1
|
Liang J, Tian J, Zhang H, Li H, Chen L. Proteomics: An In-Depth Review on Recent Technical Advances and Their Applications in Biomedicine. Med Res Rev 2025. [PMID: 39789883 DOI: 10.1002/med.22098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Proteins hold pivotal importance since many diseases manifest changes in protein activity. Proteomics techniques provide a comprehensive exploration of protein structure, abundance, and function in biological samples, enabling the holistic characterization of overall changes in organisms. Nowadays, the breadth of emerging methodologies in proteomics is unprecedentedly vast, with constant optimization of technologies in sample processing, data collection, data analysis, and its scope of application is steadily transitioning from the bench to the clinic. Here, we offer an insightful review of the technical developments in proteomics and its applications in biomedicine over the past 5 years. We focus on its profound contributions in profiling disease spectra, discovering new biomarkers, identifying promising drug targets, deciphering alterations in protein conformation, and unearthing protein-protein interactions. Moreover, we summarize the cutting-edge technologies and potential breakthroughs in the proteomics pipeline and provide the principal challenges in proteomics. Based on these, we aspire to broaden the applicability of proteomics and inspire researchers to enhance our understanding of complex biological systems by utilizing such techniques.
Collapse
Affiliation(s)
- Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jundan Tian
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Huadong Zhang
- College of Pharmacy, Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- College of Pharmacy, Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
2
|
Tsonev LI, Hirsh AG. Multiple, simultaneous, independent gradients for a versatile multidimensional liquid chromatography. Part II: Application 3 - Scouting optimization strategies for separation of monoclonal antibodies by dual simultaneous independent gradients of pH & salt on a weak cation exchange stationary phase. J Chromatogr A 2024; 1730:465065. [PMID: 38879974 DOI: 10.1016/j.chroma.2024.465065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/18/2024]
Abstract
In previous publications we have described the pISep dual simultaneous, independent gradients (DSIGs) liquid chromatography (LC) for uncoupling gradients of non-buffering solute (NaCl, urea or acetonitrile) from externally generated pH gradients. In DSIGs the shape and slope of the [salute] gradient does not depend on the shape and slope of the pH gradient. The technique allows in a single run true simultaneous two dimensional LC separation of complex protein mixtures on various stationary phases including anion, cation exchangers (AEX, CEX), reversed phase (RP), mixed mode and mixed bed. Using a humanized IgG1 (HIgG1) monoclonal antibody (MAb) and a variety of pH & [NaCl] DSIGs, we show that most of MAb isoforms can be successfully separated from each other. These experimental observations are supported by an initial theoretical argument presented here predicting an overall improvement of all MAb isoforms separation by DSIGs of pH & [NaCl]. Theoretical calculations predict that, in general, there exists an optimal non-zero isocratic salt concentration in a pH gradient separation that will resolve isoforms close in binding energy, but a wide range of salt concentrations will be required for acceptable resolution of all isoforms. Theory also predicts better separation of weaker rather than stronger binding isoforms. Experimentally, we have found that no one set of DSIGs LC conditions could optimally baseline resolve all identifiable MAb isoforms in a single run of reasonable duration. The versatility and simplicity of the pH & [NaCl] pISep DSIGs LC allows fast, automated scouting of protein separations over any range of pH from 2.4 to 10.8 and [NaCl] from 0 to 1 M without changing the chemistry of the buffering system. Due to the universal applicability of the pISep buffering system in IEX LC, the researcher is given a powerful tool to easily develop pH & [NaCl] DSIGs protocols that vary mobile phase compositions to achieve high resolution separations of targeted proteins.
Collapse
Affiliation(s)
- Latchezar I Tsonev
- CryoBioPhysica, Inc., 4620 N. Park Ave., #1502 w Chevy Chase, MD 20815, USA
| | - Allen G Hirsh
- CryoBioPhysica, Inc., 4620 N. Park Ave., #1502 w Chevy Chase, MD 20815, USA.
| |
Collapse
|
3
|
Yin K, Tong M, Sun F, Wu R. Quantitative Structural Proteomics Unveils the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress. Anal Chem 2022; 94:13250-13260. [PMID: 36108266 PMCID: PMC9789690 DOI: 10.1021/acs.analchem.2c03076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein structures are decisive for their activities and interactions with other molecules. Global analysis of protein structures and conformational changes cannot be achieved by commonly used abundance-based proteomics. Here, we integrated cysteine covalent labeling, selective enrichment, and quantitative proteomics to study protein structures and structural changes on a large scale. This method was applied to globally investigate protein structures in HEK293T cells and protein structural changes in the cells with the tunicamycin (Tm)-induced endoplasmic reticulum (ER) stress. We quantified several thousand cysteine residues, which contain unprecedented and valuable information of protein structures. Combining this method with pulsed stable isotope labeling by amino acids in cell culture, we further analyzed the folding state differences between pre-existing and newly synthesized proteins in cells under the Tm treatment. Besides newly synthesized proteins, unexpectedly, many pre-existing proteins were found to become unfolded upon ER stress, especially those related to gene transcription and protein translation. Furthermore, the current results reveal that N-glycosylation plays a more important role in the folding process of the tertiary and quaternary structures than the secondary structures for newly synthesized proteins. Considering the importance of cysteine in protein structures, this method can be extensively applied in the biological and biomedical research fields.
Collapse
Affiliation(s)
- Kejun Yin
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ming Tong
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Derry A, Carpenter KA, Altman RB. Training data composition affects performance of protein structure analysis algorithms. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2022; 27:10-21. [PMID: 34890132 PMCID: PMC8669736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The three-dimensional structures of proteins are crucial for understanding their molecular mechanisms and interactions. Machine learning algorithms that are able to learn accurate representations of protein structures are therefore poised to play a key role in protein engineering and drug development. The accuracy of such models in deployment is directly influenced by training data quality. The use of different experimental methods for protein structure determination may introduce bias into the training data. In this work, we evaluate the magnitude of this effect across three distinct tasks: estimation of model accuracy, protein sequence design, and catalytic residue prediction. Most protein structures are derived from X-ray crystallography, nuclear magnetic resonance (NMR), or cryo-electron microscopy (cryo-EM); we trained each model on datasets consisting of either all three structure types or of only X-ray data. We Find that across these tasks, models consistently perform worse on test sets derived from NMR and cryo-EM than they do on test sets of structures derived from X-ray crystallography, but that the difference can be mitigated when NMR and cryo-EM structures are included in the training set. Importantly, we show that including all three types of structures in the training set does not degrade test performance on X-ray structures, and in some cases even increases it. Finally, we examine the relationship between model performance and the biophysical properties of each method, and recommend that the biochemistry of the task of interest should be considered when composing training sets.
Collapse
Affiliation(s)
- Alexander Derry
- Biomedical Informatics Training Program, Stanford University, Stanford, CA 94305, USA
| | - Kristy A. Carpenter
- Biomedical Informatics Training Program, Stanford University, Stanford, CA 94305, USA
| | - Russ B. Altman
- Departments of Bioengineering, Genetics, Biomedical Data Science, and Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Hadianamrei R, Tomeh MA, Brown S, Wang J, Zhao X. Correlation between the secondary structure and surface activity of β-sheet forming cationic amphiphilic peptides and their anticancer activity. Colloids Surf B Biointerfaces 2022; 209:112165. [PMID: 34715505 DOI: 10.1016/j.colsurfb.2021.112165] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/07/2021] [Accepted: 10/16/2021] [Indexed: 01/01/2023]
Abstract
Cancer is one of the main causes of death worldwide. The current cancer treatment strategies often lack selectivity for cancer cells resulting in dose-limiting adverse effects and reduced quality of life. Recently, anticancer peptides (ACPs) have emerged as an alternative treatment with higher selectivity, less adverse effects, and lower propensity for drug resistance. However, most of the current studies on the ACPs are focused on α-helical ACPs and there is lack of systematic studies on β-sheet forming ACPs. Herein we report the development of a new series of rationally designed short cationic amphiphilic β-sheet forming ACPs and their structure activity relationship. The peptides had the general formula (XY1XY2)3, with X representing hydrophobic amino acids (isoleucine (I) or leucine (L)), Y1 and Y2 representing cationic amino acids (arginine (R) or lysine (K)). The cytotoxicity of the designed ACPs in HCT 116 colorectal cancer, HeLa cervical cancer and human dermal fibroblast (HDF) cells was assessed by MTT test. The physicochemical properties of the peptides were characterized by various techniques including RP-HPLC, LC-MS, and Circular Dichroism (CD) spectroscopy. The surface activity of the peptides at the air-water interface and their interaction with the lipid monolayers as models for cell membranes were studied by Langmuir trough. The peptides consisting of I with R and K had selective anticancer activity while the combination of L and R diminished the anticancer activity of the peptides but rendered them more toxic to HDFs. The anticancer activity of the peptides was directed by their surface activity (amphiphilicity) and their secondary structure in hydrophobic surfaces including cancer cell membranes. The selectivity of the peptides for cancer cells was a result of their higher penetration into cancer cell membranes compared to normal cell membranes. The peptides exerted their anticancer activity by disrupting the mitochondrial membranes and eventually apoptosis. The results presented in this study provide an insight into the structure-activity relationship of this class of ACPs which can be employed as guidance to design new ACPs with improved anticancer activity and lower toxicity against normal cells.
Collapse
Affiliation(s)
- Roja Hadianamrei
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK
| | - Stephen Brown
- Department of Biomedical Science, University of Sheffield, S10 2TN, UK
| | - Jiqian Wang
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266555, China
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
6
|
Kim R, Radhakrishnan ML. Macromolecular crowding effects on electrostatic binding affinity: Fundamental insights from theoretical, idealized models. J Chem Phys 2021; 154:225101. [PMID: 34241219 DOI: 10.1063/5.0042082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The crowded cellular environment can affect biomolecular binding energetics, with specific effects depending on the properties of the binding partners and the local environment. Often, crowding effects on binding are studied on particular complexes, which provide system-specific insights but may not provide comprehensive trends or a generalized framework to better understand how crowding affects energetics involved in molecular recognition. Here, we use theoretical, idealized molecules whose physical properties can be systematically varied along with samplings of crowder placements to understand how electrostatic binding energetics are altered through crowding and how these effects depend on the charge distribution, shape, and size of the binding partners or crowders. We focus on electrostatic binding energetics using a continuum electrostatic framework to understand effects due to depletion of a polar, aqueous solvent in a crowded environment. We find that crowding effects can depend predictably on a system's charge distribution, with coupling between the crowder size and the geometry of the partners' binding interface in determining crowder effects. We also explore the effect of crowder charge on binding interactions as a function of the monopoles of the system components. Finally, we find that modeling crowding via a lowered solvent dielectric constant cannot account for certain electrostatic crowding effects due to the finite size, shape, or placement of system components. This study, which comprehensively examines solvent depletion effects due to crowding, complements work focusing on other crowding aspects to help build a holistic understanding of environmental impacts on molecular recognition.
Collapse
Affiliation(s)
- Rachel Kim
- Department of Chemistry, Wellesley College, Wellesley, Massachusetts 02481, USA
| | | |
Collapse
|
7
|
Luo X, Ye X, Ding L, Zhu W, Yi P, Zhao Z, Gao H, Shu Z, Li S, Sang M, Wang J, Zhong W, Chen Z. Fine-Tuning of Alkaline Residues on the Hydrophilic Face Provides a Non-toxic Cationic α-Helical Antimicrobial Peptide Against Antibiotic-Resistant ESKAPE Pathogens. Front Microbiol 2021; 12:684591. [PMID: 34335511 PMCID: PMC8319832 DOI: 10.3389/fmicb.2021.684591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/11/2021] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) has become a serious threat to public health worldwide. Cationic α-helical antimicrobial peptides (CαAMPs) have attracted much attention as promising solutions in post-antibiotic era. However, strong hemolytic activity and in vivo inefficacy have hindered their pharmaceutical development. Here, we attempt to address these obstacles by investigating BmKn2 and BmKn2-7, two scorpion-derived CαAMPs with the same hydrophobic face and a distinct hydrophilic face. Through structural comparison, mutant design and functional analyses, we found that while keeping the hydrophobic face unchanged, increasing the number of alkaline residues (i.e., Lys + Arg residues) on the hydrophilic face of BmKn2 reduces the hemolytic activity and broadens the antimicrobial spectrum. Strikingly, when keeping the total number of alkaline residues constant, increasing the number of Lys residues on the hydrophilic face of BmKn2-7 significantly reduces the hemolytic activity but does not influence the antimicrobial activity. BmKn2-7K, a mutant of BmKn2-7 in which all of the Arg residues on the hydrophilic face were replaced with Lys, showed the lowest hemolytic activity and potent antimicrobial activity against antibiotic-resistant ESKAPE pathogens. Moreover, in vivo experiments indicate that BmKn2-7K displays potent antimicrobial efficacy against both the penicillin-resistant S. aureus and the carbapenem- and multidrug-resistant A. baumannii, and is non-toxic at the antimicrobial dosages. Taken together, our work highlights the significant functional disparity of Lys vs Arg in the scorpion-derived antimicrobial peptide BmKn2-7, and provides a promising lead molecule for drug development against ESKAPE pathogens.
Collapse
Affiliation(s)
- Xudong Luo
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Xiangdong Ye
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Li Ding
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China.,Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Wen Zhu
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Pengcheng Yi
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Zhiwen Zhao
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Huanhuan Gao
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Zhan Shu
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Shan Li
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Ming Sang
- Central Laboratory of Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Shiyan, China
| | - Jue Wang
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Weihua Zhong
- Department of Rehabilitation Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zongyun Chen
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
8
|
Wang E, Liu H, Wang J, Weng G, Sun H, Wang Z, Kang Y, Hou T. Development and Evaluation of MM/GBSA Based on a Variable Dielectric GB Model for Predicting Protein–Ligand Binding Affinities. J Chem Inf Model 2020; 60:5353-5365. [DOI: 10.1021/acs.jcim.0c00024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ercheng Wang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Hui Liu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Gaoqi Weng
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Huiyong Sun
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Zhe Wang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Yu Kang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Tingjun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou Zhejiang 310058, China
| |
Collapse
|
9
|
Wang MS, Hoegler KJ, Hecht MH. Unevolved De Novo Proteins Have Innate Tendencies to Bind Transition Metals. Life (Basel) 2019; 9:E8. [PMID: 30634485 PMCID: PMC6463171 DOI: 10.3390/life9010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/31/2018] [Accepted: 01/04/2019] [Indexed: 11/16/2022] Open
Abstract
Life as we know it would not exist without the ability of protein sequences to bind metal ions. Transition metals, in particular, play essential roles in a wide range of structural and catalytic functions. The ubiquitous occurrence of metalloproteins in all organisms leads one to ask whether metal binding is an evolved trait that occurred only rarely in ancestral sequences, or alternatively, whether it is an innate property of amino acid sequences, occurring frequently in unevolved sequence space. To address this question, we studied 52 proteins from a combinatorial library of novel sequences designed to fold into 4-helix bundles. Although these sequences were neither designed nor evolved to bind metals, the majority of them have innate tendencies to bind the transition metals copper, cobalt, and zinc with high nanomolar to low-micromolar affinity.
Collapse
Affiliation(s)
- Michael S Wang
- Department of Chemistry, Princeton University, Princeton, NJ 08540, USA.
| | - Kenric J Hoegler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA.
| | - Michael H Hecht
- Department of Chemistry, Princeton University, Princeton, NJ 08540, USA.
| |
Collapse
|
10
|
Banskota S, Yousefpour P, Kirmani N, Li X, Chilkoti A. Long circulating genetically encoded intrinsically disordered zwitterionic polypeptides for drug delivery. Biomaterials 2018; 192:475-485. [PMID: 30504081 DOI: 10.1016/j.biomaterials.2018.11.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 01/01/2023]
Abstract
The clinical utility of many peptide and protein drugs is limited by their short in-vivo half-life. To address this limitation, we report a new class of polypeptide-based materials that have a long plasma circulation time. The design of these polypeptides is motivated by the hypothesis that incorporating a zwitterionic sequence, within an intrinsically disordered polypeptide motif, would impart "stealth" behavior to the polypeptide and increase its plasma residence time, a behavior akin to that of synthetic stealth polymers. We designed these zwitterionic polypeptides (ZIPPs) with a repetitive (VPX1X2G)n motif, where X1 and X2 are cationic and anionic amino acids, respectively, and n is the number of repeats. To test this hypothesis, we synthesized a set of ZIPPs with different pairs of cationic and anionic residues with varied chain length. We show that a combination of lysine and glutamic acid in the ZIPP confer superior pharmacokinetics, for both intravenous and subcutaneous administration, compared to uncharged control polypeptides. Finally, to demonstrate their clinical utility, we fused the best performing ZIPP sequence to glucagon-like peptide-1 (GLP1), a peptide drug used for treatment of type-2 diabetes and show that the ZIPP-GLP1 fusion outperforms an uncharged polypeptide of the same molecular weight in a mouse model of type-2 diabetes.
Collapse
Affiliation(s)
- Samagya Banskota
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Parisa Yousefpour
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nadia Kirmani
- Department of Biology, Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA
| | - Xinghai Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
11
|
Araújo ARD, Melo T, Maciel EA, Pereira C, Morais CM, Santinha DR, Tavares JF, Oliveira H, Jurado AS, Costa V, Domingues P, Domingues MRM, Santos MAS. Errors in protein synthesis increase the level of saturated fatty acids and affect the overall lipid profiles of yeast. PLoS One 2018; 13:e0202402. [PMID: 30148852 PMCID: PMC6110467 DOI: 10.1371/journal.pone.0202402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 08/02/2018] [Indexed: 12/03/2022] Open
Abstract
The occurrence of protein synthesis errors (mistranslation) above the typical mean mistranslation level of 10−4 is mostly deleterious to yeast, zebrafish and mammal cells. Previous yeast studies have shown that mistranslation affects fitness and deregulates genes related to lipid metabolism, but there is no experimental proof that such errors alter yeast lipid profiles. We engineered yeast strains to misincorporate serine at alanine and glycine sites on a global scale and evaluated the putative effects on the lipidome. Lipids from whole cells were extracted and analysed by thin layer chromatography (TLC), liquid chromatography-mass spectrometry(LC-MS) and gas chromatography (GC). Oxidative damage, fatty acid desaturation and membrane fluidity changes were screened to identify putative alterations in lipid profiles in both logarithmic (fermentative) and post-diauxic shift (respiratory) phases. There were alterations in several lipid classes, namely lyso-phosphatidylcholine, phosphatidic acid, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, and triglyceride, and in the fatty acid profiles, namely C16:1, C16:0, C18:1 and C18:0. Overall, the relative content of lipid species with saturated FA increased in detriment of those with unsaturated fatty acids. The expression of the OLE1 mRNA was deregulated, but phospholipid fluidity changes were not observed. These data expand current knowledge of mistranslation biology and highlight its putative roles in human diseases.
Collapse
Affiliation(s)
- Ana Rita D. Araújo
- Department of Medical Sciences and Institute of Biomedicine–iBiMED, University of Aveiro, Aveiro, Portugal
- Mass Spectrometry Center, Department of Chemistry, QOPNA, University of Aveiro, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center, Department of Chemistry, QOPNA, University of Aveiro, Aveiro, Portugal
| | - Elisabete A. Maciel
- Mass Spectrometry Center, Department of Chemistry, QOPNA, University of Aveiro, Aveiro, Portugal
- Department of Biology, CESAM, University of Aveiro, Aveiro, Portugal
| | - Clara Pereira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Catarina M. Morais
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Deolinda R. Santinha
- Mass Spectrometry Center, Department of Chemistry, QOPNA, University of Aveiro, Aveiro, Portugal
| | - Joana F. Tavares
- Department of Medical Sciences and Institute of Biomedicine–iBiMED, University of Aveiro, Aveiro, Portugal
| | - Helena Oliveira
- Laboratory of Biotechnology and Cytomics, Department of Biology, CESAM, University of Aveiro, Aveiro, Portugal
| | - Amália S. Jurado
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Vítor Costa
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Pedro Domingues
- Mass Spectrometry Center, Department of Chemistry, QOPNA, University of Aveiro, Aveiro, Portugal
| | - Maria Rosário M. Domingues
- Mass Spectrometry Center, Department of Chemistry, QOPNA, University of Aveiro, Aveiro, Portugal
- * E-mail: (MASS); (MRMD)
| | - Manuel A. S. Santos
- Department of Medical Sciences and Institute of Biomedicine–iBiMED, University of Aveiro, Aveiro, Portugal
- * E-mail: (MASS); (MRMD)
| |
Collapse
|
12
|
Muraoka A, Matsuura Y, Naitow H, Ihara M, Kunishima N. Availability of NHS-biotin labeling to identify free protein lysine revealed by experiment and MD simulation. Anal Biochem 2018; 557:46-58. [PMID: 30025973 DOI: 10.1016/j.ab.2018.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 11/27/2022]
Abstract
It is known that the crystallizability of protein molecules may be improved by replacing their surface lysine residues with other residue types. Here an experimental method to identify surface lysine residues by NHS-biotin chemical modification combined with MALDI-TOF MS was proposed and was evaluated using PH1033 protein from Pyrococcus horikoshii. Interestingly, the biotinylation experiment with a protein-reagent molar ratio of 1:1 revealed that only seven of twenty-two lysine residues in the protein comprising 144 residues were labeled. To investigate the result, we analyzed structures from a molecular-dynamics simulation mimicking the experiment. A logistic regression analysis revealed that the biotinylation was significantly correlated with four factors relevant to the local environment of lysine residues: the solvent accessibility, the electrostatic energy, the number of hydrogen bonds, and the estimated pKa value. This result is overall in agreement with that from the same analysis on the crystal structure. However, reflecting the flexibility of the protein molecule in solution state, the factors except for the electrostatic energy were highly variable in the MD structures depending upon the protonation state of Tyr87. The present procedure of biotin-labeling can avoid lysine residues with extensive intramolecular interactions that are incompatible with the rational design of protein crystals.
Collapse
Affiliation(s)
- Aiichiro Muraoka
- Bio-Specimen Platform Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshinori Matsuura
- Bio-Specimen Platform Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hisashi Naitow
- Bio-Specimen Platform Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Makoto Ihara
- Bio-Specimen Platform Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara City, Nara 631-8505, Japan
| | - Naoki Kunishima
- Bio-Specimen Platform Group, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; RIKEN RSC-Rigaku Collaboration Center, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.
| |
Collapse
|
13
|
Dorantes-Gilardi R, Bourgeat L, Pacini L, Vuillon L, Lesieur C. In proteins, the structural responses of a position to mutation rely on the Goldilocks principle: not too many links, not too few. Phys Chem Chem Phys 2018; 20:25399-25410. [DOI: 10.1039/c8cp04530e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A disease has distinct genetic and molecular hallmarks such as sequence variants that are likely to produce the alternative protein structures accountable for individual responses to drugs and disease development.
Collapse
Affiliation(s)
| | | | - Lorenza Pacini
- Institut Rhônalpin des systèmes complexes
- IXXI-ENS-Lyon
- Lyon
- France
- AMPERE
| | - Laurent Vuillon
- LAMA
- Univ. Savoie Mont Blanc
- CNRS, LAMA
- 73376 Le Bourget du Lac
- France
| | - Claire Lesieur
- Institut Rhônalpin des systèmes complexes
- IXXI-ENS-Lyon
- Lyon
- France
- AMPERE
| |
Collapse
|
14
|
Yamada KD, Kunishima N, Matsuura Y, Nakai K, Naitow H, Fukasawa Y, Tomii K. Designing better diffracting crystals of biotin carboxyl carrier protein from Pyrococcus horikoshii by a mutation based on the crystal-packing propensity of amino acids. Acta Crystallogr D Struct Biol 2017; 73:757-766. [PMID: 28876239 PMCID: PMC5586248 DOI: 10.1107/s2059798317010932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/25/2017] [Indexed: 11/13/2023] Open
Abstract
An alternative rational approach to improve protein crystals by using single-site mutation of surface residues is proposed based on the results of a statistical analysis using a compiled data set of 918 independent crystal structures, thereby reflecting not only the entropic effect but also other effects upon protein crystallization. This analysis reveals a clear difference in the crystal-packing propensity of amino acids depending on the secondary-structural class. To verify this result, a systematic crystallization experiment was performed with the biotin carboxyl carrier protein from Pyrococcus horikoshii OT3 (PhBCCP). Six single-site mutations were examined: Ala138 on the surface of a β-sheet was mutated to Ile, Tyr, Arg, Gln, Val and Lys. In agreement with prediction, it was observed that the two mutants (A138I and A138Y) harbouring the residues with the highest crystal-packing propensities for β-sheet at position 138 provided better crystallization scores relative to those of other constructs, including the wild type, and that the crystal-packing propensity for β-sheet provided the best correlation with the ratio of obtaining crystals. Two new crystal forms of these mutants were obtained that diffracted to high resolution, generating novel packing interfaces with the mutated residues (Ile/Tyr). The mutations introduced did not affect the overall structures, indicating that a β-sheet can accommodate a successful mutation if it is carefully selected so as to avoid intramolecular steric hindrance. A significant negative correlation between the ratio of obtaining amorphous precipitate and the crystal-packing propensity was also found.
Collapse
Affiliation(s)
- Kazunori D. Yamada
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Graduate School of Information Sciences, Tohoku University, 6-3-09 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Naoki Kunishima
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshinori Matsuura
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Koshiro Nakai
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hisashi Naitow
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshinori Fukasawa
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
15
|
Deller MC, Kong L, Rupp B. Protein stability: a crystallographer's perspective. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2016; 72:72-95. [PMID: 26841758 PMCID: PMC4741188 DOI: 10.1107/s2053230x15024619] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 12/21/2015] [Indexed: 12/18/2022]
Abstract
Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed.
Collapse
Affiliation(s)
- Marc C Deller
- Stanford ChEM-H, Macromolecular Structure Knowledge Center, Stanford University, Shriram Center, 443 Via Ortega, Room 097, MC5082, Stanford, CA 94305-4125, USA
| | - Leopold Kong
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Building 8, Room 1A03, 8 Center Drive, Bethesda, MD 20814, USA
| | - Bernhard Rupp
- Department of Forensic Crystallography, k.-k. Hofkristallamt, 91 Audrey Place, Vista, CA 92084, USA
| |
Collapse
|
16
|
Aftabi Y, Colagar AH, Mehrnejad F. An in silico approach to investigate the source of the controversial interpretations about the phenotypic results of the human AhR-gene G1661A polymorphism. J Theor Biol 2016; 393:1-15. [PMID: 26776670 DOI: 10.1016/j.jtbi.2016.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 12/11/2015] [Accepted: 01/01/2016] [Indexed: 12/21/2022]
Abstract
Aryl hydrocarbon receptor (AhR) acts as an enhancer binding ligand-activated intracellular receptor. Chromatin remodeling components and general transcription factors such as TATA-binding protein (TBP) are evoked on AhR-target genes by interaction with its flexible transactivation domain (TAD). AhR-G1661A single nucleotide polymorphism (SNP: rs2066853) causes an arginine to lysine substitution in the acidic sub-domain of TAD at position 554 (R554K). Although, numerous studies associate the SNP with some abnormalities such as cancer, other reliable investigations refuse the associations. Consequently, the interpretation of the phenotypic results of G1661A-transition has been controversial. In this study, an in silico analysis were performed to investigate the possible effects of the transition on AhR-mRNA, protein structure, interaction properties and modifications. The analysis revealed that the R554K substitution affects secondary structure and solvent accessibility of adjacent residues. Also, it causes to decreasing of the AhR stability; altering the hydropathy features of the local sequence and changing the pattern of the residues at the binding site of the TAD-acidic sub-domain. Generating of new sites for ubiquitination and acetylation for AhR-K554 variant respectively at positions 544 and 560 was predicted. Our findings intensify the idea that the AhR-G1661A transition may affects AhR-TAD interactions, especially with the TBP, which influence AhR-target genes expression. However, the previously reported flexibility of the modular TAD could act as an intervening factor, moderate the SNP effects and causes distinct outcomes in different individuals and tissues.
Collapse
Affiliation(s)
- Younes Aftabi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Post Code: 47416-95447, Mazandaran, Iran
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Post Code: 47416-95447, Mazandaran, Iran.
| | - Faramarz Mehrnejad
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, P.O. Box: 14395-1561, Tehran, Iran
| |
Collapse
|
17
|
Zeytuni N, Cronin S, Lefèvre CT, Arnoux P, Baran D, Shtein Z, Davidov G, Zarivach R. MamA as a Model Protein for Structure-Based Insight into the Evolutionary Origins of Magnetotactic Bacteria. PLoS One 2015; 10:e0130394. [PMID: 26114501 PMCID: PMC4482739 DOI: 10.1371/journal.pone.0130394] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/20/2015] [Indexed: 02/01/2023] Open
Abstract
MamA is a highly conserved protein found in magnetotactic bacteria (MTB), a diverse group of prokaryotes capable of navigating according to magnetic fields – an ability known as magnetotaxis. Questions surround the acquisition of this magnetic navigation ability; namely, whether it arose through horizontal or vertical gene transfer. Though its exact function is unknown, MamA surrounds the magnetosome, the magnetic organelle embedding a biomineralised nanoparticle and responsible for magnetotaxis. Several structures for MamA from a variety of species have been determined and show a high degree of structural similarity. By determining the structure of MamA from Desulfovibrio magneticus RS-1 using X-ray crystallography, we have opened up the structure-sequence landscape. As such, this allows us to perform structural- and phylogenetic-based analyses using a variety of previously determined MamA from a diverse range of MTB species across various phylogenetic groups. We found that MamA has remained remarkably constant throughout evolution with minimal change between different taxa despite sequence variations. These findings, coupled with the generation of phylogenetic trees using both amino acid sequences and 16S rRNA, indicate that magnetotaxis likely did not spread via horizontal gene transfer and instead has a significantly earlier, primordial origin.
Collapse
Affiliation(s)
- Natalie Zeytuni
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Samuel Cronin
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Christopher T. Lefèvre
- CEA/CNRS/Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire de Bioénergétique Cellulaire, Saint Paul les Durance, France
| | - Pascal Arnoux
- CEA/CNRS/Aix-Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire de Bioénergétique Cellulaire, Saint Paul les Durance, France
| | - Dror Baran
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Zvi Shtein
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Geula Davidov
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail:
| |
Collapse
|
18
|
Devedjiev YD. The role of flexibility and molecular shape in the crystallization of proteins by surface mutagenesis. Acta Crystallogr F Struct Biol Commun 2015; 71:157-62. [PMID: 25664789 PMCID: PMC4321469 DOI: 10.1107/s2053230x14027861] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/21/2014] [Indexed: 11/10/2022] Open
Abstract
Proteins are dynamic systems and interact with their environment. The analysis of crystal contacts in the most accurately determined protein structures (d < 1.5 Å) reveals that in contrast to current views, static disorder and high side-chain entropy are common in the crystal contact area. These observations challenge the validity of the theory that presumes that the occurrence of well ordered patches of side chains at the surface is an essential prerequisite for a successful crystallization event. The present paper provides evidence in support of the approach for understanding protein crystallization as a process dependent on multiple factors, each with its relative contribution, rather than a phenomenon driven by a few dominant physicochemical characteristics. The role of the molecular shape as a factor in the crystallization of proteins by surface mutagenesis is discussed.
Collapse
Affiliation(s)
- Yancho D. Devedjiev
- Department of Anesthesiology, University of Virginia Medical Center, 1215 Lee Street, PO Box 800634, Charlottesville, VA 22908-0634, USA
| |
Collapse
|
19
|
Losón OC, Meng S, Ngo H, Liu R, Kaiser JT, Chan DC. Crystal structure and functional analysis of MiD49, a receptor for the mitochondrial fission protein Drp1. Protein Sci 2015; 24:386-94. [PMID: 25581164 DOI: 10.1002/pro.2629] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 11/11/2022]
Abstract
Mitochondrial fission requires recruitment of dynamin-related protein 1 (Drp1) to the mitochondrial surface, where assembly leads to activation of its GTP-dependent scission function. MiD49 and MiD51 are two receptors on the mitochondrial outer membrane that can recruit Drp1 to facilitate mitochondrial fission. Structural studies indicated that MiD51 has a variant nucleotidyl transferase fold that binds an ADP co-factor essential for activation of Drp1 function. MiD49 shares sequence homology with MiD51 and regulates Drp1 function. However, it is unknown if MiD49 binds an analogous co-factor. Because MiD49 does not readily crystallize, we used structural predictions and biochemical screening to identify a surface entropy reduction mutant that facilitated crystallization. Using molecular replacement, we determined the atomic structure of MiD49 to 2.4 Å. Like MiD51, MiD49 contains a nucleotidyl transferase domain; however, the electron density provides no evidence for a small-molecule ligand. Structural changes in the putative nucleotide-binding pocket make MiD49 incompatible with an extended ligand like ADP, and critical nucleotide-binding residues found in MiD51 are not conserved. MiD49 contains a surface loop that physically interacts with Drp1 and is necessary for Drp1 recruitment to the mitochondrial surface. Our results suggest a structural basis for the differential regulation of MiD51- versus MiD49-mediated fission.
Collapse
Affiliation(s)
- Oliver C Losón
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125
| | | | | | | | | | | |
Collapse
|
20
|
Xu Y, Strickland EC, Fitzgerald MC. Thermodynamic Analysis of Protein Folding and Stability Using a Tryptophan Modification Protocol. Anal Chem 2014; 86:7041-8. [DOI: 10.1021/ac501278j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yingrong Xu
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Erin C. Strickland
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael C. Fitzgerald
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
21
|
Geer MA, Fitzgerald MC. Energetics-based methods for protein folding and stability measurements. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:209-228. [PMID: 24896313 DOI: 10.1146/annurev-anchem-071213-020024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Over the past 15 years, a series of energetics-based techniques have been developed for the thermodynamic analysis of protein folding and stability. These techniques include Stability of Unpurified Proteins from Rates of amide H/D Exchange (SUPREX), pulse proteolysis, Stability of Proteins from Rates of Oxidation (SPROX), slow histidine H/D exchange, lysine amidination, and quantitative cysteine reactivity (QCR). The above techniques, which are the subject of this review, all utilize chemical or enzymatic modification reactions to probe the chemical denaturant- or temperature-induced equilibrium unfolding properties of proteins and protein-ligand complexes. They employ various mass spectrometry-, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)-, and optical spectroscopy-based readouts that are particularly advantageous for high-throughput and in some cases multiplexed analyses. This has created the opportunity to use protein folding and stability measurements in new applications such as in high-throughput screening projects to identify novel protein ligands and in mode-of-action studies to identify protein targets of a particular ligand.
Collapse
Affiliation(s)
- M Ariel Geer
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346;
| | | |
Collapse
|
22
|
Tran DT, Adhikari J, Fitzgerald MC. StableIsotope Labeling with Amino Acids in Cell Culture (SILAC)-based strategy for proteome-wide thermodynamic analysis of protein-ligand binding interactions. Mol Cell Proteomics 2014; 13:1800-13. [PMID: 24741112 DOI: 10.1074/mcp.m113.034702] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Described here is a quantitative mass spectrometry-based proteomics method for the large-scale thermodynamic analysis of protein-ligand binding interactions. The methodology utilizes a chemical modification strategy termed, Stability of Proteins from Rates of Oxidation (SPROX), in combination with a Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) approach to compare the equilibrium folding/unfolding properties of proteins in the absence and presence of target ligands. The method, which is general with respect to ligand, measures the ligand-induced changes in protein stability associated with protein-ligand binding. The methodology is demonstrated in a proof-of-principle study in which the well-characterized protein-drug interaction between cyclosporine A (CsA) and cyclophilin A was successfully analyzed in the context of a yeast cell lysate. A control experiment was also performed to assess the method's false positive rate of ligand discovery, which was found to be on the order of 0.4 - 3.5%. The new method was utilized to characterize the adenosine triphosphate (ATP)-interactome in Saccharomyces cerevisiae using the nonhydrolyzable ATP analog, adenylyl imidodiphosphate (AMP-PNP), and the proteins in a yeast cell lysate. The new methodology enabled the interrogation of 526 yeast proteins for interactions with ATP using 2035 peptide probes. Ultimately, 325 peptide hits from 139 different proteins were identified. Approximately 70% of the hit proteins identified in this work were not previously annotated as ATP binding proteins. However, nearly two-thirds of the newly discovered ATP interacting proteins have known interactions with other nucleotides and co-factors (e.g. NAD and GTP), DNA, and RNA based on GO-term analyses. The current work is the first proteome-wide profile of the yeast ATP-interactome, and it is the largest proteome-wide profile of any ATP-interactome generated, to date, using an energetics-based method. The data is available via ProteomeXchange with identifiers PXD000858, DOI 10.6019/PXD000858, and PXD000860.
Collapse
Affiliation(s)
- Duc T Tran
- From the ‡Department of Biochemistry, Duke University, Medical Center, Durham, North Carolina 27710
| | - Jagat Adhikari
- From the ‡Department of Biochemistry, Duke University, Medical Center, Durham, North Carolina 27710
| | - Michael C Fitzgerald
- From the ‡Department of Biochemistry, Duke University, Medical Center, Durham, North Carolina 27710; §Department of Chemistry, Duke University, Durham, North Carolina 27708
| |
Collapse
|
23
|
MacEwan S, Chilkoti A. Controlled apoptosis by a thermally toggled nanoscale amplifier of cellular uptake. NANO LETTERS 2014; 14:2058-2064. [PMID: 24611762 PMCID: PMC3985949 DOI: 10.1021/nl5002313] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/06/2014] [Indexed: 05/29/2023]
Abstract
Internalization into cancer cells is a significant challenge in the delivery of many anticancer therapeutics. Drug carriers can address this challenge by facilitating cellular uptake of cytotoxic cargo in the tumor, while preventing cellular uptake in healthy tissues. Here we describe an extrinsically controlled drug carrier, a nanopeptifier, that amplifies cellular uptake by modulating the activity of cell-penetrating peptides with thermally toggled self-assembly of a genetically encoded polypeptide nanoparticle. When appended with a proapoptotic peptide, the nanopeptifier creates a cytotoxic switch, inducing apoptosis only in its self-assembled state. The nanopeptifier provides a new approach to tune the cellular uptake and activity of anticancer therapeutics by an extrinsic thermal trigger.
Collapse
Affiliation(s)
- Sarah
R. MacEwan
- Department
of Biomedical Engineering and Research Triangle MRSEC, Duke University, Durham, North Carolina 27708, United States
| | - Ashutosh Chilkoti
- Department
of Biomedical Engineering and Research Triangle MRSEC, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
24
|
A penalized-likelihood method to estimate the distribution of selection coefficients from phylogenetic data. Genetics 2014; 197:257-71. [PMID: 24532780 DOI: 10.1534/genetics.114.162263] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We develop a maximum penalized-likelihood (MPL) method to estimate the fitnesses of amino acids and the distribution of selection coefficients (S = 2Ns) in protein-coding genes from phylogenetic data. This improves on a previous maximum-likelihood method. Various penalty functions are used to penalize extreme estimates of the fitnesses, thus correcting overfitting by the previous method. Using a combination of computer simulation and real data analysis, we evaluate the effect of the various penalties on the estimation of the fitnesses and the distribution of S. We show the new method regularizes the estimates of the fitnesses for small, relatively uninformative data sets, but it can still recover the large proportion of deleterious mutations when present in simulated data. Computer simulations indicate that as the number of taxa in the phylogeny or the level of sequence divergence increases, the distribution of S can be more accurately estimated. Furthermore, the strength of the penalty can be varied to study how informative a particular data set is about the distribution of S. We analyze three protein-coding genes (the chloroplast rubisco protein, mammal mitochondrial proteins, and an influenza virus polymerase) and show the new method recovers a large proportion of deleterious mutations in these data, even under strong penalties, confirming the distribution of S is bimodal in these real data. We recommend the use of the new MPL approach for the estimation of the distribution of S in species phylogenies of protein-coding genes.
Collapse
|
25
|
Ngounou Wetie AG, Sokolowska I, Woods AG, Roy U, Deinhardt K, Darie CC. Protein-protein interactions: switch from classical methods to proteomics and bioinformatics-based approaches. Cell Mol Life Sci 2014; 71:205-28. [PMID: 23579629 PMCID: PMC11113707 DOI: 10.1007/s00018-013-1333-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 11/28/2022]
Abstract
Following the sequencing of the human genome and many other organisms, research on protein-coding genes and their functions (functional genomics) has intensified. Subsequently, with the observation that proteins are indeed the molecular effectors of most cellular processes, the discipline of proteomics was born. Clearly, proteins do not function as single entities but rather as a dynamic network of team players that have to communicate. Though genetic (yeast two-hybrid Y2H) and biochemical methods (co-immunoprecipitation Co-IP, affinity purification AP) were the methods of choice at the beginning of the study of protein-protein interactions (PPI), in more recent years there has been a shift towards proteomics-based methods and bioinformatics-based approaches. In this review, we first describe in depth PPIs and we make a strong case as to why unraveling the interactome is the next challenge in the field of proteomics. Furthermore, classical methods of investigation of PPIs and structure-based bioinformatics approaches are presented. The greatest emphasis is placed on proteomic methods, especially native techniques that were recently developed and that have been shown to be reliable. Finally, we point out the limitations of these methods and the need to set up a standard for the validation of PPI experiments.
Collapse
Affiliation(s)
- Armand G. Ngounou Wetie
- Department of Chemistry and Biomolecular Science, Biochemistry and Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Izabela Sokolowska
- Department of Chemistry and Biomolecular Science, Biochemistry and Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Alisa G. Woods
- Department of Chemistry and Biomolecular Science, Biochemistry and Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Urmi Roy
- Department of Chemistry and Biomolecular Science, Biochemistry and Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Katrin Deinhardt
- Centre for Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton, SO17 1BJ UK
- Institute for Life Sciences, University of Southampton, Life Sciences Building 85, Southampton, SO17 1BJ UK
| | - Costel C. Darie
- Department of Chemistry and Biomolecular Science, Biochemistry and Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| |
Collapse
|
26
|
Li XD, Li XF, Ye HQ, Deng CL, Ye Q, Shan C, Shang BD, Xu LL, Li SH, Cao SB, Yuan ZM, Shi PY, Qin CF, Zhang B. Recovery of a chemically synthesized Japanese encephalitis virus reveals two critical adaptive mutations in NS2B and NS4A. J Gen Virol 2013; 95:806-815. [PMID: 24362961 DOI: 10.1099/vir.0.061838-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A full-length genome infectious clone is a powerful tool for functional assays in virology. In this study, using a chemical synthesized complete genome of Japanese encephalitis virus (JEV) strain SA14 (GenBank accession no. U14163), we constructed a full-length genomic cDNA clone of JEV. The recovered virus from the cDNA clone replicated poorly in baby hamster kidney (BHK-21) cells and in suckling mice brain. Following serial passage in BHK-21 cells, adaptive mutations within the NS2B and NS4A proteins were recovered in the passaged viruses leading to viruses with a large-plaque phenotype. Mutagenesis analysis, using a genome-length RNA and a replicon of JEV, demonstrated that the adaptive mutations restored replication to different degrees, and the restoration efficiencies were in the order: NS2B-T102M<NS4A-R79K<NS2B-T102M+NS4A-R79K. An in vivo virulence assay in mice showed that the recombinant virus containing double mutations showed similar virulence to the WT SA14 (GenBank accession no. M55506). This study reports the first chemically synthesized JEV. A reverse genetics assay demonstrated that substitutions of NS2B-T102M and NS4A-R79K altered JEV replication.
Collapse
Affiliation(s)
- Xiao-Dan Li
- University of Chinese Academy of Sciences, Beijing 100049, PR China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Han-Qing Ye
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Cheng-Lin Deng
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Qing Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Chao Shan
- University of Chinese Academy of Sciences, Beijing 100049, PR China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Bao-Di Shang
- University of Chinese Academy of Sciences, Beijing 100049, PR China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Lin-Lin Xu
- University of Chinese Academy of Sciences, Beijing 100049, PR China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Shi-Hua Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Sheng-Bo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhi-Ming Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Pei-Yong Shi
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Bo Zhang
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| |
Collapse
|
27
|
Mathé C, Devineau S, Aude JC, Lagniel G, Chédin S, Legros V, Mathon MH, Renault JP, Pin S, Boulard Y, Labarre J. Structural determinants for protein adsorption/non-adsorption to silica surface. PLoS One 2013; 8:e81346. [PMID: 24282583 PMCID: PMC3839912 DOI: 10.1371/journal.pone.0081346] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/11/2013] [Indexed: 11/18/2022] Open
Abstract
The understanding of the mechanisms involved in the interaction of proteins with inorganic surfaces is of major interest in both fundamental research and applications such as nanotechnology. However, despite intense research, the mechanisms and the structural determinants of protein/surface interactions are still unclear. We developed a strategy consisting in identifying, in a mixture of hundreds of soluble proteins, those proteins that are adsorbed on the surface and those that are not. If the two protein subsets are large enough, their statistical comparative analysis must reveal the physicochemical determinants relevant for adsorption versus non-adsorption. This methodology was tested with silica nanoparticles. We found that the adsorbed proteins contain a higher number of charged amino acids, particularly arginine, which is consistent with involvement of this basic amino acid in electrostatic interactions with silica. The analysis also identified a marked bias toward low aromatic amino acid content (phenylalanine, tryptophan, tyrosine and histidine) in adsorbed proteins. Structural analyses and molecular dynamics simulations of proteins from the two groups indicate that non-adsorbed proteins have twice as many π-π interactions and higher structural rigidity. The data are consistent with the notion that adsorption is correlated with the flexibility of the protein and with its ability to spread on the surface. Our findings led us to propose a refined model of protein adsorption.
Collapse
Affiliation(s)
- Christelle Mathé
- Laboratoire de Radiolyse, SIS2M, IRAMIS and UMR3299 CEA-CNRS, Saclay, France
- Service de Biologie Intégrative et Génétique Moléculaire, iBiTec-S, FRE3377 CEA-CNRS-Université Paris-Sud, Saclay, France
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, UMR 8587 CNRS-Université Evry Val d'Essonne, Evry, France
| | - Stéphanie Devineau
- Laboratoire de Radiolyse, SIS2M, IRAMIS and UMR3299 CEA-CNRS, Saclay, France
| | - Jean-Christophe Aude
- Service de Biologie Intégrative et Génétique Moléculaire, iBiTec-S, FRE3377 CEA-CNRS-Université Paris-Sud, Saclay, France
| | - Gilles Lagniel
- Service de Biologie Intégrative et Génétique Moléculaire, iBiTec-S, FRE3377 CEA-CNRS-Université Paris-Sud, Saclay, France
| | - Stéphane Chédin
- Service de Biologie Intégrative et Génétique Moléculaire, iBiTec-S, FRE3377 CEA-CNRS-Université Paris-Sud, Saclay, France
| | - Véronique Legros
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, UMR 8587 CNRS-Université Evry Val d'Essonne, Evry, France
| | | | | | - Serge Pin
- Laboratoire de Radiolyse, SIS2M, IRAMIS and UMR3299 CEA-CNRS, Saclay, France
| | - Yves Boulard
- Service de Biologie Intégrative et Génétique Moléculaire, iBiTec-S, FRE3377 CEA-CNRS-Université Paris-Sud, Saclay, France
- Laboratoire Structure et Dynamique par Résonance Magnétique, SIS2M, IRAMIS and UMR3299 CEA-CNRS, Saclay, France
| | - Jean Labarre
- Service de Biologie Intégrative et Génétique Moléculaire, iBiTec-S, FRE3377 CEA-CNRS-Université Paris-Sud, Saclay, France
- * E-mail:
| |
Collapse
|
28
|
Anil B, Riedinger C, Endicott JA, Noble MEM. The structure of an MDM2–Nutlin-3a complex solved by the use of a validated MDM2 surface-entropy reduction mutant. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1358-66. [DOI: 10.1107/s0907444913004459] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/14/2013] [Indexed: 11/10/2022]
|
29
|
Why do more divergent sequences produce smaller nonsynonymous/synonymous rate ratios in pairwise sequence comparisons? Genetics 2013; 195:195-204. [PMID: 23792953 DOI: 10.1534/genetics.113.152025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several studies have reported a negative correlation between estimates of the nonsynonymous to synonymous rate ratio (ω = dN/dS) and the sequence distance d in pairwise comparisons of the same gene from different species. That is, more divergent sequences produce smaller estimates of ω. Explanations for this negative correlation have included segregating nonsynonymous polymorphisms in closely related species and nonlinear dynamics of the ratio of two random variables. Here we study the statistical properties of the maximum-likelihood estimates of ω and d in pairwise alignments and explore the possibility that the negative correlation can be entirely explained by those properties. We show that the ω estimate is positively biased for small d and that the bias decreases with the increase of d. We also show that the estimates of ω and d are negatively correlated when ω < 1 and positively correlated when ω > 1. However, the bias in estimates of ω and the correlation between estimates of ω and d are not enough to explain the much stronger correlation observed in real data sets. We then explore the behavior of the estimates when the model is misspecified and suggest that the observed correlation may be due to protein-level selection that causes very different amino acids to be favored in different domains of the protein. Widely used models fail to account for such among-site heterogeneity and cause underestimation of the nonsynonymous rate and ω, with the bias being much stronger for distant sequences. We point out that tests of positive selection based on the ω ratio are invariant to the parameterization of the model and thus unaffected by bias in the ω estimates or the correlation between estimates of ω and d.
Collapse
|
30
|
Abstract
A newcomer to the -omics era, proteomics, is a broad instrument-intensive research area that has advanced rapidly since its inception less than 20 years ago. Although the 'wet-bench' aspects of proteomics have undergone a renaissance with the improvement in protein and peptide separation techniques, including various improvements in two-dimensional gel electrophoresis and gel-free or off-gel protein focusing, it has been the seminal advances in MS that have led to the ascension of this field. Recent improvements in sensitivity, mass accuracy and fragmentation have led to achievements previously only dreamed of, including whole-proteome identification, and quantification and extensive mapping of specific PTMs (post-translational modifications). With such capabilities at present, one might conclude that proteomics has already reached its zenith; however, 'capability' indicates that the envisioned goals have not yet been achieved. In the present review we focus on what we perceive as the areas requiring more attention to achieve the improvements in workflow and instrumentation that will bridge the gap between capability and achievement for at least most proteomes and PTMs. Additionally, it is essential that we extend our ability to understand protein structures, interactions and localizations. Towards these ends, we briefly focus on selected methods and research areas where we anticipate the next wave of proteomic advances.
Collapse
|
31
|
Abstract
Surface charges of proteins have in several cases been found to function as "structural gatekeepers," which avoid unwanted interactions by negative design, for example, in the control of protein aggregation and binding. The question is then if side-chain charges, due to their desolvation penalties, play a corresponding role in protein folding by avoiding competing, misfolded traps? To find out, we removed all 32 side-chain charges from the 101-residue protein S6 from Thermus thermophilus. The results show that the charge-depleted S6 variant not only retains its native structure and cooperative folding transition, but folds also faster than the wild-type protein. In addition, charge removal unleashes pronounced aggregation on longer timescales. S6 provides thus an example where the bias toward native contacts of a naturally evolved protein sequence is independent of charges, and point at a fundamental difference in the codes for folding and intermolecular interaction: specificity in folding is governed primarily by hydrophobic packing and hydrogen bonding, whereas solubility and binding relies critically on the interplay of side-chain charges.
Collapse
|
32
|
Jackson SA, Hinds MG, Eaton-Rye JJ. Solution structure of CyanoP from Synechocystis sp. PCC 6803: new insights on the structural basis for functional specialization amongst PsbP family proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1331-8. [PMID: 22414666 DOI: 10.1016/j.bbabio.2012.02.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 02/19/2012] [Accepted: 02/27/2012] [Indexed: 11/26/2022]
Abstract
The structure of the CyanoP subunit of photosystem II from the cyanobacterium Synechocystis sp. PCC 6803 has been determined in solution by Nuclear Magnetic Resonance spectroscopy. Combined with homology modeling of PsbP-like structures we have identified distinct structural differences between PsbP homologues which may account for the functional differences apparent between members of this protein family. A surface cleft containing a large number of conserved residues found only in CyanoP and PsbP-like homologues has been identified and our findings suggest that one of the potential cation binding sites found in CyanoP may be functionally significant. Evidence for the evolution and divergence of the PsbP super family is presented from a structural perspective including identification of residues which distinguish the PsbP family from unrelated proteins with a similar domain fold. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Simon A Jackson
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
33
|
Abstract
Obtaining diffraction quality crystals is frequently an iterative process which traditionally has involved screening large numbers of crystallization conditions. Due to advances in high-throughput gene engineering, recombinant expression, and purification, the protein of interest has now become one of the many variables routinely investigated during crystallization trials. As such, construct design is a critical step in the path toward successful crystallization. In this chapter will we address construct design strategies frequently employed to improve the solution and crystallization behavior of proteins. Topics covered include choosing a recombinant expression system and reducing disorder through truncations and surface mutagenesis. Also covered are strategies to reduce heterogeneity from posttranslational modifications, impurities, and aggregation.
Collapse
|
34
|
Ravindranathan K, Tirado-Rives J, Jorgensen WL, Guimarães CRW. Improving MM-GB/SA Scoring through the Application of the Variable Dielectric Model. J Chem Theory Comput 2011; 7:3859-3865. [PMID: 22606071 DOI: 10.1021/ct200565u] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A variable dielectric model based on residue types for better description of protein-ligand electrostatics in MM-GBSA scoring is reported. The variable dielectric approach provides better correlation with binding data and reduces the score dynamic range, typically observed in the standard MM-GB/SA method. The latter supports the view that exaggerated enthalpic separation between weak and potent compounds due to the lack of shielding effects in the model is greatly responsible for the wide scoring spread.
Collapse
|
35
|
Harris F, Dennison SR, Singh J, Phoenix DA. On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev 2011; 33:190-234. [PMID: 21922503 DOI: 10.1002/med.20252] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, we review potential determinants of the anticancer efficacy of innate immune peptides (ACPs) for cancer cells. These determinants include membrane-based factors, such as receptors, phosphatidylserine, sialic acid residues, and sulfated glycans, and peptide-based factors, such as residue composition, sequence length, net charge, hydrophobic arc size, hydrophobicity, and amphiphilicity. Each of these factors may contribute to the anticancer action of ACPs, but no single factor(s) makes an overriding contribution to their overall selectivity and toxicity. Differences between the anticancer actions of ACPs seem to relate to different levels of interplay between these peptide and membrane-based factors.
Collapse
Affiliation(s)
- Frederick Harris
- School of Forensic and Investigative Sciences, University of Central Lancashire, Preston, Lancashire, United Kingdom
| | | | | | | |
Collapse
|
36
|
Nomura T, Kamada R, Ito I, Sakamoto K, Chuman Y, Ishimori K, Shimohigashi Y, Sakaguchi K. Probing phenylalanine environments in oligomeric structures with pentafluorophenylalanine and cyclohexylalanine. Biopolymers 2011; 95:410-9. [PMID: 21280026 DOI: 10.1002/bip.21594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Stabilization of protein structures and protein-protein interactions are critical in the engineering of industrially useful enzymes and in the design of pharmaceutically valuable ligands. Hydrophobic interactions involving phenylalanine residues play crucial roles in protein stability and protein-protein/peptide interactions. To establish an effective method to explore the hydrophobic environments of phenylalanine residues, we present a strategy that uses pentafluorophenylalanine (F5Phe) and cyclohexylalanine (Cha). In this study, substitution of F5Phe or Cha for three Phe residues at positions 328, 338, and 341 in the tetramerization domain of the tumor suppressor protein p53 was performed. These residues are located at the interfaces of p53-p53 interactions and are important in the stabilization of the tetrameric structure. The stability of the p53 tetrameric structure did not change significantly when F5Phe-containing peptides at positions Phe328 or Phe338 were used. In contrast, the substitution of Cha for Phe341 in the hydrophobic core enhanced the stability of the tetrameric structure with a T(m) value of 100 degrees C. Phe328 and Phe338 interact with each other through pi-interactions, whereas Phe341 is buried in the surrounding alkyl side-chains of the hydrophobic core of the p53 tetramerization domain. Furthermore, high pressure-assisted denaturation analysis indicated improvement in the occupancy of the hydrophobic core. Considerable stabilization of the p53 tetramer was achieved by filling the identified cavity in the hydrophobic core of the p53 tetramer. The results indicate the status of the Phe residues, indicating that the "pair substitution" of Cha and F5Phe is highly suitable for probing the environments of Phe residues.
Collapse
Affiliation(s)
- Takao Nomura
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Xiong Y, Liu J, Wei DQ. An accurate feature-based method for identifying DNA-binding residues on protein surfaces. Proteins 2011; 79:509-17. [PMID: 21069866 DOI: 10.1002/prot.22898] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Proteins that interact with DNA play vital roles in all mechanisms of gene expression and regulation. In order to understand these activities, it is crucial to analyze and identify DNA-binding residues on DNA-binding protein surfaces. Here, we proposed two novel features B-factor and packing density in combination with several conventional features to characterize the DNA-binding residues in a well-constructed representative dataset of 119 protein-DNA complexes from the Protein Data Bank (PDB). Based on the selected features, a prediction model for DNA-binding residues was constructed using support vector machine (SVM). The predictor was evaluated using a 5-fold cross validation on above dataset of 123 DNA-binding proteins. Moreover, two independent datasets of 83 DNA-bound protein structures and their corresponding DNA-free forms were compiled. The B-factor and packing density features were statistically analyzed on these 83 pairs of holo-apo proteins structures. Finally, we developed the SVM model to accurately predict DNA-binding residues on protein surface, given the DNA-free structure of a protein. Results showed here indicate that our method represents a significant improvement of previously existing approaches such as DISPLAR. The observation suggests that our method will be useful in studying protein-DNA interactions to guide consequent works such as site-directed mutagenesis and protein-DNA docking.
Collapse
Affiliation(s)
- Yi Xiong
- School of Computer, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | |
Collapse
|
38
|
Forse GJ, Ram N, Banatao DR, Cascio D, Sawaya MR, Klock HE, Lesley SA, Yeates TO. Synthetic symmetrization in the crystallization and structure determination of CelA from Thermotoga maritima. Protein Sci 2011; 20:168-78. [PMID: 21082721 DOI: 10.1002/pro.550] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein crystallization continues to be a major bottleneck in X-ray crystallography. Previous studies suggest that symmetric proteins, such as homodimers, might crystallize more readily than monomeric proteins or asymmetric complexes. Proteins that are naturally monomeric can be made homodimeric artificially. Our approach is to create homodimeric proteins by introducing single cysteines into the protein of interest, which are then oxidized to form a disulfide bond between the two monomers. By introducing the single cysteine at different sequence positions, one can produce a variety of synthetically dimerized versions of a protein, with each construct expected to exhibit its own crystallization behavior. In earlier work, we demonstrated the potential utility of the approach using T4 lysozyme as a model system. Here we report the successful application of the method to Thermotoga maritima CelA, a thermophilic endoglucanase enzyme with low sequence identity to proteins with structures previously reported in the Protein Data Bank. This protein had resisted crystallization in its natural monomeric form, despite a broad survey of crystallization conditions. The synthetic dimerization of the CelA mutant D188C yielded well-diffracting crystals with molecules in a packing arrangement that would not have occurred with native, monomeric CelA. A 2.4 Å crystal structure was determined by single anomalous dispersion using a seleno-methionine derivatized protein. The results support the notion that synthetic symmetrization can be a useful approach for enlarging the search space for crystallizing monomeric proteins or asymmetric complexes.
Collapse
Affiliation(s)
- G Jason Forse
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Xu Y, Falk IN, Hallen MA, Fitzgerald MC. Mass Spectrometry- and Lysine Amidination-Based Protocol for Thermodynamic Analysis of Protein Folding and Ligand Binding Interactions. Anal Chem 2011; 83:3555-62. [DOI: 10.1021/ac200211t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ying Xu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Irene N. Falk
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Mark A. Hallen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael C. Fitzgerald
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
40
|
Liu Y, Gao ZQ, Liu CP, Xu JH, Li LF, Ji CN, Su XD, Dong YH. Structure of the putative dihydroorotate dehydrogenase from Streptococcus mutans. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:182-7. [PMID: 21301083 PMCID: PMC3034605 DOI: 10.1107/s1744309110048414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 11/20/2010] [Indexed: 11/10/2022]
Abstract
Streptococcus mutans is one of the pathogenic species involved in dental caries, especially in the initiation and development stages. Here, the crystal structure of SMU.595, a putative dihydroorotate dehydrogenase (DHOD) from S. mutans, is reported at 2.4 Å resolution. DHOD is a flavin mononucleotide-containing enzyme which catalyzes the oxidation of L-dihydroorotate to orotate, which is the fourth step and the only redox reaction in the de novo biosynthesis of pyrimidine nucleotides. The reductive lysine-methylation procedure was applied in order to improve the diffraction qualities of the crystals. Analysis of the S. mutans DHOD crystal structure shows that this enzyme is a class 1A DHOD and also suggests potential sites that could be exploited for the design of highly specific inhibitors using the structure-based chemotherapeutic design technique.
Collapse
Affiliation(s)
- Ying Liu
- Department of Genetics, School of Life Science, Fudan University, Shanghai 200433, People’s Republic of China
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zeng-Qiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Chao-Pei Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jian-Hua Xu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Lan-Fen Li
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Science, Peking University, Beijing 100871, People’s Republic of China
| | - Chao-Neng Ji
- Department of Genetics, School of Life Science, Fudan University, Shanghai 200433, People’s Republic of China
| | - Xiao-Dong Su
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Science, Peking University, Beijing 100871, People’s Republic of China
| | - Yu-Hui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
41
|
Molecular modeling of mechanosensory ion channel structural and functional features. PLoS One 2010; 5:e12814. [PMID: 20877470 PMCID: PMC2943245 DOI: 10.1371/journal.pone.0012814] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 08/20/2010] [Indexed: 01/31/2023] Open
Abstract
The DEG/ENaC (Degenerin/Epithelial Sodium Channel) protein family comprises related ion channel subunits from all metazoans, including humans. Members of this protein family play roles in several important biological processes such as transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood. Given the considerable experimental limitations associated with the crystallization of integral membrane proteins, knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1). MEC-4 and UNC-8 are two DEG/ENaC family members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4 model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further investigate the multimeric organization of the DEG/ENaC ion channel complex.
Collapse
|
42
|
Dibble CF, Horst JA, Malone MH, Park K, Temple B, Cheeseman H, Barbaro JR, Johnson GL, Bencharit S. Defining the functional domain of programmed cell death 10 through its interactions with phosphatidylinositol-3,4,5-trisphosphate. PLoS One 2010; 5:e11740. [PMID: 20668527 PMCID: PMC2909203 DOI: 10.1371/journal.pone.0011740] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/01/2010] [Indexed: 11/25/2022] Open
Abstract
Cerebral cavernous malformations (CCM) are vascular abnormalities of the central nervous system predisposing blood vessels to leakage, leading to hemorrhagic stroke. Three genes, Krit1 (CCM1), OSM (CCM2), and PDCD10 (CCM3) are involved in CCM development. PDCD10 binds specifically to PtdIns(3,4,5)P3 and OSM. Using threading analysis and multi-template modeling, we constructed a three-dimensional model of PDCD10. PDCD10 appears to be a six-helical-bundle protein formed by two heptad-repeat-hairpin structures (α1–3 and α4–6) sharing the closest 3D homology with the bacterial phosphate transporter, PhoU. We identified a stretch of five lysines forming an amphipathic helix, a potential PtdIns(3,4,5)P3 binding site, in the α5 helix. We generated a recombinant wild-type (WT) and three PDCD10 mutants that have two (Δ2KA), three (Δ3KA), and five (Δ5KA) K to A mutations. Δ2KA and Δ3KA mutants hypothetically lack binding residues to PtdIns(3,4,5)P3 at the beginning and the end of predicted helix, while Δ5KA completely lacks all predicted binding residues. The WT, Δ2KA, and Δ3KA mutants maintain their binding to PtdIns(3,4,5)P3. Only the Δ5KA abolishes binding to PtdIns(3,4,5)P3. Both Δ5KA and WT show similar secondary and tertiary structures; however, Δ5KA does not bind to OSM. When WT and Δ5KA are co-expressed with membrane-bound constitutively-active PI3 kinase (p110-CAAX), the majority of the WT is co-localized with p110-CAAX at the plasma membrane where PtdIns(3,4,5)P3 is presumably abundant. In contrast, the Δ5KA remains in the cytoplasm and is not present in the plasma membrane. Combining computational modeling and biological data, we propose that the CCM protein complex functions in the PI3K signaling pathway through the interaction between PDCD10 and PtdIns(3,4,5)P3.
Collapse
Affiliation(s)
- Christopher F. Dibble
- Department of Pharmacology, School of Medicine, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeremy A. Horst
- Department of Microbiology, School of Medicine, and Department of Oral Biology, School of Dentistry, University of Washington, Seattle, Washington, United States of America
| | - Michael H. Malone
- Department of Pharmacology, School of Medicine, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kun Park
- Department of Prosthodontics and the Dental Research Center, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Brenda Temple
- Department of Pharmacology, School of Medicine, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Holly Cheeseman
- Department of Prosthodontics and the Dental Research Center, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Justin R. Barbaro
- Department of Prosthodontics and the Dental Research Center, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Gary L. Johnson
- Department of Pharmacology, School of Medicine, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sompop Bencharit
- Department of Pharmacology, School of Medicine, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Prosthodontics and the Dental Research Center, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
43
|
Electropositive charge in alpha-defensin bactericidal activity: functional effects of Lys-for-Arg substitutions vary with the peptide primary structure. Infect Immun 2009; 77:5035-43. [PMID: 19737896 DOI: 10.1128/iai.00695-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cationic amino acids contribute to alpha-defensin bactericidal activity. Curiously, although Arg and Lys have equivalent electropositive charges at neutral pH, alpha-defensins contain an average of nine Arg residues per Lys residue. To investigate the role of high alpha-defensin Arg content, all Arg residues in mouse Paneth cell alpha-defensin cryptdin 4 (Crp4) and rhesus myeloid alpha-defensin 4 (RMAD-4) were replaced with Lys to prepare (R/K)-Crp4 and (R/K)-RMAD-4, respectively. Lys-for-Arg replacements in Crp4 attenuated bactericidal activity and slowed the kinetics of Escherichia coli ML35 cell permeabilization, and (R/K)-Crp4 required longer exposure times to reduce E. coli cell survival. In marked contrast, Lys substitutions in RMAD-4 improved microbicidal activity against certain bacteria and permeabilized E. coli more effectively. Therefore, Arg-->Lys substitutions attenuated activity in Crp4 but not in RMAD-4, and the functional consequences of Arg-->Lys replacements in alpha-defensins are dependent on the peptide primary structure. In addition, the bactericidal effects of (R/K)-Crp4 and (R/K)-RMAD-4 were more sensitive to inhibition by NaCl than those of the native peptides, suggesting that the high Arg content of alpha-defensins may be under selection to confer superior microbicidal function under physiologic conditions.
Collapse
|
44
|
Mingels AM, van Dongen JL, Merkx M. Mapping preferred sites for fluorescent labeling by combining fluorescence and MS analysis of tryptic CNA35 protein digests. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 863:293-7. [DOI: 10.1016/j.jchromb.2007.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 12/11/2007] [Accepted: 12/24/2007] [Indexed: 11/17/2022]
|
45
|
Goldschmidt L, Cooper DR, Derewenda ZS, Eisenberg D. Toward rational protein crystallization: A Web server for the design of crystallizable protein variants. Protein Sci 2007; 16:1569-76. [PMID: 17656576 PMCID: PMC2203352 DOI: 10.1110/ps.072914007] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Growing well-diffracting crystals constitutes a serious bottleneck in structural biology. A recently proposed crystallization methodology for "stubborn crystallizers" is to engineer surface sequence variants designed to form intermolecular contacts that could support a crystal lattice. This approach relies on the concept of surface entropy reduction (SER), i.e., the replacement of clusters of flexible, solvent-exposed residues with residues with lower conformational entropy. This strategy minimizes the loss of conformational entropy upon crystallization and renders crystallization thermodynamically favorable. The method has been successfully used to crystallize more than 15 novel proteins, all stubborn crystallizers. But the choice of suitable sites for mutagenesis is not trivial. Herein, we announce a Web server, the surface entropy reduction prediction server (SERp server), designed to identify mutations that may facilitate crystallization. Suggested mutations are predicted based on an algorithm incorporating a conformational entropy profile, a secondary structure prediction, and sequence conservation. Minor considerations include the nature of flanking residues and gaps between mutation candidates. While designed to be used with default values, the server has many user-controlled parameters allowing for considerable flexibility. Within, we discuss (1) the methodology of the server, (2) how to interpret the results, and (3) factors that must be considered when selecting mutations. We also attempt to benchmark the server by comparing the server's predictions with successful SER structures. In most cases, the structure yielding mutations were easily identified by the SERp server. The server can be accessed at http://www.doe-mbi.ucla.edu/Services/SER.
Collapse
Affiliation(s)
- Lukasz Goldschmidt
- Howard Hughes Medical Institute, University of California, Los Angeles-DOE Institute of Genomics and Proteomics, Los Angeles, California 90095-1570, USA
| | | | | | | |
Collapse
|
46
|
Loening AM, Fenn TD, Gambhir SS. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J Mol Biol 2007; 374:1017-28. [PMID: 17980388 DOI: 10.1016/j.jmb.2007.09.078] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 09/08/2007] [Accepted: 09/26/2007] [Indexed: 11/15/2022]
Abstract
Due to its ability to emit light, the luciferase from Renilla reniformis (RLuc) is widely employed in molecular biology as a reporter gene in cell culture experiments and small animal imaging. To accomplish this bioluminescence, the 37-kDa enzyme catalyzes the degradation of its substrate coelenterazine in the presence of molecular oxygen, resulting in the product coelenteramide, carbon dioxide, and the desired photon of light. We successfully crystallized a stabilized variant of this important protein (RLuc8) and herein present the first structures for any coelenterazine-using luciferase. These structures are based on high-resolution data measured to 1.4 A and demonstrate a classic alpha/beta-hydrolase fold. We also present data of a coelenteramide-bound luciferase and reason that this structure represents a secondary conformational form following shift of the product out of the primary active site. During the course of this work, the structure of the luciferase's accessory green fluorescent protein (RrGFP) was also determined and shown to be highly similar to that of Aequorea victoria GFP.
Collapse
Affiliation(s)
- Andreas Markus Loening
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, The James H. Clark Center, Stanford University School of Medicine, 318 Campus Drive, Clark E150, Stanford, CA 94305-5427, USA
| | | | | |
Collapse
|
47
|
(NZ)CH...O contacts assist crystallization of a ParB-like nuclease. BMC STRUCTURAL BIOLOGY 2007; 7:46. [PMID: 17617922 PMCID: PMC1940005 DOI: 10.1186/1472-6807-7-46] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Accepted: 07/07/2007] [Indexed: 11/13/2022]
Abstract
Background The major bottleneck for determination of 3 D structures of proteins using X-rays is the production of diffraction quality crystals. Often proteins are subjected to chemical modification to improve the chances of crystallization Results Here, we report the successful crystallization of a nuclease employing a reductive methylation protocol. The key to crystallization was the successful introduction of 44 new cohesive (NZ) CH...O contacts (3.2 – 3.7 Å) by the addition of 2 methyl groups to the side chain amine nitrogen (NZ) of 9 lysine residues of the nuclease. The new contacts dramatically altered the crystallization properties of the protein, resulting in crystals that diffracted to 1.2 Å resolution. Analytical ultracentrifugation analysis and thermodynamics results revealed a more compact protein structure with better solvent exclusion of buried Trp residues in the folded state of the methylated protein, assisting crystallization. Conclusion In this study, introduction of novel cohesive (NZ)CH...O contacts by reductive methylation resulted in the crystallization of a protein that had previously resisted crystallization in spite of extensive purification and crystallization space screening. Introduction of (NZ)CH...O contacts could provide a solution to crystallization problems for a broad range of protein targets.
Collapse
|
48
|
Zou G, de Leeuw E, Li C, Pazgier M, Li C, Zeng P, Lu WY, Lubkowski J, Lu W. Toward Understanding the Cationicity of Defensins. J Biol Chem 2007; 282:19653-65. [PMID: 17452329 DOI: 10.1074/jbc.m611003200] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human defensins are a family of small antimicrobial proteins found predominantly in leukocytes and epithelial cells that play important roles in the innate and adaptive immune defense against microbial infection. The most distinct molecular feature of defensins is cationicity, manifested by abundant Arg and/or Lys residues in their sequences. Sequence analysis indicates that Arg is strongly selected over Lys in alpha-defensins but not in beta-defensins. To understand this Arg/Lys disparity in defensins, we chemically synthesized human alpha-defensin 1 (HNP1) and several HNP1 analogs where three Arg residues were replaced by each of the following six alpha-amino acids: Lys, ornithine (Orn), diaminobutyric acid (Dab), diaminopropionic acid (Dap), N,N-dimethyl-Lys ((diMe)Lys), and homo-Arg ((homo)Arg). In addition, we prepared human beta-defensin 1 (hBD1) and (Lys-->Arg)hBD1 in which all four Lys residues were substituted for Arg. Bactericidal activity assays revealed the following. 1) Arg-containing HNP1 and (Lys-->Arg)hBD1 are functionally better than Lys-HNP1 and hBD1, respectively; the difference between Arg and Lys is more evident in the alpha-defensin than in the beta-defensin and is more evident at low salt concentrations than at high salt concentrations. 2) For HNP1, the Arg/Lys disparity is much more pronounced with Staphylococcus aureus than with Escherichia coli, and the Arg-rich HNP1 kills bacteria faster than its Lys-rich analog. 3) Arg and Lys appear to have optimal chain lengths for bacterial killing as shortening Lys or lengthening Arg in HNP1 invariably becomes functionally deleterious. Our findings provide insights into the Arg/Lys disparity in defensins, and shed light on the cationicity of defensins with respect to their antimicrobial activity and specificity.
Collapse
Affiliation(s)
- Guozhang Zou
- Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chakrabarti P, Bhattacharyya R. Geometry of nonbonded interactions involving planar groups in proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 95:83-137. [PMID: 17629549 DOI: 10.1016/j.pbiomolbio.2007.03.016] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 03/18/2007] [Indexed: 11/26/2022]
Abstract
Although hydrophobic interaction is the main contributing factor to the stability of the protein fold, the specificity of the folding process depends on many directional interactions. An analysis has been carried out on the geometry of interaction between planar moieties of ten side chains (Phe, Tyr, Trp, His, Arg, Pro, Asp, Glu, Asn and Gln), the aromatic residues and the sulfide planes (of Met and cystine), and the aromatic residues and the peptide planes within the protein tertiary structures available in the Protein Data Bank. The occurrence of hydrogen bonds and other nonconventional interactions such as C-H...pi, C-H...O, electrophile-nucleophile interactions involving the planar moieties has been elucidated. The specific nature of the interactions constraints many of the residue pairs to occur with a fixed sequence difference, maintaining a sequential order, when located in secondary structural elements, such as alpha-helices and beta-turns. The importance of many of these interactions (for example, aromatic residues interacting with Pro or cystine sulfur atom) is revealed by the higher degree of conservation observed for them in protein structures and binding regions. The planar residues are well represented in the active sites, and the geometry of their interactions does not deviate from the general distribution. The geometrical relationship between interacting residues provides valuable insights into the process of protein folding and would be useful for the design of protein molecules and modulation of their binding properties.
Collapse
Affiliation(s)
- Pinak Chakrabarti
- Department of Biochemistry and Bioinformatics Centre, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India.
| | | |
Collapse
|
50
|
Abstract
This chapter focuses on protein engineering strategies that aim to increase the chances of obtaining crystals suitable for X-ray diffraction. The chapter is divided into three main parts: one dealing with protein engineering through a bioinformatics approach, the second focusing on DNA modifications via random mutagenesis, and the third describing a nonexhaustive number of in vitro modifications based on site-directed mutagenesis.
Collapse
Affiliation(s)
- Sonia Longhi
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Universités Aix-Marseille I et II, Marseille, France
| | | | | |
Collapse
|