), Western blotting, and immunohistochemistry to confirm the results of microarray analysis. RESULTS Microarray analysis revealed that the expression levels of 14 miRNAs were significantly changed by chrysotile and/or crocidolite (>2-fold, P < .05). Especially, miR-21, an oncogenic miRNA, was significantly upregulated by both chrysotile and crocidolite. In database analysis, miR-21 was predicted to target tumor suppressor genes programmed cell death 4 (Pdcd4) and reversion-inducing-cysteine-rich protein with kazal motifs (Reck). Although real-time PCR showed that Pdcd4 was not significantly downregulated by asbestos exposure, Western blotting and immunohistochemistry revealed that PDCD4 expression was reduced especially by chrysotile. Reck was significantly downregulated by chrysotile in real-time PCR and immunohistochemistry. CONCLUSIONS This is the first study demonstrating that miR-21 was upregulated and corresponding tumor suppressor genes were downregulated in lung tissues of asbestos-exposed animals. These molecular events are considered to be an early response to asbestos exposure and may contribute to pulmonary toxicity and carcinogenesis.
Collapse
Grants
- 23659328 Ministry of Education, Culture, Sports, Science and Technology, Japan
- 24390153 Ministry of Education, Culture, Sports, Science and Technology, Japan
- 15H04784 Ministry of Education, Culture, Sports, Science and Technology, Japan
- 18H03038 Ministry of Education, Culture, Sports, Science and Technology, Japan
- Grants-in-Aid for Scientific Research
Collapse
Affiliation(s)
- Yusuke Hiraku
- Department of Environmental HealthUniversity of Fukui School of Medical SciencesEiheijiFukuiJapan
- Department of Environmental and Molecular MedicineMie University Graduate School of MedicineTsuMieJapan
| | - Jun Watanabe
- Department of Environmental and Molecular MedicineMie University Graduate School of MedicineTsuMieJapan
| | - Akira Kaneko
- Department of Environmental and Molecular MedicineMie University Graduate School of MedicineTsuMieJapan
| | - Takamichi Ichinose
- Department of Health SciencesOita University of Nursing and Health SciencesOitaJapan
| | - Mariko Murata
- Department of Environmental and Molecular MedicineMie University Graduate School of MedicineTsuMieJapan
| |
Collapse
|
41
|
Dashek RJ, Diaz C, Chandrasekar B, Rector RS. The Role of RECK in Hepatobiliary Neoplasia Reveals Its Therapeutic Potential in NASH. Front Endocrinol (Lausanne) 2021; 12:770740. [PMID: 34745017 PMCID: PMC8564138 DOI: 10.3389/fendo.2021.770740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multimorbidity disorder ranging from excess accumulation of fat in the liver (steatosis) to steatohepatitis (NASH) and end-stage cirrhosis, and the development of hepatocellular carcinoma (HCC) in a subset of patients. The defining features of NASH are inflammation and progressive fibrosis. Currently, no pharmaceutical therapies are available for NAFLD, NASH and HCC; therefore, developing novel treatment strategies is desperately needed. Reversion Inducing Cysteine Rich Protein with Kazal motifs (RECK) is a well-known modifier of the extracellular matrix in hepatic remodeling and transition to HCC. More recently, its role in regulating inflammatory and fibrogenic processes has emerged. Here, we summarize the most relevant findings that extend our current understanding of RECK as a regulator of inflammation and fibrosis, and its induction as a potential strategy to blunt the development and progression of NASH and HCC.
Collapse
Affiliation(s)
- Ryan J. Dashek
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Comparative Medicine Program, Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Connor Diaz
- School of Medicine, University of Missouri, Columbia, MO, United States
| | - Bysani Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Division of Cardiology, Department of Medicine, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - R. Scott Rector
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO, United States
- *Correspondence: R. Scott Rector,
| |
Collapse
|
42
|
Mo Y, Zhang Y, Mo L, Wan R, Jiang M, Zhang Q. The role of miR-21 in nickel nanoparticle-induced MMP-2 and MMP-9 production in mouse primary monocytes: In vitro and in vivo studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115597. [PMID: 33254626 PMCID: PMC7708676 DOI: 10.1016/j.envpol.2020.115597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/12/2020] [Accepted: 09/02/2020] [Indexed: 05/02/2023]
Abstract
Exposure to metal nanoparticles causes both pulmonary and systemic effects. Nanoparticles can enter the circulation and act directly or indirectly on blood cells, such as monocytes. Monocytes/macrophages are among the first cells to home to inflammatory sites and play a key role in the immune response. Here we investigated the effects of nickel nanoparticles (Nano-Ni), partially [O]-passivated Nano-Ni (Nano-Ni-P), and carbon-coated Nano-Ni (Nano-Ni-C) on MMP-2 and MMP-9 production in mouse primary monocytes both in vitro and in vivo and explored the potential mechanisms involved. The dose- and time-response studies showed that exposure of primary monocytes from wild-type (WT) mice to 30 μg/mL of Nano-Ni for 24 h caused significant MMP-2 and MMP-9 production; therefore, these dose and time point were chosen for the following in vitro studies. Nano-Ni and Nano-Ni-P caused miR-21 upregulation, as well as MMP-2, MMP-9, TIMP-1 and TIMP-2 upregulation in monocytes from WT, but not miR-21 knock-out (KO), mice, indicating the important role of miR-21 in Nano-Ni-induced MMPs and TIMPs upregulation. However, Nano-Ni-C did not cause these effects, suggesting surface modification of Nano-Ni, such as carbon coating, alleviates Nano-Ni-induced miR-21 and MMPs upregulation. These results were further confirmed by in vivo studies by intratracheal instillation of nickel nanoparticles into WT and miR-21 KO mice. Finally, our results demonstrated that exposure of primary monocytes from WT mice to Nano-Ni and Nano-Ni-P caused downregulation of RECK, a direct miR-21 target, suggesting the involvement of miR-21/RECK pathway in Nano-Ni-induced MMP-2 and MMP-9 production.
Collapse
Affiliation(s)
- Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Luke Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Rong Wan
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Mizu Jiang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
43
|
Mo Y, Zhang Y, Wan R, Jiang M, Xu Y, Zhang Q. miR-21 mediates nickel nanoparticle-induced pulmonary injury and fibrosis. Nanotoxicology 2020; 14:1175-1197. [PMID: 32924694 PMCID: PMC7984410 DOI: 10.1080/17435390.2020.1808727] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/18/2020] [Accepted: 08/06/2020] [Indexed: 12/26/2022]
Abstract
We and other groups have demonstrated that exposure to nickel nanoparticles (Nano-Ni) results in severe and persistent lung inflammation and fibrosis, but the underlying mechanisms remain unclear. Here, we propose that miR-21 may play an important role in Nano-Ni-induced lung inflammation, injury, and fibrosis. Our dose- and time-response studies demonstrated that exposure of C57BL/6J (WT) mice to Nano-Ni resulted in upregulation of miR-21, proinflammatory cytokines, and profibrotic mediators. Histologically, exposure to Nano-Ni caused severe pulmonary inflammation and fibrosis. Based on the dose- and time-response studies, we chose a dose of 50 µg of Nano-Ni per mouse to compare the effects of Nano-Ni on WT with those on miR-21 KO mouse lungs. At day 3 post-exposure, Nano-Ni caused severe acute lung inflammation and injury that were reflected by increased neutrophil count, CXCL1/KC level, LDH activity, total protein concentration, MMP-2/9 protein levels and activities, and proinflammatory cytokines in the BALF or lung tissues from WT mice, which were confirmed histologically. Although Nano-Ni had similar effects on miR-21 KO mice, the above-mentioned levels were significantly lower than those in WT mice. Histologically, lungs from WT mice exposed to Nano-Ni had infiltration of a large number of polymorphonuclear (PMN) cells and macrophages in the alveolar space and interstitial tissues. However, exposure of miR-21 KO mice to Nano-Ni only caused mild acute lung inflammation and injury. At day 42 post-exposure, Nano-Ni caused extensive pulmonary fibrosis and chronic inflammation in the WT mouse lungs. However, exposure of miR-21 KO mice to Nano-Ni only caused mild lung fibrosis and chronic lung inflammation. Our results also showed that exposure to Nano-Ni caused upregulation of TGF-β1, phospho-Smad2, COL1A1, and COL3A1 in both WT and miR-21 KO mouse lungs. However, levels were significantly lower in miR-21 KO mice than in WT mice, except TGF-β1, which was similar in both kinds of mice. Decreased expression of Smad7 was observed in WT mouse lungs, but not in miR-21 KO mice. Our results demonstrated that knocking out miR-21 ameliorated Nano-Ni-induced pulmonary inflammation, injury, and fibrosis, suggesting the important role of miR-21 in Nano-Ni-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Rong Wan
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Mizu Jiang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Youqiong Xu
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
44
|
Ferrigno A, Palladini G, Di Pasqua LG, Berardo C, Richelmi P, Cadamuro M, Fabris L, Perlini S, Adorini L, Vairetti M. Obeticholic acid reduces biliary and hepatic matrix metalloproteinases activity in rat hepatic ischemia/reperfusion injury. PLoS One 2020; 15:e0238543. [PMID: 32911524 PMCID: PMC7482919 DOI: 10.1371/journal.pone.0238543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background We have previously shown that obeticholic acid (OCA) upregulates the biliary excretion of asymmetric dimethylarginine (ADMA), an inhibitor of iNOS regulating the activity of matrix metalloproteinases (MMPs). Here, the effects of OCA on MMP-2 and MMP-9 activity in liver, bile and serum were evaluated after hepatic ischemia/reperfusion (I/R) injury. Material and methods Male Wistar rats (n = 20) were orally administered 10 mg/kg/day of OCA (5 days) and subjected to a 60-min ischemia and 60-min reperfusion. Bile, serum and tissue were collected for MMP-2 and MMP-9 activity quantification. The MMP regulator tissue reversion-inducing cysteine rich protein with Kazal motifs (RECK), tissue inhibitor of metalloproteinases (TIMPs), iNOS and biliary levels of LDH, γGT, glucose and ADMA were quantified. Results In the I/R group, OCA administration reduced MMP-2 and MMP-9 in liver, bile and serum. A downregulation of tissue RECK and TIMPs, observed under I/R, were recovered by OCA. Immunohistochemical staining of hepatic tissue demonstrated that RECK expression is mainly localized in both cholangiocytes and hepatocytes. Hepatic iNOS positively correlated with tissue MMP-2 and MMP-9 activity. Biliary levels of LDH, γGT and glucose were lower in I/R rats treated with OCA; in bile, MMP levels positively correlated with LDH and γGT. Conclusion Thus, OCA administration confers protection to cholangiocytes via downregulation of biliary MMPs in livers submitted to I/R. This event is associated with hepatic RECK- and TIMP-mediated MMP decrease.
Collapse
Affiliation(s)
- Andrea Ferrigno
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- * E-mail: (MV); (AF)
| | - Giuseppina Palladini
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Clarissa Berardo
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Plinio Richelmi
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | - Luca Fabris
- Dept. of Molecular Medicine (DMM), University of Padua, Padua, Italy
- Department of Internal Medicine, Liver Center and Section of Digestive Diseases, Yale University, New Haven, CT, United States of America
| | - Stefano Perlini
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Emergency Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luciano Adorini
- Intecept Pharmaceuticals, San Diego, CA, United States of America
| | - Mariapia Vairetti
- Dept. of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- * E-mail: (MV); (AF)
| |
Collapse
|
45
|
García-Onrubia L, Valentín-Bravo FJ, Coco-Martin RM, González-Sarmiento R, Pastor JC, Usategui-Martín R, Pastor-Idoate S. Matrix Metalloproteinases in Age-Related Macular Degeneration (AMD). Int J Mol Sci 2020; 21:ijms21165934. [PMID: 32824762 PMCID: PMC7460693 DOI: 10.3390/ijms21165934] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex, multifactorial and progressive retinal disease affecting millions of people worldwide. In developed countries, it is the leading cause of vision loss and legal blindness among the elderly. Although the pathogenesis of AMD is still barely understood, recent studies have reported that disorders in the regulation of the extracellular matrix (ECM) play an important role in its etiopathogenesis. The dynamic metabolism of the ECM is closely regulated by matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs). The present review focuses on the crucial processes that occur at the level of the Bruch’s membrane, with special emphasis on MMPs, TIMPs, and the polymorphisms associated with increased susceptibility to AMD development. A systematic literature search was performed, covering the years 1990–2020, using the following keywords: AMD, extracellular matrix, Bruch’s membrane, MMPs, TIMPs, and MMPs polymorphisms in AMD. In both early and advanced AMD, the pathological dynamic changes of ECM structural components are caused by the dysfunction of specific regulators and by the influence of other regulatory systems connected with both genetic and environmental factors. Better insight into the pathological role of MMP/TIMP complexes may lead to the development of new strategies for AMD treatment and prevention.
Collapse
Affiliation(s)
- Luis García-Onrubia
- Clinical University Hospital of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain; (L.G.-O.); (F.J.V.-B.); (J.C.P.)
| | - Fco. Javier Valentín-Bravo
- Clinical University Hospital of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain; (L.G.-O.); (F.J.V.-B.); (J.C.P.)
| | - Rosa M. Coco-Martin
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain;
- Cooperative Health Network for Research in Ophthalmology (Oftared), National Institute of Health Carlos III, ISCIII, 28040 Madrid, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca—CSIC, 37007 Salamanca, Spain
| | - J. Carlos Pastor
- Clinical University Hospital of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain; (L.G.-O.); (F.J.V.-B.); (J.C.P.)
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain;
- Cooperative Health Network for Research in Ophthalmology (Oftared), National Institute of Health Carlos III, ISCIII, 28040 Madrid, Spain
| | - Ricardo Usategui-Martín
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain;
- Correspondence: (R.U.-M.); (S.P.-I.)
| | - Salvador Pastor-Idoate
- Clinical University Hospital of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain; (L.G.-O.); (F.J.V.-B.); (J.C.P.)
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain;
- Cooperative Health Network for Research in Ophthalmology (Oftared), National Institute of Health Carlos III, ISCIII, 28040 Madrid, Spain
- Correspondence: (R.U.-M.); (S.P.-I.)
| |
Collapse
|
46
|
Drishya G, Nambiar J, Shaji SK, Vanuopadath M, Achuthan A, Kumar A, Alias A, Sherif A, Joseph C, Divya P, Kumar DS, Bose C, Nair SV, Sudarslal S, Kumar GB, Lakshmi S, Nair BG. RECK and TIMP-2 mediate inhibition of MMP-2 and MMP-9 by Annona muricata. J Biosci 2020. [DOI: 10.1007/s12038-020-00056-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Abstract
Five small protein domains, the CC-domains, at the N terminus of the RECK protein, play essential roles in signaling by WNT7A and WNT7B in the context of central nervous system angiogenesis and blood-brain barrier formation and maintenance. We have determined the structure of CC domain 4 (CC4) at 1.65-Å resolution and find that it folds into a compact four-helix bundle with three disulfide bonds. The CC4 structure, together with homology modeling of CC1, reveals the surface locations of critical residues that were shown in previous mutagenesis studies to mediate GPR124 binding and WNT7A/WNT7B recognition and signaling. Surprisingly, sequence and structural homology searches reveal no other cell-surface or secreted domains in vertebrates that resemble the CC domain, a pattern that is in striking contrast to other ancient and similarly sized domains, such as Epidermal Growth Factor, Fibronectin Type 3, Immunoglobulin, and Thrombospondin type 1 domains, which are collectively present in hundreds of proteins.
Collapse
|
48
|
Ogawa S, Matsuzaki T, Noda M. Abundant expression of the membrane-anchored protease-regulator RECK in the anterior pituitary gland and its implication in the growth hormone/insulin-like growth factor 1 axis in mice. Mol Cell Endocrinol 2020; 508:110790. [PMID: 32165171 DOI: 10.1016/j.mce.2020.110790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 10/24/2022]
Abstract
The tumor suppressor gene Reversion-inducing cysteine-rich protein with Kazal motifs (Reck) encodes a membrane-anchored protease regulator expressed in multiple tissues in mouse embryos and is essential for embryonic development. In postnatal mice, however, physiological roles for the RECK protein remain unclear. We found in this study that Reck is abundantly expressed in growth hormone (GH)-producing cells (somatotrophs) in the anterior pituitary gland (AP). We also found that two types of viable Reck mutant mice, one with reduced RECK expression (Hypo mice) and the other with induced Reck deficiency from 10 days after birth (iKO mice treated with tamoxifen), exhibit common phenotypes including decreases in body size and plasma levels of insulin-like growth factor-1 (IGF1). To gain insights into the function of RECK in the AP, we characterized several somatotroph-associated molecules in the AP of these mice. Immunoreactivity of GH was greatly reduced in tamoxifen-treated iKO mice; in these mice, two membrane receptors involved in the stimulation of GH secretion [growth hormone secretagogue receptor (GHSR) and growth hormone releasing hormone receptor (GHRHR)] were decreased, however, their mRNAs were increased. Decrease in GHSR immunoreactivity and concomitant increase in its mRNA were also found in the other mutant line, Hypo. Furthermore, reduced immunoreactivity of growth hormone receptor (GHR) and concomitant increase in its mRNA was also found in the liver of Hypo mice. These results raise the possibility that RECK supports proper functioning of the GH/IGF1 axis in mice, thereby affecting their growth and metabolism.
Collapse
Affiliation(s)
- Shuichiro Ogawa
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomoko Matsuzaki
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Makoto Noda
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
49
|
Analysis of the inhibiting activity of reversion-inducing cysteine-rich protein with Kazal motifs (RECK) on matrix metalloproteinases. Sci Rep 2020; 10:6317. [PMID: 32286475 PMCID: PMC7156630 DOI: 10.1038/s41598-020-63338-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
Matrix metalloproteinases (MMPs) occur in 23 human paralogues with key functions in physiology, and their activity is controlled by protein inhibitors. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK), which is essential for embryogenesis and tumour suppression, has been reported to inhibit MMPs. Here, we developed eukaryotic and bacterial expression systems for different RECK variants and analysed their inhibitory capacity against representative MMPs in vitro. We could not detect any significant inhibition. Instead, we found that partially purified RECK from the conditioned medium of transfected Expi293F cells but not that of ExpiCHO-S or Drosophila Schneider cells contained a contaminant with proteolytic activity. The contaminant was removed through treatment with a small-molecule serine peptidase inhibitor and additional chromatographic purification. A tantamount contaminant was further detected in an equivalent expression system of the N-terminal fragment of the proteoglycan testican 3, but not in those of two other proteins. These results indicate that previous reports of inhibitory activity of recombinant RECK on MMPs, which were performed with partially purified samples, were probably masked by a coeluting contaminant present in the supernatant of HEK293-derived cells. Thus, RECK is probably not a direct inhibitor of MMP catalytic activity but may still regulate MMPs through other mechanisms.
Collapse
|
50
|
Bautista-Sánchez D, Arriaga-Canon C, Pedroza-Torres A, De La Rosa-Velázquez IA, González-Barrios R, Contreras-Espinosa L, Montiel-Manríquez R, Castro-Hernández C, Fragoso-Ontiveros V, Álvarez-Gómez RM, Herrera LA. The Promising Role of miR-21 as a Cancer Biomarker and Its Importance in RNA-Based Therapeutics. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:409-420. [PMID: 32244168 PMCID: PMC7118281 DOI: 10.1016/j.omtn.2020.03.003] [Citation(s) in RCA: 313] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding transcripts that posttranscriptionally regulate gene expression via base-pairing complementarity. Their role in cancer can be related to tumor suppression or oncogenic function. Moreover, they have been linked to processes recognized as hallmarks of cancer, such as apoptosis, invasion, metastasis, and proliferation. Particularly, one of the first oncomiRs found upregulated in a variety of cancers, such as gliomas, breast cancer, and colorectal cancer, was microRNA-21 (miR-21). Some of its target genes associated with cancer are PTEN (phosphatase and tensin homolog), PDCD4 (programmed cell death protein 4), RECK (reversion-inducing cysteine-rich protein with Kazal motifs), and STAT3 (signal transducer activator of transcription 3). As a result, miR-21 has been proposed as a plausible diagnostic and prognostic biomarker, as well as a therapeutic target for several types of cancer. Currently, research and clinical trials to inhibit miR-21 through anti-miR-21 oligonucleotides and ADM-21 are being conducted. As all of the evidence suggests, miR-21 is involved in carcinogenic processes; therefore, inhibiting it could have effects on more than one type of cancer. However, whether miR-21 can be used as a tissue-specific biomarker should be analyzed with caution. Consequently, the purpose of this review is to outline the available information and recent advances regarding miR-21 as a potential biomarker in the clinical setting and as a therapeutic target in cancer to highlight its importance in the era of precision medicine.
Collapse
Affiliation(s)
- Diana Bautista-Sánchez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Abraham Pedroza-Torres
- CONACYT-Instituto Nacional de Cancerología, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | | | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Laura Contreras-Espinosa
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Rogelio Montiel-Manríquez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Verónica Fragoso-Ontiveros
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Rosa María Álvarez-Gómez
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico; Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, Tlalpan, CP 14610, Mexico City, Mexico.
| |
Collapse
|