1
|
Zumkeller C, Schindler D, Felder J, Waldminghaus T. Modular Assembly of Synthetic Secondary Chromosomes. Methods Mol Biol 2024; 2819:157-187. [PMID: 39028507 DOI: 10.1007/978-1-0716-3930-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The development of novel DNA assembly methods in recent years has paved the way for the construction of synthetic replicons to be used for basic research and biotechnological applications. A learning-by-building approach can now answer questions about how chromosomes must be constructed to maintain genetic information. Here we describe an efficient pipeline for the design and assembly of synthetic, secondary chromosomes in Escherichia coli based on the popular modular cloning (MoClo) system.
Collapse
Affiliation(s)
- Celine Zumkeller
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, Germany
| | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Jennifer Felder
- Technische Universität Darmstadt, Faculty of Biology, Darmstadt, Germany
| | | |
Collapse
|
2
|
Zhao Y, Wang CC, Chen X. Microbes and complex diseases: from experimental results to computational models. Brief Bioinform 2020; 22:5882184. [PMID: 32766753 DOI: 10.1093/bib/bbaa158] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Studies have shown that the number of microbes in humans is almost 10 times that of cells. These microbes have been proven to play an important role in a variety of physiological processes, such as enhancing immunity, improving the digestion of gastrointestinal tract and strengthening metabolic function. In addition, in recent years, more and more research results have indicated that there are close relationships between the emergence of the human noncommunicable diseases and microbes, which provides a novel insight for us to further understand the pathogenesis of the diseases. An in-depth study about the relationships between diseases and microbes will not only contribute to exploring new strategies for the diagnosis and treatment of diseases but also significantly heighten the efficiency of new drugs development. However, applying the methods of biological experimentation to reveal the microbe-disease associations is costly and inefficient. In recent years, more and more researchers have constructed multiple computational models to predict microbes that are potentially associated with diseases. Here, we start with a brief introduction of microbes and databases as well as web servers related to them. Then, we mainly introduce four kinds of computational models, including score function-based models, network algorithm-based models, machine learning-based models and experimental analysis-based models. Finally, we summarize the advantages as well as disadvantages of them and set the direction for the future work of revealing microbe-disease associations based on computational models. We firmly believe that computational models are expected to be important tools in large-scale predictions of disease-related microbes.
Collapse
Affiliation(s)
- Yan Zhao
- School of Information and Control Engineering, China University of Mining
| | - Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining
| |
Collapse
|
3
|
Wright GD. Environmental and clinical antibiotic resistomes, same only different. Curr Opin Microbiol 2019; 51:57-63. [DOI: 10.1016/j.mib.2019.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
|
4
|
Brahami A, Castonguay A, Déziel É. Novel 'Bacteriospray' Method Facilitates the Functional Screening of Metagenomic Libraries for Antimicrobial Activity. Methods Protoc 2019; 2:mps2010004. [PMID: 31164589 PMCID: PMC6481063 DOI: 10.3390/mps2010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/29/2018] [Accepted: 01/01/2019] [Indexed: 01/14/2023] Open
Abstract
Metagenomic techniques, notably the cloning of environmental DNA (eDNA) into surrogate hosts, have given access to the genome of uncultured bacteria. However, the determination of gene functions based on DNA sequences alone remains a significant challenge. The functional screening of metagenomic libraries represents an interesting approach in the discovery of microbial metabolites. We describe here an optimized screening approach that facilitates the identification of new antimicrobials among large metagenomic libraries. Notably, we report a detailed genomic library construction protocol using Escherichia coli DH10B as a surrogate host, and demonstrate how vector/genomic DNA dephosphorylation, ligase inactivation, dialysis of the ligation product and vector/genomic DNA ratio greatly influence clone recovery. Furthermore, we describe the use of an airbrush device to screen E. coli metagenomic libraries for their antibacterial activity against Staphylococcus aureus, a method we called bacteriospray. This bacterial spraying tool greatly facilitates and improves the functional screening of large genomic libraries, as it conveniently allows the production of a thinner and more uniform layer of target bacteria compared to the commonly used overlay method, resulting in the screening of 5–10 times more clones per agar plate. Using the Burkholderia thailandensis E264 genomic DNA as a proof of concept, four clones out of 70,000 inhibited the growth of S. aureus and were found to each contain a DNA insert. Analysis of these chromosomic fragments revealed genomic regions never previously reported to be responsible for the production of antimicrobials, nor predicted by bioinformatics tools.
Collapse
Affiliation(s)
- Anissa Brahami
- INRS-Institut Armand-Frappier, Laval, QC H7V 1B7, Canada.
| | | | - Éric Déziel
- INRS-Institut Armand-Frappier, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
5
|
Yang X, Wu L, Xu Y, Ke C, Hu F, Xiao X, Huang J. Identification and characterization of a novel alkalistable and salt-tolerant esterase from the deep-sea hydrothermal vent of the East Pacific Rise. Microbiologyopen 2018; 7:e00601. [PMID: 29504251 PMCID: PMC6182558 DOI: 10.1002/mbo3.601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 11/11/2022] Open
Abstract
A novel esterase gene selected from metagenomic sequences of deep-sea hydrothermal vents was successfully expressed in Escherichia coli. The recombinant protein (est-OKK), which belongs to the lipolytic enzyme family V, exhibited high activity toward pNP-esters with short acyl chains and especially p-nitrophenyl butyrate. Site-mutagenesis results confirmed that est-OKK contains the nonclassical catalytic tetrad predicted by alignment and computational modeling. The est-OKK protein is a moderately thermophilic enzyme that is relatively thermostable, and highly salt-tolerant, which remained stable in 3 mol/L NaCl for 6 hr. The est-OKK protein showed the considerable alkalistability, displayed optimal activity at pH 9.0 and maintained approximately 70% of its residual activity after incubation at pH 10 for 4 hr. Furthermore, the est-OKK activity was strongly resistant to a variety of metal ions such as Co2+ , Zn2+ , Fe2+ , Na+ , and K+ ; nonionic detergents such as Tween-20, Tween-80; and organic solvents such as acetone and isopropanol. Taken together, the novel esterase with unique characteristics may give us a new insight into the family V of lipolytic enzymes, and could be a highly valuable candidate for biotechnological applications such as organic synthesis reactions or food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xinwei Yang
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Lianzuan Wu
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Ying Xu
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Chongrong Ke
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Fangfang Hu
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianzhong Huang
- National Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Rodríguez MM, Herman R, Ghiglione B, Kerff F, D’Amico González G, Bouillenne F, Galleni M, Handelsman J, Charlier P, Gutkind G, Sauvage E, Power P. Crystal structure and kinetic analysis of the class B3 di-zinc metallo-β-lactamase LRA-12 from an Alaskan soil metagenome. PLoS One 2017; 12:e0182043. [PMID: 28750094 PMCID: PMC5531557 DOI: 10.1371/journal.pone.0182043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/11/2017] [Indexed: 12/02/2022] Open
Abstract
We analyzed the kinetic properties of the metagenomic class B3 β-lactamase LRA-12, and determined its crystallographic structure in order to compare it with prevalent metallo-β-lactamases (MBLs) associated with clinical pathogens. We showed that LRA-12 confers extended-spectrum resistance on E. coli when expressed from recombinant clones, and the MIC values for carbapenems were similar to those observed in enterobacteria expressing plasmid-borne MBLs such as VIM, IMP or NDM. This was in agreement with the strong carbapenemase activity displayed by LRA-12, similar to GOB β-lactamases. Among the chelating agents evaluated, dipicolinic acid inhibited the enzyme more strongly than EDTA, which required pre-incubation with the enzyme to achieve measurable inhibition. Structurally, LRA-12 contains the conserved main structural features of di-zinc class B β-lactamases, and presents unique structural signatures that differentiate this enzyme from others within the family: (i) two loops (α3-β7 and β11-α5) that could influence antibiotic entrance and remodeling of the active site cavity; (ii) a voluminous catalytic cavity probably responsible for the high hydrolytic efficiency of the enzyme; (iii) the absence of disulfide bridges; (iv) a unique Gln116 at metal-binding site 1; (v) a methionine residue at position 221that replaces Cys/Ser found in other B3 β-lactamases in a predominantly hydrophobic environment, likely playing a role in protein stability. The structure of LRA-12 indicates that MBLs exist in wild microbial populations in extreme environments, or environments with low anthropic impact, and under the appropriate antibiotic selective pressure could be captured and disseminated to pathogens.
Collapse
Affiliation(s)
- María Margarita Rodríguez
- Cátedra de Microbiología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Raphaël Herman
- InBioS, Centre d’Ingénierie des Protéines, Université de Liège, Liège, Belgium
| | - Barbara Ghiglione
- Cátedra de Microbiología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Frédéric Kerff
- InBioS, Centre d’Ingénierie des Protéines, Université de Liège, Liège, Belgium
| | - Gabriela D’Amico González
- Cátedra de Microbiología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fabrice Bouillenne
- InBioS, Centre d’Ingénierie des Protéines, Université de Liège, Liège, Belgium
| | - Moreno Galleni
- InBioS, Centre d’Ingénierie des Protéines, Université de Liège, Liège, Belgium
| | - Jo Handelsman
- Department of Molecular, Cellular and Development Biology, Yale University, New Haven, CT, United States of America
| | - Paulette Charlier
- InBioS, Centre d’Ingénierie des Protéines, Université de Liège, Liège, Belgium
| | - Gabriel Gutkind
- Cátedra de Microbiología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eric Sauvage
- InBioS, Centre d’Ingénierie des Protéines, Université de Liège, Liège, Belgium
| | - Pablo Power
- Cátedra de Microbiología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
7
|
Lepage P. [The human gut microbiota: Interactions with the host and dysfunctions]. Rev Mal Respir 2017; 34:1085-1090. [PMID: 28506730 DOI: 10.1016/j.rmr.2016.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/13/2016] [Indexed: 11/17/2022]
Abstract
The human intestinal microbiota is composed of approximately 100,000 billion microorganisms with the average total number of different commensal bacterial species estimated at over 500 per individual. The human intestinal microbiota can be considered as an organ within another, which co-evolved with its host to achieve a symbiotic relationship leading to physiological homeostasis. The host provides an environment enriched in nutrients and the microbiota provides essential functions. Dysbiosis of the intestinal microbiota (changes in bacterial composition) has been associated with local dysfunctions of the gastrointestinal tract, such as inflammatory bowel disease or irritable bowel syndrome but also with obesity and metabolic diseases. However, a better understanding of the human intestinal ecosystem is still needed to understand the exact role of the microbiota in health and disease. Most intestinal bacteria are anaerobic and therefore, for the large majority, impossible to culture at present. Consequently, their function cannot be inferred from data on their composition. Today, with the help of a metagenomic approach, the bacterial genomic content of an ecosystem and the associated functions can be directly accessed from the environment without culture.
Collapse
Affiliation(s)
- P Lepage
- Institut Micalis, Institut national de la recherche agronomique (INRA), AgroParisTech, université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
8
|
Yan W, Li F, Wang L, Zhu Y, Dong Z, Bai L. Discovery and characterizaton of a novel lipase with transesterification activity from hot spring metagenomic library. ACTA ACUST UNITED AC 2016; 14:27-33. [PMID: 28459005 PMCID: PMC5397106 DOI: 10.1016/j.btre.2016.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 01/29/2023]
Abstract
Eryuan Niujie Hot spring BAC library of Yunnan Province was constructed for the first time. Lipase gene lip-1 was a novel gene. Lip-1 was expressed and the fusion protein had transesterification activity. Lipase lip-1 has a high tolerance to methanol and organic solvent and can be used in biodiesel produce.
A new gene encoding a lipase (designated as Lip-1) was identified from a metagenomic bacterial artificial chromosome(BAC) library prepared from a concentrated water sample collected from a hot spring field in Niujie, Eryuan of Yunnan province in China. The open reading frame of this gene encoded 622 amino acid residues. It was cloned, fused with the oleosin gene and over expressed in Escherichia coli to prepare immobilized lipase artificial oil body AOB-sole-lip-1. The monomeric Sole-lip-1 fusion protein presented a molecular mass of 102.4 kDa. Enzyme assays using olive oil and methanol as the substrates in petroleum ether confirmed its transesterification activity. Hexadecanoic acid methyl ester, 8,11-Octadecadienoic acid methyl ester, 8-Octadecenoic acid methyl ester, and Octadecanoic acid methyl ester were detected. It showed favorable transesterification activity with optimal temperature 45 °C. Besides, the maximal biodiesel yield was obtained when the petroleum ether system as the organic solvent and the substrate methanol in 350 mmol/L (at a molar ratio of methanol of 10.5:1) and the water content was 1%. In light of these advantages, this lipase presents a promising resource for biodiesel production.
Collapse
Affiliation(s)
- Wei Yan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Furong Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Li Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Science, Beijing, 100101, China
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Science, Beijing, 100101, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Science, Beijing, 100101, China
| | - Linhan Bai
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
9
|
Mondot S, Lepage P. The human gut microbiome and its dysfunctions through the meta-omics prism. Ann N Y Acad Sci 2016; 1372:9-19. [PMID: 26945826 DOI: 10.1111/nyas.13033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/16/2015] [Accepted: 01/28/2016] [Indexed: 12/20/2022]
Abstract
The microorganisms inhabiting the human gut are abundant (10(14) cells) and diverse (approximately 500 species per individual). It is now acknowledged that the microbiota has coevolved with its host to achieve a symbiotic relationship, leading to physiological homeostasis. The gut microbiota ensures vital functions, such as food digestibility, maturation of the host immune system, and protection against pathogens. Over the last few decades, the gut microbiota has also been associated with numerous diseases, such as inflammatory bowel disease, irritable bowel syndrome, obesity, and metabolic diseases. In most of these pathologies, a microbial dysbiosis has been found, indicating shifts in the taxonomic composition of the gut microbiota and changes in its functionality. Our understanding of the influence of the gut microbiota on human health is still growing. Working with microorganisms residing in the gut is challenging since most of them are anaerobic and a vast majority (approximately 75%) are uncultivable to date. Recently, a wide range of new approaches (meta-omics) has been developed to bypass the uncultivability and reveal the intricate mechanisms that sustain gut microbial homeostasis. After a brief description of these approaches (metagenomics, metatranscriptomics, metaproteomics, and metabolomics), this review will discuss the importance of considering the gut microbiome as a structured ecosystem and the use of meta-omics to decipher dysfunctions of the gut microbiome in diseases.
Collapse
Affiliation(s)
- Stanislas Mondot
- National Institute of Agricultural Research (INRA) and AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Patricia Lepage
- National Institute of Agricultural Research (INRA) and AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
10
|
Biological Agents in Fusarium Wilt (FW) Diagnostic for Sustainable Pigeon Pea Production, Opportunities and Challenges. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27312-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Martin C, Burgel PR, Lepage P, Andréjak C, de Blic J, Bourdin A, Brouard J, Chanez P, Dalphin JC, Deslée G, Deschildre A, Gosset P, Touqui L, Dusser D. Host-microbe interactions in distal airways: relevance to chronic airway diseases. Eur Respir Rev 2015; 24:78-91. [PMID: 25726559 PMCID: PMC9487770 DOI: 10.1183/09059180.00011614] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This article is the summary of a workshop, which took place in November 2013, on the roles of microorganisms in chronic respiratory diseases. Until recently, it was assumed that lower airways were sterile in healthy individuals. However, it has long been acknowledged that microorganisms could be identified in distal airway secretions from patients with various respiratory diseases, including cystic fibrosis (CF) and non-CF bronchiectasis, chronic obstructive pulmonary disease, asthma and other chronic airway diseases (e.g. post-transplantation bronchiolitis obliterans). These microorganisms were sometimes considered as infectious agents that triggered host immune responses and contributed to disease onset and/or progression; alternatively, microorganisms were often considered as colonisers, which were considered unlikely to play roles in disease pathophysiology. These concepts were developed at a time when the identification of microorganisms relied on culture-based methods. Importantly, the majority of microorganisms cannot be cultured using conventional methods, and the use of novel culture-independent methods that rely on the identification of microorganism genomes has revealed that healthy distal airways display a complex flora called the airway microbiota. The present article reviews some aspects of current literature on host–microbe (mostly bacteria and viruses) interactions in healthy and diseased airways, with a special focus on distal airways. Understanding host–microbe interactions in distal airways may lead to novel therapies for chronic airway diseaseshttp://ow.ly/HfENz
Collapse
Affiliation(s)
- Clémence Martin
- Hôpital Cochin, AP-HP, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pierre-Régis Burgel
- Hôpital Cochin, AP-HP, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Patricia Lepage
- UMR1913-Microbiologie de l'Alimentation au Service de la Santé, l'Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Claire Andréjak
- Respiratory Intensive Care Unit, Centre Hospitalier Universitaire Sud, Amiens, France
| | - Jacques de Blic
- Hôpital Necker-Enfants Malades, AP-HP, Université Paris Descartes, Paris, France
| | - Arnaud Bourdin
- Hôpital Arnaud de Villeneuve, CHU Montpellier, Montpellier, France
| | - Jacques Brouard
- Dept of Pediatrics, CHU de Caen, Research Unit EA 4655 U2RM, Caen, France
| | - Pascal Chanez
- Dépt des Maladies Respiratoires, AP-HM, Laboratoire d'immunologie INSERM CNRS U 1067, UMR 7733, Aix Marseille Université, Marseille, France
| | | | - Gaetan Deslée
- Dept of Pulmonary Medicine, University Hospital of Reims, Reims, France
| | | | - Philippe Gosset
- Unité de défense innée et inflammation, Institut Pasteur, Paris, France INSERM U874, Paris, France
| | - Lhousseine Touqui
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Daniel Dusser
- Hôpital Cochin, AP-HP, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
12
|
Culture-independent discovery of natural products from soil metagenomes. J Ind Microbiol Biotechnol 2015; 43:129-41. [PMID: 26586404 DOI: 10.1007/s10295-015-1706-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 10/29/2015] [Indexed: 12/20/2022]
Abstract
Bacterial natural products have proven to be invaluable starting points in the development of many currently used therapeutic agents. Unfortunately, traditional culture-based methods for natural product discovery have been deemphasized by pharmaceutical companies due in large part to high rediscovery rates. Culture-independent, or "metagenomic," methods, which rely on the heterologous expression of DNA extracted directly from environmental samples (eDNA), have the potential to provide access to metabolites encoded by a large fraction of the earth's microbial biosynthetic diversity. As soil is both ubiquitous and rich in bacterial diversity, it is an appealing starting point for culture-independent natural product discovery efforts. This review provides an overview of the history of soil metagenome-driven natural product discovery studies and elaborates on the recent development of new tools for sequence-based, high-throughput profiling of environmental samples used in discovering novel natural product biosynthetic gene clusters. We conclude with several examples of these new tools being employed to facilitate the recovery of novel secondary metabolite encoding gene clusters from soil metagenomes and the subsequent heterologous expression of these clusters to produce bioactive small molecules.
Collapse
|
13
|
Dib JR, Wagenknecht M, Farías ME, Meinhardt F. Strategies and approaches in plasmidome studies-uncovering plasmid diversity disregarding of linear elements? Front Microbiol 2015; 6:463. [PMID: 26074886 PMCID: PMC4443254 DOI: 10.3389/fmicb.2015.00463] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 04/28/2015] [Indexed: 01/01/2023] Open
Abstract
The term plasmid was originally coined for circular, extrachromosomal genetic elements. Today, plasmids are widely recognized not only as important factors facilitating genome restructuring but also as vehicles for the dissemination of beneficial characters within bacterial communities. Plasmid diversity has been uncovered by means of culture-dependent or -independent approaches, such as endogenous or exogenous plasmid isolation as well as PCR-based detection or transposon-aided capture, respectively. High-throughput-sequencing made possible to cover total plasmid populations in a given environment, i.e., the plasmidome, and allowed to address the quality and significance of self-replicating genetic elements. Since such efforts were and still are rather restricted to circular molecules, here we put equal emphasis on the linear plasmids which—despite their frequent occurrence in a large number of bacteria—are largely neglected in prevalent plasmidome conceptions.
Collapse
Affiliation(s)
- Julián R Dib
- Planta Piloto de Procesos Industriales Microbiológicos-Consejo Nacional de Investigaciones Científicas y Técnicas , Tucumán, Argentina ; Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster , Münster, Germany ; Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán , Tucumán, Argentina
| | - Martin Wagenknecht
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster , Münster, Germany ; Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster , Münster, Germany
| | - María E Farías
- Planta Piloto de Procesos Industriales Microbiológicos-Consejo Nacional de Investigaciones Científicas y Técnicas , Tucumán, Argentina
| | - Friedhelm Meinhardt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster , Münster, Germany
| |
Collapse
|
14
|
de Castro AP, Fernandes GDR, Franco OL. Insights into novel antimicrobial compounds and antibiotic resistance genes from soil metagenomes. Front Microbiol 2014; 5:489. [PMID: 25278933 PMCID: PMC4166954 DOI: 10.3389/fmicb.2014.00489] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/01/2014] [Indexed: 11/13/2022] Open
Abstract
In recent years a major worldwide problem has arisen with regard to infectious diseases caused by resistant bacteria. Resistant pathogens are related to high mortality and also to enormous healthcare costs. In this field, cultured microorganisms have been commonly focused in attempts to isolate antibiotic resistance genes or to identify antimicrobial compounds. Although this strategy has been successful in many cases, most of the microbial diversity and related antimicrobial molecules have been completely lost. As an alternative, metagenomics has been used as a reliable approach to reveal the prospective reservoir of antimicrobial compounds and antibiotic resistance genes in the uncultured microbial community that inhabits a number of environments. In this context, this review will focus on resistance genes as well as on novel antibiotics revealed by a metagenomics approach from the soil environment. Biotechnology prospects are also discussed, opening new frontiers for antibiotic development.
Collapse
Affiliation(s)
- Alinne P de Castro
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Laboratórios Inova, Campo Grande, Brazil
| | - Gabriel da R Fernandes
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Analises Proteomicas e Bioquimicas, Universidade Católica de Brasília Brasilia, Brazil
| | - Octávio L Franco
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Laboratórios Inova, Campo Grande, Brazil ; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Analises Proteomicas e Bioquimicas, Universidade Católica de Brasília Brasilia, Brazil
| |
Collapse
|
15
|
A function-based screen for seeking RubisCO active clones from metagenomes: novel enzymes influencing RubisCO activity. ISME JOURNAL 2014; 9:735-45. [PMID: 25203835 DOI: 10.1038/ismej.2014.163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/15/2014] [Accepted: 08/11/2014] [Indexed: 11/08/2022]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a key enzyme of the Calvin cycle, which is responsible for most of Earth's primary production. Although research on RubisCO genes and enzymes in plants, cyanobacteria and bacteria has been ongoing for years, still little is understood about its regulation and activation in bacteria. Even more so, hardly any information exists about the function of metagenomic RubisCOs and the role of the enzymes encoded on the flanking DNA owing to the lack of available function-based screens for seeking active RubisCOs from the environment. Here we present the first solely activity-based approach for identifying RubisCO active fosmid clones from a metagenomic library. We constructed a metagenomic library from hydrothermal vent fluids and screened 1056 fosmid clones. Twelve clones exhibited RubisCO activity and the metagenomic fragments resembled genes from Thiomicrospira crunogena. One of these clones was further analyzed. It contained a 35.2 kb metagenomic insert carrying the RubisCO gene cluster and flanking DNA regions. Knockouts of twelve genes and two intergenic regions on this metagenomic fragment demonstrated that the RubisCO activity was significantly impaired and was attributed to deletions in genes encoding putative transcriptional regulators and those believed to be vital for RubisCO activation. Our new technique revealed a novel link between a poorly characterized gene and RubisCO activity. This screen opens the door to directly investigating RubisCO genes and respective enzymes from environmental samples.
Collapse
|
16
|
Dobrijevic D, Di Liberto G, Tanaka K, de Wouters T, Dervyn R, Boudebbouze S, Binesse J, Blottière HM, Jamet A, Maguin E, van de Guchte M. High-throughput system for the presentation of secreted and surface-exposed proteins from Gram-positive bacteria in functional metagenomics studies. PLoS One 2013; 8:e65956. [PMID: 23799065 PMCID: PMC3682982 DOI: 10.1371/journal.pone.0065956] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/30/2013] [Indexed: 12/13/2022] Open
Abstract
Complex microbial ecosystems are increasingly studied through the use of metagenomics approaches. Overwhelming amounts of DNA sequence data are generated to describe the ecosystems, and allow to search for correlations between gene occurrence and clinical (e.g. in studies of the gut microbiota), physico-chemical (e.g. in studies of soil or water environments), or other parameters. Observed correlations can then be used to formulate hypotheses concerning microbial gene functions in relation to the ecosystem studied. In this context, functional metagenomics studies aim to validate these hypotheses and to explore the mechanisms involved. One possible approach is to PCR amplify or chemically synthesize genes of interest and to express them in a suitable host in order to study their function. For bacterial genes, Escherichia coli is often used as the expression host but, depending on the origin and nature of the genes of interest and the test system used to evaluate their putative function, other expression systems may be preferable. In this study, we developed a system to evaluate the role of secreted and surface-exposed proteins from Gram-positive bacteria in the human gut microbiota in immune modulation. We chose to use a Gram-positive host bacterium, Bacillus subtilis, and modified it to provide an expression background that behaves neutral in a cell-based immune modulation assay, in vitro. We also adapted an E. coli – B. subtilis shuttle expression vector for use with the Gateway high-throughput cloning system. Finally, we demonstrate the functionality of this host-vector system through the cloning and expression of a flagellin-coding sequence, and show that the expression-clone elicits an inflammatory response in a human intestinal epithelial cell line. The expression host can easily be adapted to assure neutrality in other assay systems, allowing the use of the presented presentation system in functional metagenomics of the gut and other ecosystems.
Collapse
Affiliation(s)
- Dragana Dobrijevic
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Gaetana Di Liberto
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Kosei Tanaka
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Tomas de Wouters
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Rozenn Dervyn
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Samira Boudebbouze
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Johan Binesse
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Hervé M. Blottière
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Alexandre Jamet
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Emmanuelle Maguin
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Maarten van de Guchte
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
17
|
Bawa M, Saraswat VA. Gut-liver axis: role of inflammasomes. J Clin Exp Hepatol 2013; 3:141-9. [PMID: 25755488 PMCID: PMC4216435 DOI: 10.1016/j.jceh.2013.03.225] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 03/29/2013] [Indexed: 02/08/2023] Open
Abstract
Inflammasomes are large multiprotein complexes that have the ability to sense intracellular danger signals through special NOD-like receptors or NLRs. They include NLRP3, NLRC4, AIM2 and NLRP6. They are involved in recognizing diverse microbial (bacteria, viruses, fungi and parasites), stress and damage signals, which result in direct activation of caspase-1, leading to secretion of potent pro-inflammatory cytokines and pyroptosis. NLRP3 is the most studied antimicrobial immune response inflammasome. Recent studies reveal expression of inflammasomes in innate immune response cells including monocytes, macrophages, neutrophils, and dendritic cells. Inflammasome deficiency has been linked to alterations in the gastrointestinal microflora. Alterations in the microbiome population and/or changes in gut permeability promote microbial translocation into the portal circulation and thus directly to the liver. Gut derived lipopolysaccharides (LPS) play a significant role in several liver diseases. Recent advancements in the sequencing technologies along with improved methods in metagenomics and bioinformatics have provided effective tools for investigating the 10(14) microorganisms of the human microbiome that inhabit the human gut. In this review, we examine the significance of inflammasomes in relation to the gut microflora and liver. This review also highlights the emerging functions of human microbiota in health and liver diseases.
Collapse
Key Words
- AIM2, absent in melanoma 2
- ATP, adenosine triphosphate
- BMDMs, bone marrow-derived macrophages
- CARD, caspase activation and recruitment domain
- CTB, Cholera toxin B
- DAMP, damage associated molecular patterns
- HMGB1, high-mobility group box1
- IFN, interferon
- IL, interleukin
- LPS, lipopolysaccharides
- LRR, leucine-rich repeat
- MDP, muramyl dipeptide
- NACHT, domain present in NAIP, CIITA, HET-E (Podospora anserina incompatibility, locus protein) and telomerase associated protein
- NAFLD, non-alcoholic fatty liver disease
- NAIP, neuronal apoptosis inhibitor protein
- NK/NKT, natural killer/natural killer T cells
- NLR, NOD-like receptor
- NOD, nucleotide-binding oligomerization domain
- PAMPs, pathogen associated molecular patterns
- ROS, reactive oxygen species
- TLR, toll-like receptor
- TNF-α, tumor necrosis factor-α
- inflammasomes
- inflammation
- liver disease
- mCMV, mouse cytomegalovirus
- microbiota
Collapse
Affiliation(s)
- Manan Bawa
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, Haryana 160012, India
| | - Vivek A. Saraswat
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
18
|
Neelakanta G, Sultana H. The use of metagenomic approaches to analyze changes in microbial communities. Microbiol Insights 2013; 6:37-48. [PMID: 24826073 PMCID: PMC3987754 DOI: 10.4137/mbi.s10819] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microbes are the most abundant biological entities found in the biosphere. Identification and measurement of microorganisms (including viruses, bacteria, archaea, fungi, and protists) in the biosphere cannot be readily achieved due to limitations in culturing methods. A non-culture based approach, called “metagenomics”, was developed that enabled researchers to comprehensively analyse microbial communities in different ecosystems. In this study, we highlight recent advances in the field of metagenomics for analyzing microbial communities in different ecosystems ranging from oceans to the human microbiome. Developments in several bioinformatics approaches are also discussed in context of microbial metagenomics that include taxonomic systems, sequence databases, and sequence-alignment tools. In summary, we provide a snapshot for the recent advances in metagenomics approach for analyzing changes in the microbial communities in different ecosystems.
Collapse
Affiliation(s)
- Girish Neelakanta
- Center for Molecular Medicine, Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Hameeda Sultana
- Center for Molecular Medicine, Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
19
|
Bleicher A, Schöfl G, Rodicio MDR, Saluz HP. The plasmidome of a Salmonella enterica serovar Derby isolated from pork meat. Plasmid 2013; 69:202-10. [PMID: 23333216 DOI: 10.1016/j.plasmid.2013.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/04/2013] [Accepted: 01/06/2013] [Indexed: 10/27/2022]
Abstract
The complete nucleotide sequences of four plasmids hosted by a Salmonella enterica serovar. Derby strain 6MK1 isolated from pork were determined by shotgun Sanger sequencing. A 107,637 base pairs (bp) conjugative plasmid pSD107 containing 150 putative coding sequences (CDS) could be assigned to the narrow host range incompatibility group IncI1. A detailed annotation of all CDS was carried out, revealing the presence of genes needed for plasmid replication, conjugal transfer, plasmid partitioning and stability as well as resistance to antimicrobials. The resistance determinants dhfrA1, aadA1, qacEΔ1, sul1 (supplied by a class 1 integron), blaTEM-1b (carried by a truncated Tn2 flanked by IS26), sul2 and strAB confer multidrug resistance to the host bacterium. In addition to pSD107, three small cryptic plasmids pSD4.0, pSD4.6 and pSD5.6 were identified, showing significant sequence similarities to already known replicons of Escherichia coli and S. enterica. In conjugation experiments performed on solid medium, pSD107 was successfully transferred to a nalidixic acid resistant E. coli DH5α, mobilizing pSD4.0 and, more infrequently, also pSD4.6. All transferred plasmids were stably propagated in the recipient strain without selective pressure for approximately 66 generations. The absolute plasmid copy numbers were determined in real time PCR experiments, revealing an approximate 1:1:1:1 ratio of the four replicons compared to the chromosome. The evolutionary position of pSD107 within the IncI1 family of plasmids was inferred from a maximum likelihood phylogenetic tree and by comparison of genetic key elements in a set of 17 IncI1 reference plasmids.
Collapse
Affiliation(s)
- Anne Bleicher
- Leibniz-Institute for Natural Product Research and Infection Biology, Beutenbergstrasse 11a, Cell and Molecular Biology, D-07745 Jena, Germany.
| | | | | | | |
Collapse
|
20
|
Variable within- and between-herd diversity of CTX-M cephalosporinase-bearing Escherichia coli isolates from dairy cattle. Appl Environ Microbiol 2012; 78:4552-60. [PMID: 22544245 DOI: 10.1128/aem.00373-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
bla(CTX-M) beta-lactamases confer resistance to critically important cephalosporin drugs. Recovered from both hospital- and community-acquired infections, bla(CTX-M) was first reported in U.S. livestock in 2010. It has been hypothesized that veterinary use of cephalosporins in livestock populations may lead to the dissemination of beta-lactamase-encoding genes. Therefore, our objectives were to estimate the frequency and distribution of coliform bacteria harboring bla(CTX-M) in the fecal flora of Ohio dairy cattle populations. In addition, we characterized the CTX-M alleles carried by the isolates, their plasmidic contexts, and the genetic diversity of the bacterial isolates themselves. We also evaluated the association between ceftiofur use and the likelihood of recovering cephalosporinase-producing bacteria. Thirty fresh fecal samples and owner-reported ceftiofur use data were collected from each of 25 Ohio dairy farms. Fecal samples (n = 747) yielded 70 bla(CTX-M)-positive Escherichia coli isolates from 5/25 herds, 715 bla(CMY-2) E. coli isolates from 25/25 herds, and 274 Salmonella spp. from 20/25 herds. The within-herd prevalence among bla(CTX-M)-positive herds ranged from 3.3 to 100% of samples. Multiple pulsed-field gel electrophoresis (PFGE) patterns, plasmid replicon types, and CTX-M genes were detected. Plasmids with CTX-M-1, -15, and -14 alleles were clonal by restriction fragment length polymorphism (RFLP) within herds, and specific plasmid incompatibility group markers were consistently associated with each bla(CTX-M) allele. PFGE of total bacterial DNA showed similar within-herd clustering, with the exception of one herd, which revealed at least 6 different PFGE signatures. We were unable to detect an association between owner-reported ceftiofur use and the probability of recovering E. coli carrying bla(CTX-M) or bla(CMY-2).
Collapse
|
21
|
Bacterial artificial chromosome libraries of pulse crops: characteristics and applications. J Biomed Biotechnol 2011; 2012:493186. [PMID: 21811383 PMCID: PMC3144660 DOI: 10.1155/2012/493186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/29/2011] [Accepted: 05/30/2011] [Indexed: 12/01/2022] Open
Abstract
Pulse crops are considered minor on a global scale despite their nutritional value for human consumption. Therefore, they are relatively less extensively studied in comparison with the major crops. The need to improve pulse crop production and quality will increase with the increasing global demand for food security and people's awareness of nutritious food. The improvement of pulse crops will require fully utilizing all their genetic resources. Bacterial artificial chromosome (BAC) libraries of pulse crops are essential genomic resources that have the potential to accelerate gene discovery and enhance molecular breeding in these crops. Here, we review the availability, characteristics, applications, and potential applications of the BAC libraries of pulse crops.
Collapse
|
22
|
Abstract
Metagenomics literally means "beyond the genome." Marine microbial metagenomic databases presently comprise approximately 400 billion base pairs of DNA, only approximately 3% of that found in 1 ml of seawater. Very soon a trillion-base-pair sequence run will be feasible, so it is time to reflect on what we have learned from metagenomics. We review the impact of metagenomics on our understanding of marine microbial communities. We consider the studies facilitated by data generated through the Global Ocean Sampling expedition, as well as the revolution wrought at the individual laboratory level through next generation sequencing technologies. We review recent studies and discoveries since 2008, provide a discussion of bioinformatic analyses, including conceptual pipelines and sequence annotation and predict the future of metagenomics, with suggestions of collaborative community studies tailored toward answering some of the fundamental questions in marine microbial ecology.
Collapse
Affiliation(s)
- Jack A Gilbert
- Plymouth Marine Laboratory, Plymouth PL1 3DH, United Kingdom.
| | | |
Collapse
|
23
|
Heidelberg KB, Gilbert JA, Joint I. Marine genomics: at the interface of marine microbial ecology and biodiscovery. Microb Biotechnol 2010; 3:531-43. [PMID: 20953417 PMCID: PMC2948669 DOI: 10.1111/j.1751-7915.2010.00193.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 05/15/2010] [Indexed: 11/29/2022] Open
Abstract
The composition and activities of microbes from diverse habitats have been the focus of intense research during the past decade with this research being spurred on largely by advances in molecular biology and genomic technologies. In recent years environmental microbiology has entered very firmly into the age of the 'omics' – (meta)genomics, proteomics, metabolomics, transcriptomics – with probably others on the rise. Microbes are essential participants in all biogeochemical processes on our planet, and the practical applications of what we are learning from the use of molecular approaches has altered how we view biological systems. In addition, there is considerable potential to use information about uncultured microbes in biodiscovery research as microbes provide a rich source of discovery for novel genes, enzymes and metabolic pathways. This review explores the brief history of genomic and metagenomic approaches to study environmental microbial assemblages and describes some of the future challenges involved in broadening our approaches – leading to new insights for understanding environmental problems and enabling biodiscovery research.
Collapse
Affiliation(s)
- Karla B Heidelberg
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089-0371, USA.
| | | | | |
Collapse
|
24
|
Bias in assessments of marine SAR11 biodiversity in environmental fosmid and BAC libraries? ISME JOURNAL 2009; 3:1117-9. [PMID: 19571894 DOI: 10.1038/ismej.2009.80] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Singh J, Behal A, Singla N, Joshi A, Birbian N, Singh S, Bali V, Batra N. Metagenomics: Concept, methodology, ecological inference and recent advances. Biotechnol J 2009; 4:480-94. [PMID: 19288513 DOI: 10.1002/biot.200800201] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microorganisms constitute two third of the Earth's biological diversity. As many as 99% of the microorganisms present in certain environments cannot be cultured by standard techniques. Culture-independent methods are required to understand the genetic diversity, population structure and ecological roles of the majority of organisms. Metagenomics is the genomic analysis of microorganisms by direct extraction and cloning of DNA from their natural environment. Protocols have been developed to capture unexplored microbial diversity to overcome the existing barriers in estimation of diversity. New screening methods have been designed to select specific functional genes within metagenomic libraries to detect novel biocatalysts as well as bioactive molecules applicable to mankind. To study the complete gene or operon clusters, various vectors including cosmid, fosmid or bacterial artificial chromosomes are being developed. Bioinformatics tools and databases have added much to the study of microbial diversity. This review describes the various methodologies and tools developed to understand the biology of uncultured microbes including bacteria, archaea and viruses through metagenomic analysis.
Collapse
Affiliation(s)
- Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu X, Peng D, Luo Y, Ruan L, Yu Z, Sun M. Construction of an Escherichia coli to Bacillus thuringiensis shuttle vector for large DNA fragments. Appl Microbiol Biotechnol 2009; 82:765-72. [DOI: 10.1007/s00253-008-1854-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 12/30/2008] [Accepted: 12/31/2008] [Indexed: 11/24/2022]
|
27
|
van Elsas JD, Costa R, Jansson J, Sjöling S, Bailey M, Nalin R, Vogel TM, van Overbeek L. The metagenomics of disease-suppressive soils - experiences from the METACONTROL project. Trends Biotechnol 2008; 26:591-601. [PMID: 18774191 DOI: 10.1016/j.tibtech.2008.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 07/14/2008] [Accepted: 07/22/2008] [Indexed: 11/29/2022]
Abstract
Soil teems with microbial genetic information that can be exploited for biotechnological innovation. Because only a fraction of the soil microbiota is cultivable, our ability to unlock this genetic complement has been hampered. Recently developed molecular tools, which make it possible to utilize genomic DNA from soil, can bypass cultivation and provide information on the collective soil metagenome with the aim to explore genes that encode functions of key interest to biotechnology. The metagenome of disease-suppressive soils is of particular interest given the expected prevalence of antibiotic biosynthetic clusters. However, owing to the complexity of soil microbial communities, deciphering this key genetic information is challenging. Here, we examine crucial issues and challenges that so far have hindered the metagenomic exploration of soil by drawing on experience from a trans-European project on disease-suppressive soils denoted METACONTROL.
Collapse
Affiliation(s)
- Jan Dirk van Elsas
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Kerklaan 30, 9750AA Haren, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Chu X, He H, Guo C, Sun B. Identification of two novel esterases from a marine metagenomic library derived from South China Sea. Appl Microbiol Biotechnol 2008; 80:615-25. [PMID: 18600322 DOI: 10.1007/s00253-008-1566-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 06/02/2008] [Accepted: 06/03/2008] [Indexed: 11/30/2022]
Abstract
The demand for novel biocatalysts is increasing in modern biotechnology, which greatly stimulates the development of powerful tools to explore the genetic resources in the environment. Metagenomics, a culture independent strategy, provides an access to valuable genetic resources of the uncultured microbes. In this study, two novel esterase genes designated as estA and estB, which encoded 277- and 328-amino-acid peptides, respectively, were isolated from a marine microbial metagenomic library by functional screening, and the corresponding esterases EstA and EstB were biochemically characterized. Amino acid sequence comparison and phylogenetic analysis indicated that EstA together with other putative lipolytic enzymes was closely related to family III, and EstB with its relatives formed a subfamily of family IV. Site-directed mutagenesis showed that EstA contained classical catalytic triad made up of S146-D222-H255, whereas EstB contained an unusual catalytic triad which consisted of S-E-H, an important feature of the subfamily. EstA exhibited habitat-specific characteristics such as its high level of stability in the presence of various divalent cations and at high concentrations of NaCl. EstB displayed remarkable activity against p-nitrophenyl esters and was highly stable in 30% methanol, ethanol, dimethylformamide, and dimethyl sulfoxide, making EstB a potential candidate for industrial applications.
Collapse
Affiliation(s)
- Xinmin Chu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | | | | | | |
Collapse
|
29
|
A novel retrieval system for nearly complete microbial genomic fragments from soil samples. J Microbiol Methods 2008; 72:197-205. [DOI: 10.1016/j.mimet.2007.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/29/2007] [Accepted: 11/29/2007] [Indexed: 11/20/2022]
|
30
|
Novel bacterial artificial chromosome vector pUvBBAC for use in studies of the functional genomics of Listeria spp. Appl Environ Microbiol 2008; 74:1892-901. [PMID: 18223114 DOI: 10.1128/aem.00415-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial artificial chromosome (BAC) vectors are important tools for microbial genome research. We constructed a novel BAC vector, pUvBBAC, for replication in both gram-negative and gram-positive bacterial hosts. The pUvBBAC vector was used to generate a BAC library for the facultative intracellular pathogen Listeria monocytogenes EGD-e. The library had insert sizes ranging from 68 to 178 kb. We identified two recombinant BACs from the L. monocytogenes pUvBBAC library that each contained the entire virulence gene cluster (vgc) of L. monocytogenes and transferred them to a nonpathogenic Listeria innocua strain. Recombinant L. innocua strains harboring pUvBBAC+vgc1 and pUvBBAC+vgc2 produced the vgc-specific listeriolysin (LLO) and actin assembly protein ActA and represent the first reported cloning of the vgc locus in its entirety. The use of the novel broad-host-range BAC vector pUvBBAC extends the versatility of this technology and provides a powerful platform for detailed functional genomics of gram-positive bacteria as well as its use in explorative functional metagenomics.
Collapse
|
31
|
Daniels JB, Call DR, Besser TE. Molecular epidemiology of blaCMY-2 plasmids carried by Salmonella enterica and Escherichia coli isolates from cattle in the Pacific Northwest. Appl Environ Microbiol 2007; 73:8005-11. [PMID: 17933916 PMCID: PMC2168131 DOI: 10.1128/aem.01325-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 10/07/2007] [Indexed: 11/20/2022] Open
Abstract
Restriction analyses of bla(CMY-2)-bearing plasmids and Salmonella and Escherichia coli hosts identified (i) shared highly similar plasmids in these species in rare cases, (ii) a clonal host-plasmid relationship in Salmonella enterica serotype Newport, and (iii) a very high diversity of strain types and plasmids among commensal E. coli isolates.
Collapse
Affiliation(s)
- Joshua B Daniels
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, USA
| | | | | |
Collapse
|
32
|
Zhao C, Luo Y, Song C, Liu Z, Chen S, Yu Z, Sun M. Identification of three Zwittermicin A biosynthesis-related genes from Bacillus thuringiensis subsp. kurstaki strain YBT-1520. Arch Microbiol 2007; 187:313-9. [PMID: 17225146 DOI: 10.1007/s00203-006-0196-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 11/06/2006] [Accepted: 11/14/2006] [Indexed: 11/26/2022]
Abstract
Zwittermicin A (ZwA) is a novel, broad-spectrum linear aminopolyol antibiotic produced by some Bacillus cereus and Bacillus thuringiensis. However, only part of its biosynthesis cluster has been identified and characterized from B. cereus UW85. To better understand the biosynthesis cluster of ZwA, a bacterial artificial chromosome (BAC) library of B. thuringiensis subsp. kurstaki strain YBT-1520, a ZwA-producing strain, was constructed. Two BAC clones, 1F8 and 5E2, were obtained by PCR, which overlap the known ZwA biosynthesis cluster of B. cereus UW85. This ZwA biosynthesis cluster is at least 38.6 kb and is located on the chromosome, instead of the plasmid. Partial DNA sequencing revealed both BAC clones carry three new ZwA biosynthesis-related genes, zwa6, zwa5A and zwa5B, which were found at the corresponding location of B. cereus UW85. Putative amino acid sequences of these genes shown that ZWA6 is homologous to a typical carbamoyltransferase from Streptomyces avermitilis, while ZWA5A and ZWA5B are homologs of cysteine synthetase and ornithine cyclodeaminase which jointly synthesize 2,3-diaminopropionate in the viomycin biosynthesis pathway, respectively. The identification of these three genes further supports the hypothesized ZwA biosynthesis pathway.
Collapse
Affiliation(s)
- Changming Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Li Y, Wexler M, Richardson DJ, Bond PL, Johnston AWB. Screening a wide host-range, waste-water metagenomic library in tryptophan auxotrophs of Rhizobium leguminosarum and of Escherichia coli reveals different classes of cloned trp genes. Environ Microbiol 2006; 7:1927-36. [PMID: 16309391 DOI: 10.1111/j.1462-2920.2005.00853.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A metagenomic cosmid library was constructed, in which the insert DNA was derived from bacteria in a waste-water treatment plant and the vector was the wide host-range cosmid pLAFR3. The library was screened for clones that could correct defined tryptophan auxotrophs of the alpha-proteobacterium Rhizobium leguminosarum and of Escherichia coli. A total of 26 different cosmids that corrected at least one trp mutant in one or both of these species were obtained. Several cosmids corrected the auxotrophy of one or more R. leguminosarum trp mutants, but not the corresponding mutants in E. coli. Conversely, one cosmid corrected trpA, B, C, D and E mutants of E. coli but none of the trp mutants of R. leguminosarum. Two of the Trp+ cosmids were examined in more detail. One contained a trp operon that resembled that of the pathogen Chlamydophila caviae, containing the unusual kynU gene, which specifies kynureninase. The other, whose trp genes functioned in R. leguminosarum but not in E. coli, contained trpDCFBA in an operon that is likely co-transcribed with five other genes, most of which had no known link with tryptophan synthesis. The sequences of these TRP proteins, and the products of nine other genes encoded by this cosmid, failed to affiliate them with any known bacterial lineage. For one metagenomic cosmid, lac reporter fusions confirmed that its cloned trp genes were transcribed in R. leguminosarum, but not in E. coli. Thus, rhizobia, with their many sigma-factors, may be well-suited hosts for metagenomic libraries, cloned in wide host-range vectors.
Collapse
Affiliation(s)
- Youguo Li
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | | | | | | |
Collapse
|
34
|
Lim HK, Chung EJ, Kim JC, Choi GJ, Jang KS, Chung YR, Cho KY, Lee SW. Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli. Appl Environ Microbiol 2006; 71:7768-77. [PMID: 16332749 PMCID: PMC1317350 DOI: 10.1128/aem.71.12.7768-7777.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A microbial community analysis of forest soil from Jindong Valley, Korea, revealed that the most abundant rRNA genes were related to Acidobacteria, a major taxon with few cultured representatives. To access the microbial genetic resources of this forest soil, metagenomic libraries were constructed in fosmids, with an average DNA insert size of more than 35 kb. We constructed 80,500 clones from Yuseong and 33,200 clones from Jindong Valley forest soils. The double-agar-layer method allowed us to select two antibacterial clones by screening the constructed libraries using Bacillus subtilis as a target organism. Several clones produced purple or brown colonies. One of the selected antibacterial clones, pJEC5, produced purple colonies. Structural analysis of the purified pigments demonstrated that the metagenomic clone produced both the pigment indirubin and its isomer, indigo blue, resulting in purple colonies. In vitro mutational and subclonal analyses revealed that two open reading frames (ORFs) are responsible for the pigment production and antibacterial activity. The ORFs encode an oxygenase-like protein and a putative transcriptional regulator. Mutations of the gene encoding the oxygenase canceled both pigment production and antibacterial activity, whereas a subclone carrying the two ORFs retained pigment production and antibacterial activity. This finding suggests that these forest soil microbial genes are responsible for producing the pigment with antibacterial activity.
Collapse
Affiliation(s)
- He Kyoung Lim
- Division of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Nobutada Kimura
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
36
|
Anderson I, Sorokin A, Kapatral V, Reznik G, Bhattacharya A, Mikhailova N, Burd H, Joukov V, Kaznadzey D, Walunas T, Larsen N, Pusch G, Liolios K, Grechkin Y, Lapidus A, Goltsman E, Chu L, Fonstein M, Ehrlich SD, Overbeek R, Kyrpides N, Ivanova N. Comparative genome analysis ofBacillus cereusgroup genomes withBacillus subtilis. FEMS Microbiol Lett 2005; 250:175-84. [PMID: 16099605 DOI: 10.1016/j.femsle.2005.07.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 06/22/2005] [Accepted: 07/01/2005] [Indexed: 11/24/2022] Open
Abstract
Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp. israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-layer proteins suggesting differences in their phenotype were identified. The B. cereus group has signal transduction systems including a tyrosine kinase related to two-component system histidine kinases from B. subtilis. A model for regulation of the stress responsive sigma factor sigmaB in the B. cereus group different from the well studied regulation in B. subtilis has been proposed. Despite a high degree of chromosomal synteny among these genomes, significant differences in cell wall and spore coat proteins that contribute to the survival and adaptation in specific hosts has been identified.
Collapse
Affiliation(s)
- Iain Anderson
- Integrated Genomics, 2201 W. Campbell Park Dr., Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Antranikian G, Vorgias CE, Bertoldo C. Extreme environments as a resource for microorganisms and novel biocatalysts. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 96:219-62. [PMID: 16566093 DOI: 10.1007/b135786] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The steady increase in the number of newly isolated extremophilic microorganisms and the discovery of their enzymes by academic and industrial institutions underlines the enormous potential of extremophiles for application in future biotechnological processes. Enzymes from extremophilic microorganisms offer versatile tools for sustainable developments in a variety of industrial application as they show important environmental benefits due to their biodegradability, specific stability under extreme conditions, improved use of raw materials and decreased amount of waste products. Although major advances have been made in the last decade, our knowledge of the physiology, metabolism, enzymology and genetics of this fascinating group of extremophilic microorganisms and their related enzymes is still limited. In-depth information on the molecular properties of the enzymes and their genes, however, has to be obtained to analyze the structure and function of proteins that are catalytically active around the boiling and freezing points of water and extremes of pH. New techniques, such as genomics, metanogenomics, DNA evolution and gene shuffling, will lead to the production of enzymes that are highly specific for countless industrial applications. Due to the unusual properties of enzymes from extremophiles, they are expected to optimize already existing processes or even develop new sustainable technologies.
Collapse
Affiliation(s)
- Garabed Antranikian
- Institute of Technical Microbiology, Technical University Hamburg-Harburg, Kasernenstrasse 12, 21073 Hamburg, Germany.
| | | | | |
Collapse
|
38
|
Wexler M, Bond PL, Richardson DJ, Johnston AWB. A wide host-range metagenomic library from a waste water treatment plant yields a novel alcohol/aldehyde dehydrogenase. Environ Microbiol 2005; 7:1917-26. [PMID: 16309390 DOI: 10.1111/j.1462-2920.2005.00854.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using DNA obtained from the metagenome of an anaerobic digestor in a waste water treatment plant, we constructed a gene library cloned in the wide host-range cosmid pLAFR3. One cosmid enabled Rhizobium leguminosarum to grow on ethanol as sole carbon and energy source, this being due to the presence of a gene, termed adhEMeta. The AdhEMeta protein most closely resembles the AdhE alcohol dehydrogenase of Clostridium acetobutylicum, where it catalyses the formation of ethanol and butanol in a two-step reductive process. However, cloned adhEMeta did not confer ethanol utilization ability to Escherichia coli or to Pseudomonas aeruginosa, even though it was transcribed in both these hosts. Further, cell-free extracts of E. coli and R. leguminosarum containing cloned adhEMeta had butanol and ethanol dehydrogenase activities when assayed in vitro. In contrast to the well-studied AdhE proteins of C. acetobutylicum and E. coli, the enzyme specified by adhEMeta is not inactivated by oxygen and it enables alcohol to be catabolized. Cloned adhEMeta did, however, confer one phenotype to E. coli. AdhE- mutants of E. coli fail to ferment glucose and introduction of adhEMeta restored the growth of such mutants when grown under fermentative conditions. These observations show that the use of wide host-range vectors enhances the efficacy with which metagenomic libraries can be screened for genes that confer novel functions.
Collapse
Affiliation(s)
- Margaret Wexler
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | | | | | | |
Collapse
|
39
|
Simon HM, Jahn CE, Bergerud LT, Sliwinski MK, Weimer PJ, Willis DK, Goodman RM. Cultivation of mesophilic soil crenarchaeotes in enrichment cultures from plant roots. Appl Environ Microbiol 2005; 71:4751-60. [PMID: 16085872 PMCID: PMC1183331 DOI: 10.1128/aem.71.8.4751-4760.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 02/14/2005] [Indexed: 11/20/2022] Open
Abstract
Because archaea are generally associated with extreme environments, detection of nonthermophilic members belonging to the archaeal division Crenarchaeota over the last decade was unexpected; they are surprisingly ubiquitous and abundant in nonextreme marine and terrestrial habitats. Metabolic characterization of these nonthermophilic crenarchaeotes has been impeded by their intractability toward isolation and growth in culture. From studies employing a combination of cultivation and molecular phylogenetic techniques (PCR-single-strand conformation polymorphism, sequence analysis of 16S rRNA genes, fluorescence in situ hybridization, and real-time PCR), we present evidence here that one of the two dominant phylotypes of Crenarchaeota that colonizes the roots of tomato plants grown in soil from a Wisconsin field is selectively enriched in mixed cultures amended with root extract. Clones recovered from enrichment cultures were found to group phylogenetically with sequences from clade C1b.A1. This work corroborates and extends our recent findings, indicating that the diversity of the crenarchaeal soil assemblage is influenced by the rhizosphere and that mesophilic soil crenarchaeotes are found associated with plant roots, and provides the first evidence for growth of nonthermophilic crenarchaeotes in culture.
Collapse
Affiliation(s)
- Holly M Simon
- Department of Plant Pathology, Gaylord Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Metagenomics (also referred to as environmental and community genomics) is the genomic analysis of microorganisms by direct extraction and cloning of DNA from an assemblage of microorganisms. The development of metagenomics stemmed from the ineluctable evidence that as-yet-uncultured microorganisms represent the vast majority of organisms in most environments on earth. This evidence was derived from analyses of 16S rRNA gene sequences amplified directly from the environment, an approach that avoided the bias imposed by culturing and led to the discovery of vast new lineages of microbial life. Although the portrait of the microbial world was revolutionized by analysis of 16S rRNA genes, such studies yielded only a phylogenetic description of community membership, providing little insight into the genetics, physiology, and biochemistry of the members. Metagenomics provides a second tier of technical innovation that facilitates study of the physiology and ecology of environmental microorganisms. Novel genes and gene products discovered through metagenomics include the first bacteriorhodopsin of bacterial origin; novel small molecules with antimicrobial activity; and new members of families of known proteins, such as an Na(+)(Li(+))/H(+) antiporter, RecA, DNA polymerase, and antibiotic resistance determinants. Reassembly of multiple genomes has provided insight into energy and nutrient cycling within the community, genome structure, gene function, population genetics and microheterogeneity, and lateral gene transfer among members of an uncultured community. The application of metagenomic sequence information will facilitate the design of better culturing strategies to link genomic analysis with pure culture studies.
Collapse
Affiliation(s)
- Jo Handelsman
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
41
|
Abstract
Most microbes in the ocean are still resistant to our collective cultivation efforts. Environmental microbial genomics provides science with the means for accessing and assessing the genomes, diversity, evolution and population dynamics of uncultured microorganisms--the ocean's hidden majority.
Collapse
Affiliation(s)
- Oded Béjà
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
42
|
Back JH, Kim MS, Cho H, Chang IS, Lee J, Kim KS, Kim BH, Park YI, Han YS. Construction of bacterial artificial chromosome library from electrochemical microorganisms. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09738.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
43
|
Pettit RK. Soil DNA libraries for anticancer drug discovery. Cancer Chemother Pharmacol 2004; 54:1-6. [PMID: 15071757 DOI: 10.1007/s00280-004-0771-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Accepted: 12/08/2003] [Indexed: 10/26/2022]
Abstract
Soil has the largest population of microbes of any habitat, but only about 0.3% of soil microbes are cultivable with current techniques. Cultured soil microbes have been an incredibly productive source of drugs, for example the cancer chemotherapeutics doxorubicin hydrochloride, bleomycin, daunorubicin and mitomycin. Unfortunately, the current yield of new drugs from soil microbes is low due to repeated cultivation of the same small fraction of cultivable microbes. Uncultured soil species represent a tremendous untapped resource of new antineoplastic agents. Methods have recently been developed to access the diversity of secondary metabolites from uncultured soil microbes. Briefly, total DNA is extracted from soil samples, purified, partially digested, and fragments inserted into vectors for expression in readily fermented microbes such as Escherichia coli. Clones expressing enzymatic and antibiotic activities that are encoded by novel sequences have been reported.
Collapse
Affiliation(s)
- Robin K Pettit
- Cancer Research Institute and Department of Microbiology, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
44
|
Emmert EAB, Klimowicz AK, Thomas MG, Handelsman J. Genetics of zwittermicin a production by Bacillus cereus. Appl Environ Microbiol 2004; 70:104-13. [PMID: 14711631 PMCID: PMC321298 DOI: 10.1128/aem.70.1.104-113.2004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zwittermicin A represents a new chemical class of antibiotic and has diverse biological activities, including suppression of oomycete diseases of plants and potentiation of the insecticidal activity of Bacillus thuringiensis. To identify genes involved in zwittermicin A production, we generated 4,800 transposon mutants of B. cereus UW101C and screened them for zwittermicin A accumulation. Nine mutants did not produce detectable zwittermicin A, and one mutant produced eightfold more than the parent strain. The DNA flanking the transposon insertions in six of the nine nonproducing mutants contains significant sequence similarity to genes involved in peptide and polyketide antibiotic biosynthesis. The mutant that overproduced zwittermicin A contained a transposon insertion immediately upstream from a gene that encodes a deduced protein that is a member of the MarR family of transcriptional regulators. Three genes identified by the mutant analysis mapped to a region that was previously shown to carry the zwittermicin A self-resistance gene, zmaR, and a biosynthetic gene (E. A. Stohl, J. L. Milner, and J. Handelsman, Gene 237:403-411, 1999). Further sequencing of this region revealed genes proposed to encode zwittermicin A precursor biosynthetic enzymes, in particular, those involved in the formation of the aminomalonyl- and hydroxymalonyl-acyl carrier protein intermediates. Additionally, nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) homologs are present, suggesting that zwittermicin A is synthesized by a mixed NRPS/PKS pathway.
Collapse
Affiliation(s)
- Elizabeth A B Emmert
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Even though significant advances have been made in understanding microbial diversity, most microorganisms are still only characterized by 'molecular fingerprints' and have resisted cultivation. Many different approaches have been developed to overcome the problems associated with cultivation of microorganisms because one obvious benefit would be the opportunity to investigate the previously inaccessible resources that these microorganisms potentially harbour.
Collapse
Affiliation(s)
- Martin Keller
- Diversa Corporation, 4955 Directors Place, San Diego, California 92121, USA.
| | | |
Collapse
|
46
|
Goto T, Todo K, Miyamoto K, Akimoto S. Bacterial artificial chromosome library of Finegoldia magna ATCC 29328 for genetic mapping and comparative genomics. Microbiol Immunol 2004; 47:1005-16. [PMID: 14695451 DOI: 10.1111/j.1348-0421.2003.tb03461.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We constructed a bacterial artificial chromosome (BAC) library of Finegoldia magna ATCC 29328 DNA to facilitate further genome analysis of F. magna. The BAC library contained 385 clones with an average insert size of 55 kb, representing a 10.1-fold genomic coverage. Repeated DNA hybridization using primer sets designed on the basis of BAC-end sequences yielded nine contigs covering 95% of the chromosome and two contigs covering 98% of the plasmid. The contigs were localized on the physical map of F. magna ATCC 29328 DNA. A total of 121 BAC-end sequences revealed 103 unique genes, which had not been previously reported for F. magna. The homolog ORF of albumin-binding protein (urPAB), one of the known virulence factors from F. magna, was sequenced and localized on the physical map. Homology analysis of 121 BAC-end sequences revealed that F. magna is most closely related to clostridia, particularly Clostridium tetani. This close relationship is consistent with the recent classification of peptostreptococci based on 16S rRNA sequence analysis. The BAC library constructed here will be useful for the whole genome sequencing project and other postgenomic applications.
Collapse
Affiliation(s)
- Takatsugu Goto
- Department of Microbiology, Wakayama Medical University, Kimiidera, Wakayama, Japan
| | | | | | | |
Collapse
|
47
|
Sebat JL, Colwell FS, Crawford RL. Metagenomic profiling: microarray analysis of an environmental genomic library. Appl Environ Microbiol 2003; 69:4927-34. [PMID: 12902288 PMCID: PMC169101 DOI: 10.1128/aem.69.8.4927-4934.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genomic libraries derived from environmental DNA (metagenomic libraries) are useful for characterizing uncultured microorganisms. However, conventional library-screening techniques permit characterization of relatively few environmental clones. Here we describe a novel approach for characterization of a metagenomic library by hybridizing the library with DNA from a set of groundwater isolates, reference strains, and communities. A cosmid library derived from a microcosm of groundwater microorganisms was used to construct a microarray (COSMO) containing approximately 1-kb PCR products amplified from the inserts of 672 cosmids plus a set of 16S ribosomal DNA controls. COSMO was hybridized with Cy5-labeled genomic DNA from each bacterial strain, and the results were compared with the results for a common Cy3-labeled reference DNA sample consisting of a composite of genomic DNA from multiple species. The accuracy of the results was confirmed by the preferential hybridization of each strain to its corresponding rDNA probe. Cosmid clones were identified that hybridized specifically to each of 10 microcosm isolates, and other clones produced positive results with multiple related species, which is indicative of conserved genes. Many clones did not hybridize to any microcosm isolate; however, some of these clones hybridized to community genomic DNA, suggesting that they were derived from microbes that we failed to isolate in pure culture. Based on identification of genes by end sequencing of 17 such clones, DNA could be assigned to functions that have potential ecological importance, including hydrogen oxidation, nitrate reduction, and transposition. Metagenomic profiling offers an effective approach for rapidly characterizing many clones and identifying the clones corresponding to unidentified species of microorganisms.
Collapse
Affiliation(s)
- Jonathan L Sebat
- Environmental Research Institute, University of Idaho, Moscow, Idaho 83844-1052, USA
| | | | | |
Collapse
|
48
|
Dunn AK, Klimowicz AK, Handelsman J. Use of a promoter trap to identify Bacillus cereus genes regulated by tomato seed exudate and a rhizosphere resident, Pseudomonas aureofaciens. Appl Environ Microbiol 2003; 69:1197-205. [PMID: 12571047 PMCID: PMC143612 DOI: 10.1128/aem.69.2.1197-1205.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The goal of this study was to identify genes in Bacillus cereus, a bacterium commonly associated with plant seeds and roots, that are affected by compounds originating from a host plant, tomato, or another rhizosphere resident, Pseudomonas aureofaciens. We constructed a B. cereus chromosomal DNA library in a promoter-trap plasmid, pAD123, which contains a promoterless version of the green fluorescent protein (GFP) gene, gfpmut3a. The library was screened by using fluorescence-activated cell sorting for clones showing a change in GFP expression in response to either tomato seed exudate or culture supernatant of P. aureofaciens strain 30-84. We identified two clones carrying genes that were induced by the presence of tomato seed exudate and nine clones carrying genes that were repressed by P. aureofaciens culture supernatant. A clone chosen for further study contained an open reading frame, designated lipA, that encodes a deduced protein with a lipoprotein signal peptide sequence similar to lipoproteins in B. subtilis. Expression of gusA under control of the lipA promoter increased twofold when cells were exposed to tomato seed exudate and in a concentration-dependent manner when exposed to a mixture of amino acids. When the wild type and a 10-fold excess of a lipA mutant were applied together to tomato seeds, 2 days after planting, the wild type displayed medium-dependent culturability, whereas the lipA mutant was unaffected. This study demonstrates the power of a promoter trap to identify genes in a gram-positive bacterium that are regulated by the biotic environment and resulted in the discovery of lipA, a plant-regulated gene in B. cereus.
Collapse
Affiliation(s)
- Anne K Dunn
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
49
|
Alduina R, De Grazia S, Dolce L, Salerno P, Sosio M, Donadio S, Puglia AM. Artificial chromosome libraries of Streptomyces coelicolor A3(2) and Planobispora rosea. FEMS Microbiol Lett 2003; 218:181-6. [PMID: 12583916 DOI: 10.1111/j.1574-6968.2003.tb11516.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Using an Escherichia coli-Streptomyces shuttle vector derived from a bacterial artificial chromosome (BAC), we developed methodologies for the construction of BAC libraries of filamentous actinomycetes. Libraries of Streptomyces coelicolor, the model actinomycete, and Planobispora rosea, a genetically intractable strain, were constructed. Both libraries have an average insert size of 60 kb, with maximal insert larger than 150 kb. The S. coelicolor library was evaluated by selected hybridisations to DraI fragments and by end sequencing of a few clones. Hybridisation of the P. rosea library to selected probes indicates a good representation of the P. rosea genome and that the library can be used to facilitate the genomic analysis of this actinomycete.
Collapse
Affiliation(s)
- Rosa Alduina
- Dipartimento di Biologia Cellulare e dello Sviluppo, University of Palermo, Viale delle Scienze, Parco D'Orleans II, 90128, Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Donadio S, Monciardini P, Alduina R, Mazza P, Chiocchini C, Cavaletti L, Sosio M, Puglia AM. Microbial technologies for the discovery of novel bioactive metabolites. J Biotechnol 2002; 99:187-98. [PMID: 12385708 DOI: 10.1016/s0168-1656(02)00209-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Soil microbes represent an important source of biologically active compounds. These molecules present original and unexpected structure and are selective inhibitors of their molecular targets. At Biosearch Italia, discovery of new bioactive molecules is mostly carried out through the exploitation of a proprietary strain collection of over 50000 strains, mostly unusual genera of actinomycetes and uncommon filamentous fungi. A critical element in a drug discovery based on microbial extracts is the isolation of unexploited groups of microorganisms that are at the same time good producers of secondary metabolites. Molecular genetics can assist in these efforts. We will review the development and application of molecular methods for the detection of uncommon genera of actinomycetes in soil DNA and for the rapid dereplication of actinomycete isolates. The results indicate a substantial presence in many soils of the uncommon genera and a large diversity of isolated actinomycetes. However, while uncommon actinomycete strains may provide an increased chance of yielding novel structures, their genetics and physiology are poorly understood. To speed up their manipulation, we have developed vectors capable of stably maintaining large segments of actinomycete DNA in Escherichia coli and of integrating site specifically in the Streptomyces genome. These vectors are suitable for the reconstruction of gene clusters from smaller segment of cloned DNA, the preparation of large-insert libraries from unusual actinomycete strains and the construction of environmental libraries.
Collapse
Affiliation(s)
- Stefano Donadio
- Biosearch Italia, via R. Lepetit 34, 21040 Gerenzano(VA), Italy.
| | | | | | | | | | | | | | | |
Collapse
|