1
|
Sunami Y, Yoshino S, Yamazaki Y, Iwamoto T, Nakamura T. Rapid increase of C/EBPα p42 induces growth arrest of acute myeloid leukemia (AML) cells by Cop1 deletion in Trib1-expressing AML. Leukemia 2024; 38:2585-2597. [PMID: 39367171 DOI: 10.1038/s41375-024-02430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Cop1 encodes a ubiquitin E3 ligase that has been well preserved during evolution in both plants and metazoans. In metazoans, the C/EBP family transcription factors are targets for degradation by Cop1, and this process is regulated by the Tribbles pseudokinase family. Over-expression of Tribbles homolog 1 (Trib1) induces acute myeloid leukemia (AML) via Cop1-dependent degradation of the C/EBPα p42 isoform. Here, we induced rapid growth arrest and granulocytic differentiation of Trib1-expressing AML cells using a Cop1 conditional knockout (KO), which is associated with a transient increase in the C/EBPα p42 isoform. The growth-suppressive effect of Cop1 KO was canceled by silencing of Cebpa and reinforced by exogenous expression of the p42 isoform. Moreover, Cop1 KO improved the survival of recipients transplanted with Trib1-expressing AML cells. We further identified a marked increase in Trib1 protein expression in Cop1 KO, indicating that Trib1 is self-degraded by the Cop1 degradosome. COP1 downregulation also inhibits the proliferation of human AML cells in a TRIB1-dependent manner. Taken together, our results provide new insights into the role of Trib1/Cop1 machinery in the C/EBPα p42-dependent leukemogenic activity, and a novel idea to develop new therapeutics.
Collapse
Affiliation(s)
- Yoshitaka Sunami
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Seiko Yoshino
- Department of Molecular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukari Yamazaki
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takashi Iwamoto
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takuro Nakamura
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
2
|
Ayuso-García P, Sánchez-Rueda A, Velasco-Avilés S, Tamayo-Caro M, Ferrer-Pinós A, Huarte-Sebastian C, Alvarez V, Riobello C, Jiménez-Vega S, Buendia I, Cañas-Martin J, Fernández-Susavila H, Aparicio-Rey A, Esquinas-Román EM, Ponte CR, Guhl R, Laville N, Pérez-Andrés E, Lavín JL, González-Lopez M, Cámara NM, Aransay AM, Lozano JJ, Sutherland JD, Barrio R, Martinez-Chantar ML, Azkargorta M, Elortza F, Soriano-Navarro M, Matute C, Sánchez-Gómez MV, Bayón-Cordero L, Pérez-Samartín A, Bravo SB, Kurz T, Lama-Díaz T, Blanco MG, Haddad S, Record CJ, van Hasselt PM, Reilly MM, Varela-Rey M, Woodhoo A. Neddylation orchestrates the complex transcriptional and posttranscriptional program that drives Schwann cell myelination. SCIENCE ADVANCES 2024; 10:eadm7600. [PMID: 38608019 PMCID: PMC11014456 DOI: 10.1126/sciadv.adm7600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Myelination is essential for neuronal function and health. In peripheral nerves, >100 causative mutations have been identified that cause Charcot-Marie-Tooth disease, a disorder that can affect myelin sheaths. Among these, a number of mutations are related to essential targets of the posttranslational modification neddylation, although how these lead to myelin defects is unclear. Here, we demonstrate that inhibiting neddylation leads to a notable absence of peripheral myelin and axonal loss both in developing and regenerating mouse nerves. Our data indicate that neddylation exerts a global influence on the complex transcriptional and posttranscriptional program by simultaneously regulating the expression and function of multiple essential myelination signals, including the master transcription factor EGR2 and the negative regulators c-Jun and Sox2, and inducing global secondary changes in downstream pathways, including the mTOR and YAP/TAZ signaling pathways. This places neddylation as a critical regulator of myelination and delineates the potential pathogenic mechanisms involved in CMT mutations related to neddylation.
Collapse
Affiliation(s)
- Paula Ayuso-García
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Alejandro Sánchez-Rueda
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Sergio Velasco-Avilés
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Miguel Tamayo-Caro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Aroa Ferrer-Pinós
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Cecilia Huarte-Sebastian
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Vanesa Alvarez
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Cristina Riobello
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Selene Jiménez-Vega
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Izaskun Buendia
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Science Park of UPV/EHU, Sede building, 48940 Leioa, Spain
| | - Jorge Cañas-Martin
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Héctor Fernández-Susavila
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Adrián Aparicio-Rey
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Eva M. Esquinas-Román
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Carlos Rodríguez Ponte
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
| | - Romane Guhl
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
- Université Paris Cité Magistère Européen de Génétique, 85 Boulevard Saint-Germain, 75006 Paris, France
| | - Nicolas Laville
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
- Université Paris Cité Magistère Européen de Génétique, 85 Boulevard Saint-Germain, 75006 Paris, France
| | - Encarni Pérez-Andrés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - José L. Lavín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
- NEIKER–Basque Institute for Agricultural Research and Development, Applied Mathematics Department, Bioinformatics Unit, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Monika González-Lopez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Nuria Macías Cámara
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Ana M. Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan José Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - James D. Sutherland
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - María Luz Martinez-Chantar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Mikel Azkargorta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Félix Elortza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Mario Soriano-Navarro
- Electron Microscopy Core Facility, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Carlos Matute
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Science Park of UPV/EHU, Sede building, 48940 Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - María Victoria Sánchez-Gómez
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Science Park of UPV/EHU, Sede building, 48940 Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Laura Bayón-Cordero
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Science Park of UPV/EHU, Sede building, 48940 Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Alberto Pérez-Samartín
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Science Park of UPV/EHU, Sede building, 48940 Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Susana B. Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), 15705 Santiago de Compostela, A Coruña, Spain
| | - Thimo Kurz
- Evotec SE, Innovation Dr, Milton, Abingdon OX14 4RT, UK and School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Tomas Lama-Díaz
- DNA Repair and Genome Integrity Laboratory, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15706 Santiago de Compostela, A Coruña, Spain
| | - Miguel G. Blanco
- DNA Repair and Genome Integrity Laboratory, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15706 Santiago de Compostela, A Coruña, Spain
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Plaza do Obradoiro s/n, Santiago de Compostela, Spain
| | - Saif Haddad
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Christopher J. Record
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Peter M. van Hasselt
- Department of Metabolic Diseases, Division Pediatrics, Wilhelmina Children’s Hospital University Medical Center Utrecht, Utrecht University, 3584 EA, Utrecht, Netherlands
| | - Mary M. Reilly
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Marta Varela-Rey
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Plaza do Obradoiro s/n, Santiago de Compostela, Spain
| | - Ashwin Woodhoo
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, A Coruña, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Bizkaia, Spain
- Department of Functional Biology, University of Santiago de Compostela, Plaza do Obradoiro s/n, Santiago de Compostela, Spain
- Oportunius Research Professor at CIMUS/USC, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
3
|
Sun X, Xie Y, Xu K, Li J. Regulatory networks of the F-box protein FBX206 and OVATE family proteins modulate brassinosteroid biosynthesis to regulate grain size and yield in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:789-801. [PMID: 37818650 DOI: 10.1093/jxb/erad397] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
F-box proteins participate in the regulation of many processes, including cell division, development, and plant hormone responses. Brassinosteroids (BRs) regulate plant growth and development by activating core transcriptional and other multiple factors. In rice, OVATE family proteins (OFPs) participate in BR signalling and regulate grain size. Here we identified an F-box E3 ubiquitin ligase, FBX206, that acts as a negative factor in BR signalling and regulates grain size and yield in rice. Suppressed expression of FBX206 by RNAi leads to promoted plant growth and increased grain yield. Molecular analyses showed that the expression levels of BR biosynthetic genes were up-regulated, whereas those of BR catabolic genes were down-regulated in FBX206-RNAi plants, resulting in the accumulation of 28-homoBL, one of the bioactive BRs. FBX206 interacted with OsOFP8, a positive regulator in BR signalling, and OsOFP19, a negative regulator in BR signalling. SCFFBX206 mediated the degradation of OsOFP8 but suppressed OsOFP19 degradation. OsOFP8 interacted with OsOFP19, and the reciprocal regulation between OsOFP8 and OsOFP19 required the presence of FBX206. FBX206 itself was ubiquitinated and degraded, but interactions of OsOFP8 and OsOFP19 synergistically suppressed the degradation of FBX206. Genetic interactions indicated an additive effect between FBX206 and OsOFP8 and epistatic effects of OsOFP19 on FBX206 and OsOFP8. Our study reveals the regulatory networks of FBX206, OsOFP8, and OsOFP19 in BR signalling that regulate grain size and yield in rice.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Kaizun Xu
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jianxiong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Zhu J, Li Y, Zhong C, Zhu M, Zheng Y, Xiong A, Meng P, Shan L, Li Y, Huang J. Neuritin affects the activity of neuralized-like 1 by promoting degradation and weakening its affinity for substrate. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1650-1658. [PMID: 37249336 PMCID: PMC10577452 DOI: 10.3724/abbs.2023098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Neuritin plays a key role in neural development and regeneration by promoting neurite outgrowth and synapse maturation. Our previous research revealed the mechanism by which neuritin inhibits Notch signaling through interaction with neuralized-like 1 (Neurl1) to promote neurite growth. However, how neuritin regulates Notch signaling through Neurl1 has not been elucidated. Here, we first confirm that neuritin is an upstream regulator of Neurl1 and inhibits Notch signaling through Neurl1. Neurl1 is an E3 ubiquitin ligase that can promote ubiquitination and endocytosis of the Notch1 ligand Jagged1. Therefore, we observe the effect of neuritin on the ligase activity of Neurl1. The results indicate that neuritin inhibits Neurl1 activity by reducing the ubiquitination level and endocytosis of the target protein Jagged1. Moreover, we find that decreased activity of Neurl1 results in reduced expression of Notch receptor Notch intracellular domain (NICD) and downstream target gene hairy and enhancer of split-1 ( HES1). Furthermore, we investigate how neuritin affects Neurl1 enzyme activity. The results show that neuritin not only weakens the affinity between Neurl1 and Jagged1 but also promotes the degradation of Neurl1 by the 26S proteasome pathway. Taken together, our results suggest that neuritin negatively regulates Notch signaling by inhibiting the activity of Neurl1, promoting the degradation of Neurl1 and weakening the affinity of Neurl1 for Jagged1. Our study clarifies the molecular mechanisms of neuritin in regulating the Notch signaling pathway and provides new clues about how neuritin mediates neural regeneration and plasticity.
Collapse
Affiliation(s)
- Jingling Zhu
- Department of Biochemistry and Molecular BiologyTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- the Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of BiochemistryShihezi University School of MedicineShihezi832002China
| | - Yu Li
- the Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of BiochemistryShihezi University School of MedicineShihezi832002China
| | - Chen Zhong
- the First Affiliated Hospital of Shihezi University School of MedicineShihezi832000China
| | - Meiyi Zhu
- the First Affiliated Hospital of Shihezi University School of MedicineShihezi832000China
| | - Yan Zheng
- the Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of BiochemistryShihezi University School of MedicineShihezi832002China
| | - Anying Xiong
- the Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of BiochemistryShihezi University School of MedicineShihezi832002China
| | - Pingping Meng
- the Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of BiochemistryShihezi University School of MedicineShihezi832002China
| | - Liya Shan
- the Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of BiochemistryShihezi University School of MedicineShihezi832002China
| | - Yang Li
- the Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of BiochemistryShihezi University School of MedicineShihezi832002China
| | - Jin Huang
- Department of Biochemistry and Molecular BiologyTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- the Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of BiochemistryShihezi University School of MedicineShihezi832002China
| |
Collapse
|
5
|
Das S, Singh A, Shah P. Evaluating single-cell variability in proteasomal decay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554358. [PMID: 37662347 PMCID: PMC10473619 DOI: 10.1101/2023.08.22.554358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Gene expression is a stochastic process that leads to variability in mRNA and protein abundances even within an isogenic population of cells grown in the same environment. This variation, often called gene-expression noise, has typically been attributed to transcriptional and translational processes while ignoring the contributions of protein decay variability across cells. Here we estimate the single-cell protein decay rates of two degron GFPs in Saccharomyces cerevisiae using time-lapse microscopy. We find substantial cell-to-cell variability in the decay rates of the degron GFPs. We evaluate cellular features that explain the variability in the proteasomal decay and find that the amount of 20s catalytic beta subunit of the proteasome marginally explains the observed variability in the degron GFP half-lives. We propose alternate hypotheses that might explain the observed variability in the decay of the two degron GFPs. Overall, our study highlights the importance of studying the kinetics of the decay process at single-cell resolution and that decay rates vary at the single-cell level, and that the decay process is stochastic. A complex model of decay dynamics must be included when modeling stochastic gene expression to estimate gene expression noise.
Collapse
Affiliation(s)
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, Biomedical Engineering, University of Delaware
| | | |
Collapse
|
6
|
Sharma E, Bhatnagar A, Bhaskar A, Majee SM, Kieffer M, Kepinski S, Khurana P, Khurana JP. Stress-induced F-Box protein-coding gene OsFBX257 modulates drought stress adaptations and ABA responses in rice. PLANT, CELL & ENVIRONMENT 2023; 46:1207-1231. [PMID: 36404527 DOI: 10.1111/pce.14496] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
F-box (FB) proteins that form part of SKP1-CUL1-F-box (SCF) type of E3 ubiquitin ligases are important components of plant growth and development. Here we characterized OsFBX257, a rice FB protein-coding gene that is differentially expressed under drought conditions and other abiotic stresses. Population genomics analysis suggest that OsFBX257 shows high allelic diversity in aus accessions and has been under positive selection in some japonica, aromatic and indica cultivars. Interestingly, allelic variation at OsFBX257 in aus cultivar Nagina22 is associated with an alternatively spliced transcript. Conserved among land plants, OsFBX257 is a component of the SCF complex, can form homomers and interact molecularly with the 14-3-3 rice proteins GF14b and GF14c. OsFBX257 is co-expressed in a network involving protein kinases and phosphatases. We show that OsFBX257 can bind the kinases OsCDPK1 and OsSAPK2, and that its phosphorylation can be reversed by phosphatase OsPP2C08. OsFBX257 expression level modulates root architecture and drought stress tolerance in rice. OsFBX257 knockdown (OsFBX257KD ) lines show reduced total root length and depth, crown root number, panicle size and survival under stress. In contrast, its overexpression (OsFBX257OE ) increases root depth, leaf and grain length, number of panicles, and grain yield in rice. OsFBX257 is a promising breeding target for alleviating drought stress-induced damage in rice.
Collapse
Affiliation(s)
- Eshan Sharma
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Akanksha Bhatnagar
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Avantika Bhaskar
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Susmita M Majee
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Martin Kieffer
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Stefan Kepinski
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Global Food and Environment Institute, University of Leeds, Leeds, UK
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
7
|
Hanzl A, Barone E, Bauer S, Yue H, Nowak RP, Hahn E, Pankevich EV, Koren A, Kubicek S, Fischer ES, Winter GE. E3-Specific Degrader Discovery by Dynamic Tracing of Substrate Receptor Abundance. J Am Chem Soc 2023; 145:1176-1184. [PMID: 36602777 PMCID: PMC9853857 DOI: 10.1021/jacs.2c10784] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 01/06/2023]
Abstract
Targeted protein degradation (TPD) is a new pharmacology based on small-molecule degraders that induce proximity between a protein of interest (POI) and an E3 ubiquitin ligase. Of the approximately 600 E3s encoded in the human genome, only around 2% can be co-opted with degraders. This underrepresentation is caused by a paucity of discovery approaches to identify degraders for defined E3s. This hampers a rational expansion of the druggable proteome and stymies critical advancements in the field, such as tissue- and cell-specific degradation. Here, we focus on dynamic NEDD8 conjugation, a post-translational, regulatory circuit that controls the activity of 250 cullin RING E3 ligases (CRLs). Leveraging this regulatory layer enabled us to develop a scalable assay to identify compounds that alter the interactome of an E3 of interest by tracing their abundance after pharmacologically induced auto-degradation. Initial validation studies are performed for CRBN and VHL, but proteomics studies indicate broad applicability for many CRLs. Among amenable ligases, we select CRLDCAF15 for a proof-of-concept screen, leading to the identification of a novel DCAF15-dependent molecular glue degrader inducing the degradation of RBM23 and RBM39. Together, this strategy empowers the scalable identification of degraders specific to a ligase of interest.
Collapse
Affiliation(s)
- Alexander Hanzl
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Eleonora Barone
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Sophie Bauer
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Hong Yue
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Radosław P. Nowak
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Elisa Hahn
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Eugenia V. Pankevich
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Anna Koren
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Stefan Kubicek
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Eric S. Fischer
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Georg E. Winter
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| |
Collapse
|
8
|
Xing L, Xu L, Zhang Y, Che Y, Wang M, Shao Y, Qiu D, Yu H, Zhao F, Zhang J. Recent Insight on Regulations of FBXW7 and Its Role in Immunotherapy. Front Oncol 2022; 12:925041. [PMID: 35814468 PMCID: PMC9263569 DOI: 10.3389/fonc.2022.925041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
SCFFBXW7 E3 ubiquitin ligase complex is a crucial enzyme of the ubiquitin proteasome system that participates in variant activities of cell process, and its component FBXW7 (F-box and WD repeat domain–containing 7) is responsible for recognizing and binding to substrates. The expression of FBXW7 is controlled by multiple pathways at different levels. FBXW7 facilitates the maturity and function maintenance of immune cells via functioning as a mediator of ubiquitination-dependent degradation of substrate proteins. FBXW7 deficiency or mutation results in the growth disturbance and dysfunction of immune cell, leads to the resistance against immunotherapy, and participates in multiple illnesses. It is likely that FBXW7 coordinating with its regulators and substrates could offer potential targets to improve the sensitivity and effects of immunotherapy. Here, we review the mechanisms of the regulation on FBXW7 and its tumor suppression role in immune filed among various diseases (mostly cancers) to explore novel immune targets and treatments.
Collapse
Affiliation(s)
- Liangliang Xing
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Leidi Xu
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yong Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yinggang Che
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Min Wang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yongxiang Shao
- Department of Anus and Intestine Surgery, The 942th Hospital of Joint Logistics Support Force, Yinchuan, China
| | - Dan Qiu
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Honglian Yu
- Department of Hemato-Oncology, The 942th Hospital of Joint Logistics Support Force, Yinchuan, China
| | - Feng Zhao
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jian Zhang, ; Feng Zhao,
| | - Jian Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Jian Zhang, ; Feng Zhao,
| |
Collapse
|
9
|
Li YC, Cai SW, Shu YB, Chen MW, Shi Z. USP15 in Cancer and Other Diseases: From Diverse Functionsto Therapeutic Targets. Biomedicines 2022; 10:474. [PMID: 35203682 PMCID: PMC8962386 DOI: 10.3390/biomedicines10020474] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 12/10/2022] Open
Abstract
The process of protein ubiquitination and deubiquitination plays an important role in maintaining protein stability and regulating signal pathways, and protein homeostasis perturbations may induce a variety of diseases. The deubiquitination process removes ubiquitin molecules from the protein, which requires the participation of deubiquitinating enzymes (DUBs). Ubiquitin-specific protease 15 (USP15) is a DUB that participates in many biological cell processes and regulates tumorigenesis. A dislocation catalytic triplet was observed in the USP15 structure, a conformation not observed in other USPs, except USP7, which makes USP15 appear to be unique. USP15 has been reported to be involved in the regulation of various cancers and diseases, and the reported substrate functions of USP15 are conflicting, suggesting that USP15 may act as both an oncogene and a tumor suppressor in different contexts. The importance and complexity of USP15 in the pathological processes remains unclear. Therefore, we reviewed the diverse biological functions of USP15 in cancers and other diseases, suggesting the potential of USP15 as an attractive therapeutic target.
Collapse
Affiliation(s)
- Yan-Chi Li
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.-C.L.); (Y.-B.S.)
| | - Song-Wang Cai
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China;
| | - Yu-Bin Shu
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.-C.L.); (Y.-B.S.)
| | - Mei-Wan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 519000, China;
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.-C.L.); (Y.-B.S.)
| |
Collapse
|
10
|
Kinterová V, Kaňka J, Bartková A, Toralová T. SCF Ligases and Their Functions in Oogenesis and Embryogenesis-Summary of the Most Important Findings throughout the Animal Kingdom. Cells 2022; 11:234. [PMID: 35053348 PMCID: PMC8774150 DOI: 10.3390/cells11020234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/10/2022] Open
Abstract
SCF-dependent proteolysis was first discovered via genetic screening of budding yeast almost 25 years ago. In recent years, more and more functions of SCF (Skp1-Cullin 1-F-box) ligases have been described, and we can expect the number of studies on this topic to increase. SCF ligases, which are E3 ubiquitin multi-protein enzymes, catalyse protein ubiquitination and thus allow protein degradation mediated by the 26S proteasome. They play a crucial role in the degradation of cell cycle regulators, regulation of the DNA repair and centrosome cycle and play an important role in several diseases. SCF ligases seem to be needed during all phases of development, from oocyte formation through fertilization, activation of the embryonic genome to embryo implantation. In this review, we summarize known data on SCF ligase-mediated degradation during oogenesis and embryogenesis. In particular, SCFβTrCP and SCFSEL-10/FBXW7 are among the most important and best researched ligases during early development. SCFβTrCP is crucial for the oogenesis of Xenopus and mouse and also in Xenopus and Drosophila embryogenesis. SCFSEL-10/FBXW7 participates in the degradation of several RNA-binding proteins and thereby affects the regulation of gene expression during the meiosis of C. elegans. Nevertheless, a large number of SCF ligases that are primarily involved in embryogenesis remain to be elucidated.
Collapse
Affiliation(s)
- Veronika Kinterová
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic; (J.K.); (A.B.); (T.T.)
| | - Jiří Kaňka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic; (J.K.); (A.B.); (T.T.)
| | - Alexandra Bartková
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic; (J.K.); (A.B.); (T.T.)
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Tereza Toralová
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Libechov, Czech Republic; (J.K.); (A.B.); (T.T.)
| |
Collapse
|
11
|
Li Y, Xue S, He Q, Wang J, Zhu L, Zou J, Zhang J, Zuo C, Fan Z, Yue J, Zhang C, Yang K, Le J. Arabidopsis F-BOX STRESS INDUCED 4 is required to repress excessive divisions in stomatal development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:56-72. [PMID: 34817930 DOI: 10.1111/jipb.13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
During the terminal stage of stomatal development, the R2R3-MYB transcription factors FOUR LIPS (FLP/MYB124) and MYB88 limit guard mother cell division by repressing the transcript levels of multiple cell-cycle genes. In Arabidopsis thaliana possessing the weak allele flp-1, an extra guard mother cell division results in two stomata having direct contact. Here, we identified an ethylmethane sulfonate-mutagenized mutant, flp-1 xs01c, which exhibited more severe defects than flp-1 alone, producing giant tumor-like cell clusters. XS01C, encoding F-BOX STRESS-INDUCED 4 (FBS4), is preferentially expressed in epidermal stomatal precursor cells. Overexpressing FBS4 rescued the defective stomatal phenotypes of flp-1 xs01c and flp-1 mutants. The deletion or substitution of a conserved residue (Proline166) within the F-box domain of FBS4 abolished or reduced, respectively, its interaction with Arabidopsis Skp1-Like1 (ASK1), the core subunit of the Skp1/Cullin/F-box E3 ubiquitin ligase complex. Furthermore, the FBS4 protein physically interacted with CYCA2;3 and induced its degradation through the ubiquitin-26S proteasome pathway. Thus, in addition to the known transcriptional pathway, the terminal symmetric division in stomatal development is ensured at the post-translational level, such as through the ubiquitination of target proteins recognized by the stomatal lineage F-box protein FBS4.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Xue
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- The Institute of Scientific and Technical Information of China, Beijing, 100038, China
| | - Qixiumei He
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junxue Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Wenbo School, Jinan, 250100, China
| | - Lingling Zhu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Zou
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoran Zuo
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Fan
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junling Yue
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxia Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Kezhen Yang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Li J, Cai Z, Vaites LP, Shen N, Mitchell DC, Huttlin EL, Paulo JA, Harry BL, Gygi SP. Proteome-wide mapping of short-lived proteins in human cells. Mol Cell 2021; 81:4722-4735.e5. [PMID: 34626566 DOI: 10.1016/j.molcel.2021.09.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/11/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
Rapid protein degradation enables cells to quickly modulate protein abundance. Dysregulation of short-lived proteins plays essential roles in disease pathogenesis. A focused map of short-lived proteins remains understudied. Cycloheximide, a translational inhibitor, is widely used in targeted studies to measure degradation kinetics for short-lived proteins. Here, we combined cycloheximide chase assays with advanced quantitative proteomics to map short-lived proteins under translational inhibition in four human cell lines. Among 11,747 quantified proteins, we identified 1,017 short-lived proteins (half-lives ≤ 8 h). These short-lived proteins are less abundant, evolutionarily younger, and less thermally stable than other proteins. We quantified 103 proteins with different stabilities among cell lines. We showed that U2OS and HCT116 cells express truncated forms of ATRX and GMDS, respectively, which have lower stability than their full-length counterparts. This study provides a large-scale resource of human short-lived proteins under translational arrest, leading to untapped avenues of protein regulation for therapeutic interventions.
Collapse
Affiliation(s)
- Jiaming Li
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zhenying Cai
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Ning Shen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Dylan C Mitchell
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Brian L Harry
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Scholes NS, Mayor-Ruiz C, Winter GE. Identification and selectivity profiling of small-molecule degraders via multi-omics approaches. Cell Chem Biol 2021; 28:1048-1060. [PMID: 33811812 DOI: 10.1016/j.chembiol.2021.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/18/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
The therapeutic modality of targeted protein degradation promises to overcome limitations of traditional pharmacology. Small-molecule degraders recruit disease-causing proteins to E3 ubiquitin ligases, prompting their ubiquitination and degradation by the proteasome. The discovery, mechanistic elucidation, and selectivity profiling of novel degraders are often conducted in cellular systems. This highlights the need for unbiased multi-omics strategies that inform on the functionally involved components. Here, we review how proteomics and functional genomics can be integrated to identify and mechanistically understand degraders, their target selectivity as well as putative resistance mechanisms.
Collapse
Affiliation(s)
- Natalie S Scholes
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Cristina Mayor-Ruiz
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; IRB Barcelona - Institute for Research in Biomedicine, 08028 Barcelona, Spain
| | - Georg E Winter
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria.
| |
Collapse
|
14
|
Dong S, Wei J, Bowser RK, Chen BB, Mallampalli RK, Miao J, Ye Q, Tran KC, Zhao Y, Zhao J. SCF FBXW17 E3 ubiquitin ligase regulates FBXL19 stability and cell migration. J Cell Biochem 2021; 122:326-334. [PMID: 33053230 PMCID: PMC7887023 DOI: 10.1002/jcb.29860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/16/2023]
Abstract
The Skp1-Cul1-F-box protein (SCF) E3 ligase complex is one of the largest ubiquitin E3 ligase families. FBXL19, a F-box protein in SCFFBXL19 E3 ligase complex, regulates a variety of cellular responses including cell migration. We have shown that FBXL19 is not stable and its degradation is mediated by the ubiquitin-proteasome system, while the ubiquitin E3 ligase for FBXL19 ubiquitination and degradation has not been identified. In the study, we discovered that a new ubiquitin E3 ligase, SCFFBXW17 , ubiquitinates and induces FBXL19 degradation. Exogenous FBXW17 targets FBXL19 for its ubiquitination and degradation. Lysine 114 in FBXL19 is a potential ubiquitin acceptor site. Acetylation of FBXL19 attenuated SCFFBXW17 -mediated FBXL19 degradation. SCFFBXL19 E3 ligase reduced Rac1 levels and cell migration, while the effects were attenuated by exogenous FBXW17. Downregulation of FBXW17 attenuated lysophosphatidic acid-induced lamellipodia formation and Rac1 accumulation at migration leading edge. Taken together with our previous studies, FBXL19 is degraded by the ubiquitin-proteasome system and its site-specific ubiquitination is mediated by SCFFBXW17 E3 ligase, which promotes cell migration.
Collapse
Affiliation(s)
- Su Dong
- Department of Physiology and Cell Biology, Dorothy M. Davis
Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Jianxin Wei
- Department of Medicine, The University of Pittsburgh,
Pittsburgh, PA
| | - Rachel K. Bowser
- Department of Medicine, The University of Pittsburgh,
Pittsburgh, PA
| | - Bill B. Chen
- Department of Medicine, The University of Pittsburgh,
Pittsburgh, PA
| | - Rama K. Mallampalli
- Pulmonary, Critical Care & Sleep Medicine Division, The
Ohio State University, Columbus, OH
| | - Jiaxing Miao
- Department of Physiology and Cell Biology, Dorothy M. Davis
Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Qinmao Ye
- Department of Physiology and Cell Biology, Dorothy M. Davis
Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Kevin C. Tran
- Department of Physiology and Cell Biology, Dorothy M. Davis
Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis
Heart and Lung Research Institute, The Ohio State University, Columbus, OH,Pulmonary, Critical Care & Sleep Medicine Division, The
Ohio State University, Columbus, OH
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis
Heart and Lung Research Institute, The Ohio State University, Columbus, OH,Pulmonary, Critical Care & Sleep Medicine Division, The
Ohio State University, Columbus, OH,Address correspondence to: Jing Zhao, MD, PhD,
Department of Physiology and Cell Biology, The Ohio State University, 333 10th
Avenue, Graves Hall 2166D, Columbus, OH, United States, 43065. Tel:
614-685-0024;
| |
Collapse
|
15
|
Zhao BW, Sun SM, Xu K, Li YY, Lei WL, Li L, Liu SL, Ouyang YC, Sun QY, Wang ZB. FBXO34 Regulates the G2/M Transition and Anaphase Entry in Meiotic Oocytes. Front Cell Dev Biol 2021; 9:647103. [PMID: 33842473 PMCID: PMC8027338 DOI: 10.3389/fcell.2021.647103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
There are two important events in oocyte meiotic maturation, the G2/M transition and metaphase I progression. Thousands of proteins participate in regulating oocyte maturation, which highlights the importance of the ubiquitin proteasome system (UPS) in regulating protein synthesis and degradation. Skp1–Cullin–F-box (SCF) complexes, as the best characterized ubiquitin E3 ligases in the UPS, specifically recognize their substrates. F-box proteins, as the variable adaptors of SCF, can bind substrates specifically. Little is known about the functions of the F-box proteins in oocyte maturation. In this study, we found that depletion of FBXO34, an F-box protein, led to failure of oocyte meiotic resumption due to a low activity of MPF, and this phenotype could be rescued by exogenous overexpression of CCNB1. Strikingly, overexpression of FBXO34 promoted germinal vesicle breakdown (GVBD), but caused continuous activation of spindle assembly checkpoint (SAC) and MI arrest of oocytes. Here, we demonstrated that FBXO34 regulated both the G2/M transition and anaphase entry in meiotic oocytes.
Collapse
Affiliation(s)
- Bing-Wang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Si-Min Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ke Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Sai-Li Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
16
|
Dar AA, Sawada K, Dybas JM, Moser EK, Lewis EL, Park E, Fazelinia H, Spruce LA, Ding H, Seeholzer SH, Oliver PM. The E3 ubiquitin ligase Cul4b promotes CD4+ T cell expansion by aiding the repair of damaged DNA. PLoS Biol 2021; 19:e3001041. [PMID: 33524014 PMCID: PMC7888682 DOI: 10.1371/journal.pbio.3001041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 02/17/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022] Open
Abstract
The capacity for T cells to become activated and clonally expand during pathogen invasion is pivotal for protective immunity. Our understanding of how T cell receptor (TCR) signaling prepares cells for this rapid expansion remains limited. Here we provide evidence that the E3 ubiquitin ligase Cullin-4b (Cul4b) regulates this process. The abundance of total and neddylated Cul4b increased following TCR stimulation. Disruption of Cul4b resulted in impaired proliferation and survival of activated T cells. Additionally, Cul4b-deficient CD4+ T cells accumulated DNA damage. In T cells, Cul4b preferentially associated with the substrate receptor DCAF1, and Cul4b and DCAF1 were found to interact with proteins that promote the sensing or repair of damaged DNA. While Cul4b-deficient CD4+ T cells showed evidence of DNA damage sensing, downstream phosphorylation of SMC1A did not occur. These findings reveal an essential role for Cul4b in promoting the repair of damaged DNA to allow survival and expansion of activated T cells.
Collapse
Affiliation(s)
- Asif A. Dar
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Keisuke Sawada
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Joseph M. Dybas
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Biomedical Health and Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Emily K. Moser
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Emma L. Lewis
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eddie Park
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Hossein Fazelinia
- Division of Cell Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Lynn A. Spruce
- Division of Cell Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Hua Ding
- Division of Cell Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Steven H. Seeholzer
- Division of Cell Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Paula M. Oliver
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
17
|
Thevenon D, Seffouh I, Pillet C, Crespo-Yanez X, Fauvarque MO, Taillebourg E. A Nucleolar Isoform of the Drosophila Ubiquitin Specific Protease dUSP36 Regulates MYC-Dependent Cell Growth. Front Cell Dev Biol 2020; 8:506. [PMID: 32637412 PMCID: PMC7316882 DOI: 10.3389/fcell.2020.00506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
The c-Myc oncogene is a transcription factor that regulates the expression of a very large set of genes mainly involved in cell growth and proliferation. It is overexpressed in more than 70% of human cancers, illustrating the importance of keeping its levels and activity under control. The ubiquitin proteasome system is a major regulator of MYC levels in humans as well as in model organisms such as Drosophila melanogaster. Although the E3 ligases that promote MYC ubiquitination have been largely investigated, the identity and the role of the deubiquitinating enzymes, which counteract their action is only beginning to be unraveled. Using isoform-specific CRISPR-Cas9 mutagenesis, we show that the Drosophila homolog of the Ubiquitin Specific Protease USP36 has different isoforms with specific sub-cellular localizations and that the nucleolar dUSP36-D isoform is specifically required for cell and organismal growth. We also demonstrate that this isoform interacts with dMYC and the E3 ligase AGO and regulates their stability and ubiquitination levels. Furthermore, we show that dUSP36 is ubiquitinated by AGO and is able to self-deubiquitinate. Finally, we provide in vivo evidence supporting the functional relevance of these regulatory relationships. Together these results reveal that dMYC, AGO and dUSP36 form a tripartite, evolutionary conserved complex that acts as a regulatory node to control dMYC protein levels.
Collapse
|
18
|
Mayor-Ruiz C, Jaeger MG, Bauer S, Brand M, Sin C, Hanzl A, Mueller AC, Menche J, Winter GE. Plasticity of the Cullin-RING Ligase Repertoire Shapes Sensitivity to Ligand-Induced Protein Degradation. Mol Cell 2020; 75:849-858.e8. [PMID: 31442425 DOI: 10.1016/j.molcel.2019.07.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/13/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022]
Abstract
Inducing protein degradation via small molecules is a transformative therapeutic paradigm. Although structural requirements of target degradation are emerging, mechanisms determining the cellular response to small-molecule degraders remain poorly understood. To systematically delineate effectors required for targeted protein degradation, we applied genome-scale CRISPR/Cas9 screens for five drugs that hijack different substrate receptors (SRs) of cullin RING ligases (CRLs) to induce target proteolysis. We found that sensitivity to small-molecule degraders is dictated by shared and drug-specific modulator networks, including the COP9 signalosome and the SR exchange factor CAND1. Genetic or pharmacologic perturbation of these effectors impairs CRL plasticity and arrests a wide array of ligases in a constitutively active state. Resulting defects in CRL decommissioning prompt widespread CRL auto-degradation that confers resistance to multiple degraders. Collectively, our study informs on regulation and architecture of CRLs amenable for targeted protein degradation and outlines biomarkers and putative resistance mechanisms for upcoming clinical investigation.
Collapse
Affiliation(s)
- Cristina Mayor-Ruiz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria.
| | - Martin G Jaeger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Sophie Bauer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Matthias Brand
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Celine Sin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Alexander Hanzl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - André C Mueller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria.
| |
Collapse
|
19
|
Rao F, Lin H, Su Y. Cullin-RING Ligase Regulation by the COP9 Signalosome: Structural Mechanisms and New Physiologic Players. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:47-60. [PMID: 31898221 DOI: 10.1007/978-981-15-1025-0_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Cullin-RING E3 ligases (CRLs) are major ubiquitylation machineries regulated by reversible cycles of neddylation and deneddylation. The deneddylase COP9 Signalosome (CSN) terminates CRL catalytic cycle. CSN also provides a docking platform for several kinases and deubiquitinases that might play a role in regulating CRL. Recently, remarkable progress has been made in elucidating the biochemical principles and physiological implications of such exquisite regulation. The cryo-EM structures of CRL-CSN complexes provide the biochemical basis of their cognate interactions and reveal potential regulatory mechanisms during complex disassembly. Moreover, novel players beyond the canonical eight subunits of CSN were identified. This includes CSNAP, a potential 9th CSN subunit with regulatory functions, and the metabolite inositol hexakisphosphate (IP6), which enhances CRL-CSN complex formation, with IP6-metabolizing enzymes possibly instilling dynamics to the CRL-CSN system. Here, we review and summarize these new mechanistic insights along with progress in understanding CSN biology based on model organisms with genetically edited CSN subunits.
Collapse
Affiliation(s)
- Feng Rao
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Hong Lin
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yang Su
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Eldeeb MA, Siva-Piragasam R, Ragheb MA, Esmaili M, Salla M, Fahlman RP. A molecular toolbox for studying protein degradation in mammalian cells. J Neurochem 2019; 151:520-533. [PMID: 31357232 DOI: 10.1111/jnc.14838] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/03/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022]
Abstract
Protein degradation is a crucial regulatory process in maintaining cellular proteostasis. The selective degradation of intracellular proteins controls diverse cellular and biochemical processes in all kingdoms of life. Targeted protein degradation is implicated in controlling the levels of regulatory proteins as well as eliminating misfolded and any otherwise abnormal proteins. Deregulation of protein degradation is concomitant with the progression of various neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. Thus, methods of measuring metabolic half-lives of proteins greatly influence our understanding of the diverse functions of proteins in mammalian cells including neuronal cells. Historically, protein degradation rates have been studied via exploiting methods that estimate overall protein degradation or focus on few individual proteins. Notably, with the recent technical advances and developments in proteomic and imaging techniques, it is now possible to measure degradation rates of a large repertoire of defined proteins and analyze the degradation profile in a detailed spatio-temporal manner, with the aim of determining proteome-wide protein stabilities upon different physiological conditions. Herein, we discuss some of the classical and novel methods for determining protein degradation rates highlighting the crucial role of some state of art approaches in deciphering the global impact of dynamic nature of targeted degradation of cellular proteins. This article is part of the Special Issue "Proteomics".
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Mansoore Esmaili
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mohamed Salla
- Department of Biological Sciences, Lebanese International University, Bekaa, Lebanon
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Richter KT, Kschonsak YT, Vodicska B, Hoffmann I. FBXO45-MYCBP2 regulates mitotic cell fate by targeting FBXW7 for degradation. Cell Death Differ 2019; 27:758-772. [PMID: 31285543 DOI: 10.1038/s41418-019-0385-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 11/09/2022] Open
Abstract
Cell fate decision upon prolonged mitotic arrest induced by microtubule-targeting agents depends on the activity of the tumor suppressor and F-box protein FBXW7. FBXW7 promotes mitotic cell death and prevents premature escape from mitosis through mitotic slippage. Mitotic slippage is a process that can cause chemoresistance and tumor relapse. Therefore, understanding the mechanisms that regulate the balance between mitotic cell death and mitotic slippage is an important task. Here we report that FBXW7 protein levels markedly decline during extended mitotic arrest. FBXO45 binds to a conserved acidic N-terminal motif of FBXW7 specifically under a prolonged delay in mitosis, leading to ubiquitylation and subsequent proteasomal degradation of FBXW7 by the FBXO45-MYCBP2 E3 ubiquitin ligase. Moreover, we find that FBXO45-MYCBP2 counteracts FBXW7 in that it promotes mitotic slippage and prevents cell death in mitosis. Targeting this interaction represents a promising strategy to prevent chemotherapy resistance.
Collapse
Affiliation(s)
- Kai T Richter
- Cell Cycle Control and Carcinogenesis, F045, German Cancer Research Center, DKFZ, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Yvonne T Kschonsak
- Cell Cycle Control and Carcinogenesis, F045, German Cancer Research Center, DKFZ, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Barbara Vodicska
- Cell Cycle Control and Carcinogenesis, F045, German Cancer Research Center, DKFZ, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Ingrid Hoffmann
- Cell Cycle Control and Carcinogenesis, F045, German Cancer Research Center, DKFZ, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| |
Collapse
|
22
|
SCF FBXO22 targets HDM2 for degradation and modulates breast cancer cell invasion and metastasis. Proc Natl Acad Sci U S A 2019; 116:11754-11763. [PMID: 31138683 DOI: 10.1073/pnas.1820990116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human homolog of mouse double minute 2 (HDM2) is an oncogene frequently overexpressed in cancers with poor prognosis, but mechanisms of controlling its abundance remain elusive. In an unbiased biochemical search, we discovered Skp1-Cullin 1-FBXO22-ROC1 (SCFFBXO22) as the most dominating HDM2 E3 ubiquitin ligase from human proteome. The results of protein decay rate analysis, ubiquitination, siRNA-mediated silencing, and coimmunoprecipitation experiments support a hypothesis that FBXO22 targets cellular HDM2 for ubiquitin-dependent degradation. In human breast cancer cells, FBXO22 knockdown (KD) increased cell invasiveness, which was driven by elevated levels of HDM2. Moreover, mouse 4T1 breast tumor model studies revealed that FBXO22 KD led to a significant increase of breast tumor cell metastasis to the lung. Finally, low FBXO22 expression is correlated with worse survival and high HDM2 expression in human breast cancer. Altogether, these findings suggest that SCFFBXO22 targets HDM2 for degradation and possesses inhibitory effects against breast cancer tumor cell invasion and metastasis.
Collapse
|
23
|
Li Y, Sun Q, Zhao T, Xiang H, Zhang X, Wu Z, Zhou C, Zhang X, Wang Y, Zhang Y, Wang X, Li D, Yu J, Dinesh‐Kumar SP, Han C. Interaction between Brassica yellows virus silencing suppressor P0 and plant SKP1 facilitates stability of P0 in vivo against degradation by proteasome and autophagy pathways. THE NEW PHYTOLOGIST 2019; 222:1458-1473. [PMID: 30664234 PMCID: PMC6593998 DOI: 10.1111/nph.15702] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 01/08/2019] [Indexed: 05/21/2023]
Abstract
P0 protein of some polerovirus members can target ARGONAUTE1 (AGO1) to suppress RNA silencing. Although P0 harbors an F-box-like motif reported to be essential for interaction with S phase kinase-associated protein 1 (SKP1) and RNA silencing suppression, it is the autophagy pathway that was shown to contribute to AGO1 degradation. Therefore, the role of P0-SKP1 interaction in silencing suppression remains unclear. We conducted global mutagenesis and comparative functional analysis of P0 encoded by Brassica yellows virus (BrYV) (P0Br ). We found that several residues within P0Br are required for local and systemic silencing suppression activities. Remarkably, the F-box-like motif mutant of P0Br , which failed to interact with SKP1, is destabilized in vivo. Both the 26S proteasome system and autophagy pathway play a role in destabilization of the mutant protein. Furthermore, silencing of a Nicotiana benthamiana SKP1 ortholog leads to the destabilization of P0Br . Genetic analyses indicated that the P0Br -SKP1 interaction is not directly required for silencing suppression activity of P0Br , but it facilitates stability of P0Br to ensure efficient RNA silencing suppression. Consistent with these findings, efficient systemic infection of BrYV requires P0Br . Our results reveal a novel strategy used by BrYV for facilitating viral suppressors of RNA silencing stability against degradation by plant cells.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Qian Sun
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Tianyu Zhao
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Haiying Xiang
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Xiaoyan Zhang
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Zhanyu Wu
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Cuiji Zhou
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Xin Zhang
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Ying Wang
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Yongliang Zhang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Xianbing Wang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Dawei Li
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Jialin Yu
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Savithramma P. Dinesh‐Kumar
- Department of Plant Biology and The Genome CenterCollege of Biological SciencesUniversity of California, DavisDavisCA95616USA
| | - Chenggui Han
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| |
Collapse
|
24
|
Guo T, Zuo Y, Qian L, Liu J, Yuan Y, Xu K, Miao Y, Feng Q, Chen X, Jin L, Zhang L, Dong C, Xiong S, Zheng H. ADP-ribosyltransferase PARP11 modulates the interferon antiviral response by mono-ADP-ribosylating the ubiquitin E3 ligase β-TrCP. Nat Microbiol 2019; 4:1872-1884. [DOI: 10.1038/s41564-019-0428-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/02/2019] [Indexed: 12/22/2022]
|
25
|
Keskin O, Farzan N, Birben E, Akel H, Karaaslan C, Maitland-van der Zee AH, Wechsler ME, Vijverberg SJ, Kalayci O. Genetic associations of the response to inhaled corticosteroids in asthma: a systematic review. Clin Transl Allergy 2019; 9:2. [PMID: 30647901 PMCID: PMC6327448 DOI: 10.1186/s13601-018-0239-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
There is wide variability in the response to inhaled corticosteroids (ICS) in asthma. While some of this heterogeneity of response is due to adherence and environmental causes, genetic variation also influences response to treatment and genetic markers may help guide treatment. Over the past years, researchers have investigated the relationship between a large number of genetic variations and response to ICS by performing pharmacogenomic studies. In this systematic review we will provide a summary of recent pharmacogenomic studies on ICS and discuss the latest insight into the potential functional role of identified genetic variants. To date, seven genome wide association studies (GWAS) examining ICS response have been published. There is little overlap between identified variants and methodologies vary largely. However, in vitro and/or in silico analyses provide additional evidence that genes discovered in these GWAS (e.g. GLCCI1, FBXL7, T gene, ALLC, CMTR1) might play a direct or indirect role in asthma/treatment response pathways. Furthermore, more than 30 candidate-gene studies have been performed, mainly attempting to replicate variants discovered in GWAS or candidate genes likely involved in the corticosteroid drug pathway. Single nucleotide polymorphisms located in GLCCI1, NR3C1 and the 17q21 locus were positively replicated in independent populations. Although none of the genetic markers has currently reached clinical practise, these studies might provide novel insights in the complex pathways underlying corticosteroids response in asthmatic patients.
Collapse
Affiliation(s)
- Ozlem Keskin
- 1Paediatric Allergy and Immunology Department, School of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Niloufar Farzan
- 2Department of Respiratory Medicine, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, Amsterdam, Netherlands
| | - Esra Birben
- 3Pediatric Allergy and Asthma Unit, Hacettepe University School of Medicine, 06100 Ankara, Turkey
| | - Hayriye Akel
- 4Department of Molecular Biology, Faculty of Sciences, Hacettepe University, Ankara, Turkey
| | - Cagatay Karaaslan
- 4Department of Molecular Biology, Faculty of Sciences, Hacettepe University, Ankara, Turkey
| | - Anke H Maitland-van der Zee
- 2Department of Respiratory Medicine, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, Amsterdam, Netherlands.,5Department of Pediatric Respiratory Medicine and Allergy, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, Amsterdam, Netherlands
| | | | - Susanne J Vijverberg
- 2Department of Respiratory Medicine, University of Amsterdam, Amsterdam UMC, Meibergdreef 9, Amsterdam, Netherlands
| | - Omer Kalayci
- 3Pediatric Allergy and Asthma Unit, Hacettepe University School of Medicine, 06100 Ankara, Turkey
| |
Collapse
|
26
|
Chen SH, Jang GM, Hüttenhain R, Gordon DE, Du D, Newton BW, Johnson JR, Hiatt J, Hultquist JF, Johnson TL, Liu YL, Burton LA, Ye J, Reichermeier KM, Stroud RM, Marson A, Debnath J, Gross JD, Krogan NJ. CRL4 AMBRA1 targets Elongin C for ubiquitination and degradation to modulate CRL5 signaling. EMBO J 2018; 37:e97508. [PMID: 30166453 PMCID: PMC6138441 DOI: 10.15252/embj.201797508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 01/03/2023] Open
Abstract
Multi-subunit cullin-RING ligases (CRLs) are the largest family of ubiquitin E3 ligases in humans. CRL activity is tightly regulated to prevent unintended substrate degradation or autocatalytic degradation of CRL subunits. Using a proteomics strategy, we discovered that CRL4AMBRA1 (CRL substrate receptor denoted in superscript) targets Elongin C (ELOC), the essential adapter protein of CRL5 complexes, for polyubiquitination and degradation. We showed that the ubiquitin ligase function of CRL4AMBRA1 is required to disrupt the assembly and attenuate the ligase activity of human CRL5SOCS3 and HIV-1 CRL5VIF complexes as AMBRA1 depletion leads to hyperactivation of both CRL5 complexes. Moreover, CRL4AMBRA1 modulates interleukin-6/STAT3 signaling and HIV-1 infectivity that are regulated by CRL5SOCS3 and CRL5VIF, respectively. Thus, by discovering a substrate of CRL4AMBRA1, ELOC, the shared adapter of CRL5 ubiquitin ligases, we uncovered a novel CRL cross-regulation pathway.
Collapse
Affiliation(s)
- Si-Han Chen
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, USA
| | - Gwendolyn M Jang
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, USA
| | - David E Gordon
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, USA
| | - Dan Du
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Billy W Newton
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, USA
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, USA
| | - Joseph Hiatt
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Judd F Hultquist
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, USA
| | - Tasha L Johnson
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, USA
| | - Yi-Liang Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Lily A Burton
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Jordan Ye
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | | | - Robert M Stroud
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander Marson
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Division of Infectious Diseases and Rheumatology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jayanta Debnath
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - John D Gross
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
27
|
Wei J, Dong S, Yao K, Martinez MFYM, Fleisher PR, Zhao Y, Ma H, Zhao J. Histone acetyltransferase CBP promotes function of SCF FBXL19 ubiquitin E3 ligase by acetylation and stabilization of its F-box protein subunit. FASEB J 2018. [PMID: 29522376 DOI: 10.1096/fj.201701069r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ubiquitin E3 ligases mediate ubiquitination and degradation of intracellular proteins. We have shown that a relatively new Skp, Cullin, F-box (SCF) protein E3 ligase, SCF FBXL19, has an anti-inflammatory effect and controls actin cytoskeleton dynamics via targeting cell membrane receptor and small GTPases for their ubiquitination and degradation, but the molecular regulation of its subunit FBXL19 stability remains unclear. Here we show that FBXL19 degradation is controlled by the balance between its ubiquitination and acetylation. FBXL19 is an unstable protein with a half-life of ∼3 h. FBXL19 can be polyubiquitinated, and the proteasome inhibitor MG-132 prolongs FBXL19 half-life, suggesting that FBXL19 degradation is mediated in the ubiquitin-proteasome system. FBXL19 can also be acetylated, and enhancing acetylation of FBXL19 by a deacetylase inhibitor reduces FBXL19 ubiquitination levels. Acetylation-mimic FBXL19 mutant exhibits a longer half-life than wild type. An acetyltransferase CBP catalyzes acetylation of FBXL19. Inhibition or down-regulation of CBP reduces FBXL19 stability, whereas it is increased in CBP-overexpressing cells. Taken together, the data indicate that CBP-mediated acetylation reduces ubiquitination and stabilizes FBXL19. Further, we demonstrate that FBXL19 targets small GTPase Cdc42 for its ubiquitination and degradation, whereas this effect is reversed by inhibition of CBP, suggesting that CBP increases the effect of SCF FBXL19 E3 ligase through acetylation and stabilization of FBXL19. Our study reveals a new molecular model for regulation of SCF E3 ligase function by acetylation and stabilization of its subunit F-box protein.-Wei, J., Dong, S., Yao, K., Martinez, M. F. Y. M., Fleisher, P. R., Zhao, Y., Ma, H., Zhao, J. Histone acetyltransferase CBP promotes function of SCF FBXL19 ubiquitin E3 ligase by acetylation and stabilization of its F-box protein subunit.
Collapse
Affiliation(s)
- Jianxin Wei
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Su Dong
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Anesthesia, First Hospital of Jilin University, Changchun, China
| | - Kangning Yao
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Paine R Fleisher
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yutong Zhao
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haichun Ma
- Department of Anesthesia, First Hospital of Jilin University, Changchun, China
| | - Jing Zhao
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
28
|
Oh JH, Chen SJ, Varshavsky A. A reference-based protein degradation assay without global translation inhibitors. J Biol Chem 2017; 292:21457-21465. [PMID: 29122887 DOI: 10.1074/jbc.m117.814236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/05/2017] [Indexed: 11/06/2022] Open
Abstract
Although it is widely appreciated that the use of global translation inhibitors, such as cycloheximide, in protein degradation assays may result in artefacts, these inhibitors continue to be employed, owing to the absence of robust alternatives. We describe here the promoter reference technique (PRT), an assay for protein degradation with two advantageous features: a reference protein and a gene-specific inhibition of translation. In PRT assays, one measures, during a chase, the ratio of a test protein to a long-lived reference protein, a dihydrofolate reductase (DHFR). The test protein and DHFR are coexpressed, in the yeast Saccharomyces cerevisiae, on a low-copy plasmid from two identical P TDH3 promoters containing additional, previously developed DNA elements. Once transcribed, these elements form 5'-RNA aptamers that bind to the added tetracycline, which represses translation of aptamer-containing mRNAs. The selectivity of repression avoids a global inhibition of translation. This selectivity is particularly important if a component of a relevant proteolytic pathway (e.g. a specific ubiquitin ligase) is itself short-lived. We applied PRT to the Pro/N-end rule pathway, whose substrates include the short-lived Mdh2 malate dehydrogenase. Mdh2 is targeted for degradation by the Gid4 subunit of the GID ubiquitin ligase. Gid4 is also a metabolically unstable protein. Through analyses of short-lived Mdh2 as a target of short-lived Gid4, we illustrate the advantages of PRT over degradation assays that lack a reference and/or involve cycloheximide. In sum, PRT avoids the use of global translation inhibitors during a chase and also provides a "built-in" reference protein.
Collapse
Affiliation(s)
- Jang-Hyun Oh
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Shun-Jia Chen
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Alexander Varshavsky
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
29
|
An ubiquitin-dependent balance between mitofusin turnover and fatty acids desaturation regulates mitochondrial fusion. Nat Commun 2017; 8:15832. [PMID: 28607491 PMCID: PMC5474747 DOI: 10.1038/ncomms15832] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 04/27/2017] [Indexed: 01/22/2023] Open
Abstract
Mitochondrial integrity relies on homotypic fusion between adjacent outer membranes, which is mediated by large GTPases called mitofusins. The regulation of this process remains nonetheless elusive. Here, we report a crosstalk between the ubiquitin protease Ubp2 and the ubiquitin ligases Mdm30 and Rsp5 that modulates mitochondrial fusion. Ubp2 is an antagonist of Rsp5, which promotes synthesis of the fatty acids desaturase Ole1. We show that Ubp2 also counteracts Mdm30-mediated turnover of the yeast mitofusin Fzo1 and that Mdm30 targets Ubp2 for degradation thereby inducing Rsp5-mediated desaturation of fatty acids. Exogenous desaturated fatty acids inhibit Ubp2 degradation resulting in higher levels of Fzo1 and maintenance of efficient mitochondrial fusion. Our results demonstrate that the Mdm30-Ubp2-Rsp5 crosstalk regulates mitochondrial fusion by coordinating an intricate balance between Fzo1 turnover and the status of fatty acids saturation. This pathway may link outer membrane fusion to lipids homeostasis. Mitochondrial fusion is crucial for cellular homeostasis but its regulation is still not fully understood. Here the authors report that a cross-talk between ubiquitin protease Ubp2 and ligases Mdm30 and Rsp5 modulates mitofusin Fzo1 levels and fatty acids saturation and thus mitochondrial fusion.
Collapse
|
30
|
Furlan G, Nakagami H, Eschen-Lippold L, Jiang X, Majovsky P, Kowarschik K, Hoehenwarter W, Lee J, Trujillo M. Changes in PUB22 Ubiquitination Modes Triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 Dampen the Immune Response. THE PLANT CELL 2017; 29:726-745. [PMID: 28280093 PMCID: PMC5435422 DOI: 10.1105/tpc.16.00654] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/17/2017] [Accepted: 03/03/2017] [Indexed: 05/11/2023]
Abstract
Crosstalk between posttranslational modifications, such as ubiquitination and phosphorylation, play key roles in controlling the duration and intensity of signaling events to ensure cellular homeostasis. However, the molecular mechanisms underlying the regulation of negative feedback loops remain poorly understood. Here, we uncover a pathway in Arabidopsis thaliana by which a negative feedback loop involving the E3 ubiquitin ligase PUB22 that dampens the immune response is triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3), best known for its function in the activation of signaling. PUB22's stability is controlled by MPK3-mediated phosphorylation of residues localized in and adjacent to the E2 docking domain. We show that phosphorylation is critical for stabilization by inhibiting PUB22 oligomerization and, thus, autoubiquitination. The activity switch allows PUB22 to dampen the immune response. This regulatory mechanism also suggests that autoubiquitination, which is inherent to most single unit E3s in vitro, can function as a self-regulatory mechanism in vivo.
Collapse
Affiliation(s)
- Giulia Furlan
- Independent Junior Research Group-Ubiquitination in Immunity, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
- ScienceCampus Halle-Plant-Based Bioeconomy, D-06120 Halle (Saale), Germany
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Plant Proteomics Research Unit, Yokohama 230-0045, Japan
- Max-Planck-Institute for Plant Breeding Research, Protein Mass Spectrometry Service, Cologne 50829, Germany
| | - Lennart Eschen-Lippold
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Xiyuan Jiang
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Petra Majovsky
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Kathrin Kowarschik
- Independent Junior Research Group-Ubiquitination in Immunity, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
- ScienceCampus Halle-Plant-Based Bioeconomy, D-06120 Halle (Saale), Germany
| | - Wolfgang Hoehenwarter
- Proteome Analytics, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Justin Lee
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Marco Trujillo
- Independent Junior Research Group-Ubiquitination in Immunity, Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
- ScienceCampus Halle-Plant-Based Bioeconomy, D-06120 Halle (Saale), Germany
| |
Collapse
|
31
|
Zhang Y, Wang W, Cai S, Chen Y, Wang Q, Pan Q, Sun F, Wang J. Reciprocal regulation between βTrCP and Smurf1 suppresses proliferative capacity of liver cancer cells. J Cell Physiol 2017; 232:3347-3359. [PMID: 28063214 DOI: 10.1002/jcp.25780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 12/30/2022]
Abstract
We previously reported that both the ubiquitin E3 ligases βTrCP (beta-transducin repeat-containing E3 ubiquitin protein ligase) and Smurf1 (SMAD-specific E3 ubiquitin protein ligase 1) play similar antitumorigenic roles in liver cancer cells. However, whether and how they are reciprocally regulated remains elusive. Here, we show that βTrCP interacts with Smurf1 through the 7 × tryptophan (W) aspartic acid (D)(WD) 40 and the region homologous to the E6-AP carboxyl terminus (HECT) domains, which are the E3 ligase domains of βTrCP and Smurf1, respectively. The E3 ligase domains of βTrCP and Smurf1 are also critical for maintaining the protein expressions of Smurf1 and βTrCP. Moreover, a positive correlation between βTrCP and Smurf1 was also revealed by tissue microarray analysis, indicating that this relationship might be important in liver cancer. Further, we found that Smurf1 increases the protein stability of βTrCP, possibly by reducing autoubiquitination of βTrCP, and vice versa. Interestingly, such effects depended on the presence of E3 ligase domains. Importantly, depletion of Smurf1- or βTrCP-enhanced proliferative capacity of liver cancer cells could be partially reversed by overexpression of wild-type βTrCP or Smurf1 but not their E3 ligase-dead mutants. Collectively, a reciprocal post-translational regulation between βTrCP and Smurf1 has been uncovered in this study. Simultaneous enhancement of βTrCP and Smurf1 functions might be helpful in the treatment of liver cancer.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Wenhua Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Si Cai
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Chen
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Qinwan Wang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Qiuhui Pan
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China.,Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| |
Collapse
|
32
|
Xiao D, Yue M, Su H, Ren P, Jiang J, Li F, Hu Y, Du H, Liu H, Qing G. Polo-like Kinase-1 Regulates Myc Stabilization and Activates a Feedforward Circuit Promoting Tumor Cell Survival. Mol Cell 2016; 64:493-506. [PMID: 27773673 DOI: 10.1016/j.molcel.2016.09.016] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/17/2016] [Accepted: 09/14/2016] [Indexed: 01/19/2023]
Abstract
MYCN amplification in human cancers predicts poor prognosis and resistance to therapy. However, pharmacological strategies that directly target N-Myc, the protein encoded by MYCN, remain elusive. Here, we identify a molecular mechanism responsible for reciprocal activation between Polo-like kinase-1 (PLK1) and N-Myc. PLK1 specifically binds to the SCFFbw7 ubiquitin ligase, phosphorylates it, and promotes its autopolyubiquitination and proteasomal degradation, counteracting Fbw7-mediated degradation of N-Myc and additional substrates, including cyclin E and Mcl1. Stabilized N-Myc in turn directly activates PLK1 transcription, constituting a positive feedforward regulatory loop that reinforces Myc-regulated oncogenic programs. Inhibitors of PLK1 preferentially induce potent apoptosis of MYCN-amplified tumor cells from neuroblastoma and small cell lung cancer and synergistically potentiate the therapeutic efficacies of Bcl2 antagonists. These findings reveal a PLK1-Fbw7-Myc signaling circuit that underlies tumorigenesis and validate PLK1 inhibitors, alone or with Bcl2 antagonists, as potential effective therapeutics for MYC-overexpressing cancers.
Collapse
Affiliation(s)
- Daibiao Xiao
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Ming Yue
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Hexiu Su
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Ping Ren
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Jue Jiang
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Feng Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yufeng Hu
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Haining Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hudan Liu
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Guoliang Qing
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Medical Research Institute, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
33
|
Schlierf A, Altmann E, Quancard J, Jefferson AB, Assenberg R, Renatus M, Jones M, Hassiepen U, Schaefer M, Kiffe M, Weiss A, Wiesmann C, Sedrani R, Eder J, Martoglio B. Targeted inhibition of the COP9 signalosome for treatment of cancer. Nat Commun 2016; 7:13166. [PMID: 27774986 PMCID: PMC5078989 DOI: 10.1038/ncomms13166] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 09/05/2016] [Indexed: 02/07/2023] Open
Abstract
The COP9 signalosome (CSN) is a central component of the activation and remodelling cycle of cullin-RING E3 ubiquitin ligases (CRLs), the largest enzyme family of the ubiquitin-proteasome system in humans. CRLs are implicated in the regulation of numerous cellular processes, including cell cycle progression and apoptosis, and aberrant CRL activity is frequently associated with cancer. Remodelling of CRLs is initiated by CSN-catalysed cleavage of the ubiquitin-like activator NEDD8 from CRLs. Here we describe CSN5i-3, a potent, selective and orally available inhibitor of CSN5, the proteolytic subunit of CSN. The compound traps CRLs in the neddylated state, which leads to inactivation of a subset of CRLs by inducing degradation of their substrate recognition module. CSN5i-3 differentially affects the viability of tumour cell lines and suppresses growth of a human xenograft in mice. Our results provide insights into how CSN regulates CRLs and suggest that CSN5 inhibition has potential for anti-tumour therapy.
Collapse
Affiliation(s)
- Anita Schlierf
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Eva Altmann
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Jean Quancard
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Anne B Jefferson
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - René Assenberg
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Matthew Jones
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Ulrich Hassiepen
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Michael Schaefer
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Michael Kiffe
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Andreas Weiss
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Christian Wiesmann
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Richard Sedrani
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Jörg Eder
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Bruno Martoglio
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| |
Collapse
|
34
|
Jöhnk B, Bayram Ö, Abelmann A, Heinekamp T, Mattern DJ, Brakhage AA, Jacobsen ID, Valerius O, Braus GH. SCF Ubiquitin Ligase F-box Protein Fbx15 Controls Nuclear Co-repressor Localization, Stress Response and Virulence of the Human Pathogen Aspergillus fumigatus. PLoS Pathog 2016; 12:e1005899. [PMID: 27649508 PMCID: PMC5029927 DOI: 10.1371/journal.ppat.1005899] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/26/2016] [Indexed: 01/27/2023] Open
Abstract
F-box proteins share the F-box domain to connect substrates of E3 SCF ubiquitin RING ligases through the adaptor Skp1/A to Cul1/A scaffolds. F-box protein Fbx15 is part of the general stress response of the human pathogenic mold Aspergillus fumigatus. Oxidative stress induces a transient peak of fbx15 expression, resulting in 3x elevated Fbx15 protein levels. During non-stress conditions Fbx15 is phosphorylated and F-box mediated interaction with SkpA preferentially happens in smaller subpopulations in the cytoplasm. The F-box of Fbx15 is required for an appropriate oxidative stress response, which results in rapid dephosphorylation of Fbx15 and a shift of the cellular interaction with SkpA to the nucleus. Fbx15 binds SsnF/Ssn6 as part of the RcoA/Tup1-SsnF/Ssn6 co-repressor and is required for its correct nuclear localization. Dephosphorylated Fbx15 prevents SsnF/Ssn6 nuclear localization and results in the derepression of gliotoxin gene expression. fbx15 deletion mutants are unable to infect immunocompromised mice in a model for invasive aspergillosis. Fbx15 has a novel dual molecular function by controlling transcriptional repression and being part of SCF E3 ubiquitin ligases, which is essential for stress response, gliotoxin production and virulence in the opportunistic human pathogen A. fumigatus. The opportunistic human fungal pathogen Aspergillus fumigatus is the most prevalent cause for severe fungal infections in immunocompromised hosts. A major virulence factor of A. fumigatus is its ability to rapidly adapt to host conditions during infection. The rapid response to environmental changes underlies a well-balanced system of production and degradation of proteins. The degradation of specific target proteins is mediated by ubiquitin-protein ligases (E3), which mark their target proteins with ubiquitin for proteasomal degradation. Multisubunit SCF Cullin1 Ring ligases (CRL) are E3 ligases where the F-box subunit functions as a substrate-specificity determining adaptor. A comprehensive control of protein production includes global co-repressors as the conserved Ssn6(SsnF)-Tup1(RcoA) complex, which reduces transcription on multiple levels. We have identified a novel connection between protein degradation and synthesis through an F-box protein. Fbx15 can be incorporated into SCF E3 ubiquitin ligases and controls upon stress the nuclear localization of the SsnF. Fbx15 plays a critical role for A. fumigatus adaptation and is essential for virulence in a murine infection model. Fbx15 is a fungal-specific protein and therefore a potential target for future drug development.
Collapse
Affiliation(s)
- Bastian Jöhnk
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| | - Özgür Bayram
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, County Kildare, Ireland
| | - Anja Abelmann
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Friedrich Schiller University, Jena, Germany
| | - Derek J. Mattern
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Friedrich Schiller University, Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Friedrich Schiller University, Jena, Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Friedrich Schiller University, Jena, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
- * E-mail:
| |
Collapse
|
35
|
Mathur R, Yen JL, Kaiser P. Skp1 Independent Function of Cdc53/Cul1 in F-box Protein Homeostasis. PLoS Genet 2015; 11:e1005727. [PMID: 26656496 PMCID: PMC4675558 DOI: 10.1371/journal.pgen.1005727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 11/14/2015] [Indexed: 11/24/2022] Open
Abstract
Abundance of substrate receptor subunits of Cullin-RING ubiquitin ligases (CRLs) is tightly controlled to maintain the full repertoire of CRLs. Unbalanced levels can lead to sequestration of CRL core components by a few overabundant substrate receptors. Numerous diseases, including cancer, have been associated with misregulation of substrate receptor components, particularly for the largest class of CRLs, the SCF ligases. One relevant mechanism that controls abundance of their substrate receptors, the F-box proteins, is autocatalytic ubiquitylation by intact SCF complex followed by proteasome-mediated degradation. Here we describe an additional pathway for regulation of F-box proteins on the example of yeast Met30. This ubiquitylation and degradation pathway acts on Met30 that is dissociated from Skp1. Unexpectedly, this pathway required the cullin component Cdc53/Cul1 but was independent of the other central SCF component Skp1. We demonstrated that this non-canonical degradation pathway is critical for chromosome stability and effective defense against heavy metal stress. More importantly, our results assign important biological functions to a sub-complex of cullin-RING ligases that comprises Cdc53/Rbx1/Cdc34, but is independent of Skp1. Protein ubiquitylation is the covalent attachment of the small protein ubiquitin onto other proteins and is a key regulatory pathway for most biological processes. The central components of the ubiquitylation process are the E3 ligases, which recognize substrate proteins. The best-studied E3 complexes are the SCF ligases, which are composed of 3 core components—Cdc53, Skp1, Rbx1—that assemble to the functional ligase complex by binding to one of the multiple substrate adaptors—the F-box proteins. Maintaining a balanced repertoire of diverse SCF complexes that represent the entire cellular panel of substrate adapters is challenging. Depending on the cell type, hundreds of different F-box proteins can compete for the single binding site on the common SCF core complex. Rapid degradation of F-box proteins helps in maintaining a critical level of unoccupied Cdc53/Skp1/Rbx1 core, complexes and alterations in levels of F-box proteins has been linked to diseases including cancer. Studying the yeast F-box protein Met30 as a model, we have uncovered a novel mechanism for degradation of F-box proteins. This pathway targets free F-box proteins and requires part of the SCF core. These findings add an additional layer to our understanding of regulation of multisubunit E3 ligase.
Collapse
Affiliation(s)
- Radhika Mathur
- Department of Biological Chemistry, College of Medicine, University of California Irvine, Irvine, California, United States of America
| | - James L. Yen
- Department of Biological Chemistry, College of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Peter Kaiser
- Department of Biological Chemistry, College of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Lysine11-Linked Polyubiquitination of the AnkB F-Box Effector of Legionella pneumophila. Infect Immun 2015; 84:99-107. [PMID: 26483404 DOI: 10.1128/iai.01165-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/10/2015] [Indexed: 12/12/2022] Open
Abstract
The fate of the polyubiquitinated protein is determined by the lysine linkages involved in the polymerization of the ubiquitin monomers, which has seven lysine residues (K(6), K(11), K(27), K(29), K(33), K(48), and K(63)). The translocated AnkB effector of the intravacuolar pathogen Legionella pneumophila is a bona fide F-box protein, which is localized to the cytosolic side of the Legionella-containing vacuole (LCV) and is essential for intravacuolar proliferation within macrophages and amoebae. The F-box domain of AnkB interacts with the host SCF1 E3 ubiquitin ligase that triggers the decoration of the LCV with K(48)-linked polyubiquitinated proteins that are targeted for proteasomal degradation. Here we report that AnkB becomes rapidly polyubiquitinated within the host cell, and this modification is independent of the F-box domain of AnkB, indicating host-mediated polyubiquitination. We show that the AnkB effector interacts specifically with the host E3 ubiquitin ligase Trim21. Mass spectrometry analyses have shown that AnkB is modified by K(11)-linked polyubiquitination, which has no effect on its stability. This work shows the first example of K(11)-linked polyubiquitination of a bacterial effector and its interaction with the host Trim21 ubiquitin ligase.
Collapse
|
37
|
Xu W, Taranets L, Popov N. Regulating Fbw7 on the road to cancer. Semin Cancer Biol 2015; 36:62-70. [PMID: 26459133 DOI: 10.1016/j.semcancer.2015.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/13/2015] [Indexed: 12/22/2022]
Abstract
The F-box protein Fbw7 targets for degradation critical cellular regulators, thereby controlling essential processes in cellular homeostasis, including cell cycle, differentiation and apoptosis. Most Fbw7 substrates are strongly associated with tumorigenesis and Fbw7 can either suppress or promote tumor development in mouse models. Fbw7 activity is controlled at different levels, resulting in specific and tunable regulation of the abundance and activity of its substrates. Here we highlight recent studies on the role of Fbw7 in controlling tumorigenesis and on the mechanisms that modulate Fbw7 function.
Collapse
Affiliation(s)
- Wenshan Xu
- Department of Radiation Oncology and Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany
| | - Lyudmyla Taranets
- Department of Radiation Oncology and Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany
| | - Nikita Popov
- Department of Radiation Oncology and Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Versbacher Str. 5, 97078 Würzburg, Germany.
| |
Collapse
|
38
|
Actin Cytoskeletal Organization in Drosophila Germline Ring Canals Depends on Kelch Function in a Cullin-RING E3 Ligase. Genetics 2015; 201:1117-31. [PMID: 26384358 DOI: 10.1534/genetics.115.181289] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/13/2015] [Indexed: 12/21/2022] Open
Abstract
The Drosophila Kelch protein is required to organize the ovarian ring canal cytoskeleton. Kelch binds and cross-links F-actin in vitro, and it also functions with Cullin 3 (Cul3) as a component of a ubiquitin E3 ligase. How these two activities contribute to cytoskeletal remodeling in vivo is not known. We used targeted mutagenesis to investigate the mechanism of Kelch function. We tested a model in which Cul3-dependent degradation of Kelch is required for its function, but we found no evidence to support this hypothesis. However, we found that mutant Kelch deficient in its ability to interact with Cul3 failed to rescue the kelch cytoskeletal defects, suggesting that ubiquitin ligase activity is the principal activity required in vivo. We also determined that the proteasome is required with Kelch to promote the ordered growth of the ring canal cytoskeleton. These results indicate that Kelch organizes the cytoskeleton in vivo by targeting a protein substrate for degradation by the proteasome.
Collapse
|
39
|
Zhou Z, Xu C, Chen P, Liu C, Pang S, Yao X, Zhang Q. Stability of HIB-Cul3 E3 ligase adaptor HIB Is Regulated by Self-degradation and Availability of Its Substrates. Sci Rep 2015; 5:12709. [PMID: 26263855 PMCID: PMC4533009 DOI: 10.1038/srep12709] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 07/06/2015] [Indexed: 12/29/2022] Open
Abstract
The HIB-Cul3 complex E3 ligase regulates physiological homeostasis through regulating its substrate stability and its activity can be modulated by changing HIB abundance. However, regulation of HIB remains elusive. Here we provide evidence that HIB is degraded through the proteasome by Cul3-mediated polyubiquitination in K48 manner in Drosophila. Strikingly, HIB is targeted for degradation by itself. We further identify that three degrons (52LKSS56T, 76LDEE80S and 117MESQ121R) and K185 and K198 of HIB are essential for its auto-degradation. Finally, we demonstrate that HIB-Cul3 substrates, Ci and Puc, can effectively protect HIB from HIB-Cul3-mediated degradation. Taken together, our study indicates that there is an exquisite equilibrium between the adaptor and targets to achieve the tight control of the HIB, which is essential for maintaining suitable Hh and JNK signaling. And the mechanism of adaptor self-degradation and reciprocal control of the abundance between adaptor and its substrates is also applied to BTB-Cul3 E3 ligase adaptor dKeap1, dDiablo and dKLHL18.
Collapse
Affiliation(s)
- Zizhang Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, China
| | - Congyu Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, China
| | - Ping Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, China
| | - Chen Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, China
| | - Shu Pang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, China
| | - Xia Yao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, China
| | - Qing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, China
| |
Collapse
|
40
|
Sakin V, Richter SM, Hsiao HH, Urlaub H, Melchior F. Sumoylation of the GTPase Ran by the RanBP2 SUMO E3 Ligase Complex. J Biol Chem 2015; 290:23589-602. [PMID: 26251516 DOI: 10.1074/jbc.m115.660118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 12/20/2022] Open
Abstract
The SUMO E3 ligase complex RanBP2/RanGAP1*SUMO1/Ubc9 localizes at cytoplasmic nuclear pore complex (NPC) filaments and is a docking site in nucleocytoplasmic transport. RanBP2 has four Ran binding domains (RBDs), two of which flank RanBP2's E3 ligase region. We thus wondered whether the small GTPase Ran is a target for RanBP2-dependent sumoylation. Indeed, Ran is sumoylated both by a reconstituted and the endogenous RanBP2 complex in semi-permeabilized cells. Generic inhibition of SUMO isopeptidases or depletion of the SUMO isopeptidase SENP1 enhances sumoylation of Ran in semi-permeabilized cells. As Ran is typically associated with transport receptors, we tested the influence of Crm1, Imp β, Transportin, and NTF2 on Ran sumoylation. Surprisingly, all inhibited Ran sumoylation. Mapping Ran sumoylation sites revealed that transport receptors may simply block access of the E2-conjugating enzyme Ubc9, however the acceptor lysines are perfectly accessible in Ran/NTF2 complexes. Isothermal titration calorimetry revealed that NTF2 prevents sumoylation by reducing RanGDP's affinity to RanBP2's RBDs to undetectable levels. Taken together, our findings indicate that RanGDP and not RanGTP is the physiological target for the RanBP2 SUMO E3 ligase complex. Recognition requires interaction of Ran with RanBP2's RBDs, which is prevented by the transport factor NTF2.
Collapse
Affiliation(s)
- Volkan Sakin
- From the Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ, ZMBH Alliance, Heidelberg, Germany
| | - Sebastian M Richter
- From the Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ, ZMBH Alliance, Heidelberg, Germany
| | - He-Hsuan Hsiao
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany, and
| | - Henning Urlaub
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany, and Department of Clinical Chemistry, University Medical Center, 37075 Göttingen, Germany
| | - Frauke Melchior
- From the Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ, ZMBH Alliance, Heidelberg, Germany,
| |
Collapse
|
41
|
Sun P, Li S, Lu D, Williams JS, Kao TH. Pollen S-locus F-box proteins of Petunia involved in S-RNase-based self-incompatibility are themselves subject to ubiquitin-mediated degradation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:213-223. [PMID: 25990372 DOI: 10.1111/tpj.12880] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/05/2015] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
Many flowering plants show self-incompatibility, an intra-specific reproductive barrier by which pistils reject self-pollen to prevent inbreeding and accept non-self pollen to promote out-crossing. In Petunia, the polymorphic S-locus determines self/non-self recognition. The locus contains a gene encoding an S-RNase, which controls pistil specificity, and multiple S-locus F-box (SLF) genes that collectively control pollen specificity. Each SLF is a component of an SCF (Skp1/Cullin/F-box) complex that is responsible for mediating degradation of non-self S-RNase(s), with which the SLF interacts, via the ubiquitin-26S proteasome pathway. A complete set of SLFs is required to detoxify all non-self S-RNases to allow cross-compatible pollination. Here, we show that SLF1 of Petunia inflata is itself subject to degradation via the ubiquitin-26S proteasome pathway, and identify an 18 amino acid sequence in the C-terminal region of S2 -SLF1 (SLF1 of S2 haplotype) that contains a degradation motif. Seven of the 18 amino acids are conserved among all 17 SLF proteins of S2 haplotype and S3 haplotype involved in pollen specificity, suggesting that all SLF proteins are probably subject to similar degradation. Deleting the 18 amino acid sequence from S2 -SLF1 stabilized the protein but abolished its function in self-incompatibility, suggesting that dynamic cycling of SLF proteins is an integral part of their function in self-incompatibility.
Collapse
Affiliation(s)
- Penglin Sun
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Shu Li
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Dihong Lu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Justin S Williams
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Teh-Hui Kao
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
42
|
Noir S, Marrocco K, Masoud K, Thomann A, Gusti A, Bitrian M, Schnittger A, Genschik P. The Control of Arabidopsis thaliana Growth by Cell Proliferation and Endoreplication Requires the F-Box Protein FBL17. THE PLANT CELL 2015; 27:1461-76. [PMID: 25944099 PMCID: PMC4456641 DOI: 10.1105/tpc.114.135301] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/31/2015] [Accepted: 04/11/2015] [Indexed: 05/18/2023]
Abstract
A key step of the cell cycle is the entry into the DNA replication phase that typically commits cells to divide. However, little is known about the molecular mechanisms regulating this transition in plants. Here, we investigated the function of FBL17 (F BOX-LIKE17), an Arabidopsis thaliana F-box protein previously shown to govern the progression through the second mitosis during pollen development. Our work reveals that FBL17 function is not restricted to gametogenesis. FBL17 transcripts accumulate in both proliferating and postmitotic cell types of Arabidopsis plants. Loss of FBL17 function drastically reduces plant growth by altering cell division activity in both shoot and root apical meristems. In fbl17 mutant plants, DNA replication is severely impaired and endoreplication is fully suppressed. At the molecular level, lack of FBL17 increases the stability of the CDK (CYCLIN-DEPENDENT KINASE) inhibitor KIP-RELATED PROTEIN2 known to switch off CDKA;1 kinase activity. Despite the strong inhibition of cell proliferation in fbl17, some cells are still able to enter S phase and eventually to divide, but they exhibit a strong DNA damage response and often missegregate chromosomes. Altogether, these data indicate that the F-box protein FBL17 acts as a master cell cycle regulator during the diploid sporophyte phase of the plant.
Collapse
Affiliation(s)
- Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| | - Katia Marrocco
- Institut de Biologie Intégrative des Plantes, Unité de Biochimie et Physiologie Moléculaire des Plantes, 34060 Montpellier, France
| | - Kinda Masoud
- Institut de Biologie Moléculaire des Plantes, CNRS, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| | - Alexis Thomann
- Institut de Biologie Moléculaire des Plantes, CNRS, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| | - Andi Gusti
- Institut de Biologie Moléculaire des Plantes, CNRS, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| | - Marta Bitrian
- Institut de Biologie Moléculaire des Plantes, CNRS, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| | - Arp Schnittger
- Institut de Biologie Moléculaire des Plantes, CNRS, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France Institut de Biologie Intégrative des Plantes, Unité de Biochimie et Physiologie Moléculaire des Plantes, 34060 Montpellier, France
| |
Collapse
|
43
|
Yu H, Zhang Y, Moss BL, Bargmann BOR, Wang R, Prigge M, Nemhauser JL, Estelle M. Untethering the TIR1 auxin receptor from the SCF complex increases its stability and inhibits auxin response. NATURE PLANTS 2015; 1:14030. [PMID: 26236497 PMCID: PMC4520256 DOI: 10.1038/nplants.2014.30] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant genomes encode large numbers of F-box proteins (FBPs), the substrate recognition subunit of SKP1-CULLIN-F-box (SCF) ubiquitin ligases. There are ~700 FBPs in Arabidopsis, most of which are uncharacterized. TIR1 is among the best-studied plant FBPs and functions as a receptor for the plant hormone auxin. Here we use a yeast two-hybrid system to identify novel TIR1 mutants with altered properties. The analysis of these mutants reveals that TIR1 associates with the CULLIN1 (CUL1) subunit of the SCF through the N-terminal H1 helix of the F-box domain. Mutations that untether TIR1 from CUL1 stabilize the FBP and cause auxin resistance and associated growth defects, probably by protecting TIR1 substrates from degradation. Based on these results we propose that TIR1 is subject to autocatalytic degradation when assembled into an SCF. Further, our results suggest a general method for determining the physiological function of uncharacterized FBPs. Finally, we show that a key amino acid variation in the F-box domain of auxin signalling F-box (AFB1), a closely related FBP, reduces its ability to form an SCF, resulting in an increase in AFB1 levels.
Collapse
Affiliation(s)
- Hong Yu
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Yi Zhang
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Britney L. Moss
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - Bastiaan O. R. Bargmann
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Renhou Wang
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Michael Prigge
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | | | - Mark Estelle
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
44
|
Liu Y, Lear T, Zhao Y, Zhao J, Zou C, Chen BB, Mallampalli RK. F-box protein Fbxl18 mediates polyubiquitylation and proteasomal degradation of the pro-apoptotic SCF subunit Fbxl7. Cell Death Dis 2015; 6:e1630. [PMID: 25654763 PMCID: PMC4669792 DOI: 10.1038/cddis.2014.585] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 11/11/2014] [Accepted: 11/20/2014] [Indexed: 01/25/2023]
Abstract
Fbxl7, a subunit of the SCF (Skp-Cul1-F-box protein) complex induces mitotic arrest in cells; however, molecular factors that control its cellular abundance remain largely unknown. Here, we identified that an orphan F-box protein, Fbxl18, targets Fbxl7 for its polyubiquitylation and proteasomal degradation. Lys 109 within Fbxl7 is an essential acceptor site for ubiquitin conjugation by Fbxl18. An FQ motif within Fbxl7 serves as a molecular recognition site for Fbxl18 interaction. Ectopically expressed Fbxl7 induces apoptosis in Hela cells, an effect profoundly accentuated after cellular depletion of Fbxl18 protein or expression of Fbxl7 plasmids encoding mutations at either Lys 109 or within the FQ motif. Ectopic expression of Fbxl18 plasmid-limited apoptosis caused by overexpressed Fbxl7 plasmid. Thus, Fbxl18 regulates apoptosis by mediating ubiquitin-dependent proteasomal degradation of the pro-apoptotic protein Fbxl7 that may impact cellular processes involved in cell cycle progression.
Collapse
Affiliation(s)
- Y Liu
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - T Lear
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Zhao
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Zhao
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - C Zou
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - B B Chen
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - R K Mallampalli
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
45
|
CSN6 drives carcinogenesis by positively regulating Myc stability. Nat Commun 2014; 5:5384. [PMID: 25395170 PMCID: PMC4234183 DOI: 10.1038/ncomms6384] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 09/26/2014] [Indexed: 12/20/2022] Open
Abstract
Cullin-RING ubiquitin ligases (CRL) are critical in ubiquitinating Myc, while COP9 signalosome (CSN) controls neddylation of Cullin in CRL. The mechanistic link between Cullin neddylation and Myc ubiquitination/degradation is unclear. Here we show that Myc is a target of the CSN subunit 6 (CSN6)–Cullin signaling axis and that CSN6 is a positive regulator of Myc. CSN6 enhanced neddylation of Cullin-1 and facilitated auto-ubiquitination/degradation of Fbxw7, a component of CRL involved in Myc ubiquitination, thereby stabilizing Myc. Csn6 haplo-insufficiency decreased Cullin-1 neddylation but increased Fbxw7 stability to compromise Myc stability and activity in an Eµ-Myc mouse model, resulting in decelerated lymphomagenesis. We found that CSN6 overexpression, which leads to aberrant expression of Myc target genes, is frequent in human cancers. Together, these results define a mechanism for the regulation of Myc stability through the CSN-Cullin-Fbxw7 axis and provide insights into the correlation of CSN6 overexpression with Myc stabilization/activation during tumorigenesis.
Collapse
|
46
|
McCormick JA, Yang CL, Zhang C, Davidge B, Blankenstein KI, Terker AS, Yarbrough B, Meermeier NP, Park HJ, McCully B, West M, Borschewski A, Himmerkus N, Bleich M, Bachmann S, Mutig K, Argaiz ER, Gamba G, Singer JD, Ellison DH. Hyperkalemic hypertension-associated cullin 3 promotes WNK signaling by degrading KLHL3. J Clin Invest 2014; 124:4723-36. [PMID: 25250572 DOI: 10.1172/jci76126] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/13/2014] [Indexed: 01/07/2023] Open
Abstract
Familial hyperkalemic hypertension (FHHt) is a monogenic disease resulting from mutations in genes encoding WNK kinases, the ubiquitin scaffold protein cullin 3 (CUL3), or the substrate adaptor kelch-like 3 (KLHL3). Disease-associated CUL3 mutations abrogate WNK kinase degradation in cells, but it is not clear how mutant forms of CUL3 promote WNK stability. Here, we demonstrated that an FHHt-causing CUL3 mutant (CUL3 Δ403-459) not only retains the ability to bind and ubiquitylate WNK kinases and KLHL3 in cells, but is also more heavily neddylated and activated than WT CUL3. In cells, activated CUL3 Δ403-459 depleted KLHL3, preventing WNK degradation, despite increased CUL3-mediated WNK ubiquitylation; therefore, CUL3 loss in kidney should phenocopy FHHt in murine models. As predicted, nephron-specific deletion of Cul3 in mice did increase WNK kinase levels and the abundance of phosphorylated Na-Cl cotransporter (NCC). Over time, however, Cul3 deletion caused renal dysfunction, including hypochloremic alkalosis, diabetes insipidus, and salt-sensitive hypotension, with depletion of sodium potassium chloride cotransporter 2 and aquaporin 2. Moreover, these animals exhibited renal inflammation, fibrosis, and increased cyclin E. These results indicate that FHHt-associated CUL3 Δ403-459 targets KLHL3 for degradation, thereby preventing WNK degradation, whereas general loss of CUL3 activity - while also impairing WNK degradation - has widespread toxic effects in the kidney.
Collapse
|
47
|
Bosch JA, Sumabat TM, Hafezi Y, Pellock BJ, Gandhi KD, Hariharan IK. The Drosophila F-box protein Fbxl7 binds to the protocadherin fat and regulates Dachs localization and Hippo signaling. eLife 2014; 3:e03383. [PMID: 25107277 PMCID: PMC4144329 DOI: 10.7554/elife.03383] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Drosophila protocadherin Fat (Ft) regulates growth, planar cell polarity (PCP) and proximodistal patterning. A key downstream component of Ft signaling is the atypical myosin Dachs (D). Multiple regions of the intracellular domain of Ft have been implicated in regulating growth and PCP but how Ft regulates D is not known. Mutations in Fbxl7, which encodes an F-box protein, result in tissue overgrowth and abnormalities in proximodistal patterning that phenocopy deleting a specific portion of the intracellular domain (ICD) of Ft that regulates both growth and PCP. Fbxl7 binds to this same portion of the Ft ICD, co-localizes with Ft to the proximal edge of cells and regulates the levels and asymmetry of D at the apical membrane. Fbxl7 can also regulate the trafficking of proteins between the apical membrane and intracellular vesicles. Thus Fbxl7 functions in a subset of pathways downstream of Ft and links Ft to D localization. DOI:http://dx.doi.org/10.7554/eLife.03383.001 Multi-cellular organisms are made up of cells that are organized into tissues and organs that reach a predictable size and shape at the end of their development. To do this, cells must be able to sense their position and orientation within the body and know when to stop growing. Epithelial cells—which make up the outer surface of an animal's body and line the cavities of its internal organs—connect to each other to form flat sheets. These sheets of cells contain structures that are oriented along the plane of the sheet. However, how this so-called ‘planar cell polarity’ coordinates with cell growth in order to build complex tissues and organs remains to be discovered. A protein called Fat is a major player in both planar cell polarity and the Hippo signaling pathway, which controls cell growth. As such, the Fat protein appears to be crucial for controlling the size and shape of organs. Mutations in the Fat protein cause massive tissue overgrowth, prevent planar cell polarity being established correctly, and stop the legs and wings of fruit flies developing normally. The Fat protein also plays a role in distributing another protein called Dachs—which is also part of the Hippo signaling pathway. In epithelial cells of the developing wing, Dachs is mostly located on the side of the cell that is closest to the tip of the developing wing (the so-called ‘distal surface’). How Fat and Dachs work together is not understood, but it is known that they do not bind to each other directly. Now, Bosch et al. show that in the fruit fly Drosophila, the Fat protein binds to another protein called Fbxl7. Flies that cannot produce working Fbxl7 have defects in some aspects of planar cell polarity and a modest increase in tissue growth. Fbxl7 seems to account for part, but not all, of the ability of Fat to restrict tissue growth. Furthermore, a lack of the Fbxl7 protein results in a spreading of Dachs protein across the apical surface—which faces out of the epithelial sheet—of epithelial cells. On the other hand, if Fbxl7 is over-expressed, Dachs is driven to the interior of each cell. Hence, a normal level of Fbxl7 protein restricts the Dachs protein to the correct parts of the cell surface. Together, the findings of Bosch et al. show that the Fbxl7 protein is a key link between the Fat and Dachs proteins. These results also provide an understanding of how growth and planar cell polarity—two processes that are essential for normal development of all multi-cellular organisms—are coordinated. DOI:http://dx.doi.org/10.7554/eLife.03383.002
Collapse
Affiliation(s)
- Justin A Bosch
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Taryn M Sumabat
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Yassi Hafezi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Brett J Pellock
- Department of Biology, Providence College, Providence, United States
| | - Kevin D Gandhi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
48
|
Liu W, Fan J, Li J, Song Y, Li Q, Zhang Y, Xue Y. SCF(SLF)-mediated cytosolic degradation of S-RNase is required for cross-pollen compatibility in S-RNase-based self-incompatibility in Petunia hybrida. Front Genet 2014; 5:228. [PMID: 25101113 PMCID: PMC4106197 DOI: 10.3389/fgene.2014.00228] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 06/30/2014] [Indexed: 01/21/2023] Open
Abstract
Many flowering plants adopt self-incompatibility (SI) to maintain their genetic diversity. In species of Solanaceae, Plantaginaceae, and Rosaceae, SI is genetically controlled by a single S-locus with multiple haplotypes. The S-locus has been shown to encode S-RNases expressed in pistil and multiple SLF (S-locus F-box) proteins in pollen controlling the female and male specificity of SI, respectively. S-RNases appear to function as a cytotoxin to reject self-pollen. In addition, SLFs have been shown to form SCF (SKP1/Cullin1/F-box) complexes to serve as putative E3 ubiquitin ligase to interact with S-RNases. Previously, two different mechanisms, the S-RNase degradation and the S-RNase compartmentalization, have been proposed as the restriction mechanisms of S-RNase cytotoxicity allowing compatible pollination. In this study, we have provided several lines of evidence in support of the S-RNase degradation mechanism by a combination of cellular, biochemical and molecular biology approaches. First, both immunogold labeling and subcellular fractionation assays showed that two key pollen SI factors, PhS3L-SLF1 and PhSSK1 (SLF-interacting SKP1-like1) from Petunia hybrida, a Solanaceous species, are co-localized in cytosols of both pollen grains and tubes. Second, PhS3L-RNases are mainly detected in the cytosols of both self and non-self-pollen tubes after pollination. Third, we found that PhS-RNases selectively interact with PhSLFs by yeast two-hybrid and co-immunoprecipitation assays. Fourth, S-RNases are specifically degraded in compatible pollen tubes by non-self SLF action. Taken together, our results demonstrate that SCF(SLF-mediated) non-self S-RNase degradation occurs in the cytosol of pollen tube through the ubiquitin/26S proteasome system serving as the major mechanism to neutralize S-RNase cytotoxicity during compatible pollination in P. hybrida.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Jiangbo Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Junhui Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Yanzhai Song
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Qun Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China
| | - Yu'e Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China
| | - Yongbiao Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research Beijing, China
| |
Collapse
|
49
|
García-Cano E, Zaltsman A, Citovsky V. Assaying proteasomal degradation in a cell-free system in plants. J Vis Exp 2014:51293. [PMID: 24747194 PMCID: PMC4090386 DOI: 10.3791/51293] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The ubiquitin-proteasome pathway for protein degradation has emerged as one of the most important mechanisms for regulation of a wide spectrum of cellular functions in virtually all eukaryotic organisms. Specifically, in plants, the ubiquitin/26S proteasome system (UPS) regulates protein degradation and contributes significantly to development of a wide range of processes, including immune response, development and programmed cell death. Moreover, increasing evidence suggests that numerous plant pathogens, such as Agrobacterium, exploit the host UPS for efficient infection, emphasizing the importance of UPS in plant-pathogen interactions. The substrate specificity of UPS is achieved by the E3 ubiquitin ligase that acts in concert with the E1 and E2 ligases to recognize and mark specific protein molecules destined for degradation by attaching to them chains of ubiquitin molecules. One class of the E3 ligases is the SCF (Skp1/Cullin/F-box protein) complex, which specifically recognizes the UPS substrates and targets them for ubiquitination via its F-box protein component. To investigate a potential role of UPS in a biological process of interest, it is important to devise a simple and reliable assay for UPS-mediated protein degradation. Here, we describe one such assay using a plant cell-free system. This assay can be adapted for studies of the roles of regulated protein degradation in diverse cellular processes, with a special focus on the F-box protein-substrate interactions.
Collapse
Affiliation(s)
- Elena García-Cano
- Department of Biochemistry and Cell Biology, Stony Brook University, State University of New York;
| | - Adi Zaltsman
- Department of Biochemistry and Cell Biology, Stony Brook University, State University of New York
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, Stony Brook University, State University of New York
| |
Collapse
|
50
|
Abstract
The propagation of all organisms depends on the accurate and orderly segregation of chromosomes in mitosis and meiosis. Budding yeast has long served as an outstanding model organism to identify the components and underlying mechanisms that regulate chromosome segregation. This review focuses on the kinetochore, the macromolecular protein complex that assembles on centromeric chromatin and maintains persistent load-bearing attachments to the dynamic tips of spindle microtubules. The kinetochore also serves as a regulatory hub for the spindle checkpoint, ensuring that cell cycle progression is coupled to the achievement of proper microtubule-kinetochore attachments. Progress in understanding the composition and overall architecture of the kinetochore, as well as its properties in making and regulating microtubule attachments and the spindle checkpoint, is discussed.
Collapse
|