1
|
Dige MS, Gurao A, Mehrotra A, Singh MK, Kumar A, Kaushik R, Kataria RS, Rout PK. Comparative transcriptomic and co-expression network analysis identifies key gene modules involved in heat stress responses in goats. Int J Biol Macromol 2025; 305:140975. [PMID: 39956229 DOI: 10.1016/j.ijbiomac.2025.140975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Heat stress significantly affects livestock production, particularly in tropical regions where temperatures often exceed animals' comfort zones. This study investigates the molecular mechanisms of heat stress tolerance in Jamunapari goats (Capra hircus) through transcriptomic analysis, gene co-expression network construction, and hub gene identification. Female goats (1-2 years old) were monitored during high Thermal Humidity Index (THI) in June and normal THI in March. Based on heat tolerance and physiological parameters, goats were classified into Thermo-Neutral (TNG) and Heat-Stress (EHSG) groups. Differential gene expression analysis revealed 133 upregulated genes and 501 downregulated genes in the EHSG group. Upregulated pathways included NF-kappa B signaling, MAPK signaling, and cytokine-cytokine receptor interactions, while downregulated genes were linked to IL-17 signaling and platelet activation. Notably, the small heat shock proteins (CRYAB) and aquaporins (AQP11) were significantly downregulated. Weighted Gene Co-expression Network Analysis (WGCNA) identified key gene modules associated with Iberia Heat Tolerance Coefficient and respiration rate. Hub genes such as TUFM, TOMM40, BCSL1, VCL, VASP, ITGB, and VWF were critical for adaptation to heat stress. These findings enhance our understanding of heat stress resilience, offering potential targets for breeding programs aimed at improving livestock tolerance to heat stress in tropical environments.
Collapse
Affiliation(s)
- Mahesh Shivanand Dige
- Division of Animal Genetic Resources, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India.
| | - Ankita Gurao
- Division of Animal Genetic Resources, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | | | - Manoj Kumar Singh
- Division of Animal Genetics and Breeding, ICAR- Central Institute for Research on Goats, Makhdoom, Uttar Pradesh, India
| | - Amit Kumar
- Division of Animal Genetics and Breeding, ICAR- Indian Veterinary Research Institute, Izzatnagar, Uttar Pradesh, India
| | - Rakesh Kaushik
- Division of Animal Genetics and Breeding, ICAR- Central Institute for Research on Goats, Makhdoom, Uttar Pradesh, India
| | - Ranjit Singh Kataria
- Division of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - Pramod Kumar Rout
- Division of Animal Genetics and Breeding, ICAR- Central Institute for Research on Goats, Makhdoom, Uttar Pradesh, India
| |
Collapse
|
2
|
Jang J, Yu H, Oh EB, Park JW, Kim S, Kim T, Sohn J, Jin BR, Chang TS. Targeting NADPH Oxidase with APX-115: Suppression of Platelet Activation and Thrombotic Response. Antioxid Redox Signal 2025. [PMID: 40183134 DOI: 10.1089/ars.2024.0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Aims: NADPH oxidase (NOX)-derived reactive oxygen species (ROS) are critical for platelet activation and thrombus formation. We hypothesized that inhibiting NOX-mediated ROS production with a pan-NOX inhibitor, APX-115, could effectively suppress platelet activation and thrombus formation, potentially serving as a novel antiplatelet therapeutic. This study aimed to explore the effects of APX-115 on human platelet functional responses and ROS-mediated signaling pathways. Results: APX-115 inhibited intracellular and extracellular ROS production in collagen-stimulated platelets, suppressing aggregation, P-selectin exposure, and ATP release. By preserving protein tyrosine phosphatase activity, APX-115 reduced tyrosine phosphorylation-dependent pathways inhibition, including spleen tyrosine kinase, LAT, Vav1, Bruton's tyrosine kinase, and phospholipase Cγ2, leading to decreased PKC activation and calcium mobilization. APX-115 also suppressed collagen-induced integrin αIIbβ3 activation, accompanied by elevated cGMP and vasodilator-stimulated phosphoprotein phosphorylation levels. In addition, APX-115 reduced p38 MAPK and ERK5 activation, leading to diminished phospholipase A2 phosphorylation, thromboxane production, and the exposure of procoagulant phosphatidylserine. These inhibitory effects extended to thrombus development caused by platelet adherence under shear and arterial thrombosis without prolonging bleeding time in murine models. Innovation: This study is the first to demonstrate that APX-115 inhibits NOX-mediated ROS production, platelet activation, and thrombus formation. By uncovering its effects on collagen receptor glycoprotein VI-mediated pathways, the work highlights the promise of APX-115 as an antiplatelet and antithrombotic agent. Conclusion: Our findings highlight the therapeutic potential of APX-115 in treating thrombotic and cardiovascular disorders by targeting NOX-mediated ROS production to mitigate platelet hyperreactivity and thrombus formation. Antioxid. Redox Signal. 00, 000-000. [Figure: see text].
Collapse
Affiliation(s)
- Joara Jang
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyunseong Yu
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun Bee Oh
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ji Won Park
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Solee Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Taeryeong Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jisue Sohn
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Bo-Ram Jin
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tong-Shin Chang
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Oh EB, Shin HJ, Yu H, Jang J, Park JW, Chang TS. NADPH oxidase 1/4 dual inhibitor setanaxib suppresses platelet activation and thrombus formation. Life Sci 2024; 357:123061. [PMID: 39293714 DOI: 10.1016/j.lfs.2024.123061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
AIMS The production of reactive oxygen species (ROS) by NADPH oxidase (NOX) is able to induce platelet activation, making NOX a promising target for antiplatelet therapy. In this study, we examined the effects of setanaxib, a dual NOX1/4 inhibitor, on human platelet function and ROS-related signaling pathways. MATERIALS AND METHODS In collagen-stimulated human platelets, aggregometry, assessment of ROS and Ca2+, immunoblotting, ELISA, flow cytometry, platelet adhesion assay, and assessment of mouse arterial thrombosis were performed in this study. KEY FINDINGS Setanaxib inhibited both intracellular and extracellular ROS production in collagen-activated platelets. Additionally, setanaxib significantly inhibited collagen-induced platelet aggregation, P-selectin exposure from α-granule release, and ATP release from dense granules. Setanaxib blocked the specific tyrosine phosphorylation-mediated activation of Syk, LAT, Vav1, and Btk within collagen receptor signaling pathways, leading to reduced activation of PLCγ2, PKC, and Ca2+ mobilization. Setanaxib also inhibited collagen-induced activation of integrin αIIbβ3, which is linked to increased cGMP levels and VASP phosphorylation. Furthermore, setanaxib suppressed collagen-induced p38 MAPK activation, resulting in decreased phosphorylation of cytosolic PLA2 and reduced TXA2 generation. Setanaxib also inhibited ERK5 activation, affecting the exposure of procoagulant phosphatidylserine. Setanaxib reduced thrombus formation under shear conditions by preventing platelet adhesion to collagen. Finally, in vivo administration of setanaxib in animal models led to the inhibition of arterial thrombosis. SIGNIFICANCE This study is the first to show that setanaxib suppresses ROS generation, platelet activation, and collagen-induced thrombus formation, suggesting its potential use in treating thrombotic or cardiovascular diseases.
Collapse
Affiliation(s)
- Eun Bee Oh
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hye Ji Shin
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hyunseong Yu
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Joara Jang
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ji Won Park
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Tong-Shin Chang
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Chandrasekaran A, Graham K, Stachowiak JC, Rangamani P. Kinetic trapping organizes actin filaments within liquid-like protein droplets. Nat Commun 2024; 15:3139. [PMID: 38605007 PMCID: PMC11009352 DOI: 10.1038/s41467-024-46726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/07/2024] [Indexed: 04/13/2024] Open
Abstract
Several actin-binding proteins (ABPs) phase separate to form condensates capable of curating the actin network shapes. Here, we use computational modeling to understand the principles of actin network organization within VASP condensate droplets. Our simulations reveal that the different actin shapes, namely shells, rings, and mixture states are highly dependent on the kinetics of VASP-actin interactions, suggesting that they arise from kinetic trapping. Specifically, we show that reducing the residence time of VASP on actin filaments reduces degree of bundling, thereby promoting assembly of shells rather than rings. We validate the model predictions experimentally using a VASP-mutant with decreased bundling capability. Finally, we investigate the ring opening within deformed droplets and found that the sphere-to-ellipsoid transition is favored under a wide range of filament lengths while the ellipsoid-to-rod transition is only permitted when filaments have a specific range of lengths. Our findings highlight key mechanisms of actin organization within phase-separated ABPs.
Collapse
Affiliation(s)
- Aravind Chandrasekaran
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, 92093-0411, USA
| | - Kristin Graham
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, 92093-0411, USA.
| |
Collapse
|
5
|
Schnitzler GR, Kang H, Fang S, Angom RS, Lee-Kim VS, Ma XR, Zhou R, Zeng T, Guo K, Taylor MS, Vellarikkal SK, Barry AE, Sias-Garcia O, Bloemendal A, Munson G, Guckelberger P, Nguyen TH, Bergman DT, Hinshaw S, Cheng N, Cleary B, Aragam K, Lander ES, Finucane HK, Mukhopadhyay D, Gupta RM, Engreitz JM. Convergence of coronary artery disease genes onto endothelial cell programs. Nature 2024; 626:799-807. [PMID: 38326615 PMCID: PMC10921916 DOI: 10.1038/s41586-024-07022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
Linking variants from genome-wide association studies (GWAS) to underlying mechanisms of disease remains a challenge1-3. For some diseases, a successful strategy has been to look for cases in which multiple GWAS loci contain genes that act in the same biological pathway1-6. However, our knowledge of which genes act in which pathways is incomplete, particularly for cell-type-specific pathways or understudied genes. Here we introduce a method to connect GWAS variants to functions. This method links variants to genes using epigenomics data, links genes to pathways de novo using Perturb-seq and integrates these data to identify convergence of GWAS loci onto pathways. We apply this approach to study the role of endothelial cells in genetic risk for coronary artery disease (CAD), and discover 43 CAD GWAS signals that converge on the cerebral cavernous malformation (CCM) signalling pathway. Two regulators of this pathway, CCM2 and TLNRD1, are each linked to a CAD risk variant, regulate other CAD risk genes and affect atheroprotective processes in endothelial cells. These results suggest a model whereby CAD risk is driven in part by the convergence of causal genes onto a particular transcriptional pathway in endothelial cells. They highlight shared genes between common and rare vascular diseases (CAD and CCM), and identify TLNRD1 as a new, previously uncharacterized member of the CCM signalling pathway. This approach will be widely useful for linking variants to functions for other common polygenic diseases.
Collapse
Affiliation(s)
- Gavin R Schnitzler
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Helen Kang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Shi Fang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ramcharan S Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Vivian S Lee-Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - X Rosa Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Ronghao Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Tony Zeng
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Katherine Guo
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shamsudheen K Vellarikkal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Aurelie E Barry
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Oscar Sias-Garcia
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Alex Bloemendal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
| | - Glen Munson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Tung H Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Drew T Bergman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Stephen Hinshaw
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathan Cheng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brian Cleary
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Faculty of Computing and Data Sciences, Departments of Biology and Biomedical Engineering, Biological Design Center, and Program in Bioinformatics, Boston University, Boston, MA, USA
| | - Krishna Aragam
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Hilary K Finucane
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Rajat M Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA.
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Jesse M Engreitz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Benz PM, Frömel T, Laban H, Zink J, Ulrich L, Groneberg D, Boon RA, Poley P, Renne T, de Wit C, Fleming I. Cardiovascular Functions of Ena/VASP Proteins: Past, Present and Beyond. Cells 2023; 12:1740. [PMID: 37443774 PMCID: PMC10340426 DOI: 10.3390/cells12131740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Actin binding proteins are of crucial importance for the spatiotemporal regulation of actin cytoskeletal dynamics, thereby mediating a tremendous range of cellular processes. Since their initial discovery more than 30 years ago, the enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family has evolved as one of the most fascinating and versatile family of actin regulating proteins. The proteins directly enhance actin filament assembly, but they also organize higher order actin networks and link kinase signaling pathways to actin filament assembly. Thereby, Ena/VASP proteins regulate dynamic cellular processes ranging from membrane protrusions and trafficking, and cell-cell and cell-matrix adhesions, to the generation of mechanical tension and contractile force. Important insights have been gained into the physiological functions of Ena/VASP proteins in platelets, leukocytes, endothelial cells, smooth muscle cells and cardiomyocytes. In this review, we summarize the unique and redundant functions of Ena/VASP proteins in cardiovascular cells and discuss the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Peter M. Benz
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
| | - Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Hebatullah Laban
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Joana Zink
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Lea Ulrich
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Dieter Groneberg
- Institute of Physiology I, University of Würzburg, 97070 Würzburg, Germany
| | - Reinier A. Boon
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
- Centre of Molecular Medicine, Institute of Cardiovascular Regeneration, Goethe-University, 60596 Frankfurt am Main, Germany
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Centre, 1081 HZ Amsterdam, The Netherlands
| | - Philip Poley
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Thomas Renne
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 VN51 Dublin, Ireland
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
| |
Collapse
|
7
|
de Oliveira MG, Passos GR, de Gomes EDT, Leonardi GR, Zapparoli A, Antunes E, Mónica FZ. Inhibition of multidrug resistance proteins by MK571 restored the erectile function in obese mice through cGMP accumulation. Andrology 2023; 11:611-620. [PMID: 36375168 DOI: 10.1111/andr.13340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/09/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Intracellular levels of cyclic nucleotides can also be controlled by the action of multidrug resistance protein types 4 (MRP4) and 5 (MRP5). To date, no studies evaluated the role of their inhibition in an animal model of erectile dysfunction (ED). OBJECTIVES To evaluate the effect of a 2-week treatment with MK571, an inhibitor of the efflux of cyclic nucleotides in the ED of obese mice. MATERIALS AND METHODS Mice were divided in three groups: (i) lean, (ii) obese, and (iii) obese + MK571. The corpus cavernosum (CC) were isolated, and concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP), and tadalafil in addition to electrical field stimulation (EFS) were carried out in phenylephrine pre-contracted tissues. Expression of ABCC4 and ABCC5, intracellular levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), the protein levels for pVASPSer157 and pVASPSer239 , and the intracavernous pressure (ICP) were also determined. The intracellular and extracellular (supernatant) ratios in CC from obese and lean stimulated with a cGMP-increasing substance (BAY 58-2667) in the absence and presence of MK571 (20 μM, 30 min) were also assessed. RESULTS The treatment with MK571 completely reversed the lower relaxing responses induced by EFS, ACh, SNP, and tadalafil observed in obese mice CC in comparison with untreated obese mice. Cyclic GMP and p-VASPSer239 expression were significantly reduced in CC from obese groups. MK571 promoted a sixfold increase in cGMP without interfering in the protein expression of p-VASPSer239 . Neither the cAMP levels nor p-VASPSer157 were altered in MK571-treated animals. The ICP was ∼50% lower in obese than in the lean mice; however, the treatment with MK571 fully reversed this response. Expressions of ABCC4 and ABCC5 were not different between groups. The intra/extracellular ratio of cGMP was similar in CC from obese and lean mice stimulated with BAY 58-2667. CONCLUSIONS The MRPs inhibition by MK571 favored the accumulation of cGMP in the smooth muscle cells, thus improving the smooth muscle relaxation and the erectile function in obese mice.
Collapse
Affiliation(s)
- Mariana Gonçalves de Oliveira
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriela Reolon Passos
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Erick de Toledo de Gomes
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme Ruiz Leonardi
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Adriana Zapparoli
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Edson Antunes
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fabiola Zakia Mónica
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
8
|
Legerstee K, Houtsmuller AB. A Layered View on Focal Adhesions. BIOLOGY 2021; 10:biology10111189. [PMID: 34827182 PMCID: PMC8614905 DOI: 10.3390/biology10111189] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary The cytoskeleton is a network of protein fibres within cells that provide structure and support intracellular transport. Focal adhesions are protein complexes associated with the outer cell membrane that are found at the ends of specialised actin fibres of this cytoskeleton. They mediate cell adhesion by connecting the cytoskeleton to the extracellular matrix, a protein and sugar network that surrounds cells in tissues. Focal adhesions also translate forces on actin fibres into forces contributing to cell migration. Cell adhesion and migration are crucial to diverse biological processes such as embryonic development, proper functioning of the immune system or the metastasis of cancer cells. Advances in fluorescence microscopy and data analysis methods provided a more detailed understanding of the dynamic ways in which proteins bind and dissociate from focal adhesions and how they are organised within these protein complexes. In this review, we provide an overview of the advances in the current scientific understanding of focal adhesions and summarize relevant imaging techniques. One of the key insights is that focal adhesion proteins are organised into three layers parallel to the cell membrane. We discuss the relevance of this layered nature for the functioning of focal adhesion. Abstract The cytoskeleton provides structure to cells and supports intracellular transport. Actin fibres are crucial to both functions. Focal Adhesions (FAs) are large macromolecular multiprotein assemblies at the ends of specialised actin fibres linking these to the extracellular matrix. FAs translate forces on actin fibres into forces contributing to cell migration. This review will discuss recent insights into FA protein dynamics and their organisation within FAs, made possible by advances in fluorescence imaging techniques and data analysis methods. Over the last decade, evidence has accumulated that FAs are composed of three layers parallel to the plasma membrane. We focus on some of the most frequently investigated proteins, two from each layer, paxillin and FAK (bottom, integrin signalling layer), vinculin and talin (middle, force transduction layer) and zyxin and VASP (top, actin regulatory layer). Finally, we discuss the potential impact of this layered nature on different aspects of FA behaviour.
Collapse
|
9
|
Zink J, Frye M, Frömel T, Carlantoni C, John D, Schreier D, Weigert A, Laban H, Salinas G, Stingl H, Günther L, Popp R, Hu J, Vanhollebeke B, Schmidt H, Acker-Palmer A, Renné T, Fleming I, Benz PM. EVL regulates VEGF receptor-2 internalization and signaling in developmental angiogenesis. EMBO Rep 2021; 22:e48961. [PMID: 33512764 PMCID: PMC7857432 DOI: 10.15252/embr.201948961] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Endothelial tip cells are essential for VEGF‐induced angiogenesis, but underlying mechanisms are elusive. The Ena/VASP protein family, consisting of EVL, VASP, and Mena, plays a pivotal role in axon guidance. Given that axonal growth cones and endothelial tip cells share many common features, from the morphological to the molecular level, we investigated the role of Ena/VASP proteins in angiogenesis. EVL and VASP, but not Mena, are expressed in endothelial cells of the postnatal mouse retina. Global deletion of EVL (but not VASP) compromises the radial sprouting of the vascular plexus in mice. Similarly, endothelial‐specific EVL deletion compromises the radial sprouting of the vascular plexus and reduces the endothelial tip cell density and filopodia formation. Gene sets involved in blood vessel development and angiogenesis are down‐regulated in EVL‐deficient P5‐retinal endothelial cells. Consistently, EVL deletion impairs VEGF‐induced endothelial cell proliferation and sprouting, and reduces the internalization and phosphorylation of VEGF receptor 2 and its downstream signaling via the MAPK/ERK pathway. Together, we show that endothelial EVL regulates sprouting angiogenesis via VEGF receptor‐2 internalization and signaling.
Collapse
Affiliation(s)
- Joana Zink
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timo Frömel
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Claudia Carlantoni
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David John
- German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany.,Insitute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Danny Schreier
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Weigert
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Hebatullah Laban
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Heike Stingl
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Lea Günther
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Rüdiger Popp
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Jiong Hu
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, ULB Neuroscience Institute Department of Molecular Biology, University of Brussels, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium
| | - Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Fleming
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Peter M Benz
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Laban H, Weigert A, Zink J, Elgheznawy A, Schürmann C, Günther L, Abdel Malik R, Bothur S, Wingert S, Bremer R, Rieger MA, Brüne B, Brandes RP, Fleming I, Benz PM. VASP regulates leukocyte infiltration, polarization, and vascular repair after ischemia. J Cell Biol 2018; 217:1503-1519. [PMID: 29507126 PMCID: PMC5881493 DOI: 10.1083/jcb.201702048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/06/2017] [Accepted: 01/26/2018] [Indexed: 01/14/2023] Open
Abstract
In ischemic vascular diseases, leukocyte recruitment and polarization are crucial for revascularization and tissue repair. The study of Laban et al. provides evidence that VASP is a major regulator of leukocyte recruitment and polarization and vascular repair after ischemia. Mechanistically, the study supports a novel role of VASP in chemokine receptor trafficking. In ischemic vascular diseases, leukocyte recruitment and polarization are crucial for revascularization and tissue repair. We investigated the role of vasodilator-stimulated phosphoprotein (VASP) in vascular repair. After hindlimb ischemia induction, blood flow recovery, angiogenesis, arteriogenesis, and leukocyte infiltration into ischemic muscles in VASP−/− mice were accelerated. VASP deficiency also elevated the polarization of the macrophages through increased signal transducer and activator of transcription (STAT) signaling, which augmented the release of chemokines, cytokines, and growth factors to promote leukocyte recruitment and vascular repair. Importantly, VASP deletion in bone marrow–derived cells was sufficient to mimic the increased blood flow recovery of global VASP−/− mice. In chemotaxis experiments, VASP−/− neutrophils/monocytes were significantly more responsive to M1-related chemokines than wild-type controls. Mechanistically, VASP formed complexes with the chemokine receptor CCR2 and β-arrestin-2, and CCR2 receptor internalization was significantly reduced in VASP−/− leukocytes. Our data indicate that VASP is a major regulator of leukocyte recruitment and polarization in postischemic revascularization and support a novel role of VASP in chemokine receptor trafficking.
Collapse
Affiliation(s)
- Hebatullah Laban
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Joana Zink
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Amro Elgheznawy
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Christoph Schürmann
- German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany.,Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Lea Günther
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Randa Abdel Malik
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Sabrina Bothur
- LOEWE Center for Cell and Gene Therapy and Department for Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
| | - Susanne Wingert
- LOEWE Center for Cell and Gene Therapy and Department for Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
| | - Rolf Bremer
- HBB Datenkommunikation and Abrechnungssysteme, Hannover, Germany
| | - Michael A Rieger
- LOEWE Center for Cell and Gene Therapy and Department for Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ralf P Brandes
- German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany.,Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Peter M Benz
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany .,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Phosphorylation of vasodilator-stimulated phosphoprotein contributes to myocardial ischemic preconditioning. Basic Res Cardiol 2018; 113:11. [PMID: 29344719 DOI: 10.1007/s00395-018-0667-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 11/15/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
Ischemic preconditioning (IP) is a well-known strategy to protect organs against cell death following ischemia. The previous work has shown that vasodilator-stimulated phosphoprotein (VASP) is involved in cytoskeletal reorganization and that it holds significant importance for the extent of myocardial ischemia reperfusion injury. Yet, the role of VASP during myocardial IP is, to date, not known. We report here that VASP phosphorylation at serine157 and serine239 is induced during hypoxia in vitro and during IP in vivo. The preconditioning-induced VASP phosphorylation inactivates the GP IIb/IIIa integrin receptor on platelets, which results in the reduced formation of organ compromising platelet neutrophil complexes. Experiments in chimeric mice confirmed the importance of VASP phosphorylation during myocardial IP. When studying this in VASP-/- animals and in an isolated heart model, we were able to confirm the important role of VASP on myocardial IP. In conclusion, we were able to show that IP-induced VASP phosphorylation in platelets is a protective mechanism against the deleterious effects of ischemia.
Collapse
|
12
|
Tomatis VM, Josh P, Papadopulos A, Gormal RS, Lanoue V, Martin S, Meunier FA. ENA/VASP proteins regulate exocytosis by mediating myosin VI-dependent recruitment of secretory granules to the cortical actin network. Mol Cell Neurosci 2017; 84:100-111. [PMID: 28784263 DOI: 10.1016/j.mcn.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 10/24/2022] Open
Abstract
In neurosecretory cells, myosin VI associated with secretory granules (SGs) mediates their activity-dependent recruitment to the cortical actin network and is necessary to sustain exocytosis. The mechanism by which myosin VI interacts with SGs is unknown. Using a myosin VI pull-down assay and mass spectrometry we identified Mena, a member of the ENA/VASP family, as a myosin VI binding partner in PC12 cells, and confirmed that Mena colocalized with myosin VI on SGs. Using a knock-sideways approach to inactivate the ENA/VASP family members by mitochondrial relocation, we revealed a concomitant redistribution of myosin VI. This was ensued by a reduction in the association of myosin VI with SGs, a decreased SG mobility and density in proximity to the plasma membrane as well as decreased evoked exocytosis. These data demonstrate that ENA/VASP proteins regulate SG exocytosis through modulating the activity of myosin VI.
Collapse
Affiliation(s)
- Vanesa M Tomatis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Peter Josh
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andreas Papadopulos
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sally Martin
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
13
|
Parakaw T, Suknuntha K, Vivithanaporn P, Schlagenhauf A, Topanurak S, Fucharoen S, Pattanapanyasat K, Schechter A, Sibmooh N, Srihirun S. Platelet inhibition and increased phosphorylated vasodilator-stimulated phosphoprotein following sodium nitrite inhalation. Nitric Oxide 2017; 66:10-16. [DOI: 10.1016/j.niox.2017.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/13/2017] [Accepted: 02/18/2017] [Indexed: 01/14/2023]
|
14
|
Jayakumar T, Lin KC, Lu WJ, Lin CY, Pitchairaj G, Li JY, Sheu JR. Nobiletin, a citrus flavonoid, activates vasodilator-stimulated phosphoprotein in human platelets through non-cyclic nucleotide-related mechanisms. Int J Mol Med 2016; 39:174-182. [PMID: 27959381 PMCID: PMC5179174 DOI: 10.3892/ijmm.2016.2822] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/28/2016] [Indexed: 11/19/2022] Open
Abstract
Nobiletin, a bioactive polymethoxylated flavone, has been described to possess a diversity of biological effects through its antioxidant and anti-inflammatory properties. Vasodilator-stimulated phosphoprotein (VASP) is a common substrate for cyclic AMP and cyclic GMP-regulated protein kinases [i.e., cyclic AMP-dependent protein kinase (PKA; also known as protein kinase A) and cyclic GMP-dependent protein kinase (PKG; also known as protein kinase G)] and it has been shown to be directly phosphorylated by protein kinase C (PKC). In the present study, we demonstrate that VASP is phosphorylated by nobiletin in human platelets via a non-cyclic nucleotide-related mechanism. This was confirmed by the use of inhibitors of adenylate cyclase (SQ22536) and guanylate cyclase [1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ)], since they prevented VASP phosphorylation induced by nobiletin. Furthormore, this event was also not affected by specific inhibitors of PKA (H-89), PKG (KT5823) and PKC (Ro318220), representing cyclic nucleotide-dependent pathways upon nobiletin-induced VASP phosphorylation. Similarly, inhibitors of p38 mitogen-activated protein kinase (MAPK; SB203580), extracellular signal-regulated kinase 2 (ERK2; PD98059), c-Jun N-terminal kinase 1 (JNK1; SP600125), Akt (LY294002) and nuclear factor-κB (NF-κB; Bay11-7082) did not affect nobiletin-induced VASP phosphorylation. Moreover, electron spin resonance, dichlorofluorescein fluorescence and western blotting techniques revealed that nobiletin did not affect hydroxyl radicals (OH•), intracellular reactive oxygen species (ROS) and on protein carbonylation, respectively. Furthermore, the nobiletin-induced VASP phosphorylation was surprisingly reversed by the intracellular antioxidant, N-acetylcysteine (NAC), but not by the inhibitor of NADPH oxidase, diphenyleneiodonium chloride (DPI). It was surprising to observe the differential effects of nobiletin and NAC on VASP phosphorylation in human platelets, since they both have been reported to have antioxidant properties. The likely explanation for this discrepancy is that NAC may bind to allosteric sites on the receptor different from those that nobiletin binds to in human platelets. Taken together, our findings suggest that nobiletin induces VASP phosphorylation in human platelets through non-cyclic nucleotide-related mechanisms. Nevertheless, the exact mechanisms responsible for these effects need to be further confirmed in future studies.
Collapse
Affiliation(s)
- Thanasekaran Jayakumar
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Kao-Chang Lin
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Wan-Jung Lu
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Chia-Ying Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Geraldine Pitchairaj
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Jiun-Yi Li
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Joen-Rong Sheu
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
| |
Collapse
|
15
|
Adenosine Receptor Adora2b Plays a Mechanistic Role in the Protective Effect of the Volatile Anesthetic Sevoflurane during Liver Ischemia/Reperfusion. Anesthesiology 2016; 125:547-60. [DOI: 10.1097/aln.0000000000001234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Background
Liver ischemia/reperfusion (IR) injury is characterized by hepatic tissue damage and an inflammatory response. This is accompanied by the formation and vascular sequestration of platelet–neutrophil conjugates (PNCs). Signaling through Adora2b adenosine receptors can provide liver protection. Volatile anesthetics may interact with adenosine receptors. This study investigates potential antiinflammatory effects of the volatile anesthetic sevoflurane during liver IR.
Methods
Experiments were performed ex vivo with human blood and in a liver IR model with wild-type, Adora2a−/−, and Adora2b−/− mice. The effect of sevoflurane on platelet activation, PNC formation and sequestration, cytokine release, and liver damage (alanine aminotransferase release) was analyzed using flow cytometry, luminometry, and immunofluorescence. Adenosine receptor expression in liver tissue was analyzed using immunohistochemistry and real-time polymerase chain reaction.
Results
Ex vivo experiments indicate that sevoflurane inhibits platelet and leukocyte activation (n = 5). During liver IR, sevoflurane (2 Vol%) decreased PNC formation 2.4-fold in wild-type (P < 0.05) but not in Adora2b−/− mice (n ≥ 5). Sevoflurane reduced PNC sequestration 1.9-fold (P < 0.05) and alanine aminotransferase release 3.5-fold (P < 0.05) in wild-type but not in Adora2b−/− mice (n = 5). In Adora2a−/− mice, sevoflurane also inhibited PNC formation and cytokine release. Sevoflurane diminished cytokine release (n ≥ 3) and increased Adora2b transcription and expression in liver tissue of wild-types (n = 4).
Conclusions
Our experiments highlight antiinflammatory and tissue-protective properties of sevoflurane during liver IR and reveal a mechanistic role of Adora2b in sevoflurane-associated effects. The targeted use of sevoflurane not only as an anesthetic but also to prevent IR damage is a promising approach in the treatment of critically ill patients.
Collapse
|
16
|
Abstract
Ena/VASP tetramer composition was analysed and mixed oligomerization of Mena with EVL was found to be unfavourable, while other paralogue combinations formed without apparent bias. The tetramerization domain of Ena/VASP proteins is responsible for their selective tetramer formation. The members of the actin regulatory family of Ena/VASP proteins form stable tetramers. The vertebrate members of the Ena/VASP family, VASP, Mena and EVL, have many overlapping properties and expression patterns, but functional and regulatory differences between paralogues have been observed. The formation of mixed oligomers may serve a regulatory role to refine Ena/VASP activity. While it has been assumed that family members can form mixed oligomers, this possibility has not been investigated systematically. Using cells expressing controlled combinations of VASP, Mena and EVL, we evaluated the composition of Ena/VASP oligomers and found that VASP forms oligomers without apparent bias with itself, Mena or EVL. However, Mena and EVL showed only weak hetero-oligomerization, suggesting specificity in the association of Ena/VASP family members. Co-expression of VASP increased the ability of Mena and EVL to form mixed oligomers. Additionally, we found that the tetramerization domain (TD) at the C-termini of Ena/VASP proteins conferred the observed selectivity. Finally, we demonstrate that replacement of the TD with a synthetic tetramerizing coiled coil sequence supports homo-oligomerization and normal VASP subcellular localization.
Collapse
|
17
|
A modular toolkit to inhibit proline-rich motif-mediated protein-protein interactions. Proc Natl Acad Sci U S A 2015; 112:5011-6. [PMID: 25848013 DOI: 10.1073/pnas.1422054112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small-molecule competitors of protein-protein interactions are urgently needed for functional analysis of large-scale genomics and proteomics data. Particularly abundant, yet so far undruggable, targets include domains specialized in recognizing proline-rich segments, including Src-homology 3 (SH3), WW, GYF, and Drosophila enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP) homology 1 (EVH1) domains. Here, we present a modular strategy to obtain an extendable toolkit of chemical fragments (ProMs) designed to replace pairs of conserved prolines in recognition motifs. As proof-of-principle, we developed a small, selective, peptidomimetic inhibitor of Ena/VASP EVH1 domain interactions. Highly invasive MDA MB 231 breast-cancer cells treated with this ligand showed displacement of VASP from focal adhesions, as well as from the front of lamellipodia, and strongly reduced cell invasion. General applicability of our strategy is illustrated by the design of an ErbB4-derived ligand containing two ProM-1 fragments, targeting the yes-associated protein 1 (YAP1)-WW domain with a fivefold higher affinity.
Collapse
|
18
|
Cheng AM, Rizzo-DeLeon N, Wilson CL, Lee WJ, Tateya S, Clowes AW, Schwartz MW, Kim F. Vasodilator-stimulated phosphoprotein protects against vascular inflammation and insulin resistance. Am J Physiol Endocrinol Metab 2014; 307:E571-9. [PMID: 25117404 PMCID: PMC4187027 DOI: 10.1152/ajpendo.00303.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Among the pleotropic effects of endothelial nitric oxide (NO) is protection against vascular inflammation during high-fat diet (HFD) feeding. The current work investigated the role of the enzyme vasodilatory-stimulated phosphoprotein (VASP) as a downstream mediator of the anti-inflammatory effect of NO signaling in vascular tissue. Relative to mice fed a low-fat diet (LFD), levels of VASP Ser(239) phosphorylation, a marker of VASP activation, were dramatically reduced in aortic tissue of mice with obesity induced by consuming a HFD. As reported previously, the effect of the HFD was associated with increased aortic inflammation, as measured by increased NF-κB-dependent gene expression, and reduced vascular insulin sensitivity (including insulin-stimulated phosphorylation of eNOS and Akt). These effects of the HFD were recapitulated by VASP knockout, implying a physiological role for VASP to constrain inflammatory signaling and thereby maintain vascular insulin sensitivity. Conversely, overexpression of VASP in endothelial cells blocked inflammation and insulin resistance induced by palmitate. The finding that transplantation of bone marrow from VASP-deficient donors into normal recipients does not recapitulate the vascular effects of whole body VASP deficiency suggests that the protective effects of this enzyme are not mediated in immune or other bone marrow-derived cells. These studies implicate VASP as a downstream mediator of the NO/cGMP pathway that is both necessary and sufficient to protect against vascular inflammation and insulin resistance. As such, this work identifies VASP as a potential therapeutic target in the treatment of obesity-related vascular dysfunction.
Collapse
Affiliation(s)
- Andrew M Cheng
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington
| | - Norma Rizzo-DeLeon
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington
| | | | - Woo Je Lee
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington
| | - Sanshiro Tateya
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington
| | | | - Michael W Schwartz
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington
| | - Francis Kim
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington
| |
Collapse
|
19
|
Lee DH, Kwon HW, Kim HH, Lim DH, Nam GS, Shin JH, Kim YY, Kim JL, Lee JJ, Kwon HK, Park HJ. Cordycepin-enriched WIB801C from Cordyceps militaris inhibits ADP-induced [Ca(2+)] i mobilization and fibrinogen binding via phosphorylation of IP 3R and VASP. Arch Pharm Res 2014; 38:81-97. [PMID: 25001901 DOI: 10.1007/s12272-014-0436-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 06/24/2014] [Indexed: 11/30/2022]
Abstract
In this study, we investigated the effect of cordycepin-enriched (CE)-WIB801C from Cordyceps militaris on ADP (20 µM)-stimulated platelet aggregation. CE-WIB801C dose-dependently inhibited ADP-induced platelet aggregation, and its IC50 value was 18.5 μg/mL. CE-WIB801C decreased TXA2 production, but did not inhibit the activities of COX-1 and thromboxane synthase (TXAS) in ADP-activated platelets, which suggests that the inhibition of TXA2 production by CE-WIB801C is not resulted from the direct inhibition of COX-1 and TXAS. CE-WIB801C inhibited ATP release and [Ca(2+)]i mobilization, and increased cAMP level and IP3RI (Ser(1756)) phosphorylation in ADP-activated platelets. cAMP-dependent protein kinase (A-kinase) inhibitor Rp-8-Br-cAMPS increased CE-WIB801C-inhibited [Ca(2+)]i mobilization, and strongly inhibited CE-WIB801C-increased IP3RI (Ser(1756)) phosphorylation. CE-WIB801C elevated the phosphorylation of VASP (Ser(157)), an A-kinase substrate, but inhibited fibrinogen binding to αIIb/β3. These results suggest that CE-WIB801C-elevated cAMP involved in IP3RI (Ser(1756)) phosphorylation to inhibit [Ca(2+)]i mobilization and, VASP (Ser(157)) phosphorylation to inhibit αIIb/β3 activation. Therefore, in this study, we demonstrate that CE-WIB801C may have a preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.
Collapse
Affiliation(s)
- Dong-Ha Lee
- Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University, 197, Inje-ro, Gimhae, Gyungnam, 621-749, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Major TC, Handa H, Annich GM, Bartlett RH. Development and hemocompatibility testing of nitric oxide releasing polymers using a rabbit model of thrombogenicity. J Biomater Appl 2014; 29:479-501. [PMID: 24934500 DOI: 10.1177/0885328214538866] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hemocompatibility is the goal for any biomaterial contained in extracorporeal life supporting medical devices. The hallmarks for hemocompatibility include nonthrombogenicity, platelet preservation, and maintained platelet function. Both in vitro and in vivo assays testing for compatibility of the blood/biomaterial interface have been used over the last several decades to ascertain if the biomaterial used in medical tubing and devices will require systemic anticoagulation for viability. Over the last 50 years systemic anticoagulation with heparin has been the gold standard in maintaining effective extracorporeal life supporting. However, the biomaterial that maintains effective ECLS without the use of any systemic anticoagulant has remained elusive. In this review, the in vivo 4-h rabbit thrombogenicity model genesis will be described with emphasis on biomaterials that may require no systemic anticoagulation for extracorporeal life supporting longevity. These novel biomaterials may improve extracorporeal circulation hemocompatibility by preserving near resting physiology of the major blood components, the platelets and monocytes. The rabbit extracorporeal circulation model provides a complete assessment of biomaterial interactions with the intrinsic coagulation players, the circulating platelet and monocytes. This total picture of blood/biomaterial interaction suggests that this rabbit thrombogenicity model could provide a standardization for biomaterial hemocompatibility testing.
Collapse
Affiliation(s)
- Terry C Major
- Department of Surgery, University of Michigan Health System, Ann Arbor, USA
| | - Hitesh Handa
- Department of Surgery, University of Michigan Health System, Ann Arbor, USA
| | - Gail M Annich
- Department of Pediatrics, University of Michigan Health System, Ann Arbor, USA
| | - Robert H Bartlett
- Department of Surgery, University of Michigan Health System, Ann Arbor, USA
| |
Collapse
|
21
|
Winograd-Katz SE, Fässler R, Geiger B, Legate KR. The integrin adhesome: from genes and proteins to human disease. Nat Rev Mol Cell Biol 2014; 15:273-88. [PMID: 24651544 DOI: 10.1038/nrm3769] [Citation(s) in RCA: 467] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The adhesive interactions of cells with their environment through the integrin family of transmembrane receptors have key roles in regulating multiple aspects of cellular physiology, including cell proliferation, viability, differentiation and migration. Consequently, failure to establish functional cell adhesions, and thus the assembly of associated cytoplasmic scaffolding and signalling networks, can have severe pathological effects. The roles of specific constituents of integrin-mediated adhesions, which are collectively known as the 'integrin adhesome', in diverse pathological states are becoming clear. Indeed, the prominence of mutations in specific adhesome molecules in various human diseases is now appreciated, and experimental as well as in silico approaches provide insights into the molecular mechanisms underlying these pathological conditions.
Collapse
Affiliation(s)
- Sabina E Winograd-Katz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kyle R Legate
- 1] Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. [2] Center for Nanosciences, Department of Applied Physics, Ludwig-Maximilians University, 80799 Munich, Germany
| |
Collapse
|
22
|
Benz PM, Merkel CJ, Offner K, Abeßer M, Ullrich M, Fischer T, Bayer B, Wagner H, Gambaryan S, Ursitti JA, Adham IM, Linke WA, Feller SM, Fleming I, Renné T, Frantz S, Unger A, Schuh K. Mena/VASP and αII-Spectrin complexes regulate cytoplasmic actin networks in cardiomyocytes and protect from conduction abnormalities and dilated cardiomyopathy. Cell Commun Signal 2013; 11:56. [PMID: 23937664 PMCID: PMC3751641 DOI: 10.1186/1478-811x-11-56] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 08/06/2013] [Indexed: 11/10/2022] Open
Abstract
Background In the heart, cytoplasmic actin networks are thought to have important roles in mechanical support, myofibrillogenesis, and ion channel function. However, subcellular localization of cytoplasmic actin isoforms and proteins involved in the modulation of the cytoplasmic actin networks are elusive. Mena and VASP are important regulators of actin dynamics. Due to the lethal phenotype of mice with combined deficiency in Mena and VASP, however, distinct cardiac roles of the proteins remain speculative. In the present study, we analyzed the physiological functions of Mena and VASP in the heart and also investigated the role of the proteins in the organization of cytoplasmic actin networks. Results We generated a mouse model, which simultaneously lacks Mena and VASP in the heart. Mena/VASP double-deficiency induced dilated cardiomyopathy and conduction abnormalities. In wild-type mice, Mena and VASP specifically interacted with a distinct αII-Spectrin splice variant (SH3i), which is in cardiomyocytes exclusively localized at Z- and intercalated discs. At Z- and intercalated discs, Mena and β-actin localized to the edges of the sarcomeres, where the thin filaments are anchored. In Mena/VASP double-deficient mice, β-actin networks were disrupted and the integrity of Z- and intercalated discs was markedly impaired. Conclusions Together, our data suggest that Mena, VASP, and αII-Spectrin assemble cardiac multi-protein complexes, which regulate cytoplasmic actin networks. Conversely, Mena/VASP deficiency results in disrupted β-actin assembly, Z- and intercalated disc malformation, and induces dilated cardiomyopathy and conduction abnormalities.
Collapse
Affiliation(s)
- Peter M Benz
- Institute of Physiology I, University of Würzburg, D-97070 Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Major TC, Handa H, Brisbois EJ, Reynolds MM, Annich GM, Meyerhoff ME, Bartlett RH. The mediation of platelet quiescence by NO-releasing polymers via cGMP-induced serine 239 phosphorylation of vasodilator-stimulated phosphoprotein. Biomaterials 2013; 34:8086-96. [PMID: 23906514 DOI: 10.1016/j.biomaterials.2013.07.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/11/2013] [Indexed: 11/15/2022]
Abstract
Nitric oxide (NO) releasing (NORel) materials have been shown to create localized increases in NO concentration by the release of NO from a diazeniumdiolate-containing or S-nitrosothiol-containing polymer coating and the improvement of extracorporeal circulation (ECC) hemocompatibility. However, the mechanism and, in particular, the platelet upregulation of the NO/cGMP signaling protein, vasodilator-stimulated phosphoprotein phosphorylated at serine 239 (P-VASP (ser 239)), for the improved ECC hemocompatibility via NO release still needs elucidation. In this work, two NORel polymeric coatings were evaluated in a 4 h rabbit thrombogenicity model and the anti-thrombotic mechanism investigated for rabbit platelet P-VASP upregulation. Polymer films containing 25 wt% diazeniumdiolated dibutylhexanediamine (DBHD) or 5 wt% S-nitroso-N-acetylpenicillamine (SNAP) coated on the inner walls of ECC circuits yielded significantly reduced ECC thrombus formation and maintained normal platelet aggregation compared to polymer controls after 4 h of blood exposure. Platelet P-VASP (ser 239), a useful tool to monitor NO/cGMP signaling, was upregulated after 4 h on ECC and markedly increased after ex vivo sodium nitroprusside (SNP) stimulation. Interestingly, in the rabbit platelet, NO did not upregulate the cAMP P-VASP phosphoprotein P-VASP (ser 157) as previously shown in human platelets. These results suggest that NORel polymers preserve rabbit platelet quiescence by sustaining a level of cGMP signaling as monitored by P-VASP (ser 239) upregulation. The upregulation of this NO-mediated platelet signaling mechanism in this rabbit thrombogenicity model indicates the potential for improved thromboresistance of any NORel-coated medical device.
Collapse
Affiliation(s)
- Terry C Major
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
The P2Y(12) antagonists, 2MeSAMP and cangrelor, inhibit platelet activation through P2Y(12)/G(i)-dependent mechanism. PLoS One 2012; 7:e51037. [PMID: 23236426 PMCID: PMC3516503 DOI: 10.1371/journal.pone.0051037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022] Open
Abstract
Background ADP is an important physiological agonist that induces integrin activation and platelet aggregation through its receptors P2Y1 (Gαq-coupled) and P2Y12 (Gαi-coupled). P2Y12 plays a critical role in platelet activation and thrombosis. Adenosine-based P2Y12 antagonists, 2-methylthioadenosine 5′-monophosphate triethylammonium salt hydrate (2MeSAMP) and Cangrelor (AR-C69931MX) have been widely used to demonstrate the role of P2Y12 in platelet function. Cangrelor is being evaluated in clinical trials of thrombotic diseases. However, a recent study reported that both 2MeSAMP and Cangrelor raise intra-platelet cAMP levels and inhibit platelet aggregation through a P2Y12-independent mechanism. Methodology/Principal Findings The present work, using P2Y12 deficient mice, sought to clarify previous conflicting reports and to elucidate the mechanisms by which 2MeSAMP and Cangrelor inhibit platelet activation and thrombosis. 2MeSAMP and Cangrelor inhibited aggregation and ATP release of wild-type but not P2Y12 deficient platelets. 2MeSAMP and Cangrelor neither raised intracellular cAMP concentrations nor induced phosphorylation of vasodilator-stimulated phosphoprotein (VASP) in washed human or mouse platelets. Furthermore, unlike the activators (PGI2 and forskolin) of the cAMP pathway, 2MeSAMP and Cangrelor failed to inhibit Ca2+ mobilization, Akt phosphorylation, and Rap1b activation in P2Y12 deficient platelets. Importantly, while injection of Cangrelor inhibited thrombus formation in a FeCl3-induced thrombosis model in wild-type mice, it failed to affect thrombus formation in P2Y12 deficient mice. Conclusions These data together demonstrate that 2MeSAMP and Cangrelor inhibit platelet function through the P2Y12-dependent mechanism both in vitro and in vivo.
Collapse
|
25
|
Gupton SL, Riquelme D, Hughes-Alford SK, Tadros J, Rudina SS, Hynes RO, Lauffenburger D, Gertler FB. Mena binds α5 integrin directly and modulates α5β1 function. ACTA ACUST UNITED AC 2012; 198:657-76. [PMID: 22908313 PMCID: PMC3514034 DOI: 10.1083/jcb.201202079] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mena binds to the cytoplasmic tail of α5 integrin and modulates key
α5β1 integrin functions in adhesion, motility, and
fibrillogenesis. Mena is an Ena/VASP family actin regulator with roles in cell migration,
chemotaxis, cell–cell adhesion, tumor cell invasion, and metastasis.
Although enriched in focal adhesions, Mena has no established function within
these structures. We find that Mena forms an adhesion-regulated complex with
α5β1 integrin, a fibronectin receptor involved in cell adhesion,
motility, fibronectin fibrillogenesis, signaling, and growth factor receptor
trafficking. Mena bound directly to the carboxy-terminal portion of the
α5 cytoplasmic tail via a 91-residue region containing 13 five-residue
“LERER” repeats. In fibroblasts, the Mena–α5 complex
was required for “outside-in” α5β1 functions,
including normal phosphorylation of FAK and paxillin and formation of fibrillar
adhesions. It also supported fibrillogenesis and cell spreading and controlled
cell migration speed. Thus, fibroblasts require Mena for multiple
α5β1-dependent processes involving bidirectional interactions
between the extracellular matrix and cytoplasmic focal adhesion proteins.
Collapse
Affiliation(s)
- Stephanie L Gupton
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Begonja AJ, Gambaryan S, Schulze H, Patel-Hett S, Italiano JE, Hartwig JH, Walter U. Differential roles of cAMP and cGMP in megakaryocyte maturation and platelet biogenesis. Exp Hematol 2012; 41:91-101.e4. [PMID: 22981933 DOI: 10.1016/j.exphem.2012.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/24/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022]
Abstract
The cyclic nucleotides cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) regulate the activity of protein kinase A (PKA) and protein kinase G (PKG), respectively. This process helps maintain circulating platelets in a resting state. Here we studied the role of cAMP and cGMP in the regulation of megakaryocyte (MK) differentiation and platelet formation. Cultured, platelet-producing MKs were differentiated from fetal livers harvested from 13.5 days postcoital mouse embryos. MK development was accompanied by a dramatic increase in cAMP production and expression of soluble guanylate cyclase, PKG, and PKA as well as their downstream targets vasodilator-stimulated phosphoprotein (VASP) and MENA. Stimulation of prostaglandin E(1) receptor/adenylyl cyclase or soluble guanylate cyclase/PKG in cultured MKs increased VASP phosphorylation, indicating that these components share a common signaling pathway. To dissect out the role of cyclic nucleotides in MK differentiation, cAMP/PKA and cGMP/PKG signaling were alternately blocked in cultured MKs. Down-regulation of cAMP pathway effectors decreased MK numbers and ploidy. Notably, cGMP levels increased at the beginning of MK development and returned to basal levels in parallel with MK maturation. However, inhibition of cGMP pathway effectors had no effect on MK development. In addition, platelet release from mature MKs was enhanced by cGMP and inhibited by cAMP. Our data suggest that cAMP plays an important role in MK differentiation, while cAMP and cGMP have opposite effects on platelet production. Identifying the signaling pathways that underpin MK development and proplatelet formation will provide greater insights into thrombopoiesis and may potentially yield useful therapeutic targets.
Collapse
Affiliation(s)
- Antonija Jurak Begonja
- Institute of Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Jennissen K, Siegel F, Liebig-Gonglach M, Hermann MR, Kipschull S, van Dooren S, Kunz WS, Fässler R, Pfeifer A. A VASP-Rac-soluble guanylyl cyclase pathway controls cGMP production in adipocytes. Sci Signal 2012; 5:ra62. [PMID: 22932701 DOI: 10.1126/scisignal.2002867] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ubiquitous second messenger cyclic guanosine monophosphate (cGMP) plays an important role in metabolism and promotes brown adipocyte differentiation. We showed that ablation of the gene encoding vasodilator-stimulated phosphoprotein (VASP), a major downstream component of the cGMP signaling cascade, increased cellular cGMP content in brown and white adipocytes and mouse embryonic fibroblasts. VASP-deficient cells showed increased activation of Rac1, which in turn increased the abundance of the cGMP-producing enzyme soluble guanylyl cyclase (sGC), the main receptor for nitric oxide. Consequently, loss of VASP caused increased cGMP concentrations and enhanced brown adipocyte differentiation. Consistent with the in vitro data, we found increased energy expenditure in VASP-deficient mice and exposure to cold triggered enhanced lipolysis and cellular respiration in VASP-deficient brown fat cells. In addition, VASP-deficient mice exhibited increased development of brown-like adipocytes in white fat. Our data revealed that a VASP to Rac to sGC negative feedback loop limited cGMP production, thereby regulating adipogenesis and energy homeostasis.
Collapse
Affiliation(s)
- Katja Jennissen
- Institute of Pharmacology and Toxicology, University of Bonn, 53105 Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lim J, Hotchin NA. Signalling mechanisms of the leukocyte integrin αMβ2: Current and future perspectives. Biol Cell 2012; 104:631-40. [DOI: 10.1111/boc.201200013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/09/2012] [Indexed: 01/04/2023]
|
29
|
Park JW, Piknova B, Kurtz J, Seetharaman S, Wagner SJ, Schechter AN. Effect of storage on levels of nitric oxide metabolites in platelet preparations. Transfusion 2012; 53:637-44. [PMID: 22804724 DOI: 10.1111/j.1537-2995.2012.03777.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Nitric oxide (NO), a potent signaling molecule, is known to inhibit platelet (PLT) function in vivo. We investigated how the levels of NO and its metabolites change during routine PLT storage. We also tested whether the material of PLT storage containers affects nitrite content since many plastic materials are known to contain and release nitrite. STUDY DESIGN AND METHODS For nitrite and nitrate measurement, leukoreduced apheresis PLTs and concurrent plasma (CP) were collected from healthy donors using a cell separator. Sixty-milliliter aliquots of PLT or CP were stored in CLX or PL120 Teflon containers at 20 to 24°C with agitation and daily samples were processed to yield PLT pellet and supernatant. In a separate experiment, PLTs were stored in PL120 Teflon to measure NO generation using electron paramagnetic resonance (EPR). RESULTS Nitrite level increased markedly in both PLT supernatant and CP stored in CLX containers at a rate of 58 and 31 nmol/L/day, respectively. However, there was a decrease in nitrite level in PLTs stored in PL120 Teflon containers. Nitrite was found to leach from CLX containers and this appears to compensate for nitrite consumption in these preparations. Nitrate level did not significantly change during storage. CONCLUSION PLTs stored at 20 to 24°C maintain measurable levels of nitrite and nitrate. The nitrite decline in nonleachable Teflon containers in contrast to increases in CLX containers that leach nitrite suggests that it is consumed by PLTs, residual white blood cells, or red blood cells. These results suggest NO-related metabolic changes occur in PLT units during storage.
Collapse
Affiliation(s)
- Ji Won Park
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
30
|
Hohenstein B, Daniel C, Johnson RJ, Amann KU, Hugo CPM. Platelets are not critical effector cells for the time course of murine passive crescentic glomerulonephritis. Platelets 2012; 24:267-74. [PMID: 22779773 DOI: 10.3109/09537104.2012.684731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although platelets are well-known effector cells of inflammatory renal disease, clinical studies were not able to establish platelet inhibition as an effective therapy. Our previous studies using Vasodilator stimulated Phosphoprotein- and P2Y1-deficient mice suggested some early, but no long-term effects of platelets in passive crescentic glomerulonephritis. To define the role of platelets for this disease model, passive crescentic glomerulonephritis was induced in 72 C57Bl/6 mice by intraperitoneal injection of sheep anti-rabbit glomerular basement membrane antibody on 2 consecutive days. Platelets were depleted using anti-glycoprotein Ibα antibodies (p0p3/p0p4) every 4th day. Mice treated with equal amounts of sterile Phosphate buffered solution or rat-IgG served as controls. Blood, urine, and tissues were harvested on days 3 and 28. Renal tissue sections were evaluated after immunostaining using (semi)quantitative and computer-assisted image analysis. Compared to controls, efficient depletion was achieved as indicated by a markedly prolonged bleeding time and a more than 90% reduction in platelet counts (800/nl vs. 42/nl; P < 0.001). Functional (creatinine-clearance and proteinuria) parameters demonstrated no significant differences between the groups. Neither parameters of renal injury (glomerulosclerosis and fibrosis) nor glomerular/tubulointerstitial matrix expansion (by collagen IV staining), glomerular capillary rarefaction (lectin staining), and the glomerular/tubulointerstitial proliferative response (proliferating cell nuclear antigen) demonstrated any differences between platelet-depleted mice and PBS- or rat-IgG-treated nephritic mice at any time point. Despite effective platelet inhibition/depletion, neither the short- nor long-term course of passive crescentic nephrotoxic nephritis was affected. These data indicate that platelets play a minor role during the time course of this disease model in the mouse.
Collapse
Affiliation(s)
- Bernd Hohenstein
- Division of Nephrology, Department of Internal Medicine III, University of Technology, Dresden, Germany.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Endothelial prostacyclin and nitric oxide potently inhibit platelet functions. Prostacyclin and nitric oxide actions are mediated by platelet adenylyl and guanylyl cyclases, which synthesize cyclic AMP (cAMP) and cyclic GMP (cGMP), respectively. Cyclic nucleotides stimulate cAMP-dependent protein kinase (protein kinase A [PKA]I and PKAII) and cGMP-dependent protein kinase (protein kinase G [PKG]I) to phosphorylate a broad panel of substrate proteins. Substrate phosphorylation results in the inactivation of small G-proteins of the Ras and Rho families, inhibition of the release of Ca(2+) from intracellular stores, and modulation of actin cytoskeleton dynamics. Thus, PKA/PKG substrates translate prostacyclin and nitric oxide signals into a block of platelet adhesion, granule release, and aggregation. cAMP and cGMP are degraded by phosphodiesterases, which might restrict signaling to specific subcellular compartments. An emerging principle of cyclic nucleotide signaling in platelets is the high degree of interconnection between activating and cAMP/cGMP-dependent inhibitory signaling pathways at all levels, including cAMP/cGMP synthesis and breakdown, and PKA/PKG-mediated substrate phosphorylation. Furthermore, defects in cAMP/cGMP pathways might contribute to platelet hyperreactivity in cardiovascular disease. This article focuses on recent insights into the regulation of the cAMP/cGMP signaling network and on new targets of PKA and PKG in platelets.
Collapse
Affiliation(s)
- A Smolenski
- UCD Conway Institute, UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
32
|
Köhler D, Birk P, König K, Straub A, Eldh T, Morote-Garcia JC, Rosenberger P. Phosphorylation of vasodilator-stimulated phosphoprotein (VASP) dampens hepatic ischemia-reperfusion injury. PLoS One 2011; 6:e29494. [PMID: 22216296 PMCID: PMC3245274 DOI: 10.1371/journal.pone.0029494] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/29/2011] [Indexed: 01/29/2023] Open
Abstract
Recent work has demonstrated that the formation of platelet neutrophil complexes (PNCs) affects inflammatory tissue injury. Vasodilator-stimulated phosphoprotein (VASP) is crucially involved into the control of PNC formation and myocardial reperfusion injury. Given the clinical importance of hepatic IR injury we pursued the role of VASP during hepatic ischemia followed by reperfusion. We report here that VASP−/− animals demonstrate reduced hepatic IR injury compared to wildtype (WT) controls. This correlated with serum levels of lactate dehydrogenase (LDH), aspartate (AST) and alanine (ALT) aminotransferase and the presence of PNCs within ischemic hepatic tissue and could be confirmed using repression of VASP through siRNA. In studies employing bone marrow chimeric mice we identified hematopoietic VASP to be of crucial importance for the extent of hepatic injury. Phosphorylation of VASP on Ser153 through Prostaglandin E1 or on Ser235 through atrial natriuretic peptide resulted in a significant reduction of hepatic IR injury. This was associated with a reduced presence of PNCs in ischemic hepatic tissue. Taken together, these studies identified VASP and VASP phosphorylation as crucial target for future hepatoprotective strategies.
Collapse
Affiliation(s)
- David Köhler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Philipp Birk
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Klemens König
- Clinic of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt am Main, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Andreas Straub
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Therese Eldh
- Department of Radiation Oncology, University Hospital, Tübingen, Germany
| | - Julio C. Morote-Garcia
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
- Clinic of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt am Main, Johann Wolfgang Goethe University, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
33
|
Angelillo-Scherrer A, Fontana P, Burnier L, Roth I, Sugamele R, Brisset A, Morel S, Nolli S, Sutter E, Chassot A, Capron C, Borgel D, Saller F, Chanson M, Kwak BR. Connexin 37 limits thrombus propensity by downregulating platelet reactivity. Circulation 2011; 124:930-9. [PMID: 21810657 DOI: 10.1161/circulationaha.110.015479] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Formation of platelet plug initiates hemostasis after vascular injury and triggers thrombosis in ischemic disease. However, the mechanisms leading to the formation of a stable thrombus are poorly understood. Connexins comprise a family of proteins that form gap junctions enabling intercellular coordination of tissue activity, a process termed gap junctional intercellular communication. METHODS AND RESULTS In the present study, we show that megakaryocytes and platelets express connexin 37 (Cx37). Deletion of the Cx37 gene in mice shortens bleeding time and increases thrombus propensity. Aggregation is increased in murine Cx37(-/-) platelets or in murine Cx37(+/+) and human platelets treated with gap junction blockers. Intracellular microinjection of neurobiotin, a Cx37-permeant tracer, revealed gap junctional intercellular communication in platelet aggregates, which was impaired in Cx37(-/-) platelets and in human platelets exposed to gap junction blockers. Finally, healthy subjects homozygous for Cx37-1019C, a prognostic marker for atherosclerosis, display increased platelet responses compared with subjects carrying the Cx37-1019T allele. Expression of these polymorphic channels in communication-deficient cells revealed a decreased permeability of Cx37-1019C channels for neurobiotin. CONCLUSIONS We propose that the establishment of gap junctional communication between Cx37-expressing platelets provides a mechanism to limit thrombus propensity. To our knowledge, these data provide the first evidence incriminating gap junctions in the pathogenesis of thrombosis.
Collapse
Affiliation(s)
- Anne Angelillo-Scherrer
- Service and Central Laboratory of Hematology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, rue du Bugnon 46, CH-1011 Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Twinfilins are evolutionarily conserved regulators of cytoskeletal dynamics. They inhibit actin polymerization by binding both actin monomers and filament barbed ends. Inactivation of the single twinfilin gene from budding yeast and fruit fly results in defects in endocytosis, cell migration, and organization of the cortical actin filament structures. Mammals express three twinfilin isoforms, of which twinfilin-1 and twinfilin-2a display largely overlapping expression patterns in non-muscle tissues of developing and adult mice. The expression of twinfilin-2b, which is generated through alternative promoter usage of the twinfilin-2 gene, is restricted to heart and skeletal muscles. However, the physiological functions of mammalian twinfilins have not been reported. As a first step towards understanding the function of twinfilin in vertebrates, we generated twinfilin-2a deficient mice by deleting exon 1 of the twinfilin-2 gene. Twinfilin-2a knockout mice developed normally to adulthood, were fertile, and did not display obvious morphological or behavioural abnormalities. Tissue anatomy and morphology in twinfilin-2a deficient mice was similar to that of wild-type littermates. These data suggest that twinfilin-2a plays a redundant role in cytoskeletal dynamics with the biochemically similar twinfilin-1, which is typically co-expressed in same tissues with twinfilin-2a.
Collapse
|
35
|
Kim YM, Renné C, Seifert S, Schuh K, Renné T. Impaired melanoma growth in VASP deficient mice. FEBS Lett 2011; 585:2533-6. [DOI: 10.1016/j.febslet.2011.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/28/2011] [Accepted: 07/01/2011] [Indexed: 12/21/2022]
|
36
|
Falconar AKI, Martinez F. The NS1 glycoprotein can generate dramatic antibody-enhanced dengue viral replication in normal out-bred mice resulting in lethal multi-organ disease. PLoS One 2011; 6:e21024. [PMID: 21731643 PMCID: PMC3120820 DOI: 10.1371/journal.pone.0021024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 05/18/2011] [Indexed: 11/01/2022] Open
Abstract
Antibody-enhanced replication (AER) of dengue type-2 virus (DENV-2) strains and production of antibody-enhanced disease (AED) was tested in out-bred mice. Polyclonal antibodies (PAbs) generated against the nonstructural-1 (NS1) glycoprotein candidate vaccine of the New Guinea-C (NG-C) or NSx strains reacted strongly and weakly with these antigens, respectively. These PAbs contained the IgG2a subclass, which cross-reacted with the virion-associated envelope (E) glycoprotein of the DENV-2 NSx strain, suggesting that they could generate its AER via all mouse Fcγ-receptor classes. Indeed, when these mice were challenged with a low dose (<0.5 LD₅₀) of the DENV-2 NSx strain, but not the NG-C strain, they all generated dramatic and lethal DENV-2 AER/AED. These AER/AED mice developed life-threatening acute respiratory distress syndrome (ARDS), displayed by diffuse alveolar damage (DAD) resulting from i) dramatic interstitial alveolar septa-thickening with mononuclear cells, ii) some hyperplasia of alveolar type-II pneumocytes, iii) copious intra-alveolar protein secretion, iv) some hyaline membrane-covered alveolar walls, and v) DENV-2 antigen-positive alveolar macrophages. These mice also developed meningo-encephalitis, with greater than 90,000-fold DENV-2 AER titers in microglial cells located throughout their brain parenchyma, some of which formed nodules around dead neurons. Their spleens contained infiltrated megakaryocytes with DENV-2 antigen-positive red-pulp macrophages, while their livers displayed extensive necrosis, apoptosis and macro- and micro-steatosis, with DENV-2 antigen-positive Kuppfer cells and hepatocytes. Their infections were confirmed by DENV-2 isolations from their lungs, spleens and livers. These findings accord with those reported in fatal human "severe dengue" cases. This DENV-2 AER/AED was blocked by high concentrations of only the NG-C NS1 glycoprotein. These results imply a potential hazard of DENV NS1 glycoprotein-based vaccines, particularly against DENV strains that contain multiple mutations or genetic recombination within or between their DENV E and NS1 glycoprotein-encoding genes. The model provides potential for assessing DENV strain pathogenicity and anti-DENV therapies in normal mice.
Collapse
Affiliation(s)
- Andrew K I Falconar
- Grupo de Investigaciones en Enfermedades Tropicales, Departmento de Ciéncias Básicas Médicas, Universidad del Norte, Barranquilla, Colombia.
| | | |
Collapse
|
37
|
Abstract
Signaling by nitric oxide (NO) determines several cardiovascular functions including blood pressure regulation, cardiac and smooth muscle hypertrophy, and platelet function. NO stimulates the synthesis of cGMP by soluble guanylyl cyclases and thereby activates cGMP-dependent protein kinases (PKGs), mediating most of the cGMP functions. Hence, an elucidation of the PKG signaling cascade is essential for the understanding of the (patho)physiological aspects of NO. Several PKG signaling pathways were identified, meanwhile regulating the intracellular calcium concentration, mediating calcium desensitization or cytoskeletal rearrangement. During the last decade it emerged that the inositol trisphosphate receptor-associated cGMP-kinase substrate (IRAG), an endoplasmic reticulum-anchored 125-kDa membrane protein, is a main signal transducer of PKG activity in the cardiovascular system. IRAG interacts specifically in a trimeric complex with the PKG1β isoform and the inositol 1,4,5-trisphosphate receptor I and, upon phosphorylation, reduces the intracellular calcium release from the intracellular stores. IRAG motifs for phosphorylation and for targeting to PKG1β and 1,4,5-trisphosphate receptor I were identified by several approaches. The (patho)physiological functions for the regulation of smooth muscle contractility and the inhibition of platelet activation were perceived. In this review, the IRAG recognition, targeting, and function are summarized compared with PKG and several PKG substrates in the cardiovascular system.
Collapse
Affiliation(s)
- Jens Schlossmann
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, Regensburg, Germany.
| | | |
Collapse
|
38
|
Profirovic J, Han J, Andreeva AV, Neamu RF, Pavlovic S, Vogel SM, Walter U, Voyno-Yasenetskaya TA. Vasodilator-stimulated phosphoprotein deficiency potentiates PAR-1-induced increase in endothelial permeability in mouse lungs. J Cell Physiol 2011; 226:1255-64. [PMID: 20945373 DOI: 10.1002/jcp.22453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Vasodilator-stimulated phosphoprotein (VASP) is implicated in the protection of the endothelial barrier in vitro and in vivo. The function of VASP in thrombin signaling in the endothelial cells (ECs) is not known. For the first time we studied the effects of VASP deficiency on EC permeability and pulmonary vascular permeability in response to thrombin receptor stimulation. We provided the evidence that VASP deficiency potentiates the increase in endothelial permeability induced by activation of thrombin receptor in cultured human umbilical vein endothelial cells (HUVECs) and isolated mouse lungs. Using transendothelial resistance measurement, we showed that siRNA-mediated VASP downregulation in HUVECs leads to a potentiation of thrombin- and protease-activated receptor 1 (PAR-1) agonist-induced increase in endothelial permeability. Compared to control cells, VASP-deficient HUVECs had delayed endothelial junctional reassembly and abrogated VE-cadherin cytoskeletal anchoring in the recovery phase after thrombin stimulation, as demonstrated by immunofluorescence studies and cell fractionation analysis, respectively. Measurement of the capillary filtration coefficient in isolated mouse lungs demonstrated that VASP(-/-) mice have increased microvascular permeability in response to infusion with PAR-1 agonist compared to wild type mice. Lack of VASP led to decreased Rac1 activation both in VASP-deficient HUVECs after thrombin stimulation and VASP(-/-) mouse lungs after PAR-1 agonist infusion, indicating that VASP effects on thrombin signaling may be correlated with changes in Rac1 activity. This study demonstrates that VASP may play critical and complex role in the regulation of thrombin-dependent disruption of the endothelial barrier function.
Collapse
Affiliation(s)
- Jasmina Profirovic
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Schinner E, Salb K, Schlossmann J. Signaling via IRAG is essential for NO/cGMP-dependent inhibition of platelet activation. Platelets 2011; 22:217-27. [PMID: 21244222 DOI: 10.3109/09537104.2010.544151] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Platelet activation is strongly affected by nitric oxide/cyclic GMP (NO/cGMP) signaling involving cGMP-dependent protein kinase I (cGKI). Previously it was shown that interaction of the cGKI substrate IRAG with InsP(3)RI is essential for NO/cguanosine monophosphate (GMP)-dependent inhibition of platelet aggregation in vitro and in vivo. However, the role of Inositol-trisphosphate receptor associated cGMP kinase substrate (IRAG) for platelet adhesion or granule secretion was unknown. Here, we analysed the functional role of IRAG for platelet activation. Murine IRAG-deficient platelets displayed enhanced aggregability towards several agonists (collagen, thrombin and TxA2). NO- or cGMP-dependent inhibition of agonist induced ATP- or 5-HT secretion from dense granules, and P-selectin secretion from alpha granules was severely affected in IRAG-deficient platelets. Concomitantly, the effect of NO/cGMP on platelet aggregation was strongly reduced in IRAG-deficient platelets. Furthermore, GPIIb/IIIa-mediated adhesion of platelets to fibrinogen could only weakly be inhibited in IRAG-deficient mice contrary to wild-type (WT) mice. Our results suggest that signaling via IRAG is essential for NO/cGMP-dependent inhibition of platelet activation regarding granule secretion, aggregation and adhesion. This platelet disorder might cause that the bleeding time of IRAG-deficient mice was reduced.
Collapse
Affiliation(s)
- Elisabeth Schinner
- Pharmacology and Toxicology, University Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | | | | |
Collapse
|
40
|
Kraft P, Benz PM, Austinat M, Brede ME, Schuh K, Walter U, Stoll G, Kleinschnitz C. Deficiency of vasodilator-stimulated phosphoprotein (VASP) increases blood-brain-barrier damage and edema formation after ischemic stroke in mice. PLoS One 2010; 5:e15106. [PMID: 21151938 PMCID: PMC2997079 DOI: 10.1371/journal.pone.0015106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/21/2010] [Indexed: 12/14/2022] Open
Abstract
Background Stroke-induced brain edema formation is a frequent cause of secondary infarct growth and deterioration of neurological function. The molecular mechanisms underlying edema formation after stroke are largely unknown. Vasodilator-stimulated phosphoprotein (VASP) is an important regulator of actin dynamics and stabilizes endothelial barriers through interaction with cell-cell contacts and focal adhesion sites. Hypoxia has been shown to foster vascular leakage by downregulation of VASP in vitro but the significance of VASP for regulating vascular permeability in the hypoxic brain in vivo awaits clarification. Methodology/Principal Findings Focal cerebral ischemia was induced in Vasp−/− mice and wild-type (WT) littermates by transient middle cerebral artery occlusion (tMCAO). Evan's Blue tracer was applied to visualize the extent of blood-brain-barrier (BBB) damage. Brain edema formation and infarct volumes were calculated from 2,3,5-triphenyltetrazolium chloride (TTC)-stained brain slices. Both mouse groups were carefully controlled for anatomical and physiological parameters relevant for edema formation and stroke outcome. BBB damage (p<0.05) and edema volumes (1.7 mm3±0.5 mm3 versus 0.8 mm3±0.4 mm3; p<0.0001) were significantly enhanced in Vasp−/− mice compared to controls on day 1 after tMCAO. This was accompanied by a significant increase in infarct size (56.1 mm3±17.3 mm3 versus 39.3 mm3±10.7 mm3, respectively; p<0.01) and a non significant trend (p>0.05) towards worse neurological outcomes. Conclusion Our study identifies VASP as critical regulator of BBB maintenance during acute ischemic stroke. Therapeutic modulation of VASP or VASP-dependent signalling pathways could become a novel strategy to combat excessive edema formation in ischemic brain damage.
Collapse
Affiliation(s)
- Peter Kraft
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Peter Michael Benz
- Institute for Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Würzburg, Germany
- Department of Physiology, University of Würzburg, Würzburg, Germany
| | | | - Marc Elmar Brede
- Department of Anesthesiology, University of Würzburg, Würzburg, Germany
| | - Kai Schuh
- Institute for Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Würzburg, Germany
- Department of Physiology, University of Würzburg, Würzburg, Germany
| | - Ulrich Walter
- Institute for Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Würzburg, Germany
| | - Guido Stoll
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
41
|
Abstract
In healthy blood vessels excessive platelet activation is counterbalanced by negative signalling cascades that modulate activation. This is achieved primarily through endothelial-derived nitric oxide (NO) and prostacyclin (PGI2). The biological effects of NO are mediated through stimulation soluble guanylyl cyclase (sGC) activation of cyclic AMP and GMP-mediated signalling pathways. In the present review examine our current understanding of NO-mediated regulation of platelets and highlight key issues that remain unresolved.
Collapse
Affiliation(s)
- Khalid M Naseem
- Hull York Medical School, University of Hull, Hull, Yorkshire, UK.
| | | |
Collapse
|
42
|
Lin WH, Nelson SE, Hollingsworth RJ, Chung CY. Functional roles of VASP phosphorylation in the regulation of chemotaxis and osmotic stress response. Cytoskeleton (Hoboken) 2010; 67:259-71. [PMID: 20191567 DOI: 10.1002/cm.20443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vasodilator-stimulated phosphoprotein (VASP) plays crucial roles in controlling F-actin-driven processes and growing evidence indicates that VASP function is modulated by phosphorylation at multiple sites. However, the complexity of mammalian system prevents the clear understanding of the role of VASP phosphorylation. In this study, we took advantage of Dictyostelium which possesses only one member of the Ena/VASP family to investigate the functional roles of VASP phosphorylation. Our results demonstrated that hyperosmotic stress and cAMP stimulation cause VASP phosphorylation. VASP phosphorylation plays a negative role for the early steps of filopodia/microspikes formation. VASP phosphorylation appears to modulate VASP localization at the membrane cortex and its interactions with WASP and WIPa. Analysis of chemotaxis of cells expressing VASP mutants showed that VASP phosphorylation is required for the establishment of cell polarity under a cAMP gradient.
Collapse
Affiliation(s)
- Wan-Hsin Lin
- Department of Biological Sciences, School of Art and Science, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
43
|
Assinger A, Schmid W, Volf I. Decreased VASP phosphorylation in platelets of male and female smokers of young age. Platelets 2010; 21:596-603. [PMID: 20822337 DOI: 10.3109/09537104.2010.505674] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cigarette smoking represents a major risk factor for atherosclerosis as smoking delivers huge amounts of oxidants and toxins to the human body and elicits an inflammatory response. Notably, oxidative stress and inflammation-derived oxidants are able to modulate platelet function. This is of particular interest as platelets and their activation state are implicated in the very early phases of the development of cardiovascular disease. We therefore investigated the impact of smoking on platelet reactivity and phosphorylation of vasodilator-stimulated phosphoprotein (VASP) in a group of 20 young smokers (age 25.7 ± 4.36 years; 10 male/10 female) and an age- and gender-matched control group. After overnight smoking cessation, basal and prostaglandin E1-induced phosphorylation state of intraplatelet VASP was compared between smokers and non-smokers. Furthermore, the ability of several concentrations of ADP to induce surface expression of P-selectin was assessed. Our results show that both the basal as well as prostaglandin E₁-induced phosphorylation states of VASP are significantly decreased in the smokers group. These effects can be observed in both male and female smokers to a similar extent. Furthermore, we found significantly enhanced surface expression of P-selectin in response to different concentrations of ADP in smokers; these differences are even more pronounced in the presence of prostaglandin E₁. As phosphorylated VASP represents a negative regulator of platelet activation, decreased VASP phosphorylation would be supposed to result in platelet hyperreactivity and pro-coagulant and pro-inflammatory consequences. Therefore, our findings add another piece of evidence to the harmful effects of smoking in both male and female smokers.
Collapse
Affiliation(s)
- Alice Assinger
- Institute of Physiology, Center for Physiology & Pharmacology, Medical University of Vienna, Schwarzspanierstr. 17 A-1090 Vienna, Austria
| | | | | |
Collapse
|
44
|
Veniere S, Waterschoot D, Vandekerckhove J, Lambrechts A, Ampe C. Identification and expression analysis of splice variants of mouse enabled homologue during development and in adult tissues. BMC Mol Biol 2010; 11:45. [PMID: 20565797 PMCID: PMC2898656 DOI: 10.1186/1471-2199-11-45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 06/17/2010] [Indexed: 11/30/2022] Open
Abstract
Background The Enabled/Vasodilator stimulated phosphoprotein (Ena/VASP) gene family comprises three genes in vertebrates: Vasp, Enabled homologue (Enah) and Ena-VASP like (Evl). Enah has the most complex gene structure. It has extra alternatively included exons compared to Vasp and Evl, and possibly one alternatively excluded intron S. The aim of this mapping study was to probe the occurrence of combinations of exon usage in Enah thereby identifying possible vertebrate ENAH splice variants. We investigated this via an in silico analysis and by performing a reverse transcription-polymerase chain reaction (RT-PCR) screen on mouse samples. We further probed the expression pattern of mouse Enah splice variants during development and in a selection of mouse adult tissues and mouse cell lines. Results In silico analysis of the vertebrate Ena/VASP gene family reveals that birds do not have Vasp, while fish have two Evl genes. Analysis of expressed sequence tags of vertebrate Enah splice variants confirms that an Enah transcript without alternative exons is ubiquitously expressed, but yields only limited information about the existence of other possible alternatively spliced Enah transcripts. Via a RT-PCR screen, we provide evidence that during mouse development and in adult mice at least eight and maximally sixteen different Enah transcripts are expressed. We also show that tissues and cell lines display specific expression profiles of these different transcripts. Exons previously associated with neuronal expression of Enah splice variants are also present in other tissues, in particular in heart. Conclusions We propose a more uniform nomenclature for alternative exons in Enah. We provide an overview of distinct expression profiles of mouse Enah splice variants during mouse development, in adult mouse tissues and in a subset of mouse cell lines.
Collapse
Affiliation(s)
- Sylvie Veniere
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
45
|
Dangel O, Mergia E, Karlisch K, Groneberg D, Koesling D, Friebe A. Nitric oxide-sensitive guanylyl cyclase is the only nitric oxide receptor mediating platelet inhibition. J Thromb Haemost 2010; 8:1343-52. [PMID: 20149081 DOI: 10.1111/j.1538-7836.2010.03806.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signaling cascade is involved in the precise regulation of platelet responses. NO released from the endothelium is known to activate NO-sensitive guanylyl cyclase (NO-GC) in platelets. By the generation of cGMP and subsequent activation of cGMP-dependent protein kinase (PKG), NO-GC mediates the reduction of the intracellular calcium and inhibits platelet adhesion and aggregation. However, NO has been postulated to influence these platelet functions also via cGMP-independent mechanisms. OBJECTIVE We studied the effect of NO on platelets lacking NO-sensitive guanylyl cyclase with regards to aggregation, adhesion, calcium mobilization and bleeding time. METHODS AND RESULTS Here, we show that NO signaling leading to inhibition of agonist-induced platelet aggregation is totally abrogated in platelets from mice deficient in NO-GC (GCKO). Even at millimolar concentrations none of the several different NO donors inhibited collagen-induced aggregation of GCKO platelets. In addition, NO neither affected adenosine 5'-diphosphate (ADP)-induced adhesion nor thrombin-induced calcium release in GCKO platelets. Although the NO-induced cGMP signal transduction was totally abrogated cyclic adenosine monophosphate (cAMP) signaling was still functional; however, cGMP/cAMP crosstalk was disturbed on the level of phosphodiesterase type 3 (PDE3). These in vitro data are completed by a reduced bleeding time indicating the lack of NO effect in vivo. CONCLUSIONS We conclude that NO-GC is the only NO receptor in murine platelets mediating the inhibition of calcium release, adhesion and aggregation: lack of the enzyme leads to disturbance of primary hemostasis.
Collapse
Affiliation(s)
- O Dangel
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Jaeger V, Hoppe S, Petermann P, Liebig T, Jansen MK, Renné T, Knebel-Mörsdorf D. Herpes simplex virus type 1 entry into epithelial MDCKII cells: role of VASP activities. J Gen Virol 2010; 91:2152-7. [PMID: 20463151 DOI: 10.1099/vir.0.021055-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
VASP is an actin-regulatory protein that links signalling to remodelling of the cytoskeleton. We investigated the role of VASP during entry of herpes simplex viruses into epithelial MDCKII cells. As VASP functions are regulated by phosphorylations, the phosphorylation pattern was determined upon infection. Phosphorylated VASP decreased temporarily at 15 and 30 min after infection. The impact of phosphorylated VASP was addressed by overexpression of phosphomimetic VASP mutants. Our results revealed that phosphorylated VASP slightly reduced the number of infected cells. Expression studies with deletion mutants further indicated minor effects of VASP on infection efficiency, whereas RNA interference studies demonstrated that reduced VASP expression did not suppress infection. We conclude that VASP activities alone may contribute to herpes simplex virus infection to only a minor extent.
Collapse
Affiliation(s)
- Verena Jaeger
- Max-Planck-Institute for Neurological Research, D-50931 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Deevi RK, Koney-Dash M, Kissenpfennig A, Johnston JA, Schuh K, Walter U, Dib K. Vasodilator-stimulated phosphoprotein regulates inside-out signaling of beta2 integrins in neutrophils. THE JOURNAL OF IMMUNOLOGY 2010; 184:6575-84. [PMID: 20483741 DOI: 10.4049/jimmunol.0903910] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The monomeric GTPase Rap1 controls functional activation of beta2 integrins in leukocytes. In this article, we describe a novel mechanism by which the chemoattractant fMLP activates Rap1 and inside-out signaling of beta2 integrins. We found that fMLP-induced activation of Rap1 in human polymorphonuclear leukocytes or neutrophils and differentiated PLB-985 cells was blocked by inhibitors of the NO/guanosine-3',5'-cyclic monophosphate-dependent protein kinase (cGKI) pathway [N-(3-(aminomethyl)benzyl)acetamidine, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, DT-3 peptide, 8-(4-chlorophenylthio)guanosine 3',5'-cyclic monophosphothioate, Rp-isomer triethylammonium salt-guanosine-3',5'-cyclic monophosphate], indicating that the downstream signaling events in Rap1 activation involve the production of NO and guanosine-3',5'-cyclic monophosphate, as well as the activation of cGKI. Silencing the expression of vasodilator-stimulated phosphoprotein (VASP), a substrate of cGKI, in resting PLB-985 cells or mice neutrophils led to constitutive activation of Rap1. In parallel, silencing VASP in differentiated PLB-985 cells led to recruitment of C3G, a guanine nucleotide exchange factor for Rap1, to the plasma membrane. Expression of murine GFP-tagged phosphodeficient VASP Ser235Ala mutant (murine serine 235 of VASP corresponds to human serine 239) in PLB-985 cells blunted fMLP-induced translocation of C3G to the membrane and activation of Rap1. Thus, bacterial fMLP triggers cGKI-dependent phosphorylation of human VASP on serine 239 and, thereby, controls membrane recruitment of C3G, which is required for activation of Rap1 and beta2 integrin-dependent antibacterial functions of neutrophils.
Collapse
Affiliation(s)
- Ravi K Deevi
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The development and application of animal models of thrombosis have played a crucial role in the discovery and validation of novel drug targets and the selection of new agents for clinical evaluation, and have informed dosing and safety information for clinical trials. These models also provide valuable information about the mechanisms of action/interaction of new antithrombotic agents. Small and large animal models of thrombosis and their role in the discovery and development of novel agents are described. Methods and major issues regarding the use of animal models of thrombosis, such as positive controls, appropriate pharmacodynamic markers of activity, safety evaluation, species specificity, and pharmacokinetics, are highlighted. Finally, the use of genetic models of thrombosis/hemostasis and how these models have aided in the development of therapies that are presently being evaluated clinically are presented.
Collapse
Affiliation(s)
- Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
49
|
Abstract
Binding of platelets to fibrinogen via integrin alphaIIbbeta3 stimulates cytoskeletal reorganization and spreading. These responses depend on tyrosine phosphorylation of multiple proteins by Src family members and Syk. Among Src substrates in platelets is adhesion- and degranulation-promoting adapter protein (ADAP), an adapter with potential binding partners: SLP-76, VASP, and SKAP-HOM. During studies of platelet function under shear flow, we discovered that ADAP(-/-) mouse platelets, unlike ADAP+/+ platelets, formed unstable thrombi in response to carotid artery injury. Moreover, fibrinogen-adherent ADAP(-/-) platelets in shear flow ex vivo showed reduced spreading and smaller zones of contact with the matrix. These abnormalities were not observed under static conditions, and they could not be rescued by stimulating platelets with a PAR4 receptor agonist or by direct alphaIIbbeta3 activation with MnCl2, consistent with a defect in outside-in alphaIIbbeta3 signaling. ADAP+/+ platelets subjected to shear flow assembled F-actin-rich structures that colocalized with SLP-76 and the Rac1 exchange factor, phospho-Vav1. In contrast, platelets deficient in ADAP, but not those deficient in VASP or SKAP-HOM, failed to form these structures. These results establish that ADAP is an essential component of alphaIIbbeta3-mediated platelet mechanotransduction that promotes F-actin assembly and enables platelet spreading and thrombus stabilization under fluid shear stress.
Collapse
|
50
|
Sartoretto JL, Jin BY, Bauer M, Gertler FB, Liao R, Michel T. Regulation of VASP phosphorylation in cardiac myocytes: differential regulation by cyclic nucleotides and modulation of protein expression in diabetic and hypertrophic heart. Am J Physiol Heart Circ Physiol 2009; 297:H1697-710. [PMID: 19734360 DOI: 10.1152/ajpheart.00595.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vasodilator-stimulated phosphoprotein (VASP) is a major substrate for cyclic nucleotide-dependent kinases that has been implicated in cardiac pathology, yet many aspects of VASP's molecular regulation in cardiomyocytes are incompletely understood. In these studies, we explored the role of VASP, both in signaling pathways in isolated murine myocytes, as well as in a model of cardiac hypertrophy in VASP(null) mice. We found that the beta-adrenergic agonist isoproterenol promotes the rapid and reversible phosphorylation of VASP at Ser157 and Ser239. Forskolin and the cAMP analog 8-(4-chlorophenylthio)-cAMP promote a similar pattern of VASP phosphorylation at both sites. The effects of isoproterenol are blocked by atenolol and by compound H-89, an inhibitor of the cAMP-dependent protein kinase. By contrast, phosphorylation of VASP only at Ser239 is seen following activation of particulate guanylate cyclase by atrial natriuretic peptide, or following activation of soluble guanylate cyclase by sodium nitroprusside, or following treatment of myocytes with cGMP analog. We found that basal and isoproterenol-induced VASP phosphorylation is entirely unchanged in cardiomyocytes isolated from either endothelial or neuronal nitric oxide synthase knockout mice. In cardiomyocytes isolated from diabetic mice, only basal VASP phosphorylation is increased, whereas, in cells isolated from mice subjected to ascending aortic constriction (AAC), we found a significant increase in basal VASP expression, along with an increase in VASP phosphorylation, compared with cardiac myocytes isolated from sham-operated mice. Moreover, there is further increase in VASP phosphorylation in cells isolated from hypertrophic hearts following isoproterenol treatment. Finally, we found that VASP(null) mice subjected to transverse aortic constriction develop cardiac hypertrophy with a pattern similar to VASP(+/+) mice. Our findings establish differential receptor-modulated regulation of VASP phosphorylation in cardiomyocytes by cyclic nucleotides. Furthermore, these studies demonstrate for the first time that VASP expression is upregulated in hypertrophied heart.
Collapse
Affiliation(s)
- Juliano L Sartoretto
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|