1
|
Wang YL, Li L, Paudel BR, Zhao JL. Genomic Insights into High-Altitude Adaptation: A Comparative Analysis of Roscoea alpina and R. purpurea in the Himalayas. Int J Mol Sci 2024; 25:2265. [PMID: 38396942 PMCID: PMC10889555 DOI: 10.3390/ijms25042265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Environmental stress at high altitudes drives the development of distinct adaptive mechanisms in plants. However, studies exploring the genetic adaptive mechanisms of high-altitude plant species are scarce. In the present study, we explored the high-altitude adaptive mechanisms of plants in the Himalayas through whole-genome resequencing. We studied two widespread members of the Himalayan endemic alpine genus Roscoea (Zingiberaceae): R. alpina (a selfing species) and R. purpurea (an outcrossing species). These species are distributed widely in the Himalayas with distinct non-overlapping altitude distributions; R. alpina is distributed at higher elevations, and R. purpurea occurs at lower elevations. Compared to R. purpurea, R. alpina exhibited higher levels of linkage disequilibrium, Tajima's D, and inbreeding coefficient, as well as lower recombination rates and genetic diversity. Approximately 96.3% of the genes in the reference genome underwent significant genetic divergence (FST ≥ 0.25). We reported 58 completely divergent genes (FST = 1), of which only 17 genes were annotated with specific functions. The functions of these genes were primarily related to adapting to the specific characteristics of high-altitude environments. Our findings provide novel insights into how evolutionary innovations promote the adaptation of mountain alpine species to high altitudes and harsh habitats.
Collapse
Affiliation(s)
- Ya-Li Wang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Y.-L.W.); (L.L.)
| | - Li Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Y.-L.W.); (L.L.)
| | - Babu Ram Paudel
- Research Centre for Applied Science and Technology, Tribhuvan University, Kirtipur 44613, Nepal
| | - Jian-Li Zhao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Y.-L.W.); (L.L.)
| |
Collapse
|
2
|
Jun SE, Shim JS, Park HJ. Beyond NPK: Mineral Nutrient-Mediated Modulation in Orchestrating Flowering Time. PLANTS (BASEL, SWITZERLAND) 2023; 12:3299. [PMID: 37765463 PMCID: PMC10535918 DOI: 10.3390/plants12183299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Flowering time in plants is a complex process regulated by environmental conditions such as photoperiod and temperature, as well as nutrient conditions. While the impact of major nutrients like nitrogen, phosphorus, and potassium on flowering time has been well recognized, the significance of micronutrient imbalances and their deficiencies should not be neglected because they affect the floral transition from the vegetative stage to the reproductive stage. The secondary major nutrients such as calcium, magnesium, and sulfur participate in various aspects of flowering. Micronutrients such as boron, zinc, iron, and copper play crucial roles in enzymatic reactions and hormone biosynthesis, affecting flower development and reproduction as well. The current review comprehensively explores the interplay between microelements and flowering time, and summarizes the underlying mechanism in plants. Consequently, a better understanding of the interplay between microelements and flowering time will provide clues to reveal the roles of microelements in regulating flowering time and to improve crop reproduction in plant industries.
Collapse
Affiliation(s)
- Sang Eun Jun
- Department of Molecular Genetics, Dong-A University, Busan 49315, Republic of Korea;
| | - Jae Sun Shim
- School of Biological Science and Technology, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hee Jin Park
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
3
|
Zhang W, Tan C, Hu H, Pan R, Xiao Y, Ouyang K, Zhou G, Jia Y, Zhang X, Hill CB, Wang P, Chapman B, Han Y, Xu L, Xu Y, Angessa T, Luo H, Westcott S, Sharma D, Nevo E, Barrero RA, Bellgard MI, He T, Tian X, Li C. Genome architecture and diverged selection shaping pattern of genomic differentiation in wild barley. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:46-62. [PMID: 36054248 PMCID: PMC9829399 DOI: 10.1111/pbi.13917] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Divergent selection of populations in contrasting environments leads to functional genomic divergence. However, the genomic architecture underlying heterogeneous genomic differentiation remains poorly understood. Here, we de novo assembled two high-quality wild barley (Hordeum spontaneum K. Koch) genomes and examined genomic differentiation and gene expression patterns under abiotic stress in two populations. These two populations had a shared ancestry and originated in close geographic proximity but experienced different selective pressures due to their contrasting micro-environments. We identified structural variants that may have played significant roles in affecting genes potentially associated with well-differentiated phenotypes such as flowering time and drought response between two wild barley genomes. Among them, a 29-bp insertion into the promoter region formed a cis-regulatory element in the HvWRKY45 gene, which may contribute to enhanced tolerance to drought. A single SNP mutation in the promoter region may influence HvCO5 expression and be putatively linked to local flowering time adaptation. We also revealed significant genomic differentiation between the two populations with ongoing gene flow. Our results indicate that SNPs and small SVs link to genetic differentiation at the gene level through local adaptation and are maintained through divergent selection. In contrast, large chromosome inversions may have shaped the heterogeneous pattern of genomic differentiation along the chromosomes by suppressing chromosome recombination and gene flow. Our research offers novel insights into the genomic basis underlying local adaptation and provides valuable resources for the genetic improvement of cultivated barley.
Collapse
Affiliation(s)
- Wenying Zhang
- Hubei Collaborative Innovation Centre for Grain IndustryYangtze UniversityJingzhouChina
| | - Cong Tan
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Haifei Hu
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Rui Pan
- Hubei Collaborative Innovation Centre for Grain IndustryYangtze UniversityJingzhouChina
| | - Yuhui Xiao
- Grandomics Biotechnology Co., LtdWuhanChina
| | - Kai Ouyang
- Grandomics Biotechnology Co., LtdWuhanChina
| | - Gaofeng Zhou
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Yong Jia
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Xiao‐Qi Zhang
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Camilla Beate Hill
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Penghao Wang
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Brett Chapman
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Yong Han
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
- Department of Primary Industries and Regional DevelopmentSouth PerthWestern AustraliaAustralia
| | - Le Xu
- Hubei Collaborative Innovation Centre for Grain IndustryYangtze UniversityJingzhouChina
| | - Yanhao Xu
- Hubei Collaborative Innovation Centre for Grain IndustryYangtze UniversityJingzhouChina
| | - Tefera Angessa
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Hao Luo
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Sharon Westcott
- Department of Primary Industries and Regional DevelopmentSouth PerthWestern AustraliaAustralia
| | - Darshan Sharma
- Department of Primary Industries and Regional DevelopmentSouth PerthWestern AustraliaAustralia
| | - Eviatar Nevo
- Institute of EvolutionUniversity of HaifaHaifaIsrael
| | - Roberto A. Barrero
- eResearch OfficeQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Matthew I. Bellgard
- eResearch OfficeQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Tianhua He
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Xiaohai Tian
- Hubei Collaborative Innovation Centre for Grain IndustryYangtze UniversityJingzhouChina
| | - Chengdao Li
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
- Department of Primary Industries and Regional DevelopmentSouth PerthWestern AustraliaAustralia
| |
Collapse
|
4
|
Zhu J, Wang WS, Yan DW, Hong LW, Li TT, Gao X, Yang YH, Ren F, Lu YT, Yuan TT. CK2 promotes jasmonic acid signaling response by phosphorylating MYC2 in Arabidopsis. Nucleic Acids Res 2022; 51:619-630. [PMID: 36546827 PMCID: PMC9881174 DOI: 10.1093/nar/gkac1213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/19/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Jasmonic acid (JA) signaling plays a pivotal role in plant development and defense. MYC2 is a master transcription factor in JA signaling, and was found to be phosphorylated and negatively regulated by MAP kinase and receptor-like kinase. However, the kinases that positively regulate MYC2 through phosphorylation and promote MYC2-mediated activation of JA response have not been identified. Here, we identified CK2 as a kinase that phosphorylates MYC2 and thus regulates the JA signaling. CK2 holoenzyme can interact with MYC2 using its regulatory subunits and phosphorylate MYC2 at multiple sites with its catalytic subunits. Inhibition of CK2 activity in a dominant-negative plant line, CK2mut, repressed JA response. On the other hand, increasing CK2 activity by overexpression of CKB4, a regulatory subunit gene of CK2, enhanced JA response in a MYC2-dependent manner. Substitution of the Ser and Thr residues at phosphorylation sites of MYC2 by CK2 with Ala impaired MYC2 function in activating JA response. Further investigations evidenced that CK2 facilitated the JA-induced increase of MYC2 binding to the promoters of JA-responsive genes in vivo. Our study demonstrated that CK2 plays a positive role in JA signaling, and reveals a previously undiscovered mechanism that regulates MYC2 function.
Collapse
Affiliation(s)
| | | | - Da-Wei Yan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Li-Wei Hong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Yun-Huang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ying-Tang Lu
- Correspondence may also be addressed to Ying-Tang Lu. Tel: +86 27 68752619; Fax: +86 27 68753551;
| | - Ting-Ting Yuan
- To whom correspondence should be addressed. Tel: +86 27 68752619; Fax: +86 27 68753551;
| |
Collapse
|
5
|
Sun C, He C, Zhong C, Liu S, Liu H, Luo X, Li J, Zhang Y, Guo Y, Yang B, Wang P, Deng X. Bifunctional regulators of photoperiodic flowering in short day plant rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1044790. [PMID: 36340409 PMCID: PMC9630834 DOI: 10.3389/fpls.2022.1044790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Photoperiod is acknowledged as a crucial environmental factor for plant flowering. According to different responses to photoperiod, plants were divided into short-day plants (SDPs), long-day plants (LDPs), and day-neutral plants (DNPs). The day length measurement system of SDPs is different from LDPs. Many SDPs, such as rice, have a critical threshold for day length (CDL) and can even detect changes of 15 minutes for flowering decisions. Over the last 20 years, molecular mechanisms of flowering time in SDP rice and LDP Arabidopsis have gradually clarified, which offers a chance to elucidate the differences in day length measurement between the two types of plants. In Arabidopsis, CO is a pivotal hub in integrating numerous internal and external signals for inducing photoperiodic flowering. By contrast, Hd1 in rice, the homolog of CO, promotes and prevents flowering under SD and LD, respectively. Subsequently, numerous dual function regulators, such as phytochromes, Ghd7, DHT8, OsPRR37, OsGI, OsLHY, and OsELF3, were gradually identified. This review assesses the relationship among these regulators and a proposed regulatory framework for the reversible mechanism, which will deepen our understanding of the CDL regulation mechanism and the negative response to photoperiod between SDPs and LDPs.
Collapse
Affiliation(s)
- Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Changcai He
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chao Zhong
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shihang Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hongying Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xu Luo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuxiu Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuting Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pingrong Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaojian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Petersen J, Rredhi A, Szyttenholm J, Mittag M. Evolution of circadian clocks along the green lineage. PLANT PHYSIOLOGY 2022; 190:924-937. [PMID: 35325228 PMCID: PMC9516769 DOI: 10.1093/plphys/kiac141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 05/10/2023]
Abstract
Circadian clocks govern temporal programs in the green lineage (Chloroplastida) as they do in other photosynthetic pro- and eukaryotes, bacteria, fungi, animals, and humans. Their physiological properties, including entrainment, phase responses, and temperature compensation, are well conserved. The involvement of transcriptional/translational feedback loops in the oscillatory machinery and reversible phosphorylation events are also maintained. Circadian clocks control a large variety of output rhythms in green algae and terrestrial plants, adjusting their metabolism and behavior to the day-night cycle. The angiosperm Arabidopsis (Arabidopsis thaliana) represents a well-studied circadian clock model. Several molecular components of its oscillatory machinery are conserved in other Chloroplastida, but their functions may differ. Conserved clock components include at least one member of the CIRCADIAN CLOCK ASSOCIATED1/REVEILLE and one of the PSEUDO RESPONSE REGULATOR family. The Arabidopsis evening complex members EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO are found in the moss Physcomitrium patens and in the liverwort Marchantia polymorpha. In the flagellate chlorophyte alga Chlamydomonas reinhardtii, only homologs of ELF4 and LUX (named RHYTHM OF CHLOROPLAST ROC75) are present. Temporal ROC75 expression in C. reinhardtii is opposite to that of the angiosperm LUX, suggesting different clock mechanisms. In the picoalga Ostreococcus tauri, both ELF genes are missing, suggesting that it has a progenitor circadian "green" clock. Clock-relevant photoreceptors and thermosensors vary within the green lineage, except for the CRYPTOCHROMEs, whose variety and functions may differ. More genetically tractable models of Chloroplastida are needed to draw final conclusions about the gradual evolution of circadian clocks within the green lineage.
Collapse
Affiliation(s)
- Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Julie Szyttenholm
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| |
Collapse
|
7
|
Wang G, Gao G, Yang X, Yang X, Ma P. Casein kinase CK2 structure and activities in plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153767. [PMID: 35841742 DOI: 10.1016/j.jplph.2022.153767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/10/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Casein kinase CK2 is a highly conserved serine/threonine protein kinase and exists in all eukaryotes. It has been demonstrated to be widely involved in the biological processes of plants. The CK2 holoenzyme is a heterotetramer consisting of two catalytic subunits (α and/or α') and two regulatory subunits (β). CK2 in plants is generally encoded by multiple genes, with monomeric and oligomeric forms present in the tissue. Various subunit genes of CK2 have been cloned and characterized from Arabidopsis thaliana, tobacco, maize, wheat, tomato, and other plants. This paper reviews the structural features of CK2, provides a clear classification of its physiological functions and mechanisms of action, and elaborates on the regulation of CK2 activity to provide a knowledge base for subsequent studies of CK2 in plants.
Collapse
Affiliation(s)
- Guanfeng Wang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Geling Gao
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xiangna Yang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xiangdong Yang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
8
|
Tobin E. Adventures in Life and Science, from Light to Rhythms. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:1-16. [PMID: 35130444 DOI: 10.1146/annurev-arplant-090921-091346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The author describes her life's pathway from her beginnings at a time when women were not well represented in the sciences. Her grandparents were immigrants to the United States. Although her parents were not able to go to college because of the Great Depression, they supported her education and other adventures. In addition to her interest in science, she describes her interest and involvement in politics. Her education at Oberlin, Stanford, and Harvard prepared her for her independent career at the University of California, Los Angeles, where she was an affirmative action appointment. Her research initially centered on the plant photoreceptor phytochrome, but later in her career she investigated circadian rhythms in plants, discovering and characterizing one of the members of the central oscillator.
Collapse
Affiliation(s)
- Elaine Tobin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA;
| |
Collapse
|
9
|
Xu X, Yuan L, Yang X, Zhang X, Wang L, Xie Q. Circadian clock in plants: Linking timing to fitness. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:792-811. [PMID: 35088570 DOI: 10.1111/jipb.13230] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/25/2022] [Indexed: 05/12/2023]
Abstract
Endogenous circadian clock integrates cyclic signals of environment and daily and seasonal behaviors of organisms to achieve spatiotemporal synchronization, which greatly improves genetic diversity and fitness of species. This review addresses recent studies on the plant circadian system in the field of chronobiology, covering topics on molecular mechanisms, internal and external Zeitgebers, and hierarchical regulation of physiological outputs. The architecture of the circadian clock involves the autoregulatory transcriptional feedback loops, post-translational modifications of core oscillators, and epigenetic modifications of DNA and histones. Here, light, temperature, humidity, and internal elemental nutrients are summarized to illustrate the sensitivity of the circadian clock to timing cues. In addition, the circadian clock runs cell-autonomously, driving independent circadian rhythms in various tissues. The core oscillators responds to each other with biochemical factors including calcium ions, mineral nutrients, photosynthetic products, and hormones. We describe clock components sequentially expressed during a 24-h day that regulate rhythmic growth, aging, immune response, and resistance to biotic and abiotic stresses. Notably, more data have suggested the circadian clock links chrono-culture to key agronomic traits in crops.
Collapse
Affiliation(s)
- Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xin Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiao Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
10
|
Napoli RS, Allen PJ, Parish RW, Li SF. The Arabidopsis MYB5 transcription factor interacts with CASEIN KINASE2 BETA3 subunit in a yeast two-hybrid system. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34723145 PMCID: PMC8553427 DOI: 10.17912/micropub.biology.000486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 11/06/2022]
Abstract
Arabidopsis thaliana MYB5 collaborates with TRANSPARENT TESTA GLABRA1 (TTG1) and basic-Helix-Loop-Helix (bHLH) transcription factors to regulate seed coat, trichome and root cell differentiation. Using a yeast two-hybrid system we show that the N-terminal region of MYB5 binds directly to the serine/threonine CASEIN KINASE2 BETA3 (CK2β3) subunit. Functions of the CASEIN KINASE2 (CK2) complex include facilitating phosphorylation of MYB transcription factors and cell cycle checkpoint regulatory proteins. Purified recombinant MYB5 protein was found to bind only weakly in vitro to the promoter of ALPHA/BETA ESTERASE/HYDROLASE4 (ABE4), a known MYB5 target gene. We propose that phosphorylation of MYB5 facilitated by the MYB5-CK2β3 interaction enhances MYB5 binding to its target gene promoters.
Collapse
Affiliation(s)
- Ross S Napoli
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, Bundoora, Melbourne, Victoria 3086, Australia
| | - Patrick J Allen
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, Bundoora, Melbourne, Victoria 3086, Australia.,School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Roger W Parish
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, Bundoora, Melbourne, Victoria 3086, Australia
| | - Song Feng Li
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, Bundoora, Melbourne, Victoria 3086, Australia
| |
Collapse
|
11
|
Krahmer J, Hindle M, Perby LK, Mogensen HK, Nielsen TH, Halliday KJ, VanOoijen G, LeBihan T, Millar AJ. The circadian clock gene circuit controls protein and phosphoprotein rhythms in Arabidopsis thaliana. Mol Cell Proteomics 2021; 21:100172. [PMID: 34740825 PMCID: PMC8733343 DOI: 10.1016/j.mcpro.2021.100172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
Twenty-four-hour, circadian rhythms control many eukaryotic mRNA levels, whereas the levels of their more stable proteins are not expected to reflect the RNA rhythms, emphasizing the need to test the circadian regulation of protein abundance and modification. Here we present circadian proteomic and phosphoproteomic time series from Arabidopsis thaliana plants under constant light conditions, estimating that just 0.4% of quantified proteins but a much larger proportion of quantified phospho-sites were rhythmic. Approximately half of the rhythmic phospho-sites were most phosphorylated at subjective dawn, a pattern we term the “phospho-dawn.” Members of the SnRK/CDPK family of protein kinases are candidate regulators. A CCA1-overexpressing line that disables the clock gene circuit lacked most circadian protein phosphorylation. However, the few phospho-sites that fluctuated despite CCA1-overexpression still tended to peak in abundance close to subjective dawn, suggesting that the canonical clock mechanism is necessary for most but perhaps not all protein phosphorylation rhythms. To test the potential functional relevance of our datasets, we conducted phosphomimetic experiments using the bifunctional enzyme fructose-6-phosphate-2-kinase/phosphatase (F2KP), as an example. The rhythmic phosphorylation of diverse protein targets is controlled by the clock gene circuit, implicating posttranslational mechanisms in the transmission of circadian timing information in plants. Circadian (phospho)proteomics time courses of plants with or without functional clock. Most protein abundance/phosphorylation rhythms require a transcriptional oscillator. The majority of rhythmic phosphosites peak around subjective dawn (“phospho-dawn”). A phosphorylated serine of the metabolic enzyme F2KP has functional relevance.
Collapse
Affiliation(s)
- Johanna Krahmer
- SynthSys and School of Biological Sciences, CH Waddington Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom; Institute for Molecular Plant Science, School of Biological Sciences, Daniel Rutherford Building, Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.
| | - Matthew Hindle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, Edinburgh, EH25 9RG, United Kingdom
| | - Laura K Perby
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Molecular Plant Biology, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Helle K Mogensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Molecular Plant Biology, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Tom H Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Molecular Plant Biology, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Karen J Halliday
- Institute for Molecular Plant Science, School of Biological Sciences, Daniel Rutherford Building, Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Gerben VanOoijen
- Institute for Molecular Plant Science, School of Biological Sciences, Daniel Rutherford Building, Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Thierry LeBihan
- SynthSys and School of Biological Sciences, CH Waddington Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, CH Waddington Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.
| |
Collapse
|
12
|
Yan J, Kim YJ, Somers DE. Post-Translational Mechanisms of Plant Circadian Regulation. Genes (Basel) 2021; 12:325. [PMID: 33668215 PMCID: PMC7995963 DOI: 10.3390/genes12030325] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
The molecular components of the circadian system possess the interesting feature of acting together to create a self-sustaining oscillator, while at the same time acting individually, and in complexes, to confer phase-specific circadian control over a wide range of physiological and developmental outputs. This means that many circadian oscillator proteins are simultaneously also part of the circadian output pathway. Most studies have focused on transcriptional control of circadian rhythms, but work in plants and metazoans has shown the importance of post-transcriptional and post-translational processes within the circadian system. Here we highlight recent work describing post-translational mechanisms that impact both the function of the oscillator and the clock-controlled outputs.
Collapse
Affiliation(s)
| | | | - David E. Somers
- Department of Molecular Genetics, The Ohio State University; Columbus, OH 43210, USA; (J.Y.); (Y.J.K.)
| |
Collapse
|
13
|
Yuan C, Han J, Chang H, Xiao W. Arabidopsis CK2 family gene CKB3 involved in abscisic acid signaling. BRAZ J BIOL 2020; 81:318-325. [PMID: 32491060 DOI: 10.1590/1519-6984.225345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/14/2019] [Indexed: 11/22/2022] Open
Abstract
CKB3 is a regulatory (beta) subunit of CK2. In this study Arabidopsis thaliana homozygous T-DNA mutant ckb3 was studied to understand the role of CKB3 in abscisic acid (ABA) signaling. The results shown: CKB3 was expressed in all organs and the highest expression in the seeds, followed by the root. During seed germination and root growth the ckb3 mutant showed reduced sensitivity to ABA. The ckb3 mutant had more stomatal opening and increased proline accumulation and leaf water loss. The expression levels of number of genes in the ABA regulatory network had changed. This study demonstrates that CKB3 is an ABA signaling-related gene and may play a positive role in ABA signaling.
Collapse
Affiliation(s)
- C Yuan
- College of Life Science, Luoyang Normal University, Luoyang, PR China
| | - J Han
- College of Life Science, Luoyang Normal University, Luoyang, PR China
| | - H Chang
- College of Life Science and Engineering, Handan University, Handan, PR China
| | - W Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, PR China
| |
Collapse
|
14
|
Feng YZ, Yu Y, Zhou YF, Yang YW, Lei MQ, Lian JP, He H, Zhang YC, Huang W, Chen YQ. A Natural Variant of miR397 Mediates a Feedback Loop in Circadian Rhythm. PLANT PHYSIOLOGY 2020; 182:204-214. [PMID: 31694901 PMCID: PMC6945863 DOI: 10.1104/pp.19.00710] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/19/2019] [Indexed: 05/16/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs of ∼21 nt in length, which have regulatory roles in many biological processes. In animals, proper functioning of the circadian clock, which is closely linked to the fitness of almost all living organisms, is regulated by miRNAs. However, to date, there have been no reports of the roles of miRNA in regulation of the plant circadian rhythm. Here, we report a natural variant of miR397 that lengthens the circadian period and controls flowering time in Arabidopsis (Arabidopsis thaliana). Highly conserved among angiosperms, the miRNA miR397 has two members in Arabidopsis: miR397a and miR397b. However, only miR397b significantly delayed flowering. Our results suggest that miR397b controls flowering by targeting CASEIN KINASE II SUBUNIT BETA3 (CKB3), in turn modulating the circadian period of CIRCADIAN CLOCK ASSOCIATED1 (CCA1). We further demonstrated that CCA1 directly bound to the promoter of MIR397B and suppressed its expression, forming a miR397b-CKB3-CCA1 circadian regulation feedback circuit. Evolutionary analysis revealed that miR397b is a newly evolved genetic variant in Arabidopsis, and the miR397b targeting mode may have a role in enhancing plant fitness. Our results provide evidence for miRNA-mediated circadian regulation in plants and suggest the existence of a feedback loop to manipulate plant flowering through the regulation of circadian rhythm.
Collapse
Affiliation(s)
- Yan-Zhao Feng
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Yang Yu
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Yan-Fei Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Yu-Wei Yang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Meng-Qi Lei
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jian-Ping Lian
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Huang He
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Yu-Chan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Wei Huang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yue-Qin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
15
|
Zhang C, Li H, Yuan C, Liu S, Li M, Zhu J, Lin X, Lu Y, Guo X. CKB1 regulates expression of ribosomal protein L10 family gene and plays a role in UV-B response. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22 Suppl 1:143-152. [PMID: 30597713 DOI: 10.1111/plb.12954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Plastid casein kinase 2 (CK2), which is a major Ser/Thr-specific enzyme in higher organisms, plays an essential role in plant development and diverse abiotic stresses. CKB1 is a regulatory subunit beta of CK2. To expand our understand of functions of the CKB1 gene in Arabidopsis thaliana, protein changes among wild-type (WT) and CKB1 gain- and loss-of-function mutants were compared. Proteins extracted from the CKB1 knockout mutant and overexpressing mutant were compared with Col-0 plants using 2D-PAGE. Proteins regulated by CKB1 were identified with matrix-assisted laser desorption ionisation time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF), and its transcript was verified by qRT-PCR. Bioinformatics analysis, including gene ontology and protein-protein interaction analysis, were employed. The results of mass spectra and bioinformatics analysis suggest that CKB1 may have functions in regulation of the ribosomal protein L10 (RPL10) family and is involved in ultraviolet-B (UV-B) response. Furthermore, qRT-PCR verification showed CKB1 expression was up-regulated by UV-B stress. The expression levels of five genes in the RPL10 family were reduced in the ckb1 T-DNA insertion mutants, whereas they increased in the CKB1 overexpressing mutants under both normal conditions and UV-B treatment. In conclusion, CKB1 has important functions in UV-B radiation stress. Our study implies that CKB1 positively regulates UV-B radiation stress signalling, possibly through modulating expression of the RPL10 family.
Collapse
Affiliation(s)
- C Zhang
- College of Life Sciences, Hunan University, Changsha, China
| | - H Li
- College of Life Sciences, Hunan University, Changsha, China
| | - C Yuan
- College of Life Sciences, Hunan University, Changsha, China
| | - S Liu
- College of Life Sciences, Hunan University, Changsha, China
| | - M Li
- College of Life Sciences, Hunan University, Changsha, China
| | - J Zhu
- College of Life Sciences, Hunan University, Changsha, China
| | - X Lin
- College of Life Sciences, Hunan University, Changsha, China
| | - Y Lu
- College of Life Sciences, Hunan University, Changsha, China
| | - X Guo
- College of Life Sciences, Hunan University, Changsha, China
| |
Collapse
|
16
|
Ono A, Sato A, Fujimoto KJ, Matsuo H, Yanai T, Kinoshita T, Nakamichi N. 3,4-Dibromo-7-Azaindole Modulates Arabidopsis Circadian Clock by Inhibiting Casein Kinase 1 Activity. PLANT & CELL PHYSIOLOGY 2019; 60:2360-2368. [PMID: 31529098 PMCID: PMC6839374 DOI: 10.1093/pcp/pcz183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/10/2019] [Indexed: 05/05/2023]
Abstract
The circadian clock is a timekeeping system for regulation of numerous biological daily rhythms. One characteristic of the circadian clock is that period length remains relatively constant in spite of environmental fluctuations, such as temperature change. Here, using the curated collection of in-house small molecule chemical library (ITbM chemical library), we show that small molecule 3,4-dibromo-7-azaindole (B-AZ) lengthened the circadian period of Arabidopsis thaliana (Arabidopsis). B-AZ has not previously been reported to have any biological and biochemical activities. Target identification can elucidate the mode of action of small molecules, but we were unable to make a molecular probe of B-AZ for target identification. Instead, we performed other analysis, gene expression profiling that potentially reveals mode of action of molecules. Short-term treatment of B-AZ decreased the expression of four dawn- and morning-phased clock-associated genes, CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY), PSEUDO-RESPONSE REGULATOR 9 (PRR9) and PRR7. Consistently, amounts of PRR5 and TIMING OF CAB EXPRESSION 1 (TOC1) proteins, transcriptional repressors of CCA1, LHY, PRR9 and PRR7 were increased upon B-AZ treatment. B-AZ inhibited Casein Kinase 1 family (CK1) that phosphorylates PRR5 and TOC1 for targeted degradation. A docking study and molecular dynamics simulation suggested that B-AZ interacts with the ATP-binding pocket of human CK1 delta, whose amino acid sequences are highly similar to those of Arabidopsis CK1. B-AZ-induced period-lengthening effect was attenuated in prr5 toc1 mutants. Collectively, this study provides a novel and simple structure CK1 inhibitor that modulates circadian clock via accumulation of PRR5 and TOC1.
Collapse
Affiliation(s)
- Azusa Ono
- Division of Biological Science, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya, Japan
| | - Kazuhiro J Fujimoto
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, Japan
| | - Hiromi Matsuo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya, Japan
| | - Takeshi Yanai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya, Japan
| | - Norihito Nakamichi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya, Japan
- * Corresponding author: E-mail, ; Fax, +81-789-4778
| |
Collapse
|
17
|
McClung CR. The Plant Circadian Oscillator. BIOLOGY 2019; 8:E14. [PMID: 30870980 PMCID: PMC6466001 DOI: 10.3390/biology8010014] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/17/2019] [Accepted: 03/09/2019] [Indexed: 12/20/2022]
Abstract
It has been nearly 300 years since the first scientific demonstration of a self-sustaining circadian clock in plants. It has become clear that plants are richly rhythmic, and many aspects of plant biology, including photosynthetic light harvesting and carbon assimilation, resistance to abiotic stresses, pathogens, and pests, photoperiodic flower induction, petal movement, and floral fragrance emission, exhibit circadian rhythmicity in one or more plant species. Much experimental effort, primarily, but not exclusively in Arabidopsis thaliana, has been expended to characterize and understand the plant circadian oscillator, which has been revealed to be a highly complex network of interlocked transcriptional feedback loops. In addition, the plant circadian oscillator has employed a panoply of post-transcriptional regulatory mechanisms, including alternative splicing, adjustable rates of translation, and regulated protein activity and stability. This review focuses on our present understanding of the regulatory network that comprises the plant circadian oscillator. The complexity of this oscillatory network facilitates the maintenance of robust rhythmicity in response to environmental extremes and permits nuanced control of multiple clock outputs. Consistent with this view, the clock is emerging as a target of domestication and presents multiple targets for targeted breeding to improve crop performance.
Collapse
Affiliation(s)
- C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
18
|
Ode KL, Ueda HR. Design Principles of Phosphorylation-Dependent Timekeeping in Eukaryotic Circadian Clocks. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028357. [PMID: 29038116 DOI: 10.1101/cshperspect.a028357] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The circadian clock in cyanobacteria employs a posttranslational oscillator composed of a sequential phosphorylation-dephosphorylation cycle of KaiC protein, in which the dynamics of protein structural changes driven by temperature-compensated KaiC's ATPase activity are critical for determining the period. On the other hand, circadian clocks in eukaryotes employ transcriptional feedback loops as a core mechanism. In this system, the dynamics of protein accumulation and degradation affect the circadian period. However, recent studies of eukaryotic circadian clocks reveal that the mechanism controlling the circadian period can be independent of the regulation of protein abundance. Instead, the circadian substrate is often phosphorylated at multiple sites at flexible protein regions to induce structural changes. The phosphorylation is catalyzed by kinases that induce sequential multisite phosphorylation such as casein kinase 1 (CK1) with temperature-compensated activity. We propose that the design principles of phosphorylation-dependent circadian-period determination in eukaryotes may share characteristics with the posttranslational oscillator in cyanobacteria.
Collapse
Affiliation(s)
- Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Liu W, Lin Z, Liu Y, Lin Y, Xu X, Lai Z. Genome-wide identification and characterization of the CKII gene family in the cultivated banana cultivar (Musa spp. cv Tianbaojiao) and the wild banana (Musa itinerans). PLoS One 2018; 13:e0200149. [PMID: 29995937 PMCID: PMC6040749 DOI: 10.1371/journal.pone.0200149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/20/2018] [Indexed: 11/19/2022] Open
Abstract
Plant casein kinase II (CKII) plays an essential role in regulating plant growth and development, and responses to biotic and abiotic stresses. Here, we report the identification and characterization of the CKII family genes in Musa spp. cv. ‘Tianbaojiao’ (AAA group) and the wild banana (Musa itinerans). The 13 cDNA sequences of the CKII family members were identified both in ‘Tianbaojiao’ and wild banana, respectively. The differences between CKII α and CKII β members are corroborated through the subcellular localizations, phosphorylation sites and gene structures. The cloning of CKII β-like-2 gDNA sequences in wild banana and ‘Tianbaojiao’ and the analysis of gene structures showed MiCKIIβ-like-2b and MaCKIIβ-like-2 are likely alternatively spliced transcripts, which were derived from the alternative splicing events that involved exon deletion. The qPCR validation showed differential expression CKII family members in response to cold stress and also in all tested tissues (leaf, pseudostem and root) of wild banana. In particular, the normal transcript MiCKIIβ-like-2a was highly expressed in response to cold stress in wild banana; oppositely, the alternatively spliced transcript MiCKIIβ-like-2b was quite lowly expressed. The complex origin and long-term evolution of Musa lineage might explain the alternative splicing events of CKII β-like-2.
Collapse
Affiliation(s)
- Weihua Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhengchun Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanying Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - XuHan Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
20
|
Graf A, Coman D, Uhrig RG, Walsh S, Flis A, Stitt M, Gruissem W. Parallel analysis of Arabidopsis circadian clock mutants reveals different scales of transcriptome and proteome regulation. Open Biol 2018; 7:rsob.160333. [PMID: 28250106 PMCID: PMC5376707 DOI: 10.1098/rsob.160333] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
The circadian clock regulates physiological processes central to growth and survival. To date, most plant circadian clock studies have relied on diurnal transcriptome changes to elucidate molecular connections between the circadian clock and observable phenotypes in wild-type plants. Here, we have integrated RNA-sequencing and protein mass spectrometry data to comparatively analyse the lhycca1, prr7prr9, gi and toc1 circadian clock mutant rosette at the end of day and end of night. Each mutant affects specific sets of genes and proteins, suggesting that the circadian clock regulation is modular. Furthermore, each circadian clock mutant maintains its own dynamically fluctuating transcriptome and proteome profile specific to subcellular compartments. Most of the measured protein levels do not correlate with changes in their corresponding transcripts. Transcripts and proteins that have coordinated changes in abundance are enriched for carbohydrate- and cold-responsive genes. Transcriptome changes in all four circadian clock mutants also affect genes encoding starch degradation enzymes, transcription factors and protein kinases. The comprehensive transcriptome and proteome datasets demonstrate that future system-driven research of the circadian clock requires multi-level experimental approaches. Our work also shows that further work is needed to elucidate the roles of post-translational modifications and protein degradation in the regulation of clock-related processes.
Collapse
Affiliation(s)
- Alexander Graf
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland.,Max Planck Institute of Molecular Plant Physiology, 14476 Postdam-Golm, Germany
| | - Diana Coman
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - R Glen Uhrig
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Sean Walsh
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Anna Flis
- Max Planck Institute of Molecular Plant Physiology, 14476 Postdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Postdam-Golm, Germany
| | | |
Collapse
|
21
|
Kushanov FN, Buriev ZT, Shermatov SE, Turaev OS, Norov TM, Pepper AE, Saha S, Ulloa M, Yu JZ, Jenkins JN, Abdukarimov A, Abdurakhmonov IY. QTL mapping for flowering-time and photoperiod insensitivity of cotton Gossypium darwinii Watt. PLoS One 2017; 12:e0186240. [PMID: 29016665 PMCID: PMC5633191 DOI: 10.1371/journal.pone.0186240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/27/2017] [Indexed: 02/05/2023] Open
Abstract
Most wild and semi-wild species of the genus Gossypium are exhibit photoperiod-sensitive flowering. The wild germplasm cotton is a valuable source of genes for genetic improvement of modern cotton cultivars. A bi-parental cotton population segregating for photoperiodic flowering was developed by crossing a photoperiod insensitive irradiation mutant line with its pre-mutagenesis photoperiodic wild-type G. darwinii Watt genotype. Individuals from the F2 and F3 generations were grown with their parental lines and F1 hybrid progeny in the long day and short night summer condition (natural day-length) of Uzbekistan to evaluate photoperiod sensitivity, i.e., flowering-time during the seasons 2008-2009. Through genotyping the individuals of this bi-parental population segregating for flowering-time, linkage maps were constructed using 212 simple-sequence repeat (SSR) and three cleaved amplified polymorphic sequence (CAPS) markers. Six QTLs directly associated with flowering-time and photoperiodic flowering were discovered in the F2 population, whereas eight QTLs were identified in the F3 population. Two QTLs controlling photoperiodic flowering and duration of flowering were common in both populations. In silico annotations of the flanking DNA sequences of mapped SSRs from sequenced cotton (G. hirsutum L.) genome database has identified several potential 'candidate' genes that are known to be associated with regulation of flowering characteristics of plants. The outcome of this research will expand our understanding of the genetic and molecular mechanisms of photoperiodic flowering. Identified markers should be useful for marker-assisted selection in cotton breeding to improve early flowering characteristics.
Collapse
Affiliation(s)
- Fakhriddin N. Kushanov
- Laboratory of Structural and Functional Genomics, Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Zabardast T. Buriev
- Laboratory of Structural and Functional Genomics, Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Shukhrat E. Shermatov
- Laboratory of Structural and Functional Genomics, Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Ozod S. Turaev
- Laboratory of Structural and Functional Genomics, Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Tokhir M. Norov
- Laboratory of Structural and Functional Genomics, Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Alan E. Pepper
- Department of Biology, Texas A&M University, Colleges Station, Texas, United States of America
| | - Sukumar Saha
- Crop Science Research Laboratory, United States Department of Agriculture-Agricultural Research Services, Starkville, Mississippi, United States of America
| | - Mauricio Ulloa
- Plant Stress and Germplasm Development Research, United States Department of Agriculture-Agricultural Research Services, Lubbock, Texas, United States of America
| | - John Z. Yu
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Services, College Station, Texas, United States of America
| | - Johnie N. Jenkins
- Crop Science Research Laboratory, United States Department of Agriculture-Agricultural Research Services, Starkville, Mississippi, United States of America
| | - Abdusattor Abdukarimov
- Laboratory of Structural and Functional Genomics, Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Ibrokhim Y. Abdurakhmonov
- Laboratory of Structural and Functional Genomics, Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| |
Collapse
|
22
|
Bhadra U, Thakkar N, Das P, Pal Bhadra M. Evolution of circadian rhythms: from bacteria to human. Sleep Med 2017; 35:49-61. [DOI: 10.1016/j.sleep.2017.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
|
23
|
Kiełbowicz-Matuk A, Czarnecka J, Banachowicz E, Rey P, Rorat T. Solanum tuberosum ZPR1 encodes a light-regulated nuclear DNA-binding protein adjusting the circadian expression of StBBX24 to light cycle. PLANT, CELL & ENVIRONMENT 2017; 40:424-440. [PMID: 27928822 DOI: 10.1111/pce.12875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
ZPR1 proteins belong to the C4-type of zinc finger coordinators known in animal cells to interact with other proteins and participate in cell growth and proliferation. In contrast, the current knowledge regarding plant ZPR1 proteins is very scarce. Here, we identify a novel potato nuclear factor belonging to this family and named StZPR1. StZPR1 is specifically expressed in photosynthetic organs during the light period, and the ZPR1 protein is located in the nuclear chromatin fraction. From modelling and experimental analyses, we reveal the StZPR1 ability to bind the circadian DNA cis motif 'CAACAGCATC', named CIRC and present in the promoter of the clock-controlled double B-box StBBX24 gene, the expression of which peaks in the middle of the day. We found that transgenic lines silenced for StZPR1 expression still display a 24 h period for the oscillation of StBBX24 expression but delayed by 4 h towards the night. Importantly, other BBX genes exhibit altered circadian regulation in these lines. Our data demonstrate that StZPR1 allows fitting of the StBBX24 circadian rhythm to the light period and provide evidence that ZPR1 is a novel clock-associated protein in plants necessary for the accurate rhythmic expression of specific circadian-regulated genes.
Collapse
Affiliation(s)
| | - Jagoda Czarnecka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Ewa Banachowicz
- Molecular Biophysics Department, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznań, Poland
| | - Pascal Rey
- CEA, DRF, BIAM, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265 Biologie Végétale & Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Tadeusz Rorat
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| |
Collapse
|
24
|
Duan W, Zhang H, Zhang B, Wu X, Shao S, Li Y, Hou X, Liu T. Role of vernalization-mediated demethylation in the floral transition of Brassica rapa. PLANTA 2017; 245:227-233. [PMID: 27885421 DOI: 10.1007/s00425-016-2622-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/20/2016] [Indexed: 05/26/2023]
Abstract
Vernalization-mediated demethylation of BrCKA2 (casein kinase II α-subunit) and BrCKB4 (casein kinase II β-subunit) shorten the period of the clock gene BrCCA1 (circadian clock associated 1) in Brassica rapa. Photoperiod and vernalization are two environmental cues involved in the regulation of floral transition, but the ways in which they interact remain unclear. DNA methylation is one of the main mechanisms involved in controlling the functional state of chromatin and gene expression in response to environmental signals. To study the interaction between photoperiod and vernalization in floral transition, we carried out a comparative genomic analysis of genome-wide DNA methylation profiles in normal (CK) and vernalized (CA) leaves from Brassica rapa using methylated-DNA immunoprecipitation sequencing (MeDIP-seq). Two subunits of casein kinase II (CK2), BrCKA2 (catalytic α-subunit of CK2) and BrCKB4 (regulatory β-subunit of CK2), exhibited gradual DNA demethylation and increased expression in vernalized B. rapa. DNA methylation-defective plants demonstrated the causal link between DNA demethylation changes and changes in gene expression. Virus-induced gene silencing (VIGS) of BrCKA2 and BrCKB4 in B. rapa resulted in no change to the period of BrCCA1 (circadian clock associated 1) and a 1-week late flowering time. Finally, we demonstrated that increased levels of BrCKA2 and BrCKB4 in vernalized B. rapa confer elevated CK2 activity, resulting in a shortened period of the clock gene BrCCA1, which plays an important role in perceiving photoperiod in plants. Thus, our results suggest that there is a direct interaction between photoperiod and vernalization through DNA methylation mechanisms.
Collapse
Affiliation(s)
- Weike Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huijun Zhang
- College of LIFE Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Bei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoting Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuaixu Shao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
25
|
Wu XY, Li T. A Casein Kinase II Phosphorylation Site in AtYY1 Affects Its Activity, Stability, and Function in the ABA Response. FRONTIERS IN PLANT SCIENCE 2017; 8:323. [PMID: 28348572 PMCID: PMC5346550 DOI: 10.3389/fpls.2017.00323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/23/2017] [Indexed: 05/19/2023]
Abstract
The phosphorylation and dephosphorylation of proteins are crucial in the regulation of protein activity and stability in various signaling pathways. In this study, we identified an ABA repressor, Arabidopsis Ying Yang 1 (AtYY1) as a potential target of casein kinase II (CKII). AtYY1 physically interacts with two regulatory subunits of CKII, CKB3, and CKB4. Moreover, AtYY1 can be phosphorylated by CKII in vitro, and the S284 site is the major CKII phosphorylation site. Further analyses indicated that S284 phosphorylation can enhance the transcriptional activity and protein stability of AtYY1 and hence strengthen the effect of AtYY1 as a negative regulator in the ABA response. Our study provides novel insights into the regulatory mechanism of AtYY1 mediated by CKII phosphorylation.
Collapse
Affiliation(s)
- Xiu-Yun Wu
- Laboratory of Plant Molecular Biology, Centre for Plant Biology, School of Life Sciences, Tsinghua UniversityBeijing, China
| | - Tian Li
- Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- *Correspondence: Tian Li,
| |
Collapse
|
26
|
Zhu J, Wang WS, Ma D, Zhang LY, Ren F, Yuan TT. A role for CK2 β subunit 4 in the regulation of plant growth, cadmium accumulation and H 2O 2 content under cadmium stress in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:240-247. [PMID: 27750098 DOI: 10.1016/j.plaphy.2016.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 05/26/2023]
Abstract
Protein kinase CK2, which consists of two α and two β subunits, plays an essential role in plant development and is implicated in plant responses to abiotic stresses, including salt and heat. However, the function of CK2 in response to heavy metals such as cadmium (Cd) has not yet been established. In this study, the transgenic line CKB4ox, which overexpresses CKB4 encoding the CK2β subunit and has elevated CK2 activity, was used to investigate the potential role of CK2 in response to Cd stress in Arabidopsis thaliana. Under Cd stress, CKB4ox showed reduced root growth and biomass accumulation as well as decreased chlorophyll and proline contents compared with wild type. Furthermore, increased Cd accumulation and a higher H2O2 content were found in CKB4ox, possibly contributing to the inhibition of CKB4ox growth under Cd stress. Additionally, altered levels of Cd and H2O2 were found to be associated with decreased expression of genes involved in Cd efflux, Cd sequestration and H2O2 scavenging. Taken together, these results suggest that elevated expression of CKB4 and increased CK2 activity enhance the sensitivity of plants to Cd stress by affecting Cd and H2O2 accumulation, including the modulation of genes involved in Cd transport and H2O2 scavenging. This study provides direct evidence for the involvement of plant CK2 in the response to Cd stress.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Shu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dan Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lin-Yu Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
27
|
Abstract
In considering the impact of the earth’s changing geophysical conditions during the history of life, it is surprising to learn that the earth’s rotational period may have been as short as 4 h, as recently as 1900 million years ago (or 1.9 billion years ago). The implications of such figures for the origin and evolution of clocks are considerable, and the authors speculate on how this short rotational period might have influenced the development of the “protoclock” in early microorganisms, such as the Cyanobacteria, during the geological periodsin which they arose and flourished. They then discuss the subsequent duplication of clock genes that took place around and after the Cambrian period, 543 million years ago, and its consequences. They compare the relative divergences of the canonical clock genes, which reveal the Per family to be the most rapidly evolving. In addition, the authors use a statistical test to predict which residues within the PER and CRY families may have undergone functional specialization.
Collapse
Affiliation(s)
- Eran Tauber
- Department of Genetics, University of Leicester, Leicester, UK
| | | | | | | |
Collapse
|
28
|
Comolli JC, Fagan T, Hastings JW. A Type-1 Phosphoprotein Phosphatase from a Dinoflagellate as a Possible Component of the Circadian Mechanism. J Biol Rhythms 2016; 18:367-76. [PMID: 14582853 DOI: 10.1177/0748730403254103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Indicative of the importance of protein phosphorylation in the core circadian clock mechanism, chronically applied inhibitors of both protein kinases and phosphoprotein phosphatases have significant effects on the period, phase, and light-dependent regulation of circadian rhythms in the dinoflagellate Lingulodinium polyedrum. This study was aimed at identifying the presence of the affected phosphatase(s). Dephosphorylation of a PP1/PP2A-specific substrate by L. polyedrum extracts was inhibited by okadaic acid only at concentrations greater than 100 nM, as in vivo, by mammalian inhibitor-2 (I-2), and by an endogenous inhibitor with properties similar to I-2, indicating that a type-1 protein phosphatase (PP1) was predominant. A cDNA encoding a highly conserved PP1 was isolated, the 1st such signaling molecule identified in dinoflagellates. Anti-sera specific for this type of phosphatase recognized a 34 kDa protein in L. polyedrum extract, this being the same size as the PP1 encoded by the isolated cDNA. These findings are consistent with the suggestion that the L. polyedrum PP1 may be a part of the clock mechanism in this species.
Collapse
Affiliation(s)
- James C Comolli
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
29
|
Wang WS, Zhu J, Zhang KX, Lü YT, Xu HH. A mutation of casein kinase 2 α4 subunit affects multiple developmental processes in Arabidopsis. PLANT CELL REPORTS 2016; 35:1071-1080. [PMID: 26883224 DOI: 10.1007/s00299-016-1939-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Arabidopsis CK2 α4 subunit regulates the primary root and hypocotyl elongation, lateral root formation, cotyledon expansion, rosette leaf initiation and growth, flowering, and anthocyanin biosynthesis. Casein kinase 2 (CK2) is a conserved tetrameric kinase composed of two α and two β subunits. The inhibition of CK2 activity usually results in severe developmental deficiency. Four genes (CKA1-CKA4) encode CK2 α subunit in Arabidopsis. Single mutations of CKA1, CKA2, and CKA3 do not affect the normal growth of Arabidopsis, while the cka1 cka2 cka3 triple mutants are defective in cotyledon and hypocotyl growth, lateral root development, and flowering. The inhibition of CKA4 expression in cka1 cka2 cka3 background further reduces the number of lateral roots and delays the flowering time. Here, we report the characterization of a novel knockout mutant of CKA4, which exhibits various developmental defects including reduced primary root and hypocotyl elongation, increased lateral root density, delayed cotyledon expansion, retarded rosette leaf initiation and growth, and late flowering. The examination of the cellular basis for abnormal root development of this mutant revealed reduced root meristem cells with enhanced RETINOBLASTOMA-RELATED (RBR) expression that promotes cell differentiation in root meristem. Moreover, this cka4-2 mutant accumulates higher anthocyanin in the aerial part and shows an increased expression of anthocyanin biosynthetic genes, suggesting a novel role of CK2 in modulating anthocyanin biosynthesis. In addition, the complementation test using primary root elongation assay as a sample confirms that the changed phenotypes of this cka4-2 mutant are due to the lack of CKA4. Taken together, this study reveals an essential role of CK2 α4 subunit in multiple developmental processes in Arabidopsis.
Collapse
Affiliation(s)
- Wen-Shu Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Jiang Zhu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Kun-Xiao Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Ying-Tang Lü
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Heng-Hao Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang, 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, 222005, China.
| |
Collapse
|
30
|
Li J, Dukowic-Schulze S, Lindquist IE, Farmer AD, Kelly B, Li T, Smith AG, Retzel EF, Mudge J, Chen C. The plant-specific protein FEHLSTART controls male meiotic entry, initializing meiotic synchronization in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:659-71. [PMID: 26382719 DOI: 10.1111/tpj.13026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/28/2015] [Accepted: 09/02/2015] [Indexed: 05/15/2023]
Abstract
Meiosis marks the transition from the sporophyte to the gametophyte generation in the life cycle of flowering plants, and creates genetic variations through homologous recombination. In most flowering plants, meiosis is highly synchronized within each anther, which is significant for efficient fertilization. To date, little is known about the molecular mechanisms of entry into meiosis and exit from it, and only a few genes in Arabidopsis have been characterized with a role in regulating meiotic progression. In this study, we report the functional characterization of a plant-specific basic helix-loop-helix (bHLH) protein, FEHLSTART (FST), a defect in which leads to premature meiotic entry and asynchronous meiosis, and results in decreased seed yield. Investigation of the time course of meiosis showed that the onset of leptotene, the first stage of prophase I, frequently occurred earlier in fst-1 than in the wild type. Asynchronous meiosis followed, which could manifest in the disruption of regular spindle structures and symmetric cell divisions in fst-1 mutants during the meiosis I/II transition. In accordance with frequently accelerated meiotic entry, whole-transcriptome analysis of fst-1 anthers undergoing meiosis revealed that 19 circadian rhythm genes were affected and 47 pollen-related genes were prematurely expressed at a higher level. Taken together, we propose that FST is required for normal meiotic entry and the establishment of meiotic synchrony.
Collapse
Affiliation(s)
- Junhua Li
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Stefanie Dukowic-Schulze
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
| | - Ingrid E Lindquist
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM, 87505, USA
| | - Andrew D Farmer
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM, 87505, USA
| | - Bridget Kelly
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
| | - Tao Li
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
| | - Alan G Smith
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
| | - Ernest F Retzel
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM, 87505, USA
| | - Joann Mudge
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM, 87505, USA
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
| |
Collapse
|
31
|
Sarid-Krebs L, Panigrahi KCS, Fornara F, Takahashi Y, Hayama R, Jang S, Tilmes V, Valverde F, Coupland G. Phosphorylation of CONSTANS and its COP1-dependent degradation during photoperiodic flowering of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:451-63. [PMID: 26358558 DOI: 10.1111/tpj.13022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/06/2015] [Accepted: 08/24/2015] [Indexed: 05/20/2023]
Abstract
Seasonal flowering involves responses to changes in day length. In Arabidopsis thaliana, the CONSTANS (CO) transcription factor promotes flowering in the long days of spring and summer. Late flowering in short days is due to instability of CO, which is efficiently ubiquitinated in the dark by the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) E3 ligase complex. Here we show that CO is also phosphorylated. Phosphorylated and unphosphorylated forms are detected throughout the diurnal cycle but their ratio varies, with the relative abundance of the phosphorylated form being higher in the light and lower in the dark. These changes in relative abundance require COP1, because in the cop1 mutant the phosphorylated form is always more abundant. Inactivation of the PHYTOCHROME A (PHYA), CRYPTOCHROME 1 (CRY1) and CRYPTOCHROME 2 (CRY2) photoreceptors in the phyA cry1 cry2 triple mutant most strongly reduces the amount of the phosphorylated form so that unphosphorylated CO is more abundant. This effect is caused by increased COP1 activity, as it is overcome by introduction of the cop1 mutation in the cop1 phyA cry1 cry2 quadruple mutant. Degradation of CO is also triggered in red light, and as in darkness this increases the relative abundance of unphosphorylated CO. Finally, a fusion protein containing truncated CO protein including only the carboxy-terminal region was phosphorylated in transgenic plants, locating at least one site of phosphorylation in this region. We propose that CO phosphorylation contributes to the photoperiodic flowering response by enhancing the rate of CO turnover via activity of the COP1 ubiquitin ligase.
Collapse
Affiliation(s)
- Liron Sarid-Krebs
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, Cologne, D-50829, Germany
| | - Kishore C S Panigrahi
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, Cologne, D-50829, Germany
| | - Fabio Fornara
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, Cologne, D-50829, Germany
| | - Yasuyuki Takahashi
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, Cologne, D-50829, Germany
| | - Ryosuke Hayama
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, Cologne, D-50829, Germany
| | - Seonghoe Jang
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, Cologne, D-50829, Germany
| | - Vicky Tilmes
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, Cologne, D-50829, Germany
| | - Federico Valverde
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, Cologne, D-50829, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, Cologne, D-50829, Germany
| |
Collapse
|
32
|
Choudhary MK, Nomura Y, Wang L, Nakagami H, Somers DE. Quantitative Circadian Phosphoproteomic Analysis of Arabidopsis Reveals Extensive Clock Control of Key Components in Physiological, Metabolic, and Signaling Pathways. Mol Cell Proteomics 2015; 14:2243-60. [PMID: 26091701 DOI: 10.1074/mcp.m114.047183] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Indexed: 01/01/2023] Open
Abstract
The circadian clock provides adaptive advantages to an organism, resulting in increased fitness and survival. The phosphorylation events that regulate circadian-dependent signaling and the processes which post-translationally respond to clock-gated signals are largely unknown. To better elucidate post-translational events tied to the circadian system we carried out a survey of circadian-regulated protein phosphorylation events in Arabidopsis seedlings. A large-scale mass spectrometry-based quantitative phosphoproteomics approach employing TiO2-based phosphopeptide enrichment techniques identified and quantified 1586 phosphopeptides on 1080 protein groups. A total of 102 phosphopeptides displayed significant changes in abundance, enabling the identification of specific patterns of response to circadian rhythms. Our approach was sensitive enough to quantitate oscillations in the phosphorylation of low abundance clock proteins (early flowering4; ELF4 and pseudoresponse regulator3; PRR3) as well as other transcription factors and kinases. During constant light, extensive cyclic changes in phosphorylation status occurred in critical regulators, implicating direct or indirect regulation by the circadian system. These included proteins influencing transcriptional regulation, translation, metabolism, stress and phytohormones-mediated responses. We validated our analysis using the elf4-211 allele, in which an S45L transition removes the phosphorylation herein identified. We show that removal of this phosphorylatable site diminishes interaction with early flowering3 (ELF3), a key partner in a tripartite evening complex required for circadian cycling. elf4-211 lengthens period, which increases with increasing temperature, relative to the wild type, resulting in a more stable temperature compensation of circadian period over a wider temperature range.
Collapse
Affiliation(s)
- Mani Kant Choudhary
- From the ‡Division of Integrative Biosciences and Biotechnology, POSTECH, Hyojadong, Pohang, Kyungbuk, 790-784, Republic of Korea
| | - Yuko Nomura
- ¶Plant Proteomics Research Unit, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa, 230-0045, Japan
| | - Lei Wang
- From the ‡Division of Integrative Biosciences and Biotechnology, POSTECH, Hyojadong, Pohang, Kyungbuk, 790-784, Republic of Korea §Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210; ‖Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hirofumi Nakagami
- ¶Plant Proteomics Research Unit, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa, 230-0045, Japan
| | - David E Somers
- From the ‡Division of Integrative Biosciences and Biotechnology, POSTECH, Hyojadong, Pohang, Kyungbuk, 790-784, Republic of Korea §Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
33
|
Vélez-Bermúdez IC, Carretero-Paulet L, Legnaioli T, Ludevid D, Pagès M, Riera M. Novel CK2α and CK2β subunits in maize reveal functional diversification in subcellular localization and interaction capacity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 235:58-69. [PMID: 25900566 DOI: 10.1016/j.plantsci.2015.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 05/17/2023]
Abstract
In plants, CK2α/β subunits are encoded by multigenic families. They assemble as heterotetrameric holoenzymes or remain as individual subunits and are usually located in distinct cell compartments. Here we revise the number of maize CK2α/β genes, bringing them up to a total of eight (four CK2α catalytic and four CK2β regulatory subunits). We characterize CK2β4, which presents nuclear localization and interacts with CK2α1, CK2α3, CK2β1, and CK2β3. We also describe two CK2α isoforms (CK2α2 and CK2α4) containing N-terminal extensions that correspond to putative cTPs (chloroplast transit peptides). These cTPs are functional and responsible for the subcellular localization of CK2α2 and CK2α4 in chloroplasts. Phylogenetic analysis of the CK2α gene family, further supported by the gene structure and architecture of conserved protein domains, reveals the evolutionary expansion and diversification of this family. The subcellular localization of all four CK2α isoforms was found to be altered when were co-expressed with CK2β, thereby pointing to the latter as regulators of CK2α localization.
Collapse
Affiliation(s)
- I C Vélez-Bermúdez
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Campus UAB - Edifici CRAG, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - L Carretero-Paulet
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Campus UAB - Edifici CRAG, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - T Legnaioli
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Campus UAB - Edifici CRAG, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - D Ludevid
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Campus UAB - Edifici CRAG, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - M Pagès
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Campus UAB - Edifici CRAG, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - M Riera
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Campus UAB - Edifici CRAG, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain.
| |
Collapse
|
34
|
Nakamichi N. Adaptation to the local environment by modifications of the photoperiod response in crops. PLANT & CELL PHYSIOLOGY 2015; 56:594-604. [PMID: 25432974 PMCID: PMC4387313 DOI: 10.1093/pcp/pcu181] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/12/2014] [Indexed: 05/02/2023]
Abstract
Flowering plants produce a meristem at the shoot tip where specialized tissue generates shoot apical meristems at the appropriate time to differentiate into reproductive structures, pollinate and efficiently generate seeds. The complex set of molecular and phenological events culminating in development of a flowering meristem is referred to as 'flowering time'. Flowering time affects plant productivity because plants dedicate energy to produce flowers and seeds rather than vegetative tissue once the molecular decision to initiate flowering has been taken. Thus, initiation of flowering time is an important decision in plants, especially in annual plants including crops. Humans have introduced crops into latitudes and climate areas far from their origin or natural ecosystem, requiring in many cases modification of native flowering times. Recent molecular-genetic studies shed light on the genetic basis related to such introductions. In this review, recent progress regarding crop introductions and their genetic bases are summarized, as well as the potential of other agricultural plants to be introduced into different climatic zones.
Collapse
Affiliation(s)
- Norihito Nakamichi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602 Japan Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0022 Japan
| |
Collapse
|
35
|
Vilela B, Pagès M, Riera M. Emerging roles of protein kinase CK2 in abscisic acid signaling. FRONTIERS IN PLANT SCIENCE 2015; 6:966. [PMID: 26579189 PMCID: PMC4630567 DOI: 10.3389/fpls.2015.00966] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/22/2015] [Indexed: 05/02/2023]
Abstract
The phytohormone abscisic acid (ABA) regulates many aspects of plant growth and development as well as responses to multiple stresses. Post-translational modifications such as phosphorylation or ubiquitination have pivotal roles in the regulation of ABA signaling. In addition to the positive regulator sucrose non-fermenting-1 related protein kinase 2 (SnRK2), the relevance of the role of other protein kinases, such as CK2, has been recently highlighted. We have recently established that CK2 phosphorylates the maize ortholog of open stomata 1 OST1, ZmOST1, suggesting a role of CK2 phosphorylation in the control of ZmOST1 protein degradation (Vilela et al., 2015). CK2 is a pleiotropic enzyme involved in multiple developmental and stress-responsive pathways. This review summarizes recent advances that taken together suggest a prominent role of protein kinase CK2 in ABA signaling and related processes.
Collapse
|
36
|
Dodd AN, Belbin FE, Frank A, Webb AAR. Interactions between circadian clocks and photosynthesis for the temporal and spatial coordination of metabolism. FRONTIERS IN PLANT SCIENCE 2015; 6:245. [PMID: 25914715 PMCID: PMC4391236 DOI: 10.3389/fpls.2015.00245] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/26/2015] [Indexed: 05/05/2023]
Abstract
All plant productivity, including the food that we eat, arises from the capture of solar energy by plants. At most latitudes sunlight is available for only part of the 24 h day due to the rotation of the planet. This rhythmic and predictable alteration in the environment has driven the evolution of the circadian clock, which has an extremely pervasive influence upon plant molecular biology, physiology and phenology. A number of recent studies have demonstrated that the circadian clock is integrated very closely with photosynthesis and its metabolic products. We consider the coupling of the circadian oscillator with carbohydrate biochemistry and the connections between the nuclear-encoded circadian clock and processes within chloroplasts. We describe how this might provide adaptations to optimize plant performance in an environment that varies both predictably upon a daily and seasonal basis, and unpredictably due to the weather.
Collapse
Affiliation(s)
- Antony N. Dodd
- School of Biological Sciences, University of Bristol, Bristol, UK
- Cabot Institute, University of Bristol, Bristol, UK
| | - Fiona E. Belbin
- School of Biological Sciences, University of Bristol, Bristol, UK
- Cabot Institute, University of Bristol, Bristol, UK
| | - Alexander Frank
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Alex A. R. Webb
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- *Correspondence: Alex A. R. Webb, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
37
|
Golembeski GS, Imaizumi T. Photoperiodic Regulation of Florigen Function in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2015; 13:e0178. [PMID: 26157354 PMCID: PMC4489636 DOI: 10.1199/tab.0178] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
One mechanism through which flowering in response to seasonal change is brought about is by sensing the fluctuation in day-length; the photoperiod. Flowering induction occurs through the production of the florigenic protein FLOWERING LOCUS T (FT) and its movement from the phloem companion cells in the leaf vasculature into the shoot apex, where meristematic reprogramming occurs. FT activation in response to photoperiod condition is accomplished largely through the activity of the transcription factor CONSTANS (CO). Regulation of CO expression and protein stability, as well as the timing of other components via the circadian clock, is a critical mechanism by which plants are able to respond to photoperiod to initiate the floral transition. Modulation of FT expression in response to external and internal stimuli via components of the flowering network is crucial to mediate a fluid flowering response to a variety of environmental parameters. In addition, the regulated movement of FT protein from the phloem to the shoot apex, and interactions that determine floral meristem cell fate, constitute novel mechanisms through which photoperiodic information is translated into flowering time.
Collapse
Affiliation(s)
- Greg S. Golembeski
- University of Washington, Department of Biology, Seattle, WA, 98195-1800
| | - Takato Imaizumi
- University of Washington, Department of Biology, Seattle, WA, 98195-1800
- Address correspondence to
| |
Collapse
|
38
|
Krahmer J, Hindle MM, Martin SF, Le Bihan T, Millar AJ. Sample preparation for phosphoproteomic analysis of circadian time series in Arabidopsis thaliana. Methods Enzymol 2014; 551:405-31. [PMID: 25662467 PMCID: PMC4427183 DOI: 10.1016/bs.mie.2014.10.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Systems biological approaches to study the Arabidopsis thaliana circadian clock have mainly focused on transcriptomics while little is known about the proteome, and even less about posttranslational modifications. Evidence has emerged that posttranslational protein modifications, in particular phosphorylation, play an important role for the clock and its output. Phosphoproteomics is the method of choice for a large-scale approach to gain more knowledge about rhythmic protein phosphorylation. Recent plant phosphoproteomics publications have identified several thousand phosphopeptides. However, the methods used in these studies are very labor-intensive and therefore not suitable to apply to a well-replicated circadian time series. To address this issue, we present and compare different strategies for sample preparation for phosphoproteomics that are compatible with large numbers of samples. Methods are compared regarding number of identifications, variability of quantitation, and functional categorization. We focus on the type of detergent used for protein extraction as well as methods for its removal. We also test a simple two-fraction separation of the protein extract.
Collapse
Affiliation(s)
- Johanna Krahmer
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew M Hindle
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah F Martin
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Thierry Le Bihan
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
39
|
Atkins KA, Dodd AN. Circadian regulation of chloroplasts. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:43-50. [PMID: 25026538 DOI: 10.1016/j.pbi.2014.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 05/08/2023]
Abstract
Circadian rhythms produce a biological measure of time that increases plant performance. The mechanisms that underlie this increase in productivity require investigation to provide information that will underpin future crop improvement. There is a growing body of evidence that a sophisticated signalling network interconnects the circadian oscillator and chloroplasts. We consider this in the context of circadian signalling to chloroplasts and the relationship between retrograde signalling and circadian regulation. We place circadian signalling to chloroplasts by sigma factors within an evolutionary context. We describe selected recent developments in the integration of light and circadian signals that control chloroplast gene expression.
Collapse
Affiliation(s)
- Kelly A Atkins
- School of Biological Sciences, Bristol Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Antony N Dodd
- School of Biological Sciences, Bristol Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK; Cabot Institute, University of Bristol, Bristol BS8 1UJ, UK.
| |
Collapse
|
40
|
Hindle MM, Martin SF, Noordally ZB, van Ooijen G, Barrios-Llerena ME, Simpson TI, Le Bihan T, Millar AJ. The reduced kinome of Ostreococcus tauri: core eukaryotic signalling components in a tractable model species. BMC Genomics 2014; 15:640. [PMID: 25085202 PMCID: PMC4143559 DOI: 10.1186/1471-2164-15-640] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/08/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The current knowledge of eukaryote signalling originates from phenotypically diverse organisms. There is a pressing need to identify conserved signalling components among eukaryotes, which will lead to the transfer of knowledge across kingdoms. Two useful properties of a eukaryote model for signalling are (1) reduced signalling complexity, and (2) conservation of signalling components. The alga Ostreococcus tauri is described as the smallest free-living eukaryote. With less than 8,000 genes, it represents a highly constrained genomic palette. RESULTS Our survey revealed 133 protein kinases and 34 protein phosphatases (1.7% and 0.4% of the proteome). We conducted phosphoproteomic experiments and constructed domain structures and phylogenies for the catalytic protein-kinases. For each of the major kinases families we review the completeness and divergence of O. tauri representatives in comparison to the well-studied kinomes of the laboratory models Arabidopsis thaliana and Saccharomyces cerevisiae, and of Homo sapiens. Many kinase clades in O. tauri were reduced to a single member, in preference to the loss of family diversity, whereas TKL and ABC1 clades were expanded. We also identified kinases that have been lost in A. thaliana but retained in O. tauri. For three, contrasting eukaryotic pathways - TOR, MAPK, and the circadian clock - we established the subset of conserved components and demonstrate conserved sites of substrate phosphorylation and kinase motifs. CONCLUSIONS We conclude that O. tauri satisfies our two central requirements. Several of its kinases are more closely related to H. sapiens orthologs than S. cerevisiae is to H. sapiens. The greatly reduced kinome of O. tauri is therefore a suitable model for signalling in free-living eukaryotes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JD, UK.
| |
Collapse
|
41
|
Wang Y, Chang H, Hu S, Lu X, Yuan C, Zhang C, Wang P, Xiao W, Xiao L, Xue GP, Guo X. Plastid casein kinase 2 knockout reduces abscisic acid (ABA) sensitivity, thermotolerance, and expression of ABA- and heat-stress-responsive nuclear genes. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4159-75. [PMID: 24803505 PMCID: PMC4112627 DOI: 10.1093/jxb/eru190] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plastid casein kinase 2 (CK2) is a major Ser/Thr-specific enzyme for protein phosphorylation in the chloroplast stroma and its kinase activity is regulated by redox signals. To understand the role of CK2 phosphorylation of chloroplast proteins in abiotic stress signalling, an Arabidopsis plastid CK2 (CKA4) knockout mutant was investigated in terms of the plant response to abscisic acid (ABA) and heat stress. CKA4 expression was upregulated by ABA and heat treatment. The cka4 mutant showed reduced sensitivity to ABA during seed germination and seedling growth, and increased stomatal aperture and leaf water loss with a slightly reduced leaf ABA level. The cka4 mutant was more sensitive to heat stress than the wild-type Columbia-0. The expression levels of a number of genes in the ABA regulatory network were reduced in the cka4 mutant. Many heat-upregulated genes (heat-shock factors and heat-shock proteins) were also reduced in the cka4 mutant. The cka4 mutant showed reduced expression levels of plastid-encoded RNA polymerase target genes (atpB and psbA). CKA4 knockout mutation also resulted in a reduction in expression of some critical genes (PTM, ABI4, and PRS1) involved in retrograde signalling from the chloroplast to the nucleus. Similar results were observed in mutant plants with the knockout mutation in both CKA4 and CKA3, which encodes a nuclear CK2 α3 subunit. CKA3 expression was not responsive to ABA and heat stress. These results suggest that CKA4 is an enhancing factor in abiotic stress signalling through modulating the expression of some molecular players in retrograde signalling.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, PR China
| | - Hongping Chang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, PR China
| | - Shuai Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, PR China
| | - Xiutao Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, PR China
| | - Congying Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, PR China
| | - Chen Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, PR China
| | - Ping Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, PR China
| | - Wenjun Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, PR China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128, PR China
| | - Gang-Ping Xue
- CSIRO Plant Industry, 306 Carmody Road, St Lucia, QLD 4067, Australia
| | - Xinhong Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, PR China
| |
Collapse
|
42
|
Bigeard J, Rayapuram N, Bonhomme L, Hirt H, Pflieger D. Proteomic and phosphoproteomic analyses of chromatin-associated proteins from Arabidopsis thaliana. Proteomics 2014; 14:2141-55. [PMID: 24889360 DOI: 10.1002/pmic.201400072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/28/2014] [Accepted: 05/26/2014] [Indexed: 11/09/2022]
Abstract
The nucleus is the organelle where basically all DNA-related processes take place in eukaryotes, such as replication, transcription, and splicing as well as epigenetic regulation. The identification and description of the nuclear proteins is one of the requisites toward a comprehensive understanding of the biological functions accomplished in the nucleus. Many of the regulatory mechanisms of protein functions rely on their PTMs among which phosphorylation is probably one of the most important properties affecting enzymatic activity, interaction with other molecules, localization, or stability. So far, the nuclear and subnuclear proteome and phosphoproteome of the model plant Arabidopsis thaliana have been the subject of very few studies. In this work, we developed a purification protocol of Arabidopsis chromatin-associated proteins and performed proteomic and phosphoproteomic analyses identifying a total of 879 proteins of which 198 were phosphoproteins that were mainly involved in chromatin remodeling, transcriptional regulation, and RNA processing. From 230 precisely localized phosphorylation sites (phosphosites), 52 correspond to hitherto unidentified sites. This protocol and data thereby obtained should be a valuable resource for many domains of plant research.
Collapse
Affiliation(s)
- Jean Bigeard
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA/CNRS/Université d'Evry Val d'Essonne/Saclay Plant Sciences, Evry, France
| | | | | | | | | |
Collapse
|
43
|
Mulekar JJ, Huq E. Expanding roles of protein kinase CK2 in regulating plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2883-93. [PMID: 24307718 DOI: 10.1093/jxb/ert401] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Protein kinase CK2 (formerly known as casein kinase II) is a ubiquitious Ser/Thr kinase present in all eukaryotes. The α (catalytic) and β (regulatory) subunits of CK2 exist both as a tetrameric holoenzyme and as monomers in eukaryotic cells. CK2 has been implicated in multiple developmental and stress-responsive pathways including light signalling and circadian clock in plants. Recent studies using CK2 knockout and dominant negative mutants in Arabidopsis have uncovered new roles for this enzyme. CK2 substrates that have been identified so far are primarily transcription factors or regulatory proteins. CK2-mediated phosphorylation of these factors often results in alteration of the protein function including changes in the DNA-binding affinity, dimerization, stability, protein-protein interactions, and subcellular localization. CK2 has evolved as an essential housekeeping kinase in plants that modifies protein function in a dynamic way. This review summarizes the current knowledge of the role of CK2 in plant development.
Collapse
Affiliation(s)
- Jidnyasa Jayant Mulekar
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Enamul Huq
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
44
|
Roy S, Morse D. The dinoflagellate Lingulodinium has predicted casein kinase 2 sites in many RNA binding proteins. Protist 2014; 165:330-42. [PMID: 24810178 DOI: 10.1016/j.protis.2014.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 11/18/2022]
Abstract
Many cellular processes in the dinoflagellate Lingulodinium polyedrum are controlled by a circadian (daily) clock. Since the activity of proteins involved in various metabolic pathways or in regulating gene expression can be affected by phosphorylation, we established a generalized phosphoproteome catalog using LC-MS/MS to analyze a phosphoprotein-enriched fraction. Over 11,000 peptides were identified by comparison to a Lingulodinium transcriptome, and 527 of these had at least one identified phosphosite. Gene ontology analysis revealed that RNA binding and translation were one of the major categories among these proteins identified by these peptides. Since casein kinase 2 (CK2) is known to be important in eukaryotic circadian biology substrates, we next tried to identify specific substrates for this kinase. To achieve this we first classified and catalogued the kinases in the Lingulodinium transcriptome then assigned the different phosphosites to the different kinase classes. Interestingly, potential CK2 targets include a substantial proportion of RNA binding proteins. Phosphosite identification thus provides a promising new approach to investigate the Lingulodinium circadian system.
Collapse
Affiliation(s)
- Sougata Roy
- Institut de Recherche en BiologieVégétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke est, Montréal, Québec, Canada H1X 2B2
| | - David Morse
- Institut de Recherche en BiologieVégétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke est, Montréal, Québec, Canada H1X 2B2.
| |
Collapse
|
45
|
Schnitzler A, Olsen BB, Issinger OG, Niefind K. The Protein Kinase CK2Andante Holoenzyme Structure Supports Proposed Models of Autoregulation and Trans-Autophosphorylation. J Mol Biol 2014; 426:1871-82. [DOI: 10.1016/j.jmb.2014.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/11/2014] [Accepted: 02/24/2014] [Indexed: 11/28/2022]
|
46
|
Roy S, Letourneau L, Morse D. Cold-induced cysts of the photosynthetic dinoflagellate Lingulodinium polyedrum have an arrested circadian bioluminescence rhythm and lower levels of protein phosphorylation. PLANT PHYSIOLOGY 2014; 164:966-977. [PMID: 24335505 PMCID: PMC3912119 DOI: 10.1104/pp.113.229856] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 12/09/2013] [Indexed: 06/03/2023]
Abstract
Dinoflagellates are microscopic, eukaryotic, and primarily marine plankton. Temporary cyst formation is a well-known physiological response of dinoflagellate cells to environmental stresses. However, the molecular underpinnings of cold-induced cyst physiology have never been described. Cultures of the photosynthetic dinoflagellate Lingulodinium polyedrum readily form temporary cysts when placed at low (8°C±1°C) temperature and excyst to form normal motile cells following a return to normal temperature (18°C±1°C). The normal circadian bioluminescence rhythm and the expected changes in Luciferin Binding Protein abundance were arrested in L. polyedrum cysts. Furthermore, after excystment, the bioluminescence rhythm initiates at a time corresponding to zeitgeber 12, independent of the time when the cells encysted. Phosphoprotein staining after two-dimensional polyacrylamide gel electrophoresis, as well as column-based phosphoprotein enrichment followed by liquid chromatography tandem mass spectrometry, showed cyst proteins are hypophosphorylated when compared with those from motile cells, with the most marked decreases found for predicted Casein Kinase2 target sites. In contrast to the phosphoproteome, the cyst proteome is not markedly different from motile cells, as assessed by two-dimensional polyacrylamide gel electrophoresis. In addition to changes in the phosphoproteome, RNA sequencing revealed that cysts show a significant decrease in the levels of 132 RNAs. Of the 42 RNAs that were identified by sequence analysis, 21 correspond to plastid-encoded gene products and 11 to nuclear-encoded cell wall/plasma membrane components. Our data are consistent with a model in which the highly reduced metabolism in cysts is achieved primarily by alterations in the phosphoproteome. The stalling of the circadian rhythm suggests temporary cysts may provide an interesting model to address the circadian system of dinoflagellates.
Collapse
|
47
|
Seo PJ, Mas P. Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis. THE PLANT CELL 2014; 26:79-87. [PMID: 24481076 PMCID: PMC3963595 DOI: 10.1105/tpc.113.119842] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The circadian clock is a cellular time-keeper mechanism that regulates biological rhythms with a period of ~24 h. The circadian rhythms in metabolism, physiology, and development are synchronized by environmental cues such as light and temperature. In plants, proper matching of the internal circadian time with the external environment confers fitness advantages on plant survival and propagation. Accordingly, plants have evolved elaborated regulatory mechanisms that precisely control the circadian oscillations. Transcriptional feedback regulation of several clock components has been well characterized over the past years. However, the importance of additional regulatory mechanisms such as chromatin remodeling, protein complexes, protein phosphorylation, and stability is only starting to emerge. The multiple layers of circadian regulation enable plants to properly synchronize with the environmental cycles and to fine-tune the circadian oscillations. This review focuses on the diverse posttranslational events that regulate circadian clock function. We discuss the mechanistic insights explaining how plants articulate a high degree of complexity in their regulatory networks to maintain circadian homeostasis and to generate highly precise waveforms of circadian expression and activity.
Collapse
Affiliation(s)
- Pil Joon Seo
- Department of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju 561-756, Korea
| | | |
Collapse
|
48
|
Hori K, Ogiso-Tanaka E, Matsubara K, Yamanouchi U, Ebana K, Yano M. Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:36-46. [PMID: 23789941 PMCID: PMC4223384 DOI: 10.1111/tpj.12268] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/29/2013] [Accepted: 06/17/2013] [Indexed: 05/02/2023]
Abstract
The alteration of photoperiod sensitivity has let breeders diversify flowering time in Oryza sativa (rice) and develop cultivars adjusted to a range of growing season periods. Map-based cloning revealed that the rice flowering-time quantitative trait locus (QTL) Heading date 16 (Hd16) encodes a casein kinase-I protein. One non-synonymous substitution in Hd16 resulted in decreased photoperiod sensitivity in rice, and this substitution occurred naturally in an old rice cultivar. By using near-isogenic lines with functional or deficient alleles of several rice flowering-time genes, we observed significant digenetic interactions between Hd16 and four other flowering-time genes (Ghd7, Hd1, DTH8 and Hd2). In a near-isogenic line with the weak-photoperiod-sensitivity allele of Hd16, transcription levels of Ehd1, Hd3a, and RFT1 increased under long-day conditions, and transcription levels of Hd3a and RFT1 decreased under short-day conditions. Expression analysis under continuous light and dark conditions showed that Hd16 was not likely to be associated with circadian clock regulation. Biochemical characterization indicated that the functional Hd16 recombinant protein specifically phosphorylated Ghd7. These results demonstrate that Hd16 acts as an inhibitor in the rice flowering pathway by enhancing the photoperiod response as a result of the phosphorylation of Ghd7.
Collapse
Affiliation(s)
| | | | - Kazuki Matsubara
- Institute of Crop Sciences, National Agriculture and Food Organization2-1-18 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | | | | | | |
Collapse
|
49
|
Bolouri Moghaddam MR, Van den Ende W. Sweet immunity in the plant circadian regulatory network. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1439-49. [PMID: 23564957 DOI: 10.1093/jxb/ert046] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
All organisms have an internal timing mechanism, termed the circadian clock, to anticipate the light/dark cycle. The clock, with an oscillating rhythm that approximates 24h, is a rather robust system persisting to a great extent in continuous light and dark. It is widely accepted that plant growth and development are regulated by the clock, hormones, and sugar signals. On the one hand, sugar signalling can affect circadian rhythms by altering the expression pattern of clock-regulated genes. More in particular, the clock seems to be particularly sensitive to sucrose-mediated signalling which is also associated with immunity and abiotic stress responses. Also, hormonal interaction with the clock can contribute to appropriate plant immune responses. Recent data show a prominent role for the clock in growth and stress responses. On the other hand, the clock seems to be essential in controlling the gene expression and activity of an array of carbohydrate-metabolizing enzymes, suggesting a complex reciprocal relationship between the clock and metabolic signalling processes. Therefore, the clock fulfils a crucial role at the heart of cellular networks. The players involved in the complex plant circadian network and their possible contribution to the novel 'sweet immunity' concept are discussed.
Collapse
|
50
|
Noordally ZB, Ishii K, Atkins KA, Wetherill SJ, Kusakina J, Walton EJ, Kato M, Azuma M, Tanaka K, Hanaoka M, Dodd AN. Circadian Control of Chloroplast Transcription by a Nuclear-Encoded Timing Signal. Science 2013; 339:1316-9. [DOI: 10.1126/science.1230397] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|