1
|
Stein RA, Gomaa FE, Raparla P, Riber L. Now and then in eukaryotic DNA methylation. Physiol Genomics 2024; 56:741-763. [PMID: 39250426 DOI: 10.1152/physiolgenomics.00091.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024] Open
Abstract
Since the mid-1970s, increasingly innovative methods to detect DNA methylation provided detailed information about its distribution, functions, and dynamics. As a result, new concepts were formulated and older ones were revised, transforming our understanding of the associated biology and catalyzing unprecedented advances in biomedical research, drug development, anthropology, and evolutionary biology. In this review, we discuss a few of the most notable advances, which are intimately intertwined with the study of DNA methylation, with a particular emphasis on the past three decades. Examples of these strides include elucidating the intricacies of 5-methylcytosine (5-mC) oxidation, which are at the core of the reversibility of this epigenetic modification; the three-dimensional structural characterization of eukaryotic DNA methyltransferases, which offered insights into the mechanisms that explain several disease-associated mutations; a more in-depth understanding of DNA methylation in development and disease; the possibility to learn about the biology of extinct species; the development of epigenetic clocks and their use to interrogate aging and disease; and the emergence of epigenetic biomarkers and therapies.
Collapse
Affiliation(s)
- Richard A Stein
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Faris E Gomaa
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Pranaya Raparla
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
2
|
Liu N, Wang S, Li M, Zhao N, Wang D, Zhang R, Yu M, Zhao L, Zhang S, Han F, Zhao Y, Liu Q. BET degrader exhibits lower antiproliferative activity than its inhibitor via EGR1 recruiting septins to promote E2F1-3 transcription in triple-negative breast cancer. Pharmacol Res 2024; 208:107377. [PMID: 39209080 DOI: 10.1016/j.phrs.2024.107377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The bromodomain and extraterminal domain (BET) family proteins serve as primary readers of acetylated lysine residues and play crucial roles in cell proliferation and differentiation. Dysregulation of BET proteins has been implicated in tumorigenesis, making them important therapeutic targets. BET-bromodomain (BD) inhibitors and BET-targeting degraders have been developed to inhibit BET proteins. In this study, we found that the BET inhibitor MS645 exhibited superior antiproliferative activity than BET degraders including ARV771, AT1, MZ1 and dBET1 in triple-negative breast cancer (TNBC) cells. Treatment with MS645 led to the dissociation of BETs, MED1 and RNA polymerase II from the E2F1-3 promoter, resulting in the suppression of E2F1-3 transcription and subsequent inhibition of cell growth in TNBC. In contrast, while ARV771 displaced BET proteins from chromatin, it did not significantly alter E2F1-3 expression. Mechanistically, ARV771 induced BRD4 depletion at protein level, which markedly increased EGR1 expression. This elevation of EGR1 subsequently recruited septin 2 and septin 9 to E2F1-3 promoters, enhancing E2F1-3 transcription and promoting cell proliferation rate in vitro and in vivo. Our findings provide valuable insights into differential mechanisms of BET inhibition and highlight potential of developing BET-targeting molecules as therapeutic strategies for TNBC.
Collapse
Affiliation(s)
- Nan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China.
| | - Shuai Wang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Munan Li
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Nan Zhao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Deyu Wang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Rui Zhang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Mingxin Yu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China
| | - Luoyi Zhao
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China
| | - Siwei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130000, China
| | - Fangbin Han
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China.
| | - Ying Zhao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun 130061, China.
| | - Quan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, China.
| |
Collapse
|
3
|
Jędrzejczak P, Saramowicz K, Kuś J, Barczuk J, Rozpędek-Kamińska W, Siwecka N, Galita G, Wiese W, Majsterek I. SEPT9_i1 and Septin Dynamics in Oncogenesis and Cancer Treatment. Biomolecules 2024; 14:1194. [PMID: 39334960 PMCID: PMC11430720 DOI: 10.3390/biom14091194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Despite significant advancements in the field of oncology, cancers still pose one of the greatest challenges of modern healthcare. Given the cytoskeleton's pivotal role in regulating mechanisms critical to cancer development, further studies of the cytoskeletal elements could yield new practical applications. Septins represent a group of relatively well-conserved GTP-binding proteins that constitute the fourth component of the cytoskeleton. Septin 9 (SEPT9) has been linked to a diverse spectrum of malignancies and appears to be the most notable septin member in that category. SEPT9 constitutes a biomarker of colorectal cancer (CRC) and has been positively correlated with a high clinical stage in breast cancer, cervical cancer, and head and neck squamous cell carcinoma. SEPT9_i1 represents the most extensively studied isoform of SEPT9, which substantially contributes to carcinogenesis, metastasis, and treatment resistance. Nevertheless, the mechanistic basis of SEPT9_i1 oncogenicity remains to be fully elucidated. In this review, we highlight SEPT9's and SEPT9_i1's structures and interactions with Hypoxia Inducible Factor α (HIF-1 α) and C-Jun N-Terminal Kinase (JNK), as well as discuss SEPT9_i1's contribution to aneuploidy, cell invasiveness, and taxane resistance-key phenomena in the progression of malignancies. Finally, we emphasize forchlorfenuron and other septin inhibitors as potential chemotherapeutics and migrastatics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (P.J.); (K.S.); (J.K.); (J.B.); (W.R.-K.); (N.S.); (G.G.); (W.W.)
| |
Collapse
|
4
|
Wang W, Zhang X, Gui P, Zou Q, Nie Y, Ma S, Zhang S. SEPT9: From pan-cancer to lung squamous cell carcinoma. BMC Cancer 2024; 24:1105. [PMID: 39237897 PMCID: PMC11375884 DOI: 10.1186/s12885-024-12877-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND SEPT9 is a pivotal cytoskeletal GTPase that regulates diverse biological processes encompassing mitosis and cytokinesis. While previous studies have implicated SEPT9 in tumorigenesis and development; comprehensive pan-cancer analyses have not been performed. This study aims to systematically explore its role in cancer screening, prognosis, and treatment, addressing this critical gap. METHODS Gene and protein expression data containing clinical information were obtained from public databases for pan-cancer analyses. Additionally, clinical samples from 90 patients with lung squamous cell carcinoma (LUSC) were used to further experimentally validate the clinical significance of SEPT9. In addition, the molecular docking tool was used to analyze the affinities between SEPT9 protein and drugs. RESULTS SEPT9 is highly expressed in various cancers, and its aberrant expression correlates with genetic alternations and epigenetic modifications, leading to adverse clinical outcomes. Take LUSC as an example, additional dataset analyses and immunohistochemical experiments further confirm the diagnostic and prognostic values as well as the clinical relevance of the SEPT9 gene and protein. Functional enrichment, single-cell expression, and immune infiltration analyses revealed that SEPT9 promotes malignant tumor progression and modulates the immune microenvironments, enabling patients to benefit from immunotherapy. Moreover, drug sensitivity and molecular docking analyses showed that SEPT9 is associated with the sensitivity and resistance of multiple drugs and has stable binding activity with them, including Vorinostat and OTS-964. To harness its prognostic and therapeutic potential in LUSC, a mitotic spindle-associated prognostic model including SEPT9, HSF1, ARAP3, KIF20B, FAM83D, TUBB8, and several clinical characteristics, was developed. This model not only improves clinical outcome predictions but also reshapes the immune microenvironment, making immunotherapy more effective for LUSC patients. CONCLUSION This is the first study to systematically analyze the role of SEPT9 in cancers and innovatively apply the mitotic spindle-associated model to LUSC, fully demonstrating its potential as a valuable biomarker for cancer screening and prognosis, and highlighting its application value in promoting immunotherapy and chemotherapy, particularly for LUSC.
Collapse
Affiliation(s)
- Wenwen Wang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Ping Gui
- Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China
| | - Qizhen Zou
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Yuzhou Nie
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China
| | - Shenglin Ma
- Department of Oncology, Hangzhou Cancer Hospital, Hangzhou, 310006, Zhejiang, China
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
5
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
6
|
Kmeid M, Park YN, Chung T, Pacheco RR, Arslan ME, Lee H. SEPT9 Expression in Hepatic Nodules: An Immunohistochemical Study of Hepatocellular Neoplasm and Metastasis. Appl Immunohistochem Mol Morphol 2023; 31:278-287. [PMID: 36867734 DOI: 10.1097/pai.0000000000001112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 01/24/2023] [Indexed: 03/05/2023]
Abstract
The methylated SEPT9 DNA ( mSEPT9 ) in plasma is a US Food and Drug Administration (FDA)-approved screening biomarker in colorectal cancer and is emerging as a promising diagnostic and prognostic biomarker in hepatocellular carcinoma (HCC). We evaluated the SEPT9 protein expression by immunohistochemistry (IHC) in various hepatic tumors from 164 hepatectomies and explants. Cases diagnosed as HCC (n=68), hepatocellular adenoma (n=31), dysplastic nodule (n=24), and metastasis (n=41) were retrieved. SEPT9 stain was performed on representative tissue blocks showing tumor/liver interface. For HCC, archived IHC (SATB2, CK19, CDX2, CK20, and CDH17) slides were also reviewed. The findings were correlated with demographics, risk factors, tumor size, alpha fetoprotein levels at diagnosis, T stage and oncologic outcomes, with significance defined as P <0.05. Percentage of SEPT9 positivity differed significantly among hepatocellular adenoma (3%), dysplastic nodule (0%), HCC (32%), and metastasis (83%, P <0.001). Compared with patients with SEPT9- HCC, those with SEPT9+ HCC were older (70 vs. 63 y, P =0.01). The extent of SEPT9 staining correlated with age ( rs =0.31, P =0.01), tumor grade ( rs =0.30, P =0.01), and extent of SATB2 staining ( rs =0.28, P =0.02). No associations were found between SEPT9 staining and tumor size, T stage, risk factors, CK19, CDX2, CK20, or CDH17 expression, alpha fetoprotein levels at diagnosis, METAVIR fibrosis stage, and oncologic outcome in the HCC cohort. SEPT9 is likely implicated in liver carcinogenesis in a HCC subset. Similar to mSEPT9 DNA measurement in liquid biopsies, SEPT9 staining by IHC may prove helpful as an adjunct diagnostic biomarker with potential prognostic ramifications.
Collapse
Affiliation(s)
- Michel Kmeid
- Department of Pathology, Albany Medical Center, Albany, NY
| | | | - Taek Chung
- Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Hwajeong Lee
- Department of Pathology, Albany Medical Center, Albany, NY
| |
Collapse
|
7
|
Blood-based DNA methylation signatures in cancer: A systematic review. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166583. [PMID: 36270476 DOI: 10.1016/j.bbadis.2022.166583] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
DNA methylation profiles are in dynamic equilibrium via the initiation of methylation, maintenance of methylation and demethylation, which control gene expression and chromosome stability. Changes in DNA methylation patterns play important roles in carcinogenesis and primarily manifests as hypomethylation of the entire genome and the hypermethylation of individual loci. These changes may be reflected in blood-based DNA, which provides a non-invasive means for cancer monitoring. Previous blood-based DNA detection objects primarily included circulating tumor DNA/cell-free DNA (ctDNA/cfDNA), circulating tumor cells (CTCs) and exosomes. Researchers gradually found that methylation changes in peripheral blood mononuclear cells (PBMCs) also reflected the presence of tumors. Blood-based DNA methylation is widely used in early diagnosis, prognosis prediction, dynamic monitoring after treatment and other fields of clinical research on cancer. The reversible methylation of genes also makes them important therapeutic targets. The present paper summarizes the changes in DNA methylation in cancer based on existing research and focuses on the characteristics of the detection objects of blood-based DNA, including ctDNA/cfDNA, CTCs, exosomes and PBMCs, and their application in clinical research.
Collapse
|
8
|
Wang Z, Tian Z, Song X, Zhang J. Membrane tension sensing molecule-FNBP1 is a prognostic biomarker related to immune infiltration in BRCA, LUAD and STAD. BMC Immunol 2022; 23:1. [PMID: 34998385 PMCID: PMC8742955 DOI: 10.1186/s12865-021-00475-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
Background Formin-binding protein 1/17 (FNBP1/FBP17), as a membrane-bound protein, is wildly expressed in eukaryotic cells and performs a critical role in tumor tumorigenesis and progression. However, the relationship between FNBP1 and immune infiltrating cells, prognostic value in patients still require comprehensive understanding. We purposed to explore the correlations of FNBP1 expression, prognosis and immune infiltration levels in various cancers. Method The expression and survival data of FNBP1 were collected from Oncomine, TIMER, GEPIA, Kaplan–Meier Plotter and PrognoScan databases. Correlations between FNBP1 and immune infiltrates were analyzed in TIMER and GEPIA databases. Results Compared with normal tissues, FNBP1 is significantly differentially expressed in a variety of tumor tissues. FNBP1 has significant and complex effects on the prognosis of kinds of cancers. High-expression was obviously correlated with better prognosis in breast carcinoma and lung adenocarcinoma, while worse prognosis in stomach adenocarcinoma. Besides, FNBP1 had a correlation with various immune infiltrating cells and diverse immune gene markers in breast invasive carcinoma (BRCA), lung adenocarcinoma (LUAD), and stomach adenocarcinoma (STAD). FNBP1 was also positively correlated with the adjustment of CD8+ cells, T cells, M2 macrophage, neutrophils, monocyte, Th1 cells, T regulatory cells (Treg) and Tumor-associated macrophages (TAMs). The expression level of FNBP1 is closely positively correlated with the expression level of multiple immune checkpoints in the three cancers. In addition, FNBP1 is significantly positively correlated with the expression levels of a variety of immunosuppressive molecules. Conclusion Our findings reveal FNBP1 can serve as a significant biomarker to influence the prognosis and the immune infiltrating levels in different cancers. The differential expression of FNBP1 might not only contribute to the judgment of metastatic and non-metastatic tumors but also in the immune escape by upregulating the expression of immune checkpoints. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00475-z.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Cell Biology and Genetics, Institute of Molecular Medicine and Oncology, Chongqing Medical University, Medical School Road 1#, Yuzhong District, Chongqing, 400016, China
| | - Zixin Tian
- Department of Cell Biology and Genetics, Institute of Molecular Medicine and Oncology, Chongqing Medical University, Medical School Road 1#, Yuzhong District, Chongqing, 400016, China
| | - Xi Song
- Department of Cell Biology and Genetics, Institute of Molecular Medicine and Oncology, Chongqing Medical University, Medical School Road 1#, Yuzhong District, Chongqing, 400016, China
| | - Jun Zhang
- Department of Cell Biology and Genetics, Institute of Molecular Medicine and Oncology, Chongqing Medical University, Medical School Road 1#, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
9
|
Devlin L, Okletey J, Perkins G, Bowen JR, Nakos K, Montagna C, Spiliotis ET. Proteomic profiling of the oncogenic septin 9 reveals isoform-specific interactions in breast cancer cells. Proteomics 2021; 21:e2100155. [PMID: 34409731 DOI: 10.1002/pmic.202100155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023]
Abstract
Septins are a family of multimeric GTP-binding proteins, which are abnormally expressed in cancer. Septin 9 (SEPT9) is an essential and ubiquitously expressed septin with multiple isoforms, which have differential expression patterns and effects in breast cancer cells. It is unknown, however, if SEPT9 isoforms associate with different molecular networks and functions. Here, we performed a proteomic screen in MCF-7 breast cancer cells to identify the interactome of GFP-SEPT9 isoforms 1, 4 and 5, which vary significantly in their N-terminal extensions. While all three isoforms associated with SEPT2 and SEPT7, the truncated SEPT9_i4 and SEPT9_i5 interacted with septins of the SEPT6 group more promiscuously than SEPT9_i1, which bound predominately SEPT8. Spatial mapping and functional clustering of non-septin partners showed isoform-specific differences in interactions with proteins of distinct subcellular organelles (e.g., nuclei, centrosomes, cilia) and functions such as cell signalling and ubiquitination. The interactome of the full length SEPT9_i1 was more enriched in cytoskeletal regulators, while the truncated SEPT9_i4 and SEPT9_i5 exhibited preferential and isoform-specific interactions with nuclear, signalling, and ubiquitinating proteins. These data provide evidence for isoform-specific interactions, which arise from truncations in the N-terminal extensions of SEPT9, and point to novel roles in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Louis Devlin
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA.,Sanofi Pasteur, Swiftwater, Pennsylvania, USA
| | - Joshua Okletey
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | | | - Jonathan R Bowen
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Konstantinos Nakos
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Cristina Montagna
- Department of Radiology & Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Lomov N, Zerkalenkova E, Lebedeva S, Viushkov V, Rubtsov MA. Cytogenetic and molecular genetic methods for chromosomal translocations detection with reference to the KMT2A/MLL gene. Crit Rev Clin Lab Sci 2020; 58:180-206. [PMID: 33205680 DOI: 10.1080/10408363.2020.1844135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute leukemias (ALs) are often associated with chromosomal translocations, in particular, KMT2A/MLL gene rearrangements. Identification or confirmation of these translocations is carried out by a number of genetic and molecular methods, some of which are routinely used in clinical practice, while others are primarily used for research purposes. In the clinic, these methods serve to clarify diagnoses and monitor the course of disease and therapy. On the other hand, the identification of new translocations and the confirmation of known translocations are of key importance in the study of disease mechanisms and further molecular classification. There are multiple methods for the detection of rearrangements that differ in their principle of operation, the type of problem being solved, and the cost-result ratio. This review is intended to help researchers and clinicians studying AL and related chromosomal translocations to navigate this variety of methods. All methods considered in the review are grouped by their principle of action and include karyotyping, fluorescence in situ hybridization (FISH) with probes for whole chromosomes or individual loci, PCR and reverse transcription-based methods, and high-throughput sequencing. Another characteristic of the described methods is the type of problem being solved. This can be the discovery of new rearrangements, the determination of unknown partner genes participating in the rearrangement, or the confirmation of the proposed rearrangement between the two genes. We consider the specifics of the application, the basic principle of each method, and its pros and cons. To illustrate the application, examples of studying the rearrangements of the KMT2A/MLL gene, one of the genes that are often rearranged in AL, are mentioned.
Collapse
Affiliation(s)
- Nikolai Lomov
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Elena Zerkalenkova
- Laboratory of Cytogenetics and Molecular Genetics Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Svetlana Lebedeva
- Laboratory of Cytogenetics and Molecular Genetics Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Vladimir Viushkov
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail A Rubtsov
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,Department of Biochemistry, Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
11
|
Castro DKSDV, da Silva SMDO, Pereira HD, Macedo JNA, Leonardo DA, Valadares NF, Kumagai PS, Brandão-Neto J, Araújo APU, Garratt RC. A complete compendium of crystal structures for the human SEPT3 subgroup reveals functional plasticity at a specific septin interface. IUCRJ 2020; 7:462-479. [PMID: 32431830 PMCID: PMC7201284 DOI: 10.1107/s2052252520002973] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
Human septins 3, 9 and 12 are the only members of a specific subgroup of septins that display several unusual features, including the absence of a C-terminal coiled coil. This particular subgroup (the SEPT3 septins) are present in rod-like octameric protofilaments but are lacking in similar hexameric assemblies, which only contain representatives of the three remaining subgroups. Both hexamers and octamers can self-assemble into mixed filaments by end-to-end association, implying that the SEPT3 septins may facilitate polymerization but not necessarily function. These filaments frequently associate into higher order complexes which associate with biological membranes, triggering a wide range of cellular events. In the present work, a complete compendium of crystal structures for the GTP-binding domains of all of the SEPT3 subgroup members when bound to either GDP or to a GTP analogue is provided. The structures reveal a unique degree of plasticity at one of the filamentous interfaces (dubbed NC). Specifically, structures of the GDP and GTPγS complexes of SEPT9 reveal a squeezing mechanism at the NC interface which would expel a polybasic region from its binding site and render it free to interact with negatively charged membranes. On the other hand, a polyacidic region associated with helix α5', the orientation of which is particular to this subgroup, provides a safe haven for the polybasic region when retracted within the interface. Together, these results suggest a mechanism which couples GTP binding and hydrolysis to membrane association and implies a unique role for the SEPT3 subgroup in this process. These observations can be accounted for by constellations of specific amino-acid residues that are found only in this subgroup and by the absence of the C-terminal coiled coil. Such conclusions can only be reached owing to the completeness of the structural studies presented here.
Collapse
Affiliation(s)
- Danielle Karoline Silva do Vale Castro
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, São Carlos-SP 13566-590, Brazil
| | - Sabrina Matos de Oliveira da Silva
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, São Carlos-SP 13566-590, Brazil
| | - Humberto D’Muniz Pereira
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
| | - Joci Neuby Alves Macedo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
- Federal Institute of Education, Science and Technology of Rondonia, Rodovia BR-174, Km 3, Vilhena-RO 76980-000, Brazil
| | - Diego Antonio Leonardo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
| | - Napoleão Fonseca Valadares
- Departamento de Biologia Celular, Universidade de Brasília, Instituto de Ciências Biológicas, Brasília-DF 70910900, Brazil
| | - Patricia Suemy Kumagai
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
| | - José Brandão-Neto
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Ana Paula Ulian Araújo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
| | - Richard Charles Garratt
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
| |
Collapse
|
12
|
Jiang Y, Liu L, Xiang Q, He X, Wang Y, Zhou D, Zou C, Chen Q, Peng M, He J, Jiang X, Xiang T, Yang Y. SEPT9_v2, frequently silenced by promoter hypermethylation, exerts anti-tumor functions through inactivation of Wnt/β-catenin signaling pathway via miR92b-3p/FZD10 in nasopharyngeal carcinoma cells. Clin Epigenetics 2020; 12:41. [PMID: 32138771 PMCID: PMC7059696 DOI: 10.1186/s13148-020-00833-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/26/2020] [Indexed: 12/24/2022] Open
Abstract
Background Nasopharyngeal carcinoma tends to present at an advanced stage because the primary anatomic site is located in a less visible area and its clinical symptoms are nonspecific. Prognosis of advanced nasopharyngeal carcinoma cases remains disappointing. SEPT9 is a methylation-based biomarker approved by the US Food and Drug Administration for colorectal cancer screening and diagnosis. Interestingly, downregulation of SEPT9, especially SEPT9_v2, mediated by promoter hypermethylation has been also detected in head and neck squamous cell carcinoma than in head and neck squamous epithelium, while other SEPT9 variants did not. These reasons above indicate a crucial role of SEPT9_v2 in cancer progression. Therefore, we address the methylation status of SEPT9_v2 in nasopharyngeal carcinoma and explore the role of SEPT9_v2 in nasopharyngeal carcinoma proliferation and cancer progression. Results SEPT9_v2 expression was found to be downregulated via promoter methylation in nasopharyngeal carcinoma cell lines and tissues. Ectopic expression of SEPT9_v2 induced G0/G1 cell cycle arrest and apoptosis, which exerted an inhibitory effect in cell proliferation and colony formation. Additionally, nasopharyngeal carcinoma cell migration and invasion were shown to be inhibited by SEPT9_v2. Furthermore, our data suggested that SEPT9_v2 inhibits proliferation and migration of nasopharyngeal carcinoma cells through inactivation of the Wnt/β-catenin signaling pathway via miR92b-3p/FZD10. Conclusions This study delineates SEPT9_v2, frequently silenced by promoter hypermethylation, exerts anti-tumor functions through inactivation of the Wnt/β-catenin signaling pathway via miR92b-3p/FZD10 in nasopharyngeal carcinoma cells and, hence, SEPT9_v2 may be a promising therapeutic target and biomarker for nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Lei Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qin Xiang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaoqian He
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yan Wang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Dishu Zhou
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Can Zou
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qian Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Mingyu Peng
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jin He
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xianyao Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Tingxiu Xiang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yucheng Yang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
13
|
Theeler BJ, Dalal Y, Monje M, Shilatifard A, Suvà ML, Aboud O, Camphausen K, Cordova C, Finch E, Heiss JD, Packer RJ, Romo CG, Aldape K, Penas-Prado M, Armstrong T, Gilbert MR. NCI-CONNECT: Comprehensive Oncology Network Evaluating Rare CNS Tumors-Histone Mutated Midline Glioma Workshop Proceedings. Neurooncol Adv 2020; 2:vdaa007. [PMID: 32642676 DOI: 10.1093/noajnl/vdaa007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Histone mutations occur in approximately 4% of different cancer types. In 2012, mutations were found in the gene encoding histone variant H3.3 (H3F3A gene) in pediatric diffuse intrinsic pontine gliomas and pediatric hemispheric gliomas. Tumors with mutations in the H3F3A gene are generally characterized as histone mutated gliomas (HMGs) or diffuse midline gliomas. HMGs are a rare subtype of glial tumor that is malignant and fast growing, carrying a poor prognosis. In 2017, the Beau Biden Cancer Moonshot Program appropriated $1.7 billion toward cancer care in 10 select areas. The National Cancer Institute (NCI) was granted support to focus specifically on rare central nervous system (CNS) tumors through NCI-CONNECT. Its mission is to address the challenges and unmet needs in CNS cancer research and treatment by connecting patients, providers, researchers, and advocacy organizations to work in partnership. On September 27, 2018, NCI-CONNECT convened a workshop on histone mutated midline glioma, one of the 12 CNS cancers included in its initial portfolio. Three leaders in the field provided an overview of advances in histone mutated midline glioma research. These experts shared observations and experiences related to common scientific and clinical challenges in studying these tumors. Although the clinical focus of this workshop was on adult patients, one important objective was to start a collaborative dialogue between pediatric and adult clinicians and researchers. Meeting participants identified needs for diagnostic and treatment standards, disease biology and biological targets for this cancer, disease-specific trial designs, and developed a list of action items and future direction.
Collapse
Affiliation(s)
- Brett J Theeler
- Department of Neurology and John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michelle Monje
- Stanford University Hospital, Departments of Neurology, Neurosurgery, Pathology, and Pediatrics, Palo Alto, California, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois, USA
| | - Mario L Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Orwa Aboud
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christine Cordova
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Finch
- Brain Tumor Institute, Children's National Health System, Washington, District of Columbia, USA
| | - John D Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Roger J Packer
- Brain Tumor Institute, Children's National Health System, Washington, District of Columbia, USA
- Center for Neuroscience and Behavioral Health, Children's National Health System, Washington, District of Columbia, USA
| | - Carlos G Romo
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marta Penas-Prado
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Terri Armstrong
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Desterke C, Gassama-Diagne A. Protein-protein interaction analysis highlights the role of septins in membrane enclosed lumen and mRNA processing. Adv Biol Regul 2019; 73:100635. [PMID: 31420262 DOI: 10.1016/j.jbior.2019.100635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Septins are a family of GTP-binding proteins that assemble into non-polar filaments which can be recruited to negatively charged membranes and serve as a scaffold to recruit cytosolic proteins and cytoskeletal elements such as microtubules and actin so that they can perform their important biological functions. Human septins consist of four groups, each with 13 members, and filaments formation usually involve members from each group in specific positions. However, little is known about the molecular mechanisms that drive the binding of septins to membranes and its importance to their biological functions. Here we have built a protein-protein interaction (PPI) network around human septins and highlighted the connections with 170 partners. Functional enrichment by inference of the network of septins and their partners revealed their participation in functions consistent with some of the roles described for septins, including cell cycle, cell division and cell shape, but we also identified septin partners in these functions that had not previously been described. Interestingly, we identified important and multiple connections between septins and mRNA processing and their export from the nucleus. Analysis of the enrichment of gene ontology cellular components highlighted some important interactions between molecules involved in the spliceosome with septin 2 and septin 7 in particular. RNA splicing regulates gene expression, and through it, cell fate, development and physiology. Mutations in components of the in the splicing machinery is linked to several diseases including cancer, thus taken together, the different analyses presented here open new perspectives to elucidate the pathobiological role of septins.
Collapse
Affiliation(s)
| | - Ama Gassama-Diagne
- INSERM, Unité 1193, Villejuif, F-94800, France; Université Paris-Sud, UMR-S 1193, Villejuif, F-94800, France.
| |
Collapse
|
15
|
Septin 9 isoforms promote tumorigenesis in mammary epithelial cells by increasing migration and ECM degradation through metalloproteinase secretion at focal adhesions. Oncogene 2019; 38:5839-5859. [PMID: 31285548 PMCID: PMC6859949 DOI: 10.1038/s41388-019-0844-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
The cytoskeletal interacting protein Septin 9 (SEPT9), a member of the septin gene family, has been proposed to have oncogenic functions. It is a known hot spot of retroviral tagging insertion and a fusion partner of both de novo and therapy-induced mixed lineage leukemia (MLL). Of all septins, SEPT9 holds the strongest link to cancer, especially breast cancer. Murine models of breast cancer frequently exhibit Sept9 amplification in the form of double minute chromosomes, and about 20% of human breast cancer display genomic amplification and protein over expression at the SEPT9 locus. Yet, a clear mechanism by which SEPT9 elicits tumor-promoting functions is lacking. To obtain unbiased insights on molecular signatures of SEPT9 upregulation in breast tumors, we overexpressed several of its isoforms in breast cancer cell lines. Global transcriptomic profiling supports a role of SEPT9 in invasion. Functional studies reveal that SEPT9 upregulation is sufficient to increase degradation of the extracellular matrix, while SEPT9 downregulation inhibits this process. The degradation pattern is peripheral and associated with focal adhesions (FA), where it is coupled with increased expression of matrix metalloproteinases. SEPT9 overexpression induces MMP upregulation in human tumors and in culture models and promotes MMP3 secretion to the media at FAs. Downregulation of SEPT9 or chemical inhibition of septin filament assembly impairs recruitment of MMP3 to FAs. Our results indicate that SEPT9 promotes upregulation and both trafficking and secretion of MMPs near FAs, thus enhancing migration and invasion of breast cancer cells.
Collapse
|
16
|
Wang F, Chen Y, Jiang N, Gong S, Cao T, Yuan J, Liu J, Xie L, Wu Y, Jia Y. Acquired persistently complete remission by decitabine-based treatment for acute myeloid leukemia with the MLL-SEPT9 fusion gene. Leuk Lymphoma 2019; 60:3304-3307. [PMID: 31256701 DOI: 10.1080/10428194.2019.1625044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fujue Wang
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Yingying Chen
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Nenggang Jiang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Shuaige Gong
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Tingyong Cao
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Jin Yuan
- Department of Hematology, The People's Hospital of Longquanyi District, Chengdu, China
| | - Jiazhuo Liu
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Liping Xie
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Yu Wu
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Yongqian Jia
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Forlenza CJ, Zhang Y, Yao J, Benayed R, Steinherz P, Ramaswamy K, Kessel R, Roshal M, Shukla N. A case of KMT2A-SEPT9 fusion-associated acute megakaryoblastic leukemia. Cold Spring Harb Mol Case Stud 2018; 4:mcs.a003426. [PMID: 30455225 PMCID: PMC6318764 DOI: 10.1101/mcs.a003426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/10/2018] [Indexed: 12/24/2022] Open
Abstract
Acute megakaryoblastic leukemia (AMKL) constitutes ∼5%-15% of cases of non-Down syndrome AML in children, and in the majority of cases, chimeric oncogenes resulting from recurrent gene rearrangements are identified. Based on these rearrangements, several molecular subsets have been characterized providing important prognostic information. One such subset includes a group of patients with translocations involving the KMT2A gene, which has been associated with various fusion partners in patients with AMKL. Here we report the molecular findings of a 2-yr-old girl with AMKL and t(11;17)(q23;25) found to have a KMT2A-SEPT9 fusion identified through targeted RNA sequencing. A KMT2A-SEPT9 fusion in this subset of patients has not previously been reported.
Collapse
Affiliation(s)
- Christopher J Forlenza
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - JinJuan Yao
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Peter Steinherz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Kavitha Ramaswamy
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Rachel Kessel
- Division of Hematology/Oncology and Stem Cell Transplantation, Cohen Children's Medical Center of New York, New Hyde Park, New York 11042, USA
| | - Mikhail Roshal
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
18
|
Hu S, Rao JS. Statistical Redundancy Testing for Improved Gene Selection in Cancer Classification Using Microarray Data. Cancer Inform 2017. [DOI: 10.1177/117693510700300010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In gene selection for cancer classification using microarray data, we define an eigenvalue-ratio statistic to measure a gene's contribution to the joint discriminability when this gene is included into a set of genes. Based on this eigenvalue-ratio statistic, we define a novel hypothesis testing for gene statistical redundancy and propose two gene selection methods. Simulation studies illustrate the agreement between statistical redundancy testing and gene selection methods. Real data examples show the proposed gene selection methods can select a compact gene subset which can not only be used to build high quality cancer classifiers but also show biological relevance.
Collapse
Affiliation(s)
- Simin Hu
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, 44106
| | - J. Sunil Rao
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, 44106
| |
Collapse
|
19
|
Septin remodeling is essential for the formation of cell membrane protrusions (microtentacles) in detached tumor cells. Oncotarget 2017; 8:76686-76698. [PMID: 29100341 PMCID: PMC5652735 DOI: 10.18632/oncotarget.20805] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
Microtentacles are mostly microtubule-based cell protrusions that are formed by detached tumor cells. Here, we report that the formation of tumor cell microtentacles depends on the presence and dynamics of guanine nucleotide-binding proteins of the septin family, which are part of the cytoskeleton. In matrix-attached breast, lung, prostate and pancreas cancer cells, septins are associated with the cytosolic actin cytoskeleton. Detachment of cells causes redistribution of septins to the membrane, where microtentacle formation occurs. Forchlorfenuron, which inhibits septin functions, blocks microtentacle formation. The small GTPase Cdc42 and its effector proteins Borgs regulate septins and are essential for microtentacle formation. Dominant active and inactive Cdc42 inhibit microtentacle formation indicating that the free cycling of Cdc42 between its active and inactive state is essential for septin regulation and microtentacle formation. Cell attachment and aggregation models suggest that septins play an essential role in the metastatic behavior of tumor cells.
Collapse
|
20
|
Septin 9_i2 is downregulated in tumors, impairs cancer cell migration and alters subnuclear actin filaments. Sci Rep 2017; 7:44976. [PMID: 28338090 PMCID: PMC5364497 DOI: 10.1038/srep44976] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 02/20/2017] [Indexed: 01/08/2023] Open
Abstract
Functions of septin cytoskeletal polymers in tumorigenesis are still poorly defined. Their role in the regulation of cytokinesis and cell migration were proposed to contribute to cancer associated aneuploidy and metastasis. Overexpression of Septin 9 (Sept9) promotes migration of cancer cell lines. SEPT9 mRNA and protein expression is increased in breast tumors compared to normal and peritumoral tissues and amplification of SEPT9 gene was positively correlated with breast tumor progression. However, the existence of multiple isoforms of Sept9 is a confounding factor in the analysis of Sept9 functions. In the present study, we analyze the protein expression of Sept9_i2, an uncharacterized isoform, in breast cancer cell lines and tumors and describe its specific impact on cancer cell migration and Sept9 cytoskeletal distribution. Collectively, our results showed that, contrary to Sept9_i1, Sept9_i2 did not support cancer cell migration, and induced a loss of subnuclear actin filaments. These effects were dependent on Sept9_i2 specific N-terminal sequence. Sept9_i2 was strongly down-regulated in breast tumors compared to normal mammary tissues. Thus our data indicate that Sept9_i2 is a negative regulator of breast tumorigenesis. We propose that Sept9 tumorigenic properties depend on the balance between Sept9_i1 and Sept9_i2 expression levels.
Collapse
|
21
|
Chen C, Yan S, Yang T, Chen S, Yeh Y, Ou J, Lin C, Lee Y, Chen C. The Relationship between the Methylated Septin-9 DNA Blood Test and Stool Occult Blood Test for Diagnosing Colorectal Cancer in Taiwanese People. J Clin Lab Anal 2017; 31:e22013. [PMID: 27390118 PMCID: PMC6817212 DOI: 10.1002/jcla.22013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/16/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common and lethal disease in the world. There is an increasing number of cases in Taiwan and a higher rate at advanced stages. The immune fecal occult blood test (iFOBT) has been used as a screening method in Taiwan for years. A new novel diagnostic tool, the Methylated Septin-9 (MS-9) DNA blood test, had been reported to have high sensitivity and specificity for CRC detection. There are no available data in Taiwan, so we conducted this prospective randomized trial to investigate the relationship among the MS-9 DNA blood test, iFOBT, and a combination of the two tests for diagnosing CRC in Taiwanese people. METHODS From July 1, 2012 to December 31, 2013, we prospectively selected 60 plasma samples from patients who were diagnosed with CRC and otherwise, the healthy group by colonoscopy in our hospital. Patients were divided into the CRC group and healthy group. CRC stages 0, I, II and stages III and IV were separately analyzed. We calculated the sensitivity and specificity of each group to determine the relationship among the MS-9 DNA blood test, iFOBT, and a combination of the two tests for diagnosing CRC in Taiwanese people. RESULTS The results of the MS-9 DNA blood test for the 60 samples were divided into three groups, and the sensitivity as well as the specificity of the MS-9 DNA blood test to detect CRC were 47% and 89%, respectively. The results of iFOBT were also divided into three groups, and had higher sensitivity (84%) but lower specificity (55%) using iFOBT to detect CRC. Higher rates could be predicted to detect CRC if both the tests were positive. CONCLUSIONS A combined MS-9 DNA blood test and iFOBT may help in a higher detection rate of CRC. It could be offered to individuals who are unwilling or unable to undergo colonoscopy. Further large prospective, randomized studies are needed in the future.
Collapse
Affiliation(s)
- Chung‐Hung Chen
- Division of GastroenterologyDepartment of Internal MedicineChang Bing Show Chwan Memorial HospitalChanghuaTaiwan
| | - Sheng‐Lei Yan
- Division of GastroenterologyDepartment of Internal MedicineChang Bing Show Chwan Memorial HospitalChanghuaTaiwan
| | - Tsung‐Hsun Yang
- Division of GastroenterologyDepartment of Internal MedicineChang Bing Show Chwan Memorial HospitalChanghuaTaiwan
| | - Shih‐Feng Chen
- Division of GastroenterologyDepartment of Internal MedicineChang Bing Show Chwan Memorial HospitalChanghuaTaiwan
| | - Yung‐Hsiang Yeh
- Division of GastroenterologyDepartment of Internal MedicineChang Bing Show Chwan Memorial HospitalChanghuaTaiwan
| | - Jing‐Jim Ou
- Division of General SurgeryDepartment of SurgeryChang Bing Show Chwan Memorial HospitalChanghuaTaiwan
| | - Chien‐Hua Lin
- Division of General SurgeryDepartment of SurgeryChang Bing Show Chwan Memorial HospitalChanghuaTaiwan
| | - Yueh‐Tsung Lee
- Division of General SurgeryDepartment of SurgeryChang Bing Show Chwan Memorial HospitalChanghuaTaiwan
| | - Chien‐Hua Chen
- Division of GastroenterologyDepartment of Internal MedicineChang Hua Show Chwan Memorial HospitalChanghuaTaiwan
| |
Collapse
|
22
|
Abstract
Interest in the biology of mammalian septin proteins has undergone a birth in recent years. Originally identified as critical for yeast budding throughout the 1970s, the septin family is now recognized to extend from yeast to humans and is associated with a variety of events ranging from cytokinesis to vesicle trafficking. An emerging theme for septins is their presence at sites where active membrane or cytoplasmic partitioning is occurring. Here, we briefly review the mammalian septin protein family and focus on a prototypic human and mouse septin, termed SEPT5, that is expressed in the brain, heart, and megakaryocytes. Work from neurobiology laboratories has linked SEPT5 to the exocytic complex of neurons, with implications that SEPT5 regulates neurotransmitter release. Striking similarities exist between neurotransmitter release and the platelet-release reaction, which is a critical step in platelet response to vascular injury. Work from our laboratory has characterized the platelet phenotype from mice containing a targeted deletion of SEPT5. Most strikingly, platelets from SEPT5null animals aggregate and release granular contents in response to subthreshold levels of agonists. Thus, the characterization of a SEPT5-deficient mouse has linked SEPT5 to the Platelet exocytic process and, as such, illustrates it as an important protein for regulating platelet function. Recent data suggest that platelets contain a wide repertoire of different septin proteins and assemble to form macromolecular septin complexes. The mouse platelet provides an experimental framework to define septin function in hemostasis, with implications for neurobiology and beyond.
Collapse
Affiliation(s)
- Constantino Martinez
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | | |
Collapse
|
23
|
Angelis D, Spiliotis ET. Septin Mutations in Human Cancers. Front Cell Dev Biol 2016; 4:122. [PMID: 27882315 PMCID: PMC5101219 DOI: 10.3389/fcell.2016.00122] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 10/17/2016] [Indexed: 12/22/2022] Open
Abstract
Septins are GTP-binding proteins that are evolutionarily and structurally related to the RAS oncogenes. Septin expression levels are altered in many cancers and new advances point to how abnormal septin expression may contribute to the progression of cancer. In contrast to the RAS GTPases, which are frequently mutated and actively promote tumorigenesis, little is known about the occurrence and role of septin mutations in human cancers. Here, we review septin missense mutations that are currently in the Catalog of Somatic Mutations in Cancer (COSMIC) database. The majority of septin mutations occur in tumors of the large intestine, skin, endometrium and stomach. Over 25% of the annotated mutations in SEPT2, SEPT4, and SEPT9 belong to large intestine tumors. From all septins, SEPT9 and SEPT14 exhibit the highest mutation frequencies in skin, stomach and large intestine cancers. While septin mutations occur with frequencies lower than 3%, recurring mutations in several invariant and highly conserved amino acids are found across different septin paralogs and tumor types. Interestingly, a significant number of these mutations occur in the GTP-binding pocket and septin dimerization interfaces. Future studies may determine how these somatic mutations affect septin structure and function, whether they contribute to the progression of specific cancers and if they could serve as tumor-specific biomarkers.
Collapse
|
24
|
Poüs C, Klipfel L, Baillet A. Cancer-Related Functions and Subcellular Localizations of Septins. Front Cell Dev Biol 2016; 4:126. [PMID: 27878118 PMCID: PMC5099157 DOI: 10.3389/fcell.2016.00126] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022] Open
Abstract
Since the initial discovery of septin family GTPases, the understanding of their molecular organization and cellular roles keeps being refined. Septins have been involved in many physiological processes and the misregulation of specific septin gene expression has been implicated in diverse human pathologies, including neurological disorders and cancer. In this minireview, we focus on the importance of the subunit composition and subcellular localization of septins relevant to tumor initiation, progression, and metastasis. We especially underline the importance of septin polymer composition and of their association with the plasma membrane, actin, or microtubules in cell functions involved in cancer and in resistance to cancer therapies. Through their scaffolding role, their function in membrane compartmentalization or through their protective function against protein degradation, septins also emerge as critical organizers of membrane-associated proteins and of signaling pathways implicated in cancer-associated angiogenesis, apoptosis, polarity, migration, proliferation, and in metastasis. Also, the question as to which of the free monomers, hetero-oligomers, or filaments is the functional form of mammalian septins is raised and the control over their spatial and temporal localization is discussed. The increasing amount of crosstalks identified between septins and cellular signaling mediators reinforces the exciting possibility that septins could be new targets in anti-cancer therapies or in therapeutic strategies to limit drug resistance.
Collapse
Affiliation(s)
- Christian Poüs
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1193, Université Paris-Sud, Université Paris-SaclayChâtenay-Malabry, France; Laboratoire de Biochimie-Hormonologie, Hôpital Antoine Béclère, AP-HPClamart, France
| | - Laurence Klipfel
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1193, Université Paris-Sud, Université Paris-SaclayChâtenay-Malabry, France; Département de Génétique, Institut de la Vision, Université Pierre et Marie Curie Paris 06, Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale UMR-S 968, Centre National de la Recherche Scientifique UMR 7210Paris, France
| | - Anita Baillet
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1193, Université Paris-Sud, Université Paris-Saclay Châtenay-Malabry, France
| |
Collapse
|
25
|
Parallel Regulation of von Hippel-Lindau Disease by pVHL-Mediated Degradation of B-Myb and Hypoxia-Inducible Factor α. Mol Cell Biol 2016; 36:1803-17. [PMID: 27090638 DOI: 10.1128/mcb.00067-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/11/2016] [Indexed: 11/20/2022] Open
Abstract
pVHL, the protein product of the von Hippel-Lindau (VHL) tumor suppressor gene, is a ubiquitin ligase that targets hypoxia-inducible factor α (HIF-α) for proteasomal degradation. Although HIF-α activation is necessary for VHL disease pathogenesis, constitutive activation of HIF-α alone did not induce renal clear cell carcinomas and pheochromocytomas in mice, suggesting the involvement of an HIF-α-independent pathway in VHL pathogenesis. Here, we show that the transcription factor B-Myb is a pVHL substrate that is degraded via the ubiquitin-proteasome pathway and that vascular endothelial growth factor (VEGF)- and/or platelet-derived growth factor (PDGF)-dependent tyrosine 15 phosphorylation of B-Myb prevents its degradation. Mice injected with B-Myb knockdown 786-O cells developed dramatically larger tumors than those bearing control cell tumors. Microarray screening of B-Myb-regulated genes showed that the expression of HIF-α-dependent genes was not affected by B-Myb knockdown, indicating that B-Myb prevents HIF-α-dependent tumorigenesis through an HIF-α-independent pathway. These data indicate that the regulation of B-Myb by pVHL plays a critical role in VHL disease.
Collapse
|
26
|
Abstract
SEPT9 gene methylation has been implicated as a biomarker for colorectal cancer (CRC) for more than 10 years and has been used clinically for more than 6 years. Studies have proven it to be an accurate, reliable, fast, and convenient method for CRC. In this chapter, we will first provide the background on the role of septin9 protein and the theoretical basis of the SEPT9 gene methylation assay. We will then focus on the performance of SEPT9 gene methylation assay for CRC early detection and screening by analyzing the data obtained in clinical trials and comparing its performance with other methods or markers. Finally, we will discuss the future applications of the assay in monitoring cancer recurrence, evaluating surgery, chemotherapy, and predicting long-term survival. We hope this chapter can provide a full overview of the theoretical basis, development, validation, and clinical applications of the SEPT9 assay for both basic science researchers and clinical practitioners.
Collapse
Affiliation(s)
- Lele Song
- Department of Radiotherapy, The Chinese PLA 309 Hospital, Beijing, PR China; BioChain (Beijing) Science and Technology, Inc., Economic and Technological Development Area, Beijing, PR China.
| | - Yuemin Li
- Department of Radiotherapy, The Chinese PLA 309 Hospital, Beijing, PR China.
| |
Collapse
|
27
|
Tong B, Li GP, Sasaki S, Muramatsu Y, Ohta T, Kose H, Yamada T. Association of the expression levels in the skeletal muscle and a SNP in the CDC10 gene with growth-related traits in Japanese Black beef cattle. Anim Genet 2015; 46:200-4. [PMID: 25691006 DOI: 10.1111/age.12274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2014] [Indexed: 11/28/2022]
Abstract
Growth performance, as well as marbling, is the main breeding objective in Japanese Black (JB) cattle, the major beef breed in Japan. The septin 7 (CDC10) gene, involved in cellular proliferation, is located within a genomic region of a quantitative trait locus for growth-related traits. In this study, we first showed that the expression levels of the CDC10 gene in the skeletal muscle were higher in JB steers with extremely high growth performance than in JB steers with extremely low growth, using real-time PCR. Further, a single nucleotide polymorphism (SNP), NC_007302.5:g.63264949G>C, was detected in the promoter region of the CDC10 gene and genotyped in three Japanese cattle breeds (known as 'Wagyu' in Japan) and the Brown Swiss dairy cattle breed. All four cattle populations showed a moderate genetic diversity at the SNP of the CDC10 gene. An association analysis indicated that the SNP was associated with growth-related traits in JB cattle. These findings suggest possible effects of the expression levels in the skeletal muscle and the SNP of the CDC10 gene on growth-related traits in JB cattle. The CDC10 SNP may be useful for effective marker-assisted selection to increase beef productivity in JB beef cattle.
Collapse
Affiliation(s)
- B Tong
- Department of Agrobiology, Faculty of Agriculture, Niigata University, Nishi-ku, Niigata, 950-2181, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Menon MB, Gaestel M. Sep(t)arate or not – how some cells take septin-independent routes through cytokinesis. J Cell Sci 2015; 128:1877-86. [PMID: 25690008 DOI: 10.1242/jcs.164830] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cytokinesis is the final step of cell division, and is a process that requires a precisely coordinated molecular machinery to fully separate the cytoplasm of the parent cell and to establish the intact outer cell barrier of the daughter cells. Among various cytoskeletal proteins involved, septins are known to be essential mediators of cytokinesis. In this Commentary, we present recent observations that specific cell divisions can proceed in the absence of the core mammalian septin SEPT7 and its Drosophila homolog Peanut (Pnut) and that thus challenge the view that septins have an essential role in cytokinesis. In the pnut mutant neuroepithelium, orthogonal cell divisions are successfully completed. Similarly, in the mouse, Sept7-null mutant early embryonic cells and, more importantly, planktonically growing adult hematopoietic cells undergo productive proliferation. Hence, as discussed here, mechanisms must exist that compensate for the lack of SEPT7 and the other core septins in a cell-type-specific manner. Despite there being crucial non-canonical immune-relevant functions of septins, septin depletion is well tolerated by the hematopoietic system. Thus differential targeting of cytokinesis could form the basis for more specific anti-proliferative therapies to combat malignancies arising from cell types that require septins for cytokinesis, such as carcinomas and sarcomas, without impairing hematopoiesis that is less dependent on septin.
Collapse
Affiliation(s)
- Manoj B Menon
- Institute of Physiological Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Matthias Gaestel
- Institute of Physiological Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
29
|
Wei Y, Yang J, Yi L, Wang Y, Dong Z, Liu Z, Ou-yang S, Wu H, Zhong Z, Yin Z, Zhou K, Gao Y, Yan B, Wang Z. MiR-223-3p targeting SEPT6 promotes the biological behavior of prostate cancer. Sci Rep 2014; 4:7546. [PMID: 25519054 PMCID: PMC4269886 DOI: 10.1038/srep07546] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) present frequently altered expression in urologic cancers including prostate, bladder, and kidney cancer. The altered expression of miR-223 has been reported in cancers and other diseases in recent researches. MiR-223 is up-regulated in systemic lupus erythematosus and rheumatoid arthritis. In neoplastic diseases, miR-223 is proved to be up-expressed in plasma or serum and cancer tissues compared with normal tissues in pancreatic cancer, gastric cancer, et al. However, whether altered expression of miR-223 is associated with prostate cancer (PCa) and what it is potential functions in PCa remained unveiled. In this study, we firstly found miR-223-3p were up-regulated in prostate cancer tissues and then we study functional role of miR-223-3p in PCa using DU145, PC3 and LNCaP cell lines. Our data suggested that miR-223-3p might target gene SEPT6 and promoted the biological behavior of prostate cancer. Notably, we found increasing SEPT6 expression might reverse the biological activity induced by miR-223-3p, which might be a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Yongbao Wei
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jinrui Yang
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Lu Yi
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yinhuai Wang
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhitao Dong
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ziting Liu
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Shifeng Ou-yang
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hongtao Wu
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhaohui Zhong
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhuo Yin
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Keqin Zhou
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yunliang Gao
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Bin Yan
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhao Wang
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
30
|
Fung KYY, Dai L, Trimble WS. Cell and molecular biology of septins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:289-339. [PMID: 24725429 DOI: 10.1016/b978-0-12-800180-6.00007-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Septins are a family of GTP-binding proteins that assemble into cytoskeletal filaments. Unlike other cytoskeletal components, septins form ordered arrays of defined stoichiometry that can polymerize into long filaments and bundle laterally. Septins associate directly with membranes and have been implicated in providing membrane stability and serving as diffusion barriers for membrane proteins. In addition, septins bind other proteins and have been shown to function as multimolecular scaffolds by recruiting components of signaling pathways. Remarkably, septins participate in a spectrum of cellular processes including cytokinesis, ciliogenesis, cell migration, polarity, and cell-pathogen interactions. Given their breadth of functions, it is not surprising that septin abnormalities have also been linked to human diseases. In this review, we discuss the current knowledge of septin structure, assembly and function, and discuss these in the context of human disease.
Collapse
Affiliation(s)
- Karen Y Y Fung
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Lu Dai
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| | - William S Trimble
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
31
|
Johnson DA, Barclay RL, Mergener K, Weiss G, König T, Beck J, Potter NT. Plasma Septin9 versus fecal immunochemical testing for colorectal cancer screening: a prospective multicenter study. PLoS One 2014; 9:e98238. [PMID: 24901436 PMCID: PMC4046970 DOI: 10.1371/journal.pone.0098238] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Screening improves outcomes related to colorectal cancer (CRC); however, suboptimal participation for available screening tests limits the full benefits of screening. Non-invasive screening using a blood based assay may potentially help reach the unscreened population. OBJECTIVE To compare the performance of a new Septin9 DNA methylation based blood test with a fecal immunochemical test (FIT) for CRC screening. DESIGN In this trial, fecal and blood samples were obtained from enrolled patients. To compare test sensitivity for CRC, patients with screening identified colorectal cancer (n = 102) were enrolled and provided samples prior to surgery. To compare test specificity patients were enrolled prospectively (n = 199) and provided samples prior to bowel preparation for screening colonoscopy. MEASUREMENTS Plasma and fecal samples were analyzed using the Epi proColon and OC Fit-Check tests respectively. RESULTS For all samples, sensitivity for CRC detection was 73.3% (95% CI 63.9-80.9%) and 68.0% (95% CI 58.2-76.5%) for Septin9 and FIT, respectively. Specificity of the Epi proColon test was 81.5% (95% CI 75.5-86.3%) compared with 97.4% (95% CI 94.1-98.9%) for FIT. For paired samples, the sensitivity of the Epi proColon test (72.2% -95% CI 62.5-80.1%) was shown to be statistically non-inferior to FIT (68.0%-95% CI 58.2-76.5%). When test results for Epi proColon and FIT were combined, CRC detection was 88.7% at a specificity of 78.8%. CONCLUSIONS At a sensitivity of 72%, the Epi proColon test is non- inferior to FIT for CRC detection, although at a lower specificity. With negative predictive values of 99.8%, both methods are identical in confirming the absence of CRC. TRIAL REGISTRATION ClinicalTrials.gov NCT01580540.
Collapse
Affiliation(s)
- David A. Johnson
- Gastroenterology Division, Eastern VA Medical School, Norfolk, Virginia, United States of America
| | - Robert L. Barclay
- Rockford Gastroenterology Associates, Ltd., Rockford, Illinois, United States of America
| | - Klaus Mergener
- Digestive Health Specialists, Tacoma, Washington, United States of America
| | | | | | | | - Nicholas T. Potter
- Molecular Pathology Laboratory Network, Inc., Maryville, Tennessee, United States of America
| |
Collapse
|
32
|
Li Y, Song L, Gong Y, He B. Detection of colorectal cancer by DNA methylation biomarker SEPT9: past, present and future. Biomark Med 2014; 8:755-769. [PMID: 25123042 DOI: 10.2217/bmm.14.8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer has become the third most common cancer in the world. Early diagnosis and treatment can significantly reduce colorectal cancer mortality. The current routinely used fecal-based screening methods do not provide satisfactory sensitivity. Although colonoscopy provides macroscopic diagnosis, the compliance is low due to its inconvenience and complications. Hence, the development of new screening methods is needed urgently. Peripheral blood SEPT9 gene methylation assay has become a potential option with promising future for early detection and screening of colorectal cancer. It is shown to be convenient, reliable with good compliance by several clinical trials. This article will review the theoretical foundation and development of the assay, focusing on its clinical trials, comparing it with other screening methods and discussing its future applications.
Collapse
Affiliation(s)
- Yuemin Li
- The Chinese PLA 309 Hospital (General Hospital of the PLA General Staff Headquarters), No. 17, HeiShanHu Road, HaiDian District, Beijing 100091, PR China
| | | | | | | |
Collapse
|
33
|
Wasserkort R, Kalmar A, Valcz G, Spisak S, Krispin M, Toth K, Tulassay Z, Sledziewski AZ, Molnar B. Aberrant septin 9 DNA methylation in colorectal cancer is restricted to a single CpG island. BMC Cancer 2013; 13:398. [PMID: 23988185 PMCID: PMC3837632 DOI: 10.1186/1471-2407-13-398] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 08/28/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The septin 9 gene (SEPT9) codes for a GTP-binding protein associated with filamentous structures and cytoskeleton formation. SEPT9 plays a role in multiple cancers as either an oncogene or a tumor suppressor gene. Regulation of SEPT9 expression is complex and not well understood; however, hypermethylation of the gene was recently introduced as a biomarker for early detection of colorectal cancer (CRC) and has been linked to cancer of the breast and of the head and neck. Because the DNA methylation landscape of different regions of SEPT9 is poorly understood in cancer, we analyzed the methylation patterns of this gene in distinct cell populations from normal and diseased colon mucosa. METHODS Laser capture microdissection was performed to obtain homogeneous populations of epithelial and stromal cells from normal, adenomatous, and tumorous colon mucosa. Microdissected samples were analyzed using direct bisulfite sequencing to determine the DNA methylation status of eight regions within and near the SEPT9 gene. Septin-9 protein expression was assessed using immunohistochemistry (IHC). RESULTS Regions analyzed in SEPT9 were unmethylated in normal tissue except for a methylation boundary detected downstream of the largest CpG island. In adenoma and tumor tissues, epithelial cells displayed markedly increased DNA methylation levels (>80%, p <0.0001) in only one of the CpG islands investigated. SEPT9 methylation in stromal cells increased in adenomatous and tumor tissues (≤50%, p <0.0001); however, methylation did not increase in stromal cells of normal tissue close to the tumor. IHC data indicated a significant decrease (p <0.01) in Septin-9 protein levels in epithelial cells derived from adenoma and tumor tissues; Septin-9 protein levels in stromal cells were low in all tissues. CONCLUSIONS Hypermethylation of SEPT9 in adenoma and CRC specimens is confined to one of several CpG islands of this gene. Tumor-associated aberrant methylation originates in epithelial cells; stromal cells appear to acquire hypermethylation subsequent to epithelial cells, possibly through field effects. The region in SEPT9 with disease-related hypermethylation also contains the CpGs targeted by a novel blood-based screening test (Epi proColon®), providing further support for the clinical relevance of this biomarker.
Collapse
Affiliation(s)
- Reinhold Wasserkort
- Epigenomics AG, Berlin, Germany
- Current address: Delta-Vir GmbH, Leipzig, Germany
| | - Alexandra Kalmar
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Gabor Valcz
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Sandor Spisak
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Manuel Krispin
- Epigenomics AG, Berlin, Germany
- Current address: Zymo Research, Irvine CA 92614, USA
| | - Kinga Toth
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Zsolt Tulassay
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
- Molecular Medicine Research Unit, Hungarian Academy of Science, Budapest, Hungary
| | | | - Bela Molnar
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
- Molecular Medicine Research Unit, Hungarian Academy of Science, Budapest, Hungary
| |
Collapse
|
34
|
Launay E, Henry C, Meyer C, Chappé C, Taque S, Boulland ML, Ben Abdelali R, Dugay F, Marschalek R, Bastard C, Fest T, Gandemer V, Belaud-Rotureau MA. MLL-SEPT5 fusion transcript in infant acute myeloid leukemia with t(11;22)(q23;q11). Leuk Lymphoma 2013; 55:662-7. [PMID: 23725386 DOI: 10.3109/10428194.2013.809528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chromosomal rearrangements involving the MLL gene at band 11q23 are the most common genetic alteration encountered in infant acute myeloid leukemia. Reciprocal translocation represents the most frequent form of MLL rearrangement. Currently, more than 60 partner genes have been identified. We report here a case of de novo acute myeloid leukemia with a t(11;22)(q23;q11) in a 23-month-old child. Fluorescence in situ hybridization study revealed that the 3'MLL segment was translocated onto the derivative chromosome 22 and the breakpoint on chromosome 22 was located in or near the SEPT5 gene at 22q11.21. Long distance inverse-polymerase chain reaction was used to identify precisely the MLL partner gene and confirmed the MLL-SEPT5 fusion transcript. Involvement of the SEPT5 gene in MLL rearrangement occurs very rarely. Clinical, cytogenetic and molecular features of acute myeloid leukemia with a MLL-SEPT5 fusion gene are reviewed.
Collapse
Affiliation(s)
- Erika Launay
- Service de Cytogénétique et de Biologie Cellulaire
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mao H, Liu J, Shi W, Huang Q, Xu X, Ni L, Zou F, Shi J, Li D, Liu Y, Chen J. The Expression Patterns of Septin-9 After Traumatic Brain Injury in Rat Brain. J Mol Neurosci 2013; 51:558-66. [DOI: 10.1007/s12031-013-0024-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/30/2013] [Indexed: 01/11/2023]
|
36
|
Baudin B. Test septine 9 et cancer colorectal ou comment améliorer son dépistage. IMMUNO-ANALYSE & BIOLOGIE SPÉCIALISÉE 2013; 28:1-7. [DOI: 10.1016/j.immbio.2012.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
37
|
Affiliation(s)
- Nolan Beise
- Cell Biology Program, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | |
Collapse
|
38
|
Gilden JK, Peck S, Chen YCM, Krummel MF. The septin cytoskeleton facilitates membrane retraction during motility and blebbing. ACTA ACUST UNITED AC 2012; 196:103-14. [PMID: 22232702 PMCID: PMC3255977 DOI: 10.1083/jcb.201105127] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Septins assemble on the cortex and restore normal cell shape by retracting aberrantly protruding membranes and promoting cortical contraction during amoeboid motility. Increasing evidence supports a critical role for the septin cytoskeleton at the plasma membrane during physiological processes including motility, formation of dendritic spines or cilia, and phagocytosis. We sought to determine how septins regulate the plasma membrane, focusing on this cytoskeletal element’s role during effective amoeboid motility. Surprisingly, septins play a reactive rather than proactive role, as demonstrated during the response to increasing hydrostatic pressure and subsequent regulatory volume decrease. In these settings, septins were required for rapid cortical contraction, and SEPT6-GFP was recruited into filaments and circular patches during global cortical contraction and also specifically during actin filament depletion. Recruitment of septins was also evident during excessive blebbing initiated by blocking membrane trafficking with a dynamin inhibitor, providing further evidence that septins are recruited to facilitate retraction of membranes during dynamic shape change. This function of septins in assembling on an unstable cortex and retracting aberrantly protruding membranes explains the excessive blebbing and protrusion observed in septin-deficient T cells.
Collapse
Affiliation(s)
- Julia K Gilden
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
39
|
Lin YH, Wang YY, Chen HI, Kuo YC, Chiou YW, Lin HH, Wu CM, Hsu CC, Chiang HS, Kuo PL. SEPTIN12 genetic variants confer susceptibility to teratozoospermia. PLoS One 2012; 7:e34011. [PMID: 22479503 PMCID: PMC3316533 DOI: 10.1371/journal.pone.0034011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 02/21/2012] [Indexed: 12/16/2022] Open
Abstract
It is estimated that 10-15% of couples are infertile and male factors account for about half of these cases. With the advent of intracytoplasmic sperm injection (ICSI), many infertile men have been able to father offspring. However, teratozoospermia still remains a big challenge to tackle. Septins belong to a family of cytoskeletal proteins with GTPase activity and are involved in various biological processes e.g. morphogenesis, compartmentalization, apoptosis and cytokinesis. SEPTIN12, identified by c-DNA microarray analysis of infertile men, is exclusively expressed in the post meiotic male germ cells. Septin12(+/+)/Septin12(+/-) chimeric mice have multiple reproductive defects including the presence of immature sperm in the semen, and sperm with bent neck (defect of the annulus) and nuclear DNA damage. These facts make SEPTIN12 a potential sterile gene in humans. In this study, we sequenced the entire coding region of SEPTIN12 in infertile men (n = 160) and fertile controls (n = 200) and identified ten variants. Among them is the c.474 G>A variant within exon 5 that encodes part of the GTP binding domain. The variant creates a novel splice donor site that causes skipping of a portion of exon 5, resulting in a truncated protein lacking the C-terminal half of SEPTIN12. Most individuals homozygous for the c.474 A allele had teratozoospermia (abnormal sperm <14%) and their sperm showed bent tail and de-condensed nucleus with significant DNA damage. Ex vivo experiment showed truncated SEPT12 inhibits filament formation in a dose-dependent manner. This study provides the first causal link between SEPTIN12 genetic variant and male infertility with distinctive sperm pathology. Our finding also suggests vital roles of SEPT12 in sperm nuclear integrity and tail development.
Collapse
Affiliation(s)
- Ying-Hung Lin
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, College of Medicine, Taipei, Taiwan
| | - Ya-Yun Wang
- Department of Obstetrics & Gynecology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
- Institute of Molecular Medicine, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Hau-Inh Chen
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Yung-Che Kuo
- Graduate Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Yu-Wei Chiou
- Department of Biomedical Engineering, National Cheng Kung University, College of Engineering, Tainan, Taiwan
| | - Hsi-Hui Lin
- Department of Physiology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Ching-Ming Wu
- Department of Cell Biology & Anatomy, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Chao-Chin Hsu
- Department of Obstetrics and Gynecology, China Medical University, Taichung, Taiwan
| | - Han-Sun Chiang
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, College of Medicine, Taipei, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics & Gynecology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
- Graduate Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
40
|
Füchtbauer A, Lassen LB, Jensen AB, Howard J, Quiroga ADS, Warming S, Sørensen AB, Pedersen FS, Füchtbauer EM. Septin9 is involved in septin filament formation and cellular stability. Biol Chem 2012; 392:769-77. [PMID: 21824004 DOI: 10.1515/bc.2011.088] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Septin9 (Sept9) is a member of the filament-forming septin family of structural proteins and is associated with a variety of cancers and with hereditary neuralgic amyotrophy. We have generated mice with constitutive and conditional Sept9 knockout alleles. Homozygous deletion of Sept9 results in embryonic lethality around day 10 of gestation whereas mice homozygous for the conditional allele develop normally. Here we report the consequences of homozygous loss of Sept9 in immortalized murine embryonic fibroblasts. Proliferation rate was not changed but cells without Sept9 had an altered morphology compared to normal cells, particularly under low serum stress. Abnormal, fragmented, and multiple nuclei were more frequent in cells without Sept9. Cell migration, as measured by gap-filling and filter-invasion assays, was impaired, but individual cells did not move less than wild-type cells. Sept9 knockout cells showed a reduced resistance to hypo-osmotic stress. Stress fiber and vinculin staining at focal adhesion points was less prominent. Long septin filaments stained for Sept7 disappeared. Instead, staining was found in short, often curved filaments and rings. Furthermore, Sept7 was no longer localized to the mitotic spindle. Together, these data reveal the importance of Sept9 for septin filament formation and general cell stability.
Collapse
|
41
|
Stanbery L, Petty EM. Steps solidifying a role for SEPT9 in breast cancer suggest that greater strides are needed. Breast Cancer Res 2012; 14:101. [PMID: 22236777 PMCID: PMC3496112 DOI: 10.1186/bcr3056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Septins comprise a conserved family of GTPase proteins. Of these, human SEPT9 has been widely implicated in cancers of epithelial origin, including breast cancer, as well as leukemia. In a previous issue of Breast Cancer Research, Connolly and colleagues present compelling data further supporting a role for SEPT9 isoforms in early breast cancer development as well as evidence suggesting that cellular localization patterns of SEPT9 isoforms may contribute to oncogenesis.
Collapse
|
42
|
Hall PA, Russell SEH. Mammalian septins: dynamic heteromers with roles in cellular morphogenesis and compartmentalization. J Pathol 2011; 226:287-99. [PMID: 21990096 DOI: 10.1002/path.3024] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 02/06/2023]
Abstract
The septins are a family of GTP-binding proteins, evolutionarily conserved from yeast through to mammals, with roles in multiple core cellular functions. Here we provide an overview of our current knowledge of septin structure and function and focus mainly on mammalian septins, but gain much insight by drawing on knowledge of septins in other organisms. We describe their genomic and transcriptional complexity: a complexity manifest also in the diversity of scaffold structures that septins can form. Septin complexes can act to localize interacting proteins at specific intracellular locales and can also define membrane compartments by defining diffusion barriers. By such activities, septins can contribute to the definition of spatial asymmetry and cell polarity and we suggest a potential role in stem cell biology. Finally, we review the evidence that septins contribute to various disease states and argue that it is a breakdown in the tight regulation of their expression (particularly of individual isoforms), and also their inherent ability to oligomerize, which is pathogenic. Study of the perturbation of septin complex formation in disease will provide valuable insights into septin biology and will be a fertile ground for study.
Collapse
Affiliation(s)
- Peter A Hall
- Department of Molecular Oncology and Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | | |
Collapse
|
43
|
Lee SG, Park TS, Oh SH, Park JC, Yang YJ, Marschalek R, Meyer C, Cho EH, Shin SY. De novo acute myeloid leukemia associated with t(11;17)(q23;q25) and MLL-SEPT9 rearrangement in an elderly patient: a case study and review of the literature. Acta Haematol 2011; 126:195-8. [PMID: 21846973 DOI: 10.1159/000329389] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 05/17/2011] [Indexed: 11/19/2022]
Affiliation(s)
- Sang-Guk Lee
- Department of Laboratory Medicine, Armed Forces Capital Hospital, Seongnam, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Connolly D, Yang Z, Castaldi M, Simmons N, Oktay MH, Coniglio S, Fazzari MJ, Verdier-Pinard P, Montagna C. Septin 9 isoform expression, localization and epigenetic changes during human and mouse breast cancer progression. Breast Cancer Res 2011; 13:R76. [PMID: 21831286 PMCID: PMC3236340 DOI: 10.1186/bcr2924] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 05/12/2011] [Accepted: 08/10/2011] [Indexed: 02/06/2023] Open
Abstract
Introduction Altered expression of Septin 9 (SEPT9), a septin coding for multiple isoform variants, has been observed in several carcinomas, including colorectal, head and neck, ovarian and breast, compared to normal tissues. The mechanisms regulating its expression during tumor initiation and progression in vivo and the oncogenic function of its different isoforms remain elusive. Methods Using an integrative approach, we investigated SEPT9 at the genetic, epigenetic, mRNA and protein levels in breast cancer. We analyzed a panel of breast cancer cell lines, human primary tumors and corresponding tumor-free areas, normal breast tissues from reduction mammoplasty patients, as well as primary mammary gland adenocarcinomas derived from the polyoma virus middle T antigen, or PyMT, mouse model. MCF7 clones expressing individual GFP-tagged SEPT9 isoforms were used to determine their respective intracellular distributions and effects on cell migration. Results An overall increase in gene amplification and altered expression of SEPT9 were observed during breast tumorigenesis. We identified an intragenic alternative promoter at which methylation regulates SEPT9_v3 expression. Transfection of specific GFP-SEPT9 isoforms in MCF7 cells indicates that these isoforms exhibit differential localization and affect migration rates. Additionally, the loss of an uncharacterized SEPT9 nucleolar localization is observed during tumorigenesis. Conclusions In this study, we found conserved in vivo changes of SEPT9 gene amplification and overexpression during human and mouse breast tumorigenesis. We show that DNA methylation is a prominent mechanism responsible for regulating differential SEPT9 isoform expression and that breast tumor samples exhibit distinctive SEPT9 intracellular localization. Together, these findings support the significance of SEPT9 as a promising tool in breast cancer detection and further emphasize the importance of analyzing and targeting SEPT9 isoform-specific expression and function.
Collapse
Affiliation(s)
- Diana Connolly
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Connolly D, Abdesselam I, Verdier-Pinard P, Montagna C. Septin roles in tumorigenesis. Biol Chem 2011; 392:725-38. [PMID: 21740328 DOI: 10.1515/bc.2011.073] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Septins are a family of cytoskeleton related proteins consisting of 14 members that associate and interact with actin and tubulin. From yeast to humans, septins maintain a conserved role in cytokinesis and they are also involved in a variety of other cellular functions including chromosome segregation, DNA repair, migration and apoptosis. Tumorigenesis entails major alterations in these processes. A substantial body of literature reveals that septins are overexpressed, downregulated or generate chimeric proteins with MLL in a plethora of solid tumors and in hematological malignancies. Thus, members of this gene family are emerging as key players in tumorigenesis. The analysis of septins during cancer initiation and progression is challenged by the presence of many family members and by their potential to produce numerous isoforms. However, the development and application of advanced technologies is allowing for a more detailed analysis of septins during tumorigenesis. Specifically, such applications have led to the establishment and validation of SEPT9 as a biomarker for the early detection of colorectal cancer. This review summarizes the current knowledge on the role of septins in tumorigenesis, emphasizing their significance and supporting their use as potential biomarkers in various cancer types.
Collapse
Affiliation(s)
- Diana Connolly
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
46
|
Cerveira N, Bizarro S, Teixeira MR. MLL-SEPTIN gene fusions in hematological malignancies. Biol Chem 2011; 392:713-24. [PMID: 21714766 DOI: 10.1515/bc.2011.072] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mixed lineage leukemia (MLL) locus is involved in more than 60 different rearrangements with a remarkably diverse group of fusion partners in approximately 10% of human leukemias. MLL rearrangements include chromosomal translocations, gene internal duplications, chromosome 11q deletions or inversions and MLL gene insertions into other chromosomes, or vice versa. MLL fusion partners can be classified into four distinct categories: nuclear proteins, cytoplasmatic proteins, histone acetyltransferases and septins. Five different septin genes (SEPT2, SEPT5, SEPT6, SEPT9, and SEPT11) have been identified as MLL fusion partners, giving rise to chimeric fusion proteins in which the N terminus of MLL is fused, in frame, to almost the entire open reading frame of the septin partner gene. The rearranged alleles result from heterogeneous breaks in distinct introns of both MLL and its septin fusion partner, originating distinct gene fusion variants. MLL-SEPTIN rearrangements have been repeatedly identified in de novo and therapy related myeloid neoplasia in both children and adults, and some clinicopathogenetic associations are being uncovered. The fundamental roles of septins in cytokinesis, membrane remodeling and compartmentalization can provide some clues on how abnormalities in the septin cytoskeleton and MLL deregulation could be involved in the pathogenesis of hematological malignancies.
Collapse
Affiliation(s)
- Nuno Cerveira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | | | | |
Collapse
|
47
|
Estey MP, Di Ciano-Oliveira C, Froese CD, Bejide MT, Trimble WS. Distinct roles of septins in cytokinesis: SEPT9 mediates midbody abscission. ACTA ACUST UNITED AC 2010; 191:741-9. [PMID: 21059847 PMCID: PMC2983063 DOI: 10.1083/jcb.201006031] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Septins are a family of GTP-binding proteins implicated in mammalian cell division. Most studies examining the role of septins in this process have treated the family as a whole, thus neglecting the possibility that individual members may have diverse functions. To address this, we individually depleted each septin family member expressed in HeLa cells by siRNA and assayed for defects in cell division by immunofluorescence and time-lapse microscopy. Depletion of SEPT2, SEPT7, and SEPT11 causes defects in the early stages of cytokinesis, ultimately resulting in binucleation. In sharp contrast, SEPT9 is dispensable for the early stages of cell division, but is critical for the final separation of daughter cells. Rescue experiments indicate that SEPT9 isoforms containing the N-terminal region are sufficient to drive cytokinesis. We demonstrate that SEPT9 mediates the localization of the vesicle-tethering exocyst complex to the midbody, providing mechanistic insight into the role of SEPT9 during abscission.
Collapse
Affiliation(s)
- Mathew P Estey
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
48
|
Tachibana T, Okazaki E, Yoshimi T, Azuma M, Kakehashi A, Wanibuchi H. Rat monoclonal antibody specific for septin 9. Hybridoma (Larchmt) 2010; 29:169-71. [PMID: 20443710 DOI: 10.1089/hyb.2009.0092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The septin family of GTPase proteins has been shown to be important for cell division, cytoskeletal organization, and membrane-remodeling events. Septin 9 (SEPT9) is a member of the septin family (also designated MSF/eseptin/Sint1) and has been implicated in tumorigenesis. The present study reports on the preparation and properties of a monoclonal antibody (MAb) directed against SEPT9. The antibody was produced by hybridization of mouse myeloma cells with lymph node cells from an immunized rat. The MAb 7B5 specifically recognized SEPT9, as evidenced by immunoblotting using a variety of extracts from cultured cells. In immunostaining using MAb 7B5, a filamentous pattern near the plasma membrane was observed. The MAb 7B5 promises to be useful in immunoblotting and immunostaining experiments in various cells and tissues to determine the expression levels of SEPT9, as well as to further the analysis of the biological function of this protein.
Collapse
Affiliation(s)
- Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Saito H, Otsubo K, Kakimoto A, Komatsu N, Ohsaka A. Emergence of two unrelated clones in acute myeloid leukemia with MLL-SEPT9 fusion transcript. ACTA ACUST UNITED AC 2010; 201:111-5. [PMID: 20682395 DOI: 10.1016/j.cancergencyto.2010.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 05/12/2010] [Accepted: 05/26/2010] [Indexed: 11/29/2022]
Affiliation(s)
- Hajime Saito
- Department of Internal Medicine, Mitochuo Hospital, Mito, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
50
|
Gilden J, Krummel MF. Control of cortical rigidity by the cytoskeleton: emerging roles for septins. Cytoskeleton (Hoboken) 2010; 67:477-86. [PMID: 20540086 PMCID: PMC2906656 DOI: 10.1002/cm.20461] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 05/21/2010] [Indexed: 12/13/2022]
Abstract
The cortex is the outermost region of the cell, comprising all of the elements from the plasma membrane to the cortical actin cytoskeleton that cooperate to maintain the cell's shape and topology. In eukaryotes without cell walls, this cortex governs the contact between their plasma membranes and the environment and thereby influences cell shape, motility, and signaling. It is therefore of considerable interest to understand how cells control their cortices, both globally and with respect to small subdomains. Here we review the current understanding of this control, including the regulation of cell shape by balances of outward hydrostatic pressure and cortical tension. The actomyosin cytoskeleton is the canonical regulator of cortical rigidity and indeed many would consider the cortex to comprise the actin cortex nearly exclusively. However, this actomyosin array is intimately linked to the membrane, for example via ERM and PIP2 proteins. Additionally, the lipid membrane likely undergoes rigidification by other players, such as Bin-Amphiphysin-Rvs proteins. Recent data also indicates that the septin cytoskeleton may play a formidable and more direct role in stabilization of membranes, particularly in contexts where cells receive limited external stabilization from their environments. Here, we review how septins may play this role, drawing on their physical form, their ability to directly bind and modify membranes and actomyosin, and their interactions with vesicular machinery. Deficiencies and alterations in the nature of the septin cytoskeleton may thus be relevant in multiple disease settings.
Collapse
Affiliation(s)
- Julia Gilden
- Department of Pathology, University of California at San Francisco, San Francisco, California 94143-0511, USA
| | | |
Collapse
|