1
|
Horiuchi Y, Umakawa N, Otani R, Tamada Y, Kosetsu K, Hiwatashi Y, Wakisaka R, Yoshida S, Murata T, Hasebe M, Ishikawa M, Kofuji R. Physcomitrium LATERAL SUPPRESSOR genes promote formative cell divisions to produce germ cell lineages in both male and female gametangia. THE NEW PHYTOLOGIST 2025; 245:2004-2015. [PMID: 39737561 PMCID: PMC11798890 DOI: 10.1111/nph.20372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025]
Abstract
The evolution of green plants from aquatic to terrestrial environments is thought to have been facilitated by the acquisition of gametangia, specialized multicellular organs housing gametes. Antheridia and archegonia, responsible for producing and protecting sperm and egg cells, undergo formative cell divisions to produce a cell to differentiate into germ cell lineages and the other cell to give rise to surrounding structures. However, the genes governing this process remain unidentified. We isolated genes expressed during gametangia development from previously established gene-trap lines of Physcomitrium patens and characterized their function during gametangia formation. We identified P. patens LATERAL SUPPRESSOR 1 (PpLAS1) from the gene-trap library, encoding a GRAS transcription factor. The double-deletion mutant with its paralog PpLAS2 failed to form inner cells in both gametangia. PpLASs are expressed in cells undergoing formative cell division, and introducing PpLAS1 into the double-deletion mutant successfully rescued the phenotype. These findings underscore the pivotal role of PpLASs in regulating formative cell divisions, ensuring the separation of reproductive cell lineages from surrounding cells in antheridia and archegonia. Furthermore, they suggest a link between PpLASs and the evolutionary origin of male and female gametangia in the common ancestor of land plants.
Collapse
Affiliation(s)
- Yuta Horiuchi
- National Institute for Basic BiologyOkazaki444‐8585Japan
- Basic Biology ProgramThe Graduate University for Advanced Studies (SOKENDAI)Okazaki444‐8585Japan
| | - Naoyuki Umakawa
- Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawa920‐1192IshikawaJapan
| | - Rina Otani
- School of Biological Science and TechnologyKanazawa UniversityKanazawa920‐1192IshikawaJapan
| | - Yosuke Tamada
- National Institute for Basic BiologyOkazaki444‐8585Japan
- Basic Biology ProgramThe Graduate University for Advanced Studies (SOKENDAI)Okazaki444‐8585Japan
- School of EngineeringUtsunomiya UniversityUtsunomiya321‐8585Japan
| | - Ken Kosetsu
- National Institute for Basic BiologyOkazaki444‐8585Japan
| | - Yuji Hiwatashi
- National Institute for Basic BiologyOkazaki444‐8585Japan
- School of Food Industrial SciencesMiyagi UniversitySendai982‐0215Japan
| | - Rena Wakisaka
- Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawa920‐1192IshikawaJapan
| | - Saiko Yoshida
- National Institute for Basic BiologyOkazaki444‐8585Japan
| | - Takashi Murata
- National Institute for Basic BiologyOkazaki444‐8585Japan
- Basic Biology ProgramThe Graduate University for Advanced Studies (SOKENDAI)Okazaki444‐8585Japan
- Department of Applied Chemistry and BioscienceKanagawa Institute of TechnologyAtsugi243‐0292Japan
| | - Mitsuyasu Hasebe
- National Institute for Basic BiologyOkazaki444‐8585Japan
- Basic Biology ProgramThe Graduate University for Advanced Studies (SOKENDAI)Okazaki444‐8585Japan
| | - Masaki Ishikawa
- National Institute for Basic BiologyOkazaki444‐8585Japan
- Basic Biology ProgramThe Graduate University for Advanced Studies (SOKENDAI)Okazaki444‐8585Japan
| | - Rumiko Kofuji
- Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawa920‐1192IshikawaJapan
- School of Biological Science and TechnologyKanazawa UniversityKanazawa920‐1192IshikawaJapan
| |
Collapse
|
2
|
Du M, Sun C, Deng L, Zhou M, Li J, Du Y, Ye Z, Huang S, Li T, Yu J, Li C, Li C. Molecular breeding of tomato: Advances and challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:669-721. [PMID: 40098531 PMCID: PMC11951411 DOI: 10.1111/jipb.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
The modern cultivated tomato (Solanum lycopersicum) was domesticated from Solanum pimpinellifolium native to the Andes Mountains of South America through a "two-step domestication" process. It was introduced to Europe in the 16th century and later widely cultivated worldwide. Since the late 19th century, breeders, guided by modern genetics, breeding science, and statistical theory, have improved tomatoes into an important fruit and vegetable crop that serves both fresh consumption and processing needs, satisfying diverse consumer demands. Over the past three decades, advancements in modern crop molecular breeding technologies, represented by molecular marker technology, genome sequencing, and genome editing, have significantly transformed tomato breeding paradigms. This article reviews the research progress in the field of tomato molecular breeding, encompassing genome sequencing of germplasm resources, the identification of functional genes for agronomic traits, and the development of key molecular breeding technologies. Based on these advancements, we also discuss the major challenges and perspectives in this field.
Collapse
Affiliation(s)
- Minmin Du
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of HorticultureChina Agricultural UniversityBeijing100193China
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- Sanya Institute of China Agricultural UniversitySanya572025China
| | - Chuanlong Sun
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'an271018China
| | - Lei Deng
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
| | - Ming Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry SciencesBeijing100097China
| | - Junming Li
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing100081China
| | - Yongchen Du
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing100081China
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Sanwen Huang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518120China
- State Key Laboratory of Tropical Crop BreedingChinese Academy of Tropical Agricultural SciencesHaikou571101China
| | - Tianlai Li
- College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Jingquan Yu
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Chang‐Bao Li
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry SciencesBeijing100097China
| | - Chuanyou Li
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
| |
Collapse
|
3
|
Lyu X, Xu N, Chen J, Wang W, Yan F, Jiang Z, Zhu Q. Identification and expression pattern analysis of BpGRAS gene family in Bergenia purpurascens and functional characterization of BpGRAS9 in salt tolerance. PLANT MOLECULAR BIOLOGY 2025; 115:33. [PMID: 39945914 DOI: 10.1007/s11103-025-01562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/28/2025] [Indexed: 04/23/2025]
Abstract
Bergenia purpurascens is an important medicinal, edible, and ornamental plant. It generally grows in extreme environments with complex stresses. The GRAS transcription factors play a crucial role in regulating plant stress tolerance and growth-development. There is no research on GRAS transcription factors in B. purpurascens. In this study, 29 B. purpurascens GRAS (BpGRAS) genes were identified based on B. purpurascens transcriptome data. These BpGRAS genes were classified into seven subfamilies according to phylogenetic analysis, while BpGRAS1 was not classified into any other subfamilies. The motif analysis showed that the protein motifs in the same subfamily were relatively conserved. The expression pattern analysis of BpGRAS genes in different tissues and under salt stress showed that eight BpGRAS genes were differentially expressed under salt stress. The expression profiles showed that BpGRAS9 might play an important role in salt response and the transgenic Arabidopsis thaliana lines with overexpressed BpGRAS9 showed the enhanced salt tolerance. Root length and fresh weight were significantly increased in transgenic lines under salt conditions. The studies enhanced our comprehension of the function of BpGRAS and established a more foundation for exploring the molecular mechanisms underlying plant salt tolerance.
Collapse
Affiliation(s)
- Xin Lyu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Nuomei Xu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jie Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wenqing Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Feiyang Yan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zongxiang Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qiankun Zhu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
- , No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, China.
| |
Collapse
|
4
|
Li H, Liang Z, Chao Y, Wei X, Zou Y, Qu H, Wang J, Li M, Huang W, Luo J, Peng X. Exploring the GRAS gene family in Taraxacum kok-saghyz Rodin:characterization, evolutionary relationships, and expression analyses in response to abiotic stresses. Biochem Biophys Res Commun 2024; 733:150693. [PMID: 39326257 DOI: 10.1016/j.bbrc.2024.150693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
The GRAS gene is an important specific transcription factor in plants, which has multiple functions such as signal transduction, cell morphogenesis and stress response. Although it is widely distributed in plants and has been characterized in several species, however, information about the GRAS family in Taraxacum kok-saghyz Rodin remains unknown. Here, TkGRAS family members were identified and analyzed for molecular characterization, tissue expression patterns and induced expression patterns. A total of 64 GRAS family members were identified at the genome-wide level, which could be categorized into 14 subfamilies by phylogenetic analysis. Most TkGRASs were intronless and had essentially the same gene structure in the same subfamily. Meanwhile, there were multiple response elements found in the promoters of TkGRASs. Tissue expression patterns and induced expression patterns showed that TkGRASs were expressed in different tissues and induced by abiotic stresses. Notably, the expression level of TkGRAS20 was up-regulated under different stresses, suggesting that this gene plays a pivotal role in the stress response. TkGRAS20 showed transcriptional activity in yeast cells and localized in the nucleus and plasma membrane. In conclusion, our study provided valuable insights into the genetic mechanisms underlying stress tolerance in TKS, and several key genes may be used for genetic breeding to improve stress tolerance.
Collapse
Affiliation(s)
- Hao Li
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Zeyuan Liang
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Yunhan Chao
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Xiao Wei
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Yan Zou
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Haibo Qu
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Jiahua Wang
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Menglong Li
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Wanchang Huang
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Jinxue Luo
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China; Guangdong ZhongXun Agri-science Corporation, Huizhou, Guangdong, China.
| | - Xiaojian Peng
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China.
| |
Collapse
|
5
|
Li J, Yao X, Lai H, Zhang X, Zhong J. The diversification of the shoot branching system: A quantitative and comparative perspective in meristem determinacy. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102574. [PMID: 38917775 DOI: 10.1016/j.pbi.2024.102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
Reiterative shoot branching largely defines important yield components of crops and is essentially controlled by programs that direct the initiation, dormancy release, and differentiation of meristems in the axils of leaves. Here, we focus on meristem determinacy, defining the number of reiterations that shape the shoot architectures and exhibit enormous diversity in a wide range of species. The meristem determinacy per se is hierarchically complex and context-dependent for the successively emerged meristems, representing a crucial mechanism in shaping the complexity of the shoot branching. In addition, we have highlighted that two key components of axillary meristem developmental programs may have been co-opted in controlling flower/ear number of an axillary inflorescence in legumes/maize, hinting at the diversification of axillary-meristem-patterning programs in different lineages. This begs the question how axillary meristem patterning programs may have diversified during plant evolution and hence helped shape the rich variation in shoot branching systems.
Collapse
Affiliation(s)
- Jiajia Li
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xiani Yao
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Huan Lai
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xuelian Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jinshun Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Laboratory of the Developmental Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou 510642, Guangdong, China; South China Institute for Soybean Innovation Research, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
6
|
Liu T, Liu Z, Fan J, Yuan Y, Liu H, Xian W, Xiang S, Yang X, Liu Y, Liu S, Zhang M, Jiao Y, Cheng S, Doyle JJ, Xie F, Li J, Tian Z. Loss of Lateral suppressor gene is associated with evolution of root nodule symbiosis in Leguminosae. Genome Biol 2024; 25:250. [PMID: 39350172 PMCID: PMC11441212 DOI: 10.1186/s13059-024-03393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Root nodule symbiosis (RNS) is a fascinating evolutionary event. Given that limited genes conferring the evolution of RNS in Leguminosae have been functionally validated, the genetic basis of the evolution of RNS remains largely unknown. Identifying the genes involved in the evolution of RNS will help to reveal the mystery. RESULTS Here, we investigate the gene loss event during the evolution of RNS in Leguminosae through phylogenomic and synteny analyses in 48 species including 16 Leguminosae species. We reveal that loss of the Lateral suppressor gene, a member of the GRAS-domain protein family, is associated with the evolution of RNS in Leguminosae. Ectopic expression of the Lateral suppressor (Ls) gene from tomato and its homolog MONOCULM 1 (MOC1) and Os7 from rice in soybean and Medicago truncatula result in almost completely lost nodulation capability. Further investigation shows that Lateral suppressor protein, Ls, MOC1, and Os7 might function through an interaction with NODULATION SIGNALING PATHWAY 2 (NSP2) and CYCLOPS to repress the transcription of NODULE INCEPTION (NIN) to inhibit the nodulation in Leguminosae. Additionally, we find that the cathepsin H (CTSH), a conserved protein, could interact with Lateral suppressor protein, Ls, MOC1, and Os7 and affect the nodulation. CONCLUSIONS This study sheds light on uncovering the genetic basis of the evolution of RNS in Leguminosae and suggests that gene loss plays an essential role.
Collapse
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shi-Jiazhuang, China
| | - Jingwei Fan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yaqin Yuan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyue Liu
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenfei Xian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Shuaiying Xiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yucheng Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shulin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuannian Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jeff J Doyle
- School of Integrative Plant Science, Sections of Plant Biology and Plant Breeding & Genetics, Cornell University, Ithaca, NY, USA.
| | - Fang Xie
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Yazhouwan National Laboratory, Sanya, Hainan, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Yazhouwan National Laboratory, Sanya, Hainan, China.
| |
Collapse
|
7
|
Haile AT, Kovi MR, Johnsen SS, Hvoslef-Eide T, Tesfaye B, Rognli OA. Limited genetic diversity found among genotypes of the Entada landrace ( Ensete ventricosum, (Welw.) Chessman) from Ethiopia. FRONTIERS IN PLANT SCIENCE 2024; 15:1336461. [PMID: 39315368 PMCID: PMC11416936 DOI: 10.3389/fpls.2024.1336461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/12/2024] [Indexed: 09/25/2024]
Abstract
The Entada landrace of enset (Ensete ventricosum (Welw.) Chessman) is probably the most unique indigenous crop in Ethiopia, being maintained and utilized by the Ari people in the South of Ethiopia. Here we describe genetic diversity, selection signatures and relationship of Entada with cultivated and wild enset using 117 Entada genotypes collected from three Entada growing regions in Ethiopia (Sidama, South and North Ari). A total number of 1,617 high-quality SNP markers, obtained from ddRAD-sequences, were used for the diversity studies. Phylogenetic analysis detected a clear distinction between cultivated enset, Entada and wild enset with Entada forming a completely separated clade. However, extremely short branch lengths among the Entada genotypes indicate very little molecular evolution in the Entada lineages. Observed and expected heterozygosities were high, 0.73 and 0.50, respectively. Overall, our results strongly indicate that the Entada genotypes we have studied originated from one or a few clonal lineages that have been propagated and spread among farmers as clones. Prolonged clonal propagation of heterozygous genotypes from a single or few founding lineages has led to populations with very little or no diversity between genotypes, and high heterozygosity within genotypes. Signatures of directional selection were identified at eight loci based on an FST outlier analysis. Four candidate genes detected are involved in axillary shoot growth and might be involved in controlling natural sucker formation in Entada.
Collapse
Affiliation(s)
- Alye Tefera Haile
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
- School of Plant and Horticultural Science, College of Agriculture, Hawassa University, Hawassa, Ethiopia
| | - Mallikarjuna Rao Kovi
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Sylvia Sagen Johnsen
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Trine Hvoslef-Eide
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Bizuayehu Tesfaye
- School of Plant and Horticultural Science, College of Agriculture, Hawassa University, Hawassa, Ethiopia
| | - Odd Arne Rognli
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
8
|
Yang H, Zhou K, Wu Q, Jia X, Wang H, Yang W, Lin L, Hu X, Pan B, Li P, Huang T, Xu X, Li J, Jiang J, Du M. The tomato WRKY-B transcription factor modulates lateral branching by targeting BLIND, PIN4, and IAA15. HORTICULTURE RESEARCH 2024; 11:uhae193. [PMID: 39257542 PMCID: PMC11384121 DOI: 10.1093/hr/uhae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024]
Abstract
Lateral branching is a crucial agronomic trait that impacts crop yield. In tomato ( Solanum lycopersicum ), excessive lateral branching is unfavorable and results in substantial labor and management costs. Therefore, optimizing lateral branching is a primary objective in tomato breeding. Although many genes related to lateral branching have been reported in tomato, the molecular mechanism underlying their network remains elusive. In this study, we found that the expression profile of a WRKY gene, WRKY-B (for WRKY-BRANCING), was associated with the auxin-dependent axillary bud development process. Wrky-b mutants generated by the CRISPR/Cas9 editing system presented fewer lateral branches, while WRKY-B overexpression lines presented more lateral branches than did wild-type plants. Furthermore, WRKY-B can directly target the well-known branching gene BLIND (BL) and the auxin efflux carrier gene PIN4 to activate their expression. Both the bl and pin4 mutants exhibited reduced lateral branching, similar to the wrky-b mutant. The IAA contents in the axillary buds of the wrky-b, bl, and pin4 mutant plants were significantly higher than those in the wild-type plants. In addition, WRKY-B can also directly target the AUX/IAA gene IAA15 and repress its expression. In summary, WRKY-B works upstream of BL, PIN4, and IAA15 to regulate the development of lateral branches in tomato.
Collapse
Affiliation(s)
- Huanhuan Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Ke Zhou
- College of Horticulture, China Agricultural University, Beijing 100083, China
| | - Qingfei Wu
- College of Life Sciences, Yan'an University, Yan'an 716000, China
| | - Xinyi Jia
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Hexuan Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenhui Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Lihao Lin
- College of Agriculture, Ningxia Universisty, Yinchuan 750002, China
| | - Xiaomeng Hu
- College of Horticulture, China Agricultural University, Beijing 100083, China
| | - Bingqing Pan
- College of Horticulture, China Agricultural University, Beijing 100083, China
| | - Ping Li
- Qingdao Academy of Agricultural Sciences, Qingdao City 266000, China
| | - Tingting Huang
- Qingdao Academy of Agricultural Sciences, Qingdao City 266000, China
| | - Xiangyang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Jingfu Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Jingbin Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Minmin Du
- College of Horticulture, China Agricultural University, Beijing 100083, China
| |
Collapse
|
9
|
Shen J, Jiang Y, Pan J, Sun L, Li Q, He W, Sun P, Zhao B, Zhao H, Ke X, Guo Y, Yang T, Li Z. The GRAS transcription factor CsTL regulates tendril formation in cucumber. THE PLANT CELL 2024; 36:2818-2833. [PMID: 38630900 PMCID: PMC11289639 DOI: 10.1093/plcell/koae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 04/19/2024]
Abstract
Cucumber (Cucumis sativus, Cs) tendrils are slender vegetative organs that typically require manual removal to ensure orderly growth during greenhouse cultivation. Here, we identified cucumber tendril-less (tl), a Tnt1 retrotransposon-induced insertion mutant lacking tendrils. Map-based cloning identified the mutated gene, CsaV3_3G003590, which we designated as CsTL, which is homologous to Arabidopsis thaliana LATERAL SUPPRESSOR (AtLAS). Knocking out CsTL repressed tendril formation but did not affect branch initiation, whereas overexpression (OE) of CsTL resulted in the formation of two or more tendrils in one leaf axil. Although expression of two cucumber genes regulating tendril formation, Tendril (CsTEN) and Unusual Floral Organs (CsUFO), was significantly decreased in CsTL knockout lines, these two genes were not direct downstream targets of CsTL. Instead, CsTL physically interacted with CsTEN, an interaction that further enhanced CsTEN-mediated expression of CsUFO. In Arabidopsis, the CsTL homolog AtLAS acts upstream of REVOLUTA (REV) to regulate branch initiation. Knocking out cucumber CsREV inhibited branch formation without affecting tendril initiation. Furthermore, genomic regions containing CsTL and AtLAS were not syntenic between the cucumber and Arabidopsis genomes, whereas REV orthologs were found on a shared syntenic block. Our results revealed not only that cucumber CsTL possesses a divergent function in promoting tendril formation but also that CsREV retains its conserved function in shoot branching.
Collapse
Affiliation(s)
- Junjun Shen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanxin Jiang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian Pan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Linhan Sun
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Qingqing Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenjing He
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Piaoyun Sun
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bosi Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongjiao Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xubo Ke
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yalu Guo
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tongwen Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Wang H, Li X, Meng B, Fan Y, Khan SU, Qian M, Zhang M, Yang H, Lu K. Exploring silique number in Brassica napus L.: Genetic and molecular advances for improving yield. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1897-1912. [PMID: 38386569 PMCID: PMC11182599 DOI: 10.1111/pbi.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Silique number is a crucial yield-related trait for the genetic enhancement of rapeseed (Brassica napus L.). The intricate molecular process governing the regulation of silique number involves various factors. Despite advancements in understanding the mechanisms regulating silique number in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), the molecular processes involved in controlling silique number in rapeseed remain largely unexplored. In this review, we identify candidate genes and review the roles of genes and environmental factors in regulating rapeseed silique number. We use genetic regulatory networks for silique number in Arabidopsis and grain number in rice to uncover possible regulatory pathways and molecular mechanisms involved in regulating genes associated with rapeseed silique number. A better understanding of the genetic network regulating silique number in rapeseed will provide a theoretical basis for the genetic improvement of this trait and genetic resources for the molecular breeding of high-yielding rapeseed.
Collapse
Affiliation(s)
- Hui Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Boyu Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Mingchao Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Minghao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Haikun Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
- Engineering Research Center of South Upland Agriculture, Ministry of EducationChongqingP.R. China
- Academy of Agricultural SciencesSouthwest UniversityBeibeiChongqingP.R. China
| |
Collapse
|
11
|
Huang Y, Zheng Q, Zhang MM, He X, Zhao X, Wang L, Lan S, Liu ZJ. Genome-Wide Identification and Expression Analysis of the GRAS Gene Family and Their Responses to Heat Stress in Cymbidium goeringii. Int J Mol Sci 2024; 25:6363. [PMID: 38928070 PMCID: PMC11204107 DOI: 10.3390/ijms25126363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
The GRAS gene family, responsible for encoding transcription factors, serves pivotal functions in plant development, growth, and responses to stress. The exploration of the GRAS gene family within the Orchidaceae has been comparatively limited, despite its identification and functional description in various plant species. This study aimed to conduct a thorough examination of the GRAS gene family in Cymbidum goeringii, focusing on its physicochemical attributes, phylogenetic associations, gene structure, cis-acting elements, and expression profiles under heat stress. The results show that a total of 54 CgGRASs were pinpointed from the genome repository and categorized into ten subfamilies via phylogenetic associations. Assessment of gene sequence and structure disclosed the prevalent existence of the VHIID domain in most CgGRASs, with around 57.41% (31/54) CgGRASs lacking introns. The Ka/Ks ratios of all CgGRASs were below one, indicating purifying selection across all CgGRASs. Examination of cis-acting elements unveiled the presence of numerous elements linked to light response, plant hormone signaling, and stress responsiveness. Furthermore, CgGRAS5 contained the highest quantity of cis-acting elements linked to stress response. Experimental results from RT-qPCR demonstrated notable variations in the expression levels of eight CgGRASs after heat stress conditions, particularly within the LAS, HAM, and SCL4/7 subfamilies. In conclusion, this study revealed the expression pattern of CgGRASs under heat stress, providing reference for further exploration into the roles of CgGRAS transcription factors in stress adaptation.
Collapse
Affiliation(s)
- Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.); (L.W.)
| | - Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.); (L.W.)
| | - Meng-Meng Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.H.); (X.Z.)
| | - Xin He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.H.); (X.Z.)
| | - Xuewei Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.H.); (X.Z.)
| | - Linying Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.); (L.W.)
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.); (L.W.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.H.); (X.Z.)
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.); (L.W.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.H.); (X.Z.)
| |
Collapse
|
12
|
He L, Liu Y, Mao Y, Wu X, Zheng X, Zhao W, Mo X, Wang R, Wu Q, Wang D, Li Y, Yang Y, Bai Q, Zhang X, Zhou S, Zhao B, Liu C, Liu Y, Tadege M, Chen J. GRAS transcription factor PINNATE-LIKE PENTAFOLIATA2 controls compound leaf morphogenesis in Medicago truncatula. THE PLANT CELL 2024; 36:1755-1776. [PMID: 38318972 PMCID: PMC11062474 DOI: 10.1093/plcell/koae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024]
Abstract
The milestone of compound leaf development is the generation of separate leaflet primordia during the early stages, which involves two linked but distinct morphogenetic events: leaflet initiation and boundary establishment for leaflet separation. Although some progress in understanding the regulatory pathways for each event have been made, it is unclear how they are intrinsically coordinated. Here, we identify the PINNATE-LIKE PENTAFOLIATA2 (PINNA2) gene encoding a newly identified GRAS transcription factor in Medicago truncatula. PINNA2 transcripts are preferentially detected at organ boundaries. Its loss-of-function mutations convert trifoliate leaves into a pinnate pentafoliate pattern. PINNA2 directly binds to the promoter region of the LEAFY orthologue SINGLE LEAFLET1 (SGL1), which encodes a key positive regulator of leaflet initiation, and downregulates its expression. Further analysis revealed that PINNA2 synergizes with two other repressors of SGL1 expression, the BEL1-like homeodomain protein PINNA1 and the C2H2 zinc finger protein PALMATE-LIKE PENTAFOLIATA1 (PALM1), to precisely define the spatiotemporal expression of SGL1 in compound leaf primordia, thereby maintaining a proper pattern of leaflet initiation. Moreover, we showed that the enriched expression of PINNA2 at the leaflet-to-leaflet boundaries is positively regulated by the boundary-specific gene MtNAM, which is essential for leaflet boundary formation. Together, these results unveil a pivotal role of the boundary-expressed transcription factor PINNA2 in regulating leaflet initiation, providing molecular insights into the coordination of intricate developmental processes underlying compound leaf pattern formation.
Collapse
Affiliation(s)
- Liangliang He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yawen Mao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyuan Wu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Zheng
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Weiyue Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiaoyu Mo
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruoruo Wang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinq Wu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfa Wang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Youhan Li
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yuanfan Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Quanzi Bai
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiaojia Zhang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Shaoli Zhou
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Baolin Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changning Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| |
Collapse
|
13
|
Yuan Y, Du Y, Delaplace P. Unraveling the molecular mechanisms governing axillary meristem initiation in plants. PLANTA 2024; 259:101. [PMID: 38536474 DOI: 10.1007/s00425-024-04370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/22/2024] [Indexed: 04/24/2024]
Abstract
MAIN CONCLUSION Axillary meristems (AMs) located in the leaf axils determine the number of shoots or tillers eventually formed, thus contributing significantly to the plant architecture and crop yields. The study of AM initiation is unavoidable and beneficial for crop productivity. Shoot branching is an undoubted determinant of plant architecture and thus greatly impacts crop yield due to the panicle-bearing traits of tillers. The emergence of the AM is essential for the incipient bud formation, and then the bud is dormant or outgrowth immediately to form a branch or tiller. While numerous reviews have focused on plant branching and tillering development networks, fewer specifically address AM initiation and its regulatory mechanisms. This review synthesizes the significant advancements in the genetic and hormonal factors governing AM initiation, with a primary focus on studies conducted in Arabidopsis (Arabidopsis thaliana L.) and rice (Oryza sativa L.). In particular, by elaborating on critical genes like LATERAL SUPPRESSOR (LAS), which specifically regulates AM initiation and the networks in which they are involved, we attempt to unify the cascades through which they are positioned. We concentrate on clarifying the precise mutual regulation between shoot apical meristem (SAM) and AM-related factors. Additionally, we examine challenges in elucidating AM formation mechanisms alongside opportunities provided by emerging omics approaches to identify AM-specific genes. By expanding our comprehension of the genetic and hormonal regulation of AM development, we can develop strategies to optimize crop production and address global food challenges effectively.
Collapse
Affiliation(s)
- Yundong Yuan
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Yanfang Du
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Pierre Delaplace
- Plant Sciences, Gembloux Agro-Bio Tech, TERRA-Teaching and Research Center, Université de Liège, 5030, Gembloux, Belgium
| |
Collapse
|
14
|
Han S, Yue W, Bao A, Jiao T, Liu Y, Zeng H, Song K, Wu M, Guo L. OsCSN2 orchestrates Oryza sativa L. growth and development through modulation of the GA and BR pathways. Funct Integr Genomics 2024; 24:39. [PMID: 38381201 DOI: 10.1007/s10142-024-01320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
The COP9 signalosome (CSN) is a conserved protein complex found in higher eukaryotes, consisting of eight subunits, and it plays a crucial role in regulating various processes of plant growth and development. Among these subunits, CSN2 is one of the most conserved components within the COP9 signalosome complex. Despite its prior identification in other species, its specific function in Oryza sativa L. (Rice) has remained poorly understood. In this study, we investigated the role of CSN2 in rice using gene editing CRISPR/Cas9 technology and overexpression techniques. We created two types of mutants: the oscsn2 mutant and the OsCSN2-OE mutant, both in the background of rice, and also generated point mutants of OsCSN2 (OsCSN2K64E, OsCSN2K67E, OsCSN2K71E and OsCSN2K104E) to further explore the regulatory function of OsCSN2. Phenotypic observation and gene expression analysis were conducted on plants from the generated mutants, tracking their growth from the seedling to the heading stages. The results showed that the loss and modification of OsCSN2 had limited effects on plant growth and development during the early stages of both the wild-type and mutant plants. However, as the plants grew to 60 days, significant differences emerged. The OsCSN2 point mutants exhibited increased tillering compared to the OsCSN2-OE mutant plants, which were already at the tillering stage. On the other hand, the OsCSN2 point mutant had already progressed to the heading and flowering stages, with the shorter plants. These results, along with functional predictions of the OsCSN2 protein, indicated that changes in the 64th, 67th, 71st, and 104th amino acids of OsCSN2 affected its ubiquitination site, influencing the ubiquitination function of CSN and consequently impacting the degradation of the DELLA protein SLR1. Taken together, it can be speculated that OsCSN2 plays a key role in GA and BR pathways by influencing the functional regulation of the transcription factor SLR1 in CSN, thereby affecting the growth and development of rice and the number of tillers.
Collapse
Affiliation(s)
- Shining Han
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Weijie Yue
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Anar Bao
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Tongtong Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Yanxi Liu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Hua Zeng
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Ming Wu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| | - Liquan Guo
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| |
Collapse
|
15
|
Song X, Gu X, Chen S, Qi Z, Yu J, Zhou Y, Xia X. Far-red light inhibits lateral bud growth mainly through enhancing apical dominance independently of strigolactone synthesis in tomato. PLANT, CELL & ENVIRONMENT 2024; 47:429-441. [PMID: 37916615 DOI: 10.1111/pce.14758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
The ratio of red light to far-red light (R:FR) is perceived by light receptors and consequently regulates plant architecture. Regulation of shoot branching by R:FR ratio involves plant hormones. However, the roles of strigolactone (SL), the key shoot branching hormone and the interplay of different hormones in the light regulation of shoot branching in tomato (Solanum lycopersicum) are elusive. Here, we found that defects in SL synthesis genes CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7) and CCD8 in tomato resulted in more lateral bud growth but failed to reverse the FR inhibition of lateral bud growth, which was associated with increased auxin synthesis and decreased synthesis of cytokinin (CK) and brassinosteroid (BR). Treatment of auxin also inhibited shoot branching in ccd mutants. However, CK released the FR inhibition of lateral bud growth in ccd mutants, concomitant with the upregulation of BR synthesis genes. Furthermore, plants that overexpressed BR synthesis gene showed more lateral bud growth and the shoot branching was less sensitive to the low R:FR ratio. The results indicate that SL synthesis is dispensable for light regulation of shoot branching in tomato. Auxin mediates the response to R:FR ratio to regulate shoot branching by suppressing CK and BR synthesis.
Collapse
Affiliation(s)
- Xuewei Song
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaohua Gu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
| | - Shangyu Chen
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhenyu Qi
- Hainan Institute, Zhejiang University, Sanya, People's Republic of China
- Agricultural Experiment Station, Zhejiang University, Hangzhou, People's Republic of China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Institute, Zhejiang University, Sanya, People's Republic of China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Institute, Zhejiang University, Sanya, People's Republic of China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Institute, Zhejiang University, Sanya, People's Republic of China
| |
Collapse
|
16
|
Kumar S, Sharma N, Sopory SK, Sanan-Mishra N. miRNAs and genes as molecular regulators of rice grain morphology and yield. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108363. [PMID: 38281341 DOI: 10.1016/j.plaphy.2024.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Rice is one of the most consumed crops worldwide and the genetic and molecular basis of its grain yield attributes are well understood. Various studies have identified different yield-related parameters in rice that are regulated by the microRNAs (miRNAs). MiRNAs are endogenous small non-coding RNAs that silence gene expression during or after transcription. They control a variety of biological or genetic activities in plants including growth, development and response to stress. In this review, we have summarized the available information on the genetic control of panicle architecture and grain yield (number and morphology) in rice. The miRNA nodes that are associated with their regulation are also described while focussing on the central role of miR156-SPL node to highlight the co-regulation of two master regulators that determine the fate of panicle development. Since abiotic stresses are known to negatively affect yield, the impact of abiotic stress induced alterations on the levels of these miRNAs are also discussed to highlight the potential of miRNAs for regulating crop yields.
Collapse
Affiliation(s)
- Sudhir Kumar
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neha Sharma
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Sudhir K Sopory
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
17
|
Zhu L, Yin T, Zhang M, Yang X, Wu J, Cai H, Yang N, Li X, Wen K, Chen D, Zhang H, Liu X. Genome-wide identification and expression pattern analysis of the kiwifruit GRAS transcription factor family in response to salt stress. BMC Genomics 2024; 25:12. [PMID: 38166720 PMCID: PMC10759511 DOI: 10.1186/s12864-023-09915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND GRAS is a family of plant-specific transcription factors (TFs) that play a vital role in plant growth and development and response to adversity stress. However, systematic studies of the GRAS TF family in kiwifruit have not been reported. RESULTS In this study, we used a bioinformatics approach to identify eighty-six AcGRAS TFs located on twenty-six chromosomes and phylogenetic analysis classified them into ten subfamilies. It was found that the gene structure is relatively conserved for these genes and that fragmental duplication is the prime force for the evolution of AcGRAS genes. However, the promoter region of the AcGRAS genes mainly contains cis-acting elements related to hormones and environmental stresses, similar to the results of GO and KEGG enrichment analysis, suggesting that hormone signaling pathways of the AcGRAS family play a vital role in regulating plant growth and development and adversity stress. Protein interaction network analysis showed that the AcGRAS51 protein is a relational protein linking DELLA, SCR, and SHR subfamily proteins. The results demonstrated that 81 genes were expressed in kiwifruit AcGRAS under salt stress, including 17 differentially expressed genes, 13 upregulated, and four downregulated. This indicates that the upregulated AcGRAS55, AcGRAS69, AcGRAS86 and other GRAS genes can reduce the salt damage caused by kiwifruit plants by positively regulating salt stress, thus improving the salt tolerance of the plants. CONCLUSIONS These results provide a theoretical basis for future exploration of the characteristics and functions of more AcGRAS genes. This study provides a basis for further research on kiwifruit breeding for resistance to salt stress. RT-qPCR analysis showed that the expression of 3 AcGRAS genes was elevated under salt stress, indicating that AcGRAS exhibited a specific expression pattern under salt stress conditions.
Collapse
Affiliation(s)
- Ling Zhu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Tuo Yin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Mengjie Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, Yunnan Province, China
| | - Xiuyao Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Jiexin Wu
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, Yunnan Province, China
| | - Hanbing Cai
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Na Yang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, Yunnan Province, China
| | - Xulin Li
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, Yunnan Province, China
| | - Ke Wen
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, Yunnan Province, China
| | - Daming Chen
- Research Institute of Agriculture Ecological in Hot Areas, Yunnan Academy of Agricultural Science, Yuan Mou, Yunnan, 651300, China
| | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.
| | - Xiaozhen Liu
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, Yunnan Province, China.
| |
Collapse
|
18
|
Neves C, Ribeiro B, Amaro R, Expósito J, Grimplet J, Fortes AM. Network of GRAS transcription factors in plant development, fruit ripening and stress responses. HORTICULTURE RESEARCH 2023; 10:uhad220. [PMID: 38077496 PMCID: PMC10699852 DOI: 10.1093/hr/uhad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/20/2023] [Indexed: 06/23/2024]
Abstract
The plant-specific family of GRAS transcription factors has been wide implicated in the regulation of transcriptional reprogramming associated with a diversity of biological functions ranging from plant development processes to stress responses. Functional analyses of GRAS transcription factors supported by in silico structural and comparative analyses are emerging and clarifying the regulatory networks associated with their biological roles. In this review, a detailed analysis of GRAS proteins' structure and biochemical features as revealed by recent discoveries indicated how these characteristics may impact subcellular location, molecular mechanisms, and function. Nomenclature issues associated with GRAS classification into different subfamilies in diverse plant species even in the presence of robust genomic resources are discussed, in particular how it affects assumptions of biological function. Insights into the mechanisms driving evolution of this gene family and how genetic and epigenetic regulation of GRAS contributes to subfunctionalization are provided. Finally, this review debates challenges and future perspectives on the application of this complex but promising gene family for crop improvement to cope with challenges of environmental transition.
Collapse
Affiliation(s)
- Catarina Neves
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Beatriz Ribeiro
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rute Amaro
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Jesús Expósito
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Jérôme Grimplet
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Ciencia Vegetal, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Ana Margarida Fortes
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
19
|
Robil JM. The many side jobs of Lateral suppressor (Ls) in plant development. PLANT PHYSIOLOGY 2023; 193:2254-2256. [PMID: 37706552 PMCID: PMC10663106 DOI: 10.1093/plphys/kiad496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Affiliation(s)
- Janlo M Robil
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Department of Biology, School of Science and Engineering, Ateneo de Manila University, Quezon City 1108, Philippines
| |
Collapse
|
20
|
Jiang Y, Zhang A, He W, Li Q, Zhao B, Zhao H, Ke X, Guo Y, Sun P, Yang T, Wang Z, Jiang B, Shen J, Li Z. GRAS family member LATERAL SUPPRESSOR regulates the initiation and morphogenesis of watermelon lateral organs. PLANT PHYSIOLOGY 2023; 193:2592-2604. [PMID: 37584314 DOI: 10.1093/plphys/kiad445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 08/17/2023]
Abstract
The lateral organs of watermelon (Citrullus lanatus), including lobed leaves, branches, flowers, and tendrils, together determine plant architecture and yield. However, the genetic controls underlying lateral organ initiation and morphogenesis remain unclear. Here, we found that knocking out the homologous gene of shoot branching regulator LATERAL SUPPRESSOR in watermelon (ClLs) repressed the initiation of branches, flowers, and tendrils and led to developing round leaves, indicating that ClLs undergoes functional expansion compared with its homologs in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and tomato (Solanum lycopersicum). Using ClLs as the bait to screen against the cDNA library of watermelon, we identified several ClLs-interacting candidate proteins, including TENDRIL (ClTEN), PINOID (ClPID), and APETALA1 (ClAP1). Protein-protein interaction assays further demonstrated that ClLs could directly interact with ClTEN, ClPID, and ClAP1. The mRNA in situ hybridization assay revealed that the transcriptional patterns of ClLs overlapped with those of ClTEN, ClPID, and ClAP1 in the axillary meristems and leaf primordia. Mutants of ClTEN, ClPID, and ClAP1 generated by the CRISPR/Cas9 gene editing system lacked tendrils, developed round leaves, and displayed floral diapause, respectively, and all these phenotypes could be observed in ClLs knockout lines. Our findings indicate that ClLs acts as lateral organ identity protein by forming complexes with ClTEN, ClPID, and ClAP1, providing several gene targets for transforming the architecture of watermelon.
Collapse
Affiliation(s)
- Yanxin Jiang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Anran Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenjing He
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qingqing Li
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bosi Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongjiao Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xubo Ke
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yalu Guo
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Piaoyun Sun
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Tongwen Yang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zheng Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junjun Shen
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
21
|
Rana D, Sharma P, Arpita K, Srivastava H, Sharma S, Gaikwad K. Genome-wide identification and characterization of GRAS gene family in pigeonpea ( Cajanus cajan (L.) Millspaugh). 3 Biotech 2023; 13:363. [PMID: 37840881 PMCID: PMC10570252 DOI: 10.1007/s13205-023-03782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
The GRAS proteins are plant-specific transcription factors (TFs) that play a crucial role in various plant physiological processes, including tissue development and stress responses. To date, GRAS family has been comprehensively characterized in Arabidopsis, soybean, rice, chickpea and other plant species. To understand the structural and functional aspects of pigeonpea (C. cajan), we identified 60 putative GRAS (CcGRAS) genes from pigeonpea genome and further analysed their physicochemical properties, subcellular locations, evolutionary classification, exon-intron structures, conserved domains, gene duplication events and cis-promoter regions. Based on the sequence similarity, CcGRAS family was clustered into 9 subfamilies and the genes with a similar structure and motif distribution were clustered in the same group. The gene duplication studies revealed that these genes were derived from tandem and dispersed duplication events. The cis-promoter regulatory analysis of CcGRAS genes indicated the presence of three types of cis-acting elements including light-responsive, hormone-responsive and plant growth and development related. The expression profiling of CcGRAS genes revealed their tissue-specific functions and differential nature. Collectively, this study highlights relevant functional and regulatory elements of GRAS family in pigeonpea creating a significant resource for future functional studies. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03782-x.
Collapse
Affiliation(s)
- Divyansh Rana
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313 India
| | - Priya Sharma
- Department of Biotechnology, Jamia Hamdard, New Delhi, Delhi 110062 India
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| | - Kumari Arpita
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| | - Harsha Srivastava
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| | - Sandhya Sharma
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| | - Kishor Gaikwad
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| |
Collapse
|
22
|
Chen S, Song X, Zheng Q, Liu Y, Yu J, Zhou Y, Xia X. The transcription factor SPL13 mediates strigolactone suppression of shoot branching by inhibiting cytokinin synthesis in Solanum lycopersicum. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5722-5735. [PMID: 37504507 PMCID: PMC10540736 DOI: 10.1093/jxb/erad303] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
Plant architecture imposes a large impact on crop yield. IDEAL PLANT ARCHITECTURE 1 (IPA1), which encodes a SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor, is a target of molecular design for improving grain yield. However, the roles of SPL transcription factors in regulating tomato (Solanum lycopersicum) plant architecture are unclear. Here, we show that the expression of SPL13 is down-regulated in the lateral buds of strigolactone (SL)-deficient ccd mutants and is induced by GR24 (a synthetic analog of SL). Knockout of SPL13 by CRISPR/Cas9 resulted in higher levels of cytokinins (CKs) and transcripts of the CK synthesis gene ISOPENTENYL TRANSFERASES 1 (IPT1) in the stem nodes, and more growth of lateral buds. GR24 suppresses CK synthesis and lateral bud growth in ccd mutants, but is not effective in spl13 mutants. On the other hand, silencing of the IPT1 gene inhibited bud growth of spl13 mutants. Interestingly, SL levels in root extracts and exudates are significantly increased in spl13 mutants. Molecular studies indicated that SPL13 directly represses the transcription of IPT1 and the SL synthesis genes CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7) and MORE AXILLARY GROWTH 1 (MAX1). The results demonstrate that SPL13 acts downstream of SL to suppress lateral bud growth by inhibiting CK synthesis in tomato. Tuning the expression of SPL13 is a potential approach for decreasing the number of lateral shoots in tomato.
Collapse
Affiliation(s)
- Shangyu Chen
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Xuewei Song
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Qixiang Zheng
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Yuqi Liu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
- Hainan Institute, Zhejiang University, Sanya 572025, PR China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, PR China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
- Hainan Institute, Zhejiang University, Sanya 572025, PR China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
- Hainan Institute, Zhejiang University, Sanya 572025, PR China
| |
Collapse
|
23
|
Sharma R, Sreelakshmi Y. Bridging pathways: SBP15 regulates GOBLET in modulating tomato axillary bud outgrowth. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4899-4902. [PMID: 37702011 PMCID: PMC10498014 DOI: 10.1093/jxb/erad328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
This article comments on:Barrera-Rojas CH, Vicente MH, Brito DAP, Silva EM,Muñoz Lopez A, Ferigolo LF, Carmo RM, Silva CMS, Silva GFF, Correa JPO, Notini MM, Freschi L, Cubas P, Nogueira FTS. 2023. Tomato miR156-targeted SlSBP15 represses shoot branching by modulating hormone dynamics and interacting with GOBLET and BRANCHED1b. Journal of Experimental Botany 74, 5124–5139.
Collapse
Affiliation(s)
- Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad-500046, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad-500046, India
| |
Collapse
|
24
|
Barrera-Rojas CH, Vicente MH, Pinheiro Brito DA, Silva EM, Lopez AM, Ferigolo LF, do Carmo RM, Silva CMS, Silva GFF, Correa JPO, Notini MM, Freschi L, Cubas P, Nogueira FTS. Tomato miR156-targeted SlSBP15 represses shoot branching by modulating hormone dynamics and interacting with GOBLET and BRANCHED1b. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5124-5139. [PMID: 37347477 DOI: 10.1093/jxb/erad238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
The miRNA156 (miR156)/SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL/SBP) regulatory hub is highly conserved among phylogenetically distinct species, but how it interconnects multiple pathways to converge to common integrators controlling shoot architecture is still unclear. Here, we demonstrated that the miR156/SlSBP15 node modulates tomato shoot branching by connecting multiple phytohormones with classical genetic pathways regulating both axillary bud development and outgrowth. miR156-overexpressing plants (156-OE) displayed high shoot branching, whereas plants overexpressing a miR156-resistant SlSBP15 allele (rSBP15) showed arrested shoot branching. Importantly, the rSBP15 allele was able to partially restore the wild-type shoot branching phenotype in the 156-OE background. rSBP15 plants have tiny axillary buds, and their activation is dependent on shoot apex-derived auxin transport inhibition. Hormonal measurements revealed that indole-3-acetic acid (IAA) and abscisic acid (ABA) concentrations were lower in 156-OE and higher in rSBP15 axillary buds, respectively. Genetic and molecular data indicated that SlSBP15 regulates axillary bud development and outgrowth by inhibiting auxin transport and GOBLET (GOB) activity, and by interacting with tomato BRANCHED1b (SlBRC1b) to control ABA levels within axillary buds. Collectively, our data provide a new mechanism by which the miR156/SPL/SBP hub regulates shoot branching, and suggest that modulating SlSBP15 activity might have potential applications in shaping tomato shoot architecture.
Collapse
Affiliation(s)
- Carlos Hernán Barrera-Rojas
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Mateus Henrique Vicente
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Diego Armando Pinheiro Brito
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Eder M Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Aitor Muñoz Lopez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Leticia F Ferigolo
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Rafael Monteiro do Carmo
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Carolina M S Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Geraldo F F Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Joao P O Correa
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Marcela M Notini
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Luciano Freschi
- Biosciences Institute, University of Sao Paulo (USP), Sao Paulo, CEP: 05508-090, Brazil
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Fabio T S Nogueira
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| |
Collapse
|
25
|
Deng X, Ahmad B, Deng J, Liu L, Lu X, Fan Z, Zha X, Pan Y. MaABI5 and MaABF1 transcription factors regulate the expression of MaJOINTLESS during fruit abscission in mulberry ( Morus alba L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1229811. [PMID: 37670871 PMCID: PMC10475957 DOI: 10.3389/fpls.2023.1229811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023]
Abstract
Mulberry holds significant economic value. However, during the ripening stage of its fruit, the phenomenon of abscission, resulting in heavy fruit drop, can severely impact the yield. The formation of off-zone structures is a critical factor in the fruit abscission process, and this process is regulated by multiple transcription factors. One such key gene that plays a significant role in the development of the off-zone in the model plant tomato is JOINTLESS, which promotes the expression of abscission-related genes and regulates the differentiation of abscission zone tissue cells. However, there is a lack of information about fruit abscission mechanism in mulberry. Here, we analyzed the MaJOINTLESS promoter and identified the upstream regulators MaABF1 and MaABI5. These two regulators showed binding with MaJOINTLESS promoter MaABF1 (the ABA Binding Factor/ABA-Responsive Element Binding Proteins) activated the expression of MaJOINTLESS, while MaABI5 (ABSCISIC ACID-INSENSITIVE 5) inhibited the expression of MaJOINTLESS. Finally, the differentially expressed genes (DEGs) were analyzed by transcriptome sequencing to investigate the expression and synergistic relationship of endogenous genes in mulberry during abscission. GO classification and KEGG pathway enrichment analysis showed that most of the DEGs were concentrated in MAPK signaling pathway, flavonoid biosynthesis, citric acid cycle, phytohormone signaling, amino acid biosynthesis, and glycolysis. These results provide a theoretical basis for subsequent in-depth study of physiological fruit abscission in mulberry.
Collapse
Affiliation(s)
- Xuan Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Bilal Ahmad
- State Key Laboratory of Tropical Crop Breeding, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jing Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Lianlian Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xiuping Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Zelin Fan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xingfu Zha
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yu Pan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
26
|
Wang H, Liu S, Ma S, Wang Y, Yang H, Liu J, Li M, Cui X, Liang S, Cheng Q, Shen H. Characterization of the Molecular Events Underlying the Establishment of Axillary Meristem Region in Pepper. Int J Mol Sci 2023; 24:12718. [PMID: 37628899 PMCID: PMC10454251 DOI: 10.3390/ijms241612718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Plant architecture is a major motif of plant diversity, and shoot branching patterns primarily determine the aerial architecture of plants. In this study, we identified an inbred pepper line with fewer lateral branches, 20C1734, which was free of lateral branches at the middle and upper nodes of the main stem with smooth and flat leaf axils. Successive leaf axil sections confirmed that in normal pepper plants, for either node n, Pn (Primordium n) < 1 cm and Pn+1 < 1 cm were the critical periods between the identification of axillary meristems and the establishment of the region, whereas Pn+3 < 1 cm was fully developed and formed a completely new organ. In 20C1734, the normal axillary meristematic tissue region establishment and meristematic cell identity confirmation could not be performed on the axils without axillary buds. Comparative transcriptome analysis revealed that "auxin-activated signaling pathway", "response to auxin", "response to abscisic acid", "auxin biosynthetic process", and the biosynthesis of the terms/pathways, such as "secondary metabolites", were differentially enriched in different types of leaf axils at critical periods of axillary meristem development. The accuracy of RNA-seq was verified using RT-PCR for some genes in the pathway. Several differentially expressed genes (DEGs) related to endogenous phytohormones were targeted, including several genes of the PINs family. The endogenous hormone assay showed extremely high levels of IAA and ABA in leaf axils without axillary buds. ABA content in particular was unusually high. At the same time, there is no regular change in IAA level in this type of leaf axils (normal leaf axils will be accompanied by AM formation and IAA content will be low). Based on this, we speculated that the contents of endogenous hormones IAA and ABA in 20C1734 plant increased sharply, which led to the abnormal expression of genes in related pathways, which affected the formation of Ams in leaf axils in the middle and late vegetative growth period, and finally, nodes without axillary buds and side branches appeared.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Sujun Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Shijie Ma
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Yun Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Hanyu Yang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Jiankun Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Mingxuan Li
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Xiangyun Cui
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Sun Liang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Qing Cheng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Huolin Shen
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (H.W.); (S.L.); (S.M.); (Y.W.); (H.Y.); (J.L.); (M.L.); (X.C.); (S.L.)
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
- Sanya Institute, China Agricultural University, Sanya 572025, China
| |
Collapse
|
27
|
Yang Q, Yuan C, Cong T, Zhang Q. The Secrets of Meristems Initiation: Axillary Meristem Initiation and Floral Meristem Initiation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091879. [PMID: 37176937 PMCID: PMC10181267 DOI: 10.3390/plants12091879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
The branching phenotype is an extremely important agronomic trait of plants, especially for horticultural crops. It is not only an important yield character of fruit trees, but also an exquisite ornamental trait of landscape trees and flowers. The branching characteristics of plants are determined by the periodic initiation and later development of meristems, especially the axillary meristem (AM) in the vegetative stage and the floral meristem (FM) in the reproductive stage, which jointly determine the above-ground plant architecture. The regulation of meristem initiation has made great progress in model plants in recent years. Meristem initiation is comprehensively regulated by a complex regulatory network composed of plant hormones and transcription factors. However, as it is an important trait, studies on meristem initiation in horticultural plants are very limited, and the mechanism of meristem initiation regulation in horticultural plants is largely unknown. This review summarizes recent research advances in axillary meristem regulation and mainly reviews the regulatory networks and mechanisms of AM and FM initiation regulated by transcription factors and hormones. Finally, considering the existing problems in meristem initiation studies and the need for branching trait improvement in horticulture plants, we prospect future studies to accelerate the genetic improvement of the branching trait in horticulture plants.
Collapse
Affiliation(s)
- Qingqing Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tianci Cong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
28
|
Yang F, Njogu MK, Hesbon O, Wang Y, Lou Q, Cheng C, Zhou J, Li J, Chen J. Epistatic interaction between CsCEN and CsSHBY in regulating indeterminate/determinate growth of lateral branch in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:112. [PMID: 37052719 DOI: 10.1007/s00122-023-04350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/20/2023] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Two genetic loci, det-ma (CsCEN) and det-lb, showed epistatic interaction on indeterminate/determinate growth of LB in cucumber. CsSHBY was identified as the candidate gene for det-lb locus. Plant architecture depends on the spatial regulation of meristems from both main axis (MA) and lateral branches (LBs). Fate (indeterminate or determinate) of these meristems is a crucial source of architectural diversity determining crop productivity and management. CENTRORADIALIS/TERMINAL FLOWER 1/SELF-PRUNING (CETS) gene family have been well known as pivotal regulators for indeterminate/determinate growth of MA. Nevertheless, genes that regulate LB indeterminacy/determinacy remained unclear. Cucumber (Cucumis sativus L.) has typical monopodial growth and multiple lateral branches. Both MA and LBs had indeterminate or determinate growth, and indeterminate/determinate growth of LB was controlled by two distinct loci, det-ma (CsCEN) and det-lb. In our study, based on bulked segregant analysis (BSA) method, the det-lb locus was mapped on a 60.6 kb region on chromosome 1 harboring only one gene CsaV3_1G044330, which encoded a putative vacuolar-sorting protein (designated as CsSHBY). Multipoint mutations in CsSHBY were identified in D082 and D226, compared with CCMC, including nonsynonymous SNP mutations and a 6-bp deletion in exons. Further, qPCR showed that CsSHBY was highly expressed in lateral bud of CCMC, suggesting that CsSHBY might play an active role in regulating indeterminate/determinate growth of LB. Genetic analyses showed that det-ma (CsCEN) had an epistatic effect on det-lb (CsSHBY), and CsCEN could activate CsSHBY promoter by Dual luciferase and GUS activity assays. Meanwhile, Cscen or Csshby was found to influence auxin contents and CsYUCs and CsPINs expression levels. These findings provided new insights into precisely optimizing plant architecture for yield improvements.
Collapse
Affiliation(s)
- Fan Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Martin Kagiki Njogu
- Department of Plant Science, Chuka University, P.O. Box 109-60400, Chuka, Kenya
| | - Obel Hesbon
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuhui Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qunfeng Lou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunyan Cheng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junguo Zhou
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, 453000, China.
| | - Ji Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jinfeng Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
29
|
Xu T, Fu D, Xiong X, Zhu J, Feng Z, Liu X, Wu C. OsbHLH067, OsbHLH068, and OsbHLH069 redundantly regulate inflorescence axillary meristem formation in rice. PLoS Genet 2023; 19:e1010698. [PMID: 37053298 PMCID: PMC10128955 DOI: 10.1371/journal.pgen.1010698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 04/25/2023] [Accepted: 03/08/2023] [Indexed: 04/15/2023] Open
Abstract
Rice axillary meristems (AMs) are essential to the formation of tillers and panicle branches in rice, and therefore play a determining role in rice yield. However, the regulation of inflorescence AM development in rice remains elusive. In this study, we identified no spikelet 1-Dominant (nsp1-D), a sparse spikelet mutant, with obvious reduction of panicle branches and spikelets. Inflorescence AM deficiency in nsp1-D could be ascribed to the overexpression of OsbHLH069. OsbHLH069 functions redundantly with OsbHLH067 and OsbHLH068 in panicle AM formation. The Osbhlh067 Osbhlh068 Osbhlh069 triple mutant had smaller panicles and fewer branches and spikelets. OsbHLH067, OsbHLH068, and OsbHLH069 were preferentially expressed in the developing inflorescence AMs and their proteins could physically interact with LAX1. Both nsp1-D and lax1 showed sparse panicles. Transcriptomic data indicated that OsbHLH067/068/069 may be involved in the metabolic pathway during panicle AM formation. Quantitative RT-PCR results demonstrated that the expression of genes involved in meristem development and starch/sucrose metabolism was down-regulated in the triple mutant. Collectively, our study demonstrates that OsbHLH067, OsbHLH068, and OsbHLH069 have redundant functions in regulating the formation of inflorescence AMs during panicle development in rice.
Collapse
Affiliation(s)
- Tingting Xu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Debao Fu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaohu Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Junkai Zhu
- Jiangsu Kingearth Seed Co., Ltd., Yangzhou, China
| | - Zhiyun Feng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaobin Liu
- Jiangsu Kingearth Seed Co., Ltd., Yangzhou, China
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
30
|
Yang T, Jiao Y, Wang Y. Stem Cell Basis of Shoot Branching. PLANT & CELL PHYSIOLOGY 2023; 64:291-296. [PMID: 36416577 DOI: 10.1093/pcp/pcac165] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
During their postembryonic development, plants continuously form branches to conquer more space and adapt to changing environments. In seed plants, this is achieved by lateral branching, in which axillary meristems (AMs) initiate at the leaf axils to form axillary buds. The developmental potential of AMs to form shoot branches is the same as that of embryonic shoot apical meristems (SAMs). Recent studies in Arabidopsis thaliana have revealed the cellular origin of AMs and have identified transcription factors and phytohormones that regulate sequential steps leading to AM initiation. In particular, a group of meristematic cells detached from the SAM are key to AM initiation, which constitutes an excellent system for understanding stem cell fate and de novo meristem formation.
Collapse
Affiliation(s)
- Tingting Yang
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Center for Quantitative Biology, Peking University, 5 Summer Palace Rd., Haidian District, Beijing 100871, China
| | - Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Rd., Shijingshan District, Beijing 100049, China
| |
Collapse
|
31
|
Tanaka W, Yamauchi T, Tsuda K. Genetic basis controlling rice plant architecture and its modification for breeding. BREEDING SCIENCE 2023; 73:3-45. [PMID: 37168811 PMCID: PMC10165344 DOI: 10.1270/jsbbs.22088] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/25/2022] [Indexed: 05/13/2023]
Abstract
The shoot and root system architectures are fundamental for crop productivity. During the history of artificial selection of domestication and post-domestication breeding, the architecture of rice has significantly changed from its wild ancestor to fulfil requirements in agriculture. We review the recent studies on developmental biology in rice by focusing on components determining rice plant architecture; shoot meristems, leaves, tillers, stems, inflorescences and roots. We also highlight natural variations that affected these structures and were utilized in cultivars. Importantly, many core regulators identified from developmental mutants have been utilized in breeding as weak alleles moderately affecting these architectures. Given a surge of functional genomics and genome editing, the genetic mechanisms underlying the rice plant architecture discussed here will provide a theoretical basis to push breeding further forward not only in rice but also in other crops and their wild relatives.
Collapse
Affiliation(s)
- Wakana Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Katsutoshi Tsuda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
32
|
Hou S, Zhang Q, Chen J, Meng J, Wang C, Du J, Guo Y. Genome-Wide Identification and Analysis of the GRAS Transcription Factor Gene Family in Theobroma cacao. Genes (Basel) 2022; 14:57. [PMID: 36672798 PMCID: PMC9858872 DOI: 10.3390/genes14010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022] Open
Abstract
GRAS genes exist widely and play vital roles in various physiological processes in plants. In this study, to identify Theobroma cacao (T. cacao) GRAS genes involved in environmental stress and phytohormones, we conducted a genome-wide analysis of the GRAS gene family in T. cacao. A total of 46 GRAS genes of T. cacao were identified. Chromosomal distribution analysis showed that all the TcGRAS genes were evenly distributed on ten chromosomes. Phylogenetic relationships revealed that GRAS proteins could be divided into twelve subfamilies (HAM: 6, LISCL: 10, LAS: 1, SCL4/7: 1, SCR: 4, DLT: 1, SCL3: 3, DELLA: 4, SHR: 5, PAT1: 6, UN1: 1, UN2: 4). Of the T. cacao GRAS genes, all contained the GRAS domain or GRAS superfamily domain. Subcellular localization analysis predicted that TcGRAS proteins were located in the nucleus, chloroplast, and endomembrane system. Gene duplication analysis showed that there were two pairs of tandem repeats and six pairs of fragment duplications, which may account for the rapid expansion in T. cacao. In addition, we also predicted the physicochemical properties and cis-acting elements. The analysis of GO annotation predicted that the TcGRAS genes were involved in many biological processes. This study highlights the evolution, diversity, and characterization of the GRAS genes in T. cacao and provides the first comprehensive analysis of this gene family in the cacao genome.
Collapse
Affiliation(s)
- Sijia Hou
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qianqian Zhang
- Chinese Institute for Brain Research, Beijing 102206, China
- College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Jing Chen
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jianqiao Meng
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Cong Wang
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Junhong Du
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yunqian Guo
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
33
|
Bai Y, Liu H, Zhu K, Cheng ZM. Evolution and functional analysis of the GRAS family genes in six Rosaceae species. BMC PLANT BIOLOGY 2022; 22:569. [PMID: 36471247 PMCID: PMC9724429 DOI: 10.1186/s12870-022-03925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND GRAS genes formed one of the important transcription factor gene families in plants, had been identified in several plant species. The family genes were involved in plant growth, development, and stress resistance. However, the comparative analysis of GRAS genes in Rosaceae species was insufficient. RESULTS In this study, a total of 333 GRAS genes were identified in six Rosaceae species, including 51 in strawberry (Fragaria vesca), 78 in apple (Malus domestica), 41 in black raspberry (Rubus occidentalis), 59 in European pear (Pyrus communis), 56 in Chinese rose (Rosa chinensis), and 48 in peach (Prunus persica). Motif analysis showed the VHIID domain, SAW motif, LR I region, and PFYRE motif were considerably conserved in the six Rosaceae species. All GRAS genes were divided into 10 subgroups according to phylogenetic analysis. A total of 15 species-specific duplicated clades and 3 lineage-specific duplicated clades were identified in six Rosaceae species. Chromosomal localization presented the uneven distribution of GRAS genes in six Rosaceae species. Duplication events contributed to the expression of the GRAS genes, and Ka/Ks analysis suggested the purification selection as a major force during the evolution process in six Rosaceae species. Cis-acting elements and GO analysis revealed that most of the GRAS genes were associated with various environmental stress in six Rosaceae species. Coexpression network analysis showed the mutual regulatory relationship between GRAS and bZIP genes, suggesting the ability of the GRAS gene to regulate abiotic stress in woodland strawberry. The expression pattern elucidated the transcriptional levels of FvGRAS genes in various tissues and the drought and salt stress in woodland strawberry, which were verified by RT-qPCR analysis. CONCLUSIONS The evolution and functional analysis of GRAS genes provided insights into the further understanding of GRAS genes on the abiotic stress of Rosaceae species.
Collapse
Affiliation(s)
- Yibo Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hui Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Kaikai Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Zong-Ming Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
34
|
Zhao X, Liu DK, Wang QQ, Ke S, Li Y, Zhang D, Zheng Q, Zhang C, Liu ZJ, Lan S. Genome-wide identification and expression analysis of the GRAS gene family in Dendrobium chrysotoxum. FRONTIERS IN PLANT SCIENCE 2022; 13:1058287. [PMID: 36518517 PMCID: PMC9742484 DOI: 10.3389/fpls.2022.1058287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The GRAS gene family encodes transcription factors that participate in plant growth and development phases. They are crucial in regulating light signal transduction, plant hormone (e.g. gibberellin) signaling, meristem growth, root radial development, response to abiotic stress, etc. However, little is known about the features and functions of GRAS genes in Orchidaceae, the largest and most diverse angiosperm lineage. In this study, genome-wide analysis of the GRAS gene family was conducted in Dendrobium chrysotoxum (Epidendroideae, Orchidaceae) to investigate its physicochemical properties, phylogenetic relationships, gene structure, and expression patterns under abiotic stress in orchids. Forty-six DchGRAS genes were identified from the D. chrysotoxum genome and divided into ten subfamilies according to their phylogenetic relationships. Sequence analysis showed that most DchGRAS proteins contained conserved VHIID and SAW domains. Gene structure analysis showed that intronless genes accounted for approximately 70% of the DchGRAS genes, the gene structures of the same subfamily were the same, and the conserved motifs were also similar. The Ka/Ks ratios of 12 pairs of DchGRAS genes were all less than 1, indicating that DchGRAS genes underwent negative selection. The results of cis-acting element analysis showed that the 46 DchGRAS genes contained a large number of hormone-regulated and light-responsive elements as well as environmental stress-related elements. In addition, the real-time reverse transcription quantitative PCR (RT-qPCR) experimental results showed significant differences in the expression levels of 12 genes under high temperature, drought and salt treatment, among which two members of the LISCL subfamily (DchGRAS13 and DchGRAS15) were most sensitive to stress. Taken together, this paper provides insights into the regulatory roles of the GRAS gene family in orchids.
Collapse
Affiliation(s)
- Xuewei Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ding-Kun Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian-Qian Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shijie Ke
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong-Jian Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
35
|
Ge Y, Gao Y, Jiao Y, Wang Y. A conserved module in the formation of moss midribs and seed plant axillary meristems. SCIENCE ADVANCES 2022; 8:eadd7275. [PMID: 36399581 PMCID: PMC9674282 DOI: 10.1126/sciadv.add7275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Different evolutionary lineages have evolved distinct characteristic body plans and anatomical structures, but their origins are largely elusive. For example, seed plants evolve axillary meristems to enable lateral branching. In moss, the phyllid (leaf) midrib containing specialized cells is responsible for water conduction and support. Midribs function like vascular tissues in flowering plants but may have risen from a different evolutionary path. Here, we demonstrate that midrib formation in the model moss Physcomitrium patens is regulated by orthologs of Arabidopsis LATERAL SUPPRESSOR (LAS), a key regulator of axillary meristem initiation. Midribs are missing in loss-of-function mutants, and ectopic formation of midrib-like structures is induced in overexpression lines. Furthermore, the PpLAS/AtLAS genes have conserved functions in the promotion of cell division in both lineages, which alleviates phenotypes in both Physcomitrium and Arabidopsis las mutants. Our results show that a conserved regulatory module is reused in divergent developmental programs, water-conducting and supporting tissues in moss, and axillary meristem initiation in seed plants.
Collapse
Affiliation(s)
- Yanhua Ge
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
He Z, Tian Z, Zhang Q, Wang Z, Huang R, Xu X, Wang Y, Ji X. Genome-wide identification, expression and salt stress tolerance analysis of the GRAS transcription factor family in Betula platyphylla. FRONTIERS IN PLANT SCIENCE 2022; 13:1022076. [PMID: 36352865 PMCID: PMC9638169 DOI: 10.3389/fpls.2022.1022076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The GRAS gene family is a plant-specific family of transcription factors and play a vital role in many plant growth processes and abiotic stress responses. Nevertheless, the functions of the GRAS gene family in woody plants, especially in Betula platyphylla (birch), are hardly known. In this study, we performed a genome-wide analysis of 40 BpGRAS genes (BpGRASs) and identified typical GRAS domains of most BpGRASs. The BpGRASs were unevenly distributed on 14 chromosomes of birch and the phylogenetic analysis of six species facilitated the clustering of 265 GRAS proteins into 17 subfamilies. We observed that closely related GRAS homologs had similar conserved motifs according to motif analysis. Besides, an analysis of the expression patterns of 26 BpGRASs showed that most BpGRASs were highly expressed in the leaves and responded to salt stress. Six BpGRASs were selected for cis-acting element analysis because of their significant upregulation under salt treatment, indicating that many elements were involved in the response to abiotic stress. This result further confirmed that these BpGRASs might participate in response to abiotic stress. Transiently transfected birch plants with transiently overexpressed 6 BpGRASs and RNAi-silenced 6 BpGRASs were generated for gain- and loss-of-function analysis, respectively. In addition, overexpression of BpGRAS34 showed phenotype resistant to salt stress, decreased the cell death and enhanced the reactive oxygen species (ROS) scavenging capabilities and proline content under salt treatment, consistent with the results in transiently transformed birch plants. This study is a systematic analysis of the GRAS gene family in birch plants, and the results provide insight into the molecular mechanism of the GRAS gene family responding to abiotic stress in birch plants.
Collapse
Affiliation(s)
- Zihang He
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zengzhi Tian
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qun Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhibo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ruikun Huang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xin Xu
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yucheng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiaoyu Ji
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
37
|
Min Y, Ballerini ES, Edwards MB, Hodges SA, Kramer EM. Genetic architecture underlying variation in floral meristem termination in Aquilegia. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6241-6254. [PMID: 35731618 PMCID: PMC9756955 DOI: 10.1093/jxb/erac277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Floral organs are produced by floral meristems (FMs), which harbor stem cells in their centers. Since each flower only has a finite number of organs, the stem cell activity of an FM will always terminate at a specific time point, a process termed floral meristem termination (FMT). Variation in the timing of FMT can give rise to floral morphological diversity, but how this process is fine-tuned at a developmental and evolutionary level is poorly understood. Flowers from the genus Aquilegia share identical floral organ arrangement except for stamen whorl number (SWN), making Aquilegia a well-suited system for investigation of this process: differences in SWN between species represent differences in the timing of FMT. By crossing A. canadensis and A. brevistyla, quantitative trait locus (QTL) mapping has revealed a complex genetic architecture with seven QTL. We explored potential candidate genes under each QTL and characterized novel expression patterns of select loci of interest using in situ hybridization. To our knowledge, this is the first attempt to dissect the genetic basis of how natural variation in the timing of FMT is regulated, and our results provide insight into how floral morphological diversity can be generated at the meristematic level.
Collapse
Affiliation(s)
| | - Evangeline S Ballerini
- Department of Biological Sciences, California State University, Sacramento, Sacramento, CA, USA
| | - Molly B Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Scott A Hodges
- Department of Ecology & Marine Biology, University of California, Santa Barbara, CA, USA
| | | |
Collapse
|
38
|
Jaiswal V, Kakkar M, Kumari P, Zinta G, Gahlaut V, Kumar S. Multifaceted Roles of GRAS Transcription Factors in Growth and Stress Responses in Plants. iScience 2022; 25:105026. [PMID: 36117995 PMCID: PMC9474926 DOI: 10.1016/j.isci.2022.105026] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Vandana Jaiswal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mrinalini Kakkar
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
| | - Priya Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Gaurav Zinta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Corresponding author
| | - Vijay Gahlaut
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
- Corresponding author
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
39
|
Chen L, Liu A, Guo Z, Jiang H, Luo L, Gao J, Li D, Ye S, Guo N. Cloning and Bioinformatics Analysis of GhArfGAP in Cotton ( Gossypium hirsutum) Boll Abscission Layer With Ethylene Treatment. FRONTIERS IN PLANT SCIENCE 2022; 13:841161. [PMID: 35812965 PMCID: PMC9263981 DOI: 10.3389/fpls.2022.841161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/02/2022] [Indexed: 06/15/2023]
Abstract
With the continuous growth of the human population, the demand for fiber is also rising sharply. As one of the main fiber plants available globally, cotton fiber yield (Gossypium hirsutum) is affected by boll abscission, which is related to the formation of the abscission layer. Therefore, we explored the formation of the abscission layer in cotton. The formation of the abscission layer in the cotton boll stalk was promoted by exogenous ethylene. It was found that both the number of the Golgi apparatus and the number of stacking layers increased in the dissociated cells. The GhArfGAP gene family in cotton was screened by the bioinformatics method, and the species and evolutionary relationship of the GhArfGAP gene family were analyzed. qRT-PCR showed that GhArfGAP13, GhArfGAP15, GhArfGAP25, and GhArfGAP34 in cotton had spatiotemporal-specific expression patterns. Subcellular localization suggested that GhArfGAP25 played a role in the Golgi apparatus. The expression of GhArfGAP25 in transgenic Arabidopsis thaliana is increased in the roots, stems, and leaves. Finally, we found that ethylene could induce the formation of the abscission layer in cotton. GhArfGAP13, GhArfGAP15, GhArfGAP25, and GhArfGAP34 might regulate the changes in the Golgi apparatus in the abscission layer. Taken together, the findings provide new ideas for the study of the formation of cotton abscission.
Collapse
Affiliation(s)
- Long Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - AnFeng Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - ZiWen Guo
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Hui Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ling Luo
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - JunShan Gao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - DaHui Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - SiHong Ye
- Cotton Research Institute of Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ning Guo
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
40
|
Waseem M, Nkurikiyimfura O, Niyitanga S, Jakada BH, Shaheen I, Aslam MM. GRAS transcription factors emerging regulator in plants growth, development, and multiple stresses. Mol Biol Rep 2022; 49:9673-9685. [PMID: 35713799 DOI: 10.1007/s11033-022-07425-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
GRAS transcription factors play multifunctional roles in plant growth, development, and resistance to various biotic and abiotic stresses. The structural and functional features of GRAS TFs have been unveiled in the last two decades. A typical GRAS protein contained a C-terminal GRAS domain with a highly variable N-terminal region. Studies on these TFs increase in numbers and are reported to be involved in various important developmental processes such as flowering, root formation, and stress responses. The GRAS TFs and hormone signaling crosstalk can be implicated in plant development and to stress responses. There are relatively few reports about GRAS TFs roles in plants, and no related reviews have been published. In this review, we summarized the features of GRAS TFs, their targets, and the roles these GRAS TFs playing in plant development and multiple stresses.
Collapse
Affiliation(s)
- Muhammad Waseem
- Department of Botany, University of Narowal, Narowal, Punjab, Pakistan. .,College of Life Science, Hainan University, Hainan, P.R. China.
| | - Oswald Nkurikiyimfura
- Key Lab for Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Sylvain Niyitanga
- Department of Plant Pathology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Bello Hassan Jakada
- College of Life Science, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Iffat Shaheen
- Faculty of Agriculture Science and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | | |
Collapse
|
41
|
Pino LE, Lima JE, Vicente MH, de Sá AFL, Pérez-Alfocea F, Albacete A, Costa JL, Werner T, Schmülling T, Freschi L, Figueira A, Zsögön A, Peres LEP. Increased branching independent of strigolactone in cytokinin oxidase 2-overexpressing tomato is mediated by reduced auxin transport. MOLECULAR HORTICULTURE 2022; 2:12. [PMID: 37789497 PMCID: PMC10514996 DOI: 10.1186/s43897-022-00032-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/11/2022] [Indexed: 10/05/2023]
Abstract
Tomato production is influenced by shoot branching, which is controlled by different hormones. Here we produced tomato plants overexpressing the cytokinin-deactivating gene CYTOKININ OXYDASE 2 (CKX2). CKX2-overexpressing (CKX2-OE) plants showed an excessive growth of axillary shoots, the opposite phenotype expected for plants with reduced cytokinin content, as evidenced by LC-MS analysis and ARR5-GUS staining. The TCP transcription factor SlBRC1b was downregulated in the axillary buds of CKX2-OE and its excessive branching was dependent on a functional version of the GRAS-family gene LATERAL SUPPRESSOR (LS). Grafting experiments indicated that increased branching in CKX2-OE plants is unlikely to be mediated by root-derived signals. Crossing CKX2-OE plants with transgenic antisense plants for the strigolactone biosynthesis gene CAROTENOID CLEAVAGE DIOXYGENASE (CCD7-AS) produced an additive phenotype, indicating independent effects of cytokinin and strigolactones on increased branching. On the other hand, CKX2-OE plants showed reduced polar auxin transport and their bud outgrowth was reduced when combined with auxin mutants. Accordingly, CKX2-OE basal buds did not respond to auxin applied in the decapitated apex. Our results suggest that tomato shoot branching depends on a fine-tuning of different hormonal balances and that perturbations in the auxin status could compensate for the reduced cytokinin levels in CKX2-OE plants.
Collapse
Affiliation(s)
- Lilian Ellen Pino
- Laboratory of Plant Breeding, Centro de Energia Nuclear na Agricultura, University of Sao Paulo, São Paulo, Brazil
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz'University of Sao Paulo, Piracicaba, Brazil
| | - Joni E Lima
- Botany Department, ICB, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mateus H Vicente
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz'University of Sao Paulo, Piracicaba, Brazil
| | - Ariadne F L de Sá
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz'University of Sao Paulo, Piracicaba, Brazil
| | | | - Alfonso Albacete
- Department of Plant Nutrition, CEBAS-CSIC, Campus Univ. Espinardo, Murcia, Spain
| | - Juliana L Costa
- Laboratory of Plant Breeding, Centro de Energia Nuclear na Agricultura, University of Sao Paulo, São Paulo, Brazil
| | - Tomáš Werner
- Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
- Institute of Biology, University of Graz, Schubertstraße 51, 8010, Graz, Austria
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
| | - Luciano Freschi
- Biosciences Institute, University of Sao Paulo, São Paulo, Brazil
| | - Antonio Figueira
- Laboratory of Plant Breeding, Centro de Energia Nuclear na Agricultura, University of Sao Paulo, São Paulo, Brazil
| | - Agustin Zsögön
- Plant Sciences Department, Federal University of Viçosa, Viçosa, Brazil
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz'University of Sao Paulo, Piracicaba, Brazil.
| |
Collapse
|
42
|
Zhang X, Yang X, He Q, Wang Y, Liang G, Liu T. Genome-wide Identification and Characterization of the GRAS Transcription Factors in Garlic ( Allium sativum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:890052. [PMID: 35498719 PMCID: PMC9039536 DOI: 10.3389/fpls.2022.890052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
GRAS transcription factors play crucial roles in plant growth and development and have been widely explored in many plant species. Garlic (Allium sativum L.) is an important crop owing to its edible and medicinal properties. However, no GRAS transcription factors have been identified in this crop. In this study, 46 garlic GRAS genes were identified and assigned to 16 subfamilies using the GRAS members of Arabidopsis thaliana, Oryza sativa, and Amborella trichopoda as reference queries. Expression analysis revealed that garlic GRAS genes showed distinct differences in various garlic tissues, as well as during different growth stages of the bulbs. Five of these 46 genes were identified as DELLA-like protein-encoding genes and three of which, Asa2G00237.1/Asa2G00240.1 and Asa4G02090.1, responded to exogenous GA3 treatment, and showed a significant association between their transcription abundance and bulb traits in 102 garlic accessions, thereby indicating their role in regulating the growth of garlic bulbs. These results will lay a useful foundation for further investigation of the biological functions of GRAS genes and guiding the genetic breeding of garlic in the future.
Collapse
Affiliation(s)
- Xueyu Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xiai Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Qiaoyun He
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Guolu Liang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
43
|
Ohyama A, Tominaga R, Toriba T, Tanaka W. D-type cyclin OsCYCD3;1 is involved in the maintenance of meristem activity to regulate branch formation in rice. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153634. [PMID: 35144141 DOI: 10.1016/j.jplph.2022.153634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
D-type cyclins (CYCDs) are involved in a wide range of biological processes, as one of the major regulators of cell cycle activity. In Arabidopsis (Arabidopsis thaliana), three members of CYCD3 subgroup genes play important roles in plant development such as leaf development and branch formation. In rice (Oryza sativa), there is only one gene (OsCYCD3;1) belonging to the CYCD3 subgroup; its function is unknown. In this study, in order to elucidate the function of OsCYCD3;1, we generated knockout mutants of the gene and conducted developmental analysis. The knockout mutants showed a significantly reduced number of branches compared with a wild type, suggesting that OsCYCD3;1 promotes branch formation. Histological analysis showed that the activities of the axillary meristem and the shoot apical meristem (SAM) were compromised in these mutant plants. Our results suggest that OsCYCD3;1 promotes branch formation, probably by regulating cell division to maintain the activities of the axillary meristem and the SAM.
Collapse
Affiliation(s)
- Ami Ohyama
- School of Applied Biological Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Rumi Tominaga
- School of Applied Biological Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Taiyo Toriba
- School of Food Industrial Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, 982-0215, Japan.
| | - Wakana Tanaka
- School of Applied Biological Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| |
Collapse
|
44
|
Périlleux C, Huerga-Fernández S. Reflections on the Triptych of Meristems That Build Flowering Branches in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:798502. [PMID: 35211138 PMCID: PMC8861353 DOI: 10.3389/fpls.2022.798502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Branching is an important component determining crop yield. In tomato, the sympodial pattern of shoot and inflorescence branching is initiated at floral transition and involves the precise regulation of three very close meristems: (i) the shoot apical meristem (SAM) that undergoes the first transition to flower meristem (FM) fate, (ii) the inflorescence sympodial meristem (SIM) that emerges on its flank and remains transiently indeterminate to continue flower initiation, and (iii) the shoot sympodial meristem (SYM), which is initiated at the axil of the youngest leaf primordium and takes over shoot growth before forming itself the next inflorescence. The proper fate of each type of meristems involves the spatiotemporal regulation of FM genes, since they all eventually terminate in a flower, but also the transient repression of other fates since conversions are observed in different mutants. In this paper, we summarize the current knowledge about the genetic determinants of meristem fate in tomato and share the reflections that led us to identify sepal and flower abscission zone initiation as a critical stage of FM development that affects the branching of the inflorescence.
Collapse
Affiliation(s)
- Claire Périlleux
- Laboratory of Plant Physiology, Research Unit InBioS—PhytoSYSTEMS, Institute of Botany B22 Sart Tilman, University of Liège, Liège, Belgium
| | | |
Collapse
|
45
|
Li G, Xu B, Zhang Y, Xu Y, Khan NU, Xie J, Sun X, Guo H, Wu Z, Wang X, Zhang H, Li J, Xu J, Wang W, Zhang Z, Li Z. RGN1 controls grain number and shapes panicle architecture in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:158-167. [PMID: 34498389 PMCID: PMC8710824 DOI: 10.1111/pbi.13702] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 05/29/2023]
Abstract
Yield in rice is determined mainly by panicle architecture. Using map-based cloning, we identified an R2R3 MYB transcription factor REGULATOR OF GRAIN NUMBER1 (RGN1) affecting grain number and panicle architecture. Mutation of RGN1 caused an absence of lateral grains on secondary branches. We demonstrated that RGN1 controls lateral grain formation by regulation of LONELY GUY (LOG) expression, thus controlling grain number and shaping panicle architecture. A novel favourable allele, RGN1C , derived from the Or-I group in wild rice affected panicle architecture by means longer panicles. Identification of RGN1 provides a theoretical basis for understanding the molecular mechanism of lateral grain formation in rice; RGN1 will be an important gene resource for molecular breeding for higher yield.
Collapse
Affiliation(s)
- Gangling Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Bingxia Xu
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yanpei Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yawen Xu
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Najeeb Ullah Khan
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jianyin Xie
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xingming Sun
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Haifeng Guo
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zhenyuan Wu
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xueqiang Wang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Hongliang Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jinjie Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jianlong Xu
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Wensheng Wang
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zhanying Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zichao Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
46
|
Wang X, Manzoor MA, Wang M, Zhao Y, Feng X, Alam P, Chi X, Cai Y. Integrative Analysis of the GRAS Genes From Chinese White Pear ( Pyrus bretschneideri): A Critical Role in Leaf Regeneration. FRONTIERS IN PLANT SCIENCE 2022; 13:898786. [PMID: 35734253 PMCID: PMC9208361 DOI: 10.3389/fpls.2022.898786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 05/16/2023]
Abstract
GRAS is a transcription regulator factor, which plays an important role in plant growth and development. Previous analyses found that several GRAS functions have been identified, such as axillary bud meristem formation, radial root elongation, gibberellin signaling, light signaling, and abiotic stress. The GRAS family has been comprehensively evaluated in several species. However, little finding is on the GRAS transcription factors (TFs) in Chinese white pear. In this study, 99 PbGRAS were systemically characterized and renamed PbGRAS1 to PbGRAS99 according to their chromosomal localizations. Phylogenetic analysis and structural features revealed that could be classified into eight subfamilies (LISCL, Ls, SHR, HAM, SCL, PAT, SCR, and DELLA). Further analysis of introns/exons and conserved motifs revealed that they are diverse and functionally differentiated in number and structure. Synteny analysis among Pyrus bretschenedri, Prunus mume, Prunus avium, Fragaria vesca, and Prunus persica showed that GRAS duplicated regions were more conserved. Dispersed duplication events are the most common mechanism and may play a crucial role in the expansion of the GRAS gene family. In addition, cis-acting elements of the PbGRAS gene were found in promoter regions associated with hormone and environmental stress responses. Notably, the expression pattern detected by qRT-PCR indicated that PbGRAS genes were differentially expressed under gibberellin (GA), abscisic acid (ABA), and auxin (IAA) conditions, which are responsive to abiotic stress. PbGRAS89 and PbGRAS99 were highly expressed at different stages of hormone treatment and may play important role in leaf development. Therefore, we selected PbGRAS89 and PbGRAS99 to clone and construct pCAMBIA1301-PbGRAS89, 99 and transferred them into Arabidopsis thaliana. Finally, we observed and compared the changes of overexpressed plants and wild-type plants during regeneration. This method was used to analyze their roles in leaf regeneration of Chinese white pear. In addition, we also constructed pCAMBIA1305-PbGRAS89, 99, and transferred them into onion cells to determine the subcellular localization. Subcellular localization experiments showed that PbGRAS89 and PbGRAS99 were localized in the nucleus. In summary, the results of this study indicate that PbGRAS89 and PbGRAS99 are mainly responsible for leaf regeneration of Chinese white pear, which plays a positive role in callus formation and provides rich resources for studying GRAS gene functions.
Collapse
Affiliation(s)
- Xinya Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | | | - Mengna Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yu Zhao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiaofeng Feng
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Xujing Chi
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- *Correspondence: Yongping Cai
| |
Collapse
|
47
|
Luo Z, Janssen BJ, Snowden KC. The molecular and genetic regulation of shoot branching. PLANT PHYSIOLOGY 2021; 187:1033-1044. [PMID: 33616657 PMCID: PMC8566252 DOI: 10.1093/plphys/kiab071] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/22/2021] [Indexed: 05/27/2023]
Abstract
The architecture of flowering plants exhibits both phenotypic diversity and plasticity, determined, in part, by the number and activity of axillary meristems and, in part, by the growth characteristics of the branches that develop from the axillary buds. The plasticity of shoot branching results from a combination of various intrinsic and genetic elements, such as number and position of nodes and type of growth phase, as well as environmental signals such as nutrient availability, light characteristics, and temperature (Napoli et al., 1998; Bennett and Leyser, 2006; Janssen et al., 2014; Teichmann and Muhr, 2015; Ueda and Yanagisawa, 2019). Axillary meristem initiation and axillary bud outgrowth are controlled by a complex and interconnected regulatory network. Although many of the genes and hormones that modulate branching patterns have been discovered and characterized through genetic and biochemical studies, there are still many gaps in our understanding of the control mechanisms at play. In this review, we will summarize our current knowledge of the control of axillary meristem initiation and outgrowth into a branch.
Collapse
Affiliation(s)
- Zhiwei Luo
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Bart J Janssen
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Kimberley C Snowden
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| |
Collapse
|
48
|
Beheshti H, Strotbek C, Arif MA, Klingl A, Top O, Frank W. PpGRAS12 acts as a positive regulator of meristem formation in Physcomitrium patens. PLANT MOLECULAR BIOLOGY 2021; 107:293-305. [PMID: 33598827 PMCID: PMC8648639 DOI: 10.1007/s11103-021-01125-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/01/2021] [Indexed: 05/29/2023]
Abstract
This study focused on the key regulatory function of Physcomitrium patens GRAS12 gene underlying an increasing plant complexity, an important step in plant terrestrialization and the evolutionary history of life. The miR171-GRAS module has been identified as a key player in meristem maintenance in angiosperms. PpGRAS12 is a member of the GRAS family and a validated target for miR171 in Physcomitrium (Physcomitrella) patens. Here we show a regulatory function of miR171 at the gametophytic vegetative growth stage and targeted deletion of the PpGRAS12 gene adversely affects sporophyte production since fewer sporophytes were produced in ΔPpGRAS12 knockout lines compared to wild type moss. Furthermore, highly specific and distinct growth arrests were observed in inducible PpGRAS12 overexpression lines at the protonema stage. Prominent phenotypic aberrations including the formation of multiple apical meristems at the gametophytic vegetative stage in response to elevated PpGRAS12 transcript levels were discovered via scanning electron microscopy. The production of multiple buds in the PpGRAS12 overexpression lines similar to ΔPpCLV1a/1b disruption mutants is accompanied by an upregulation of PpCLE and downregulation of PpCLV1, PpAPB, PpNOG1, PpDEK1, PpRPK2 suggesting that PpGRAS12 acts upstream of these genes and negatively regulates the proposed pathway to specify simplex meristem formation. As CLV signaling pathway components are not present in the chlorophytic or charophytic algae and arose with the earliest land plants, we identified a key regulatory function of PpGRAS12 underlying an increasing plant complexity, an important step in plant terrestrialization and the evolutionary history of life.
Collapse
Affiliation(s)
- Hossein Beheshti
- Plant Molecular Cell Biology, Department Biology I, LMU Biocenter, Ludwig-Maximilians-University Munich, Großhardener Straße 2-4, Planegg-Martinsried, Germany
| | - Christoph Strotbek
- Plant Molecular Cell Biology, Department Biology I, LMU Biocenter, Ludwig-Maximilians-University Munich, Großhardener Straße 2-4, Planegg-Martinsried, Germany
| | - M Asif Arif
- Plant Molecular Cell Biology, Department Biology I, LMU Biocenter, Ludwig-Maximilians-University Munich, Großhardener Straße 2-4, Planegg-Martinsried, Germany
| | - Andreas Klingl
- Plant Developmental Biology, Department Biology I, LMU Biocenter, Ludwig-Maximilians-University Munich, Großhardener Straße 2-4, Planegg-Martinsried, Germany
| | - Oguz Top
- Plant Molecular Cell Biology, Department Biology I, LMU Biocenter, Ludwig-Maximilians-University Munich, Großhardener Straße 2-4, Planegg-Martinsried, Germany
| | - Wolfgang Frank
- Plant Molecular Cell Biology, Department Biology I, LMU Biocenter, Ludwig-Maximilians-University Munich, Großhardener Straße 2-4, Planegg-Martinsried, Germany.
| |
Collapse
|
49
|
Laskar P, Bhattacharya S, Chaudhuri A, Kundu A. Exploring the GRAS gene family in common bean (Phaseolus vulgaris L.): characterization, evolutionary relationships, and expression analyses in response to abiotic stresses. PLANTA 2021; 254:84. [PMID: 34561734 DOI: 10.1007/s00425-021-03725-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Genome-wide identification reveals 55 PvuGRAS genes belonging to 16 subfamilies and their gene structures and evolutionary relationships were characterized. Expression analyses highlight their prominence in plant growth, development and abiotic stress responses. GRAS proteins comprise a plant-specific transcription factor family involved in multiple growth regulatory pathways and environmental cues including abiotic/biotic stresses. Despite its crucial importance, characterization of this gene family is still elusive in common bean. A systematic genome-wide scan identified 55 PvuGRAS genes unevenly anchored to the 11 common bean chromosomes. Segmental duplication appeared to be the key driving force behind expansion of this gene family that underwent purifying selection during evolution. Computational investigation unraveled their intronless organization and identified similar motif composition within the same subfamily. Phylogenetic analyses clustered the PvuGRAS proteins into 16 phylogenetic clades and established extensive orthologous relationships with Arabidopsis and rice. Analysis of the upstream promoter region uncovered cis-elements responsive to growth, development, and abiotic stresses that may account for their differential expression. The identified SSRs could serve as putative molecular markers facilitating future breeding programs. 37 PvuGRAS transcripts were post-transcriptionally regulated by different miRNA families, miR171 being the major player preferentially targeting members of the HAM subfamily. Global expression profile based on RNA-seq data indicates a clade specific expression pattern in various tissues and developmental stages. Additionally, nine PvuGRAS genes were chosen for further qPCR analyses under drought, salt, and cold stress suggesting their involvement in acclimation to environmental stimuli. Combined, the present results significantly contribute to the current understanding of the complexity and biological function of the PvuGRAS gene family. The resources generated will provide a solid foundation in future endeavors for genetic improvement in common bean.
Collapse
Affiliation(s)
- Parbej Laskar
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India
| | - Saswati Bhattacharya
- Department of Botany, Dr. A.P.J. Abdul Kalam Government College, New Town, Rajarhat, India
| | - Atreyee Chaudhuri
- Aquatic Bioresource Research Laboratory, Department of Zoology , University of Calcutta, Kolkata, India
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India.
| |
Collapse
|
50
|
Chen J, Yan Q, Li J, Feng L, Zhang Y, Xu J, Xia R, Zeng Z, Liu Y. The GRAS gene family and its roles in seed development in litchi (Litchi chinensis Sonn). BMC PLANT BIOLOGY 2021; 21:423. [PMID: 34535087 PMCID: PMC8447652 DOI: 10.1186/s12870-021-03193-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The GRAS gene family plays crucial roles in multiple biological processes of plant growth, including seed development, which is related to seedless traits of litchi (Litchi chinensis Sonn.). However, it hasn't been fully identified and analyzed in litchi, an economic fruit tree cultivated in subtropical regions. RESULTS In this study, 48 LcGRAS proteins were identified and termed according to their chromosomal location. LcGRAS proteins can be categorized into 14 subfamilies through phylogenetic analysis. Gene structure and conserved domain analysis revealed that different subfamilies harbored various motif patterns, suggesting their functional diversity. Synteny analysis revealed that the expansion of the GRAS family in litchi may be driven by their tandem and segmental duplication. After comprehensively analysing degradome data, we found that four LcGRAS genes belong to HAM subfamily were regulated via miR171-mediated degradation. The various expression patterns of LcGRAS genes in different tissues uncovered they were involved in different biological processes. Moreover, the different temporal expression profiles of LcGRAS genes between abortive and bold seed indicated some of them were involved in maintaining the normal development of the seed. CONCLUSION Our study provides comprehensive analyses on GRAS family members in litchi, insight into a better understanding of the roles of GRAS in litchi development, and lays the foundation for further investigations on litchi seed development.
Collapse
Affiliation(s)
- Jingwen Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 483 Wushan Road, Tianhe, Guangzhou, 510642, Guangdong Province, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Qian Yan
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture / Guangdong ProvinceKey Laboratary of Tropical and Subtropical Fruit Tree Research / Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jiawei Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 483 Wushan Road, Tianhe, Guangzhou, 510642, Guangdong Province, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Lei Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 483 Wushan Road, Tianhe, Guangzhou, 510642, Guangdong Province, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 483 Wushan Road, Tianhe, Guangzhou, 510642, Guangdong Province, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jing Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 483 Wushan Road, Tianhe, Guangzhou, 510642, Guangdong Province, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 483 Wushan Road, Tianhe, Guangzhou, 510642, Guangdong Province, China.
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| | - Zaohai Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 483 Wushan Road, Tianhe, Guangzhou, 510642, Guangdong Province, China.
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| | - Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 483 Wushan Road, Tianhe, Guangzhou, 510642, Guangdong Province, China.
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|