1
|
Kolkhir P, Fok JS, Kocatürk E, Li PH, Okas TL, Marcelino J, Metz M. Update on the Treatment of Chronic Spontaneous Urticaria. Drugs 2025; 85:475-486. [PMID: 40074986 PMCID: PMC11946961 DOI: 10.1007/s40265-025-02170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2025] [Indexed: 03/14/2025]
Abstract
Chronic spontaneous urticaria (CSU) is a mast cell-mediated skin disease that presents with wheals, angioedema, or both for more than 6 weeks. Less than 10% of patients have complete control of their CSU (the main goal of CSU treatment) with second generation H1-antihistamines, the first-line treatment. About 70% of patients with antihistamine-refractory CSU do not reach complete control with omalizumab, the second-line treatment. Novel therapies are especially needed for patients with mast cell-activating immunoglobulin (Ig)G autoantibodies (autoimmune CSU) associated with nonresponse or late response to omalizumab. Furthermore, there is a lack of disease-modifying treatments that induce long-term CSU remission after drug withdrawal. Several emerging treatments can address these unmet needs including Bruton tyrosine kinase inhibitors, e.g., remibrutinib and rilzabrutinib; anti-KIT monoclonal antibodies, e.g., barzolvolimab; and anti-cytokine therapies, e.g., dupilumab. In clinical trials, 30-31%, 28-32%, and 38-51% of patients with CSU showed complete response to treatment with dupilumab (phase 3, week 24), remibrutinib (phase 3, week 24), and barzolvolimab (phase 2, week 12), respectively. The most common adverse events were injection site reactions for dupilumab (12%), respiratory tract infections (11%), headache (6%), and petechiae (4%) for remibrutinib and changes in hair color (14%), neutropenia / decreased neutrophil count (9%) and skin hypopigmentation (1%) for barzolvolimab. This review provides an update on the current state of development of treatments for CSU.
Collapse
Affiliation(s)
- Pavel Kolkhir
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 27, 12203, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| | - Jie Shen Fok
- Department of Respiratory Medicine and General Medicine, Box Hill Hospital, Eastern Health, Victoria, Australia
- Monash Lung, Sleep and Allergy/Immunology, Monash Medical Centre, Clayton, VIC, Australia
- Eastern Health Clinical School, Monash University, Victoria, Australia
| | - Emek Kocatürk
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
- Department of Dermatology, Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Philip H Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Tiia-Linda Okas
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Center of Allergology and Immunology, East-Tallinn Central Hospital, Tallinn, Estonia
| | - Joao Marcelino
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
- Immunology and Allergology Department, Hospital de São Bernardo, Unidade Local de Saúde da Arrábida, Setúbal, Portugal
| | - Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| |
Collapse
|
2
|
Jana B, Andronowska A, Całka J, Mówińska A. Biosynthetic pathway for leukotrienes is stimulated by lipopolysaccharide and cytokines in pig endometrial stromal cells. Sci Rep 2025; 15:2806. [PMID: 39843578 PMCID: PMC11754892 DOI: 10.1038/s41598-025-86787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
An inflammatory response is related to different inflammatory mediators generated by immune and endometrial cells. The links between lipopolysaccharide (LPS), cytokines, and leukotrienes (LTs) in endometrial stromal cells remain unclear. This study aimed to examine the influence of LPS, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-4 and IL-10 on 5-lipooxygenase (5-LO), LTA4 hydrolase (LTAH) and LTC4 synthase (LTCS) mRNA and protein abundances, and LTB4 and cysteinyl (cys)-LTs release including LTC4, by the cultured pig endometrial stromal cells, as well as on cell viability. 24-hour exposure to LPS, TNF-α, IL-4 and IL-10 up-regulated 5-LO mRNA and protein abundances. LPS increased LTAH mRNA abundance, while TNF-α, IL-1β and IL-10 augmented LTAH mRNA and protein abundances. TNF-α and IL-4 increased LTCS mRNA and protein abundances. In addition, LTCS mRNA abundance was enhanced by LPS and IL-4, while LTCS protein abundance was increased by IL-1β. Cells responded to LPS, TNF-α, IL-1β and IL-10 with increased LTB4 release. TNF-α, IL-1β and IL-4 stimulated LTC4 release. Cys-LTs release was up-regulated by LPS, TNF-α, IL-1β and IL-4. All studied cytokines augmented cell viability. In summary, LPS, TNF-α, IL-1β, IL-4 and IL-10 are potential LTs immunomodulatory agents in endometrial stromal cells. These functional interactions could be one of the mechanisms responsible for local orchestrating events in inflamed and healthy endometrium.
Collapse
Affiliation(s)
- Barbara Jana
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, 10-748, Poland.
| | - Aneta Andronowska
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, 10-748, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, Olsztyn, 10-719, Poland
| | - Aleksandra Mówińska
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, 10-748, Poland
| |
Collapse
|
3
|
Zhang W, Dai W, Xie Y, Chen X, Zhang P, Cui W. Retinoic Acid Regulates Allergic Inflammation via Limiting Mast Cell Activation. Food Sci Nutr 2025; 13:e4727. [PMID: 39803223 PMCID: PMC11717043 DOI: 10.1002/fsn3.4727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/19/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
BackgroundAllergic diseases have become one of the major public health problems to be addressed in the world today. As a tissue resident cell, mast cells are crucial in the pathogenesis of allergic diseases. Vitamin A is an important fat-soluble vitamin with immunomodulatory functions. Vitamin A deficiency has been shown to be associated with allergic disease states, including asthma; however, no studies have been reported on whether vitamin A deficiency has an effect on the activation of mast cells in allergic reactions. ObjectiveTo explore whether blocking retinoic acid receptors has an effect on mast cell degranulation. Methods Flow cytometry was used to analyze the expression of FCεRIα and CD117 on the cell surface, toluidine blue staining was used to visualize cellular features and morphological changes. ELISA was used to detect histamine release. High-throughput transcriptome sequencing and qRT-PCR were used to detect the expression of relevant signaling pathways and cytokine genes. Western blot was used to detect the expression of relevant signaling pathway proteins. ResultsIn the present study, we found that antagonism of the retinoic acid receptor (RAR) resulted in overactive mast cells and increased their degranulation. Furthermore, inflammatory signaling pathways such as MyD88-IKK-NF-κB and PI3K-Akt-m-TOR were involved in the effect of retinoic acid (RA) on the activation state of mast cells. ConclusionsIn this paper, we demonstrated that blocking RAR can exacerbate its activation state in IgE-mediated mast cells. This study provided new insights into the possibility that vitamin A deficiency exacerbated mast cell activation and thus affectd allergic diseases and their mechanisms.
Collapse
Affiliation(s)
- Wenxin Zhang
- Department of PathologyThe First Hospital of Jilin UniversityChangchunChina
| | - Wenwen Dai
- Department of Nutrition and Food Hygiene, School of Public HealthJilin UniversityChangchunChina
| | - Yingdong Xie
- Department of Nutrition and Food Hygiene, School of Public HealthJilin UniversityChangchunChina
| | - Xingyang Chen
- Department of Nutrition and Food Hygiene, School of Public HealthJilin UniversityChangchunChina
| | - Peng Zhang
- Department of Thoracic SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public HealthJilin UniversityChangchunChina
| |
Collapse
|
4
|
De Corso E, Hellings PW, Fokkens WJ, Klimek L, Peters AT, Scadding GK, Desrosiers M, Lee SE, Mullol J. Thymic Stromal Lymphopoietin (TSLP): Evidence in Respiratory Epithelial-driven Diseases Including Chronic Rhinosinusitis with Nasal Polyps. Curr Allergy Asthma Rep 2024; 25:7. [PMID: 39636450 DOI: 10.1007/s11882-024-01186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE OF THE REVIEW Thymic stromal lymphopoietin (TSLP) is increasingly recognized for its pivotal role in the pathogenesis of various epithelial-driven chronic inflammatory diseases. This review navigates the existing evidence on TSLP, with a particular focus on asthma, before delving into the current understanding of its role in chronic rhinosinusitis with nasal polyps (CRSwNP). We explore the role of TSLP in the pathogenesis of asthma and CRSwNP, two conditions often interconnected and collectively referred to as"Global Airway Disease". Additionally, this review assesses the therapeutic potential of TSLP inhibition as a treatment option for both CRSwNP and asthma. A systematic literature search was conducted; selected publications were used to describe the biology of TSLP, including its expression and diverse effects on inflammation. RECENT FINDINGS The role of TSLP in asthma is well established and supported by the efficacy of tezepelumab, the first anti-TSLP monoclonal antibody approved for both type 2 (T2)-high and T2-low severe asthma. TSLP may be a key contributor to CRSwNP pathogenesis as evidenced by genetic and mechanistic studies in which TSLP has been shown to regulate T2 inflammation and influence non-T2 responses. Preliminary data from the NAVIGATOR trial indicate that tezepelumab may reduce CRSwNP symptoms in patients with comorbid asthma. While further research is required to clarify the extent of TSLP contribution in CRSwNP, this review highlights the potential of anti-TSLP therapies as a novel approach for managing severe, uncontrolled CRSwNP. If these preliminary findings are confirmed, targeting TSLP could become a promising strategy to treat CRSwNP with or without comorbid asthma.
Collapse
Affiliation(s)
- Eugenio De Corso
- UOC Otorinolaringoiatria, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F.Vito 1, Roma, Italy.
| | - Peter W Hellings
- The European Forum for Research and Education in Allergy and Airway Diseases Scientific Expert Team Members, Brussels, Belgium
- Laboratory of Allergy and Clinical Immunology Research Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Louvain, Belgium
- Department of Otorhinolaryngology, Head and Neck Surgery, UZ Leuven, Louvain, Belgium
| | - Wytske J Fokkens
- Department of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, 2HNO-University Clinic Charité, Berlin, Germany
| | - Anju T Peters
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Glenis K Scadding
- Department of Allergy and Rhinology, Royal National ENT Hospital, London, UK
| | | | - Stella E Lee
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joaquim Mullol
- Rhinology Unit and Smell Clinic, Department of Otorhinolaryngology, Hospital Clinic, FRCB- IDIBAPS, Universitat de Barcelona, CIBERES. Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Ranjitkar S, Krajewski D, Garcia C, Tedeschi C, Polukort SH, Rovatti J, Mire M, Blesso CN, Jellison E, Schneider SS, Ryan JJ, Mathias CB. IL-10 Differentially Promotes Mast Cell Responsiveness to IL-33, Resulting in Enhancement of Type 2 Inflammation and Suppression of Neutrophilia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1407-1419. [PMID: 38497670 PMCID: PMC11018500 DOI: 10.4049/jimmunol.2300884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
Mast cells (MCs) play critical roles in the establishment of allergic diseases. We recently demonstrated an unexpected, proinflammatory role for IL-10 in regulating MC responses. IL-10 enhanced MC activation and promoted IgE-dependent responses during food allergy. However, whether these effects extend to IgE-independent stimuli is not clear. In this article, we demonstrate that IL-10 plays a critical role in driving IL-33-mediated MC responses. IL-10 stimulation enhanced MC expansion and degranulation, ST2 expression, IL-13 production, and phospho-relA upregulation in IL-33-treated cells while suppressing TNF-α. These effects were partly dependent on endogenous IL-10 and further amplified in MCs coactivated with both IL-33 and IgE/Ag. IL-10's divergent effects also extended in vivo. In a MC-dependent model of IL-33-induced neutrophilia, IL-10 treatment enhanced MC responsiveness, leading to suppression of neutrophils and decreased TNF-α. In contrast, during IL-33-induced type 2 inflammation, IL-10 priming exacerbated MC activity, resulting in MC recruitment to various tissues, enhanced ST2 expression, induction of hypothermia, recruitment of eosinophils, and increased MCPT-1 and IL-13 levels. Our data elucidate an important role for IL-10 as an augmenter of IL-33-mediated MC responses, with implications during both allergic diseases and other MC-dependent disorders. IL-10 induction is routinely used as a prognostic marker of disease improvement. Our data suggest instead that IL-10 can enhance ST2 responsiveness in IL-33-activated MCs, with the potential to both aggravate or suppress disease severity depending on the inflammatory context.
Collapse
Affiliation(s)
- Saurav Ranjitkar
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Dylan Krajewski
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | - Chelsea Garcia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Caitlin Tedeschi
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Stephanie H. Polukort
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | - Jeffrey Rovatti
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | - Mohamed Mire
- Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA 01119
| | | | - Evan Jellison
- Department of Immunology, University of Connecticut, Farmington, CT 06030
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199
| | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Clinton B. Mathias
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
6
|
Akula S, Tripathi SR, Franke K, Wernersson S, Babina M, Hellman L. Cultures of Human Skin Mast Cells, an Attractive In Vitro Model for Studies of Human Mast Cell Biology. Cells 2024; 13:98. [PMID: 38201301 PMCID: PMC10778182 DOI: 10.3390/cells13010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Studies of mast cell biology are dependent on relevant and validated in vitro models. Here, we present detailed information concerning the phenotype of both freshly isolated human skin mast cells (MCs) and of in vitro cultures of these cells that were obtained by analyzing their total transcriptome. Transcript levels of MC-related granule proteins and transcription factors were found to be remarkably stable over a 3-week culture period. Relatively modest changes were also seen for important cell surface receptors including the high-affinity receptor for IgE, FCER1A, the low-affinity receptor for IgG, FCGR2A, and the receptor for stem cell factor, KIT. FCGR2A was the only Fc receptor for IgG expressed by these cells. The IgE receptor increased by 2-5-fold and an approximately 10-fold reduction in the expression of FCGR2A was observed most likely due to the cytokines, SCF and IL-4, used for expanding the cells. Comparisons of the present transcriptome against previously reported transcriptomes of mouse peritoneal MCs and mouse bone marrow-derived MCs (BMMCs) revealed both similarities and major differences. Strikingly, cathepsin G was the most highly expressed granule protease in human skin MCs, in contrast to the almost total absence of this protease in both mouse MCs. Transcript levels for the majority of cell surface receptors were also very low compared to the granule proteases in both mouse and human MCs, with a difference of almost two orders of magnitude. An almost total absence of T-cell granzymes was observed in human skin MCs, indicating that granzymes have no or only a minor role in human MC biology. Ex vivo skin MCs expressed high levels of selective immediate early genes and transcripts of heat shock proteins. In validation experiments, we determined that this expression was an inherent property of the cells and not the result of the isolation process. Three to four weeks in culture results in an induction of cell growth-related genes accompanying their expansion by 6-10-fold, which increases the number of cells for in vitro experiments. Collectively, we show that cultured human skin MCs resemble their ex vivo equivalents in many respects and are a more relevant in vitro model compared to mouse BMMCs for studies of MC biology, in particular human MC biology.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-75124 Uppsala, Sweden;
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, SE-75007 Uppsala, Sweden;
| | - Shiva Raj Tripathi
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (S.R.T.); (K.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Kristin Franke
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (S.R.T.); (K.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Sara Wernersson
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, SE-75007 Uppsala, Sweden;
| | - Magda Babina
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (S.R.T.); (K.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-75124 Uppsala, Sweden;
| |
Collapse
|
7
|
Bal G, Schneikert J, Li Z, Franke K, Tripathi SR, Zuberbier T, Babina M. CREB Is Indispensable to KIT Function in Human Skin Mast Cells-A Positive Feedback Loop between CREB and KIT Orchestrates Skin Mast Cell Fate. Cells 2023; 13:42. [PMID: 38201246 PMCID: PMC10778115 DOI: 10.3390/cells13010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Skin mast cells (MCs) are critical effector cells in acute allergic reactions, and they contribute to chronic dermatoses like urticaria and atopic and contact dermatitis. KIT represents the cells' crucial receptor tyrosine kinase, which orchestrates proliferation, survival, and functional programs throughout the lifespan. cAMP response element binding protein (CREB), an evolutionarily well-conserved transcription factor (TF), regulates multiple cellular programs, but its function in MCs is poorly understood. We recently reported that CREB is an effector of the SCF (Stem Cell Factor)/KIT axis. Here, we ask whether CREB may also act upstream of KIT to orchestrate its functioning. Primary human MCs were isolated from skin and cultured in SCF+IL-4 (Interleukin-4). Pharmacological inhibition (666-15) and RNA interference served to manipulate CREB function. We studied KIT expression using flow cytometry and RT-qPCR, KIT-mediated signaling using immunoblotting, and cell survival using scatterplot and caspase-3 activity. The proliferation and cycle phases were quantified following BrdU incorporation. Transient CREB perturbation resulted in reduced KIT expression. Conversely, microphthalmia transcription factor (MITF) was unnecessary for KIT maintenance. KIT attenuation secondary to CREB was associated with heavily impaired KIT functional outputs, like anti-apoptosis and cell cycle progression. Likewise, KIT-elicited phosphorylation of ERK1/2 (Extracellular Signal-Regulated Kinase 1/2), AKT, and STAT5 (Signal Transducer and Activator of Transcription) was substantially diminished upon CREB inhibition. Surprisingly, the longer-term interference of CREB led to complete cell elimination, in a way surpassing KIT inhibition. Collectively, we reveal CREB as non-redundant in MCs, with its absence being incompatible with skin MCs' existence. Since SCF/KIT regulates CREB activity and, vice versa, CREB is required for KIT function, a positive feedforward loop between these elements dictates skin MCs' fate.
Collapse
Affiliation(s)
- Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (G.B.); (J.S.); (Z.L.); (K.F.); (S.R.T.); (T.Z.)
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Jean Schneikert
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (G.B.); (J.S.); (Z.L.); (K.F.); (S.R.T.); (T.Z.)
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Zhuoran Li
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (G.B.); (J.S.); (Z.L.); (K.F.); (S.R.T.); (T.Z.)
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (G.B.); (J.S.); (Z.L.); (K.F.); (S.R.T.); (T.Z.)
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Shiva Raj Tripathi
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (G.B.); (J.S.); (Z.L.); (K.F.); (S.R.T.); (T.Z.)
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Torsten Zuberbier
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (G.B.); (J.S.); (Z.L.); (K.F.); (S.R.T.); (T.Z.)
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (G.B.); (J.S.); (Z.L.); (K.F.); (S.R.T.); (T.Z.)
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
8
|
Rivera KR, Bliton RJ, Burclaff J, Czerwinski MJ, Liu J, Trueblood JM, Hinesley CM, Breau KA, Deal HE, Joshi S, Pozdin VA, Yao M, Ziegler AL, Blikslager AT, Daniele MA, Magness ST. Hypoxia Primes Human ISCs for Interleukin-Dependent Rescue of Stem Cell Activity. Cell Mol Gastroenterol Hepatol 2023; 16:823-846. [PMID: 37562653 PMCID: PMC10520368 DOI: 10.1016/j.jcmgh.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND AND AIMS Hypoxia in the intestinal epithelium can be caused by acute ischemic events or chronic inflammation in which immune cell infiltration produces inflammatory hypoxia starving the mucosa of oxygen. The epithelium has the capacity to regenerate after some ischemic and inflammatory conditions suggesting that intestinal stem cells (ISCs) are highly tolerant to acute and chronic hypoxia; however, the impact of hypoxia on human ISC (hISC) function has not been reported. Here we present a new microphysiological system (MPS) to investigate how hypoxia affects hISCs from healthy donors and test the hypothesis that prolonged hypoxia modulates how hISCs respond to inflammation-associated interleukins (ILs). METHODS hISCs were exposed to <1.0% oxygen in the MPS for 6, 24, 48, and 72 hours. Viability, hypoxia-inducible factor 1a (HIF1a) response, transcriptomics, cell cycle dynamics, and response to cytokines were evaluated in hISCs under hypoxia. HIF stabilizers and inhibitors were screened to evaluate HIF-dependent responses. RESULTS The MPS enables precise, real-time control and monitoring of oxygen levels at the cell surface. Under hypoxia, hISCs maintain viability until 72 hours and exhibit peak HIF1a at 24 hours. hISC activity was reduced at 24 hours but recovered at 48 hours. Hypoxia induced increases in the proportion of hISCs in G1 and expression changes in 16 IL receptors. Prolyl hydroxylase inhibition failed to reproduce hypoxia-dependent IL-receptor expression patterns. hISC activity increased when treated IL1β, IL2, IL4, IL6, IL10, IL13, and IL25 and rescued hISC activity caused by 24 hours of hypoxia. CONCLUSIONS Hypoxia pushes hISCs into a dormant but reversible proliferative state and primes hISCs to respond to a subset of ILs that preserves hISC activity. These findings have important implications for understanding intestinal epithelial regeneration mechanisms caused by inflammatory hypoxia.
Collapse
Affiliation(s)
- Kristina R Rivera
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina
| | - R Jarrett Bliton
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina
| | - Michael J Czerwinski
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jintong Liu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jessica M Trueblood
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Caroline M Hinesley
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Keith A Breau
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Halston E Deal
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina
| | - Shlok Joshi
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Vladimir A Pozdin
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina
| | - Ming Yao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina
| | - Amanda L Ziegler
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Anthony T Blikslager
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina
| | - Scott T Magness
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
9
|
Rivera KR, Bliton RJ, Burclaff J, Czerwinski MJ, Liu J, Trueblood JM, Hinesley CM, Breau KA, Joshi S, Pozdin VA, Yao M, Ziegler AL, Blikslager AT, Daniele MA, Magness ST. A new microphysiological system shows hypoxia primes human ISCs for interleukin-dependent rescue of stem cell activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.524747. [PMID: 36778265 PMCID: PMC9915581 DOI: 10.1101/2023.01.31.524747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background & Aims Hypoxia in the intestinal epithelium can be caused by acute ischemic events or conditions like Inflammatory Bowel Disease (IBD) where immune cell infiltration produces 'inflammatory hypoxia', a chronic condition that starves the mucosa of oxygen. Epithelial regeneration after ischemia and IBD suggests intestinal stem cells (ISCs) are highly tolerant to acute and chronic hypoxia; however, the impact of acute and chronic hypoxia on human ISC (hISC) properties have not been reported. Here we present a new microphysiological system (MPS) to investigate how hypoxia affects hISCs isolated from healthy human tissues. We then test the hypothesis that some inflammation-associated interleukins protect hISCs during prolonged hypoxia. Methods hISCs were exposed to <1.0% oxygen in the MPS for 6-, 24-, 48- & 72hrs. Viability, HIF1α response, transcriptomics, cell cycle dynamics, and hISC response to cytokines were evaluated. Results The novel MPS enables precise, real-time control and monitoring of oxygen levels at the cell surface. Under hypoxia, hISCs remain viable until 72hrs and exhibit peak HIF1α at 24hrs. hISCs lose stem cell activity at 24hrs that recovers at 48hrs of hypoxia. Hypoxia increases the proportion of hISCs in G1 and regulates hISC capacity to respond to multiple inflammatory signals. Hypoxia induces hISCs to upregulate many interleukin receptors and hISCs demonstrate hypoxia-dependent cell cycle regulation and increased organoid forming efficiency when treated with specific interleukins. Conclusions Hypoxia primes hISCs to respond differently to interleukins than hISCs in normoxia through a transcriptional response. hISCs slow cell cycle progression and increase hISC activity when treated with hypoxia and specific interleukins. These findings have important implications for epithelial regeneration in the gut during inflammatory events.
Collapse
Affiliation(s)
- Kristina R. Rivera
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill 911 Oval Dr., Raleigh, NC, 27695 (USA)
| | - R. Jarrett Bliton
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill 911 Oval Dr., Raleigh, NC, 27695 (USA)
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill 911 Oval Dr., Raleigh, NC, 27695 (USA)
| | - Michael J. Czerwinski
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 (USA)
| | - Jintong Liu
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 (USA)
| | - Jessica M. Trueblood
- Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Caroline M. Hinesley
- Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Keith A Breau
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 (USA)
| | - Shlok Joshi
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 (USA)
| | - Vladimir A. Pozdin
- Department of Electrical & Computer Engineering, North Carolina State University, Raleigh, NC, 27695 (USA)
| | - Ming Yao
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 (USA)
| | - Amanda L. Ziegler
- Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Anthony T. Blikslager
- Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Michael A. Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill 911 Oval Dr., Raleigh, NC, 27695 (USA)
- Department of Electrical & Computer Engineering, North Carolina State University, Raleigh, NC, 27695 (USA)
| | - Scott T. Magness
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill 911 Oval Dr., Raleigh, NC, 27695 (USA)
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 (USA)
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 (USA)
| |
Collapse
|
10
|
How an Immune-Factor-Based Formulation of Micro-Immunotherapy Could Interfere with the Physiological Processes Involved in the Atopic March. Int J Mol Sci 2023; 24:ijms24021483. [PMID: 36675006 PMCID: PMC9864899 DOI: 10.3390/ijms24021483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Allergic diseases consist of improper inflammatory reactions to antigens and are currently an important healthcare concern, especially considering their increasing worldwide development in recent decades. The "atopic march" defines the paradigm of allergic diseases occurring in chronological order and displaying specific spatial manifestations, as they usually start as atopic dermatitis (AD) and food allergies during infancy and progressively evolve into allergic asthma (AA) and allergic rhinitis (AR) or rhino-conjunctivitis in childhood. Many immune cell subtypes and inflammatory factors are involved in these hypersensitivity reactions. In particular, the T helpers 2 (Th2) subset, through its cytokine signatures made of interleukins (ILs), such as IL-4, IL-5, IL-10, and IL-13, as well as mast cells and their related histamine pathways, contribute greatly to the perpetuation and evolution of the atopic march. By providing low doses (LD) and ultra-low doses (ULD) of ILs and immune factors to the body, micro-immunotherapy (MI) constitutes an interesting therapeutic strategy for the management of the atopic march and its symptoms. One of the aims of this review is to shed light on the current concept of the atopic march and the underlying immune reactions occurring during the IgE-mediated responses. Moreover, the different classes of traditional and innovative treatments employed in allergic diseases will also be discussed, with a special emphasis on the potential benefits of the MI medicine 2LALERG® formulation in this context.
Collapse
|
11
|
Inhibition of Complex I of the Respiratory Chain, but Not Complex III, Attenuates Degranulation and Cytokine Secretion in Human Skin Mast Cells. Int J Mol Sci 2022; 23:ijms231911591. [PMID: 36232895 PMCID: PMC9570238 DOI: 10.3390/ijms231911591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
The mechanisms of mast cell (MC) degranulation and MC-driven skin symptoms are well-described. In contrast, data about the role of mitochondrial respiration for immune functions of human skin MCs are lacking. Oxygen consumption rate (OCR) in primary human skin MCs during IgE-mediated activation in the absence of glucose was examined using a metabolic flux analyzer. Effects of the inhibition of mitochondrial complex I (by rotenone A) and III (by myxothiazol) on degranulation and cytokine secretion (IL-4, IL-5, IL-6, IL-13, TNF-α, and GM-CSF) were explored by the β-hexosaminidase release assay and multiplex ELISA. IgE-mediated activation rapidly increased the mitochondrial OCR and extracellular acidification; the contribution of non-mitochondrial oxygen consumption remained unchanged at lower levels. Both myxothiazol and rotenone A reduced OCR, the mitochondrial parameters, and extracellular acidification; however, myxothiazol did not affect degranulation and cytokine secretion. In contrast, degranulation and the secretion of IL-6, IL-13, TNF-α, and GM-CSF were reduced by rotenone A, whereas the secretion of IL-4 and IL-5 was not significantly affected. The inhibitors did not affect cell viability. Our results highlight the important role played by mitochondrial respiration in primary human skin MCs and allow for a conclusion on a hierarchy of their effector functions. Drugs targeting specific pathways in mitochondria may provide future options to control MC-driven skin symptoms.
Collapse
|
12
|
Zhang Z, Ernst PB, Kiyono H, Kurashima Y. Utilizing mast cells in a positive manner to overcome inflammatory and allergic diseases. Front Immunol 2022; 13:937120. [PMID: 36189267 PMCID: PMC9518231 DOI: 10.3389/fimmu.2022.937120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Mast cells (MCs) are immune cells widely distributed in the body, accompanied by diverse phenotypes and functions. Committed mast cell precursors (MCPs) leave the bone marrow and enter the blood circulation, homing to peripheral sites under the control of various molecules from different microenvironments, where they eventually differentiate and mature. Partly attributable to the unique maturation mechanism, MCs display high functional heterogeneity and potentially plastic phenotypes. High plasticity also means that MCs can exhibit different subtypes to cope with different microenvironments, which we call “the peripheral immune education system”. Under the peripheral immune education system, MCs showed a new character from previous cognition in some cases, namely regulation of allergy and inflammation. In this review, we focus on the mucosal tissues, such as the gastrointestinal tract, to gain insights into the mechanism underlying the migration of MCs to the gut or other organs and their heterogeneity, which is driven by different microenvironments. In particular, the immunosuppressive properties of MCs let us consider that positively utilizing MCs may be a new way to overcome inflammatory and allergic disorders.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Peter B Ernst
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, San Diego, CA, United States
- Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, School of Medicine and Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD), University of California, San Diego, San Diego, CA, United States
| | - Hiroshi Kiyono
- Department of Medicine, School of Medicine and Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD), University of California, San Diego, San Diego, CA, United States
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- HanaVax Inc., Tokyo, Japan
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- Empowering Next Generation Allergist/immunologist toward Global Excellence Task Force toward 2030 (ENGAGE)-Task Force, Tokyo, Japan
| |
Collapse
|
13
|
West PW, Bulfone-Paus S. Mast cell tissue heterogeneity and specificity of immune cell recruitment. Front Immunol 2022; 13:932090. [PMID: 35967445 PMCID: PMC9374002 DOI: 10.3389/fimmu.2022.932090] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Mast cells occupy a unique niche within tissues as long lived perpetrators of IgE mediated hypersensitivity and anaphylaxis, as well as other immune responses. However, mast cells are not identical in different tissues and the impact of this tissue heterogeneity on the interaction with other immune cells and on defined immune responses is still unclear. In this review, we synthesize the characteristics of mast cell heterogeneity in the gut and the skin. Furthermore, we attempt to connect mast cell heterogeneity with functional diversity by exploring differences in mast cell-induced immune cell recruitment in these two model organs. The differential expression of certain receptors on mast cells of different tissues, notably tissue-specific expression patterns of integrins, complement receptors and MRGPRX2, could indicate that tissue environment-dependent factors skew mast cell-immune cell interactions, for example by regulating the expression of these receptors.
Collapse
Affiliation(s)
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
14
|
Boyce JA. INSIGHTS INTO THE REGULATION OF MAST CELL FUNCTION IN TYPE 2 INFLAMMATION. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2022; 132:92-103. [PMID: 36196164 PMCID: PMC9480566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Type 2 inflammation (T2I) underlies the pathogenesis of asthma, chronic rhinosinusitis with nasal polyps, and eosinophilic esophagitis. Mast cells (MCs) are tissue resident hematopoietic effector cells thought to play major roles in T2I. Two subtypes of human MCs are recognized based on immunohistochemical differences. MCs expressing tryptase but not chymase (MCT) reside within mucosal epithelial surfaces, and MCs expressing tryptase, chymase, and cathepsin G (MCTC) reside in submucosal, perivascular and intraneural locations. During T2I, MCs (particularly MCT) increase markedly by unclear mechanisms. Single cell genomic studies reveal that traditional histochemical categorization vastly underestimates the extent of MC functional heterogeneity. MCT and MCTC likely reflect endpoints of a developmental continuum, emerging from a transitional stage of development in which MCs expand through in situ proliferation. This mechanism, likely driven by interleukin 4 and other cytokines, is unique among granulocytes and carries substantial implications for pathogenesis and therapy of T2I-associated diseases.
Collapse
|
15
|
Tsubosaka M, Maruyama M, Huang EE, Zhang N, Utsunomiya T, Gao Q, Shen H, Li X, Kushioka J, Hirata H, Yao Z, Yang YP, Goodman SB. Effect on Osteogenic Differentiation of Genetically Modified IL4 or PDGF-BB Over-Expressing and IL4-PDGF-BB Co-Over-Expressing Bone Marrow-Derived Mesenchymal Stromal Cells In Vitro. Bioengineering (Basel) 2021; 8:bioengineering8110165. [PMID: 34821731 PMCID: PMC8614682 DOI: 10.3390/bioengineering8110165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022] Open
Abstract
The use of genetically modified (GM) mesenchymal stromal cells (MSCs) and preconditioned MSCs (pMSCs) may provide further opportunities to improve the outcome of core decompression (CD) for the treatment of early-stage osteonecrosis of the femoral head (ONFH). GM interleukin-4 (IL4) over-expressing MSCs (IL4-MSCs), platelet-derived growth factor (PDGF)-BB over-expressing MSCs (PDGF-BB-MSCs), and IL4-PDGF-BB co-over-expressing MSCs (IL4-PDGF-BB-MSCs) and their respective pMSCs were used in this in vitro study and compared with respect to cell proliferation and osteogenic differentiation. IL4-MSCs, PDGF-BB-MSCs, IL4-PDGF-BB-MSCs, and each pMSC treatment significantly increased cell proliferation compared to the MSC group alone. The percentage of Alizarin red-stained area in the IL4-MSC and IL4-pMSC groups was significantly lower than in the MSC group. However, the percentage of Alizarin red-stained area in the PDGF-BB-MSC group was significantly higher than in the MSC and PDGF-BB-pMSC groups. The percentage of Alizarin red-stained area in the IL4-PDGF-BB-pMSC was significantly higher than in the IL4-PDGF-BB-MSC group. There were no significant differences in the percentage of Alizarin red-stained area between the MSC and IL4-PDGF-BB-pMSC groups. The use of PDGF-BB-MSCs or IL4-PDGF-BB-pMSCs increased cell proliferation. Furthermore, PDGF-BB-MSCs promoted osteogenic differentiation. The addition of GM MSCs may provide a useful supplementary cell-based therapy to CD for treatment of ONFH.
Collapse
Affiliation(s)
- Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Elijah Ejun Huang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
- Department of Material Science and Engineering, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Redwood City, CA 94063, USA; (M.T.); (M.M.); (E.E.H.); (N.Z.); (T.U.); (Q.G.); (H.S.); (X.L.); (J.K.); (H.H.); (Z.Y.); (Y.P.Y.)
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: ; Tel.: +1-650-498-4343
| |
Collapse
|
16
|
Qi Z, Xue Q, Wang H, Cao B, Su Y, Xing Q, Yang JJ. Serum CD203c+ Extracellular Vesicle Serves as a Novel Diagnostic and Prognostic Biomarker for Succinylated Gelatin Induced Perioperative Hypersensitive Reaction. Front Immunol 2021; 12:732209. [PMID: 34650557 PMCID: PMC8505883 DOI: 10.3389/fimmu.2021.732209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/14/2021] [Indexed: 12/25/2022] Open
Abstract
Background Perioperative hypersensitivity reaction (HR) is an IgE-FcϵRI-mediated hypersensitivity reaction with degranulation and activation of mast cells and basophils. Several studies have focused on assessing the degranulation and activation of mast cells and basophils to diagnose and predict the prognosis of drug induced HR. However, it is challenging to isolate sufficiently pure mast cells and basophils from human sources to investigate. Effective biomarkers to assess mast cells and basophils activation in vivo could potentially have high diagnostic and prognostic values. In the present study, we investigated EVs pelleted from serum in patients with succinylated gelatin induced HR. Methods Extracellular vesicles (EVs) were isolated using a total exosome isolation kit and ultracentrifugation, characterized by Western blot, transmission electron microscopy, and nanoparticle tracking analysis. Basophils were isolated from fresh peripheral blood by negative selection using Basophil Isolation Kit II. Human mast cell line was stimulated with IL4. The expression levels of proteins related to the hypersensitive response were evaluated by Western blotting and flow Cytometer. Histamine and tryptase levels were tested using a commercial ELISA kit, and gene expression of inflammatory mediators was evaluated by qRT-PCR. The receiver operating characteristic (ROC) curve was used to evaluate the specificity and sensitivity of biomarker in predicting HR. Results The concentration of EVs and protein expression level of CD63, FcϵRI, CD203c and tryptase were significantly (p< 0.05) increased in HR samples. The expression level of mast cell/basophil specific CD203c were significantly increased in EVs derived from serum and basophils of HR patients, and the CD203c+-EVs production in mast cells is dramatically increased in the presence of IL4, which positively correlated with histamine, tryptase and inflammatory mediators. Moreover, the ROC curve of EVs concentration and CD203c expression indicated that CD203c+-EVs had a strong diagnostic ability for HR. Conclusion Serum CD203c+-EVs serves as a novel diagnostic and prognostic biomarker for HR.
Collapse
Affiliation(s)
- Zheng Qi
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiong Xue
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haitao Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Cao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Su
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qinghe Xing
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Mizuguchi H, Kitamura Y, Takeda N, Fukui H. Molecular Signaling and Transcriptional Regulation of Histamine H 1 Receptor Gene. Curr Top Behav Neurosci 2021; 59:91-110. [PMID: 34595742 DOI: 10.1007/7854_2021_256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Histamine-activated histamine H1 receptor (H1R) signaling regulates many gene expressions, mainly through the protein kinase C (PKC)/extracellular signal-regulated kinases (ERK) signaling. Involvement of other signaling, including NF-κB, Wnt, RUNX-2, and Rho A signaling was also demonstrated. In addition, cAMP production through the activation of H1R signaling was reported. H1R gene itself is also up-regulated by the activation of H1R signaling with histamine. Here, we review our recent findings in the molecular signaling and transcriptional regulation of the H1R gene. Stimulation with histamine up-regulates H1R gene expression through the activation of H1R in HeLa cells. The PKCδ/ERK/poly(ADP)ribosyl transferase-1 (PARP-1) signaling was involved in this up-regulation. Heat shock protein 90 also plays an important role in regulating PKCδ translocation. Promoter analyses revealed the existence of two promoters in the human H1R gene in HeLa cells. H1R-activated H1R gene up-regulation in response to histamine was also observed in U373 astroglioma cells. However, this up-regulation was mediated not through the PKCδ signaling but possibly through the PKCα signaling. In addition, the promoter region responsible for histamine-induced H1R gene transcription in U373 cells was different from that of HeLa cells. These findings suggest that the molecular signaling and transcriptional regulation of the H1R gene are different between neuronal cells and non-neuronal cells.
Collapse
Affiliation(s)
- Hiroyuki Mizuguchi
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan.
| | - Yoshiaki Kitamura
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Noriaki Takeda
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | | |
Collapse
|
18
|
Aldayel TS, Abdel-Rahman HG, Gad El-Hak HN, Abdelrazek HMA, Mohamed RM, El-Sayed RM. Assessment of modulatory activity of Uncaria tomentosa extract against fipronil immunotoxicity in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112674. [PMID: 34438272 DOI: 10.1016/j.ecoenv.2021.112674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
This study has investigated the effect of using the Uncaria tomentosa (UT) extract against immunotoxicity that induced by fipronil (FP) in male Wistar rats. Twenty-eight, male Wistar rats were assigned randomly into four groups (7 rats each). Control group received distilled water. FP group received FP 9.7 mg/kg b. wt orally via gastric tube. UT group received 120 mg/kg b. wt. of UT extract orally. FP-UT group received both FP and UT (9.7 and 120 mg/kg b.wt, respectively) for 30 days. Hematological parameters, malondialdehyde (MDA), total antioxidant capacity (TAC), estradiol, histamine and immunoglobulin E (IGE) were assayed. Histopathological and electron microscopical examinations were performed to the lymphoid organs. Hematological parameters, were decreased in the FP group than the control group. There was a rise in MDA of FP group followed by a decrease in TAC content with histological and ultrastructure degenerative changes. UT extract treatment ameliorated the FP-induced perturbations for the former parameters. The results showed that FP treatment exerted an immunotoxic effect through acting as an endocrine disruptor and allergic, pro-inflammatory that was confirmed by histopathological and ultrastructure study of the lymphoid organs. Uncaria tomentosa extract could successfully modulate FP-induced immunotoxicity by diminishing all the studied parameters.
Collapse
Affiliation(s)
- Tahany Saleh Aldayel
- Nutrition and Food Science, Department of Physical Sport Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Haidy G Abdel-Rahman
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Heba N Gad El-Hak
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Rasha M Mohamed
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Rehab M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El-Arish 45513, Egypt
| |
Collapse
|
19
|
Wang HN, Ji K, Zhang LN, Xie CC, Li WY, Zhao ZF, Chen JJ. Inhibition of c-Fos expression attenuates IgE-mediated mast cell activation and allergic inflammation by counteracting an inhibitory AP1/Egr1/IL-4 axis. J Transl Med 2021; 19:261. [PMID: 34130714 PMCID: PMC8207675 DOI: 10.1186/s12967-021-02932-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
Background Activator protein-1 (AP1), a c-Fos–JUN transcription factor complex, mediates many cytobiological processes. c-Fos has been implicated in immunoglobulin (Ig)E activation of mast cells (MCs) via high-affinity IgE Fc receptor (FcεRI) binding. This study examined c-Fos involvement in MC activation and tested the effects of the c-Fos/AP1 inhibitor T-5224 on MCs activation and allergic responses. Methods In vitro studies were conducted with two MC model systems: rat basophilic leukemia cells (RBLs) and mouse bone marrow derived mast cells (BMMCs). MC degranulation and effector functions were examined with β-hexosaminidase release and cytokine secretion assays. c-Fos/AP1 was inhibited with T-5224. c-Fos activity was suppressed with short hairpin RNA targeting c-Fos (shFos). In vivo immune responses were evaluated in passive cutaneous anaphylaxis (PCA) and ovalbumin-induced active systemic anaphylaxis (ASA) models, as well as in an oxazolone (OXA)-induced model of atopic dermatitis, a common allergic disease. Results c-Fos expression was elevated transcriptionally and translationally in IgE-stimulated MCs. c-Fos binding of the Egr1 (early growth response 1) promoter upregulated Egr1 transcription, leading to production of interleukin (IL)4. T-5224 reduced FcεRI-mediated MC degranulation (evidenced by β-hexosaminidase activity and histamine levels) and diminished EGR1 and IL4 expression. T-5224 attenuated IgE-mediated allergic responses in PCA and ASA models, and it suppressed MC-mediated atopic dermatitis in mice. Conclusion IgE binding can activate MCs via a c-Fos/Egr1/IL-4 axis. T-5224 suppresses MC activation in vitro and in vivo and thus represents a promising potential strategy for targeting MC activation to treat allergic diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02932-0.
Collapse
Affiliation(s)
- Hui-Na Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, People's Republic of China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, People's Republic of China
| | - Li-Na Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, People's Republic of China
| | - Chu-Chu Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, People's Republic of China
| | - Wei-Yong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, People's Republic of China
| | - Zhen-Fu Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, People's Republic of China
| | - Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
20
|
Srivastava M, Kaplan MH. Transcription Factors in the Development and Pro-Allergic Function of Mast Cells. FRONTIERS IN ALLERGY 2021; 2:679121. [PMID: 35387064 PMCID: PMC8974754 DOI: 10.3389/falgy.2021.679121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Mast cells (MCs) are innate immune cells of hematopoietic origin localized in the mucosal tissues of the body and are broadly implicated in the pathogenesis of allergic inflammation. Transcription factors have a pivotal role in the development and differentiation of mast cells in response to various microenvironmental signals encountered in the resident tissues. Understanding the regulation of mast cells by transcription factors is therefore vital for mechanistic insights into allergic diseases. In this review we summarize advances in defining the transcription factors that impact the development of mast cells throughout the body and in specific tissues, and factors that are involved in responding to the extracellular milieu. We will further describe the complex networks of transcription factors that impact mast cell physiology and expansion during allergic inflammation and functions from degranulation to cytokine secretion. As our understanding of the heterogeneity of mast cells becomes more detailed, the contribution of specific transcription factors in mast cell-dependent functions will potentially offer new pathways for therapeutic targeting.
Collapse
Affiliation(s)
- Mansi Srivastava
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, IN, United States
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Mark H. Kaplan
| |
Collapse
|
21
|
Zhou P, Xiang CX, Wei JF. The clinical significance of spondin 2 eccentric expression in peripheral blood mononuclear cells in bronchial asthma. J Clin Lab Anal 2021; 35:e23764. [PMID: 33998076 PMCID: PMC8183911 DOI: 10.1002/jcla.23764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/18/2022] Open
Abstract
Background Bronchial asthma (BA) was a heterogeneous disease characterized by chronic airway inflammation. Spondin 2 (SPON2) was reported to be implicated in the integrin pathway, protein metabolism, and drug‐induced lupus erythematosus. The purpose of this study was to evaluate the significance of SPON2 in BA diagnosis and treatment. Methods Peripheral blood samples were obtained from 137 BA pediatric patients (61 mild‐to‐moderate BA and 76 severe BA) and 59 healthy children. Subject's information, clinical indexes, pulmonary ventilation functions were recorded in the two groups. Peripheral blood mononuclear cells (PBMCs) were isolated from patients’ samples. qRT‐PCR and ELISA assays were employed to examine the levels of SPON2 and inflammatory cytokines, respectively. Pearson's correlation analysis confirmed the association between SPON2 and inflammatory cytokines. Receiver operating characteristic (ROC) analysis was used to evaluate the potentials of SPON2 in terms of BA detection and discriminating against the severity of BA. Results Bioinformatics analysis showed that SPON2, OLFM4, XIST, and TSIX were significantly upregulated, while KDM5D and RPS4Y1 were reduced in BA. GO analysis verified that these six genes were mainly involved in neutrophil degranulation, neutrophil activation involved in immune response, neutrophil activation, and neutrophil‐mediated immunity. After isolating PBMCs, we found that SPON2 was remarkably increased in BA pediatric group compared with healthy children, and the relative levels of SPON2 were related to the severity of BA. The receiver operating characteristic (ROC) analysis revealed the high potentials of SPON2 in BA diagnosis (AUC was 0.8080) and severity distinctions (AUCs were 0.7341 and 0.8541, respectively). Also, we found that there were significant differences in fractional exhaled nitric oxide (FeNO), forced expiratory volume in 1 s (FEV1)%, FEV1/ forced vital capacity (FVC)%, immunoglobulin E (IgE), serum eosinophils, and serum neutrophils between mild‐to‐moderate BA group and severe BA group. Finally, SPON2 was negatively correlated with IL‐12 while positively associated with IL‐4, IL‐13, and IL‐17A. Conclusions SPON2 was a viable biomarker for diagnosing and degree of severity in BA, providing more insight into exploring BA and treatment's pathogenesis.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Pediatric, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, China
| | - Cai-Xia Xiang
- Department of Pediatric, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, China
| | - Jin-Feng Wei
- Department of Respiratory, Hangzhou Children's Hospital, Hangzhou, China
| |
Collapse
|
22
|
Sprinzl B, Greiner G, Uyanik G, Arock M, Haferlach T, Sperr WR, Valent P, Hoermann G. Genetic Regulation of Tryptase Production and Clinical Impact: Hereditary Alpha Tryptasemia, Mastocytosis and Beyond. Int J Mol Sci 2021; 22:2458. [PMID: 33671092 PMCID: PMC7957558 DOI: 10.3390/ijms22052458] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Tryptase is a serine protease that is predominantly produced by tissue mast cells (MCs) and stored in secretory granules together with other pre-formed mediators. MC activation, degranulation and mediator release contribute to various immunological processes, but also to several specific diseases, such as IgE-dependent allergies and clonal MC disorders. Biologically active tryptase tetramers primarily derive from the two genes TPSB2 (encoding β-tryptase) and TPSAB1 (encoding either α- or β-tryptase). Based on the most common gene copy numbers, three genotypes, 0α:4β, 1α:3β and 2α:2β, were defined as "canonical". About 4-6% of the general population carry germline TPSAB1-α copy number gains (2α:3β, 3α:2β or more α-extra-copies), resulting in elevated basal serum tryptase levels. This condition has recently been termed hereditary alpha tryptasemia (HαT). Although many carriers of HαT appear to be asymptomatic, a number of more or less specific symptoms have been associated with HαT. Recent studies have revealed a significantly higher HαT prevalence in patients with systemic mastocytosis (SM) and an association with concomitant severe Hymenoptera venom-induced anaphylaxis. Moreover, HαT seems to be more common in idiopathic anaphylaxis and MC activation syndromes (MCAS). Therefore, TPSAB1 genotyping should be included in the diagnostic algorithm in patients with symptomatic SM, severe anaphylaxis or MCAS.
Collapse
Affiliation(s)
- Bettina Sprinzl
- Ludwig Boltzmann Institute for Hematology and Oncology at the Hanusch Hospital, Center for Medical Genetics, Hanusch Hospital, 1140 Vienna, Austria; (B.S.); (G.U.)
- Center for Medical Genetics, Hanusch Hospital, 1140 Vienna, Austria
| | - Georg Greiner
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria;
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (W.R.S.); (P.V.)
- Ihr Labor, Medical Diagnostic Laboratories, 1220 Vienna, Austria
| | - Goekhan Uyanik
- Ludwig Boltzmann Institute for Hematology and Oncology at the Hanusch Hospital, Center for Medical Genetics, Hanusch Hospital, 1140 Vienna, Austria; (B.S.); (G.U.)
- Center for Medical Genetics, Hanusch Hospital, 1140 Vienna, Austria
- Medical School, Sigmund Freud Private University, 1020 Vienna, Austria
| | - Michel Arock
- Department of Hematology, APHP, Pitié-Salpêtrière-Charles Foix University Hospital and Sorbonne University, 75013 Paris, France;
- Centre de Recherche des Cordeliers, INSERM, Sorbonne University, Cell Death and Drug Resistance in Hematological Disorders Team, 75006 Paris, France
| | | | - Wolfgang R. Sperr
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (W.R.S.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (W.R.S.); (P.V.)
- MLL Munich Leukemia Laboratory, 81377 Munich, Germany;
| |
Collapse
|
23
|
Dwyer DF, Ordovas-Montanes J, Allon SJ, Buchheit KM, Vukovic M, Derakhshan T, Feng C, Lai J, Hughes TK, Nyquist SK, Giannetti MP, Berger B, Bhattacharyya N, Roditi RE, Katz HR, Nawijn MC, Berg M, van den Berge M, Laidlaw TM, Shalek AK, Barrett NA, Boyce JA. Human airway mast cells proliferate and acquire distinct inflammation-driven phenotypes during type 2 inflammation. Sci Immunol 2021; 6:eabb7221. [PMID: 33637594 PMCID: PMC8362933 DOI: 10.1126/sciimmunol.abb7221] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 01/28/2021] [Indexed: 12/31/2022]
Abstract
Mast cells (MCs) play a pathobiologic role in type 2 (T2) allergic inflammatory diseases of the airway, including asthma and chronic rhinosinusitis with nasal polyposis (CRSwNP). Distinct MC subsets infiltrate the airway mucosa in T2 disease, including subepithelial MCs expressing the proteases tryptase and chymase (MCTC) and epithelial MCs expressing tryptase without chymase (MCT). However, mechanisms underlying MC expansion and the transcriptional programs underlying their heterogeneity are poorly understood. Here, we use flow cytometry and single-cell RNA-sequencing (scRNA-seq) to conduct a comprehensive analysis of human MC hyperplasia in CRSwNP, a T2 cytokine-mediated inflammatory disease. We link discrete cell surface phenotypes to the distinct transcriptomes of CRSwNP MCT and MCTC, which represent polarized ends of a transcriptional gradient of nasal polyp MCs. We find a subepithelial population of CD38highCD117high MCs that is markedly expanded during T2 inflammation. These CD38highCD117high MCs exhibit an intermediate phenotype relative to the expanded MCT and MCTC subsets. CD38highCD117high MCs are distinct from circulating MC progenitors and are enriched for proliferation, which is markedly increased in CRSwNP patients with aspirin-exacerbated respiratory disease, a severe disease subset characterized by increased MC burden and elevated MC activation. We observe that MCs expressing a polyp MCT-like effector program are also found within the lung during fibrotic diseases and asthma, and further identify marked differences between MCTC in nasal polyps and skin. These results indicate that MCs display distinct inflammation-associated effector programs and suggest that in situ MC proliferation is a major component of MC hyperplasia in human T2 inflammation.
Collapse
Affiliation(s)
- Daniel F Dwyer
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Samuel J Allon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Kathleen M Buchheit
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Marko Vukovic
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Tahereh Derakhshan
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Chunli Feng
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Juying Lai
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Travis K Hughes
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Sarah K Nyquist
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Program in Computational and Systems Biology, MIT, Cambridge, MA, USA
| | - Matthew P Giannetti
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Lab and Department of Mathematics, MIT, Cambridge, MA, USA
| | - Neil Bhattacharyya
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Rachel E Roditi
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Howard R Katz
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Martijn C Nawijn
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, Laboratory of Experimental Immunology and Respiratory Research (EXPIRE), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marijn Berg
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, Laboratory of Experimental Immunology and Respiratory Research (EXPIRE), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tanya M Laidlaw
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Alex K Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Nora A Barrett
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Joshua A Boyce
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Tomar S, Ganesan V, Sharma A, Zeng C, Waggoner L, Smith A, Kim CH, Licona-Limón P, Reinhardt RL, Flavell RA, Wang YH, Hogan SP. IL-4-BATF signaling directly modulates IL-9 producing mucosal mast cell (MMC9) function in experimental food allergy. J Allergy Clin Immunol 2021; 147:280-295. [PMID: 33069715 PMCID: PMC7856198 DOI: 10.1016/j.jaci.2020.08.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND This study group has previously identified IL-9-producing mucosal mast cell (MMC9) as the primary source of IL-9 to drive intestinal mastocytosis and experimental IgE-mediated food allergy. However, the molecular mechanisms that regulate the expansion of MMC9s remain unknown. OBJECTIVES This study hypothesized that IL-4 regulates MMC9 development and MMC9-dependent experimental IgE-mediated food allergy. METHODS An epicutaneous sensitization model was used and bone marrow reconstitution experiments were performed to test the requirement of IL-4 receptor α (IL-4Rα) signaling on MMC9s in experimental IgE-mediated food allergy. Flow cytometric, bulk, and single-cell RNA-sequencing analyses on small intestine (SI) MMC9s were performed to illuminate MMC9 transcriptional signature and the effect of IL-4Rα signaling on MMC9 function. A bone marrow-derived MMC9 culture system was used to define IL-4-BATF signaling in MMC9 development. RESULTS Epicutaneous sensitization- and bone marrow reconstitution-based models of IgE-mediated food allergy revealed an IL-4 signaling-dependent cell-intrinsic effect on SI MMC9 accumulation and food allergy severity. RNA-sequencing analysis of SI-MMC9s identified 410 gene transcripts reciprocally regulated by IL-4 signaling, including Il9 and Batf. Insilico analyses identified a 3491-gene MMC9 transcriptional signature and identified 2 transcriptionally distinct SI MMC9 populations enriched for metabolic or inflammatory programs. Employing an in vitro MMC9-culture model system showed that generation of MMC9-like cells was induced by IL-4 and this was in part dependent on BATF. CONCLUSIONS IL-4Rα signaling directly modulates MMC9 function and exacerbation of experimental IgE-mediated food allergic reactions. IL-4Rα regulation of MMC9s is in part BATF-dependent and occurs via modulation of metabolic transcriptional programs.
Collapse
Affiliation(s)
- Sunil Tomar
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Mich; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Mich
| | - Varsha Ganesan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Mich; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Mich
| | - Ankit Sharma
- Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Mich; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Mich
| | - Chang Zeng
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lisa Waggoner
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrew Smith
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chang H Kim
- Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Mich; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Mich
| | - Paula Licona-Limón
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Richard L Reinhardt
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colo; Department of Biomedical Research, National Jewish Health, Denver, Colo
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Howard Hughes Medical Institute, Chevy Chase, Md
| | - Yui-Hsi Wang
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Type 2 Inflammation and Fibrosis Cluster, Immunology and Inflammation Research, Sanofi, Cambridge, Mass.
| | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Mich; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
25
|
Dong J, Chen L, Zhang Y, Jayaswal N, Mezghani I, Zhang W, Veves A. Mast Cells in Diabetes and Diabetic Wound Healing. Adv Ther 2020; 37:4519-4537. [PMID: 32935286 PMCID: PMC7547971 DOI: 10.1007/s12325-020-01499-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Mast cells (MCs) are granulated, immune cells of the myeloid lineage that are present in connective tissues. Apart from their classical role in allergies, MCs also mediate various inflammatory responses due to the nature of their secretory products. They are involved in important physiological and pathophysiological responses related to inflammation, chronic wounds, and autoimmune diseases. There are also indications that MCs are associated with diabetes and its complications. MCs and MC-derived mediators participate in all wound healing stages and are involved in the pathogenesis of non-healing, chronic diabetic foot ulcers (DFUs). More specifically, recent work has shown increased degranulation of skin MCs in human diabetes and diabetic mice, which is associated with impaired wound healing. Furthermore, MC stabilization, either systemic or local at the skin level, improves wound healing in diabetic mice. Understanding the precise role of MCs in wound progression and healing processes can be of critical importance as it can lead to the development of new targeted therapies for diabetic foot ulceration, one of the most devastating complications of diabetes.
Collapse
Affiliation(s)
- Jie Dong
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Lihong Chen
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Ying Zhang
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Navin Jayaswal
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Ikram Mezghani
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Weijie Zhang
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
- LanZhou University of Technology, 287 Langongping Road, Qilihe District, Lanzhou, Gansu, China
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Wang Z, Babina M. MRGPRX2 signals its importance in cutaneous mast cell biology: Does MRGPRX2 connect mast cells and atopic dermatitis? Exp Dermatol 2020; 29:1104-1111. [PMID: 32866307 DOI: 10.1111/exd.14182] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022]
Abstract
The discovery of MRGPRX2 marks an important change in MC biology, explaining non-IgE-mediated clinical phenomena relying on MCs. As receptor for multiple drugs, MRGPRX2 is crucial to drug-induced hypersensitivity. However, not only drugs, but also endogenous mediators like neuropeptides and host defense peptides activate MRGPRX2, suggesting its broad impact in cutaneous pathophysiology. Here, we give a brief overview of MRGPRX2 and its regulation by microenvironmental stimuli, which support MCs and can be altered in skin disorders, and briefly touch on the functional programs elicited by MRGPRX2 ligation. Studies in Mrgprb2-deficient mice (the murine ortholog) help illuminate MRGPRX2's function in health and disease. Recent advances in this model support the long-suspected operational unit between MCs and nerves, with MRGPRX2 being a vital component. Based on the limited evidence for a major contribution of FcεRI/IgE-activated MCs to atopic dermatitis (AD), we develop the hypothesis that MRGPRX2 constitutes the missing link connecting MCs and AD, at least in selected endotypes. Support comes from the multifold changes in the MC-neuronal system of AD skin (eg greater density of MCs and closer connections between MCs and nerves, increased PAR-2/Substance P). We theorize that these deregulations suffice to initiate AD, but external triggers, many of which activating MRGPRX2 themselves (eg Staphylococcus aureus) further feed into the loop. Itch, the most burdensome hallmark of AD, is mostly non-histaminergic but tryptase-dependent, and tryptase is preferentially released upon MRGPRX2 activation. Because MRGPRX2 is a very active research field, some of the existing gaps are likely to be closed soon.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Dermatology and Allergy, Allergy Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Magda Babina
- Department of Dermatology and Allergy, Allergy Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
27
|
Ran H, Xiao H, Zhou X, Guo L, Lu S. Single-nucleotide polymorphisms and haplotypes in the interleukin-33 gene are associated with a risk of allergic rhinitis in the Chinese population. Exp Ther Med 2020; 20:102. [PMID: 32973951 DOI: 10.3892/etm.2020.9232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/23/2020] [Indexed: 11/05/2022] Open
Abstract
Allergic rhinitis (AR) is a common upper airway disease attributed to a variety of risk factors, such as environmental exposures and genetic susceptibility. The commonly observed comorbidity of asthma and AR in the clinic suggests the presence of shared genetic risk factors and biological mechanisms between these diseases. Interleukin (IL)-33 has been indicated to be an important factor driving asthma susceptibility and pathogenesis using both genome-wide association studies and functional studies in model animals. Although previous studies have reported the putative association of this gene with AR, evidence for the association of genetic variations of IL-33 with the disease is still missing. To examine whether variations in the IL-33 gene confer a genetic risk of AR, a total of 769 patients with AR and 769 age- and sex-matched healthy controls were recruited among Han Chinese residents in the Hubei province, and 14 single-nucleotide polymorphisms (SNPs) spanning the IL-33 gene were examined for their association with the risk of AR. The results indicated that five SNPs, which were in a moderate linkage disequilibrium and were located in the 5'-flanking region of IL-33, exhibited significant associations with the risk of AR, and these associations were additionally supported by genotypic and haplotypic analyses. Notably, three of the five IL-33 SNPs have been previously reported to exhibit genome-wide associations with asthma, and their alleles were also revealed to confer an increased risk of AR in the present study. In summary, the results of the current study suggested that certain variations in the IL-33 gene represent a potential risk for AR, and indicated a shared genetic basis between AR and asthma.
Collapse
Affiliation(s)
- He Ran
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jingzhou, Jingzhou, Hubei 434000, P.R. China
| | - Hua Xiao
- Hubei College of Chinese Medicine, Jingzhou, Hubei 434020, P.R. China
| | - Xing Zhou
- Department of Otolaryngology Head and Neck Surgery, Shishou People's Hospital, Jingzhou, Hubei 434400, P.R. China
| | - Lijun Guo
- Hubei College of Chinese Medicine, Jingzhou, Hubei 434020, P.R. China
| | - Shuang Lu
- Hubei College of Chinese Medicine, Jingzhou, Hubei 434020, P.R. China
| |
Collapse
|
28
|
Valent P, Akin C, Hartmann K, Nilsson G, Reiter A, Hermine O, Sotlar K, Sperr WR, Escribano L, George TI, Kluin-Nelemans HC, Ustun C, Triggiani M, Brockow K, Gotlib J, Orfao A, Kovanen PT, Hadzijusufovic E, Sadovnik I, Horny HP, Arock M, Schwartz LB, Austen KF, Metcalfe DD, Galli SJ. Mast cells as a unique hematopoietic lineage and cell system: From Paul Ehrlich's visions to precision medicine concepts. Am J Cancer Res 2020; 10:10743-10768. [PMID: 32929378 PMCID: PMC7482799 DOI: 10.7150/thno.46719] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
The origin and functions of mast cells (MCs) have been debated since their description by Paul Ehrlich in 1879. MCs have long been considered 'reactive bystanders' and 'amplifiers' in inflammatory processes, allergic reactions, and host responses to infectious diseases. However, knowledge about the origin, phenotypes and functions of MCs has increased substantially over the past 50 years. MCs are now known to be derived from multipotent hematopoietic progenitors, which, through a process of differentiation and maturation, form a unique hematopoietic lineage residing in multiple organs. In particular, MCs are distinguishable from basophils and other hematopoietic cells by their unique phenotype, origin(s), and spectrum of functions, both in innate and adaptive immune responses and in other settings. The concept of a unique MC lineage is further supported by the development of a distinct group of neoplasms, collectively referred to as mastocytosis, in which MC precursors expand as clonal cells. The clinical consequences of the expansion and/or activation of MCs are best established in mastocytosis and in allergic inflammation. However, MCs have also been implicated as important participants in a number of additional pathologic conditions and physiological processes. In this article, we review concepts regarding MC development, factors controlling MC expansion and activation, and some of the fundamental roles MCs may play in both health and disease. We also discuss new concepts for suppressing MC expansion and/or activation using molecularly-targeted drugs.
Collapse
|
29
|
The pseudo-allergic/neurogenic route of mast cell activation via MRGPRX2: discovery, functional programs, regulation, relevance to disease, and relation with allergic stimulation. ACTA ACUST UNITED AC 2020. [DOI: 10.1097/itx.0000000000000032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Mast cells drive IgE-mediated disease but might be bystanders in many other inflammatory and neoplastic conditions. J Allergy Clin Immunol 2019; 144:S19-S30. [DOI: 10.1016/j.jaci.2019.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 01/05/2023]
|
31
|
Immunophenotype of circulatory T-helper cells in patients with non-segmental vitiligo. Postepy Dermatol Alergol 2019; 36:449-454. [PMID: 31616220 PMCID: PMC6791165 DOI: 10.5114/ada.2019.87448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/30/2018] [Indexed: 11/24/2022] Open
Abstract
Introduction Non-segmental vitiligo (NSV) is an immune-mediated skin depigmentation disease. Cytokine-mediated interaction between T lymphocytes and melanocytes leads to death of melanocytes, causing a defect in melanin synthesis and thereby depigmentation. There is an increased population of T-helper cells in the skin lesions as well as in the peripheral circulation in NSV. However, the relative percentage of each T-cell phenotype in the disease pathogenesis is rarely studied. Aim To study the immunophenotype of the different T-helper/Treg cell subsets in patients with NSV, in comparison to healthy controls. Material and methods A total of 80 patients with NSV and eighty age- and gender-matched healthy controls were recruited in this cross-sectional study. Disease activity was determined by vitiligo index of disease activity (VIDA) scoring. Peripheral blood mononuclear cells were separated by Ficoll-Paque density centrifugation, and T-cell immunophenotyping was done by flow cytometric analysis. Results In patients with NSV, we observed an imbalance in T-cell immunophenotype, characterized by an increase in Th1 (p < 0.0001) and Th17 cells (p = 0.01). There is no difference in relative percentage of Th2/Treg cells, as compared to the healthy controls (p > 0.05). Conclusions There is a significant immune-dysregulation with a preponderance of circulatory Th1/Th17 phenotype in NSV patients.
Collapse
|
32
|
Interleukin 4 Moderately Affects Competence of Pluripotent Stem Cells for Myogenic Conversion. Int J Mol Sci 2019; 20:ijms20163932. [PMID: 31412558 PMCID: PMC6720909 DOI: 10.3390/ijms20163932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
Pluripotent stem cells convert into skeletal muscle tissue during teratoma formation or chimeric animal development. Thus, they are characterized by naive myogenic potential. Numerous attempts have been made to develop protocols enabling efficient and safe conversion of pluripotent stem cells into functional myogenic cells in vitro. Despite significant progress in the field, generation of myogenic cells from pluripotent stem cells is still challenging—i.e., currently available methods require genetic modifications, animal-derived reagents, or are long lasting—and, therefore, should be further improved. In the current study, we investigated the influence of interleukin 4, a factor regulating inter alia migration and fusion of myogenic cells and necessary for proper skeletal muscle development and maintenance, on pluripotent stem cells. We assessed the impact of interleukin 4 on proliferation, selected gene expression, and ability to fuse in case of both undifferentiated and differentiating mouse embryonic stem cells. Our results revealed that interleukin 4 slightly improves fusion of pluripotent stem cells with myoblasts leading to the formation of hybrid myotubes. Moreover, it increases the level of early myogenic genes such as Mesogenin1, Pax3, and Pax7 in differentiating embryonic stem cells. Thus, interleukin 4 moderately enhances competence of mouse pluripotent stem cells for myogenic conversion.
Collapse
|
33
|
Saeki M, Nishimura T, Kitamura N, Hiroi T, Mori A, Kaminuma O. Potential Mechanisms of T Cell-Mediated and Eosinophil-Independent Bronchial Hyperresponsiveness. Int J Mol Sci 2019; 20:ijms20122980. [PMID: 31216735 PMCID: PMC6627885 DOI: 10.3390/ijms20122980] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Bronchial asthma is a chronic disease characterized by reversible airway obstruction, mucus production, and bronchial hyperresponsiveness (BHR). Although Th2 cell-mediated eosinophilic inflammation is an important disease mechanism in the majority of patients with bronchial asthma, recent studies suggest the possible development of Th2-independent airway inflammation and BHR. These non-Th2 endotype patients seem to consist of multiple subgroups, and often do not respond to inhaled corticosteroids. Therefore, to understand the pathogenesis of asthma, it is important to characterize these non-Th2 subgroups. Recently, we demonstrated that Th9 cells induce eosinophil infiltration and eosinophil-independent BHR, and Th9 cells-mediated BHR may be resistant to glucocorticoid. In this review, we summarize the contribution of several T cell subsets in the development of bronchial asthma and introduce our recent study demonstrating Th9 cell-mediated and eosinophil-independent BHR.
Collapse
Affiliation(s)
- Mayumi Saeki
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | - Tomoe Nishimura
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | - Noriko Kitamura
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | - Takachika Hiroi
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | - Akio Mori
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa 252-0392, Japan.
| | - Osamu Kaminuma
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa 252-0392, Japan.
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-0037, Japan.
- Center for Life Science Research, University of Yamanashi, Yamanashi 400-8510, Japan.
| |
Collapse
|
34
|
Huber M, Cato ACB, Ainooson GK, Freichel M, Tsvilovskyy V, Jessberger R, Riedlinger E, Sommerhoff CP, Bischoff SC. Regulation of the pleiotropic effects of tissue-resident mast cells. J Allergy Clin Immunol 2019; 144:S31-S45. [PMID: 30772496 DOI: 10.1016/j.jaci.2019.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/18/2022]
Abstract
Mast cells (MCs), which are best known for their detrimental role in patients with allergic diseases, act in a diverse array of physiologic and pathologic functions made possible by the plurality of MC types. Their various developmental avenues and distinct sensitivity to (micro-) environmental conditions convey extensive heterogeneity, resulting in diverse functions. We briefly summarize this heterogeneity, elaborate on molecular determinants that allow MCs to communicate with their environment to fulfill their tasks, discuss the protease repertoire stored in secretory lysosomes, and consider different aspects of MC signaling. Furthermore, we describe key MC governance mechanisms (ie, the high-affinity receptor for IgE [FcεRI]), the stem cell factor receptor KIT, the IL-4 system, and both Ca2+- and phosphatase-dependent mechanisms. Finally, we focus on distinct physiologic functions, such as chemotaxis, phagocytosis, host defense, and the regulation of MC functions at the mucosal barriers of the lung, gastrointestinal tract, and skin. A deeper knowledge of the pleiotropic functions of MC mediators, as well as the molecular processes of MC regulation and communication, should enable us to promote beneficial MC traits in physiology and suppress detrimental MC functions in patients with disease.
Collapse
Affiliation(s)
- Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Andrew C B Cato
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - George K Ainooson
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Rolf Jessberger
- Institute for Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Eva Riedlinger
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | | | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
35
|
Islam R, Mizuguchi H, Shaha A, Nishida K, Yabumoto M, Ikeda H, Fujino H, Kitamura Y, Fukui H, Takeda N. Effect of wild grape on the signaling of histamine H 1 receptor gene expression responsible for the pathogenesis of allergic rhinitis. THE JOURNAL OF MEDICAL INVESTIGATION 2019; 65:242-250. [PMID: 30282868 DOI: 10.2152/jmi.65.242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
As expression level of allergic disease-sensitive genes are correlated with allergic symptom severity, suppression of these gene expressions could be good therapeutics. We have demonstrated that PKCδ signaling and NFAT signaling, involve in histamine H1 receptor (H1R) and IL-9 gene expressions, respectively, are responsible for the pathogenesis of allergic rhinitis. We explore anti-allergic compounds that suppress these signaling pathways and found that wild grape (WG) contains such compounds. Here, we investigated the effect of WG hot water extract (WGE) on the signaling pathways for PKCδ-mediated H1R and NFAT-mediated IL-9 gene expressions. WGE suppressed histamine/PMA-induced H1R gene up-regulation in HeLa cells. Toluene-2,4-diisocyanate (TDI)-induced H1R mRNA elevation in TDI-sensitized rats was also suppressed by WGE treatment. Treatment with WGE in combination with Awa-tea, suppresses NFAT signaling-mediated IL-9 gene, markedly alleviated nasal symptoms. Furthermore, WGE suppressed PMA-induced IL-33 gene up-regulation in Swiss 3T3 cells. Data suggest that combination of WGE, suppresses PKCδ signaling with Awa-tea, suppresses NFAT signaling would have distinct clinical and therapeutic advantages as a substitute for anti-allergic drugs. In addition, as the expression level of IL-33 mRNA was correlated with the blood eosinophils number in patients with pollinosis, WG could alleviate eosinophilic inflammation through the suppression of IL-33 gene expression. J. Med. Invest. 65:242-250, August, 2018.
Collapse
Affiliation(s)
- Rezwanul Islam
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | | | - Aurpita Shaha
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Kohei Nishida
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | | | | | - Hiromichi Fujino
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Yoshiaki Kitamura
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Hiroyuki Fukui
- Department of Molecular Studies for Incurable Diseases, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Noriaki Takeda
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
36
|
Shaha A, Mizuguchi H, Kitamura Y, Fujino H, Yabumoto M, Takeda N, Fukui H. Effect of Royal Jelly and Brazilian Green Propolis on the Signaling for Histamine H 1 Receptor and Interleukin-9 Gene Expressions Responsible for the Pathogenesis of the Allergic Rhinitis. Biol Pharm Bull 2018; 41:1440-1447. [PMID: 30175778 DOI: 10.1248/bpb.b18-00325] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The significant correlation between nasal symptom scores and level of histamine H1 receptor (H1R) mRNA in nasal mucosa was observed in patients with pollinosis, suggesting that H1R gene is an allergic disease sensitive gene. We demonstrated that H1R and interleukin (IL)-9 gene are the allergic rhinitis (AR)-sensitive genes and protein kinase Cδ (PKCδ) signaling and nuclear factor of activated T-cells (NFAT) signaling are involved in their expressions, respectively. Honey bee products have been used to treat allergic diseases. However, their pathological mechanism remains to be elucidated. In the present study, we investigated the mechanism of the anti-allergic effect of royal jelly (RJ) and Brazilian green propolis (BGPP). Treatment with RJ and BGPP decreased in the number of sneezing on toluene 2,4-diissocyanate (TDI)-stimulated rats. The remarkable suppression of H1R mRNA in nasal mucosa was observed. RJ and BGPP also suppressed the expression of IL-9 gene. RJ and BGPP suppressed phorbol-12-myristate-13-acetate-induced Tyr311 phosphorylation of PKCδ in HeLa cells. In RBL-2H3 cells, RJ and BGPP also suppressed NFAT-mediated IL-9 gene expression. These results suggest that RJ and BGPP improve allergic symptoms by suppressing PKCδ and NFAT signaling pathways, two important signal pathways for the AR pathogenesis, and suggest that RJ and BGPP could be good therapeutics against AR.
Collapse
Affiliation(s)
- Aurpita Shaha
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | | | - Yoshiaki Kitamura
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Hiromichi Fujino
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | | | - Noriaki Takeda
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Hiroyuki Fukui
- Department of Molecular Studies for Incurable Diseases, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
37
|
Reinhart R, Kaufmann T. IL-4 enhances survival of in vitro-differentiated mouse basophils through transcription-independent signaling downstream of PI3K. Cell Death Dis 2018; 9:713. [PMID: 29915306 PMCID: PMC6006176 DOI: 10.1038/s41419-018-0754-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 01/09/2023]
Abstract
Interleukin 4 (IL-4) is a critical cytokine implicated with TH2 immune reactions, which are linked to pathologic conditions of allergic diseases. In that context, the initiation of TH2 responses can critically depend on early basophil-derived IL-4 to activate T-cell responses, which then amplify IL-4 secretion. As a pleiotropic cytokine, IL-4 acts on a broad variety of hematopoietic and non-hematopoietic cells. However, the effect of IL-4 on basophils themselves, which are emerging as relevant players in allergic as well as autoimmune diseases, was only scarcely addressed so far. Here we used in vitro-differentiated mouse basophils to investigate the direct effects of IL-4 on cellular viability and surface expression of the high-affinity receptor for IgE, FcεRI. We observed that IL-4 elicits pronounced pro-survival signaling in basophils, delaying spontaneous apoptosis in vitro to a degree comparable to the known pro-survival effects of IL-3. Our data indicate that IL-4-mediated survival depends on PI3K/AKT signaling and—in contrast to IL-3—seems to be largely independent of transcriptional changes but effectuated by post-translational mechanisms affecting BCL-2 family members among others. Additionally, we found that IL-4 signaling has a stabilizing effect on the surface expression levels of the critical basophil activation receptor FcεRI. In summary, our findings indicate an important regulatory role of IL-4 on in vitro-differentiated mouse basophils enhancing their survival and stabilizing FcεRI receptor expression through PI3K-dependent signaling. A better understanding of the regulation of basophil survival will help to define promising targets and consequently treatment strategies in basophil-driven diseases.
Collapse
Affiliation(s)
- Ramona Reinhart
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland.
| |
Collapse
|
38
|
Abstract
Immunoglobulin E-mediated food allergy is rapidly developing into a global health problem. Publicly available therapeutic intervention strategies are currently restricted to allergen avoidance and emergency treatments. To gain a better understanding of the disease pathophysiology so that new therapies can be developed, major research efforts have been put into studying food allergy in mice. Animal models should reflect the human pathology as closely as possible to allow for a rapid translation of basic science observations to the bedside. In this regard, experimental models of food allergy provide significant challenges for research because of discrepancies between the presentation of disease in humans and mice. The goal of this review is to give a summary of commonly used murine disease models and to discuss how they relate to the human condition. We will focus on epicutaneous sensitization models, on mouse strains that sensitize spontaneously to food as seen in humans, and on models in humanized animals. In summary, expanding the research toolbox of experimental food allergy provides an important step toward closing gaps in our understanding of the derailing immune mechanism that underlies the human disease. The availability of additional experimental models will provide exciting opportunities to discover new intervention points for the treatment of food allergies. (Cell Mol Gastroenterol Hepatol 2018;x:x).
Collapse
Key Words
- Allergen Challenge
- Allergen Sensitization
- Anaphylaxis
- EPIT, epicutaneous immunotherapy
- Epictutaneous Sensitization
- FCER1A, high-affinity immunoglobulin epsilon receptor subunit alpha
- FCERIA
- FcεRI, high-affinity immunoglobulin E receptor
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HSC, hematopoietic stem cell
- Humanized Model
- IL, interleukin
- Ig, immunoglobulin
- IgE
- LCT, long chain triglycerides
- MCPT, mouse mast cell protease
- MCT, medium chain triglycerides
- Murine Models of Food Allergy
- OIT, oral immunotherapy
- PBMC, peripheral blood mononuclear cell
- Spontaneous Sensitization
- TSLP, thymic stromal lymphopoietin
- Th, T helper
- Treg, regulatory T cell
- WASP, Wiskott–Aldrich syndrome protein
Collapse
|
39
|
Caslin HL, Kiwanuka KN, Haque TT, Taruselli MT, MacKnight HP, Paranjape A, Ryan JJ. Controlling Mast Cell Activation and Homeostasis: Work Influenced by Bill Paul That Continues Today. Front Immunol 2018; 9:868. [PMID: 29755466 PMCID: PMC5932183 DOI: 10.3389/fimmu.2018.00868] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/09/2018] [Indexed: 01/13/2023] Open
Abstract
Mast cells are tissue resident, innate immune cells with heterogenous phenotypes tuned by cytokines and other microenvironmental stimuli. Playing a protective role in parasitic, bacterial, and viral infections, mast cells are also known for their role in the pathogenesis of allergy, asthma, and autoimmune diseases. Here, we review factors controlling mast cell activation, with a focus on receptor signaling and potential therapies for allergic disease. Specifically, we will discuss our work with FcεRI and FγR signaling, IL-4, IL-10, and TGF-β1 treatment, and Stat5. We conclude with potential therapeutics for allergic disease. Much of these efforts have been influenced by the work of Bill Paul. With many mechanistic targets for mast cell activation and different classes of therapeutics being studied, there is reason to be hopeful for continued clinical progress in this area.
Collapse
Affiliation(s)
- Heather L Caslin
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Kasalina N Kiwanuka
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Tamara T Haque
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Marcela T Taruselli
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - H Patrick MacKnight
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Anuya Paranjape
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
40
|
Buhner S, Barki N, Greiter W, Giesbertz P, Demir IE, Ceyhan GO, Zeller F, Daniel H, Schemann M. Calcium Imaging of Nerve-Mast Cell Signaling in the Human Intestine. Front Physiol 2017; 8:971. [PMID: 29238306 PMCID: PMC5712982 DOI: 10.3389/fphys.2017.00971] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Introduction: It is suggested that an altered microenvironment in the gut wall alters communication along a mast cell nerve axis. We aimed to record for the first time signaling between mast cells and neurons in intact human submucous preparations. Methods: We used the Ca2+ sensitive dye Fluo-4 AM to simultaneously image changes in intracellular calcium [Ca+2]i (%ΔF/F) in neurons and mast cells. Data are presented as median with interquartile ranges (25/75%). Results: We recorded nerve responses in 29 samples upon selective activation of 223 mast cells by IgE receptor cross linking with the antibody mAb22E7. Mast cells responded to mAb22E7 with a median [Ca+2]i increase of 20% (11/39) peaking 90 s (64/144) after the application. Only very few neurons responded and the median percentage of responding neuronal area was 0% (0/5.9). Mast cell activation remained in the presence of the fast sodium channel blocker tetrodotoxin. Specific neuronal activation by transmural electrical field stimulation (EFS) in 34 samples evoked instantaneously [Ca+2]i signals in submucous neurons. This was followed by a [Ca+2]i peak response of 8%ΔF/F (4/15) in 33% of 168 mast cells in the field of view. The mast cell response was abolished by the nerve blocker tetrododoxin, reduced by the Calcitonin Gene-Related Peptide receptor 1 antagonist BIBN-4096 and the Vasoactive Intestinal Peptide receptor antagonist PG97-269, but not by blockade of the neurokinin receptors 1-3. Conclusion: The findings revealed bidirectional signaling between mast cells and submucous neurons in human gut. In our macroscopically normal preparations a nerve to mast cell signaling was very prominent whereas a mast cell to nerve signaling was rather rare.
Collapse
Affiliation(s)
- Sabine Buhner
- Human Biology, Technische Universität München, Freising, Germany
| | - Natasja Barki
- Human Biology, Technische Universität München, Freising, Germany
| | - Wolfgang Greiter
- Human Biology, Technische Universität München, Freising, Germany
| | - Pieter Giesbertz
- Molecular Nutrition Unit, Technische Universität München, Freising, Germany
| | - Ihsan E. Demir
- Department of General Surgery, University Hospital Rechts der Isar, Technische Universität München, Munich, Germany
| | - Güralp O. Ceyhan
- Department of General Surgery, University Hospital Rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Hannelore Daniel
- Molecular Nutrition Unit, Technische Universität München, Freising, Germany
| | - Michael Schemann
- Human Biology, Technische Universität München, Freising, Germany
| |
Collapse
|
41
|
Czarzasta J, Meller K, Andronowska A, Jana B. Lipopolysaccharide and cytokines modulate leukotriene (LT)B4and LTC4production by porcine endometrial endothelial cells. Reprod Domest Anim 2017; 53:101-109. [DOI: 10.1111/rda.13077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/31/2017] [Indexed: 01/10/2023]
Affiliation(s)
- J Czarzasta
- Division of Reproductive Biology; Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences; Olsztyn Poland
| | - K Meller
- Division of Reproductive Biology; Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences; Olsztyn Poland
| | - A Andronowska
- Division of Reproductive Biology; Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences; Olsztyn Poland
| | - B Jana
- Division of Reproductive Biology; Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences; Olsztyn Poland
| |
Collapse
|
42
|
Matsui T, Yamashita H, Mori M, Tanaka H, Inagaki N. Eppikajutsuto Protects against Food Allergy Induced by Ovalbumin in a Murine Model. Int Arch Allergy Immunol 2017; 173:71-83. [PMID: 28578324 DOI: 10.1159/000472715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/23/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Currently, there are no efficient medications available for the prevention and treatment of food allergy (FA). Herbal medicines, including traditional Japanese Kampo medicines (TJKMs), are promising therapeutic drugs. METHODS We screened 18 TJKMs for treatment of FA symptoms in a mouse FA model induced by ovalbumin (OVA). BALB/c mice were sensitized intraperitoneally by an OVA/aluminum hydroxide gel mixture followed by 4 booster doses of oral OVA and FA symptom induction by 50 mg of OVA. TJKMs were orally administered for 28 days from the day of sensitization to the day before FA symptom induction. Evaluated FA symptoms included a decrease in body temperature and allergic diarrhea. Allergic sensitization was determined by plasma OVA-specific IgE levels. Cytokine mRNA levels in mesenteric lymph nodes, plasma mouse mast cell protease-1, and the number of mast cells in the small and large intestines were analyzed. Additionally, the therapeutic effect of the TJKM eppikajutsuto (EJT) on mast cell degranulation was determined in active anaphylaxis and passive cutaneous anaphylaxis models. RESULTS EJT effectively prevented FA symptoms. Although OVA-specific IgE levels and the intestinal mast cell numbers were not different between the EJT-treated and untreated FA mice, plasma mMcpt1 and IL-4 levels were lower in EJT-treated FA mice than untreated FA mice. EJT could alleviate symptoms in both active and passive anaphylaxis models. CONCLUSION EJT prevented OVA-induced FA symptoms in a mouse model, suggesting that EJT might exert its therapeutic activity via IL-4 suppression and the inhibition of mucosal mast cell degranulation.
Collapse
Affiliation(s)
- Teruaki Matsui
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | | | | |
Collapse
|
43
|
Babina M, Guhl S, Artuc M, Zuberbier T. IL-4 and human skin mast cells revisited: reinforcement of a pro-allergic phenotype upon prolonged exposure. Arch Dermatol Res 2016; 308:665-670. [PMID: 27650274 DOI: 10.1007/s00403-016-1688-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/04/2016] [Accepted: 09/13/2016] [Indexed: 01/15/2023]
Abstract
Mast cells (MCs), unique cellular elements of the body, are commonly associated with IgE-mediated reactions and manifestations of Th2-type immunity. A key characteristic of the lineage is its heterogeneity, with subsets displaying significant variation depending on maturation stage, species, tissue, microenvironment and other. Heterogeneity also affects MC responses to extracellular cues. Indeed, IL-4, the signature cytokine of Th2-immunity, can affect MCs in opposing ways ranging from the induction of apoptosis to positive regulation of lineage characteristics. It is unknown, however, whether IL-4 alters the phenotype of terminally differentiated human cutaneous MCs. Using our well-established technique for homogeneous purification of human skin MCs, we now report that prolonged contact with IL-4 not only increases MC expansion, but also phenotypically and functionally re-shapes the cells. FcεRI cell surface expression, FcεRIα-specific mRNA and FcεRI-mediated histamine release are all augmented by IL-4, while histamine release elicited by the non-immunological stimulus, substance P, remains unaffected. IL-4's potential to mold MCs is broad and similarly detectable across donors. Intriguingly, IL-4 impacts granule-associated mediators, especially histamine whose synthesis is boosted in the presence of IL-4. To our knowledge, an increase in histamine production by IL-4 has not been described yet for any type of MCs, but may well contribute to its pro-allergic effect given the significance of this biogenic amine to allergic symptoms. Collectively, IL-4 alters human skin MCs after long-term exposure mimicking chronic disorders by strengthening MC numbers and intensifying processes associated with allergic inflammation.
Collapse
Affiliation(s)
- Magda Babina
- Department of Dermatology and Allergy, Charité Campus Mitte, Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Sven Guhl
- Department of Dermatology and Allergy, Charité Campus Mitte, Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Metin Artuc
- Department of Dermatology and Allergy, Charité Campus Mitte, Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Torsten Zuberbier
- Department of Dermatology and Allergy, Charité Campus Mitte, Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
44
|
Rizzi A, Crivellato E, Benagiano V, Ribatti D. Mast cells in human digestive tube in normal and pathological conditions. Immunol Lett 2016; 177:16-21. [DOI: 10.1016/j.imlet.2016.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/20/2016] [Accepted: 07/04/2016] [Indexed: 01/15/2023]
|
45
|
Bauer K, Hadzijusufovic E, Cerny-Reiterer S, Hoermann G, Reifinger M, Pirker A, Valent P, Willmann M. IL-4 downregulates expression of the target receptor CD30 in neoplastic canine mast cells. Vet Comp Oncol 2016; 15:1240-1256. [PMID: 27507155 DOI: 10.1111/vco.12260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/24/2016] [Accepted: 07/11/2016] [Indexed: 12/15/2022]
Abstract
CD30 is a novel therapeutic target in human mast cell (MC) neoplasms. In this 'comparative oncology' study, we examined CD30 expression and regulation in neoplastic canine MC using a panel of immunomodulatory cytokines [interleukin-2 (IL-2), IL-4, IL-5, IL-6, IL-13 and stem cell factor (SCF)] and the canine mastocytoma cell lines NI-1 and C2. Of all cytokines tested IL-4 was found to downregulate expression of CD30 in NI-1 and C2 cells. We also found that the CD30-targeting antibody-conjugate brentuximab vedotin induces growth inhibition and apoptosis in both MC lines. Next, we asked whether IL-4-induced downregulation of CD30 interferes with brentuximab vedotin-effects. Indeed, pre-incubation of NI-1 cells with IL-4 decreased responsiveness towards brentuximab vedotin. To overcome IL-4-mediated resistance, we applied drug combinations and found that brentuximab vedotin synergizes with the Kit-targeting drugs masitinib and PKC412 in inhibiting growth of NI-1 and C2 cells. In summary, CD30 is a new marker and IL-4-regulated target in neoplastic canine MC.
Collapse
Affiliation(s)
- K Bauer
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - E Hadzijusufovic
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Department/Clinic for Companion Animals and Horses, Clinic for Small Animals, Clinical Unit of Internal Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - S Cerny-Reiterer
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - G Hoermann
- Department for Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - M Reifinger
- Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - A Pirker
- Department/Clinic for Companion Animals and Horses, Clinic for Small Animals, Clinical Unit of Surgery, University of Veterinary Medicine Vienna, Vienna, Austria
| | - P Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - M Willmann
- Department/Clinic for Companion Animals and Horses, Clinic for Small Animals, Clinical Unit of Internal Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
46
|
Mast cells in gastrointestinal disorders. Eur J Pharmacol 2016; 778:139-45. [DOI: 10.1016/j.ejphar.2016.02.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 01/01/2023]
|
47
|
Ribatti D. The development of human mast cells. An historical reappraisal. Exp Cell Res 2016; 342:210-5. [PMID: 26997528 DOI: 10.1016/j.yexcr.2016.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/09/2016] [Accepted: 03/16/2016] [Indexed: 12/01/2022]
Abstract
The understanding of mast cell (MC) differentiation is derived mainly from in vitro studies of different stages of stem and progenitor cells. The hematopoietic lineage development of human MCs is unique compared to other myeloid-derived cells. Human MCs originate from CD34(+)/CD117(+)/CD13(+)multipotent hematopoietic progenitors, which undergo transendothelial recruitment into peripheral tissues, where they complete differentiation. Stem cell factor (SCF) is a major chemotactic factor for MCs and their progenitors. SCF also elicits cell-cell and cell-substratum adhesion, facilitates the proliferation, and sustains the survival, differentiation, and maturation, of MCs. Because MC maturation is influenced by local microenvironmental factors, different MC phenotypes can develop in different tissues and organs.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; National Cancer Institute "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
48
|
Kolkhir P, Balakirski G, Merk HF, Olisova O, Maurer M. Chronic spontaneous urticaria and internal parasites--a systematic review. Allergy 2016; 71:308-22. [PMID: 26648083 DOI: 10.1111/all.12818] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2015] [Indexed: 01/09/2023]
Abstract
Chronic spontaneous urticaria (CSU) is defined as persistent wheals, angioedema, or both lasting for >6 weeks due to known or unknown causes. Some epidemiological studies and case reports suggest that internal parasite infections (PI) can cause CSU. Here, we provide a systematic overview of published findings on the prevalence and relevance of PI in CSU and we discuss possible pathomechanisms. The prevalence of PI in CSU was investigated by 39 independent studies and comorbidity reportedly ranged from 0 to 75.4% (two-thirds of these studies reported infection rates of 10% or less). The prevalence of PI in adult and pediatric CSU patients ranged from 0% to 75.4% and from 0% to 37.8%, respectively. CSU patients were more often diagnosed with protozoa and had a significantly higher risk of toxocariasis seropositivity and Anisakis simplex sensitization when compared to healthy controls. Patients with chronic urticaria more frequently had seropositivity of fasciolosis, Anisakis simplex sensitization, and the presence of Blastocystis hominis allele 34 (ST3) as compared with control subjects. In 21 studies, efficacy of treatment with antiparasitic drugs ranged from 0 to 100% (35.7% of 269 CSU patients benefitted). In 9 (42.8%) of 21 studies, more than 50% of efficacy was observed. The reported rate of urticaria comorbidity in PI patients in 18 independent studies is 1-66.7%. Urticaria including CSU might be a quite common symptom of strongyloidiasis and blastocystosis. Pathogenic mechanisms in CSU due to PI may include specific IgE, Th2 cytokine skewing, eosinophils, activation of the complement, and the coagulation systems.
Collapse
Affiliation(s)
- P. Kolkhir
- Department of Dermatology and Venereology; Sechenov First Moscow State Medical University; Moscow Russia
| | - G. Balakirski
- Department of Dermatology and Allergology; University Hospital of Aachen; Aachen Germany
| | - H. F. Merk
- Department of Dermatology and Allergology; University Hospital of Aachen; Aachen Germany
| | - O. Olisova
- Department of Dermatology and Venereology; Sechenov First Moscow State Medical University; Moscow Russia
| | - M. Maurer
- Department of Dermatology and Allergy; Charité-Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
49
|
McLeod JJA, Baker B, Ryan JJ. Mast cell production and response to IL-4 and IL-13. Cytokine 2015; 75:57-61. [PMID: 26088754 PMCID: PMC4532630 DOI: 10.1016/j.cyto.2015.05.019] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 11/24/2022]
Abstract
IL-4 was identified as the first cytokine to be produced by mast cells and is responsible for promoting mast cell IL-13 production. IL-4 and IL-13 play a prominent role in stimulating and maintaining the allergic response. As closely related genes, IL-4 and IL-13 share a common receptor subunit, IL-4Rα, necessary for signaling. Here we summarize the literature on mast cell activation associated with IL-4 and IL-13 production, including downstream signaling. We also describe the positive and negative roles each cytokine plays in mast cell immunity and detail the differences that exist between mouse and human mast cell responses to IL-4 and IL-13.
Collapse
Affiliation(s)
- Jamie J A McLeod
- Department of Biology, Virginia Commonwealth University Richmond, VA 23284, United States.
| | - Bianca Baker
- Department of Biology, Virginia Commonwealth University Richmond, VA 23284, United States
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University Richmond, VA 23284, United States
| |
Collapse
|
50
|
rPbPga1 from Paracoccidioides brasiliensis Activates Mast Cells and Macrophages via NFkB. PLoS Negl Trop Dis 2015; 9:e0004032. [PMID: 26317855 PMCID: PMC4552726 DOI: 10.1371/journal.pntd.0004032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022] Open
Abstract
Background The fungus Paracoccidioides brasiliensis is the leading etiological agent of paracoccidioidomycosis (PCM), a systemic granulomatous disease that typically affects the lungs. Cell wall components of P. brasiliensis interact with host cells and influence the pathogenesis of PCM. In yeast, many glycosylphosphatidylinositol (GPI)-anchored proteins are important in the initial contact with the host, mediating host-yeast interactions that culminate with the disease. PbPga1 is a GPI anchored protein located on the surface of the yeast P. brasiliensis that is recognized by sera from PCM patients. Methodology/Principal Findings Endogenous PbPga1 was localized to the surface of P. brasiliensis yeast cells in the lungs of infected mice using a polyclonal anti-rPbPga1 antibody. Furthermore, macrophages stained with anti-CD38 were associated with P. brasiliensis containing granulomas. Additionally, rPbPga1 activated the transcription factor NFkB in the macrophage cell line Raw 264.7 Luc cells, containing the luciferase gene downstream of the NFkB promoter. After 24 h of incubation with rPbPga1, alveolar macrophages from BALB/c mice were stimulated to release TNF-α, IL-4 and NO. Mast cells, identified by toluidine blue staining, were also associated with P. brasiliensis containing granulomas. Co-culture of P. Brasiliensis yeast cells with RBL-2H3 mast cells induced morphological changes on the surface of the mast cells. Furthermore, RBL-2H3 mast cells were degranulated by P. brasiliensis yeast cells, but not by rPbPga1, as determined by the release of beta-hexosaminidase. However, RBL-2H3 cells activated by rPbPga1 released the inflammatory interleukin IL-6 and also activated the transcription factor NFkB in GFP-reporter mast cells. The transcription factor NFAT was not activated when the mast cells were incubated with rPbPga1. Conclusions/Significance The results indicate that PbPga1 may act as a modulator protein in PCM pathogenesis and serve as a useful target for additional studies on the pathogenesis of P. brasiliensis. Paracoccidioidomycosis (PCM), one of the most prevalent mycoses in Latin America, is caused by the thermodimorphic fungus Paracoccidioides brasiliensis. P. brasiliensis is thought to infect the host through the respiratory tract. Cell wall components of P. brasiliensis interact with host cells producing granulomas, thus influencing the pathogenesis of PCM. PbPga1 is an O-glycosylated, GPI-anchored protein that is localized on the yeast cell surface and is up-regulated in the pathogenic yeast form. GPI anchored proteins are involved in cell-cell and cell-tissue adhesion and have a key role in the interaction between fungal and host cells. In the present study, the authors show that both macrophages and mast cells are associated with the P.brasiliensis granulomas. Furthermore, recombinant PbPga1 was able to activate both alveolar macrophages and mast cells via the transcription factor NFkB to release inflammatory mediators. The results of this study indicate that the surface antigen, PbPga1, may play an important role in PCM pathogenesis by activating macrophages and mast cells. Additionally, PbPga1 may be a target for new strategies for detecting and treating PCM.
Collapse
|