1
|
Yin Y, Zhang L, Zhang J, Zhong Y, Wang L. MdFC2, a ferrochelatase gene, is a positive regulator of ALA-induced anthocyanin accumulation in apples. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154381. [PMID: 39612779 DOI: 10.1016/j.jplph.2024.154381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/16/2024] [Accepted: 11/16/2024] [Indexed: 12/01/2024]
Abstract
5-Aminolevulinic acid (ALA), a key biosynthetic precursor of tetrapyrrole compounds, significantly induces anthocyanin accumulation in apple (Malus × domestica Borkh.) as well as other fruits. Although the molecular mechanisms of ALA-induced anthocyanin accumulation have been reported, it remains unknown whether the metabolism of ALA is involved in ALA-induced anthocyanin accumulation. Here, we found that MdFC2, a gene encoding ferrochelatase (MdFC2), which catalyzes the generation of heme from protoporphyrin lX (PPIX), may play an important role in ALA-induced apple anthocyanin accumulation. Exogenous ALA induced the MdFC2 expression as well as anthocyanin accumulation in apple leaves, calli, and isolated fruits. MdFC2 overexpression in apple leaves or calli significantly enhanced anthocyanin accumulation as well as the expression of genes involved in anthocyanin biosynthesis, while RNA interference MdFC2 inhibited anthocyanin accumulation and the expression of genes involved in anthocyanin biosynthesis. When 2,2'-dithiodipyridine, an inhibitor of MdFC2, was added, ALA-induced anthocyanin accumulation was blocked. These results suggest that ALA-induced anthocyanin accumulation of apple may be regulated by heme or its biosynthesis, among which MdFC2 or MdFC2 may play a critical positive regulatory role. This finding provides a novel insight to explore the mechanisms of ALA-regulating physiological processes and better application of ALA in high-quality fruit production.
Collapse
Affiliation(s)
- Yifan Yin
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liuzi Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiangting Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Zhong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Reis RS, Clúa J, Jaskolowski A, Deforges J, Jacques-Vuarambon D, Guex N, Poirier Y. Phosphate deficiency alters transcript isoforms via alternative transcription start sites. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:218-233. [PMID: 39164918 DOI: 10.1111/tpj.16982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/24/2024] [Accepted: 07/13/2024] [Indexed: 08/22/2024]
Abstract
Alternative transcription start sites (TSS) are widespread in eukaryotes and can alter the 5' UTR length and coding potential of transcripts. Here we show that inorganic phosphate (Pi) availability regulates the usage of several alternative TSS in Arabidopsis (Arabidopsis thaliana). In comparison to phytohormone treatment, Pi had a pronounced and specific effect on the usage of many alternative TSS. By combining short-read RNA sequencing with long-read sequencing of full-length mRNAs, we identified a set of 45 genes showing alternative TSS under Pi deficiency. Alternative TSS affected several processes, such as translation via the exclusion of upstream open reading frames present in the 5' UTR of RETICULAN LIKE PROTEIN B1 mRNA, and subcellular localization via removal of the plastid transit peptide coding region from the mRNAs of HEME OXYGENASE 1 and SULFOQUINOVOSYLDIACYLGLYCEROL 2. Several alternative TSS also generated shorter transcripts lacking the coding potential for important domains. For example, the EVOLUTIONARILY CONSERVED C-TERMINAL REGION 4 (ECT4) locus, which encodes an N6-methyladenosine (m6A) reader, strongly expressed under Pi deficiency a short noncoding transcript (named ALTECT4) ~550 nt long with a TSS in the penultimate intron. The specific and robust induction of ALTECT4 production by Pi deficiency led to the identification of a role for m6A readers in primary root growth in response to low phosphate that is dependent on iron and is involved in modulating cell division in the root meristem. Our results identify alternative TSS usage as an important process in the plant response to Pi deficiency.
Collapse
Affiliation(s)
- Rodrigo S Reis
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
- Institute of Plant Sciences, University of Bern, Bern, CH-3013, Switzerland
| | - Joaquín Clúa
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Aime Jaskolowski
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Jules Deforges
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Dominique Jacques-Vuarambon
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
- Institute of Plant Sciences, University of Bern, Bern, CH-3013, Switzerland
| | - Nicolas Guex
- Bioinfomatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| |
Collapse
|
3
|
Singh Rawat S, Laxmi A. Light at the end of the tunnel: integrating signaling pathways in the coordination of lateral root development. Biochem Soc Trans 2024; 52:1895-1908. [PMID: 39171690 DOI: 10.1042/bst20240049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Root system architecture (RSA) encompasses a range of physical root attributes, including the lateral roots (LRs), root hairs and adventitious roots, in addition to the primary or main root. This overall structure is a crucial trait for efficient water and mineral capture alongside providing anchorage to the plant in the soil and is vital for plant productivity and fitness. RSA dynamics are dependent upon various environmental cues such as light, soil pH, water, mineral nutrition and the belowground microbiome. Among these factors, light signaling through HY5 significantly influences the flexibility of RSA by controlling different signaling pathways that converge at photoreceptors-mediated signaling, also present in the 'hidden half'. Furthermore, several phytohormones also drive the formation and emergence of LRs and are critical to harmonize intra and extracellular stimuli in this regard. This review endeavors to elucidate the impact of these interactions on RSA, with particular emphasis on LR development and to enhance our understanding of the fundamental mechanisms governing the light-regulation of LR growth and physiology.
Collapse
Affiliation(s)
- Sanjay Singh Rawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
4
|
Feng L, Wei L, Liu Y, Ren J, Liao W. Carbon monoxide/heme oxygenase system in plant: Roles in abiotic stress response and crosstalk with other signals molecules. Nitric Oxide 2023; 138-139:51-63. [PMID: 37364740 DOI: 10.1016/j.niox.2023.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Carbon monoxide (CO) has been recognized as a crucial gasotransmitter mainly produced by heme oxygenase (HO)-catalyzed heme degradation in plant. Recent studies have shown that CO plays an important role in regulating growth and development of plant, as well as and responding to a variety of abiotic stresses. Meanwhile, many studies have reported on CO working in combination with other signal molecules to mitigate abiotic stress. Here, we presented a comprehensive overview of recent developments in which CO reduces plant damage caused by abiotic stresses. The regulation of antioxidant system, photosynthetic system, ion balance and transport are the main mechanisms of CO-alleviated abiotic stress. We also proposed and discussed the relationship between CO and other signal molecules, including nitric oxide (NO), hydrogen sulfide (H2S), hydrogen gas (H2), abscisic acid (ABA), indole 3-acetic acid (IAA), gibberellin (GA), cytokine (CTK), salicylic acid (SA), jasmonic acid (JA), hydrogen peroxide (H2O2) and calcium ion (Ca2+). Furthermore, the important role of HO genes in alleviating abiotic stress was also discussed. We proposed promising and new research directions for the study of plant CO, which can provide further insights on the role of CO in plant growth and development under abiotic stress.
Collapse
Affiliation(s)
- Li Feng
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Lijuan Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Yayu Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Jiaxuan Ren
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
5
|
Matsui T. Regulatory mechanism of formaldehyde release in heme degradation catalyzed by Staphylococcus aureus IsdG. J Biol Chem 2023; 299:104648. [PMID: 36965616 PMCID: PMC10148152 DOI: 10.1016/j.jbc.2023.104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023] Open
Abstract
IsdG-type enzymes catalyze the non-canonical degradation of heme to iron, staphylobilin (SB), and formaldehyde (HCHO), presumably by binding heme in an unusually distorted conformation. Their unique mechanism has been elucidated for MhuD from Mycobacterium tuberculosis, revealing an unusual ring-opening of hydroxyheme by dioxygenation. A similar mechanism has been postulated for other IsdG enzymes; however, MhuD, which is special as an IsdG-type enzyme, retains a formyl group in the linearized tetrapyrrole. Recent reports on Staphylococcus aureus IsdG have suggested the formation of SB retaining a formyl group (formyl-SB), but its identification is preliminary. Furthermore, the reaction properties of formyl-SB and the mechanism of HCHO release remain unclear. In this study, the complex reaction of S. aureus IsdG was re-examined to elucidate its mechanism, including the identification of reaction products and their control mechanisms. Depending on the reaction conditions, IsdG produced both SB and formyl-SB as the main product, the latter of which was isolated and characterized by MS and NMR measurements. The formyl-SB product was generated upon the reaction between hydroxyheme-IsdG and O2 without reduction, indicating the dioxygenation mechanism as found for MhuD. Under reducing conditions, hydroxyheme-IsdG was converted also to SB and HCHO by activating another O2 molecule. These results provide the first overview of the complicated IsdG reaction. The heme distortion in the IsdG-type enzymes is shown to generally promote ring cleavage by dioxygenation. The presence or absence of HCHO release can be influenced by many factors, and the direct identification of S. aureus heme catabolites is of interest.
Collapse
Affiliation(s)
- Toshitaka Matsui
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba, Sendai, Miyagi 980-8578, Japan; Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan.
| |
Collapse
|
6
|
Richter AS, Nägele T, Grimm B, Kaufmann K, Schroda M, Leister D, Kleine T. Retrograde signaling in plants: A critical review focusing on the GUN pathway and beyond. PLANT COMMUNICATIONS 2023; 4:100511. [PMID: 36575799 PMCID: PMC9860301 DOI: 10.1016/j.xplc.2022.100511] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Plastids communicate their developmental and physiological status to the nucleus via retrograde signaling, allowing nuclear gene expression to be adjusted appropriately. Signaling during plastid biogenesis and responses of mature chloroplasts to environmental changes are designated "biogenic" and "operational" controls, respectively. A prominent example of the investigation of biogenic signaling is the screen for gun (genomes uncoupled) mutants. Although the first five gun mutants were identified 30 years ago, the functions of GUN proteins in retrograde signaling remain controversial, and that of GUN1 is hotly disputed. Here, we provide background information and critically discuss recently proposed concepts that address GUN-related signaling and some novel gun mutants. Moreover, considering heme as a candidate in retrograde signaling, we revisit the spatial organization of heme biosynthesis and export from plastids. Although this review focuses on GUN pathways, we also highlight recent progress in the identification and elucidation of chloroplast-derived signals that regulate the acclimation response in green algae and plants. Here, stress-induced accumulation of unfolded/misassembled chloroplast proteins evokes a chloroplast-specific unfolded protein response, which leads to changes in the expression levels of nucleus-encoded chaperones and proteases to restore plastid protein homeostasis. We also address the importance of chloroplast-derived signals for activation of flavonoid biosynthesis leading to production of anthocyanins during stress acclimation through sucrose non-fermenting 1-related protein kinase 1. Finally, a framework for identification and quantification of intercompartmental signaling cascades at the proteomic and metabolomic levels is provided, and we discuss future directions of dissection of organelle-nucleus communication.
Collapse
Affiliation(s)
- Andreas S Richter
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
7
|
Li J, Zhang Q, Chen H, Xu D, Chen Z, Wen Y. Role of Heme Oxygenase-1 in Dual Stress Response of Herbicide and Micronutrient Fe in Arabidopsis thaliana. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13499-13509. [PMID: 36223430 DOI: 10.1021/acs.jafc.2c04039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Increasingly intensive agricultural practices are leading not only to herbicide contamination but also to nutritional stress on nontarget plants. This study evaluated the role of heme oxygenase-1 (HO-1) in the dual stress response of herbicide dichlorprop and micronutrient Fe in Arabidopsis thaliana. Our results revealed that co-treatment with 20 μM zinc protoporphyrin (a specific inhibitor of HO-1) reduced the activity of HO-1 by 21.6%, Fe2+ content by 19.8%, and MDA content by 20.0%, reducing abnormal iron aggregation and oxidative stress in response to the herbicide compared to treatment with (R)-dichloroprop alone, which has herbicidal activity. Thus, free Fe2+ released from HO-1 mediated dichlorprop-induced oxidative stress in the Fenton reaction and affected aberrant Fe aggregation, which also had an enantioselective effect. This study contributes to an in-depth understanding of the toxicity mechanism of herbicides under nutrient stresses, thus providing new strategies to control the environmental risks of herbicides.
Collapse
Affiliation(s)
- Jun Li
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiushui Zhang
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui Chen
- College of Science and Technology, Ningbo University, Ningbo 315211, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zunwei Chen
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Wang J, Li X, Chang JW, Ye T, Mao Y, Wang X, Liu L. Enzymological and structural characterization of Arabidopsis thaliana heme oxygenase-1. FEBS Open Bio 2022; 12:1677-1687. [PMID: 35689519 PMCID: PMC9433822 DOI: 10.1002/2211-5463.13453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
Arabidopsis thaliana heme oxygenase‐1 (AtHO‐1), a metabolic enzyme in the heme degradation pathway, serves as a prototype for study of the bilin‐related functions in plants. Past biological analyses revealed that AtHO‐1 requires ferredoxin‐NADP+ reductase (FNR) and ferredoxin for its enzymatic activity. Here, we characterized the binding and degradation of heme by AtHO‐1, and found that ferredoxin is a dispensable component of the reducing system that provides electrons for heme oxidation. Furthermore, we reported the crystal structure of heme‐bound AtHO‐1, which demonstrates both conserved and previously undescribed features of plant heme oxygenases. Finally, the electron transfer pathway from FNR to AtHO‐1 is suggested based on the known structural information.
Collapse
Affiliation(s)
- Jia Wang
- School of Life Sciences, Anhui University, Hefei, China
| | - Xiaoyi Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | - Tong Ye
- School of Life Sciences, Anhui University, Hefei, China
| | - Ying Mao
- School of Life Sciences, Anhui University, Hefei, China
| | - Xiao Wang
- School of Life Sciences, Anhui University, Hefei, China
| | - Lin Liu
- School of Life Sciences, Anhui University, Hefei, China
| |
Collapse
|
9
|
Singh N, Bhatla SC. Heme oxygenase-nitric oxide crosstalk-mediated iron homeostasis in plants under oxidative stress. Free Radic Biol Med 2022; 182:192-205. [PMID: 35247570 DOI: 10.1016/j.freeradbiomed.2022.02.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022]
Abstract
Plant growth under abiotic stress conditions significantly enhances intracellular generation of reactive oxygen species (ROS). Oxidative status of plant cells is directly affected by the modulation of iron homeostasis. Among mammals and plants, heme oxygenase-1 (HO-1) is a well-known antioxidant enzyme. It catalyzes oxygenation of heme, thereby producing Fe2+, CO and biliverdin as byproducts. The antioxidant potential of HO-1 is primarily due to its catalytic reaction byproducts. Biliverdin and bilirubin possess conjugated π-electrons which escalate the ability of these biomolecules to scavenge free radicals. CO also enhances the ROS scavenging ability of plants cells by upregulating catalase and peroxidase activity. Enhanced expression of HO-1 in plants under oxidative stress accompanies sequestration of iron in specialized iron storage proteins localized in plastids and mitochondria, namely ferritin for Fe3+ storage and frataxin for storage of Fe-S clusters, respectively. Nitric oxide (NO) crosstalks with HO-1 at multiple levels, more so in plants under oxidative stress, in order to maintain intracellular iron status. Formation of dinitrosyl-iron complexes (DNICs) significantly prevents Fenton reaction during oxidative stress. DNICs also release NO upon dissociation in target cells over long distance in plants. They also function as antioxidants against superoxide anions and lipidic free radicals. A number of NO-modulated transcription factors also facilitate iron homeostasis in plant cells. Plants facing oxidative stress exhibit modulation of lateral root formation by HO-1 through NO and auxin-dependent pathways. The present review provides an in-depth analysis of the structure-function relationship of HO-1 in plants and mammals, correlating them with their adaptive mechanisms of survival under stress.
Collapse
Affiliation(s)
- Neha Singh
- Department of Botany, Gargi College, University of Delhi, India.
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
10
|
A Point Mutation in Phytochromobilin synthase Alters the Circadian Clock and Photoperiodic Flowering of Medicago truncatula. PLANTS 2022; 11:plants11030239. [PMID: 35161220 PMCID: PMC8839385 DOI: 10.3390/plants11030239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/17/2022]
Abstract
Plants use seasonal cues to initiate flowering at an appropriate time of year to ensure optimal reproductive success. The circadian clock integrates these daily and seasonal cues with internal cues to initiate flowering. The molecular pathways that control the sensitivity of flowering to photoperiods (daylengths) are well described in the model plant Arabidopsis. However, much less is known for crop species, such as legumes. Here, we performed a flowering time screen of a TILLING population of Medicago truncatula and found a line with late-flowering and altered light-sensing phenotypes. Using RNA sequencing, we identified a nonsense mutation in the Phytochromobilin synthase (MtPΦBS) gene, which encodes an enzyme that carries out the final step in the biosynthesis of the chromophore required for phytochrome (phy) activity. The analysis of the circadian clock in the MtpΦbs mutant revealed a shorter circadian period, which was shared with the MtphyA mutant. The MtpΦbs and MtphyA mutants showed downregulation of the FT floral regulators MtFTa1 and MtFTb1/b2 and a change in phase for morning and night core clock genes. Our findings show that phyA is necessary to synchronize the circadian clock and integration of light signalling to precisely control the timing of flowering.
Collapse
|
11
|
Streng C, Hartmann J, Leister K, Krauß N, Lamparter T, Frankenberg-Dinkel N, Weth F, Bastmeyer M, Yu Z, Fischer R. Fungal phytochrome chromophore biosynthesis at mitochondria. EMBO J 2021; 40:e108083. [PMID: 34254350 PMCID: PMC8447599 DOI: 10.15252/embj.2021108083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are essential organelles because of their function in energy conservation. Here, we show an involvement of mitochondria in phytochrome‐dependent light sensing in fungi. Phytochrome photoreceptors are found in plants, bacteria, and fungi and contain a linear, heme‐derived tetrapyrrole as chromophore. Linearization of heme requires heme oxygenases (HOs) which reside inside chloroplasts in planta. Despite the poor degree of conservation of HOs, we identified two candidates in the fungus Alternaria alternata. Deletion of either one phenocopied phytochrome deletion. The two enzymes had a cooperative effect and physically interacted with phytochrome, suggesting metabolon formation. The metabolon was attached to the surface of mitochondria with a C‐terminal anchor (CTA) sequence in HoxA. The CTA was necessary and sufficient for mitochondrial targeting. The affinity of phytochrome apoprotein to HoxA was 57,000‐fold higher than the affinity of the holoprotein, suggesting a “kiss‐and‐go” mechanism for chromophore loading and a function of mitochondria as assembly platforms for functional phytochrome. Hence, two alternative approaches for chromophore biosynthesis and insertion into phytochrome evolved in plants and fungi.
Collapse
Affiliation(s)
- Christian Streng
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Jana Hartmann
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Kai Leister
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Norbert Krauß
- Karlsruhe Institute of Technology (KIT) - South Campus, Botanical Institute, Karlsruhe, Germany
| | - Tilman Lamparter
- Karlsruhe Institute of Technology (KIT) - South Campus, Botanical Institute, Karlsruhe, Germany
| | | | - Franco Weth
- Karlsruhe Institute of Technology (KIT) - South Campus, Zoological Institute, Karlsruhe, Germany
| | - Martin Bastmeyer
- Karlsruhe Institute of Technology (KIT) - South Campus, Zoological Institute, Karlsruhe, Germany
| | - Zhenzhong Yu
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
12
|
Duan X, Xu S, Xie Y, Li L, Qi W, Parizot B, Zhang Y, Chen T, Han Y, Van Breusegem F, Beeckman T, Shen W, Xuan W. Periodic root branching is influenced by light through an HY1-HY5-auxin pathway. Curr Biol 2021; 31:3834-3847.e5. [PMID: 34283998 DOI: 10.1016/j.cub.2021.06.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/11/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022]
Abstract
The spacing of lateral roots (LRs) along the main root in plants is driven by an oscillatory signal, often referred to as the "root clock" that represents a pre-patterning mechanism that can be influenced by environmental signals. Light is an important environmental factor that has been previously reported to be capable of modulating the root clock, although the effect of light signaling on the LR pre-patterning has not yet been fully investigated. In this study, we reveal that light can activate the transcription of a photomorphogenic gene HY1 to maintain high frequency and amplitude of the oscillation signal, leading to the repetitive formation of pre-branch sites. By grafting and tissue-specific complementation experiments, we demonstrated that HY1 generated in the shoot or locally in xylem pole pericycle cells was sufficient to regulate LR branching. We further found that HY1 can induce the expression of HY5 and its homolog HYH, and act as a signalosome to modulate the intracellular localization and expression of auxin transporters, in turn promoting auxin accumulation in the oscillation zone to stimulate LR branching. These fundamental mechanistic insights improve our understanding of the molecular basis of light-controlled LR formation and provide a genetic interconnection between shoot- and root-derived signals in regulating periodic LR branching.
Collapse
Affiliation(s)
- Xingliang Duan
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium; VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yuanming Xie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium; VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium; MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Lun Li
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Weicong Qi
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium; VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Tao Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Yi Han
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium; VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium; VIB-UGent Center for Plant Systems Biology, Technologiepark 71, B-9052 Ghent, Belgium
| | - Wenbiao Shen
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wei Xuan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Nie L, Zheng Y, Zhang L, Wu Y, Zhu S, Hou J, Chen G, Tang X, Wang C, Yuan L. Characterization and transcriptomic analysis of a novel yellow-green leaf wucai (Brassica campestris L.) germplasm. BMC Genomics 2021; 22:258. [PMID: 33845769 PMCID: PMC8040211 DOI: 10.1186/s12864-021-07573-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/25/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Leaf color mutants are the ideal materials to explore the pathways of chlorophyll (Chl) metabolism, chloroplast development, and photosynthesis system. In this study, a spontaneous yellow-green leaf wucai (Brassica campestris L.) mutant "WY16-13" was identified, which exhibited yellow-green leaf color during its entire growth period. However, current understanding of the molecular mechanism underlying Chl metabolism and chloroplast development of "WY16-13" is limited. RESULTS Total Chl and carotenoid content in WY16-13 was reduced by 60.92 and 58.82%, respectively, as compared with its wild type parental line W16-13. Electron microscopic investigation revealed fewer chloroplasts per cell and looser stroma lamellae in WY16-13 than in W16-13. A comparative transcriptome profiling was performed using leaves from the yellow-green leaf type (WY16-13) and normal green-leaf type (W16-13). A total of 54.12 million (M) (WY16-13) and 56.17 M (W16-13) reads were generated. A total of 40,578 genes were identified from the mapped libraries. We identified 3882 differentially expressed genes (DEGs) in WY16-13 compared with W16-13 (i.e., 1603 upregulated genes and 2279 downregulated genes). According to the Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, these DEGs are involved in porphyrin and Chl metabolism [i.e., chlorophyllase (CLH), heme oxygenase (HO), chlorophyll (ide) b reductase (NYC), and protochlorophyllide oxidoreductase (POR) genes], carbohydrate metabolism, photosynthesis, and carbon fixation in photosynthetic organisms. Moreover, deficiency in Chl biosynthetic intermediates in WY16-13 revealed that the formation of the yellow-green phenotype was related to the disorder of heme metabolism. CONCLUSIONS Our results provide valuable insights into Chl deficiency in the yellow-green leaf mutant and a bioinformatics resource for further functional identification of key allelic genes responsible for differences in Chl content.
Collapse
Affiliation(s)
- Libing Nie
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Yushan Zheng
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Liting Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Ying Wu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Shidong Zhu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Xiaoyan Tang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China.
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China.
| | - Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China.
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China.
| |
Collapse
|
14
|
Su N, Niu M, Liu Z, Wang L, Zhu Z, Zou J, Chen Y, Cui J. Hemin-decreased cadmium uptake in pak choi (Brassica chinensis L.) seedlings is heme oxygenase-1 dependent and relies on its by-products ferrous iron and carbon monoxide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:115882. [PMID: 33234366 DOI: 10.1016/j.envpol.2020.115882] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is a major pollutant in farmland, which not only greatly restricts crop production, but also brings a serious threat to human health through entering the food chain. Our previous study showed that hemin treatment could reduce the accumulation of Cd in pak choi seedlings. However, the underlying mechanism remains unclear. In this study, we used non-invasive micro-test technology (NMT) to detect the real-time Cd2+ flux from pak choi roots and demonstrated that hemin treatment decreased Cd uptake rather than its translocation within plants. Moreover, through comparing the responses of different chemical treatments in pak choi seedlings and Arabidopsis wild-type and heme oxygenase-1 (HO-1) mutant, we provided evidence that hemin-decreased Cd uptake was HO-1 dependent. Furthermore, analyses of hemin degradation products suggested that the hemin-derived suppression of Cd uptake suppression was probably relying on its degradation by-products, ferrous iron (Fe2+) and carbon monoxide (CO), via repressing the expression of a Fe2+/Cd2+ transporter BcIRT1 in pak choi roots.
Collapse
Affiliation(s)
- Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengyang Niu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ze Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lu Wang
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zhengbo Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianwen Zou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
15
|
Wang T, Wang Y, Chen C, Ren A, Yu H, Zhao M. Effect of the heme oxygenase gene on mycelial growth and polysaccharide synthesis in Ganoderma lucidum. J Basic Microbiol 2021; 61:253-264. [PMID: 33543807 DOI: 10.1002/jobm.202000622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/23/2020] [Accepted: 01/24/2021] [Indexed: 11/06/2022]
Abstract
The heme oxygenase gene has antioxidant and cytoprotective effects in organisms, but no related research has been conducted in Ganoderma lucidum. For the first time, we cloned the HMX1 gene in G. lucidum. The CDS is 1092 bp in length and encodes 363 amino acids. The HMX1 protein was prokaryotically expressed and purified, and the enzyme activity of the purified protein was measured. The value of Km was 0.699 μM, and Vm was 81.9 nmol BV h-1 nmol-1 protein. By constructing the silencing vector pAN7-dual-HMX1i, the transformants HMX1i1 and HMX1i2 were obtained. Compared with the wild-type (WT), the average growth rate of HMX1i1 and HMX1i2 decreased by 31% and 23%, respectively, and the mycelium biomass decreased by 53% and 48%, respectively. Compared with the WT, the extracellular polysaccharide content of HMX1i1 and HMX1i2 increased by 59% and 51%, and the intracellular polysaccharide content increased by 24% and 22%, respectively. These results indicate that the HMX1 gene affects mycelial growth and polysaccharide synthesis in G. lucidum.
Collapse
Affiliation(s)
- Ting Wang
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental MicrobiologM, yinistry of Agriculture, Nanjing, Jiangsu, China
| | - Yihong Wang
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental MicrobiologM, yinistry of Agriculture, Nanjing, Jiangsu, China
| | - Chen Chen
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental MicrobiologM, yinistry of Agriculture, Nanjing, Jiangsu, China
| | - Ang Ren
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental MicrobiologM, yinistry of Agriculture, Nanjing, Jiangsu, China
| | - Hanshou Yu
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental MicrobiologM, yinistry of Agriculture, Nanjing, Jiangsu, China
| | - Mingwen Zhao
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental MicrobiologM, yinistry of Agriculture, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Tohda R, Tanaka H, Mutoh R, Zhang X, Lee YH, Konuma T, Ikegami T, Migita CT, Kurisu G. Crystal structure of higher plant heme oxygenase-1 and its mechanism of interaction with ferredoxin. J Biol Chem 2021; 296:100217. [PMID: 33839679 PMCID: PMC7948506 DOI: 10.1074/jbc.ra120.016271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 11/06/2022] Open
Abstract
Heme oxygenase (HO) converts heme to carbon monoxide, biliverdin, and free iron, products that are essential in cellular redox signaling and iron recycling. In higher plants, HO is also involved in the biosynthesis of photoreceptor pigment precursors. Despite many common enzymatic reactions, the amino acid sequence identity between plant-type and other HOs is exceptionally low (∼19.5%), and amino acids that are catalytically important in mammalian HO are not conserved in plant-type HOs. Structural characterization of plant-type HO is limited to spectroscopic characterization by electron spin resonance, and it remains unclear how the structure of plant-type HO differs from that of other HOs. Here, we have solved the crystal structure of Glycine max (soybean) HO-1 (GmHO-1) at a resolution of 1.06 Å and carried out the isothermal titration calorimetry measurements and NMR spectroscopic studies of its interaction with ferredoxin, the plant-specific electron donor. The high-resolution X-ray structure of GmHO-1 reveals several novel structural components: an additional irregularly structured region, a new water tunnel from the active site to the surface, and a hydrogen-bonding network unique to plant-type HOs. Structurally important features in other HOs, such as His ligation to the bound heme, are conserved in GmHO-1. Based on combined data from X-ray crystallography, isothermal titration calorimetry, and NMR measurements, we propose the evolutionary fine-tuning of plant-type HOs for ferredoxin dependency in order to allow adaptation to dynamic pH changes on the stroma side of the thylakoid membrane in chloroplast without losing enzymatic activity under conditions of fluctuating light.
Collapse
Affiliation(s)
- Rei Tohda
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Department of Macromolecular Science, Osaka University, Toyonaka, Osaka, Japan
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Department of Macromolecular Science, Osaka University, Toyonaka, Osaka, Japan
| | - Risa Mutoh
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Xuhong Zhang
- Graduate School of Medical Science, Yamagata University, Yamagata, Yamagata, Japan
| | - Young-Ho Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Chungbuk, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Yuseong-gu, Daejeon, South Korea; Research Headquarters, Korea Brain Research Institute, Dong-gu, Daegu, South Korea; Bio-Analytical Science, University of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, Japan
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, Japan
| | - Catharina T Migita
- Department of Biological Chemistry, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Department of Macromolecular Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
17
|
Zheng T, Wang M, Zhan J, Sun W, Yang Q, Lin Z, Bu T, Tang Z, Li C, Yan J, Shan Z, Chen H. Ferrous iron-induced increases in capitate glandular trichome density and upregulation of CbHO-1 contributes to increases in blinin content in Conyza blinii. PLANTA 2020; 252:81. [PMID: 33037484 DOI: 10.1007/s00425-020-03492-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Ferrous iron can promote the development of glandular trichomes and increase the content of blinin, which depends on CbHO-1 expression. Conyza blinii (C. blinii) is a unique Chinese herbal medicine that grows in Sichuan Province, China. Because the habitat of C. blinii is an iron ore mining area with abundant iron content, this species can be used as one of the best materials to study the mechanism of plant tolerance to iron. In this study, C. blinii was treated with ferrous-EDTA solutions at different concentrations, and it was found that the tolerance value of C. blinii to iron was 200 μM. Under this concentration, the plant height, root length, biomass, and iron content of C. blinii increased to the maximum values, and the effect was dependent on the upregulated expression of CbHO-1. At the same time, under ferrous iron, the photosynthetic capacity and capitate glandular trichome density of C. blinii also significantly increased, providing precursors and sites for the synthesis of blinin, thus significantly increasing the content of blinin. These processes were also dependent on the high expression of CbHO-1. Correlation analysis showed that there were strong positive correlations between iron content, capitate glandular trichome density, CbHO-1 gene expression, and blinin content. This study explored the effects of ferrous iron on the physiology and biochemistry of C. blinii, greatly improving our understanding of the mechanism of iron tolerance in C. blinii.
Collapse
Affiliation(s)
- Tianrun Zheng
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Maojia Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Junyi Zhan
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Qin Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zhiyi Lin
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture Rural Affairs, School of Food and Bioengineering, Chengdu University, Chengdu, China
| | - Zhi Shan
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, China.
| |
Collapse
|
18
|
Hamasaki H, Ayano M, Nakamura A, Fujioka S, Asami T, Takatsuto S, Yoshida S, Oka Y, Matsui M, Shimada Y. Light Activates Brassinosteroid Biosynthesis to Promote Hook Opening and Petiole Development in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2020; 61:1239-1251. [PMID: 32333772 DOI: 10.1093/pcp/pcaa053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Although brassinosteroids (BRs) have been proposed to be negative regulators of photomorphogenesis, their physiological role therein has remained elusive. We studied light-induced photomorphogenic development in the presence of the BR biosynthesis inhibitor, brassinazole (Brz). Hook opening was inhibited in the presence of Brz; this inhibition was reversed in the presence of brassinolide (BL). Hook opening was accompanied by cell expansion on the inner (concave) side of the hook. This cell expansion was inhibited in the presence of Brz but was restored upon the addition of BL. We then evaluated light-induced organ-specific expression of three BR biosynthesis genes, DWF4, BR6ox1 and BR6ox2, and a BR-responsive gene, SAUR-AC1, during the photomorphogenesis of Arabidopsis. Expression of these genes was induced, particularly in the hook region, in response to illumination. The induction peaked after 3 h of light exposure and preceded hook opening. Phytochrome-deficient mutants, hy1, hy2 and phyAphyB, and a light-signaling mutant, hy5, were defective in light-induced expression of BR6ox1, BR6ox2 and SAUR-AC1. Light induced both expression of BR6ox genes and petiole development. Petiole development was inhibited in the presence of Brz. Our results largely contradict the early view that BRs are negative regulators of photomorphogenesis. Our data collectively suggest that light activates the expression of BR biosynthesis genes in the hook region via a phytochrome-signaling pathway and HY5 and that BR biosynthesis is essential for hook opening and petiole development during photomorphogenesis.
Collapse
Affiliation(s)
- Hidefumi Hamasaki
- Kihara Institute for Biological Research, Yokohama City University Kihara Institute for Biological Research, Maiokacho 641-12, Totsuka, Yokohama, Kanagawa, 244-0813 Japan
| | - Madoka Ayano
- RIKEN Plant Science Center, Suehirocho 1-7-22, Tsurumi, Yokohama, 230-0045 Japan
| | - Ayako Nakamura
- Kihara Institute for Biological Research, Yokohama City University Kihara Institute for Biological Research, Maiokacho 641-12, Totsuka, Yokohama, Kanagawa, 244-0813 Japan
| | - Shozo Fujioka
- RIKEN Plant Science Center, Suehirocho 1-7-22, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Advanced Science Institute, Wako, Saitama, 351-0198 Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657 Japan
| | - Suguru Takatsuto
- Department of Chemistry, Joetsu University of Education, Joetsu, Niigata, 943-8512 Japan
| | - Shigeo Yoshida
- RIKEN Plant Science Center, Suehirocho 1-7-22, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Advanced Science Institute, Wako, Saitama, 351-0198 Japan
| | - Yoshito Oka
- RIKEN Plant Science Center, Suehirocho 1-7-22, Tsurumi, Yokohama, 230-0045 Japan
| | - Minami Matsui
- RIKEN Plant Science Center, Suehirocho 1-7-22, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Center for Sustainable Resource Science, Suehirocho 1-7-22, Tsurumi, Yokohama, 230-0045 Japan
| | - Yukihisa Shimada
- Kihara Institute for Biological Research, Yokohama City University Kihara Institute for Biological Research, Maiokacho 641-12, Totsuka, Yokohama, Kanagawa, 244-0813 Japan
- RIKEN Plant Science Center, Suehirocho 1-7-22, Tsurumi, Yokohama, 230-0045 Japan
| |
Collapse
|
19
|
Sylvestre-Gonon E, Schwartz M, Girardet JM, Hecker A, Rouhier N. Is there a role for tau glutathione transferases in tetrapyrrole metabolism and retrograde signalling in plants? Philos Trans R Soc Lond B Biol Sci 2020; 375:20190404. [PMID: 32362257 DOI: 10.1098/rstb.2019.0404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In plants, tetrapyrrole biosynthesis occurs in chloroplasts, the reactions being catalysed by stromal and membrane-bound enzymes. The tetrapyrrole moiety is a backbone for chlorophylls and cofactors such as sirohaems, haems and phytochromobilins. Owing to this diversity, the potential cytotoxicity of some precursors and the associated synthesis costs, a tight control exists to adjust the demand and the fluxes for each molecule. After synthesis, haems and phytochromobilins are incorporated into proteins found in other subcellular compartments. However, there is only very limited information about the chaperones and membrane transporters involved in the trafficking of these molecules. After summarizing evidence indicating that glutathione transferases (GST) may be part of the transport and/or degradation processes of porphyrin derivatives, we provide experimental data indicating that tau glutathione transferases (GSTU) bind protoporphyrin IX and haem moieties and use structural modelling to identify possible residues responsible for their binding in the active site hydrophobic pocket. Finally, we discuss the possible roles associated with the binding, catalytic transformation (i.e. glutathione conjugation) and/or transport of tetrapyrroles by GSTUs, considering their subcellular localization and capacity to interact with ABC transporters. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
| | | | | | - Arnaud Hecker
- Université de Lorraine, INRAE, IAM, 54000 Nancy, France
| | | |
Collapse
|
20
|
Zhang K, Mu Y, Li W, Shan X, Wang N, Feng H. Identification of two recessive etiolation genes (py1, py2) in pakchoi (Brassica rapa L. ssp. chinensis). BMC PLANT BIOLOGY 2020; 20:68. [PMID: 32041529 PMCID: PMC7011377 DOI: 10.1186/s12870-020-2271-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/29/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Leaf color is a major agronomic trait, which has a strong influence on crop yields. Isolating leaf color mutants can represent valuable materials for research in chlorophyll (Chl) biosynthesis and metabolism regulation. RESULTS In this study, we identified a stably inherited yellow leaf mutant derived from 'Huaguan' pakchoi variety via isolated microspore culture and designated as pylm. This mutant displayed yellow leaves after germination. Its etiolated phenotype was nonlethal and stable during the whole growth period. Its growth was weak and its hypocotyls were markedly elongated. Genetic analysis revealed that two recessive nuclear genes, named py1 and py2, are responsible for the etiolation phenotype. Bulked segregant RNA sequencing (BSR-Seq) showed that py1 and py2 were mapped on chromosomes A09 and A07, respectively. The genes were single Mendelian factors in F3:4 populations based on a 3:1 phenotypic segregation ratio. The py1 was localized to a 258.3-kb interval on a 34-gene genome. The differentially expressed gene BraA09004189 was detected in the py1 mapping region and regulated heme catabolism. One single-nucleotide polymorphism (SNP) of BraA09004189 occurred in pylm. A candidate gene-specific SNP marker in 1520 F3:4 yellow-colored individuals co-segregated with py1. For py2, 1860 recessive homozygous F3:4 individuals were investigated and localized py2 to a 4.4-kb interval. Of the five genes in this region, BraA07001774 was predicted as a candidate for py2. It encoded an embryo defective 1187 and a phosphotransferase related to chlorophyll deficiency and hypocotyl elongation. One SNP of BraA07001774 occurred in pylm. It caused a single amino acid mutation from Asp to Asn. According to quantitative real-time polymerase chain reaction (qRT-PCR), BraA07001774 was downregulated in pylm. CONCLUSIONS Our study identified a Chl deficiency mutant pylm in pakchoi. Two recessive nuclear genes named py1 and py2 had a significant effect on etiolation. Candidate genes regulating etiolation were identified as BraA09004189 and BraA07001774, respectively. These findings will elucidate chlorophyll metabolism and the molecular mechanisms of the gene interactions controlling pakchoi etiolation.
Collapse
Affiliation(s)
- Kun Zhang
- College of Life Sciences, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Yu Mu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Weijia Li
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Xiaofei Shan
- College of Life Sciences, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Nan Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
21
|
Dojun N, Muranishi K, Ishimori K, Uchida T. A single mutation converts Alr5027 from cyanobacteria Nostoc sp. PCC 7120 to a heme-binding protein with heme-degrading ability. J Inorg Biochem 2019; 203:110916. [PMID: 31739124 DOI: 10.1016/j.jinorgbio.2019.110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 11/19/2022]
Abstract
HutZ from Vibrio cholerae (VcHutZ) is a dimeric protein that catalyzes oxygen-dependent degradation of heme. The reaction mechanism is the same as that of canonical heme oxygenase (HO), but the structure of HutZ is quite different from that of HO. Thus, we postulate that HutZ has evolved via a different pathway from that of HO. The Alr5027 protein from cyanobacteria possessing proteins potentially related to ancestral proteins utilizing O2 in enzymatic reactions is homologous to HutZ family proteins (67% similarity), but the heme axial ligand of HutZ is not conserved in Alr5027. To investigate whether Alr5027 can bind and degrade heme, we expressed Alr5027 in Escherichia coli and purified it. Although Alr5027 did not bind heme, replacement of Lys164, corresponding to the heme axial ligand of HutZ, with histidine conferred heme-binding capability. The K164H mutant produced verdoheme in the reaction with H2O2, indicating acquisition of heme-degradation ability. Among the mutants, the K164H mutant produced verdoheme most efficiently. Although the K164H mutant did not degrade heme through ascorbic acid, biliverdin, the final product of VcHutZ, was formed by treatment of verdoheme with ascorbic acid. An analysis of Trp103 fluorescence indicated elongation of the distance between protomers in this mutant compared with VcHutZ-the probable cause of the inefficiency of ascorbic acid-supported heme-degradation activity. Collectively, our findings indicate that a single lysine-to-histidine mutation converted Alr5027 to a heme-binding protein that can form verdoheme through H2O2, suggesting that HutZ family proteins have acquired the heme-degradation function through molecular evolution from an ancestor protein of Alr5027.
Collapse
Affiliation(s)
- Nobuhiko Dojun
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kazuyoshi Muranishi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
22
|
Physicochemical modeling of the phytochrome-mediated photothermal sensing. Sci Rep 2019; 9:10485. [PMID: 31324849 PMCID: PMC6642129 DOI: 10.1038/s41598-019-47019-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/09/2019] [Indexed: 11/08/2022] Open
Abstract
Light and temperature cues share many common signaling events towards plant photothermal morphogenesis. Particularly, the red (R)/far-red (FR)-absorbing phytochrome photoreceptors also function as temperature sensors, suggesting that light and temperature responses are intimately associated with each other. Here, we present data from physicochemical modeling of temperature sensing and thermomorphogenic patterning of hypocotyl growth, which illustrate that the two seemingly distinct stimulating cues are tightly coupled through physicochemical principles and temperature effects can be described as a function of infra-red (IR) thermal radiation. It is possible that the dark reversion from the FR-absorbing Pfr to the R-absorbing Pr phytochromes is essentially an IR-mediated thermal conversion. We propose that the phytochromes modulate photothermal responses by monitoring R:IR ratios, as they sense R:FR ratios during photomorphogenesis.
Collapse
|
23
|
Ortiz-Alcaide M, Llamas E, Gomez-Cadenas A, Nagatani A, Martínez-García JF, Rodríguez-Concepción M. Chloroplasts Modulate Elongation Responses to Canopy Shade by Retrograde Pathways Involving HY5 and Abscisic Acid. THE PLANT CELL 2019; 31:384-398. [PMID: 30705135 PMCID: PMC6447015 DOI: 10.1105/tpc.18.00617] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/02/2019] [Accepted: 01/30/2019] [Indexed: 05/18/2023]
Abstract
Plants use light as energy for photosynthesis but also as a signal of competing vegetation. Using different concentrations of norflurazon and lincomycin, we found that the response to canopy shade in Arabidopsis (Arabidopsis thaliana) was repressed even when inhibitors only caused a modest reduction in the level of photosynthetic pigments. High inhibitor concentrations resulted in albino seedlings that were unable to elongate when exposed to shade, in part due to attenuated light perception and signaling via phytochrome B and phytochrome-interacting factors. The response to shade was further repressed by a retrograde network with two separate nodes represented by the transcription factor LONG HYPOCOTYL 5 and the carotenoid-derived hormone abscisic acid. The unveiled connection among chloroplast status, light (shade) signaling, and developmental responses should contribute to achieve optimal photosynthetic performance under light-changing conditions.
Collapse
Affiliation(s)
- Miriam Ortiz-Alcaide
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | - Ernesto Llamas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | | | | | - Jaime F Martínez-García
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | | |
Collapse
|
24
|
Liu Y, Wang J, Yin H, Zhang A, Huang S, Wang TJ, Meng Q, Nan N, Wu Y, Guo P, Ahmad R, Liu B, Xu ZY. Trithorax-group protein ATX5 mediates the glucose response via impacting the HY1-ABI4 signaling module. PLANT MOLECULAR BIOLOGY 2018; 98:495-506. [PMID: 30406469 DOI: 10.1007/s11103-018-0791-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/22/2018] [Indexed: 05/29/2023]
Abstract
Trithorax-group Protein ARABIDOPSIS TRITHORAX5 modulates the glucose response. Glucose is an evolutionarily conserved modulator from unicellular microorganisms to multicellular animals and plants. Extensive studies have shown that the Trithorax-group proteins (TrxGs) play essential roles in different biological processes by affecting histone modifications and chromatin structures. However, whether TrxGs function in the glucose response and how they achieve the control of target genes in response to glucose signaling in plants remain unknown. Here, we show that the Trithorax-group Protein ARABIDOPSIS TRITHORAX5 (ATX5) affects the glucose response and signaling. atx5 loss-of-function mutants display glucose-oversensitive phenotypes compared to the wild-type (WT). Genome-wide RNA-sequencing analyses have revealed that ATX5 impacts the expression of a subset of glucose signaling responsive genes. Intriguingly, we have established that ATX5 directly controls the expression of HY1 by trimethylating H3 lysine 4 of the Arabidopsis Heme Oxygenase1 (HY1) locus. Glucose signaling causes the suppression of ATX5 activity and subsequently reduces the H3K4me3 levels at the HY1 locus, thereby leading to the increased expression of ABSCISIC ACID-INSENSITIVE4 (ABI4). This result suggests that an important ATX5-HY1-ABI4 regulatory module governs the glucose response. This idea is further supported by genetic evidence showing that an atx5 hy1-100 abi4 triple mutant showed a similar glucose-insensitive phenotype as compared to that of the abi4 single mutant. Our findings show that a novel ATX5-HY1-ABI4 module controls the glucose response in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Hao Yin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Shuangzhan Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Qingxiang Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Nan Nan
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yifan Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Rafiq Ahmad
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
25
|
Jia Y, Li R, Yang W, Chen Z, Hu X. Carbon monoxide signal regulates light-initiated seed germination by suppressing SOM expression. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:88-98. [PMID: 29807609 DOI: 10.1016/j.plantsci.2018.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 05/09/2023]
Abstract
Light is a critical external signal for seed germination. The photoreceptor phytochrome B (PHYB) perceives light stimulation and promotes seed germination during the early phase after imbibition. SOM is a CCH-type zinc finger protein and negatively regulates PHYB-mediated seed germination by controlling downstream gibberellic acid (GA) and abscisic acid (ABA) metabolism. As a small molecular signal, carbon monoxide (CO) has been reported to regulate seed germination under environmental stress, but the underlying mechanism remains unclear. In this study, we first found that CO enhanced PHYB-dependent seed germination, and red light irradiation increased the transcriptional level of gene encoding Heme oxygenase 1(HY1) for CO production, this process required PHYB. Pharmacological and genetic analyses revealed that CO signals repressed the transcriptional level of SOM to alter downstream GA/ABA metabolism related genes expression, ultimately relieving the inhibitory effect of SOM on seed germination. Furthermore, CO signals possibly recruited histone deacetylase 6 (HDA6) to the promoter region of SOM to decrease its expression by diminishing histone H3 acetylation levels at this locus. Taken together, our results propose a novel mechanism for CO signals in promoting light-initiated seed germination via recruiting HDA6 to epigenetically regulate SOM expression.
Collapse
Affiliation(s)
- Yujie Jia
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Ruijing Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Wenjuan Yang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhen Chen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
26
|
Mahawar L, Shekhawat GS. Haem oxygenase: A functionally diverse enzyme of photosynthetic organisms and its role in phytochrome chromophore biosynthesis, cellular signalling and defence mechanisms. PLANT, CELL & ENVIRONMENT 2018; 41:483-500. [PMID: 29220548 DOI: 10.1111/pce.13116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/26/2017] [Accepted: 11/23/2017] [Indexed: 05/08/2023]
Abstract
Haem oxygenase (HO) is a universal enzyme that catalyses stereospecific cleavage of haem to BV IX α and liberates Fe+2 ion and CO as by-product. Beside haem degradation, it has important functions in plants that include cellular defence, stomatal regulation, iron mobilization, phytochrome chromophore synthesis, and lateral root formation. Phytochromes are an extended family of photoreceptors with a molecular mass of 250 kDa and occur as a dimer made up of 2 equivalent subunits of 125 kDa each. Each subunit is made of two components: the chromophore, a light-capturing pigment molecule and the apoprotein. Biosynthesis of phytochrome (phy) chromophore includes the oxidative splitting of haem to biliverdin IX by an enzyme HO, which is the decisive step in the biosynthesis. In photosynthetic organisms, BVα is reduced to 3Z PΦB by a ferredoxin-dependent PΦB synthase that finally isomerised to PΦB. The synthesized PΦB assembles with the phytochrome apoprotein in the cytoplasm to generate holophytochrome. Thus, necessary for photomorphogenesis in plants, which has confirmed from the genetic studies, conducted on Arabidopsis thaliana and pea. Besides the phytochrome chromophore synthesis, the review also emphasises on the current advances conducted in plant HO implying its developmental and defensive role.
Collapse
Affiliation(s)
- Lovely Mahawar
- Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | | |
Collapse
|
27
|
Shemetov AA, Oliinyk OS, Verkhusha VV. How to Increase Brightness of Near-Infrared Fluorescent Proteins in Mammalian Cells. Cell Chem Biol 2017; 24:758-766.e3. [PMID: 28602760 DOI: 10.1016/j.chembiol.2017.05.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/28/2017] [Accepted: 05/15/2017] [Indexed: 12/22/2022]
Abstract
Numerous near-infrared (NIR) fluorescent proteins (FPs) were recently engineered from bacterial photoreceptors but lack of their systematic comparison makes researcher's choice rather difficult. Here we evaluated side-by-side several modern NIR FPs, such as blue-shifted smURFP and miRFP670, and red-shifted mIFP and miRFP703. We found that among all NIR FPs, miRFP670 had the highest fluorescence intensity in various mammalian cells. For instance, in common HeLa cells miRFP703, mIFP, and smURFP were 2-, 9-, and 53-fold dimmer than miRFP670. Either co-expression of heme oxygenase or incubation of cells with heme precursor weakly affected NIR fluorescence, however, in the latter case elevated cellular autofluorescence. Exogenously added chromophore substantially increased smURFP brightness but only slightly enhanced brightness of other NIR FPs. mIFP showed intermediate, while monomeric miRFP670 and miRFP703 exhibited high binding efficiency of endogenous biliverdin chromophore. This feature makes them easy to use as GFP-like proteins for spectral multiplexing with FPs of visible range.
Collapse
Affiliation(s)
- Anton A Shemetov
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Olena S Oliinyk
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland.
| |
Collapse
|
28
|
Rockwell NC, Martin SS, Li FW, Mathews S, Lagarias JC. The phycocyanobilin chromophore of streptophyte algal phytochromes is synthesized by HY2. THE NEW PHYTOLOGIST 2017; 214:1145-1157. [PMID: 28106912 PMCID: PMC5388591 DOI: 10.1111/nph.14422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/04/2016] [Indexed: 05/11/2023]
Abstract
Land plant phytochromes perceive red and far-red light to control growth and development, using the linear tetrapyrrole (bilin) chromophore phytochromobilin (PΦB). Phytochromes from streptophyte algae, sister species to land plants, instead use phycocyanobilin (PCB). PCB and PΦB are synthesized by different ferredoxin-dependent bilin reductases (FDBRs): PΦB is synthesized by HY2, whereas PCB is synthesized by PcyA. The pathway for PCB biosynthesis in streptophyte algae is unknown. We used phylogenetic analysis and heterologous reconstitution of bilin biosynthesis to investigate bilin biosynthesis in streptophyte algae. Phylogenetic results suggest that PcyA is present in chlorophytes and prasinophytes but absent in streptophytes. A system reconstituting bilin biosynthesis in Escherichia coli was modified to utilize HY2 from the streptophyte alga Klebsormidium flaccidum (KflaHY2). The resulting bilin was incorporated into model cyanobacterial photoreceptors and into phytochrome from the early-diverging streptophyte alga Mesostigma viride (MvirPHY1). All photoreceptors tested incorporate PCB rather than PΦB, indicating that KflaHY2 is sufficient for PCB synthesis without any other algal protein. MvirPHY1 exhibits a red-far-red photocycle similar to those seen in other streptophyte algal phytochromes. These results demonstrate that streptophyte algae use HY2 to synthesize PCB, consistent with the hypothesis that PΦB synthesis arose late in HY2 evolution.
Collapse
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Shelley S. Martin
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Fay-Wei Li
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Sarah Mathews
- CSIRO National Research Collections Australia, Australian National Herbarium, Canberra, ACT, 2601, Australia
| | - J. Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
29
|
Dobisova T, Hrdinova V, Cuesta C, Michlickova S, Urbankova I, Hejatkova R, Zadnikova P, Pernisova M, Benkova E, Hejatko J. Light Controls Cytokinin Signaling via Transcriptional Regulation of Constitutively Active Sensor Histidine Kinase CKI1. PLANT PHYSIOLOGY 2017; 174:387-404. [PMID: 28292856 PMCID: PMC5411129 DOI: 10.1104/pp.16.01964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/04/2017] [Indexed: 05/07/2023]
Abstract
In plants, the multistep phosphorelay (MSP) pathway mediates a range of regulatory processes, including those activated by cytokinins. The cross talk between cytokinin response and light has been known for a long time. However, the molecular mechanism underlying the interaction between light and cytokinin signaling remains elusive. In the screen for upstream regulators we identified a LONG PALE HYPOCOTYL (LPH) gene whose activity is indispensable for spatiotemporally correct expression of CYTOKININ INDEPENDENT1 (CKI1), encoding the constitutively active sensor His kinase that activates MSP signaling. lph is a new allele of HEME OXYGENASE1 (HY1) that encodes the key protein in the biosynthesis of phytochromobilin, a cofactor of photoconvertible phytochromes. Our analysis confirmed the light-dependent regulation of the CKI1 expression pattern. We show that CKI1 expression is under the control of phytochrome A (phyA), functioning as a dual (both positive and negative) regulator of CKI1 expression, presumably via the phyA-regulated transcription factors (TF) PHYTOCHROME INTERACTING FACTOR3 and CIRCADIAN CLOCK ASSOCIATED1. Changes in CKI1 expression observed in lph/hy1-7 and phy mutants correlate with misregulation of MSP signaling, changed cytokinin sensitivity, and developmental aberrations that were previously shown to be associated with cytokinin and/or CKI1 action. Besides that, we demonstrate a novel role of phyA-dependent CKI1 expression in the hypocotyl elongation and hook development during skotomorphogenesis. Based on these results, we propose that the light-dependent regulation of CKI1 provides a plausible mechanistic link underlying the well-known interaction between light- and cytokinin-controlled plant development.
Collapse
Affiliation(s)
- Tereza Dobisova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Vendula Hrdinova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Candela Cuesta
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Sarka Michlickova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Ivana Urbankova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Romana Hejatkova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Petra Zadnikova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Marketa Pernisova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Eva Benkova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| |
Collapse
|
30
|
Lv Q, Wang L, Wang JZ, Li P, Chen YL, Du J, He YK, Bao F. SHB1/HY1 Alleviates Excess Boron Stress by Increasing BOR4 Expression Level and Maintaining Boron Homeostasis in Arabidopsis Roots. FRONTIERS IN PLANT SCIENCE 2017; 8:790. [PMID: 28559907 PMCID: PMC5432644 DOI: 10.3389/fpls.2017.00790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/27/2017] [Indexed: 05/02/2023]
Abstract
Boron is an essential mineral nutrient for higher plant growth and development. However, excessive amounts of boron can be toxic. Here, we report on the characterization of an Arabidopsis mutant, shb1 (sensitive to high-level of boron 1), which exhibits hypersensitivity to excessive boron in roots. Positional cloning demonstrated that the shb1 mutant bears a point mutation in a gene encoding a heme oxygenase 1 (HO1) corresponding to the HY1 gene involved in photomorphogenesis. The transcription level of the SHB1/HY1 gene in roots is up-regulated under excessive boron stimulation. Either overexpressing SHB1/HY1 or applying the HO1 inducer hematin reduces boron accumulation in roots and confers high boron tolerance. Furthermore, carbon monoxide and bilirubin, catalytic products of HO1, partially rescue the boron toxicity-induced inhibition of primary root growth in shb1. Additionally, the mRNA level of BOR4, a boron efflux transporter, is reduced in shb1 roots with high levels of boron supplementation, and hematin cannot relieve the boron toxicity-induced root inhibition in bor4 mutants. Taken together, our study reveals that HO1 acts via its catalytic by-products to promote tolerance of excessive boron by up-regulating the transcription of the BOR4 gene and therefore promoting the exclusion of excessive boron in root cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi-Kun He
- *Correspondence: Yi-Kun He, Fang Bao,
| | - Fang Bao
- *Correspondence: Yi-Kun He, Fang Bao,
| |
Collapse
|
31
|
Xie Y, Mao Y, Duan X, Zhou H, Lai D, Zhang Y, Shen W. Arabidopsis HY1-Modulated Stomatal Movement: An Integrative Hub Is Functionally Associated with ABI4 in Dehydration-Induced ABA Responsiveness. PLANT PHYSIOLOGY 2016; 170:1699-713. [PMID: 26704641 PMCID: PMC4775125 DOI: 10.1104/pp.15.01550] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/22/2015] [Indexed: 05/07/2023]
Abstract
Heme oxygenase (HO; EC 1.14.99.3) has recently been proposed as a novel component in mediating wide ranges of the plant adaptive signaling processes. However, the physiological significance and molecular basis underlying Arabidopsis (Arabidopsis thaliana) HO1 (HY1) functioning in drought tolerance remained unclear. Here, we report that mutation of HY1 promoted, but overexpression of this gene impaired, Arabidopsis drought tolerance. This was attributed to the abscisic acid (ABA)-hypersensitive or -hyposensitive phenotypes, with the regulation of stomatal closure in particular. However, comparative transcriptomic profile analysis showed that the induction of numerous ABA/stress-dependent genes in dehydrated wild-type plants was differentially impaired in the hy1 mutant. In agreement, ABA-induced ABSCISIC ACID-INSENSITIVE4 (ABI4) transcript accumulation was strengthened in the hy1 mutant. Genetic analysis further identified that the hy1-associated ABA hypersensitivity and drought tolerance were arrested in the abi4 background. Moreover, the promotion of ABA-triggered up-regulation of RbohD abundance and reactive oxygen species (ROS) levels in the hy1 mutant was almost fully blocked by the mutation of ABI4, suggesting that the HY1-ABI4 signaling in the wild type involved in stomatal closure was dependent on the RbohD-derived ROS production. However, hy1-promoted stomatal closure was not affected by a nitric oxide scavenger. Correspondingly, ABA-insensitive behaviors in rbohD stomata were not affected by either the mutation of HY1 or its ectopic expression in the rbohD background, both of which responded significantly to exogenous ROS. These data indicate that HY1 functioned negatively and acted upstream of ABI4 in drought signaling, which was casually dependent on the RbohD-derived ROS in the regulation of stomatal closure.
Collapse
Affiliation(s)
- Yanjie Xie
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Mao
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingliang Duan
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Heng Zhou
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Diwen Lai
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
32
|
Stepanenko OV, Baloban M, Bublikov GS, Shcherbakova DM, Stepanenko OV, Turoverov KK, Kuznetsova IM, Verkhusha VV. Allosteric effects of chromophore interaction with dimeric near-infrared fluorescent proteins engineered from bacterial phytochromes. Sci Rep 2016; 6:18750. [PMID: 26725513 PMCID: PMC4698714 DOI: 10.1038/srep18750] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/25/2015] [Indexed: 01/02/2023] Open
Abstract
Fluorescent proteins (FPs) engineered from bacterial phytochromes attract attention as probes for in vivo imaging due to their near-infrared (NIR) spectra and use of available in mammalian cells biliverdin (BV) as chromophore. We studied spectral properties of the iRFP670, iRFP682 and iRFP713 proteins and their mutants having Cys residues able to bind BV either in both PAS (Cys15) and GAF (Cys256) domains, in one of these domains, or without these Cys residues. We show that the absorption and fluorescence spectra and the chromophore binding depend on the location of the Cys residues. Compared with NIR FPs in which BV covalently binds to Cys15 or those that incorporate BV noncovalently, the proteins with BV covalently bound to Cys256 have blue-shifted spectra and higher quantum yield. In dimeric NIR FPs without Cys15, the covalent binding of BV to Сys256 in one monomer allosterically inhibits the covalent binding of BV to the other monomer, whereas the presence of Cys15 allosterically promotes BV binding to Cys256 in both monomers. The NIR FPs with both Cys residues have the narrowest blue-shifted spectra and the highest quantum yield. Our analysis resulted in the iRFP713/Val256Cys protein with the highest brightness in mammalian cells among available NIR FPs.
Collapse
Affiliation(s)
- Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russian Federation
| | - Mikhail Baloban
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Grigory S Bublikov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russian Federation
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russian Federation
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russian Federation.,Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 194064, Russian Federation
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russian Federation
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| |
Collapse
|
33
|
Kobayashi K, Masuda T. Transcriptional Regulation of Tetrapyrrole Biosynthesis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:1811. [PMID: 27990150 PMCID: PMC5130987 DOI: 10.3389/fpls.2016.01811] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/16/2016] [Indexed: 05/17/2023]
Abstract
Biosynthesis of chlorophyll (Chl) involves many enzymatic reactions that share several first steps for biosynthesis of other tetrapyrroles such as heme, siroheme, and phycobilins. Chl allows photosynthetic organisms to capture light energy for photosynthesis but with simultaneous threat of photooxidative damage to cells. To prevent photodamage by Chl and its highly photoreactive intermediates, photosynthetic organisms have developed multiple levels of regulatory mechanisms to coordinate tetrapyrrole biosynthesis (TPB) with the formation of photosynthetic and photoprotective systems and to fine-tune the metabolic flow with the varying needs of Chl and other tetrapyrroles under various developmental and environmental conditions. Among a wide range of regulatory mechanisms of TPB, this review summarizes transcriptional regulation of TPB genes during plant development, with focusing on several transcription factors characterized in Arabidopsis thaliana. Key TPB genes are tightly coexpressed with other photosynthesis-associated nuclear genes and are induced by light, oscillate in a diurnal and circadian manner, are coordinated with developmental and nutritional status, and are strongly downregulated in response to arrested chloroplast biogenesis. LONG HYPOCOTYL 5 and PHYTOCHROME-INTERACTING FACTORs, which are positive and negative transcription factors with a wide range of light signaling, respectively, target many TPB genes for light and circadian regulation. GOLDEN2-LIKE transcription factors directly regulate key TPB genes to fine-tune the formation of the photosynthetic apparatus with chloroplast functionality. Some transcription factors such as FAR-RED ELONGATED HYPOCOTYL3, REVEILLE1, and scarecrow-like transcription factors may directly regulate some specific TPB genes, whereas other factors such as GATA transcription factors are likely to regulate TPB genes in an indirect manner. Comprehensive transcriptional analyses of TPB genes and detailed characterization of key transcriptional regulators help us obtain a whole picture of transcriptional control of TPB in response to environmental and endogenous cues.
Collapse
|
34
|
Yang L, Ji J, Wang H, Harris-Shultz KR, Abd_Allah EF, Luo Y, Guan Y, Hu X. Carbon Monoxide Interacts with Auxin and Nitric Oxide to Cope with Iron Deficiency in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:112. [PMID: 27014280 PMCID: PMC4780267 DOI: 10.3389/fpls.2016.00112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/21/2016] [Indexed: 05/03/2023]
Abstract
To clarify the roles of carbon monoxide (CO), nitric oxide (NO), and auxin in the plant response to iron deficiency (-Fe), and to establish how the signaling molecules interact to enhance Fe acquisition, we conducted physiological, genetic, and molecular analyses that compared the responses of various Arabidopsis mutants, including hy1 (CO deficient), noa1 (NO deficient), nia1/nia2 (NO deficient), yuc1 (auxin over-accumulation), and cue1 (NO over-accumulation) to -Fe stress. We also generated a HY1 over-expression line (named HY1-OX) in which CO is over-produced compared to wild-type. We found that the suppression of CO and NO generation using various inhibitors enhanced the sensitivity of wild-type plants to Fe depletion. Similarly, the hy1, noa1, and nia1/nia2 mutants were more sensitive to Fe deficiency. By contrast, the yuc1, cue1, and HY1-OX lines were less sensitive to Fe depletion. The hy1 mutant with low CO content exhibited no induced expression of the Fe uptake-related genes FIT1 and FRO2 as compared to wild-type plants. On the other hand, the treatments of exogenous CO and NO enhanced Fe uptake. Likewise, cue1 and HY1-OX lines with increased endogenous content of NO and CO, respectively, also exhibited enhanced Fe uptake and increased expression of bHLH transcriptional factor FIT1as compared to wild-type plants. Furthermore, we found that CO affected auxin accumulation and transport in the root tip by altering the PIN1 and PIN2 proteins distribution that control lateral root structure under -Fe stress. Our results demonstrated the integration of CO, NO, and auxin signaling to cope with Fe deficiency in Arabidopsis.
Collapse
Affiliation(s)
- Liming Yang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal UniversityHuaian, China
- Crop Protection and Management Research Unit, Agricultural Research Service – United States Department of AgricultureTifton, GA, USA
- Department of Plant Pathology, The University of GeorgiaTifton, GA, USA
| | - Jianhui Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal UniversityHuaian, China
| | - Hongliang Wang
- Crop Genetics and Breeding Research Unit, Agricultural Research Service – United States Department of AgricultureTifton, GA, USA
| | - Karen R. Harris-Shultz
- Crop Genetics and Breeding Research Unit, Agricultural Research Service – United States Department of AgricultureTifton, GA, USA
| | - Elsayed F. Abd_Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Yuming Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal UniversityHuaian, China
| | - Yanlong Guan
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Institute of Tibet Plateau Research at Kunming, Chinese Academy of SciencesKunming, China
- *Correspondence: Xiangyang Hu, ; Yanlong Guan,
| | - Xiangyang Hu
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Institute of Tibet Plateau Research at Kunming, Chinese Academy of SciencesKunming, China
- *Correspondence: Xiangyang Hu, ; Yanlong Guan,
| |
Collapse
|
35
|
Regulation and function of tetrapyrrole biosynthesis in plants and algae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:968-85. [PMID: 25979235 DOI: 10.1016/j.bbabio.2015.05.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/21/2015] [Accepted: 05/07/2015] [Indexed: 12/20/2022]
Abstract
Tetrapyrroles are macrocyclic molecules with various structural variants and multiple functions in Prokaryotes and Eukaryotes. Present knowledge about the metabolism of tetrapyrroles reflects the complex evolution of the pathway in different kingdoms of organisms, the complexity of structural and enzymatic variations of enzymatic steps, as well as a wide range of regulatory mechanisms, which ensure adequate synthesis of tetrapyrrole end-products at any time of development and environmental condition. This review intends to highlight new findings of research on tetrapyrrole biosynthesis in plants and algae. In the course of the heme and chlorophyll synthesis in these photosynthetic organisms, glutamate, one of the central and abundant metabolites, is converted into highly photoreactive tetrapyrrole intermediates. Thereby, several mechanisms of posttranslational control are thought to be essential for a tight regulation of each enzymatic step. Finally, we wish to discuss the potential role of tetrapyrroles in retrograde signaling and point out perspectives of the formation of macromolecular protein complexes in tetrapyrrole biosynthesis as an efficient mechanism to ensure a fine-tuned metabolic flow in the pathway. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
36
|
Burgie ES, Vierstra RD. Phytochromes: an atomic perspective on photoactivation and signaling. THE PLANT CELL 2014; 26:4568-83. [PMID: 25480369 PMCID: PMC4311201 DOI: 10.1105/tpc.114.131623] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/10/2014] [Accepted: 11/14/2014] [Indexed: 05/19/2023]
Abstract
The superfamily of phytochrome (Phy) photoreceptors regulates a wide array of light responses in plants and microorganisms through their unique ability to reversibly switch between stable dark-adapted and photoactivated end states. Whereas the downstream signaling cascades and biological consequences have been described, the initial events that underpin photochemistry of the coupled bilin chromophore and the ensuing conformational changes needed to propagate the light signal are only now being understood. Especially informative has been the rapidly expanding collection of 3D models developed by x-ray crystallographic, NMR, and single-particle electron microscopic methods from a remarkably diverse array of bacterial Phys. These structures have revealed how the modular architecture of these dimeric photoreceptors engages the buried chromophore through distinctive knot, hairpin, and helical spine features. When collectively viewed, these 3D structures reveal complex structural alterations whereby photoisomerization of the bilin drives nanometer-scale movements within the Phy dimer through bilin sliding, hairpin reconfiguration, and spine deformation that ultimately impinge upon the paired signal output domains. When integrated with the recently described structure of the photosensory module from Arabidopsis thaliana PhyB, new opportunities emerge for the rational redesign of plant Phys with novel photochemistries and signaling properties potentially beneficial to agriculture and their exploitation as optogenetic reagents.
Collapse
Affiliation(s)
- E Sethe Burgie
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Richard D Vierstra
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
37
|
Lecube ML, Noriega GO, Santa Cruz DM, Tomaro ML, Batlle A, Balestrasse KB. Indole acetic acid is responsible for protection against oxidative stress caused by drought in soybean plants: the role of heme oxygenase induction. Redox Rep 2014; 19:242-50. [PMID: 25156196 PMCID: PMC6837533 DOI: 10.1179/1351000214y.0000000095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objectives This study was focused on the role of indole acetic acid (IAA) in the defense against oxidative stress damage caused by drought in soybean plants and to elucidate whether heme oxygenase-1 (HO-1) and nitric oxide (NO) are involved in this mechanism. IAA is an auxin that participates in many plant processes including oxidative stress defense, but to the best of our knowledge no information is yet available about its possible action in drought stress. Methods To this end, soybean plants were treated with 8% polyethylene glycol (PEG) or 100 µM IAA. To evaluate the behavior of IAA, plants were pretreated with this compound previous to PEG addition. Lipid peroxidation levels (thiobarbituric acid reactive substances (TBARS)), glutathione (GSH) and ascorbate (AS) contents, catalase (CAT), superoxide dismutase (SOD), and guaiacol peroxidase (POD) activities were determined to evaluate oxidative damage. Results Drought treatment (8% PEG) caused a significant increase in TBARS levels as well as a marked decrease in the non-enzymatic (GSH and AS) and enzymatic (CAT, SOD, and POD) antioxidant defense systems. Pre-treatment with IAA prevented the alterations of stress parameters caused by drought, while treatment with IAA alone did not produce changes in TBARS levels, or GSH and AS contents. Moreover, the activities of the classical enzymes involved in the enzymatic defense system (SOD, CAT, and POD) remained similar to control values. Furthermore, this hormone could enhance HO-1 activity (75% with respect to controls), and this increase was positively correlated with protein content as well as gene expression. The direct participation of HO-1 as an antioxidant enzyme was established by performing experiments in the presence of Zn-protoporphyrin IX, a well-known irreversible inhibitor of this enzyme. It was also demonstrated that HO-1 is modulated by NO, as shown by experiments performed in the presence of an NO donor (sodium nitroprusside), an NO scavenger (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), or an NO synthesis inhibitor (N-nitro-l-arginine methyl ester, NAME). Discussion It is concluded that IAA is responsible, at least in part, for the protection against oxidative stress caused by drought in soybean plants through the modulation of NO levels which, in turn, enhances HO-1 synthesis and activity.
Collapse
Affiliation(s)
- Manuel López Lecube
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Universidad de Buenos Aires, Argentina
| | - Guillermo O. Noriega
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Universidad de Buenos Aires, Argentina
| | | | - María L. Tomaro
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Universidad de Buenos Aires, Argentina
| | - Alcira Batlle
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Universidad de Buenos Aires, Argentina
| | - Karina B. Balestrasse
- Correspondence to: Karina Beatriz Balestrasse, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina.
| |
Collapse
|
38
|
Li Q, Zhu FY, Gao X, Sun Y, Li S, Tao Y, Lo C, Liu H. Young Leaf Chlorosis 2 encodes the stroma-localized heme oxygenase 2 which is required for normal tetrapyrrole biosynthesis in rice. PLANTA 2014; 240:701-12. [PMID: 25037719 DOI: 10.1007/s00425-014-2116-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/21/2014] [Indexed: 05/19/2023]
Abstract
Rice heme oxygenase 2 (OsHO2) mutants are chlorophyll deficient with distinct tetrapyrrole metabolite and transcript profiles, suggesting a potential regulatory role of the stromal-localized OsHO2 in tetrapyrrole biosynthesis. In plants, heme oxygenases (HOs) are classified into the subfamilies HO1 and HO2. HO1 are highly conserved plastid enzymes required for synthesizing the chromophore in phytochromes which mediate a number of light-regulated responses. However, the physiological and biochemical functions of HO2, which are distantly related to HO1, are not well understood, especially in crop plants. From a population of (60)Coγ-irradiated rice mutants, we identified the ylc2 (young leaf chlorosis 2) mutant which displays a chlorosis phenotype in seedlings with substantially reduced chlorophyll content. Normal leaf pigmentation is gradually restored in older plants while newly emerged leaves remain yellow. Transmission electron microscopy further revealed defective chloroplast structures in the ylc2 seedlings. Map-based cloning located the OsYLC2 gene on chromosome 3 and it encodes the OsHO2 protein. The gene identification was confirmed by complementation and T-DNA mutant analyses. Subcellular localization and chloroplast fractionation experiments indicated that OsHO2 resides in the stroma. However, recombinant enzyme assay demonstrated that OsHO2 is not a functional HO enzyme. Analysis of tetrapyrrole metabolites revealed the reduced levels of most chlorophyll and phytochromobilin precursors in the ylc2 mutant. On the other hand, elevated accumulation of 5-aminolevulinic acid and Mg-protoporphyrin IX was observed. These unique metabolite changes are accompanied by consistent changes in the expression levels of the corresponding tetrapyrrole biosynthesis genes. Taken together, our work suggests that OsHO2 has a potential regulatory role for tetrapyrrole biosynthesis in rice.
Collapse
Affiliation(s)
- Qingzhu Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Shin AY, Han YJ, Song PS, Kim JI. Expression of recombinant full-length plant phytochromes assembled with phytochromobilin in Pichia pastoris. FEBS Lett 2014; 588:2964-70. [PMID: 24911206 DOI: 10.1016/j.febslet.2014.05.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/26/2014] [Accepted: 05/26/2014] [Indexed: 11/17/2022]
Abstract
We have successfully developed a system to produce full-length plant phytochrome assembled with phytochromobilin in Pichia pastoris by co-expressing apophytochromes and chromophore biosynthetic genes, heme oxygenase (HY1) and phytochromobilin synthase (HY2) from Arabidopsis. Affinity-purified phytochrome proteins from Pichia cells displayed zinc fluorescence indicating chromophore attachment. Spectroscopic analyses showed absorbance maximum peaks identical to in vitro reconstituted phytochromobilin-assembled phytochromes, suggesting that the co-expression system is effective to generate holo-phytochromes. Moreover, mitochondria localization of the phytochromobilin biosynthetic genes increased the efficiency of holophytochrome biosynthesis. Therefore, this system provides an excellent source of holophytochromes, including oat phytochrome A and Arabidopsis phytochrome B.
Collapse
Affiliation(s)
- Ah-Young Shin
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Pill-Soon Song
- Faculty of Biotechnology and Subtropical Horticulture Research Institute, Jeju National University, Jeju 690-756, Republic of Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
40
|
Chen H, Cheng Z, Ma X, Wu H, Liu Y, Zhou K, Chen Y, Ma W, Bi J, Zhang X, Guo X, Wang J, Lei C, Wu F, Lin Q, Liu Y, Liu L, Jiang L. A knockdown mutation of YELLOW-GREEN LEAF2 blocks chlorophyll biosynthesis in rice. PLANT CELL REPORTS 2013; 32:1855-67. [PMID: 24043333 DOI: 10.1007/s00299-013-1498-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/09/2013] [Accepted: 08/26/2013] [Indexed: 05/19/2023]
Abstract
An insert mutation of YELLOW-GREEN LEAF2 , encoding Heme Oxygenase 1 , results in significant reduction of its transcript levels, and therefore impairs chlorophyll biosynthesis in rice. Heme oxygenase (HO) in higher plants catalyzes the degradation of heme to synthesize phytochrome precursor and its roles conferring the photoperiodic control of flowering in rice have been revealed. However, its involvement in regulating rice chlorophyll (Chl) synthesis is not fully explored. In this study, we isolated a rice mutant named yellow-green leaf 2 (ygl2) from a (60)Co-irradiated population. Normal grown ygl2 seedlings showed yellow-green leaves with reduced contents of Chl and tetrapyrrole intermediates whereas an increase of Chl a/b ratio. Ultrastructural analyses demonstrated grana were poorly stacked in ygl2 mutant, resulting in underdevelopment of chloroplasts. The ygl2 locus was mapped to chromosome 6 and isolated via map-based cloning. Sequence analysis indicated that it encodes the rice HO1 and its identity was verified by transgenic complementation test and RNA interference. A 7-Kb insertion was found in the first exon of YGL2/HO1, resulting in significant reduction of YGL2 expressions in the ygl2 mutant. YGL2 was constitutively expressed in a variety of rice tissues with the highest levels in leaves and regulated by temperature. In addition, we found expression levels of some genes associated with Chl biosynthesis and photosynthesis were concurrently altered in ygl2 mutant. These results provide direct evidence that YGL2 has a vital function in rice Chl biosynthesis.
Collapse
Affiliation(s)
- Hong Chen
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Oh S, Montgomery BL. Phytochrome-induced SIG2 expression contributes to photoregulation of phytochrome signalling and photomorphogenesis in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5457-72. [PMID: 24078666 PMCID: PMC3871806 DOI: 10.1093/jxb/ert308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chloroplast-localized sigma factor (SIG) proteins promote specificity of the plastid-encoded RNA polymerase. SIG2 function appears to be necessary for light-grown Arabidopsis thaliana plants. Specific photoreceptors or light-dependent factors that impact the light-induced accumulation of SIG2 have not been reported. A molecular link between phytochromes and nuclear-encoded SIG2, which impacts photomorphogenesis specifically under red (R) and far-red (FR) light, is described here. Both phyA and phyB promote SIG2 transcript accumulation. Disruption of SIG2 results in R- and FR-specific defects in the inhibition of hypocotyl elongation and cotyledon expansion, although no impairments in these responses are detected for sig2 mutants under blue (B) or white (W) light. SIG2 also impacts root elongation under W and R, and the R-dependent expression of PIF4, encoding a phytochrome-interacting factor, and HY2, which encodes a phytochrome chromophore biosynthetic enzyme. Whereas SIG2 apparently impacts the accumulation of the phytochromobilin (PΦB) phytochrome chromophore, sig2 mutants differ significantly from PΦB mutants, primarily due to wavelength-specific defects in photomorphogenesis and disruption of a distinct subset of phytochrome-dependent responses. The molecular link between phytochromes and SIG2 is likely to be an important part of the co-ordination of gene expression to maintain stoichiometry between the nuclear-encoded phytochrome apoprotein and plastid-derived PΦB, which combine to form photoactive phytochromes, and/or light-dependent SIG2 accumulation is involved in an inductive light signalling pathway co-ordinating components between nucleus and plastids.
Collapse
Affiliation(s)
- Sookyung Oh
- Department of Energy—Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Beronda L. Montgomery
- Department of Energy—Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Chlorophyll deficiency in the maize elongated mesocotyl2 mutant is caused by a defective heme oxygenase and delaying grana stacking. PLoS One 2013; 8:e80107. [PMID: 24244620 PMCID: PMC3823864 DOI: 10.1371/journal.pone.0080107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/08/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Etiolated seedlings initiate grana stacking and chlorophyll biosynthesis in parallel with the first exposure to light, during which phytochromes play an important role. Functional phytochromes are biosynthesized separately for two components. One phytochrome is biosynthesized for apoprotein and the other is biosynthesized for the chromophore that includes heme oxygenase (HO). METHODOLOGY/PRINCIPAL FINDING We isolated a ho1 homolog by map-based cloning of a maize elongated mesocotyl2 (elm2) mutant. cDNA sequencing of the ho1 homolog in elm2 revealed a 31 bp deletion. De-etiolation responses to red and far-red light were disrupted in elm2 seedlings, with a pronounced elongation of the mesocotyl. The endogenous HO activity in the elm2 mutant decreased remarkably. Transgenic complementation further confirmed the dysfunction in the maize ho1 gene. Moreover, non-appressed thylakoids were specifically stacked at the seedling stage in the elm2 mutant. CONCLUSION The 31 bp deletion in the ho1 gene resulted in a decrease in endogenous HO activity and disrupted the de-etiolation responses to red and far-red light. The specific stacking of non-appressed thylakoids suggested that the chlorophyll biosynthesis regulated by HO1 is achieved by coordinating the heme level with the regulation of grana stacking.
Collapse
|
43
|
Hsu YY, Chao YY, Kao CH. Cobalt chloride-induced lateral root formation in rice: the role of heme oxygenase. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1075-81. [PMID: 23566873 DOI: 10.1016/j.jplph.2013.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/13/2013] [Accepted: 03/13/2013] [Indexed: 05/04/2023]
Abstract
Lateral roots (LRs) perform the essential tasks of providing water, nutrients, and physical support to plants. Therefore, understanding the regulation of LR development is of agronomic importance. Recent findings suggest that heme oxygenase (HO) plays an important role in LR development. In this study, we examined the effect of cobalt chloride (CoCl2) on LR formation and HO expression in rice. Treatment with CoCl2 induced LR formation and HO activity. We further observed that CoCl2 could induce the expression of OsHO1 but not OsHO2. CoCl2-increased HO activity occurred before LR formation. Zinc protoporphyrin IX (ZnPPIX, the specific inhibitor of HO) and hemoglobin (the carbon monoxide/nitric oxide scavenger) reduced LR formation, HO activity, and OsHO1 expression. Application of biliverdin, a product of HO-catalyzed reaction, to CoCl2-treated rice seedlings reversed the ZnPPIX-inhibited LR formation and ZnPPIX-decreased HO activity. CoCl2 had no effect on H2O2 content and nitric oxide production. Moreover, application of ascorbate, a H2O2 scavenger, failed to affect CoCl2-promoted LR formation and HO activity. It is concluded that HO is required for CoCl2-promoted LR formation in rice.
Collapse
Affiliation(s)
- Yun Yen Hsu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
44
|
Hanke G, Mulo P. Plant type ferredoxins and ferredoxin-dependent metabolism. PLANT, CELL & ENVIRONMENT 2013; 36:1071-1084. [PMID: 23190083 DOI: 10.1111/pce.12046] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 05/24/2023]
Abstract
Ferredoxin (Fd) is a small [2Fe-2S] cluster-containing protein found in all organisms performing oxygenic photosynthesis. Fd is the first soluble acceptor of electrons on the stromal side of the chloroplast electron transport chain, and as such is pivotal to determining the distribution of these electrons to different metabolic reactions. In chloroplasts, the principle sink for electrons is in the production of NADPH, which is mostly consumed during the assimilation of CO2 . In addition to this primary function in photosynthesis, Fds are also involved in a number of other essential metabolic reactions, including biosynthesis of chlorophyll, phytochrome and fatty acids, several steps in the assimilation of sulphur and nitrogen, as well as redox signalling and maintenance of redox balance via the thioredoxin system and Halliwell-Asada cycle. This makes Fds crucial determinants of the electron transfer between the thylakoid membrane and a variety of soluble enzymes dependent on these electrons. In this article, we will first describe the current knowledge on the structure and function of the various Fd isoforms present in chloroplasts of higher plants and then discuss the processes involved in oxidation of Fd, introducing the corresponding enzymes and discussing what is known about their relative interaction with Fd.
Collapse
Affiliation(s)
- Guy Hanke
- Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076, Osnabrück, Germany
| | | |
Collapse
|
45
|
Li H, Song JB, Zhao WT, Yang ZM. AtHO1 is Involved in Iron Homeostasis in an NO-Dependent Manner. ACTA ACUST UNITED AC 2013; 54:1105-17. [DOI: 10.1093/pcp/pct063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
46
|
Chen YH, Chao YY, Hsu YY, Kao CH. Heme oxygenase is involved in H(2)O (2)-induced lateral root formation in apocynin-treated rice. PLANT CELL REPORTS 2013; 32:219-26. [PMID: 23076168 DOI: 10.1007/s00299-012-1356-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 09/24/2012] [Accepted: 10/07/2012] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE : Apocynin is a natural organic compound structurally related to vanillin. We demonstrated that hydrogen peroxide and heme oxygenase participated in apocynin-induced lateral root formation in rice. Apocynin, also known as acetovanillone, is a natural organic compound structurally related to vanillin. Information concerning the effect of apocynin on plants is limited. In this study, we examined the effect of apocynin on lateral root (LR) formation in rice. Treatment with apocynin induced LR formation and increased H(2)O(2) production, but had no effect on nitric oxide production. Diphenyleneiodonium chloride, an inhibitor of H(2)O(2) generating NADPH oxidase, was effective in reducing apocynin-induced H(2)O(2) production and LR formation. Apocynin treatment also increased superoxide dismutase activity and decreased catalase activity. H(2)O(2) application was able to increase the number of LRs. Moreover, H(2)O(2) production caused by H(2)O(2) and apocynin was localized in the root area corresponding to the LR emergence. Treatment with H(2)O(2) and apocynin also increased heme oxygenase (HO) activity and induced OsHO1 mRNA expression. Lateral root formation and HO activity induced by H(2)O(2) and apocynin were reduced by Zn protoporphyrin IX (the specific inhibitor of HO). Our data suggest that both H(2)O(2) and HO are required for apocynin-induced LR formation in rice.
Collapse
Affiliation(s)
- Yi-Hsuan Chen
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
47
|
Liping Z, Hongbo S, Xiaohua L, Zhaopu L. Gene regulation of iron-deficiency responses is associated with carbon monoxide and heme oxydase 1 in Chlamydomonas reinhardtii. PLoS One 2013; 8:e53835. [PMID: 23349749 PMCID: PMC3551942 DOI: 10.1371/journal.pone.0053835] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022] Open
Abstract
Carbon monoxide (CO) as an endogenous gaseous molecule regulates a variety of biological processes in animals. However, CO regulating nutrient stress responses in green alga is largely unknown. On the other hand, heme oxydase (HO1 as a rate-limiting enzyme of the first step for heme degration and to catalyze heme into biliverdin (BV), which is concomitant with releasing of CO and ferrous ions, probably participates in the process of CO-regulating response to nutrient stress in green alga. In this paper, we described an observation that CO could regulate iron-homeostasis in iron-starving Chlamydomonas reinhardtii. Exogenous CO at 8 µM was able to prevent the iron deficient-inducing chlorosis and improve chlorophyll accumulation. Expression pattern of FOX1, FTR1 and ferredoxin was up-regulated by CO exposure in iron-deficient mediam. treatment with external CO increasing iron accumulation in iron-deficient C. reinhardtii. Moreover, to get insights into the regulatory role of HO1, we constructed a transgenic alga overexpressing HO1 and HO1 knock-out mutants. The results show that there was no significant influence on chlorosis with HO1 overexpression of C. reinhardtii under iron-deficiency and the chlorophyll accumulation, and gene expression associated with iron deficiency of mutant were greatly improved. Otherwise, those results from HO1 knock-out mutants were opposite to HO1 overexpression mutants. Finally, CO exposure induced NO accumulation in cells. However, such an action could be blocked by NO scavenger cPTIO. These results indicate that CO/HO1 may play an important role in improving green algae adaptation to iron deficiency or cross-talking with NO under the iron deficiency.
Collapse
Affiliation(s)
- Zhang Liping
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Coastal Biology & Bioresources Utilization, Yantai Institute of Costal Zone Research(YIC), Chinese Academy of Sciences (CAS), Yantai, China
| | - Shao Hongbo
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Coastal Biology & Bioresources Utilization, Yantai Institute of Costal Zone Research(YIC), Chinese Academy of Sciences (CAS), Yantai, China
- Institute of Life Sciences, Qingdao University of Science and Technology, Qingdao, China
- * E-mail: (SHB); (LXH); (LZP)
| | - Long Xiaohua
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- * E-mail: (SHB); (LXH); (LZP)
| | - Liu Zhaopu
- Jiangsu Key Lab of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- * E-mail: (SHB); (LXH); (LZP)
| |
Collapse
|
48
|
Hsu YY, Chao YY, Kao CH. Methyl jasmonate-induced lateral root formation in rice: the role of heme oxygenase and calcium. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:63-9. [PMID: 22989945 DOI: 10.1016/j.jplph.2012.08.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/24/2012] [Accepted: 08/24/2012] [Indexed: 05/18/2023]
Abstract
Lateral roots (LRs) play important roles in increasing the absorptive capacity of roots as well as to anchor the plant in the soil. Therefore, understanding the regulation of LR development is of agronomic importance. In this study, we examined the effect of methyl jasmonate (MJ) on LR formation in rice. Treatment with MJ induced LR formation and heme oxygenase (HO) activity. As well, MJ could induce OsHO1 mRNA expression. Zinc protoporphyrin IX (the specific inhibitor of HO) and hemoglobin [the carbon monoxide/nitric oxide (NO) scavenger] reduced LR formation, HO activity and OsHO1 expression. LR formation and HO activity induced by MJ was reduced by the specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-oxide. The effects of Ca(2+) chelators, Ca(2+)-channel inhibitors, and calmodulin (CaM) antagonists on LR formation induced by MJ were also examined. All these inhibitors were effective in reducing the action of MJ. However, Ca(2+) chelators and Ca(2+) channel inhibitors induced HO activity when combining with MJ further. It is concluded that Ca(2+) may regulate MJ action mainly through CaM-dependent mechanism.
Collapse
Affiliation(s)
- Yun Yen Hsu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
49
|
Salomé PA, Oliva M, Weigel D, Krämer U. Circadian clock adjustment to plant iron status depends on chloroplast and phytochrome function. EMBO J 2012; 32:511-23. [PMID: 23241948 PMCID: PMC3579136 DOI: 10.1038/emboj.2012.330] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/22/2012] [Indexed: 01/21/2023] Open
Abstract
Plant chloroplasts are not only the main cellular location for storage of elemental iron (Fe), but also the main site for Fe, which is incorporated into chlorophyll, haem and the photosynthetic machinery. How plants measure internal Fe levels is unknown. We describe here a new Fe-dependent response, a change in the period of the circadian clock. In Arabidopsis, the period lengthens when Fe becomes limiting, and gradually shortens as external Fe levels increase. Etiolated seedlings or light-grown plants treated with plastid translation inhibitors do not respond to changes in Fe supply, pointing to developed chloroplasts as central hubs for circadian Fe sensing. Phytochrome-deficient mutants maintain a short period even under Fe deficiency, stressing the role of early light signalling in coupling the clock to Fe responses. Further mutant and pharmacological analyses suggest that known players in plastid-to-nucleus signalling do not directly participate in Fe sensing. We propose that the sensor governing circadian Fe responses defines a new retrograde pathway that involves a plastid-encoded protein that depends on phytochromes and the functional state of chloroplasts. The circadian clock of Arabidopsis is found to be hardwired to cellular iron levels, with chloroplasts playing a central role in iron sensing.
Collapse
Affiliation(s)
- Patrice A Salomé
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| | | | | | | |
Collapse
|
50
|
Lee HJ, Mochizuki N, Masuda T, Buckhout TJ. Disrupting the bimolecular binding of the haem-binding protein 5 (AtHBP5) to haem oxygenase 1 (HY1) leads to oxidative stress in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2012. [PMID: 22991161 DOI: 10.1093/jxb/errs321432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Arabidopsis thaliana L. SOUL/haem-binding proteins, AtHBPs belong to a family of five members. The Arabidopsis cytosolic AtHBP1 (At1g17100) and AtHBP2 (At2g37970) have been shown to bind porphyrins and metalloporphyrins including haem. In contrast to the cytosolic localization of these haem-binding proteins, AtHBP5 (At5g20140) encodes a protein with an N-terminal transit peptide that probably directs targeting to the chloroplast. In this report, it is shown that AtHBP5 binds haem and interacts with the haem oxygenase, HY1, in both yeast two-hybrid and BiFC assays. The expression of HY1 is repressed in the athbp5 T-DNA knockdown mutant and the accumulation of H(2)O(2) is observed in athbp5 seedlings that are treated with methyl jasmonate (MeJA), a ROS-producing stress hormone. In contrast, AtHBP5 over-expressing plants show a decreased accumulation of H(2)O(2) after MeJA treatment compared with the controls. It is proposed that the interaction between the HY1 and AtHBP5 proteins participate in an antioxidant pathway that might be mediated by reaction products of haem catabolism.
Collapse
Affiliation(s)
- Hye-Jung Lee
- Applied Botany, Institute of Biology, Humboldt University Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | | | | | | |
Collapse
|