1
|
Sabourirad S, Dimitriadis E, Mantamadiotis T. Viruses exploit growth factor mechanisms to achieve augmented pathogenicity and promote tumorigenesis. Arch Microbiol 2024; 206:193. [PMID: 38526562 PMCID: PMC10963461 DOI: 10.1007/s00203-024-03855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 03/26/2024]
Abstract
Cellular homeostasis is regulated by growth factors (GFs) which orchestrate various cellular processes including proliferation, survival, differentiation, motility, inflammation and angiogenesis. Dysregulation of GFs in microbial infections and malignancies have been reported previously. Viral pathogens exemplify the exploitation of host cell GFs and their signalling pathways contributing to viral entry, virulence, and evasion of anti-viral immune responses. Viruses can also perturb cellular metabolism and the cell cycle by manipulation of GF signaling. In some cases, this disturbance may promote oncogenesis. Viral pathogens can encode viral GF homologues and induce the endogenous biosynthesis of GFs and their corresponding receptors or manipulate their activity to infect the host cells. Close investigation of how viral strategies exploit and regulate GFs, a will shed light on how to improve anti-viral therapy and cancer treatment. In this review, we discuss and provide insights on how various viral pathogens exploit different GFs to promote viral survival and oncogenic transformation, and how this knowledge can be leveraged toward the design of more efficient therapeutics or novel drug delivery systems in the treatment of both viral infections and malignancies.
Collapse
Affiliation(s)
- Sarvenaz Sabourirad
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia.
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Theo Mantamadiotis
- Department of Surgery RMH, The University of Melbourne, Parkville, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Smirnov A, Magri A, Lotz R, Han X, Yin C, Harris M, Osterburg C, Dötsch V, McKeating JA, Lu X. ASPP2 binds to hepatitis C virus NS5A protein via an SH3 domain/PxxP motif-mediated interaction and potentiates infection. J Gen Virol 2023; 104:10.1099/jgv.0.001895. [PMID: 37750869 PMCID: PMC7615710 DOI: 10.1099/jgv.0.001895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Hepatitis C virus (HCV) infects millions of people worldwide and is a leading cause of liver disease. Despite recent advances in antiviral therapies, viral resistance can limit drug efficacy and understanding the mechanisms that confer viral escape is important. We employ an unbiased interactome analysis to discover host binding partners of the HCV non-structural protein 5A (NS5A), a key player in viral replication and assembly. We identify ASPP2, apoptosis-stimulating protein of p53, as a new host co-factor that binds NS5A via its SH3 domain. Importantly, silencing ASPP2 reduces viral replication and spread. Our study uncovers a previously unknown role for ASPP2 to potentiate HCV RNA replication.
Collapse
Affiliation(s)
- Artem Smirnov
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, Rome 00133, Italy
| | - Andrea Magri
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Rebecca Lotz
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Xiaoyue Han
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Chunhong Yin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Christian Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Jane A. McKeating
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
3
|
Aftab A, Afzal S, Idrees M, Shahid AA. p53 and rb promoter methylation in hepatitis C virus-related chronic hepatitis and hepatocellular carcinoma. Future Virol 2021. [DOI: 10.2217/fvl-2020-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To identify methylation in p53 and rb during hepatitis C virus (HCV) infection in individuals in Pakistan. Materials & methods: Methylation-specific PCR was used on liver biopsies from hepatocellular carcinoma and chronic hepatitis C patients and on blood samples from healthy individuals. Real-time PCR was used to assess changes in the expression of p53 and rb in Huh-7 cells transfected with HCV-3a. Results: The p53 and rb promoters were methylated in hepatocellular carcinoma patients. The presence of HCV-3a- Core (p = 0.03), HCV-3a- NS-3 (p = 0.01) and HCV-3a- NS-5a (p = 0.02) downregulated p53 expression. Exposure to HCV-3a- Core (p = 0.04) downregulated rb expression. Conclusion: It can be hypothesized that HCV-induced epigenetic modifications may lead to the development of hepatic cancer that in turn inactivates p53 and rb.
Collapse
Affiliation(s)
- Ayma Aftab
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ahmad Ali Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
4
|
Choi JW, Kim JW, Nguyen LP, Nguyen HC, Park EM, Choi DH, Han KM, Kang SM, Tark D, Lim YS, Hwang SB. Nonstructural NS5A Protein Regulates LIM and SH3 Domain Protein 1 to Promote Hepatitis C Virus Propagation. Mol Cells 2020; 43:469-478. [PMID: 32344996 PMCID: PMC7264479 DOI: 10.14348/molcells.2020.0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/26/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) propagation is highly dependent on cellular proteins. To identify the host factors involved in HCV propagation, we previously performed protein microarray assays and identified the LIM and SH3 domain protein 1 (LASP-1) as an HCV NS5A-interacting partner. LASP-1 plays an important role in the regulation of cell proliferation, migration, and protein-protein interactions. Alteration of LASP-1 expression has been implicated in hepatocellular carcinoma. However, the functional involvement of LASP1 in HCV propagation and HCV-induced pathogenesis has not been elucidated. Here, we first verified the protein interaction of NS5A and LASP-1 by both in vitro pulldown and coimmunoprecipitation assays. We further showed that NS5A and LASP-1 were colocalized in the cytoplasm of HCV infected cells. NS5A interacted with LASP-1 through the proline motif in domain I of NS5A and the tryptophan residue in the SH3 domain of LASP-1. Knockdown of LASP-1 increased HCV replication in both HCV-infected cells and HCV subgenomic replicon cells. LASP-1 negatively regulated viral propagation and thereby overexpression of LASP-1 decreased HCV replication. Moreover, HCV propagation was decreased by wild-type LASP-1 but not by an NS5A binding-defective mutant of LASP-1. We further demonstrated that LASP-1 was involved in the replication stage of the HCV life cycle. Importantly, LASP-1 expression levels were increased in persistently infected cells with HCV. These data suggest that HCV modulates LASP-1 via NS5A in order to regulate virion levels and maintain a persistent infection.
Collapse
Affiliation(s)
- Jae-Woong Choi
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 5453, Korea
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| | - Jong-Wook Kim
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| | - Lap P. Nguyen
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 5453, Korea
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| | - Huu C. Nguyen
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 5453, Korea
| | - Eun-Mee Park
- Center for Immunology and Pathology, National Institute of Health, Korea Center for Disease Control & Prevention, Cheongju 28159, Korea
| | - Dong Hwa Choi
- Biocenter, Gyeonggido Business & Science Accelerator, Suwon 16229, Korea
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Kang Min Han
- Department of Pathology, Dongguk University Ilsan Hospital, Goyang 1032, Korea
| | - Sang Min Kang
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
| | - Dongseob Tark
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
| | - Yun-Sook Lim
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 5453, Korea
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| | - Soon B. Hwang
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 5453, Korea
- Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| |
Collapse
|
5
|
Jassey A, Liu CH, Changou CA, Richardson CD, Hsu HY, Lin LT. Hepatitis C Virus Non-Structural Protein 5A (NS5A) Disrupts Mitochondrial Dynamics and Induces Mitophagy. Cells 2019; 8:cells8040290. [PMID: 30934919 PMCID: PMC6523690 DOI: 10.3390/cells8040290] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/12/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
Mitophagy is a selective form of autophagy, targeting damaged mitochondria for lysosomal degradation. Although HCV infection has been shown to induce mitophagy, the precise underlying mechanism and the effector protein responsible remain unclear. Herein, we demonstrated that the HCV non-structural protein 5A (NS5A) plays a key role in regulating cellular mitophagy. Specifically, the expression of HCV NS5A in the hepatoma cells triggered hallmarks of mitophagy including mitochondrial fragmentation, loss of mitochondrial membrane potential, and Parkin translocation to the mitochondria. Furthermore, mitophagy induction through the expression of NS5A led to an increase in autophagic flux as demonstrated by an accumulation of LC3II in the presence of bafilomycin and a time-dependent decrease in p62 protein level. Intriguingly, the expression of NS5A concomitantly enhanced reactive oxygen species (ROS) production, and treatment with an antioxidant attenuated the NS5A-induced mitophagy event. These phenomena are similarly recapitulated in the NS5A-expressing HCV subgenomic replicon cells. Finally, we demonstrated that expression of HCV core, which has been documented to inhibit mitophagy, blocked the mitophagy induction both in cells harboring HCV replicating subgenomes or expressing NS5A alone. Our results, therefore, identified a new role for NS5A as an important regulator of HCV-induced mitophagy and have implications to broadening our understanding of the HCV-mitophagy interplay.
Collapse
Affiliation(s)
- Alagie Jassey
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ching-Hsuan Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Chun A Changou
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Integrated Laboratory, Center of Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Core Facility, Taipei Medical University, Taipei 11031, Taiwan.
| | - Christopher D Richardson
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Department of Pediatrics and Canadian Center for Vaccinology, Izaak Walton Killam Health Centre, Halifax, NS B3H 4R2, Canada.
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien 970, Taiwan.
| | - Liang-Tzung Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
6
|
Zhang H, Zhang C, Tang H, Gao S, Sun F, Yang Y, Zhou W, Hu Y, Ke C, Wu Y, Ding Z, Guo L, Pei R, Chen X, Sy M, Zhang B, Li C. CD2-Associated Protein Contributes to Hepatitis C, Virus Propagation and Steatosis by Disrupting Insulin Signaling. Hepatology 2018; 68:1710-1725. [PMID: 29729186 PMCID: PMC6220802 DOI: 10.1002/hep.30073] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/11/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022]
Abstract
Chronic hepatitis C virus (HCV) infection can result in steatosis, a condition displaying aberrant accumulation of neutral lipid vesicles, the component of lipid droplets (LDs), which are essential for HCV assembly. However, the interplay between HCV infection and steatosis remains unclear. Here, we show that HCV-infected cells have higher levels of CD2-associated protein (CD2AP), which plays two distinct, yet tightly linked, roles in HCV pathogenesis: Elevated CD2AP binds to nonstructural protein 5A (NS5A) and participates in the transport of NS5A to LDs to facilitate viral assembly; Up-regulated CD2AP also interacts with casitas B-lineage lymphoma (b) (Cbl/Cbl-b) E3 ligases to degrade insulin receptor substrate 1 (IRS1), which, in turn, disrupts insulin signaling and increases LD accumulation through the IRS1/protein kinase B (Akt)/adenosine monophosphate-activated protein kinase (AMPK)/hormone-sensitive lipase (HSL) signaling axis to accommodate viral assembly. In the HCV-infected mouse model, CD2AP expression is up-regulated during the chronic infection stage and this up-regulation correlates well with liver steatosis. Importantly, CD2AP up-regulation was also detected in HCV-infected human liver biopsies showing steatosis compared to non-HCV-infected controls. Conclusion: CD2AP is indicated as a protein up-regulated by HCV infection, which, in turn, stimulates HCV propagation and steatosis by disrupting insulin signaling; targeting CD2AP may offer an opportunity for alleviating HCV infection and its associated liver pathology. (Hepatology 2018;XX:XXX-XXX.).
Collapse
Affiliation(s)
- Huixia Zhang
- Center for Molecular VirologyWuhan Institute of VirologyState Key Laboratory of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chao Zhang
- Key laboratory of Infection and Immunity, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Hong Tang
- Institute Pasteur of Shanghai, Chinese Academy of SciencesShanghaiChina
| | - Shanshan Gao
- Center for Molecular VirologyWuhan Institute of VirologyState Key Laboratory of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fang Sun
- Center for Molecular VirologyWuhan Institute of VirologyState Key Laboratory of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuan Yang
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghaiChina
| | - Weiping Zhou
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghaiChina
| | - Yu Hu
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Changshu Ke
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yu Wu
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Zeyang Ding
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Lin Guo
- School of Life SciencesWuhan UniversityState Key Laboratory of VirologyWuhanChina
| | - Rongjuan Pei
- Center for Molecular VirologyWuhan Institute of VirologyState Key Laboratory of VirologyChinese Academy of SciencesWuhanChina
| | - Xinwen Chen
- Center for Molecular VirologyWuhan Institute of VirologyState Key Laboratory of VirologyChinese Academy of SciencesWuhanChina
| | - Man‐Sun Sy
- Department of Pathology, School of MedicineCase Western Reserve UniversityClevelandOH
| | - Bixiang Zhang
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Chaoyang Li
- Center for Molecular VirologyWuhan Institute of VirologyState Key Laboratory of VirologyChinese Academy of SciencesWuhanChina
- School of Chemistry, Chemical Engineering, and Life SciencesWuhan University of TechnologyWuhanChina
| |
Collapse
|
7
|
Kokoszka ME, Kall SL, Khosla S, McGinnis JE, Lavie A, Kay BK. Identification of two distinct peptide-binding pockets in the SH3 domain of human mixed-lineage kinase 3. J Biol Chem 2018; 293:13553-13565. [PMID: 29980598 PMCID: PMC6120190 DOI: 10.1074/jbc.ra117.000262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 06/11/2018] [Indexed: 12/11/2022] Open
Abstract
Mixed-lineage kinase 3 (MLK3; also known as MAP3K11) is a Ser/Thr protein kinase widely expressed in normal and cancerous tissues, including brain, lung, liver, heart, and skeletal muscle tissues. Its Src homology 3 (SH3) domain has been implicated in MLK3 autoinhibition and interactions with other proteins, including those from viruses. The MLK3 SH3 domain contains a six-amino-acid insert corresponding to the n-Src insert, suggesting that MLK3 may bind additional peptides. Here, affinity selection of a phage-displayed combinatorial peptide library for MLK3's SH3 domain yielded a 13-mer peptide, designated "MLK3 SH3-interacting peptide" (MIP). Unlike most SH3 domain peptide ligands, MIP contained a single proline. The 1.2-Å crystal structure of the MIP-bound SH3 domain revealed that the peptide adopts a β-hairpin shape, and comparison with a 1.5-Å apo SH3 domain structure disclosed that the n-Src loop in SH3 undergoes an MIP-induced conformational change. A 1.5-Å structure of the MLK3 SH3 domain bound to a canonical proline-rich peptide from hepatitis C virus nonstructural 5A (NS5A) protein revealed that it and MIP bind the SH3 domain at two distinct sites, but biophysical analyses suggested that the two peptides compete with each other for SH3 binding. Moreover, SH3 domains of MLK1 and MLK4, but not MLK2, also bound MIP, suggesting that the MLK1-4 family may be differentially regulated through their SH3 domains. In summary, we have identified two distinct peptide-binding sites in the SH3 domain of MLK3, providing critical insights into mechanisms of ligand binding by the MLK family of kinases.
Collapse
Affiliation(s)
| | - Stefanie L Kall
- Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607
| | | | | | - Arnon Lavie
- Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607
| | - Brian K Kay
- From the Departments of Biological Sciences and
| |
Collapse
|
8
|
Dubey SK, Shrinet J, Jain J, Ali S, Sunil S. Aedes aegypti microRNA miR-2b regulates ubiquitin-related modifier to control chikungunya virus replication. Sci Rep 2017; 7:17666. [PMID: 29247247 PMCID: PMC5732197 DOI: 10.1038/s41598-017-18043-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/29/2017] [Indexed: 12/26/2022] Open
Abstract
Arboviruses that replicate in mosquitoes activate innate immune response within mosquitoes. Regulatory non-coding microRNAs (miRNA) are known to be modulated in mosquitoes during chikungunya infection. However, information about targets of these miRNAs is scant. The present study was aimed to identify and analyze targets of miRNAs that are regulated during chikungunya virus (CHIKV) replication in Aedes aegypti cells and in the mosquito. Employing next-generation sequencing technologies, we identified a total of 126 miRNAs from the Ae. aegypti cell line Aag2. Of these, 13 miRNAs were found to be regulated during CHIKV infection. Putative targets of three of the most significantly regulated miRNAs- miR-100, miR-2b and miR-989 were also analyzed using quantitative PCRs, in cell lines and in mosquitoes, to validate whether they were the targets of the miRNAs. Our study expanded the list of miRNAs known in Ae. aegypti and predicted targets for the significantly regulated miRNAs. Further analysis of some of these targets revealed that ubiquitin-related modifier is a target of miRNA miR-2b and plays a significant role in chikungunya replication.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Jatin Shrinet
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Jaspreet Jain
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Shakir Ali
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, India
| | - Sujatha Sunil
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India.
| |
Collapse
|
9
|
Glab-Ampai K, Chulanetra M, Malik AA, Juntadech T, Thanongsaksrikul J, Srimanote P, Thueng-In K, Sookrung N, Tongtawe P, Chaicumpa W. Human single chain-transbodies that bound to domain-I of non-structural protein 5A (NS5A) of hepatitis C virus. Sci Rep 2017; 7:15042. [PMID: 29118372 PMCID: PMC5678119 DOI: 10.1038/s41598-017-14886-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/18/2017] [Indexed: 12/15/2022] Open
Abstract
A safe and broadly effective direct acting anti-hepatitis C virus (HCV) agent that can withstand the viral mutation is needed. In this study, human single chain antibody variable fragments (HuscFvs) to conserved non-structural protein-5A (NS5A) of HCV were produced by phage display technology. Recombinant NS5A was used as bait for fishing-out the protein bound-phages from the HuscFv-phage display library. NS5A-bound HuscFvs produced by five phage transfected-E. coli clones were linked molecularly to nonaarginine (R9) for making them cell penetrable (become transbodies). The human monoclonal transbodies inhibited HCV replication in the HCVcc infected human hepatic cells and also rescued the cellular antiviral immune response from the viral suppression. Computerized simulation verified by immunoassays indicated that the transbodies used several residues in their multiple complementarity determining regions (CDRs) to form contact interface with many residues of the NS5A domain-I which is important for HCV replication complex formation and RNA binding as well as for interacting with several host proteins for viral immune evasion and regulation of cellular physiology. The human monoclonal transbodies have high potential for testing further as a new ramification of direct acting anti-HCV agent, either alone or in combination with their cognates that target other HCV proteins.
Collapse
Affiliation(s)
- Kittirat Glab-Ampai
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Monrat Chulanetra
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aijaz Ahmad Malik
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanate Juntadech
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jeeraphong Thanongsaksrikul
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum-thani province, 12120, Thailand
| | - Potjanee Srimanote
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum-thani province, 12120, Thailand
| | - Kanyarat Thueng-In
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon-ratchaseema province, Thailand
| | - Nitat Sookrung
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pongsri Tongtawe
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum-thani province, 12120, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum-thani province, 12120, Thailand.
| |
Collapse
|
10
|
Huynh VTT, Lim YS, Tran SC, Pham TM, Nguyen LN, Hwang SB. Hepatitis C Virus Nonstructural 5A Protein Interacts with Abelson Interactor 1 and Modulates Epidermal Growth Factor-mediated MEK/ERK Signaling Pathway. J Biol Chem 2016; 291:22607-22617. [PMID: 27551040 DOI: 10.1074/jbc.m116.727081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/11/2016] [Indexed: 11/06/2022] Open
Abstract
The propagation of hepatitis C virus (HCV) is highly dependent on host cellular factors. To identify the cellular factors involved in HCV propagation, we have previously performed protein microarray assays using the HCV nonstructural 5A (NS5A) protein as a probe. Of ∼9,000 host proteins immobilized in a microarray, ∼90 cellular proteins were identified as HCV NS5A interacting partners. Of these candidates, we selected Abelson interactor 1 (Abi1) for further characterization. Binding of HCV NS5A to Abi1 was verified by both in vitro pulldown and coimmunoprecipitation assays. HCV NS5A interacted with Abi1 through regions I + II of Abi1 and domain I of NS5A. We further demonstrated that Abi1 colocalized with the HCV NS5A protein in the cytoplasm. We showed that NS5A inhibited epidermal growth factor-mediated ERK and Egr1 activations and this inhibitory activity of NS5A was nullified in Abi1-knockdown cells. Moreover, silencing of Abi1 expression impaired HCV replication, whereas overexpression of Abi1 promoted HCV propagation. Collectively, these data indicate that HCV exploits host Abi1 protein via NS5A to modulate MEK/ERK signaling pathway for its own propagation.
Collapse
Affiliation(s)
- Van T T Huynh
- From the National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| | - Yun-Sook Lim
- From the National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| | - Si C Tran
- From the National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| | - Tu M Pham
- From the National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| | - Lam N Nguyen
- From the National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| | - Soon B Hwang
- From the National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang 14066, Korea
| |
Collapse
|
11
|
Sólyom Z, Ma P, Schwarten M, Bosco M, Polidori A, Durand G, Willbold D, Brutscher B. The Disordered Region of the HCV Protein NS5A: Conformational Dynamics, SH3 Binding, and Phosphorylation. Biophys J 2016; 109:1483-96. [PMID: 26445449 DOI: 10.1016/j.bpj.2015.06.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/01/2015] [Accepted: 06/16/2015] [Indexed: 12/16/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) perform their physiological role without possessing a well-defined three-dimensional structure. Still, residual structure and conformational dynamics of IDPs are crucial for the mechanisms underlying their functions. For example, regions of transient secondary structure are often involved in molecular recognition, with the structure being stabilized (or not) upon binding. Long-range interactions, on the other hand, determine the hydrodynamic radius of the IDP, and thus the distance over which the protein can catch binding partners via so-called fly-casting mechanisms. The modulation of long-range interactions also presents a convenient way of fine-tuning the protein's interaction network, by making binding sites more or less accessible. Here we studied, mainly by nuclear magnetic resonance spectroscopy, residual secondary structure and long-range interactions in nonstructural protein 5A (NS5A) from hepatitis C virus (HCV), a typical viral IDP with multiple functions during the viral life cycle. NS5A comprises an N-terminal folded domain, followed by a large (∼250-residue) disordered C-terminal part. Comparing nuclear magnetic resonance spectra of full-length NS5A with those of a protein construct composed of only the C-terminal residues 191-447 (NS5A-D2D3) allowed us to conclude that there is no significant interaction between the globular and disordered parts of NS5A. NS5A-D2D3, despite its overall high flexibility, shows a large extent of local residual (α-helical and β-turn) structure, as well as a network of electrostatic long-range interactions. Furthermore, we could demonstrate that these long-range interactions become modulated upon binding to the host protein Bin1, as well as after NS5A phosphorylation by CK2. As the charged peptide regions involved in these interactions are well conserved among the different HCV genotypes, these transient long-range interactions may be important for some of the functions of NS5A over the course of the HCV life cycle.
Collapse
Affiliation(s)
- Zsófia Sólyom
- Institut de Biologie Structurale, Université Grenoble 1, Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France; Centre National de Recherche Scientifique, Grenoble, France
| | - Peixiang Ma
- Institut de Biologie Structurale, Université Grenoble 1, Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France; Centre National de Recherche Scientifique, Grenoble, France; Institute of Complex Systems-6 Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
| | - Melanie Schwarten
- Institute of Complex Systems-6 Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
| | - Michaël Bosco
- Institut des Biomolécules Max Mousseron, UMR 5247, Centre National de Recherche Scientifique, École Nationale Supérieure de Chimie de Montpellier, Université Montpellier, Montpellier, France; Equipe Chimie Bioorganique et Systèmes Amphiphiles, Avignon Université, Avignon, France
| | - Ange Polidori
- Institut des Biomolécules Max Mousseron, UMR 5247, Centre National de Recherche Scientifique, École Nationale Supérieure de Chimie de Montpellier, Université Montpellier, Montpellier, France; Equipe Chimie Bioorganique et Systèmes Amphiphiles, Avignon Université, Avignon, France
| | - Grégory Durand
- Institut des Biomolécules Max Mousseron, UMR 5247, Centre National de Recherche Scientifique, École Nationale Supérieure de Chimie de Montpellier, Université Montpellier, Montpellier, France; Equipe Chimie Bioorganique et Systèmes Amphiphiles, Avignon Université, Avignon, France
| | - Dieter Willbold
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France; Institute of Complex Systems-6 Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Bernhard Brutscher
- Institut de Biologie Structurale, Université Grenoble 1, Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France; Centre National de Recherche Scientifique, Grenoble, France.
| |
Collapse
|
12
|
Klebl BM, Kurtenbach A, Salassidis K, Daub H, Herget T. Host Cell Targets in HCV Therapy: Novel Strategy or Proven Practice? ACTA ACUST UNITED AC 2016; 16:69-90. [PMID: 15889531 DOI: 10.1177/095632020501600201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of novel antiviral drugs against hepatitis C is a challenging and competitive area of research. Progress of this research has been hampered due to the quasispecies nature of the hepatitis C virus, the absence of cellular infection models and the lack of easily accessible and highly representative animal models. The current combination therapy consisting of interferon-α and ribavirin mainly acts by supporting host cell defence. These therapeutics are the prototypic representatives of indirect antiviral agents as they act on cellular targets. However, the therapy is not a cure, when considered from the long-term perspective, for almost half of the chronically infected patients. This draws attention to the urgent need for more efficient treatments. Novel anti-hepatitis C treatments under study are directed against a number of so-called direct antiviral targets such as polymerases and proteases, which are encoded by the virus. Although such direct antiviral approaches have proven to be successful in several viral indications, there is a risk of resistant viruses developing. In order to avoid resistance, the development of indirect antiviral compounds has to be intensified. These act on host cell targets either by boosting the immune response or by blocking the virus host cell interaction. A particularly interesting approach is the development of inhibitors that interfere with signal transduction, such as protein kinase inhibitors. The purpose of this review is to stress the importance of developing indirect antiviral agents that act on host cell targets. In doing so, a large source of potential targets and mechanisms can be exploited, thus increasing the likelihood of success. Ultimately, combination therapies consisting of drugs against direct and indirect viral targets will most probably provide the solution to fighting and eradicating hepatitis C virus in patients.
Collapse
|
13
|
Holmström F, Chen M, Balasiddaiah A, Sällberg M, Ahlén G, Frelin L. Functional differences in hepatitis C virus nonstructural (NS) 3/4A- and 5A-specific T cell responses. Sci Rep 2016; 6:24991. [PMID: 27141891 PMCID: PMC4855235 DOI: 10.1038/srep24991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/05/2016] [Indexed: 11/20/2022] Open
Abstract
The hepatitis C virus nonstructural (NS) 3/4A and NS5A proteins are major targets for the new direct-acting antiviral compounds. Both viral proteins have been suggested as modulators of the response to the host cell. We have shown that NS3/4A- and NS5A-specific T cell receptors confer different effector functions, and that killing of NS3/4A-expressing hepatocytes is highly dependent on IFN-γ. We here characterize the functional differences in the T cell responses to NS3/4A and NS5A. NS3/4A- and NS5A-specific T cells could be induced at various frequencies in wild-type-, NS3/4A-, and NS5A-transgenic mice. Priming of NS5A-specific T cells required a high DNA dose, and was unlike NS3/4A dependent on both CD4+ and CD8+ T cells, but less influenced by CD25+/GITR+ regulatory T cells. The presence of IL-12 greatly improved specific CD8+ T cell priming by NS3/4A but not by NS5A, suggesting a less dependence of IFN-γ for NS5A. This notion was supported by the observation that NS5A-specific T cells could eliminate NS5A-expressing hepatocytes also in the absence of IFN-γ-receptor-2. This supports that NS3/4A- and NS5A-specific T cells become activated and eliminate antigen expressing, or infected hepatocytes, by distinct mechanisms, and that NS5A-specific T cells show an overall less dependence of IFN-γ.
Collapse
Affiliation(s)
- Fredrik Holmström
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Margaret Chen
- Department of Dental Medicine, Karolinska Institutet, Huddinge, S-141 04 Stockholm, Sweden
| | - Anangi Balasiddaiah
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden.,Department of Dental Medicine, Karolinska Institutet, Huddinge, S-141 04 Stockholm, Sweden
| | - Matti Sällberg
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Gustaf Ahlén
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| |
Collapse
|
14
|
Abstract
Hepatitis C virus (HCV) is a leading etiology of hepatocellular carcinoma (HCC). The interaction of HCV with its human host is complex and multilayered; stemming in part from the fact that HCV is a RNA virus with no ability to integrate in the host's genome. Direct and indirect mechanisms of HCV-induced HCC include activation of multiple host pathways such as liver fibrogenic pathways, cellular and survival pathways, interaction with the immune and metabolic systems. Host factors also play a major role in HCV-induced HCC as evidenced by genomic studies identifying polymorphisms in immune, metabolic, and growth signaling systems associated with increased risk of HCC. Despite highly effective direct-acting antiviral agents, the morbidity and incidence of liver-related complications of HCV, including HCC, is likely to persist in the near future. Clinical markers to selectively identify HCV subjects at higher risk of developing HCC have been reported however they require further validation, especially in subjects who have experienced sustained virological response. Molecular biomarkers allowing further refinement of HCC risk are starting to be implemented in clinical platforms, allowing objective stratification of risk and leading to individualized therapy and surveillance for HCV individuals. Another role for molecular biomarker-based stratification could be enrichment of HCC chemoprevention clinical trials leading to smaller sample size, shorter trial duration, and reduced costs.
Collapse
Affiliation(s)
- Nicolas Goossens
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Division of Gastroenterology and Hepatology, Geneva University Hospital, Geneva, Switzerland
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
15
|
Vinexin β Interacts with Hepatitis C Virus NS5A, Modulating Its Hyperphosphorylation To Regulate Viral Propagation. J Virol 2015; 89:7385-400. [PMID: 25972535 DOI: 10.1128/jvi.00567-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is essential for HCV genome replication and virion production and is involved in the regulation of multiple host signaling pathways. As a proline-rich protein, NS5A is capable of interacting with various host proteins containing Src homology 3 (SH3) domains. Previous studies have suggested that vinexin, a member of the sorbin homology (SoHo) adaptor family, might be a potential binding partner of NS5A by yeast two-hybrid screening. However, firm evidence for this interaction is lacking, and the significance of vinexin in the HCV life cycle remains unclear. In this study, we demonstrated that endogenously and exogenously expressed vinexin β coimmunoprecipitated with NS5A derived from different HCV genotypes. Two residues, tryptophan (W307) and tyrosine (Y325), in the third SH3 domain of vinexin β and conserved Pro-X-X-Pro-X-Arg motifs at the C terminus of NS5A were indispensable for the vinexin-NS5A interaction. Furthermore, downregulation of endogenous vinexin β significantly suppressed NS5A hyperphosphorylation and decreased HCV replication, which could be rescued by expressing a vinexin β short hairpin RNA-resistant mutant. We also found that vinexin β modulated the hyperphosphorylation of NS5A in a casein kinase 1α-dependent on manner. Taken together, our findings suggest that vinexin β modulates NS5A phosphorylation via its interaction with NS5A, thereby regulating HCV replication, implicating vinexin β in the viral life cycle. IMPORTANCE Hepatitis C virus (HCV) nonstructural protein NS5A is a phosphoprotein, and its phosphorylation states are usually modulated by host kinases and other viral nonstructural elements. Additionally, cellular factors containing Src homology 3 (SH3) domains have been reported to interact with proline-rich regions of NS5A. However, it is unclear whether there are any relationships between NS5A phosphorylation and the NS5A-SH3 interaction, and little is known about the significance of this interaction in the HCV life cycle. In this work, we demonstrate that vinexin β modulates NS5A hyperphosphorylation through the NS5A-vinexin β interaction. Hyperphosphorylated NS5A induced by vinexin β is casein kinase 1α dependent and is also crucial for HCV propagation. Overall, our findings not only elucidate the relationships between NS5A phosphorylation and the NS5A-SH3 interaction but also shed new mechanistic insight on Flaviviridae NS5A (NS5) phosphorylation. We believe that our results may afford the potential to offer an antiviral therapeutic strategy.
Collapse
|
16
|
Parvez MK, Al-Dosari MS. Evidence of MAPK-JNK1/2 activation by hepatitis E virus ORF3 protein in cultured hepatoma cells. Cytotechnology 2015; 67:545-550. [PMID: 25280525 PMCID: PMC4371560 DOI: 10.1007/s10616-014-9785-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/03/2014] [Indexed: 01/24/2023] Open
Abstract
Hepatitis E virus (HEV) has recently emerged to cause chronic infection in some immunosuppressed individuals, including extrahepatic manifestations in acute and chronic patients. Mammalian MAPK-JNK1/2 is expressed in hepatocytes, which is known to be involved in anti-apoptotic signaling pathway for the establishment of persistent infection. Though in vitro modulation of cellular MAPK-ERK cascade by HEV-ORF3 protein is suggested to have a role in host pathobiology, activation of the JNK module has not been studied so far. In this report, we have shown for the first time, evidence of MAPK-JNK1/2 activation by HEV-ORF3, using viral replicon as well as expression vector in human hepatoma cells. Phospho-ELISA based relative quantitaion has demonstrated ~54% and ~66% phosphorylation of JNK1/2 in replicon-RNA and ORF3-vector DNA transfected cells, respectively. Our finding however, suggests further molecular studies to validate a role of JNK1/2 in HEV pathogenesis.
Collapse
Affiliation(s)
- Mohammad Khalid Parvez
- Department of Pharmacognosy, King Saud University College of Pharmacy, PO Box 2457, Riyadh, 11451, Saudi Arabia,
| | | |
Collapse
|
17
|
Kenney SP, Meng XJ. An SH3 binding motif within the nucleocapsid protein of porcine reproductive and respiratory syndrome virus interacts with the host cellular signaling proteins STAMI, TXK, Fyn, Hck, and cortactin. Virus Res 2015; 204:31-9. [PMID: 25882913 DOI: 10.1016/j.virusres.2015.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/02/2015] [Accepted: 04/05/2015] [Indexed: 01/15/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes an economically important global swine disease, and has a complicated virus-host immunomodulation that often leads to a weak Th2 immune response and viral persistence. In this study, we identified a Src homology 3 (SH3) binding motif, PxxPxxP, that is conserved within the N protein of PRRSV strains. Subsequently, we identified five host cellular proteins [signal transducing adaptor molecule (STAM)I, TXK tyrosine kinase (TXK), protein tyrosine kinase fyn (Fyn), hematopoietic cell kinase (Hck), and cortactin] that interact with this SH3 motif. We demonstrated that binding of SH3 proteins with PRRSV N protein depends on at least one intact PxxP motif as disruption of P53 within the motif significantly reduced interaction of each of the 5 proteins. The first PxxP motif appears to be more important for STAMI-N protein interactions whereas the second PxxP motif was more important for Hck interaction. Both STAMI and Hck interactions with PRRSV N protein required an unhindered C-terminal domain as the interaction was only observed with STAMI and Hck proteins with N-terminal but not C-terminal fluorescent tags. We showed that the P56 residue within the SH3 motif is critical for virus lifecycle as mutation resulted in a loss of virus infectivity, however the P50 and P53 mutations did not abolish virus infectivity suggesting that these highly conserved proline residues within the SH3 motif may provide a selective growth advantage through interactions with the host rather than a vital functional element. These results have important implications in understanding PRRSV-host interactions.
Collapse
Affiliation(s)
- Scott P Kenney
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Xiang-Jin Meng
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
| |
Collapse
|
18
|
Igloi Z, Kazlauskas A, Saksela K, Macdonald A, Mankouri J, Harris M. Hepatitis C virus NS5A protein blocks epidermal growth factor receptor degradation via a proline motif- dependent interaction. J Gen Virol 2015; 96:2133-2144. [PMID: 25872741 PMCID: PMC4681064 DOI: 10.1099/vir.0.000145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) establishes a persistent infection that in many cases leads to cirrhosis and hepatocellular carcinoma. The non-structural 5A protein (NS5A) has been implicated in this process as it contains a C-terminal polyproline motif (termed P2) that binds to Src homology 3 (SH3) domains to regulate cellular signalling and trafficking pathways. We have shown previously that NS5A impaired epidermal growth factor (EGF) receptor (EGFR) endocytosis, thereby inhibiting EGF-stimulated EGFR degradation by a mechanism that remained unclear. As EGFR has been implicated in HCV cell entry and trafficking of the receptor involves several SH3-domain containing proteins, we investigated in more detail the mechanisms by which NS5A perturbs EGFR trafficking. We demonstrated that the P2 motif was required for the NS5A-mediated disruption to EGFR trafficking. We further demonstrated that the P2 motif was required for an interaction between NS5A and CMS, a homologue of CIN85 that has previously been implicated in EGFR endocytosis. We provided evidence that CMS was involved in the NS5A-mediated perturbation of EGFR trafficking. We also showed that NS5A effected a loss of EGFR ubiquitination in a P2-motif-dependent fashion. These data provide clues to the mechanism by which NS5A regulates the trafficking of a key cellular receptor and demonstrate for the first time the ability of NS5A to regulate host cell ubiquitination pathways.
Collapse
Affiliation(s)
- Zsofia Igloi
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Arunas Kazlauskas
- Department of Virology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland
| | - Kalle Saksela
- Department of Virology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
19
|
Bacarizo J, Martínez-Rodríguez S, Cámara-Artigas A. Structure of the c-Src-SH3 domain in complex with a proline-rich motif of NS5A protein from the hepatitis C virus. J Struct Biol 2014; 189:67-72. [PMID: 25447263 DOI: 10.1016/j.jsb.2014.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
The non-structural hepatitis C virus proteins NS5A and NS5B form a complex through interaction with the SH2 and SH3 domains of the non-receptor Src tyrosine kinase, which seems essential for viral replication. We have crystallized the complex between the SH3 domain of the c-Src tyrosine kinase and the C-terminal proline rich motif of the NS5A protein (A349PPIPPPRRKR359). Crystals obtained at neutral pH belong to the space group I41, with a single molecule of the SH3/NS5A complex at the asymmetric unit. The NS5A peptide is bound in a reverse orientation (class II) and the comparison of this structure with those of the high affinity synthetic peptides APP12 and VSL12 shows some important differences at the salt bridge that drives the peptide orientation. Further conformational changes in residues placed apart from the binding site also seem to play an important role in the binding orientation of this peptide. Our results show the interaction of the SH3 domain of the c-Src tyrosine kinase with a proline rich motif in the NS5A protein and point to their potential interaction in vivo.
Collapse
Affiliation(s)
- Julio Bacarizo
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence (ceiA3), Carretera de Sacramento s/n, Almería 04120, Spain
| | - Sergio Martínez-Rodríguez
- Department of Physical Chemistry, University of Granada, Avda. de Fuentenueva s/n, Granada 18071, Spain
| | - Ana Cámara-Artigas
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence (ceiA3), Carretera de Sacramento s/n, Almería 04120, Spain.
| |
Collapse
|
20
|
Hoshida Y, Fuchs BC, Bardeesy N, Baumert TF, Chung RT. Pathogenesis and prevention of hepatitis C virus-induced hepatocellular carcinoma. J Hepatol 2014; 61:S79-90. [PMID: 25443348 PMCID: PMC4435677 DOI: 10.1016/j.jhep.2014.07.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV) is one of the major aetiologic agents that causes hepatocellular carcinoma (HCC) by generating an inflammatory, fibrogenic, and carcinogenic tissue microenvironment in the liver. HCV-induced HCC is a rational target for cancer preventive intervention because of the clear-cut high-risk condition, cirrhosis, associated with high cancer incidence (1% to 7% per year). Studies have elucidated direct and indirect carcinogenic effects of HCV, which have in turn led to the identification of candidate HCC chemoprevention targets. Selective molecular targeted agents may enable personalized strategies for HCC chemoprevention. In addition, multiple experimental and epidemiological studies suggest the potential value of generic drugs or dietary supplements targeting inflammation, oxidant stress, or metabolic derangements as possible HCC chemopreventive agents. While the successful use of highly effective direct-acting antiviral agents will make important inroads into reducing long-term HCC risk, there will remain an important role for HCC chemoprevention even after viral cure, given the persistence of HCC risk in persons with advanced HCV fibrosis, as shown in recent studies. The successful development of cancer preventive therapies will be more challenging compared to cancer therapeutics because of the requirement for larger and longer clinical trials and the need for a safer toxicity profile given its use as a preventive agent. Molecular biomarkers to selectively identify high-risk population could help mitigate these challenges. Genome-wide, unbiased molecular characterization, high-throughput drug/gene screening, experimental model-based functional analysis, and systems-level in silico modelling are expected to complement each other to facilitate discovery of new HCC chemoprevention targets and therapies.
Collapse
Affiliation(s)
- Yujin Hoshida
- Liver Cancer Program, Tisch Cancer Institute, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, United States.
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, United States
| | - Nabeel Bardeesy
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, United States
| | - Thomas F Baumert
- INSERM Unité 1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, and Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, France; Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, United States
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, United States.
| |
Collapse
|
21
|
Cordek DG, Croom-Perez TJ, Hwang J, Hargittai MRS, Subba-Reddy CV, Han Q, Lodeiro MF, Ning G, McCrory TS, Arnold JJ, Koc H, Lindenbach BD, Showalter SA, Cameron CE. Expanding the proteome of an RNA virus by phosphorylation of an intrinsically disordered viral protein. J Biol Chem 2014; 289:24397-416. [PMID: 25031324 DOI: 10.1074/jbc.m114.589911] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human proteome contains myriad intrinsically disordered proteins. Within intrinsically disordered proteins, polyproline-II motifs are often located near sites of phosphorylation. We have used an unconventional experimental paradigm to discover that phosphorylation by protein kinase A (PKA) occurs in the intrinsically disordered domain of hepatitis C virus non-structural protein 5A (NS5A) on Thr-2332 near one of its polyproline-II motifs. Phosphorylation shifts the conformational ensemble of the NS5A intrinsically disordered domain to a state that permits detection of the polyproline motif by using (15)N-, (13)C-based multidimensional NMR spectroscopy. PKA-dependent proline resonances were lost in the presence of the Src homology 3 domain of c-Src, consistent with formation of a complex. Changing Thr-2332 to alanine in hepatitis C virus genotype 1b reduced the steady-state level of RNA by 10-fold; this change was lethal for genotype 2a. The lethal phenotype could be rescued by changing Thr-2332 to glutamic acid, a phosphomimetic substitution. Immunofluorescence and transmission electron microscopy showed that the inability to produce Thr(P)-2332-NS5A caused loss of integrity of the virus-induced membranous web/replication organelle. An even more extreme phenotype was observed in the presence of small molecule inhibitors of PKA. We conclude that the PKA-phosphorylated form of NS5A exhibits unique structure and function relative to the unphosphorylated protein. We suggest that post-translational modification of viral proteins containing intrinsic disorder may be a general mechanism to expand the viral proteome without a corresponding expansion of the genome.
Collapse
Affiliation(s)
| | | | - Jungwook Hwang
- the Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul, 133-791, Korea
| | | | - Chennareddy V Subba-Reddy
- the Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, and
| | - Qingxia Han
- From the Department of Biochemistry and Molecular Biology
| | | | - Gang Ning
- the Huck Institutes of the Life Sciences, and
| | | | - Jamie J Arnold
- From the Department of Biochemistry and Molecular Biology
| | - Hasan Koc
- the Department of Pharmaceutical Science and Research, Marshall University School of Pharmacy, Huntington, West Virginia 25755
| | - Brett D Lindenbach
- the Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, and
| | - Scott A Showalter
- the Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| | | |
Collapse
|
22
|
Seed sequence-matched controls reveal limitations of small interfering RNA knockdown in functional and structural studies of hepatitis C virus NS5A-MOBKL1B interaction. J Virol 2014; 88:11022-33. [PMID: 25031347 DOI: 10.1128/jvi.01582-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) is a widespread human pathogen causing liver cirrhosis and cancer. Similar to the case for other viruses, HCV depends on host and viral factors to complete its life cycle. We used proteomic and yeast two-hybrid approaches to elucidate host factors involved in HCV nonstructural protein NS5A function and found that MOBKL1B interacts with NS5A. Initial experiments with small interfering RNA (siRNA) knockdown suggesting a role in HCV replication led us to examine the interaction using biochemical and structural approaches. As revealed by a cocrystal structure of a core MOBKL1B-NS5A peptide complex at 1.95 Å, NS5A binds to a hydrophobic patch on the MOBKL1B surface. Biosensor binding assays identified a highly conserved, 18-amino-acid binding site in domain II of NS5A, which encompasses residues implicated in cyclophilin A (CypA)-dependent HCV RNA replication. However, a CypA-independent HCV variant had reduced replication in MOBKL1B knockdown cells, even though its NS5A does not interact with MOBKL1B. These discordant results prompted more extensive studies of MOBKL1B gene knockdowns, which included additional siRNAs and specifically matched seed sequence siRNA controls. We found that reduced virus replication after treating cells with MOBKL1B siRNA was actually due to off-target inhibition, which indicated that the initial finding of virus replication dependence on the MOBKL1B-NS5A interaction was incorrect. Ultimately, using several approaches, we found no relationship of the MOBKL1B-NS5A interaction to virus replication. These findings collectively serve as a reminder to investigators and scientific reviewers of the pervasive impact of siRNA off-target effects on interpretation of biological data. IMPORTANCE Our study illustrates an underappreciated shortcoming of siRNA gene knockdown technology. We initially identified a cellular protein, MOBKL1B, as a binding partner with the NS5A protein of hepatitis C virus (HCV). MOBKL1B siRNA, but not irrelevant RNA, treatment was associated with both reduced virus replication and the absence of MOBKL1B. Believing that HCV replication depended on the MOBKL1B-NS5A interaction, we carried out structural and biochemical analyses. Unexpectedly, an HCV variant lacking the MOBKL1B-NS5A interaction could not replicate after cells were treated with MOBKL1B siRNA. By repeating the MOBKL1B siRNA knockdowns and including seed sequence-matched siRNA instead of irrelevant siRNA as a control, we found that the MOBKL1B siRNAs utilized had off-target inhibitory effects on virus replication. Collectively, our results suggest that stricter controls must be utilized in all RNA interference (RNAi)-mediated gene knockdown experiments to ensure sound conclusions and a reliable scientific knowledge database.
Collapse
|
23
|
Shrinet J, Jain S, Jain J, Bhatnagar RK, Sunil S. Next generation sequencing reveals regulation of distinct Aedes microRNAs during chikungunya virus development. PLoS Negl Trop Dis 2014; 8:e2616. [PMID: 24421911 PMCID: PMC3888459 DOI: 10.1371/journal.pntd.0002616] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/20/2013] [Indexed: 12/20/2022] Open
Abstract
Background Application of genomics and Next Generation sequencing has led to the identification of new class of cellular functional molecules, namely, small RNAs. Of the several classes of ncRNAs (non-coding RNA), microRNAs have been demonstrated to exert determinative influence on various cellular processes. It is becoming abundantly clear that host/vector/pathogen encoded microRNAs impact eventual pathogenesis. In this context, the participation of vector based microRNAs in disease transmission and pathogen development is being investigated intensively. A few studies have highlighted the role of vector encoded microRNAs in pathogen infection. We conducted this study to evaluate the role of host miRNAs upon CHIKV (Chikungunya Virus) infection in an important vector, Aedes albopictus. Findings We identified 88 and 79 known miRNAs in uninfected and CHIKV infected Ae. albopictus Singh's cell line respectively. We further identified nine novel miRNAs in Ae. albopictus. Comparison of the two libraries revealed differential expression of 77 common miRNAs between them. CHIKV infection specifically altered the miRNA profile of a specific set of eight miRNAs. Putative targets of these regulated miRNAs were identified and classified into their pathways. Conclusions In our study we have identified and described the profiles of various miRNAs upon CHIKV infection in Ae. albopictus. This investigation provides an insight about cellular modification by miRNAs during CHIKV infection and the results provide leads for identifying potential candidates for vector based antiviral strategies. Small, non-coding, RNAs such as microRNAs (miRNA) of length 18–24 nucleotide are reported in wide range of organisms and known to play a determinative role in regulation of various cellular processes. They have also reported to have regulatory roles during pathogen infection, maturation and transmission. Chikungunya virus is an important alphavirus transmitted through two important vectors, Aedes aegypti and Ae. albopictus. While Ae. aegypti has been the preferred vector for transmission of this virus, recently, Ae. albopictus has gained notoriety for disease transmission. Using Illumina platform, we sequenced the small RNA population an Aedes albopictus cell line infected with chikungunya virus. We studied the expression modulation of miRNAs upon CHIKV infection and found distinct set of miRNAs regulated in Aedes upon CHIKV infection. We further predicted the targets of these miRNAs and performed pathway analysis of these targets. The cellular functional targets of some of these miRNAs overlapped suggesting aggressive participation of the targeted pathways in establishing CHIKV infection.
Collapse
Affiliation(s)
- Jatin Shrinet
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shanu Jain
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Jaspreet Jain
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Raj K. Bhatnagar
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- * E-mail: (RKB); (SS)
| | - Sujatha Sunil
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- * E-mail: (RKB); (SS)
| |
Collapse
|
24
|
Schwarten M, Sólyom Z, Feuerstein S, Aladağ A, Hoffmann S, Willbold D, Brutscher B. Interaction of Nonstructural Protein 5A of the Hepatitis C Virus with Src Homology 3 Domains Using Noncanonical Binding Sites. Biochemistry 2013; 52:6160-8. [DOI: 10.1021/bi400363v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Melanie Schwarten
- Institut
de Biologie Structurale, Université Grenoble 1, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National de Recherche Scientifique (CNRS), Grenoble, France
- Institute
of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Zsófia Sólyom
- Institut
de Biologie Structurale, Université Grenoble 1, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Sophie Feuerstein
- Institut
de Biologie Structurale, Université Grenoble 1, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Amine Aladağ
- Institute
of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Silke Hoffmann
- Institute
of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dieter Willbold
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Institute
of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Bernhard Brutscher
- Institut
de Biologie Structurale, Université Grenoble 1, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National de Recherche Scientifique (CNRS), Grenoble, France
| |
Collapse
|
25
|
Amako Y, Igloi Z, Mankouri J, Kazlauskas A, Saksela K, Dallas M, Peers C, Harris M. Hepatitis C virus NS5A inhibits mixed lineage kinase 3 to block apoptosis. J Biol Chem 2013; 288:24753-63. [PMID: 23857585 PMCID: PMC3750171 DOI: 10.1074/jbc.m113.491985] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/12/2013] [Indexed: 01/28/2023] Open
Abstract
Hepatitis C virus (HCV) infection results in the activation of numerous stress responses including oxidative stress, with the potential to induce an apoptotic state. Previously we have shown that HCV attenuates the stress-induced, p38MAPK-mediated up-regulation of the K(+) channel Kv2.1, to maintain the survival of infected cells in the face of cellular stress. We demonstrated that this effect was mediated by HCV non-structural 5A (NS5A) protein, which impaired p38MAPK activity through a polyproline motif-dependent interaction, resulting in reduction of phosphorylation activation of Kv2.1. In this study, we investigated the host cell proteins targeted by NS5A to mediate Kv2.1 inhibition. We screened a phage-display library expressing the entire complement of human SH3 domains for novel NS5A-host cell interactions. This analysis identified mixed lineage kinase 3 (MLK3) as a putative NS5A interacting partner. MLK3 is a serine/threonine protein kinase that is a member of the MAPK kinase kinase (MAP3K) family and activates p38MAPK. An NS5A-MLK3 interaction was confirmed by co-immunoprecipitation and Western blot analysis. We further demonstrate a novel role of MLK3 in the modulation of Kv2.1 activity, whereby MLK3 overexpression leads to the up-regulation of channel activity. Accordingly, coexpression of NS5A suppressed this stimulation. Additionally we demonstrate that overexpression of MLK3 induced apoptosis, which was also counteracted by NS5A. We conclude that NS5A targets MLK3 with multiple downstream consequences for both apoptosis and K(+) homeostasis.
Collapse
Affiliation(s)
- Yutaka Amako
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and
| | - Zsofia Igloi
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and
| | - Jamel Mankouri
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and
| | - Arunas Kazlauskas
- the Department of Virology, Haartman Institute, University of Helsinki Central Hospital, University of Helsinki and HUSLAB, FI-00014 Helsinki, Finland
| | - Kalle Saksela
- the Department of Virology, Haartman Institute, University of Helsinki Central Hospital, University of Helsinki and HUSLAB, FI-00014 Helsinki, Finland
| | - Mark Dallas
- the Division of Cardiovascular and Diabetes Research, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Chris Peers
- the Division of Cardiovascular and Diabetes Research, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Mark Harris
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and
| |
Collapse
|
26
|
Ghosh S, Kaplan KJ, Schrum LW, Bonkovsky HL. Cytoskeletal proteins: shaping progression of hepatitis C virus-induced liver disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:279-319. [PMID: 23351713 DOI: 10.1016/b978-0-12-407699-0.00005-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) infection, which results in chronic hepatitis C (CHC) in most patients (70-85%), is a major cause of liver disease and remains a major therapeutic challenge. The mechanisms determining liver damage and the key factors that lead to a high rate of CHC remain imperfectly understood. The precise role of cytoskeletal (CS) proteins in HCV infection remains to be determined. Some studies including our recent study have demonstrated that changes occur in the expression of CS proteins in HCV-infected hepatocytes. A variety of host proteins interact with HCV proteins. Association between CS and HCV proteins may have implications in future design of CS protein-targeted therapy for the treatment for HCV infection. This chapter will focus on the interaction between host CS and viral proteins to signify the importance of this event in HCV entry, replication and transportation.
Collapse
Affiliation(s)
- Sriparna Ghosh
- Liver-Biliary-Pancreatic Center, Carolinas Medical Center, and School of Medicine, University of North Carolina, Carolinas Medical Center, Charlotte, NC, USA.
| | | | | | | |
Collapse
|
27
|
Ke PY, Chen SSL. Hepatitis C virus and cellular stress response: implications to molecular pathogenesis of liver diseases. Viruses 2012. [PMID: 23202463 PMCID: PMC3497051 DOI: 10.3390/v4102251] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infection with hepatitis C virus (HCV) is a leading risk factor for chronic liver disease progression, including steatosis, cirrhosis, and hepatocellular carcinoma. With approximately 3% of the human population infected worldwide, HCV infection remains a global public health challenge. The efficacy of current therapy is still limited in many patients infected with HCV, thus a greater understanding of pathogenesis in HCV infection is desperately needed. Emerging lines of evidence indicate that HCV triggers a wide range of cellular stress responses, including cell cycle arrest, apoptosis, endoplasmic reticulum (ER) stress/unfolded protein response (UPR), and autophagy. Also, recent studies suggest that these HCV-induced cellular responses may contribute to chronic liver diseases by modulating cell proliferation, altering lipid metabolism, and potentiating oncogenic pathways. However, the molecular mechanism underlying HCV infection in the pathogenesis of chronic liver diseases still remains to be determined. Here, we review the known stress response activation in HCV infection in vitro and in vivo, and also explore the possible relationship of a variety of cellular responses with the pathogenicity of HCV-associated diseases. Comprehensive knowledge of HCV-mediated disease progression shall shed new insights into the discovery of novel therapeutic targets and the development of new intervention strategy.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33371, Taiwan, Republic of China; (P.-Y.K.)
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Steve S.-L. Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China
- Author to whom correspondence should be addressed; (S.-L.C.); Tel.: +886-2-2652-3933, Fax: +886-2-2652-3073
| |
Collapse
|
28
|
Asmal M, Seaman M, Lin W, Chung RT, Letvin NL, Geiben-Lynn R. Inhibition of HCV by the serpin antithrombin III. Virol J 2012; 9:226. [PMID: 23031791 PMCID: PMC3519617 DOI: 10.1186/1743-422x-9-226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 09/27/2012] [Indexed: 12/21/2022] Open
Abstract
Background Although there have been dramatic strides made recently in the treatment of chronic hepatitis C virus infection, interferon-α based therapy remains challenging for certain populations, including those with unfavorable IL28B genotypes, psychiatric co-morbidity, HIV co-infection, and decompensated liver disease. We have recently shown that ATIII, a serine protease inhibitor (serpin), has broad antiviral properties. Results We now show that ATIII is capable of inhibiting HCV in the OR6 replicon model at micromolar concentrations. At a mechanistic level using gene-expression arrays, we found that ATIII treatment down-regulated multiple host cell signal transduction factors involved in the pathogenesis of cirrhosis and hepatocellular carcinoma, including Jun, Myc and BMP2. Using a protein interactive network analysis we found that changes in gene-expression caused by ATIII were dependent on three nodes previously implicated in HCV disease progression or HCV replication: NFκB, P38 MAPK, and ERK1/2. Conclusions Our findings suggest that ATIII stimulates a novel innate antiviral host cell defense different from current treatment options.
Collapse
Affiliation(s)
- Mohammed Asmal
- Division of Viral Pathogenesis, BIDMC, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Regulation of neuronal proapoptotic potassium currents by the hepatitis C virus nonstructural protein 5A. J Neurosci 2012; 32:8865-70. [PMID: 22745487 DOI: 10.1523/jneurosci.0937-12.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Apoptosis-enabling neuronal potassium efflux is mediated by an enhancement of K+ currents. In cortical neurons, increased currents are triggered by dual phosphorylation of Kv2.1 by Src and p38 at channel residues Y124 and S800. It was recently shown that a K+ current surge is also present in hepatocytes undergoing apoptosis, and that the hepatitis C virus (HCV) nonstructural protein 5A (NS5A) could inhibit Kv2.1-mediated currents and block cell death. Here, we show that NS5A1b (from HCV genotype 1b) expression in rat neurons depresses delayed rectifier potassium currents, limits the magnitude of the K+ current surge following exposure to activated microglia, and is neuroprotective. In a non-neuronal recombinant expression system, cells expressing Kv2.1 mutated at residue Y124, but not S800 mutants, are insensitive to NS5A1b-mediated current inhibition. Accordingly, NS5A1b coexpression prevents phosphorylation of wild-type Kv2.1 by Src at Y124, but is unable to inhibit p38 phosphorylation of the channel at S800. The actions of the viral protein are genotype-selective, as NS5A1a does not depress neuronal potassium currents nor inhibit Src phosphorylation of Kv2.1. Our results indicate that NS5A1b limits K+ currents following injury, leading to increased neuronal viability. NS5A1b may thus serve as a model for a new generation of neuroprotective agents.
Collapse
|
30
|
Modulation of autophagy-like processes by tumor viruses. Cells 2012; 1:204-47. [PMID: 24710474 PMCID: PMC3901111 DOI: 10.3390/cells1030204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an intracellular degradation pathway for long-lived proteins and organelles. This process is activated above basal levels upon cell intrinsic or environmental stress and dysregulation of autophagy has been linked to various human diseases, including those caused by viral infection. Many viruses have evolved strategies to directly interfere with autophagy, presumably to facilitate their replication or to escape immune detection. However, in some cases, modulation of autophagy appears to be a consequence of the virus disturbing the cell’s metabolic signaling networks. Here, we summarize recent advances in research at the interface of autophagy and viral infection, paying special attention to strategies that human tumor viruses have evolved.
Collapse
|
31
|
Scheel TKH, Prentoe J, Carlsen THR, Mikkelsen LS, Gottwein JM, Bukh J. Analysis of functional differences between hepatitis C virus NS5A of genotypes 1-7 in infectious cell culture systems. PLoS Pathog 2012; 8:e1002696. [PMID: 22654662 PMCID: PMC3359982 DOI: 10.1371/journal.ppat.1002696] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/27/2012] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) is an important cause of chronic liver disease. Several highly diverse HCV genotypes exist with potential key functional differences. The HCV NS5A protein was associated with response to interferon (IFN)-α based therapy, and is a primary target of currently developed directly-acting antiviral compounds. NS5A is important for replication and virus production, but has not been studied for most HCV genotypes. We studied the function of NS5A using infectious NS5A genotype 1-7 cell culture systems, and through reverse genetics demonstrated a universal importance of the amphipathic alpha-helix, domain I and II and the low-complexity sequence (LCS) I for HCV replication; the replicon-enhancing LCSI mutation S225P attenuated all genotypes. Mutation of conserved prolines in LCSII led to minor reductions in virus production for the JFH1(genotype 2a) NS5A recombinant, but had greater effects on other isolates; replication was highly attenuated for ED43(4a) and QC69(7a) recombinants. Deletion of the conserved residues 414-428 in domain III reduced virus production for most recombinants but not JFH1(2a). Reduced virus production was linked to attenuated replication in all cases, but ED43(4a) and SA13(5a) also displayed impaired particle assembly. Compared to the original H77C(1a) NS5A recombinant, the changes in LCSII and domain III reduced the amounts of NS5A present. For H77C(1a) and TN(1a) NS5A recombinants, we observed a genetic linkage between NS5A and p7, since introduced changes in NS5A led to changes in p7 and vice versa. Finally, NS5A function depended on genotype-specific residues in domain I, as changing genotype 2a-specific residues to genotype 1a sequence and vice versa led to highly attenuated mutants. In conclusion, this study identified NS5A genetic elements essential for all major HCV genotypes in infectious cell culture systems. Genotype- or isolate- specific NS5A functional differences were identified, which will be important for understanding of HCV NS5A function and therapeutic targeting.
Collapse
Affiliation(s)
| | | | | | | | | | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre and Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Feuerstein S, Solyom Z, Aladag A, Favier A, Schwarten M, Hoffmann S, Willbold D, Brutscher B. Transient structure and SH3 interaction sites in an intrinsically disordered fragment of the hepatitis C virus protein NS5A. J Mol Biol 2012; 420:310-23. [PMID: 22543239 DOI: 10.1016/j.jmb.2012.04.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/21/2012] [Indexed: 12/01/2022]
Abstract
Understanding the molecular mechanisms involved in virus replication and particle assembly is of primary fundamental and biomedical importance. Intrinsic conformational disorder plays a prominent role in viral proteins and their interaction with other viral and host cell proteins via transiently populated structural elements. Here, we report on the results of an investigation of an intrinsically disordered 188-residue fragment of the hepatitis C virus non-structural protein 5A (NS5A), which contains a classical poly-proline Src homology 3 (SH3) binding motif, using sensitivity- and resolution-optimized multidimensional NMR methods, complemented by small-angle X-ray scattering data. Our study provides detailed atomic-resolution information on transient local and long-range structure, as well as fast time scale dynamics in this NS5A fragment. In addition, we could characterize two distinct interaction modes with the SH3 domain of Bin1 (bridging integrator protein 1), a pro-apoptotic tumor suppressor. Despite being largely disordered, the protein contains three regions that transiently adopt α-helical structures, partly stabilized by long-range tertiary interactions. Two of these transient α-helices form a noncanonical SH3-binding motif, which allows low-affinity SH3 binding. Our results contribute to a better understanding of the role of the NS5A protein during hepatitis C virus infection. The present work also highlights the power of NMR spectroscopy to characterize multiple binding events including short-lived transient interactions between globular and highly disordered proteins.
Collapse
Affiliation(s)
- Sophie Feuerstein
- Institut de Biologie Structurale, Université Grenoble 1, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sofia MJ, Chang W, Furman PA, Mosley RT, Ross BS. Nucleoside, nucleotide, and non-nucleoside inhibitors of hepatitis C virus NS5B RNA-dependent RNA-polymerase. J Med Chem 2012; 55:2481-531. [PMID: 22185586 DOI: 10.1021/jm201384j] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michael J Sofia
- Pharmasset, Inc., 303A College Road East, Princeton, New Jersey 08540, United States.
| | | | | | | | | |
Collapse
|
34
|
Kwofie SK, Schaefer U, Sundararajan VS, Bajic VB, Christoffels A. HCVpro: Hepatitis C virus protein interaction database. INFECTION GENETICS AND EVOLUTION 2011; 11:1971-7. [PMID: 21930248 DOI: 10.1016/j.meegid.2011.09.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/24/2011] [Accepted: 09/02/2011] [Indexed: 02/07/2023]
|
35
|
Activation of the Ras/Raf/MEK pathway facilitates hepatitis C virus replication via attenuation of the interferon-JAK-STAT pathway. J Virol 2011; 86:1544-54. [PMID: 22114332 DOI: 10.1128/jvi.00688-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver diseases worldwide, often leading to the development of hepatocellular carcinoma (HCC). Constitutive activation of the Ras/Raf/MEK pathway is responsible for approximately 30% of cancers. Here we attempted to address the correlation between activation of this pathway and HCV replication. We showed that knockdown of Raf1 inhibits HCV replication, while activation of the Ras/Raf/MEK pathway by V12, a constitutively active form of Ras, stimulates HCV replication. We further demonstrated that this effect is regulated through attenuation of the interferon (IFN)-JAK-STAT pathway. Activation of the Ras/Raf/MEK pathway downregulates the expression of IFN-stimulated genes (ISGs), attenuates the phosphorylation of STAT1/2, and inhibits the expression of interferon (alpha, beta, and omega) receptors 1 and 2 (IFNAR1/2). Furthermore, we observed that HCV infection activates the Ras/Raf/MEK pathway. Thus, we propose that during HCV infection, the Ras/Raf/MEK pathway is activated, which in turn attenuates the IFN-JAK-STAT pathway, resulting in stimulation of HCV replication.
Collapse
|
36
|
GRB2 interaction with the ecotropic murine leukemia virus receptor, mCAT-1, controls virus entry and is stimulated by virus binding. J Virol 2011; 86:1421-32. [PMID: 22090132 DOI: 10.1128/jvi.05993-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For retroviruses such as HIV-1 and murine leukemia virus (MLV), active receptor recruitment and trafficking occur during viral entry. However, the underlying mechanisms and cellular factors involved in the process are largely uncharacterized. The viral receptor for ecotropic MLV (eMLV), a classical model for retrovirus infection mechanisms and pathogenesis, is mouse cationic amino acid transporter 1 (mCAT-1). Growth factor receptor-bound protein 2 (GRB2) is an adaptor protein that has been shown to couple cell surface receptors, such as epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor, to intracellular signaling events. Here we examined if GRB2 could also play a role in controlling infection by retroviruses by affecting receptor function. The GRB2 RNA interference (RNAi)-mediated suppression of endogenous GRB2 resulted in a consistent and significant reduction of virus binding and membrane fusion. The binding between eMLV and cells promoted increased GRB2-mCAT-1 interactions, as detected by immunoprecipitation. Consistently, the increased colocalization of GRB2 and mCAT-1 signals was detected by confocal microscopy. This association was time dependent and paralleled the kinetics of cell-virus membrane fusion. Interestingly, unlike the canonical binding pattern seen for GRB2 and growth factor receptors, GRB2-mCAT-1 binding does not depend on the GRB2-SH2 domain-mediated recognition of tyrosine phosphorylation on the receptor. The inhibition of endogenous GRB2 led to a reduction in surface levels of mCAT-1, which was detected by immunoprecipitation and by a direct binding assay using a recombinant MLV envelope protein receptor binding domain (RBD). Consistent with this observation, the expression of a dominant negative GRB2 mutant (R86K) resulted in the sequestration of mCAT-1 from the cell surface into intracellular vesicles. Taken together, these findings suggest a novel role for GRB2 in ecotropic MLV entry and infection by facilitating mCAT-1 trafficking.
Collapse
|
37
|
Cordek DG, Bechtel JT, Maynard AT, Kazmierski WM, Cameron CE. TARGETING THE NS5A PROTEIN OF HCV: AN EMERGING OPTION. DRUG FUTURE 2011; 36:691-711. [PMID: 23378700 PMCID: PMC3558953 DOI: 10.1358/dof.2011.036.09.1641618] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Hepatitis C virus (HCV) infects more than 3% of the world's population, leading to an increased risk of cirrhosis and hepatocellular carcinoma. The current standard of care, a combination of pegylated interferon alfa and ribavirin, is poorly tolerated and often ineffective against the most prevalent genotype of the virus, genotype 1. The very recent approval of boceprevir and telaprevir, two HCV protease inhibitors, promises to significantly improve treatment options and outcomes. In addition to the viral protease NS3 and the viral polymerase NS5B, direct-acting antivirals are now in development against NS5A. A multifunctional phosphoprotein, NS5A is essential to HCV genome replication, but has no known enzymatic function. Here we report how the design of small-molecule inhibitors against NS5A has evolved from promising monomers to highly potent dimeric compounds effective against many HCV genotypes. We also highlight recent clinical data and how the inhibitors may bind to NS5A, itself capable of forming dimers.
Collapse
Affiliation(s)
- D G Cordek
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
38
|
Wang YZ, Wang WB, Cao MM, Wang W, Zhao LJ, Xu G, Ren H, Qi ZT. Function of nonstructural 5A protein of genotype 2a in replication and infection of HCV with gene substitution. World J Gastroenterol 2011; 17:3398-406. [PMID: 21876632 PMCID: PMC3160566 DOI: 10.3748/wjg.v17.i29.3398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/26/2011] [Accepted: 03/05/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the function of Nonstructural 5A (NS5A) protein of genotype 2a (JFH1) in the replication and infection of hepatitis C virus (HCV).
METHODS: Intergenotypic chimera FL-J6JFH/J4NS5A was constructed by inserting NS5A gene from 1b stain HC-J4 by the overlapping polymerase chain reaction (PCR) method and the restriction enzyme reaction. In vitro RNA transcripts of chimera, prototype J6JFH and negative control J6JFH1 (GND) were prepared and transfected into Huh-7.5 cells with liposomes. Immunofluorescence assay (IFA), fluorescence quantitative PCR and infection assay were performed to determine the protein expression and gene replication in Huh-7.5 cells.
RESULTS: The HCV RNA levels in FL-J6JFH/J4NS5A chimera RNA transfected cells were significantly lower than the wild type at any indicated time point (2.58 ± 5.97 × 106vs 4.27 ± 1.72 × 104, P = 0.032). The maximal level of HCV RNA in chimera was 5.6 ± 1.8 × 104 GE/μg RNA at day 34 after transfection, while the wild type reached a peak level at day 13 which was 126 folds higher (70.65 ± 14.11 × 105vs 0.56 ± 0.90 × 105, P = 0.028). HCV proteins could also be detected by IFA in chimera-transfected cells with an obviously low level. Infection assay showed that FL-J6JFH/J4NS5A chimera could produce infectious virus particles, ranging from 10 ± 5 ffu/mL to 78.3 ± 23.6 ffu/mL, while that of FL-J6JFH1 ranged from 5.8 ± 1.5 × 102 ffu/mL to 2.5 ± 1.4 × 104 ffu/mL.
CONCLUSION: JFH1 NS5A might play an important role in the robust replication of J6JFH1. The establishment of FL-J6JFH/J4NS5A provided a useful platform for studying the function of other proteins of HCV.
Collapse
|
39
|
Zemel R, Issachar A, Tur-Kaspa R. The role of oncogenic viruses in the pathogenesis of hepatocellular carcinoma. Clin Liver Dis 2011; 15:261-79, vii-x. [PMID: 21689612 DOI: 10.1016/j.cld.2011.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
HBV and HCV have major roles in hepatocarcinogenesis. More than 500 million people are infected with hepatitis viruses and, therefore, HCC is highly prevalent, especially in those countries endemic for HBV and HCV. Viral and host factors contribute to the development of HCC. The main viral factors include the circulating load of HBV DNA or HCV RNA and specific genotypes. Various mechanisms are involved in the host-viral interactions that lead to HCC development, among which are genetic instability, self-sufficiency in growth signals, insensitivity to antigrowth signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and tissue invasiveness. Prevention of HBV by vaccination, as well as antiviral therapy against HBV and for HCV seem able to inhibit the development of HCC.
Collapse
Affiliation(s)
- Romy Zemel
- Department of Medicine D and the Liver Institute, Rabin Medical Center, Beilinson Hospital, Molecular Hepatology Research Laboratory, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, 39 Jabotinsky Street, Petah-Tikva 49100, Israel
| | | | | |
Collapse
|
40
|
Antiviral stilbene 1,2-diamines prevent initiation of hepatitis C virus RNA replication at the outset of infection. J Virol 2011; 85:5513-23. [PMID: 21430055 DOI: 10.1128/jvi.02116-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The recent development of a cell culture model of hepatitis C virus (HCV) infection based on the JFH-1 molecular clone has enabled discovery of new antiviral agents. Using a cell-based colorimetric screening assay to interrogate a 1,200-compound chemical library for anti-HCV activity, we identified a family of 1,2-diamines derived from trans-stilbene oxide that prevent HCV infection at nontoxic, low micromolar concentrations in cell culture. Structure-activity relationship analysis of ~ 300 derivatives synthesized using click chemistry yielded compounds with greatly enhanced low nanomolar potency and a > 1,000:1 therapeutic ratio. Using surrogate models of HCV infection, we showed that the compounds selectively block the initiation of replication of incoming HCV RNA but have no impact on viral entry, primary translation, or ongoing HCV RNA replication, nor do they suppress persistent HCV infection. Selection of an escape variant revealed that NS5A is directly or indirectly targeted by this compound. In summary, we have identified a family of HCV inhibitors that target a critical step in the establishment of HCV infection in which NS5A translated de novo from an incoming genomic HCV RNA template is required to initiate the replication of this important human pathogen.
Collapse
|
41
|
McGivern DR, Lemon SM. Virus-specific mechanisms of carcinogenesis in hepatitis C virus associated liver cancer. Oncogene 2011; 30:1969-83. [PMID: 21258404 DOI: 10.1038/onc.2010.594] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of hepatocellular carcinoma (HCC) in persons who are persistently infected with hepatitis C virus (HCV) is a growing problem worldwide. Current antiviral therapies are not effective in many patients with chronic hepatitis C, and a greater understanding of the factors leading to progression of HCC will be necessary to design novel approaches to prevention of HCV-associated HCC. The lack of a small animal model of chronic HCV infection has hampered understanding of these factors. As HCV is an RNA virus with little potential for integration of its genetic material into the host genome, the mechanisms underlying HCV promotion of cancer are likely to differ from other models of viral carcinogenesis. In patients persistently infected with HCV, chronic inflammation resulting from immune responses against infected hepatocytes is associated with progressive fibrosis and cirrhosis. Cirrhosis is an important risk factor for HCC independent of HCV infection, and a majority of HCV-associated HCC arises in the setting of cirrhosis. However, a significant minority arises in the absence of cirrhosis, indicating that cirrhosis is not a prerequisite for cancer. Other lines of evidence suggest that direct, virus-specific mechanisms may be involved. Transgenic mice expressing HCV proteins develop cancer in the absence of inflammation or immune recognition of the transgene. In vitro studies have revealed multiple interactions of HCV-encoded proteins with cell cycle regulators and tumor suppressor proteins, raising the possibility that HCV can disrupt control of cellular proliferation, or impair the cell's response to DNA damage. A combination of virus-specific, host genetic, environmental and immune-related factors are likely to determine the progression to HCC in patients who are chronically infected with HCV. Here, we summarize current knowledge of the virus-specific mechanisms that may contribute to HCV-associated HCC.
Collapse
Affiliation(s)
- D R McGivern
- Lineberger Comprehensive Cancer Center, Center for Translational Research, Inflammatory Diseases Institute, and the Division of Infectious Diseases, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | | |
Collapse
|
42
|
Epstein JH, Quan PL, Briese T, Street C, Jabado O, Conlan S, Ali Khan S, Verdugo D, Hossain MJ, Hutchison SK, Egholm M, Luby SP, Daszak P, Lipkin WI. Identification of GBV-D, a novel GB-like flavivirus from old world frugivorous bats (Pteropus giganteus) in Bangladesh. PLoS Pathog 2010; 6:e1000972. [PMID: 20617167 PMCID: PMC2895649 DOI: 10.1371/journal.ppat.1000972] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 05/27/2010] [Indexed: 11/19/2022] Open
Abstract
Bats are reservoirs for a wide range of zoonotic agents including lyssa-, henipah-, SARS-like corona-, Marburg-, Ebola-, and astroviruses. In an effort to survey for the presence of other infectious agents, known and unknown, we screened sera from 16 Pteropus giganteus bats from Faridpur, Bangladesh, using high-throughput pyrosequencing. Sequence analyses indicated the presence of a previously undescribed virus that has approximately 50% identity at the amino acid level to GB virus A and C (GBV-A and -C). Viral nucleic acid was present in 5 of 98 sera (5%) from a single colony of free-ranging bats. Infection was not associated with evidence of hepatitis or hepatic dysfunction. Phylogenetic analysis indicates that this first GBV-like flavivirus reported in bats constitutes a distinct species within the Flaviviridae family and is ancestral to the GBV-A and -C virus clades.
Collapse
Affiliation(s)
- Jonathan H. Epstein
- Conservation Medicine Program, Wildlife Trust, New York, New York, United States of America
| | - Phenix-Lan Quan
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Thomas Briese
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Craig Street
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Omar Jabado
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Sean Conlan
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Shahneaz Ali Khan
- Conservation Medicine Program, Wildlife Trust, New York, New York, United States of America
- Chittagong Veterinary & Animal Sciences University, Chittagong, Bangladesh
| | - Dawn Verdugo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - M. Jahangir Hossain
- Programme on Infectious Disease and Vaccine Sciences, International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | | | - Michael Egholm
- 454 Life Sciences, Branford, Connecticut, United States of America
| | - Stephen P. Luby
- Programme on Infectious Disease and Vaccine Sciences, International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Peter Daszak
- Conservation Medicine Program, Wildlife Trust, New York, New York, United States of America
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| |
Collapse
|
43
|
Yuan H, Jain M, Snow KK, Gale M, Lee WM. Evolution of hepatitis C virus NS5A region in breakthrough patients during pegylated interferon and ribavirin therapy*. J Viral Hepat 2010; 17:208-16. [PMID: 19656286 PMCID: PMC3189487 DOI: 10.1111/j.1365-2893.2009.01169.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Investigating the evolution of the hepatitis C viral (HCV) genome in the small number of patients that experience viral breakthrough might shed light on the problem of resistance to interferon therapy. Within the HCV genome, sequence diversity of the viral nonstructural 5A protein-coding region (NS5A) has been linked to interferon responsiveness. We analysed the temporal sequence changes within NS5A in genotype 1a patients: 6 breakthrough (BT), 12 sustained virologic responders (SVR) and 12 non-responders (NR), all of whom had received full dose peg-interferon and ribavirin therapy. The entire NS5A region was amplified by reverse transcription (RT)-PCR followed by direct sequencing of serum samples from baseline and three on-treatment time points for each group. Comparing baseline sequences with week 12 and later time points, BT patients resembled SVR patients in having a higher number of amino acid substitutions at week 12 than NR patients; however, the number of amino acid substitutions in this group decreased at and after BT. Substitutions were focused in the V3 and flanking regions in BT patients but not in SVR patients. The high number of substitutions in NS5A in both BT and SVR groups suggests that selective pressure is associated with viral response to therapy. Our results provide evidence that amino acid substitutions within the NS5A coding region may reflect a host response that drives selective pressure for viral adaptation.
Collapse
Affiliation(s)
- Hejun Yuan
- Divisions of Digestive and Liver Diseases and Infectious Diseases, UT Southwestern Medical Center at Dallas, Dallas, TX
| | - Mamta Jain
- Divisions of Digestive and Liver Diseases and Infectious Diseases, UT Southwestern Medical Center at Dallas, Dallas, TX
| | | | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA
| | - William M. Lee
- Divisions of Digestive and Liver Diseases and Infectious Diseases, UT Southwestern Medical Center at Dallas, Dallas, TX
| | | |
Collapse
|
44
|
Gretton S, Hughes M, Harris M. Hepatitis C virus RNA replication is regulated by Ras-Erk signalling. J Gen Virol 2009; 91:671-80. [PMID: 19889932 DOI: 10.1099/vir.0.016899-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The hepatitis C virus NS5A protein has been previously demonstrated to partially attenuate activation of the Ras-Erk signalling pathway, via a conserved class II polyproline motif located towards the C terminus of the protein. However, the role of Ras-Erk signalling in the virus life cycle remains undetermined. To investigate this, levels of RNA replication were measured in genotypes 1 and 2 transient luciferase subgenomic replicon systems in the context of either pharmacological or genetic (dominant-negative) inhibition of MEK1, a kinase in the Ras-Erk signalling cascade. Incubation in the presence of two inhibitors (U0126 and PD184352) resulted in a decrease in the levels of RNA replication, conversely incubation with inhibitor PD98059 resulted in a modest increase in replication. The results obtained with PD98059 could not be explained by an off-target effect on Cox-2, stability of replicon RNA or stimulation of global translation levels, suggesting stimulation by a yet uncharacterized mechanism. To verify data obtained using pharmacological inhibitors the transient replicon RNA was co-electroporated with a dominant-negative mutant of MEK1. This resulted in a reduction in replication, confirming data seen with U0126 and PD184352. Our data are consistent with the hypothesis that a low level Ras-Erk signalling activity is required for RNA replication. However, complete inhibition of Ras-Erk signalling is inhibitory. These results suggest that perturbation of this signalling pathway by NS5A may be a mechanism to regulate levels of genomic RNA replication.
Collapse
Affiliation(s)
- Sarah Gretton
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
45
|
Park CY, Choi SH, Kang SM, Kang JI, Ahn BY, Kim H, Jung G, Choi KY, Hwang SB. Nonstructural 5A protein activates beta-catenin signaling cascades: implication of hepatitis C virus-induced liver pathogenesis. J Hepatol 2009; 51:853-64. [PMID: 19726098 DOI: 10.1016/j.jhep.2009.06.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 06/08/2009] [Accepted: 06/22/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS The nonstructural 5A (NS5A) protein of hepatitis C virus (HCV) has been implicated in HCV-induced liver pathogenesis. Wnt/beta-catenin signaling has also been involved in tumorigenesis. To elucidate the molecular mechanism of HCV pathogenesis, we examined the potential effects of HCV NS5A protein on Wnt/beta-catenin signal transduction cascades. METHODS The effects of NS5A protein on beta-catenin signaling cascades in hepatic cells were investigated by luciferase reporter gene assay, confocal microscopy, immunoprecipitation assay, and immunoblot analysis. RESULTS beta-Catenin-mediated transcriptional activity is elevated by NS5A protein, in the context of HCV replication, and by infection of cell culture-produced HCV. NS5A protein directly interacts with endogenous beta-catenin and colocalizes with beta-catenin in the cytoplasm. NS5A protein inactivates glycogen synthase kinase 3beta and increases subsequent accumulation of beta-catenin in HepG2 cells. beta-Catenin was also accumulated in HCV patients' liver tissues. In addition, the accumulation of beta-catenin in HCV replicon cells requires both activation of phosphatidylinositol 3-kinase and inactivation of GSK3beta. CONCLUSIONS NS5A activates beta-catenin signaling cascades through increasing the stability of beta-catenin. This modulation is accomplished by the protein interplay between viral and cellular signaling transducer. These data suggest that NS5A protein may directly be involved in Wnt/beta-catenin-mediated liver pathogenesis.
Collapse
Affiliation(s)
- Chul-Yong Park
- National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Dongan-gu, Anyang, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Differential regulation of type I interferon and epidermal growth factor pathways by a human Respirovirus virulence factor. PLoS Pathog 2009; 5:e1000587. [PMID: 19806178 PMCID: PMC2736567 DOI: 10.1371/journal.ppat.1000587] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 08/24/2009] [Indexed: 01/10/2023] Open
Abstract
A number of paramyxoviruses are responsible for acute respiratory infections in children, elderly and immuno-compromised individuals, resulting in airway inflammation and exacerbation of chronic diseases like asthma. To understand the molecular pathogenesis of these infections, we searched for cellular targets of the virulence protein C of human parainfluenza virus type 3 (hPIV3-C). We found that hPIV3-C interacts directly through its C-terminal domain with STAT1 and GRB2, whereas C proteins from measles or Nipah viruses failed to do so. Binding to STAT1 explains the previously reported capacity of hPIV3-C to block type I interferon signaling, but the interaction with GRB2 was unexpected. This adaptor protein bridges Epidermal Growth Factor (EGF) receptor to MAPK/ERK pathway, a signaling cascade recently found to be involved in airway inflammatory response. We report that either hPIV3 infection or transient expression of hPIV3-C both increase cellular response to EGF, as assessed by Elk1 transactivation and phosphorylation levels of ERK1/2, 40S ribosomal subunit protein S6 and translation initiation factor 4E (eIF4E). Furthermore, inhibition of MAPK/ERK pathway with U0126 prevented viral protein expression in infected cells. Altogether, our data provide molecular basis to explain the role of hPIV3-C as a virulence factor and determinant of pathogenesis and demonstrate that Paramyxoviridae have evolved a single virulence factor to block type I interferon signaling and to boost simultaneous cellular response to growth factors. Respiroviruses are important pathogens responsible for acute respiratory tract infections associated with severe airway inflammation in children, elderly and immuno-compromised individuals. Their RNA genome encodes for structural proteins that compose viral particles, but also for virulence factors that alter cell biology to enhance virus replication and spreading. Among them, the C protein plays a critical role by blocking cellular response to type I interferons, the main antiviral cytokines secreted during virus infections. To provide molecular basis to this activity, we found that the C protein of human parainfluenza virus type 3 (hPIV3-C), the most frequent human Respirovirus, interacts with STAT1, a key component of type I interferon receptor complex. But hPIV3-C was also found to interact with GRB2, an adaptor molecule involved in cellular response to Epidermal Growth Factor (EGF), and to enhance cell response to this cytokine. This pathway increases protein translation, promotes cell survival and contributes to airway inflammation and mucus secretion. Thus, our findings show that hPIV3-C not only inhibits the antiviral response but also stimulates cellular response to EGF, which benefits virus replication and induces an excessive inflammation of airways during infection.
Collapse
|
47
|
Suppression of a pro-apoptotic K+ channel as a mechanism for hepatitis C virus persistence. Proc Natl Acad Sci U S A 2009; 106:15903-8. [PMID: 19717445 DOI: 10.1073/pnas.0906798106] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An estimated 3% of the global population are infected with hepatitis C virus (HCV), and the majority of these individuals will develop chronic liver disease. As with other chronic viruses, establishment of persistent infection requires that HCV-infected cells must be refractory to a range of pro-apoptotic stimuli. In response to oxidative stress, amplification of an outward K(+) current mediated by the Kv2.1 channel, precedes the onset of apoptosis. We show here that in human hepatoma cells either infected with HCV or harboring an HCV subgenomic replicon, oxidative stress failed to initiate apoptosis via Kv2.1. The HCV NS5A protein mediated this effect by inhibiting oxidative stress-induced p38 MAPK phosphorylation of Kv2.1. The inhibition of a host cell K(+) channel by a viral protein is a hitherto undescribed viral anti-apoptotic mechanism and represents a potential target for antiviral therapy.
Collapse
|
48
|
Kriegs M, Bürckstümmer T, Himmelsbach K, Bruns M, Frelin L, Ahlén G, Sällberg M, Hildt E. The hepatitis C virus non-structural NS5A protein impairs both the innate and adaptive hepatic immune response in vivo. J Biol Chem 2009; 284:28343-28351. [PMID: 19674968 DOI: 10.1074/jbc.m109.038877] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of hepatitis C virus (HCV) protein non-structural (NS) 5A in HCV-associated pathogenesis is still enigmatic. To investigate the in vivo role of NS5A for viral persistence and virus-associated pathogenesis a transgenic (Tg) mouse model was established. Mice with liver-targeted NS5A transgene expression were generated using the albumin promoter. Alterations in the hepatic immune response were determined by Western blot, infection by lymphocytic choriomeningitis virus (LCMV), and using transient NS3/4A Tg mice generated by hydrodynamic injection. Cytotoxic T lymphocyte (CTL) activity was investigated by the Cr-release assay. The stable NS5A Tg mice did not reveal signs of spontaneous liver disease. The intrahepatic immunity was disrupted in the NS5A Tg mice as determined by clearance of LCMV infection or transiently NS3/4A Tg hepatocytes in vivo. This impaired immunity was explained by a reduced induction of interferon beta, 2',5'-OAS, and PKR after LCMV infection and an impairment of the CTL-mediated elimination of NS3-expressing hepatocytes. In conclusion, these data indicate that in the present transgenic mouse model, NS5A does not cause spontaneous liver disease. However, we discovered that NS5A could impair both the innate and the adaptive immune response to promote chronic HCV infection.
Collapse
Affiliation(s)
- Malte Kriegs
- Department of Internal Medicine II, University of Freiburg, D-79106 Freiburg, Germany; Heinrich-Pette-Institute for Experimental Virology and Immunology, D-20251 Hamburg, Germany; Robert-Koch-Institute, D-13353 Berlin, Germany; Division of Clinical Microbiology F68, Karolinska University Hospital Huddinge, Karolinska Institutet, S-141 86 Stockholm, Sweden
| | | | - Kyoshi Himmelsbach
- Department of Internal Medicine II, University of Freiburg, D-79106 Freiburg, Germany; Institute of Infection Medicine, University of Kiel, D-24105 Kiel, Germany
| | - Michael Bruns
- Heinrich-Pette-Institute for Experimental Virology and Immunology, D-20251 Hamburg, Germany
| | - Lars Frelin
- Division of Clinical Microbiology F68, Karolinska University Hospital Huddinge, Karolinska Institutet, S-141 86 Stockholm, Sweden
| | - Gustaf Ahlén
- Division of Clinical Microbiology F68, Karolinska University Hospital Huddinge, Karolinska Institutet, S-141 86 Stockholm, Sweden
| | - Matti Sällberg
- Division of Clinical Microbiology F68, Karolinska University Hospital Huddinge, Karolinska Institutet, S-141 86 Stockholm, Sweden
| | - Eberhard Hildt
- Department of Internal Medicine II, University of Freiburg, D-79106 Freiburg, Germany; Institute of Infection Medicine, University of Kiel, D-24105 Kiel, Germany.
| |
Collapse
|
49
|
A conserved proline between domains II and III of hepatitis C virus NS5A influences both RNA replication and virus assembly. J Virol 2009; 83:10788-96. [PMID: 19656877 DOI: 10.1128/jvi.02406-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We previously demonstrated that two closely spaced polyproline motifs, with the consensus sequence Pro-X-X-Pro-X-Lys/Arg, located between residues 343 to 356 of NS5A, mediated interactions with cellular SH3 domains. The N-terminal motif (termed PP2.1) is only conserved in genotype 1 isolates, whereas the C-terminal motif (PP2.2) is conserved throughout all hepatitis C virus (HCV) isolates, although this motif was shown to be dispensable for replication of the genotype 1b subgenomic replicon. In order to investigate the potential role of these motifs in the viral life cycle, we have undertaken a detailed mutagenic analysis of these proline residues in the context of both genotype 1b (FK5.1) or 2a subgenomic replicons and the genotype 2a infectious clone, JFH-1. We show that the PP2.2 motif is dispensable for RNA replication of all subgenomic replicons and, furthermore, is not required for virus production in JFH-1. In contrast, the PP2.1 motif is only required for genotype 1b RNA replication. Mutation of proline 346 within PP2.1 to alanine dramatically attenuated genotype 1b replicon replication in three distinct genetic backgrounds, but the corresponding proline 342 was not required for replication of the JFH-1 subgenomic replicon. However, the P342A mutation resulted in both a delay to virus release and a modest (up to 10-fold) reduction in virus production. These data point to critical roles for these proline residues at multiple stages in the HCV life cycle; however, they also caution against extrapolation of data from culture-adapted replicons to infectious virus.
Collapse
|
50
|
Sauter D, Himmelsbach K, Kriegs M, Carvajal Yepes M, Hildt E. Localization determines function: N-terminally truncated NS5A fragments accumulate in the nucleus and impair HCV replication. J Hepatol 2009; 50:861-71. [PMID: 19307038 DOI: 10.1016/j.jhep.2008.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/22/2008] [Accepted: 11/08/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS The Hepatitis C Virus (HCV) nonstructural protein 5A (NS5A) is an essential part of the ER-localized HCV-replicon complex. Although NS5A harbours a conserved NLS in its C-terminal domain, NS5A is associated with the cytoplasmic face of the ER by an amphipathic helix close to its N-terminus. METHODS Intracellular distribution of NS5A in HCV replicating cells was analyzed by confocal microscopy and subcellular fractionation. The effect on HCV replication was analyzed using the JFH-1-based infection/replication system. RESULTS During viral life cycle N-terminally truncated NS5A fragments are caspase-dependent formed that lack the ER-attachment signal and are localized within the nucleus. These N-terminally truncated fragments inhibit HCV replication. If their formation is blocked by inhibition of caspases HCV replication is increased. The C-terminal domain of NS5A binds to c-Raf and thereby localizes it to the replicon complex. This interaction is essential for HCV replication. The N-terminally truncated NS5A fragments are still able to bind c-Raf. However, due to their nuclear localization they withdraw c-Raf from the replicon complex into the nucleus resulting in an impaired HCV replication. CONCLUSIONS Formation of N-terminally truncated NS5A fragments could represent a mechanism to regulate HCV replication by withdrawal of essential factors from the replicon complex.
Collapse
Affiliation(s)
- Daniel Sauter
- Department of Internal Medicine II, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | | | | | | | | |
Collapse
|