1
|
Xu R, Kang Q, Yang X, Yi P, Zhang R. Unraveling Molecular Targets for Neurodegenerative Diseases Through Caenorhabditis elegans Models. Int J Mol Sci 2025; 26:3030. [PMID: 40243699 PMCID: PMC11988803 DOI: 10.3390/ijms26073030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and prion disease, represent a group of age-related disorders that pose a growing and formidable challenge to global health. Despite decades of extensive research that has uncovered key genetic factors and biochemical pathways, the precise molecular mechanisms underlying these diseases and effective therapeutic strategies remain elusive. Caenorhabditis elegans (C. elegans) has emerged as a powerful model organism for studying NDDs due to its unique biological features such as genetic tractability, conserved molecular pathways, and ease of high-throughput screening. This model provides an exceptional platform for identifying molecular targets associated with NDDs and developing novel therapeutic interventions. This review highlights the critical role of C. elegans in elucidating the complex molecular mechanisms of human NDDs, with a particular focus on recent advancements and its indispensable contributions to the discovery of molecular targets and therapeutic strategies for these NDDs.
Collapse
Affiliation(s)
- Rongmei Xu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230002, China; (R.X.); (X.Y.)
| | - Qiaoju Kang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Q.K.); (P.Y.)
| | - Xuefei Yang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230002, China; (R.X.); (X.Y.)
| | - Ping Yi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Q.K.); (P.Y.)
| | - Rongying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Q.K.); (P.Y.)
| |
Collapse
|
2
|
Torres AK, Mira RG, Pinto C, Inestrosa NC. Studying the mechanisms of neurodegeneration: C. elegans advantages and opportunities. Front Cell Neurosci 2025; 19:1559151. [PMID: 40207239 PMCID: PMC11979225 DOI: 10.3389/fncel.2025.1559151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Caenorhabditis elegans has been widely used as a model organism in neurodevelopment for several decades due to its simplicity, rapid growth, short life cycle, transparency, and rather simple genetics. It has been useful in modeling neurodegenerative diseases by the heterologous expression of the major proteins that form neurodegenerative-linked aggregates such as amyloid-β peptide, tau protein, and α-synuclein, among others. Furthermore, chemical treatments as well as the existence of several interference RNA libraries, transgenic worm lines, and the possibility of generating new transgenic strains create a magnificent range of possible tools to study the signaling pathways that could confer protection against protein aggregates or, on the contrary, are playing a detrimental role. In this review, we summarize the different C. elegans models of neurodegenerative diseases with a focus on Alzheimer's and Parkinson's diseases and how genetic tools could be used to dissect the signaling pathways involved in their pathogenesis mentioning several examples. Finally, we discuss the use of pharmacological agents in C. elegans models that could help to study these disease-associated signaling pathways and the powerful combinations of experimental designs with genetic tools. This review highlights the advantages of C. elegans as a valuable intermediary between in vitro and mammalian in vivo models in the development of potential new therapies.
Collapse
Affiliation(s)
- Angie K. Torres
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo G. Mira
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Cristina Pinto
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C. Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Nisha, Thapliyal D, Gohil B, Modak AS, Singh NT, Mukherjee C, Ahuja S, Sahu BS, Singh MD. Downregulation of Pten Improves Huntington's Disease Phenotype by Reducing Htt Aggregates and Cell Death. Mol Neurobiol 2025:10.1007/s12035-025-04816-6. [PMID: 40042729 DOI: 10.1007/s12035-025-04816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 02/26/2025] [Indexed: 03/18/2025]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder that stems from the expansion of CAG repeats within the coding region of Huntingtin (HTT) gene. Currently, there exists no effective therapeutic intervention that can prevent the progression of the disease. Our study aims to identify a novel genetic modifier with therapeutic potential. We employ transgenic flies containing HTT.ex1.Q93 and mRFP-HTT.588.Q138 constructs, which encode mutant pathogenic Huntingtin (Htt) proteins featuring 93 and 138 polyglutamine (Q) repeats respectively. The resultant mutant proteins cause the loss of photoreceptor neurons in the eye and a progressive loss of neuronal tissues in the brain and motor neurons in Drosophila. Several findings have demonstrated the association of HD with growth factor signaling defects. Phosphatase and tensin homolog (Pten) have been implicated in the negative regulation of the Insulin signaling/receptor tyrosine signaling pathway which regulates the growth and survival of cells. In the present study, we downregulated Pten and found a significant improvement in morphological phenotypes in the eye, brain, and motor neurons. These findings were further correlated with the enhancement of the functional vision and climbing ability of the flies. We also found the reduction in both Htt aggregate and caspase levels which are involved in the apoptotic pathway. In alignment with the genetic modulation of Pten, we elucidated the protective role of Pten inhibition through the utilization of VO-OHpic. VO-OHpic improved the climbing ability of flies and reduced the poly(Q) aggregates and apoptosis levels. A similar reduction in Htt aggregates was observed in the mouse neuronal inducible HD cell line model. Our study illustrates that Pten inhibition is a potential therapeutic approach for HD.
Collapse
Affiliation(s)
- Nisha
- National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana, 122052, India
| | - Deepti Thapliyal
- National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana, 122052, India
| | - Bhavya Gohil
- National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana, 122052, India
| | - Aninda Sundar Modak
- National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana, 122052, India
| | - N Tarundas Singh
- National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana, 122052, India
| | | | - Sanchi Ahuja
- National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana, 122052, India
| | | | | |
Collapse
|
4
|
Tortajada-Pérez J, Carranza ADV, Trujillo-del Río C, Collado-Pérez M, Millán JM, García-García G, Vázquez-Manrique RP. Lipid Oxidation at the Crossroads: Oxidative Stress and Neurodegeneration Explored in Caenorhabditis elegans. Antioxidants (Basel) 2025; 14:78. [PMID: 39857412 PMCID: PMC11762898 DOI: 10.3390/antiox14010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Lipid metabolism plays a critical role in maintaining cellular integrity, especially within the nervous system, where lipids support neuronal structure, function, and synaptic plasticity. However, this essential metabolic pathway is highly susceptible to oxidative stress, which can lead to lipid peroxidation, a damaging process induced by reactive oxygen species. Lipid peroxidation generates by-products that disrupt many cellular functions, with a strong impact on proteostasis. In this review, we explore the role of lipid oxidation in protein folding and its associated pathological implications, with a particular focus on findings in neurodegeneration from Caenorhabditis elegans studies, an animal model that remains underutilized. Additionally, we highlight the effectiveness of different methodologies applied in this nematode to deepen our understanding of this intricate process. In the nervous system of any animal, including mammals and invertebrates, lipid oxidation can disturb the delicate balance of cellular homeostasis, leading to oxidative stress, the build-up of toxic by-products, and protein misfolding, key factors in neurodegenerative diseases. This disruption contributes to the pathogenesis of neurodegenerative disorders such as Alzheimer's, Parkinson's, or Huntington's disease. The findings from Caenorhabditis elegans studies offer valuable insights into these complex processes and highlight potential avenues for developing targeted therapies to mitigate neurodegenerative disease progression.
Collapse
Affiliation(s)
- Julia Tortajada-Pérez
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (C.T.-d.R.); (M.C.-P.); (J.M.M.); (G.G.-G.)
- Joint Unit for Rare Diseases IIS La Fe—CIPF, 46026 Valencia, Spain
| | - Andrea del Valle Carranza
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (C.T.-d.R.); (M.C.-P.); (J.M.M.); (G.G.-G.)
- Joint Unit for Rare Diseases IIS La Fe—CIPF, 46026 Valencia, Spain
| | - Cristina Trujillo-del Río
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (C.T.-d.R.); (M.C.-P.); (J.M.M.); (G.G.-G.)
- Joint Unit for Rare Diseases IIS La Fe—CIPF, 46026 Valencia, Spain
| | - Mar Collado-Pérez
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (C.T.-d.R.); (M.C.-P.); (J.M.M.); (G.G.-G.)
- Joint Unit for Rare Diseases IIS La Fe—CIPF, 46026 Valencia, Spain
| | - José María Millán
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (C.T.-d.R.); (M.C.-P.); (J.M.M.); (G.G.-G.)
- Joint Unit for Rare Diseases IIS La Fe—CIPF, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Gema García-García
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (C.T.-d.R.); (M.C.-P.); (J.M.M.); (G.G.-G.)
- Joint Unit for Rare Diseases IIS La Fe—CIPF, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Pascual Vázquez-Manrique
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (C.T.-d.R.); (M.C.-P.); (J.M.M.); (G.G.-G.)
- Joint Unit for Rare Diseases IIS La Fe—CIPF, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
El Din RH, Thabit S. Quinic acid protects against the development of Huntington's disease in Caenorhabditis elegans model. BMC Complement Med Ther 2024; 24:377. [PMID: 39468600 PMCID: PMC11514749 DOI: 10.1186/s12906-024-04670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Quinic acid (QA), a cyclitol and cyclohexanecarboxylic acid, is a natural product that is present and can be isolated from edible herbals like tea, coffee and several fruits and vegetables. It was previously reported that QA exerted antioxidant and neuroprotective activity against dementia. However, it was not tested for its neuroprotective potential against Huntington's disease (HD). Since aging related disorders are greatly linked to oxidative stress conditions, we focused on testing the oxidative stress resistant activity and protective effect of QA against the development of HD by using the multicellular Caenorhabditis elegans (C. elegans) worm model. METHODS Firstly, QA was tested for its oxidative stress resistant properties. In survival assay, wild type and mutant skn-1 and daf-16 worms were exposed to oxidative stress conditions by using H2O2. Activation of SKN-1 pathway and expression of its downstream genes gcs-1 and gst-4 were also tested. Secondly, the effect of QA was evaluated on HD by testing its ability to decrease the formation of polyQ150 aggregates. Furthermore, its effect on the accumulation of polyglutamine (polyQ35 and polyQ40 aggregates) was tested. RESULTS Here we report that QA could improve the survival of C. elegans after exposure to oxidative stress caused by H2O2 while also exerting antioxidant effects through the activation of SKN-1/Nrf2 pathway. Moreover, QA could be a potential candidate to protect against HD due to its effects on decreasing the formation of polyQ150, polyQ35 and polyQ40 aggregates. CONCLUSIONS This study highlights the importance of QA as a natural compound in defending against oxidative stress and the development of neurodegenerative diseases like HD.
Collapse
Affiliation(s)
- Reem Hossam El Din
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo, 11835, Egypt
| | - Sara Thabit
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo, 11835, Egypt.
| |
Collapse
|
6
|
Xue W, Lei Z, Liu B, Guo H, Yan W, Jin YN, Yu YV. Olfactory dysfunction as an early pathogenic indicator in C. elegans models of Alzheimer's and polyglutamine diseases. Front Aging Neurosci 2024; 16:1462238. [PMID: 39411283 PMCID: PMC11473296 DOI: 10.3389/fnagi.2024.1462238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease and polyglutamine diseases are characterized by abnormal accumulation of misfolded proteins, leading to neuronal dysfunction and subsequent neuron death. However, there is a lack of studies that integrate molecular, morphological, and functional analyses in neurodegenerative models to fully characterize these time-dependent processes. In this study, we used C. elegans models expressing Aβ1-42 and polyglutamine to investigate early neuronal pathogenic features in olfactory neurons. Both models demonstrated significant reductions in odor sensitivity in AWB and AWC chemosensory neurons as early as day 1 of adulthood, while AWA chemosensory neurons showed no such decline, suggesting cell-type-specific early neuronal dysfunction. At the molecular level, Aβ1-42 or Q40 expression caused age-dependent protein aggregation and morphological changes in neurons. By day 6, both models displayed prominent protein aggregates in neuronal cell bodies and neurites. Notably, AWB neurons in both models showed significantly shortened cilia and increased instances of enlarged cilia as early as day 1 of adulthood. Furthermore, AWC neurons expressing Aβ1-42 displayed calcium signaling defects, with significantly reduced responses to odor stimuli on day 1, further supporting early behavioral dysfunction. In contrast, AWA neuron did not exhibit reduced calcium responses, consistent with the absence of detectable decreases in olfactory sensitivity in these neurons. These findings suggest that decreased calcium signaling and dysfunction in specific sensory neuron subtypes are early indicators of neurodegeneration in C. elegans, occurring prior to the formation of visible protein aggregates. We found that the ER unfolded protein response (UPR) is significantly activated in worms expressing Aβ1-42. Activation of the AMPK pathway alleviates olfactory defects and reduces fibrillar Aβ in these worms. This study underscores the use of C. elegans olfactory neurons as a model to elucidate mechanisms of proteostasis in neurodegenerative diseases and highlights the importance of integrated approaches.
Collapse
Affiliation(s)
- Weikang Xue
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ziyi Lei
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Bin Liu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hanxin Guo
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Weiyi Yan
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Youngnam N. Jin
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yanxun V. Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Cordeiro LM, Soares FAA, Arantes LP. Evaluating polyglutamine protein aggregation and toxicity in transgenic Caenorhabditis elegans models of Huntington's disease. Methods Cell Biol 2024; 192:115-130. [PMID: 39863386 DOI: 10.1016/bs.mcb.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia. Currently, the pathogenesis of HD remains incompletely understood, and available treatments only address symptoms. Caenorhabditis elegans has been used as a model for neurodegenerative diseases, enabling the exploration of the molecular, cellular, and physiological mechanisms underlying HD pathogenesis. It also facilitates the investigation of potential therapeutic targets and interventions. Here, we describe common experiments employed to assess polyQ aggregation and toxicity in transgenic C. elegans models of HD, utilizing fluorescent markers to detect protein aggregation and neuron degeneration, in addition to specific behavioral assays (thrash frequency, nose touch response, and octanol response).
Collapse
Affiliation(s)
- Larissa Marafiga Cordeiro
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil
| | - Félix Alexandre Antunes Soares
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil
| | | |
Collapse
|
8
|
Hemagirri M, Chen Y, Gopinath SCB, Sahreen S, Adnan M, Sasidharan S. Crosstalk between protein misfolding and endoplasmic reticulum stress during ageing and their role in age-related disorders. Biochimie 2024; 221:159-181. [PMID: 37918463 DOI: 10.1016/j.biochi.2023.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Maintaining the proteome is crucial to retaining cell functionality and response to multiple intrinsic and extrinsic stressors. Protein misfolding increased the endoplasmic reticulum (ER) stress and activated the adaptive unfolded protein response (UPR) to restore cell homeostasis. Apoptosis occurs when ER stress is prolonged or the adaptive response fails. In healthy young cells, the ratio of protein folding machinery to quantities of misfolded proteins is balanced under normal circumstances. However, the age-related deterioration of the complex systems for handling protein misfolding is accompanied by ageing-related disruption of protein homeostasis, which results in the build-up of misfolded and aggregated proteins. This ultimately results in decreased cell viability and forms the basis of common age-related diseases called protein misfolding diseases. Proteins or protein fragments convert from their ordinarily soluble forms to insoluble fibrils or plaques in many of these disorders, which build up in various organs such as the liver, brain, or spleen. Alzheimer's, Parkinson's, type II diabetes, and cancer are diseases in this group commonly manifest in later life. Thus, protein misfolding and its prevention by chaperones and different degradation paths are becoming understood from molecular perspectives. Proteodynamics information will likely affect future interventional techniques to combat cellular stress and support healthy ageing by avoiding and treating protein conformational disorders. This review provides an overview of the diverse proteostasis machinery, protein misfolding, and ER stress involvement, which activates the UPR sensors. Here, we will discuss the crosstalk between protein misfolding and ER stress and their role in developing age-related diseases.
Collapse
Affiliation(s)
- Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, Arau, 02600, Malaysia
| | - Sumaira Sahreen
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P. O. Box 2440, Saudi Arabia.
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
9
|
Romussi S, Giunti S, Andersen N, De Rosa MJ. C. elegans: a prominent platform for modeling and drug screening in neurological disorders. Expert Opin Drug Discov 2024; 19:565-585. [PMID: 38509691 DOI: 10.1080/17460441.2024.2329103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Human neurodevelopmental and neurodegenerative diseases (NDevDs and NDegDs, respectively) encompass a broad spectrum of disorders affecting the nervous system with an increasing incidence. In this context, the nematode C. elegans, has emerged as a benchmark model for biological research, especially in the field of neuroscience. AREAS COVERED The authors highlight the numerous advantages of this tiny worm as a model for exploring nervous system pathologies and as a platform for drug discovery. There is a particular focus given to describing the existing models of C. elegans for the study of NDevDs and NDegDs. Specifically, the authors underscore their strong applicability in preclinical drug development. Furthermore, they place particular emphasis on detailing the common techniques employed to explore the nervous system in both healthy and diseased states. EXPERT OPINION Drug discovery constitutes a long and expensive process. The incorporation of invertebrate models, such as C. elegans, stands as an exemplary strategy for mitigating costs and expediting timelines. The utilization of C. elegans as a platform to replicate nervous system pathologies and conduct high-throughput automated assays in the initial phases of drug discovery is pivotal for rendering therapeutic options more attainable and cost-effective.
Collapse
Affiliation(s)
- Stefano Romussi
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
| | - Sebastián Giunti
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Natalia Andersen
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - María José De Rosa
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
10
|
Rana N, Kapil L, Singh C, Singh A. Modeling Huntington's disease: An insight on in-vitro and in-vivo models. Behav Brain Res 2024; 459:114757. [PMID: 37952684 DOI: 10.1016/j.bbr.2023.114757] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Huntington's disease is a neurodegenerative illness that causes neuronal death most extensively within the basal ganglia. There is a broad class of neurologic disorders associated with the expansion of polyglutamine (polyQ) repeats in numerous proteins. Several other molecular mechanisms have also been implicated in HD pathology, including brain-derived neurotrophic factor (BDNF), mitochondrial dysfunction, and altered synaptic plasticity in central spiny neurons. HD pathogenesis and the effectiveness of therapy approaches have been better understood through the use of animal models. The pathological manifestations of the disease were reproduced by early models of glutamate analog toxicity and mitochondrial respiration inhibition. Because the treatments available for HD are quite limited, it is important to have a definite preclinical model that mimics all the aspects of the disease. It can be used to study mechanisms and validate candidate therapies. Although there hasn't been much success in translating animal research into clinical practice, each model has something special to offer in the quest for a deeper comprehension of HD's neurobehavioral foundations. This review provides insight into various in-vitro-and in-vivo models of HD which may be useful in the screening of newer therapeutics for this incapacitating disorder.
Collapse
Affiliation(s)
- Nitasha Rana
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Lakshay Kapil
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt. Tehri Garhwal, Uttarakhand 246174, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India.
| |
Collapse
|
11
|
Wu Y, Chen Y, Yu X, Zhang M, Li Z. Towards Understanding Neurodegenerative Diseases: Insights from Caenorhabditis elegans. Int J Mol Sci 2023; 25:443. [PMID: 38203614 PMCID: PMC10778690 DOI: 10.3390/ijms25010443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The elevated occurrence of debilitating neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD) and Machado-Joseph disease (MJD), demands urgent disease-modifying therapeutics. Owing to the evolutionarily conserved molecular signalling pathways with mammalian species and facile genetic manipulation, the nematode Caenorhabditis elegans (C. elegans) emerges as a powerful and manipulative model system for mechanistic insights into neurodegenerative diseases. Herein, we review several representative C. elegans models established for five common neurodegenerative diseases, which closely simulate disease phenotypes specifically in the gain-of-function aspect. We exemplify applications of high-throughput genetic and drug screenings to illustrate the potential of C. elegans to probe novel therapeutic targets. This review highlights the utility of C. elegans as a comprehensive and versatile platform for the dissection of neurodegenerative diseases at the molecular level.
Collapse
Affiliation(s)
| | | | | | | | - Zhaoyu Li
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.W.); (Y.C.); (X.Y.); (M.Z.)
| |
Collapse
|
12
|
Rani N, Alam MM, Jamal A, Bin Ghaffar U, Parvez S. Caenorhabditis elegans: A transgenic model for studying age-associated neurodegenerative diseases. Ageing Res Rev 2023; 91:102036. [PMID: 37598759 DOI: 10.1016/j.arr.2023.102036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Neurodegenerative diseases (NDs) are a heterogeneous group of aging-associated ailments characterized by interrupting cellular proteostasic machinery and the misfolding of distinct proteins to form toxic aggregates in neurons. Neurodegenerative diseases, which include Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and others, are becoming an increasing threat to human health worldwide. The degeneration and death of certain specific groups of neurons are the hallmarks of these diseases. Over the past decades, Caenorhabditis eleganshas beenwidely used as a transgenic model to investigate biological processes related to health and disease. The nematode Caenorhabditis elegans (C. elegans) has developed as a powerful tool for studying disease mechanisms due to its ease of genetic handling and instant cultivation while providing a whole-animal system amendable to several molecular and biochemical techniques. In this review, we elucidate the potential of C. elegans as a versatile platform for systematic dissection of the molecular basis of human disease, focusing on neurodegenerative disorders, and may help better our understanding of the disease mechanisms and search for new therapeutics for these devastating diseases.
Collapse
Affiliation(s)
- Nisha Rani
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Usama Bin Ghaffar
- Department of Basic Science, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
13
|
Venkatesh SR, Gupta A, Singh V. Amphid sensory neurons of Caenorhabditis elegans orchestrate its survival from infection with broad classes of pathogens. Life Sci Alliance 2023; 6:e202301949. [PMID: 37258276 PMCID: PMC10233725 DOI: 10.26508/lsa.202301949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
The survival of a host during infection relies on its ability to rapidly sense the invading pathogen and mount an appropriate response. The bacterivorous nematode Caenorhabditis elegans lacks most of the traditional pattern recognition mechanisms. In this study, we hypothesized that the 12 pairs of amphid sensory neurons in the heads of worms provide sensing capability and thus affect survival during infection. We tested animals lacking amphid neurons to three major classes of pathogens, namely-a Gram-negative bacterium Pseudomonas aeruginosa, a Gram-positive bacterium Enterococcus faecalis, and a pathogenic yeast Cryptococcus neoformans By using individual neuronal ablation lines or mutants lacking specific neurons, we demonstrate that some neurons broadly suppress the survival of the host and colonization of all pathogens, whereas other amphid neurons differentially regulate host survival during infection. We also show that the roles of some of these neurons are pathogen-specific, as seen with the AWB odor sensory neurons that promote survival only during infections with P aeruginosa Overall, our study reveals broad and specific roles for amphid neurons during infections.
Collapse
Affiliation(s)
- Siddharth R Venkatesh
- Department of Developmental Biology & Genetics, Indian Institute of Science, Bangalore, INDIA
| | - Anjali Gupta
- Center for Biosystems, Science and Engineering, Indian Institute of Science, Bangalore, INDIA
| | - Varsha Singh
- Department of Developmental Biology & Genetics, Indian Institute of Science, Bangalore, INDIA
- Center for Biosystems, Science and Engineering, Indian Institute of Science, Bangalore, INDIA
| |
Collapse
|
14
|
Cordeiro LM, Soares MV, da Silva AF, Dos Santos LV, de Souza LI, da Silveira TL, Baptista FBO, de Oliveira GV, Pappis C, Dressler VL, Arantes LP, Zheng F, Soares FAA. Toxicity of Copper and Zinc alone and in combination in Caenorhabditis elegans model of Huntington's disease and protective effects of rutin. Neurotoxicology 2023:S0161-813X(23)00085-2. [PMID: 37302585 DOI: 10.1016/j.neuro.2023.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/13/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Copper (Cu) and Zinc (Zn) are required in small concentrations for metabolic functions, but are also toxic. There is a great concern about soil pollution by heavy metals, which may exposure the population to these toxicants, either by inhalation of dust or exposure to toxicants through ingestion of food derived from contaminated soils. In addition, the toxicity of metals in combination is questionable, as soil quality guidelines only assess them separately. It is well known that metal accumulation is often found in the pathologically affected regions of many neurodegenerative diseases, including Huntington's disease (HD). HD is caused by an autosomal dominantly inherited CAG trinucleotide repeat expansion in the huntingtin (HTT) gene. This results in the formation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD results in loss of neuronal cells, motor changes, and dementia. Rutin is a flavonoid found in various food sources, and previous studies indicate it has protective effects in HD models and acts as a metal chelator. However, further studies are needed to unravel its effects on metal dyshomeostasis and to discern the underlying mechanisms. In the present study, we investigated the toxic effects of long-term exposure to copper, zinc, and their mixture, and the relationship with the progression of neurotoxicity and neurodegeneration in a C. elegans-based HD model. Furthermore, we investigated the effects of rutin post metal exposure. Overall, we demonstrate that chronic exposure to the metals and their mixture altered body parameters, locomotion, and developmental delay, in addition to increasing polyQ protein aggregates in muscles and neurons causing neurodegeneration. We also propose that rutin has protective effects acting through mechanisms involving antioxidant and chelating properties. Altogether, our data provides new indications about the higher toxicity of metals in combination, the chelating potential of rutin in the C. elegans model of HD and possible strategies for future treatments of neurodegenerative diseases caused by the aggregation of proteins related to metals.
Collapse
Affiliation(s)
- Larissa Marafiga Cordeiro
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Marcell Valandro Soares
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Aline Franzen da Silva
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Luiza Venturini Dos Santos
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Larissa Ilha de Souza
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Tássia Limana da Silveira
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Fabiane Bicca Obetine Baptista
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Gabriela Vitória de Oliveira
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Cristiane Pappis
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Chemistry, Santa Maria, RS, Brazil
| | - Valderi Luiz Dressler
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Chemistry, Santa Maria, RS, Brazil
| | - Leticia Priscilla Arantes
- State University of Minas Gerais, Department of Biomedical Sciences and Health, Zip code 37900-106, Passos, MG, Brazil
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Felix Alexandre Antunes Soares
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
15
|
Lins J, Brock TJ, Hopkins CE, Hart AC. Generation of a C. elegans tdp-1 null allele and humanized TARDBP containing human disease-variants. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000693. [PMID: 37351305 PMCID: PMC10282831 DOI: 10.17912/micropub.biology.000693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023]
Abstract
Clinical variants of TARDBP are associated with frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS) and other degenerative diseases. The predicted C. elegans ortholog of TARDBP is encoded by tdp-1 , but functional orthology has not been demonstrated in vivo. We undertook CRISPR/Cas9-based genome editing of the tdp-1 locus to create a complete loss of function allele; all tdp-1 exons and introns were deleted, creating tdp-1(tgx58) , which resulted in neurodegeneration after oxidative stress. Next, we undertook CRISPR-based genome editing to replace tdp-1 exons with human TARDBP coding sequences, creating humanized ( hTARDBP ) C. elegans expressing TDP-43 . Based on the efficiency of this genome editing, we suggest that iterative genome editing of the tdp-1 target locus using linked coCRISPR markers, like dpy-10 , would be a more efficient strategy for sequential assembly of the large engineered transgenes. hTARDBP decreased the neurodegeneration defect of tdp-1(tgx58) , demonstrating functional cross-species orthology. To develop C. elegans models of FTD and ALS, we inserted five different patient TARDBP variants in the C. elegans hTARDBP locus. Only one clinical variant increased stress-induced neurodegeneration; other variants caused inconsistent or negligible defects under these conditions. Combined, this work yielded an unambiguous null allele for tdp-1 , a validated, humanized hTARDBP, and multiple ALS/FTD patient-associated variant models that can be used for future studies.
Collapse
Affiliation(s)
- Jeremy Lins
- Department of Neuroscience, Brown University, Providence, RI 02912
| | | | | | - Anne C Hart
- Department of Neuroscience, Brown University, Providence, RI 02912
| |
Collapse
|
16
|
Caenorhabditis elegans as a Model System to Study Human Neurodegenerative Disorders. Biomolecules 2023; 13:biom13030478. [PMID: 36979413 PMCID: PMC10046667 DOI: 10.3390/biom13030478] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
In recent years, advances in science and technology have improved our quality of life, enabling us to tackle diseases and increase human life expectancy. However, longevity is accompanied by an accretion in the frequency of age-related neurodegenerative diseases, creating a growing burden, with pervasive social impact for human societies. The cost of managing such chronic disorders and the lack of effective treatments highlight the need to decipher their molecular and genetic underpinnings, in order to discover new therapeutic targets. In this effort, the nematode Caenorhabditis elegans serves as a powerful tool to recapitulate several disease-related phenotypes and provides a highly malleable genetic model that allows the implementation of multidisciplinary approaches, in addition to large-scale genetic and pharmacological screens. Its anatomical transparency allows the use of co-expressed fluorescent proteins to track the progress of neurodegeneration. Moreover, the functional conservation of neuronal processes, along with the high homology between nematode and human genomes, render C. elegans extremely suitable for the study of human neurodegenerative disorders. This review describes nematode models used to study neurodegeneration and underscores their contribution in the effort to dissect the molecular basis of human diseases and identify novel gene targets with therapeutic potential.
Collapse
|
17
|
Chauhan P, Wadhwa K, Singh G. Caenorhabditis elegans as a model system to evaluate neuroprotective potential of nano formulations. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1018754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The impact of neurodegenerative illnesses on society is significant, but the mechanisms leading to neuronal malfunction and death in these conditions remain largely unknown despite identifying essential disease genes. To pinpoint the mechanisms behind the pathophysiology of neurodegenerative diseases, several researchers have turned to nematode C. elegans instead of using mammals. Since C. elegans is transparent, free-living, and amenable to culture, it has several benefits. As a result, all the neurons in C. elegans can be easily identified, and their connections are understood. Human proteins linked to Neurodegeneration can be made to express in them. It is also possible to analyze how C. elegans orthologs of the genes responsible for human neurodegenerative diseases function. In this article, we focused at some of the most important C. elegans neurodegeneration models that accurately represent many elements of human neurodegenerative illness. It has been observed that studies using the adaptable C. elegans have helped us in better understanding of human diseases. These studies have used it to replicate several aspects of human neurodegeneration. A nanotech approach involves engineering materials or equipments interacting with biological systems at the molecular level to trigger physiological responses by increasing stimulation, responding, and interacting with target sites while minimizing side effects, thus revolutionizing the treatment and diagnosis of neurodegenerative diseases. Nanotechnologies are being used to treat neurological disorders and deliver nanoscale drugs. This review explores the current and future uses of these nanotechnologies as innovative therapeutic modalities in treatment of neurodegenerative diseases using C elegans as an experimental model.
Collapse
|
18
|
Lins J, Hopkins CE, Brock T, Hart AC. The use of CRISPR to generate a whole-gene humanized MAPT and the examination of P301L and G272V clinical variants, along with the creation of deletion null alleles of ptl-1, pgrn-1 and alfa-1 loci. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000615. [PMID: 36204657 PMCID: PMC9530923 DOI: 10.17912/micropub.biology.000615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/01/1970] [Accepted: 09/02/2022] [Indexed: 11/06/2022]
Abstract
To study important genes involved in Frontotemporal Dementia ( MAPT , GRN and C9orf72 ), we created deletion alleles in the three orthologous genes ( ptl-1 , pgrn-1 , and alfa-1 ). Simultaneously, we replaced the C. elegans ptl-1 gene with the predicted orthologous human MAPT gene, often called whole-gene humanization, which allows direct assessment of conserved gene function, as well as the opportunity to examine consequences of clinical disease-associated patient variations. Each gene was manipulated using a different selection strategy, including a novel strategy using an unc-18 mutation rescue technique. Clinical MAPT ALS/FTD missense variants G272V and P301L were successfully inserted in hMAPT . Neither ptl-1 loss or clinical variants caused neuronal defects in young adult or aged C. elegans , based on examination of glutamatergic phasmid neurons. Yet, we noted decreased survival to day 9 in the P301L hMAPT strain, compared to control strains. Based on these results, we comment on strategies for humanization, including the importance of confirming C. elegans gene predictions and identifying loss of function defects for each gene before embarking on humanization, and we report the creation of strains and a new gene-editing selection strategy that will be useful for future studies.
Collapse
Affiliation(s)
- Jeremy Lins
- Department of Neuroscience, Brown University, Providence, RI 02912
| | | | | | - Anne C. Hart
- Department of Neuroscience, Brown University, Providence, RI 02912
- Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence RI 02912
| |
Collapse
|
19
|
Naranjo-Galindo FJ, Ai R, Fang EF, Nilsen HL, SenGupta T. C. elegans as an Animal Model to Study the Intersection of DNA Repair, Aging and Neurodegeneration. FRONTIERS IN AGING 2022; 3:916118. [PMID: 35821838 PMCID: PMC9261396 DOI: 10.3389/fragi.2022.916118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022]
Abstract
Since its introduction as a genetic model organism, Caenorhabditis elegans has yielded insights into the causes of aging. In addition, it has provided a molecular understanding of mechanisms of neurodegeneration, one of the devastating effects of aging. However, C. elegans has been less popular as an animal model to investigate DNA repair and genomic instability, which is a major hallmark of aging and also a cause of many rare neurological disorders. This article provides an overview of DNA repair pathways in C. elegans and the impact of DNA repair on aging hallmarks, such as mitochondrial dysfunction, telomere maintenance, and autophagy. In addition, we discuss how the combination of biological characteristics, new technical tools, and the potential of following precise phenotypic assays through a natural life-course make C. elegans an ideal model organism to study how DNA repair impact neurodegeneration in models of common age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Francisco José Naranjo-Galindo
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| | - Ruixue Ai
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
| | - Hilde Loge Nilsen
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Tanima SenGupta
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
20
|
Invited review: Unearthing the mechanisms of age-related neurodegenerative disease using Caenorhabditis elegans. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111166. [PMID: 35176489 DOI: 10.1016/j.cbpa.2022.111166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
As human life expectancy increases, neurodegenerative diseases present a growing public health threat, for which there are currently few effective treatments. There is an urgent need to understand the molecular and genetic underpinnings of these disorders so new therapeutic targets can be identified. Here we present the argument that the simple nematode worm Caenorhabditis elegans is a powerful tool to rapidly study neurodegenerative disorders due to their short lifespan and vast array of genetic tools, which can be combined with characterization of conserved neuronal processes and behavior orthologous to those disrupted in human disease. We review how pre-existing C. elegans models provide insight into human neurological disease as well as an overview of current tools available to study neurodegenerative diseases in the worm, with an emphasis on genetics and behavior. We also discuss open questions that C. elegans may be particularly well suited for in future studies and how worms will be a valuable preclinical model to better understand these devastating neurological disorders.
Collapse
|
21
|
Cc S, Arun D, Divya L. Insect in vitro System for Toxicology Studies - Current and Future Perspectives. FRONTIERS IN TOXICOLOGY 2022; 3:671600. [PMID: 35295131 PMCID: PMC8915908 DOI: 10.3389/ftox.2021.671600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/21/2021] [Indexed: 11/25/2022] Open
Abstract
In vitro cell culture practices are valuable techniques to understand the mechanisms behind vital in vivo biological processes. In vitro cells have helped us to attain a deeper understanding of functions and mechanisms conserved in the course of evolution. Toxicology studies are inevitable in drug discovery, pesticide development, and many other fields that directly interact with human beings. The proper involvement and regulatory steps that have been taken by animal ethical societies in different parts of the world resulted in the reduced in vivo use of mammals in toxicological studies. Nevertheless, experimental animals are being killed where no replacement is available. The use of mammals could be reduced by using the in vitro systems. Nowadays, invertebrate cell lines are also play important role in toxicology testing. This review analyzes the cause and consequence of insect in vitro models in toxicology studies.
Collapse
Affiliation(s)
- Sheeja Cc
- Department of Zoology, Central University of Kerala, Kasaragod, India
| | - Damodaran Arun
- Department of Zoology, Central University of Kerala, Kasaragod, India
| | - Lekha Divya
- Department of Zoology, Central University of Kerala, Kasaragod, India
| |
Collapse
|
22
|
Karwacka M, Olejniczak M. Advances in Modeling Polyglutamine Diseases Using Genome Editing Tools. Cells 2022; 11:cells11030517. [PMID: 35159326 PMCID: PMC8834129 DOI: 10.3390/cells11030517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Polyglutamine (polyQ) diseases, including Huntington’s disease, are a group of late-onset progressive neurological disorders caused by CAG repeat expansions. Although recently, many studies have investigated the pathological features and development of polyQ diseases, many questions remain unanswered. The advancement of new gene-editing technologies, especially the CRISPR-Cas9 technique, has undeniable value for the generation of relevant polyQ models, which substantially support the research process. Here, we review how these tools have been used to correct disease-causing mutations or create isogenic cell lines with different numbers of CAG repeats. We characterize various cellular models such as HEK 293 cells, patient-derived fibroblasts, human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs) and animal models generated with the use of genome-editing technology.
Collapse
|
23
|
Kumari M, Singla M, Sobti RC. Animal models and their substitutes in biomedical research. ADVANCES IN ANIMAL EXPERIMENTATION AND MODELING 2022:87-101. [DOI: 10.1016/b978-0-323-90583-1.00014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
24
|
A single chemosensory GPCR is required for a concentration-dependent behavioral switching in C. elegans. Curr Biol 2021; 32:398-411.e4. [PMID: 34906353 DOI: 10.1016/j.cub.2021.11.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/15/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022]
Abstract
Animals detect and discriminate countless environmental chemicals for their well-being and survival. Although a single chemical can trigger opposing behavioral responses depending on its concentration, the mechanisms underlying such a concentration-dependent switching remain poorly understood. Here, we show that C. elegans exhibits either attraction or avoidance of the bacteria-derived volatile chemical dimethyl trisulfide (DMTS) depending on its concentration. This behavioral switching is mediated by two different types of chemosensory neurons, both of which express the DMTS-sensitive seven-transmembrane G protein-coupled receptor (GPCR) SRI-14. These two sensory neurons share downstream interneurons that process and translate DMTS signals via distinct glutamate receptors to generate the appropriate behavioral outcome. Thus, our results present one mechanism by which an animal connects two distinct types of chemosensory neurons detecting a common ligand to alternate downstream circuitry, thus efficiently switching between specific behavioral programs based on ligand concentration.
Collapse
|
25
|
Behrouzi M, Youssef K, Rezai P, Tabatabaei N. Low-cost optofluidic add-on enables rapid selective plane illumination microscopy of C. elegans with a conventional wide-field microscope. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210275RR. [PMID: 34894114 PMCID: PMC8664272 DOI: 10.1117/1.jbo.26.12.126501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE Selective plane illumination microscopy (SPIM) is an emerging fluorescent imaging technique suitable for noninvasive volumetric imaging of C. elegans. These promising microscopy systems, however, are scarce in academic and research institutions due to their high cost and technical complexities. Simple and low-cost solutions that enable conversion of commonplace wide-field microscopes to rapid SPIM platforms promote widespread adoption of SPIM by biologist for studying neuronal expressions of C. elegans. AIM We sought to develop a simple and low-cost optofluidic add-on device that enables rapid and immobilization-free volumetric SPIM imaging of C. elegans with conventional fluorescent microscopes. APPROACH A polydimethylsiloxane (PDMS)-based device with integrated optical and fluidic elements was developed as a low-cost and miniaturized SPIM add-on for the conventional wide-field microscope. The developed optofluidic chip contained an integrated PDMS cylindrical lens for on-chip generation of the light-sheet across a microchannel. Cross-sectional SPIM images of C. elegans were continuously acquired by the native objective of microscope as worms flowed in an L-shape microchannel and through the light sheet. RESULTS On-chip SPIM imaging of C. elegans strains demonstrated possibility of visualizing the entire neuronal system in few seconds at single-neuron resolution, with high contrast and without worm immobilization. Volumetric visualization of neuronal system from the acquired cross-sectional two-dimensional images is also demonstrated, enabling the standard microscope to acquire three-dimensional fluorescent images of C. elegans. The full-width at half-maximum width of the point spread function was measured as 1.1 and 2.4 μm in the lateral and axial directions, respectively. CONCLUSION The developed low-cost optofluidic device is capable of continuous SPIM imaging of C. elegans model organism with a conventional fluorescent microscope, at high speed, and with single neuron resolution.
Collapse
Affiliation(s)
- Mehran Behrouzi
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
| | - Khaled Youssef
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
| | - Pouya Rezai
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
| | - Nima Tabatabaei
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
| |
Collapse
|
26
|
Abstract
Accumulating evidence links the gut microbiome to neuronal functions in the brain. Given the increasing prevalence of brain disorders, there is a critical need to understand how gut microbes impact neuronal functions so that targeted therapeutic interventions can be developed. In this commentary, we discuss what makes the nematode Caenorhabditiselegans a valuable model for dissecting the molecular basis of gut microbiome-brain interactions. With a fully mapped neuronal circuitry, C. elegans is an effective model for studying signaling of the nervous system in a context that bears translational relevance to human disease. We highlight C. elegans as a potent but underexploited tool to interrogate the influence of the bacterial variable on the complex equation of the nervous system. We envision that routine use of gnotobiotic C. elegans to examine the gut–brain axis will be an enabling technology for the development of novel therapeutic interventions for brain diseases.
Collapse
|
27
|
Cordeiro LM, Soares MV, da Silva AF, Machado ML, Bicca Obetine Baptista F, da Silveira TL, Arantes LP, Soares FAA. Neuroprotective effects of rutin on ASH neurons in Caenorhabditis elegans model of Huntington's disease. Nutr Neurosci 2021; 25:2288-2301. [PMID: 34311678 DOI: 10.1080/1028415x.2021.1956254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant, progressive neurodegenerative disease. It occurs due to a mutated huntingtin gene that contains an abnormal expansion of cytosine-adenine-guanine repeats, leading to a variable-length N-terminal polyglutamine (polyQ) chain. The mutation confers toxic functions to mutant huntingtin protein, causing neurodegeneration. Rutin is a flavonoid found in various plants, such as buckwheat, some teas, and apples. Our previous studies have indicated that rutin has protective effects in HD models, but more studies are needed to unravel its effects on protein homeostasis, and to discern the underlying mechanisms. In the present study, we investigated the effects of rutin in a Caenorhabditis elegans model of HD, focusing on ASH neurons and antioxidant defense. We tested behavioral changes (touch response, movement, and octanol response), measured neuronal polyQ aggregates, and assessed degeneration using a dye-filling assay. In addition, we analyzed expression levels of heat-shock protein-16.2 and superoxide dismutase-3. Overall, our data demonstrate that chronic rutin treatment maintains the function of ASH neurons, and decreases the degeneration of their sensory terminations. We propose that rutin does so in a mechanism that involves antioxidant activity by controlling the expression of antioxidant enzymes and other chaperones regulating proteostasis. Our findings provide new evidence of rutin's potential neuroprotective role in the C. elegans model and should inform treatment strategies for neurodegenerative diseases and other diseases caused by age-related protein aggregation.
Collapse
Affiliation(s)
- Larissa Marafiga Cordeiro
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Marcell Valandro Soares
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Aline Franzen da Silva
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Marina Lopes Machado
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Fabiane Bicca Obetine Baptista
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Tássia Limana da Silveira
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Leticia Priscilla Arantes
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Felix Alexandre Antunes Soares
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
28
|
Fisher RS, Jimenez RM, Soto E, Kalev D, Elbaum-Garfinkle S. An apparent core/shell architecture of polyQ aggregates in the aging Caenorhabditis elegans neuron. Protein Sci 2021; 30:1482-1486. [PMID: 33966305 DOI: 10.1002/pro.4105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/28/2023]
Abstract
Huntington's disease is caused by a polyglutamine (polyQ) expansion in the huntingtin protein which results in its abnormal aggregation in the nervous system. Huntingtin aggregates are linked to toxicity and neuronal dysfunction, but a comprehensive understanding of the aggregation mechanism in vivo remains elusive. Here, we examine the morphology of polyQ aggregates in Caenorhabditis elegans mechanosensory neurons as a function of age using confocal and fluorescence lifetime imaging microscopy. We find that aggregates in young worms are mostly spherical with homogenous intensity, but as the worm ages aggregates become substantially more heterogeneous. Most prominently, in older worms we observe an apparent core/shell morphology of polyQ assemblies with decreased intensity in the center. The fluorescence lifetime of polyQ is uniform across the aggregate indicating that the dimmed intensity in the assembly center is most likely not due to quenching or changes in local environment, but rather to displacement of fluorescent polyQ from the central region. This apparent core/shell architecture of polyQ aggregates in aging C. elegans neurons contributes to the diverse landscape of polyQ aggregation states implicated in Huntington's disease.
Collapse
Affiliation(s)
- Rachel S Fisher
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
| | - Rosa Meyo Jimenez
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
| | - Elizabeth Soto
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
| | - Darin Kalev
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
| | - Shana Elbaum-Garfinkle
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA.,Ph.D. Programs in Biochemistry and Biology, The Graduate Center, CUNY, New York, New York, USA
| |
Collapse
|
29
|
Giunti S, Andersen N, Rayes D, De Rosa MJ. Drug discovery: Insights from the invertebrate Caenorhabditis elegans. Pharmacol Res Perspect 2021; 9:e00721. [PMID: 33641258 PMCID: PMC7916527 DOI: 10.1002/prp2.721] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
Therapeutic drug development is a long, expensive, and complex process that usually takes 12-15 years. In the early phases of drug discovery, in particular, there is a growing need for animal models that ensure the reduction in both cost and time. Caenorhabditis elegans has been traditionally used to address fundamental aspects of key biological processes, such as apoptosis, aging, and gene expression regulation. During the last decade, with the advent of large-scale platforms for screenings, this invertebrate has also emerged as an essential tool in the pharmaceutical research industry to identify novel drugs and drug targets. In this review, we discuss the reasons why C. elegans has been positioned as an outstanding cost-effective option for drug discovery, highlighting both the advantages and drawbacks of this model. Particular attention is paid to the suitability of this nematode in large-scale genetic and pharmacological screenings. High-throughput screenings in C. elegans have indeed contributed to the breakthrough of a wide variety of candidate compounds involved in extensive fields including neurodegeneration, pathogen infections and metabolic disorders. The versatility of this nematode, which enables its instrumentation as a model of human diseases, is another attribute also herein underscored. As illustrative examples, we discuss the utility of C. elegans models of both human neurodegenerative diseases and parasitic nematodes in the drug discovery industry. Summing up, this review aims to demonstrate the impact of C. elegans models on the drug discovery pipeline.
Collapse
Affiliation(s)
- Sebastián Giunti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - Natalia Andersen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| |
Collapse
|
30
|
Minakawa EN, Nagai Y. Protein Aggregation Inhibitors as Disease-Modifying Therapies for Polyglutamine Diseases. Front Neurosci 2021; 15:621996. [PMID: 33642983 PMCID: PMC7907447 DOI: 10.3389/fnins.2021.621996] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
The polyglutamine (polyQ) diseases are a group of inherited neurodegenerative diseases caused by the abnormal expansion of a CAG trinucleotide repeat that are translated into an expanded polyQ stretch in the disease-causative proteins. The expanded polyQ stretch itself plays a critical disease-causative role in the pathomechanisms underlying polyQ diseases. Notably, the expanded polyQ stretch undergoes a conformational transition from the native monomer into the β-sheet-rich monomer, followed by the formation of soluble oligomers and then insoluble aggregates with amyloid fibrillar structures. The intermediate soluble species including the β-sheet-rich monomer and oligomers exhibit substantial neurotoxicity. Therefore, protein conformation stabilization and aggregation inhibition that target the upstream of the insoluble aggregate formation would be a promising approach toward the development of disease-modifying therapies for polyQ diseases. PolyQ aggregation inhibitors of different chemical categories, such as intrabodies, peptides, and small chemical compounds, have been identified through intensive screening methods. Among them, recent advances in the brain delivery methods of several peptides and the screening of small chemical compounds have brought them closer to clinical utility. Notably, the recent discovery of arginine as a potent conformation stabilizer and aggregation inhibitor of polyQ proteins both in vitro and in vivo have paved way to the clinical trial for the patients with polyQ diseases. Meanwhile, expression reduction of expanded polyQ proteins per se would be another promising approach toward disease modification of polyQ diseases. Gene silencing, especially by antisense oligonucleotides (ASOs), have succeeded in reducing the expression of polyQ proteins in the animal models of various polyQ diseases by targeting the aberrant mRNA with expanded CAG repeats. Of note, some of these ASOs have recently been translated into clinical trials. Here we overview and discuss these recent advances toward the development of disease modifying therapies for polyQ diseases. We envision that combination therapies using aggregation inhibitors and gene silencing would meet the needs of the patients with polyQ diseases and their caregivers in the near future to delay or prevent the onset and progression of these currently intractable diseases.
Collapse
Affiliation(s)
- Eiko N Minakawa
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yoshitaka Nagai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
31
|
Ryan VH, Perdikari TM, Naik MT, Saueressig CF, Lins J, Dignon GL, Mittal J, Hart AC, Fawzi NL. Tyrosine phosphorylation regulates hnRNPA2 granule protein partitioning and reduces neurodegeneration. EMBO J 2021; 40:e105001. [PMID: 33349959 PMCID: PMC7849316 DOI: 10.15252/embj.2020105001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 10/14/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
mRNA transport in neurons requires formation of transport granules containing many protein components, and subsequent alterations in phosphorylation status can release transcripts for translation. Further, mutations in a structurally disordered domain of the transport granule protein hnRNPA2 increase its aggregation and cause hereditary proteinopathy of neurons, myocytes, and bone. We examine in vitro hnRNPA2 granule component phase separation, partitioning specificity, assembly/disassembly, and the link to neurodegeneration. Transport granule components hnRNPF and ch-TOG interact weakly with hnRNPA2 yet partition specifically into liquid phase droplets with the low complexity domain (LC) of hnRNPA2, but not FUS LC. In vitro hnRNPA2 tyrosine phosphorylation reduces hnRNPA2 phase separation, prevents partitioning of hnRNPF and ch-TOG into hnRNPA2 LC droplets, and decreases aggregation of hnRNPA2 disease variants. The expression of chimeric hnRNPA2 D290V in Caenorhabditis elegans results in stress-induced glutamatergic neurodegeneration; this neurodegeneration is rescued by loss of tdp-1, suggesting gain-of-function toxicity. The expression of Fyn, a tyrosine kinase that phosphorylates hnRNPA2, reduces neurodegeneration associated with chimeric hnRNPA2 D290V. These data suggest a model where phosphorylation alters LC interaction specificity, aggregation, and toxicity.
Collapse
Affiliation(s)
- Veronica H Ryan
- Neuroscience Graduate ProgramBrown UniversityProvidenceRIUSA
| | | | - Mandar T Naik
- Department of Molecular Pharmacology, Physiology, and BiotechnologyBrown UniversityProvidenceRIUSA
| | | | - Jeremy Lins
- Department of NeuroscienceBrown UniversityProvidenceRIUSA
| | - Gregory L Dignon
- Department of Chemical and Biomolecular EngineeringLehigh UniversityBethlehemPAUSA
| | - Jeetain Mittal
- Department of Chemical and Biomolecular EngineeringLehigh UniversityBethlehemPAUSA
| | - Anne C Hart
- Department of NeuroscienceBrown UniversityProvidenceRIUSA
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and BiotechnologyBrown UniversityProvidenceRIUSA
| |
Collapse
|
32
|
Caldwell KA, Willicott CW, Caldwell GA. Modeling neurodegeneration in Caenorhabditis elegans. Dis Model Mech 2020; 13:13/10/dmm046110. [PMID: 33106318 PMCID: PMC7648605 DOI: 10.1242/dmm.046110] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The global burden of neurodegenerative diseases underscores the urgent need for innovative strategies to define new drug targets and disease-modifying factors. The nematode Caenorhabditis elegans has served as the experimental subject for multiple transformative discoveries that have redefined our understanding of biology for ∼60 years. More recently, the considerable attributes of C. elegans have been applied to neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease and Huntington's disease. Transgenic nematodes with genes encoding normal and disease variants of proteins at the single- or multi-copy level under neuronal-specific promoters limits expression to select neuronal subtypes. The anatomical transparency of C. elegans affords the use of co-expressed fluorescent proteins to follow the progression of neurodegeneration as the animals age. Significantly, a completely defined connectome facilitates detailed understanding of the impact of neurodegeneration on organismal health and offers a unique capacity to accurately link cell death with behavioral dysfunction or phenotypic variation in vivo. Moreover, chemical treatments, as well as forward and reverse genetic screening, hasten the identification of modifiers that alter neurodegeneration. When combined, these chemical-genetic analyses establish critical threshold states to enhance or reduce cellular stress for dissecting associated pathways. Furthermore, C. elegans can rapidly reveal whether lifespan or healthspan factor into neurodegenerative processes. Here, we outline the methodologies employed to investigate neurodegeneration in C. elegans and highlight numerous studies that exemplify its utility as a pre-clinical intermediary to expedite and inform mammalian translational research. Summary: While unsurpassed as an experimental system for fundamental biology, Caenorhabditis elegans remains undervalued for its translational potential. Here, we highlight significant outcomes from, and resources available for, C. elegans-based research into neurodegenerative disorders.
Collapse
Affiliation(s)
- Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA .,Departments of Neurobiology, Neurology, Center for Neurodegeneration and Experimental Therapeutics, and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Corey W Willicott
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.,Departments of Neurobiology, Neurology, Center for Neurodegeneration and Experimental Therapeutics, and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
33
|
Soo SK, Rudich PD, Traa A, Harris-Gauthier N, Shields HJ, Van Raamsdonk JM. Compounds that extend longevity are protective in neurodegenerative diseases and provide a novel treatment strategy for these devastating disorders. Mech Ageing Dev 2020; 190:111297. [PMID: 32610099 PMCID: PMC7484136 DOI: 10.1016/j.mad.2020.111297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
While aging is the greatest risk factor for the development of neurodegenerative disease, the role of aging in these diseases is poorly understood. In the inherited forms of these diseases, the disease-causing mutation is present from birth but symptoms appear decades later. This indicates that these mutations are well tolerated in younger individuals but not in older adults. Based on this observation, we hypothesized that changes taking place during normal aging make the cells in the brain (and elsewhere) susceptible to the disease-causing mutations. If so, then delaying some of these age-related changes may be beneficial in the treatment of neurodegenerative disease. In this review, we examine the effects of five compounds that have been shown to extend longevity (metformin, rapamycin, resveratrol, N-acetyl-l-cysteine, curcumin) in four of the most common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis). While not all investigations observe a beneficial effect of these compounds, there are multiple studies that show a protective effect of each of these lifespan-extending compounds in animal models of neurodegenerative disease. Combined with genetic studies, this suggests the possibility that targeting the aging process may be an effective strategy to treat neurodegenerative disease.
Collapse
Affiliation(s)
- Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Paige D Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Namasthée Harris-Gauthier
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Hazel J Shields
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada; Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
34
|
C. elegans Models to Study the Propagation of Prions and Prion-Like Proteins. Biomolecules 2020; 10:biom10081188. [PMID: 32824215 PMCID: PMC7464663 DOI: 10.3390/biom10081188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
A hallmark common to many age-related neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), is that patients develop proteinaceous deposits in their central nervous system (CNS). The progressive spreading of these inclusions from initially affected sites to interconnected brain areas is reminiscent of the behavior of bona fide prions in transmissible spongiform encephalopathies (TSEs), hence the term prion-like proteins has been coined. Despite intensive research, the exact mechanisms that facilitate the spreading of protein aggregation between cells, and the associated loss of neurons, remain poorly understood. As population demographics in many countries continue to shift to higher life expectancy, the incidence of neurodegenerative diseases is also rising. This represents a major challenge for healthcare systems and patients’ families, since patients require extensive support over several years and there is still no therapy to cure or stop these diseases. The model organism Caenorhabditis elegans offers unique opportunities to accelerate research and drug development due to its genetic amenability, its transparency, and the high degree of conservation of molecular pathways. Here, we will review how recent studies that utilize this soil dwelling nematode have proceeded to investigate the propagation and intercellular transmission of prions and prion-like proteins and discuss their relevance by comparing their findings to observations in other model systems and patients.
Collapse
|
35
|
Lee LKC, Leong LI, Liu Y, Luo M, Chan HYE, Choi CHJ. Preclinical Nanomedicines for Polyglutamine-Based Neurodegenerative Diseases. Mol Pharm 2020; 18:610-626. [PMID: 32584043 DOI: 10.1021/acs.molpharmaceut.0c00506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polyglutamine (polyQ) diseases, such as Huntington's disease and several types of spinocerebellar ataxias, are dominantly inherited progressive neurodegenerative disorders and characterized by the presence of expanded CAG trinucleotide repeats in the respective disease locus of the patient genomes. Patients with polyQ diseases currently need to rely on symptom-relieving treatments because disease-modifying therapeutic interventions remain scarce. Many disease-modifying therapeutic agents are now under clinical testing for treating polyQ diseases, but their delivery to the brain is often too invasive (e.g., intracranial injection) or inefficient, owing to in vivo degradation and clearance by physiological barriers (e.g., oral and intravenous administration). Nanoparticles provide a feasible solution for improving drug delivery to the brain, as evidenced by an increasing number of preclinical studies that document the efficacy of nanomedicines for polyQ diseases over the past 5-6 years. In this review, we present the pathogenic mechanisms of polyQ diseases, the common animal models of polyQ diseases for evaluating the efficacy of nanomedicines, and the common administration routes for delivering nanoparticles to the brain. Next, we summarize the recent preclinical applications of nanomedicines for treating polyQ diseases and improving neurological conditions in vivo, placing emphasis on antisense oligonucleotides, small peptide inhibitors, and small molecules as the disease-modifying agents. We conclude with our perspectives of the burgeoning field of "nanomedicines for polyQ diseases", including the use of inorganic nanoparticles and potential drugs as next-generation nanomedicines, development of higher-order animal models of polyQ diseases, and importance of "brain-nano" interactions.
Collapse
Affiliation(s)
| | | | | | - Meihua Luo
- Monash Institute of Pharmaceutics Science, Monash University, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
36
|
Reactive Species in Huntington Disease: Are They Really the Radicals You Want to Catch? Antioxidants (Basel) 2020; 9:antiox9070577. [PMID: 32630706 PMCID: PMC7401865 DOI: 10.3390/antiox9070577] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Huntington disease (HD) is a neurodegenerative condition and one of the so-called rare or minority diseases, due to its low prevalence (affecting 1–10 of every 100,000 people in western countries). The causative gene, HTT, encodes huntingtin, a protein with a yet unknown function. Mutant huntingtin causes a range of phenotypes, including oxidative stress and the activation of microglia and astrocytes, which leads to chronic inflammation of the brain. Although substantial efforts have been made to find a cure for HD, there is currently no medical intervention able to stop or even delay progression of the disease. Among the many targets of therapeutic intervention, oxidative stress and inflammation have been extensively studied and some clinical trials have been promoted to target them. In the present work, we review the basic research on oxidative stress in HD and the strategies used to fight it. Many of the strategies to reduce the phenotypes associated with oxidative stress have produced positive results, yet no substantial functional recovery has been observed in animal models or patients with the disease. We discuss possible explanations for this and suggest potential ways to overcome it.
Collapse
|
37
|
Van Pelt KM, Truttmann MC. Caenorhabditis elegans as a model system for studying aging-associated neurodegenerative diseases. TRANSLATIONAL MEDICINE OF AGING 2020; 4:60-72. [PMID: 34327290 PMCID: PMC8317484 DOI: 10.1016/j.tma.2020.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases (NDs) are a heterogeneous group of aging-associated disorders characterized by the disruption of cellular proteostasis machinery and the misfolding of distinct protein species to form toxic aggregates in neurons. The increasing prevalence of NDs represents a growing healthcare burden worldwide, a concern compounded by the fact that few, if any, treatments exist to target the underlying cause of these diseases. Consequently, the application of a high-throughput, physiologically relevant model system to studies dissecting the molecular mechanisms governing ND pathology is crucial for identifying novel avenues for the development of targeted therapeutics. The nematode Caenorhabditis elegans (C. elegans) has emerged as a powerful tool for the study of disease mechanisms due to its ease of genetic manipulation and swift cultivation, while providing a whole-animal system amendable to numerous molecular and biochemical techniques. To date, numerous C. elegans models have been generated for a variety of NDs, allowing for the large-scale in vivo study of protein-conformation disorders. Furthermore, the comparatively low barriers to entry in the development of transgenic worm models have facilitated the modeling of rare or "orphan" NDs, thereby providing unparalleled insight into the shared mechanisms underlying these pathologies. In this review, we summarize findings from a comprehensive collection of C. elegans neurodegenerative disease models of varying prevalence to emphasize shared mechanisms of proteotoxicity, and highlight the utility of these models in elucidating the molecular basis of ND pathologies.
Collapse
Affiliation(s)
- Kate M. Van Pelt
- Cellular & Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matthias C. Truttmann
- Cellular & Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Geriatrics Center, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
38
|
Rutin protects Huntington's disease through the insulin/IGF1 (IIS) signaling pathway and autophagy activity: Study in Caenorhabditis elegans model. Food Chem Toxicol 2020; 141:111323. [PMID: 32278002 DOI: 10.1016/j.fct.2020.111323] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/22/2022]
Abstract
Huntington's disease (HD) is inherited neurodegenerative disease, it is characterized by excessive motor movements and cognitive and emotional deficits. HD is caused by an abnormally long polyglutamine (polyQ) expansion in the huntingtin (Htt) protein, which confers toxic functions to mutant Htt leading to neurodegeneration. Rutin is a flavonoid found in plants, buckwheat, some teas and also in apples. Although previous studies have already indicated that rutin has some protective effects in HD's models, the underlying mechanisms are still unknown. In our study, we investigated the effects of rutin in Caenorhabditis elegans model of HD. We assessed polyQ aggregation, oxidative damage, neurodegeneration level and lifespan, and investigated the possible role of autophagy and insulin/IGF1 (IIS) signaling pathways in the beneficial effects induced by rutin. Overall, our data demonstrate that chronic rutin treatment reduced polyglutamine (polyQ) protein aggregation in muscle, reduced polyQ-mediated neuronal death in ASH sensory neurons, and extended lifespan. The possible mechanisms involved are antioxidant activity, activation of protein degradation (autophagy) and insulin/IGF1 (IIS) signaling pathways. These findings indicate that rutin consumption might be helpful in preventing HD and also provide possible pathways to be explored to search for new therapies against proteinopathies related to aging.
Collapse
|
39
|
Wong SQ, Kumar AV, Mills J, Lapierre LR. C. elegans to model autophagy-related human disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:325-373. [PMID: 32620247 DOI: 10.1016/bs.pmbts.2020.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is a highly conserved degradation process that clears damaged intracellular macromolecules and organelles in order to maintain cellular health. Dysfunctional autophagy is fundamentally linked to the development of various human disorders and pathologies. The use of the nematode Caenorhabditis elegans as a model system to study autophagy has improved our understanding of its regulation and function in organismal physiology. Here, we review the genetic, functional, and regulatory conservation of the autophagy pathway in C. elegans and we describe tools to quantify and study the autophagy process in this incredibly useful model organism. We further discuss how these nematodes have been modified to model autophagy-related human diseases and underscore the important insights obtained from such models. Altogether, we highlight the strengths of C. elegans as an exceptional tool to understand the genetic and molecular foundations underlying autophagy-related human diseases.
Collapse
Affiliation(s)
- Shi Quan Wong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Anita V Kumar
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Joslyn Mills
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
40
|
Rudich P, Watkins S, Lamitina T. PolyQ-independent toxicity associated with novel translational products from CAG repeat expansions. PLoS One 2020; 15:e0227464. [PMID: 32240172 PMCID: PMC7117740 DOI: 10.1371/journal.pone.0227464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/11/2020] [Indexed: 02/08/2023] Open
Abstract
Expanded CAG nucleotide repeats are the underlying genetic cause of at least 14 incurable diseases, including Huntington’s disease (HD). The toxicity associated with many CAG repeat expansions is thought to be due to the translation of the CAG repeat to create a polyQ protein, which forms toxic oligomers and aggregates. However, recent studies show that HD CAG repeats undergo a non-canonical form of translation called Repeat-associated non-AUG dependent (RAN) translation. RAN translation of the CAG sense and CUG anti-sense RNAs produces six distinct repeat peptides: polyalanine (polyAla, from both CAG and CUG repeats), polyserine (polySer), polyleucine (polyLeu), polycysteine (polyCys), and polyglutamine (polyGln). The toxic potential of individual CAG-derived RAN polypeptides is not well understood. We developed pure C. elegans protein models for each CAG RAN polypeptide using codon-varied expression constructs that preserve RAN protein sequence but eliminate repetitive CAG/CUG RNA. While all RAN polypeptides formed aggregates, only polyLeu was consistently toxic across multiple cell types. In GABAergic neurons, which exhibit significant neurodegeneration in HD patients, codon-varied (Leu)38, but not (Gln)38, caused substantial neurodegeneration and motility defects. Our studies provide the first in vivo evaluation of CAG-derived RAN polypeptides in a multicellular model organism and suggest that polyQ-independent mechanisms, such as RAN-translated polyLeu peptides, may have a significant pathological role in CAG repeat expansion disorders.
Collapse
Affiliation(s)
- Paige Rudich
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Simon Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Todd Lamitina
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Division of Child Neurology, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
41
|
Abstract
The functional health of the proteome is determined by properties of the proteostasis network (PN) that regulates protein synthesis, folding, macromolecular assembly, translocation, and degradation. In eukaryotes, the PN also integrates protein biogenesis across compartments within the cell and between tissues of metazoans for organismal health and longevity. Additionally, in metazoans, proteome stability and the functional health of proteins is optimized for development and yet declines throughout aging, accelerating the risk for misfolding, aggregation, and cellular dysfunction. Here, I describe the cell-nonautonomous regulation of organismal PN by tissue communication and cell stress-response pathways. These systems are robust from development through reproductive maturity and are genetically programmed to decline abruptly in early adulthood by repression of the heat shock response and other cell-protective stress responses, thus compromising the ability of cells and tissues to properly buffer against the cumulative stress of protein damage during aging. While the failure of multiple protein quality control processes during aging challenges cellular function and tissue health, genetic studies, and the identification of small-molecule proteostasis regulators suggests strategies that can be employed to reset the PN with potential benefit on cellular health and organismal longevity.
Collapse
Affiliation(s)
- Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
42
|
Alexander-Floyd J, Haroon S, Ying M, Entezari AA, Jaeger C, Vermulst M, Gidalevitz T. Unexpected cell type-dependent effects of autophagy on polyglutamine aggregation revealed by natural genetic variation in C. elegans. BMC Biol 2020; 18:18. [PMID: 32093691 PMCID: PMC7038566 DOI: 10.1186/s12915-020-0750-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Monogenic protein aggregation diseases, in addition to cell selectivity, exhibit clinical variation in the age of onset and progression, driven in part by inter-individual genetic variation. While natural genetic variants may pinpoint plastic networks amenable to intervention, the mechanisms by which they impact individual susceptibility to proteotoxicity are still largely unknown. RESULTS We have previously shown that natural variation modifies polyglutamine (polyQ) aggregation phenotypes in C. elegans muscle cells. Here, we find that a genomic locus from C. elegans wild isolate DR1350 causes two genetically separable aggregation phenotypes, without changing the basal activity of muscle proteostasis pathways known to affect polyQ aggregation. We find that the increased aggregation phenotype was due to regulatory variants in the gene encoding a conserved autophagy protein ATG-5. The atg-5 gene itself conferred dosage-dependent enhancement of aggregation, with the DR1350-derived allele behaving as hypermorph. Surprisingly, increased aggregation in animals carrying the modifier locus was accompanied by enhanced autophagy activation in response to activating treatment. Because autophagy is expected to clear, not increase, protein aggregates, we activated autophagy in three different polyQ models and found a striking tissue-dependent effect: activation of autophagy decreased polyQ aggregation in neurons and intestine, but increased it in the muscle cells. CONCLUSIONS Our data show that cryptic natural variants in genes encoding proteostasis components, although not causing detectable phenotypes in wild-type individuals, can have profound effects on aggregation-prone proteins. Clinical applications of autophagy activators for aggregation diseases may need to consider the unexpected divergent effects of autophagy in different cell types.
Collapse
Affiliation(s)
- J Alexander-Floyd
- Biology Department, Drexel University, Philadelphia, PA, 19104, USA
- Present Address: Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - S Haroon
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - M Ying
- Biology Department, Drexel University, Philadelphia, PA, 19104, USA
| | - A A Entezari
- Biology Department, Drexel University, Philadelphia, PA, 19104, USA
- Current Address: Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - C Jaeger
- Biology Department, Drexel University, Philadelphia, PA, 19104, USA
- Current Address: Department of Neuroradiology, Technical University of Munich, Munich, Germany
| | - M Vermulst
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Current Address: Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - T Gidalevitz
- Biology Department, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
43
|
Lam I, Hallacli E, Khurana V. Proteome-Scale Mapping of Perturbed Proteostasis in Living Cells. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a034124. [PMID: 30910772 DOI: 10.1101/cshperspect.a034124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteinopathies are degenerative diseases in which specific proteins adopt deleterious conformations, leading to the dysfunction and demise of distinct cell types. They comprise some of the most significant diseases of aging-from Alzheimer's disease to Parkinson's disease to type 2 diabetes-for which not a single disease-modifying or preventative strategy exists. Here, we survey approaches in tractable cellular and organismal models that bring us toward a more complete understanding of the molecular consequences of protein misfolding. These include proteome-scale profiling of genetic modifiers, as well as transcriptional and proteome changes. We describe assays that can capture protein interactomes in situ and distinct protein conformational states. A picture of cellular drivers and responders to proteotoxicity emerges from this work, distinguishing general alterations of proteostasis from cellular events that are deeply tied to the intrinsic function of the misfolding protein. These distinctions have consequences for the understanding and treatment of proteinopathies.
Collapse
Affiliation(s)
- Isabel Lam
- Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Erinc Hallacli
- Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Vikram Khurana
- Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138.,New York Stem Cell Foundation - Robertson Investigator
| |
Collapse
|
44
|
Markaki M, Tavernarakis N. Caenorhabditis elegans as a model system for human diseases. Curr Opin Biotechnol 2020; 63:118-125. [PMID: 31951916 DOI: 10.1016/j.copbio.2019.12.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 01/23/2023]
Abstract
The nematode Caenorhabditis elegans offers unique advantages that enable a comprehensive delineation of the cellular and molecular mechanisms underlying devastating human pathologies such as stroke, ischemia and age-associated neurodegenerative disorders. Genetic models of human diseases that closely simulate several disease-related phenotypes have been established in the worm. These models allow the implementation of multidisciplinary approaches, in addition to large-scale genetic and pharmacological screenings, designed to elucidate the molecular mechanisms mediating pathogenesis and to identify targets and drugs for emergent therapeutic interventions. Such strategies have already provided valuable insights, highly relevant to human health and quality of life. This article considers the potential of C. elegans as a versatile platform for systematic dissection of the molecular basis of human disease, focusing on neurodegenerative disorders.
Collapse
Affiliation(s)
- Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece; Department of Basic Sciences, School of Medicine, University of Crete, Heraklion 70013, Crete, Greece.
| |
Collapse
|
45
|
Rai SN, Singh BK, Rathore AS, Zahra W, Keswani C, Birla H, Singh SS, Dilnashin H, Singh SP. Quality Control in Huntington's Disease: a Therapeutic Target. Neurotox Res 2019; 36:612-626. [PMID: 31297710 DOI: 10.1007/s12640-019-00087-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
Huntington's disease (HD) is a fatal autosomal dominantly inherited brain disease caused by excessively expanded CAG repeats in gene which encodes huntingtin protein. These abnormally encoded huntingtin proteins and their truncated fragments result in disruption of cellular quality mechanism ultimately triggering neuronal death. Despite great efforts, a potential causative agent leading to genetic mutation in HTT, manifesting the neurons more prone to oxidative stress, cellular inflammation, energy depletion and apoptotic death, has not been established yet. Current scenario concentrates on symptomatic pathologies to improvise the disease progression and to better the survival. Most of the therapeutic developments have been converged to rescue the protein homeostasis. In HD, abnormal expansion of glutamine repeats in the protein huntingtin leads to toxic aggregation of huntingtin which in turn impairs the quality control mechanism of cells through damaging the machineries involved in removal of aggregated abnormal protein. Therapeutic approaches to improve the efficiency of aggregate clearance through quality control mechanisms involve protein folding machineries such as chaperones and protein degradation machineries such as proteasome and autophagy. Also, to reduce protein aggregation by enhancing proper folding, to degrade and eliminate the aggregates are suggested to negatively regulate the HD progression associated with the disruption of protein homeostasis. This review focuses on the collection of therapeutic strategies targeting enhancement of protein quality control activity to delay the HD pathogenesis.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Brijesh Kumar Singh
- Department of Pathology and Cell Biology, Columbia University Medical Centre, Columbia University, New York, NY, 10032, USA
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
46
|
Zhunina OA, Yabbarov NG, Orekhov AN, Deykin AV. Modern approaches for modelling dystonia and Huntington's disease in vitro and in vivo. Int J Exp Pathol 2019; 100:64-71. [PMID: 31090117 DOI: 10.1111/iep.12320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Dystonia associated with Huntington's disease, Parkinson's disease or other neurodegenerative diseases substantially affects patients' quality of life and is a major health problem worldwide. The above-mentioned diseases are characterized by neurodegeneration accompanied by motor and cognitive impairment and often have complex aetiology. A frequent feature of these conditions is the abnormal accumulation of protein aggregates within specific neuronal populations in the affected brain regions. Familial neurodegenerative diseases are associated with a number of genetic mutations. Identification of these mutations allowed creation of modern model systems for studying neurodegeneration, either in cultured cells or in model animals. Animal models, especially mouse models, have contributed considerably to improving our understanding of the pathophysiology of neurodegenerative diseases. These models have allowed study of the pathogenic mechanisms and development of new disease-modifying strategies and therapeutic approaches. However, due to the complex nature of these pathologies and the irreversible damage that they cause to the neural tissue, effective therapies against neurodegeneration remain to be elaborated. In this review, we provide an overview of cellular and animal models developed for studying neurodegenerative diseases, including Huntington's disease and dystonia of different origins.
Collapse
Affiliation(s)
- Olga A Zhunina
- JSC "Russian Research Center for Molecular Diagnostics and Therapy", Moscow, Russia
| | - Nikita G Yabbarov
- JSC "Russian Research Center for Molecular Diagnostics and Therapy", Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia.,Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | | |
Collapse
|
47
|
Rangel-Barajas C, Rebec GV. Overview of Huntington's Disease Models: Neuropathological, Molecular, and Behavioral Differences. ACTA ACUST UNITED AC 2019; 83:e47. [PMID: 30040221 DOI: 10.1002/cpns.47] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transgenic mouse models of Huntington's disease (HD), a neurodegenerative condition caused by a single gene mutation, have been transformative in their ability to reveal the molecular processes and pathophysiological mechanisms underlying the HD behavioral phenotype. Three model categories have been generated depending on the genetic context in which the mutation is expressed: truncated, full-length, and knock-in. No single model, however, broadly replicates the behavioral symptoms and massive neuronal loss that occur in human patients. The disparity between model and patient requires careful consideration of what each model has to offer when testing potential treatments. Although the translation of animal data to the clinic has been limited, each model can make unique contributions toward an improved understanding of the neurobehavioral underpinnings of HD. Thus, conclusions based on data obtained from more than one model are likely to have the most success in the search for new treatment targets. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Claudia Rangel-Barajas
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - George V Rebec
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| |
Collapse
|
48
|
Gamir-Morralla A, Sacristán S, Medina M, Iglesias T. Effects of Thioflavin T and GSK-3 Inhibition on Lifespan and Motility in a Caenorhabditis elegans Model of Tauopathy. J Alzheimers Dis Rep 2019; 3:47-57. [PMID: 30842997 PMCID: PMC6400111 DOI: 10.3233/adr-180087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The nematode Caenorhabditis elegans (C. elegans) is a powerful model organism to study lifespan and aging, protein aggregation, and neurodegeneration, as well as to carry out drug screenings. The C. elegans strain aex-3/T337 expresses human pathogenic V337M mutant tau under a pan-neuronal promoter and presents uncoordinated locomotion, accumulation of phosphorylated insoluble tau, and shortened lifespan. Herein we have used this strain to assay two compounds that could affect tau aggregation and/or phosphorylation, and looked for phenotypic changes in their lifespan and motility. The first compound is Thioflavin T (ThT), a member of the tetracycline family with protein antiaggregant properties, yet to be tested in a tauopathy model. The second is a novel small molecule, NP103, a highly selective inhibitor of glycogen synthase kinase-3 (GSK-3), the main kinase contributing to pathogenic tau hyperphosphorylation. Importantly, we find that ThT extends lifespan of aex-3/T337 worms as it does with control N2 animals, showing both strains similar locomotion features under this treatment. By contrast, NP103 improves the paralysis phenotype of aex-3/T337 mutants but not their lifespan. Our results show that both treatments present beneficial effects for this model of tauopathy and encourage pursuing further investigations on their therapeutic potential for AD and other tauopathies.
Collapse
Affiliation(s)
- Andrea Gamir-Morralla
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Sacristán
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Miguel Medina
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
49
|
Koopman M, Seinstra RI, Nollen EAA. C. elegans as a Model for Synucleinopathies and Other Neurodegenerative Diseases: Tools and Techniques. Methods Mol Biol 2019; 1948:93-112. [PMID: 30771173 DOI: 10.1007/978-1-4939-9124-2_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Caenorhabditis elegans is widely used to investigate biological processes related to health and disease. Multiple C. elegans models for human neurodegenerative diseases do exist, including those expressing human α-synuclein. Even though these models do not feature all pathological and molecular hallmarks of the disease they mimic, they allow for the identification and dissection of molecular pathways that are involved. In line with this, genetic screens have yielded multiple modifiers of proteotoxicity in C. elegans models for neurodegenerative diseases. Here, we describe a set of common screening approaches and tools that can be used to study synucleinopathies and other neurodegenerative diseases in C. elegans. RNA interference and mutagenesis screens can be used to find genes that affect proteotoxicity, while relatively simple molecular, cellular (fractionation studies), metabolic (respiration studies), and behavioral (thrashing and crawling) readouts can be used to study the effects of disease proteins and modifiers more closely.
Collapse
Affiliation(s)
- Mandy Koopman
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Aging, Groningen, The Netherlands
| | - Renée I Seinstra
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Aging, Groningen, The Netherlands
| | - Ellen A A Nollen
- University of Groningen, University Medical Center Groningen, European Research Institute for the Biology of Aging, Groningen, The Netherlands.
| |
Collapse
|
50
|
Ben-Yakar A. High-Content and High-Throughput In Vivo Drug Screening Platforms Using Microfluidics. Assay Drug Dev Technol 2019; 17:8-13. [DOI: 10.1089/adt.2018.908] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Adela Ben-Yakar
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas
- Adela Ben-Yakar from the Department of Mechanical Engineering, The University of Texas at Austin was awarded The President's Innovation award at the annual Society of Biomolecular Imaging and Informatics (SBI2) meeting held in Boston, September 2018
| |
Collapse
|