1
|
Li J, Fu S, Tian Y, Zhang X, Meng Y, Zhao X, Liu S, Zhang Y, Sun J. A myogenic regulatory factor is required for myogenesis during limb regeneration in the Chinese mitten crab. Int J Biol Macromol 2024; 279:135024. [PMID: 39208909 DOI: 10.1016/j.ijbiomac.2024.135024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Myogenic regulatory factors (MRFs) are a group of transcription factors that regulate the activity of skeletal muscle cells during embryonic development and postnatal myogenesis in various vertebrate species. However, the role of MRFs in limb regeneration remains poorly understood in crustaceans. In this study, we identified a full-length cDNA encoding a myogenic regulatory factor from Eriocheir sinensis (EsMRF) and evaluated its mRNA expression profile during muscle development, growth, and regeneration. The expression of EsMRF was found to correlate with the onset of muscle formation during development and with the regeneration process following limb autotomy. To elucidate the function of MRF during limb regeneration in E. sinensis, we assessed regenerative efficiency using RNA interference (RNAi) targeting EsMRF. Our findings revealed that the blockade of MRF delayed limb regeneration by disrupting the proliferation and myogenesis of blastema cells at the basal growth stage. Furthermore, luciferase assays results demonstrated that EsMRF can transcriptionally activate target myogenic genes, either through direct binding to their promoters or by interacting with co-regulators such as EsHEB or EsMEF2. This study identifies a novel MRF in E. sinensis and elucidates its function during limb regeneration, thereby contributing to our understanding of muscle growth and regeneration mechanisms in crustaceans.
Collapse
Affiliation(s)
- Ju Li
- College of Life Science, Tianjin Normal University, Tianjin 300387, PR China; Tianjin Key Laboratory of Animal and Plant Resistance/College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China.
| | - Simiao Fu
- College of Life Science, Tianjin Normal University, Tianjin 300387, PR China
| | - Yuxin Tian
- College of Life Science, Tianjin Normal University, Tianjin 300387, PR China
| | - Xin Zhang
- College of Life Science, Tianjin Normal University, Tianjin 300387, PR China
| | - Yuxuan Meng
- College of Life Science, Tianjin Normal University, Tianjin 300387, PR China
| | - Xiumei Zhao
- College of Life Science, Tianjin Normal University, Tianjin 300387, PR China
| | - Sidi Liu
- College of Life Science, Tianjin Normal University, Tianjin 300387, PR China
| | - Yuxuan Zhang
- College of Life Science, Tianjin Normal University, Tianjin 300387, PR China
| | - Jinsheng Sun
- College of Life Science, Tianjin Normal University, Tianjin 300387, PR China; Tianjin Key Laboratory of Animal and Plant Resistance/College of Life Sciences, Tianjin Normal University, Tianjin 300387, PR China.
| |
Collapse
|
2
|
Xia Y, Zhang X, Zhang X, Zhu H, Zhong X, Song W, Yuan J, Sha Z, Li F. Gene structure, expression and function analysis of the MyoD gene in the Pacific white shrimp Litopenaeus vannamei. Gene 2024; 921:148523. [PMID: 38703863 DOI: 10.1016/j.gene.2024.148523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The Pacific white shrimp Litopenaeus vannamei is a representative species of decapod crustacean and an economically important marine aquaculture species worldwide. However, research on the genes involved in muscle growth and development in shrimp is still lacking. MyoD is recognized as a crucial regulator of myogenesis and plays an essential role in muscle growth and differentiation in various animals. Nonetheless, little information is available concerning the function of this gene among crustaceans. In this study, we identified a sequence of the MyoD gene (LvMyoD) with a conserved bHLH domain in the L. vannamei genome. Phylogenetic analysis revealed that both the overall protein sequence and specific functional sites of LvMyoD are highly conserved with those of other crustacean species and that they are evolutionarily closely related to vertebrate MyoD and Myf5. LvMyoD expression is initially high during early muscle development in shrimp and gradually decreases after 40 days post-larval development. In adults, the muscle-specific expression of LvMyoD was confirmed through RT-qPCR analysis. Knockdown of LvMyoD inhibited the growth of the shrimp in body length and weight. Histological observation and transcriptome sequencing of muscle samples after RNA interference (RNAi) revealed nuclear agglutination and looseness in muscle fibers. Additionally, we observed significant effects on the expression of genes involved in heat shock proteins, myosins, actins, protein synthesis, and glucose metabolism. These findings suggest that LvMyoD plays a critical role in regulating muscle protein synthesis and muscle cell differentiation. Overall, this study highlights the involvement of LvMyoD in myogenesis and muscle growth, suggesting that it is a potentially important regulatory target for shrimp breeding efforts.
Collapse
Affiliation(s)
- Yanting Xia
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Institute of Aquatic Biotechnology, Collage of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xiaojun Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Institute of Aquatic Biotechnology, Collage of Life Sciences, Qingdao University, Qingdao 266071, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xiaoxi Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Haochen Zhu
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Institute of Aquatic Biotechnology, Collage of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xiaoyun Zhong
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Jianbo Yuan
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, Collage of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Fuhua Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
3
|
Palli SR. RNAi turns 25:contributions and challenges in insect science. FRONTIERS IN INSECT SCIENCE 2023; 3:1209478. [PMID: 38469536 PMCID: PMC10926446 DOI: 10.3389/finsc.2023.1209478] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/26/2023] [Indexed: 03/13/2024]
Abstract
Since its discovery in 1998, RNA interference (RNAi), a Nobel prize-winning technology, made significant contributions to advances in biology because of its ability to mediate the knockdown of specific target genes. RNAi applications in medicine and agriculture have been explored with mixed success. The past 25 years of research on RNAi resulted in advances in our understanding of the mechanisms of its action, target specificity, and differential efficiency among animals and plants. RNAi played a major role in advances in insect biology. Did RNAi technology fully meet insect pest and disease vector management expectations? This review will discuss recent advances in the mechanisms of RNAi and its contributions to insect science. The remaining challenges, including delivery to the target site, differential efficiency, potential resistance development and possible solutions for the widespread use of this technology in insect management.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
4
|
An B, Zhang Y, Yan B, Cai J. RNA interference of PHB1 enhances virulence of Vip3Aa to Sf9 cells and Spodoptera frugiperda larvae. PEST MANAGEMENT SCIENCE 2023. [PMID: 36964944 DOI: 10.1002/ps.7469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In our previous work, we demonstrated that prohibitin 2 (PHB2) on the membrane of Sf9 cells was a receptor for Vip3Aa, and PHB2 in mitochondria contributed to the mitochondrial stability to reduce Vip3Aa toxicity. Prohibitin 1 (PHB1), another prohibitin family member, forms heterodimers with PHB2 to maintain the structure and stability of mitochondria. To explore whether PHB1 impacts the action process of Vip3Aa, we examined the correlation between PHB1 and Vip3Aa virulence. RESULTS We revealed that PHB1 did not colocalize with Vip3Aa in Sf9 cells. The pulldown and CoIP experiments confirmed that PHB1 interacted with neither Vip3Aa nor scavenger receptor-C (another Vip3Aa receptor). Downregulating phb1 expression in Sf9 cells did not affect the internalization of Vip3Aa but increased Vip3Aa toxicity. Further exploration revealed that the decrease of phb1 expression affected mitochondrial function, leading to increased ROS levels and mitochondrial membrane permeability and decreased mitochondrial membrane potential. The increase of mitochondrial cytochrome c release, caspase-3 activity and genomic DNA fragmentation implied that the apoptotic process was also affected. Finally, we applied RNAi to inhibit phb1 expression in Spodoptera frugiperda larvae. As a result, it significantly increased Vip3Aa virulence. CONCLUSION We found that PHB1 was not a receptor for Vip3Aa but played an essential role in mitochondria. The downregulation of phb1 expression in Sf9 cells caused instability of mitochondria, and the cells were more prone to apoptosis when challenged with Vip3Aa. The combined use of Vip3Aa and phb1 RNAi showed a synergistic effect against S. frugiperda larvae. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baoju An
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yizhuo Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Bing Yan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
- Colllege of Life Science, Nankai University, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| |
Collapse
|
5
|
Zhang Q, Chen J, Wang Y, Lu Y, Dong Z, Shi W, Pang L, Ren S, Chen X, Huang J. The odorant receptor co-receptor gene contributes to mating and host-searching behaviors in parasitoid wasps. PEST MANAGEMENT SCIENCE 2023; 79:454-463. [PMID: 36177949 DOI: 10.1002/ps.7214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Biological control of pest insects by parasitoid wasps is an effective and environmentally friendly strategy compared with the use of synthetic pesticides. Successful courtship and host-search behaviors of parasitoid wasps are important for biological control efficiency and are often mediated by chemical odorant cues. The odorant receptor co-receptor (Orco) gene has an essential role in the perception of odors in insects. However, the function of Orco in the mating and host-searching behaviors of parasitoid wasps remains underexplored. RESULTS We identified the full-length Orco genes of four Drosophila parasitoid species in the genus Leptopilina, namely L. heterotoma, L. boulardi, L. syphax and L. drosophilae. Sequence alignment and membrane-topology analysis showed that Leptopilina Orcos had similar amino acid sequences and topology structures. Phylogenetic analysis revealed that Leptopilina Orcos were highly conserved. Furthermore, the results of quantitative real-time polymerase chain reactions showed that all four Orco genes had a typical antennae-biased tissue expression pattern. After knockdown of Orco in these different parasitoid species, we found that Orco-deficient male parasitoid wasps, but not females, lost their courtship ability. Moreover, Orco-deficient female parasitoid wasps presented impaired host-searching performance and decreased oviposition rates. CONCLUSION Our study demonstrates that Orcos are essential in the mating and host-searching behaviors of parasitoid wasps. To our knowledge, this is the first time that the functions of Orco genes have been characterized in parasitoid wasps, which broadens our understanding of the chemoreception basis of parasitoid wasps and contributes to developing advanced pest management strategies. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qichao Zhang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jiani Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Ying Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yueqi Lu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhi Dong
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Wenqi Shi
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lan Pang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Shaopeng Ren
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Xuexin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Niveditha S, Shivanandappa T. Potentiation of paraquat toxicity by inhibition of the antioxidant defenses and protective effect of the natural antioxidant, 4-hydroxyisopthalic acid in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2022; 259:109399. [PMID: 35753646 DOI: 10.1016/j.cbpc.2022.109399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/23/2022] [Accepted: 06/19/2022] [Indexed: 11/25/2022]
Abstract
Exposure to pesticides such as paraquat (PQ) is known to induce oxidative stress-mediated damage, which is implicated in neurodegenerative diseases. The antioxidant enzymes are part of the endogenous defense mechanisms capable of protecting against oxidative damage, and down-regulation of these enzymes results in elevated oxidative stress. In this study, we have evaluated the protective action of 4-hydroxyisophthalic acid (DHA-I), a novel bioactive molecule from the roots of D. hamiltonii, against PQ toxicity and demonstrated the protective role of endogenous antioxidant enzymes under the condition of oxidative stress using Drosophila model. The activity of the major antioxidant enzymes, superoxide dismutase 1 (SOD1) and catalase, was suppressed either by RNAi-mediated post transcriptional gene silencing or chemical inhibition. With the decreased in vivo activity of either SOD1 or catalase, Drosophila exhibited hypersensitivity to PQ toxicity, demonstrating the essential role of antioxidant enzymes in the mechanism of defense against PQ-induced oxidative stress. Dietary supplementation of DHA-I increased the resistance of Drosophila depleted in either SOD1 or catalase to PQ toxicity. Enhanced survival of flies against PQ toxicity indicates the protective role of DHA-I against oxidative stress-mediated damage under the condition of compromised antioxidant defenses.
Collapse
Affiliation(s)
- S Niveditha
- Neurobiology laboratory, Department of Zoology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - T Shivanandappa
- Neurobiology laboratory, Department of Zoology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India.
| |
Collapse
|
7
|
Billingsley PF, George KI, Eappen AG, Harrell RA, Alford R, Li T, Chakravarty S, Sim BKL, Hoffman SL, O'Brochta DA. Transient knockdown of Anopheles stephensi LRIM1 using RNAi increases Plasmodium falciparum sporozoite salivary gland infections. Malar J 2021; 20:284. [PMID: 34174879 PMCID: PMC8235909 DOI: 10.1186/s12936-021-03818-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum (Pf) sporozoites (PfSPZ) can be administered as a highly protective vaccine conferring the highest protection seen to date. Sanaria® PfSPZ vaccines are produced using aseptically reared Anopheles stephensi mosquitoes. The bionomics of sporogonic development of P. falciparum in A. stephensi to fully mature salivary gland PfSPZ is thought to be modulated by several components of the mosquito innate immune system. In order to increase salivary gland PfSPZ infections in A. stephensi and thereby increase vaccine production efficiency, a gene knock down approach was used to investigate the activity of the immune deficiency (IMD) signaling pathway downstream effector leucine-rich repeat immune molecule 1 (LRIM1), an antagonist to Plasmodium development. METHODS Expression of LRIM1 in A. stephensi was reduced following injection of double stranded (ds) RNA into mosquitoes. By combining the Gal4/UAS bipartite system with in vivo expression of short hairpin (sh) RNA coding for LRIM1 reduced expression of LRIM1 was targeted in the midgut, fat body, and salivary glands. RT-qPCR was used to demonstrate fold-changes in gene expression in three transgenic crosses and the effects on P. falciparum infections determined in mosquitoes showing the greatest reduction in LRIM1 expression. RESULTS LRIM1 expression could be reduced, but not completely silenced, by expression of LRIM1 dsRNA. Infections of P. falciparum oocysts and PfSPZ were consistently and significantly higher in transgenic mosquitoes than wild type controls, with increases in PfSPZ ranging from 2.5- to tenfold. CONCLUSIONS Plasmodium falciparum infections in A. stephensi can be increased following reduced expression of LRIM1. These data provide the springboard for more precise knockout of LRIM1 for the eventual incorporation of immune-compromised A. stephensi into manufacturing of Sanaria's PfSPZ products.
Collapse
Affiliation(s)
- Peter F Billingsley
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| | - Kasim I George
- Institute for Bioscience and Biotechnology Research and Department of Entomology, University of Maryland, Gudelsky Drive, Rockville, MD, 20850, USA
- Qiagen Inc, 19300 Germantown Road, Germantown, MD, 20874, USA
| | - Abraham G Eappen
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Robert A Harrell
- Institute for Bioscience and Biotechnology Research and Department of Entomology, University of Maryland, Gudelsky Drive, Rockville, MD, 20850, USA
- Insect Transformation Facility, Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Robert Alford
- Institute for Bioscience and Biotechnology Research and Department of Entomology, University of Maryland, Gudelsky Drive, Rockville, MD, 20850, USA
- Insect Transformation Facility, Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Tao Li
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Sumana Chakravarty
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - B Kim Lee Sim
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
- Protein Potential, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Stephen L Hoffman
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - David A O'Brochta
- Institute for Bioscience and Biotechnology Research and Department of Entomology, University of Maryland, Gudelsky Drive, Rockville, MD, 20850, USA
- Foundation for the National Institutes of Health, 11400 Rockville Pike, Suite 600, North Bethesda, MD, 20852, USA
| |
Collapse
|
8
|
Aase-Remedios ME, Coll-Lladó C, Ferrier DEK. More Than One-to-Four via 2R: Evidence of an Independent Amphioxus Expansion and Two-Gene Ancestral Vertebrate State for MyoD-Related Myogenic Regulatory Factors (MRFs). Mol Biol Evol 2021; 37:2966-2982. [PMID: 32520990 PMCID: PMC7530620 DOI: 10.1093/molbev/msaa147] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The evolutionary transition from invertebrates to vertebrates involved extensive gene duplication, but understanding precisely how such duplications contributed to this transition requires more detailed knowledge of specific cases of genes and gene families. Myogenic differentiation (MyoD) has long been recognized as a master developmental control gene and member of the MyoD family of bHLH transcription factors (myogenic regulatory factors [MRFs]) that drive myogenesis across the bilaterians. Phylogenetic reconstructions within this gene family are complicated by multiple instances of gene duplication and loss in several lineages. Following two rounds of whole-genome duplication (2R WGD) at the origin of the vertebrates, the ancestral function of MRFs is thought to have become partitioned among the daughter genes, so that MyoD and Myf5 act early in myogenic determination, whereas Myog and Myf6 are expressed later, in differentiating myoblasts. Comparing chordate MRFs, we find an independent expansion of MRFs in the invertebrate chordate amphioxus, with evidence for a parallel instance of subfunctionalization relative to that of vertebrates. Conserved synteny between chordate MRF loci supports the 2R WGD events as a major force in shaping the evolution of vertebrate MRFs. We also resolve vertebrate MRF complements and organization, finding a new type of vertebrate MRF gene in the process, which allowed us to infer an ancestral two-gene state in the vertebrates corresponding to the early- and late-acting types of MRFs. This necessitates a revision of previous conclusions about the simple one-to-four origin of vertebrate MRFs.
Collapse
Affiliation(s)
- Madeleine E Aase-Remedios
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Clara Coll-Lladó
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| | - David E K Ferrier
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom
| |
Collapse
|
9
|
Shelby EA, Moss JB, Andreason SA, Simmons AM, Moore AJ, Moore PJ. Debugging: Strategies and Considerations for Efficient RNAi-Mediated Control of the Whitefly Bemisia tabaci. INSECTS 2020; 11:E723. [PMID: 33105847 PMCID: PMC7690610 DOI: 10.3390/insects11110723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/26/2023]
Abstract
The whitefly Bemisia tabaci is a globally important pest that is difficult to control through insecticides, transgenic crops, and natural enemies. Post-transcriptional gene silencing through RNA interference (RNAi) has shown potential as a pest management strategy against B. tabaci. While genomic data and other resources are available to create highly effective customizable pest management strategies with RNAi, current applications do not capitalize on species-specific biology. This lack of specificity has the potential to have substantial ecological impacts. Here, we discuss both short- and long-term considerations for sustainable RNAi pest management strategies for B. tabaci, focusing on the need for species specificity incorporating both life history and population genetic considerations. We provide a conceptual framework for selecting sublethal target genes based on their involvement in physiological pathways, which has the greatest potential to ameliorate unintended negative consequences. We suggest that these considerations allow an integrated pest management approach, with fewer negative ecological impacts and reduced likelihood of the evolution of resistant populations.
Collapse
Affiliation(s)
- Emily A. Shelby
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (A.J.M.)
| | - Jeanette B. Moss
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (A.J.M.)
| | - Sharon A. Andreason
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable laboratory, Charleston, SC 29414, USA; (S.A.A.); (A.M.S.)
| | - Alvin M. Simmons
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable laboratory, Charleston, SC 29414, USA; (S.A.A.); (A.M.S.)
| | - Allen J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (A.J.M.)
| | - Patricia J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (A.J.M.)
| |
Collapse
|
10
|
Abstract
Small silencing RNAs have provided powerful reverse genetics tools and have opened new areas of research. This introduction describes the use of RNAi to suppress expression of individual genes for loss-of-function analysis. It also summarizes methods for measuring specific and global changes in small RNA expression, as well as methods to inhibit the function of individual endogenous small RNA species such as miRNAs.
Collapse
|
11
|
Cao M, Gatehouse JA, Fitches EC. A Systematic Study of RNAi Effects and dsRNA Stability in Tribolium castaneum and Acyrthosiphon pisum, Following Injection and Ingestion of Analogous dsRNAs. Int J Mol Sci 2018; 19:E1079. [PMID: 29617308 PMCID: PMC5979293 DOI: 10.3390/ijms19041079] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 01/29/2023] Open
Abstract
RNA interference (RNAi) effects in insects are highly variable and may be largely dependent upon the stability of introduced double-stranded RNAs to digestion by nucleases. Here, we report a systematic comparison of RNAi effects in susceptible red flour beetle (Tribolium castaneum) and recalcitrant pea aphid (Acyrthosiphon pisum) following delivery of dsRNAs of identical length targeting expression of V-type ATPase subunit E (VTE) and inhibitor of apoptosis (IAP) genes. Injection and ingestion of VTE and IAP dsRNAs resulted in up to 100% mortality of T. castaneum larvae and sustained suppression (>80%) of transcript levels. In A. pisum, injection of VTE but not IAP dsRNA resulted in up to 65% mortality and transient suppression (ca. 40%) of VTE transcript levels. Feeding aphids on VTE dsRNA reduced growth and fecundity although no evidence for gene suppression was obtained. Rapid degradation of dsRNAs by aphid salivary, haemolymph and gut nucleases contrasted with stability in T. castaneum larvae where it appears that exo-nuclease activity is responsible for relatively slow digestion of dsRNAs. This is the first study to directly compare RNAi effects and dsRNA stability in receptive and refractory insect species and provides further evidence that dsRNA susceptibility to nucleases is a key factor in determining RNAi efficiency.
Collapse
Affiliation(s)
- Min Cao
- Department of Biosciences, Durham University, Durham DH1 3LE, UK.
| | - John A Gatehouse
- Department of Biosciences, Durham University, Durham DH1 3LE, UK.
| | - Elaine C Fitches
- Department of Biosciences, Durham University, Durham DH1 3LE, UK.
| |
Collapse
|
12
|
Xie YF, Niu JZ, Jiang XZ, Yang WJ, Shen GM, Wei D, Smagghe G, Wang JJ. Influence of various stressors on the expression of core genes of the small interfering RNA pathway in the oriental fruit fly, Bactrocera dorsalis. INSECT SCIENCE 2017; 24:418-430. [PMID: 28547890 DOI: 10.1111/1744-7917.12311] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/02/2015] [Indexed: 06/07/2023]
Abstract
RNA interference (RNAi)-based technology has emerged as a potential tool for controlling insect pests, however, previous studies found that the efficiency of RNAi in Bactrocera dorsalis was variable. In nature, insects often meet various challenges, such as pathogen infections, extreme temperatures, lack of nutrition and heavy metals. To better understand the association of the stressors with efficiency of RNAi, in the current study we tested the expression of three core genes, dicer2 (Bddcr2), r2d2 (Bdr2d2) and argonaute2 (Bdago2), of the small interfering RNA (siRNA) pathway of B. dorsalis upon various stressors. Our results showed that all three genes were upregulated by the infection of invertebrate iridescent virus 6, which suggested a function of the siRNA pathway against viral infection. The loading of FeCl3 could also increase the expression of Bddcr2. The treatments of Escherichia coli, extremely high (40°C) and low (0°C) temperatures, as well as starvation, could negatively influence the expression of Bddcr2 and/or Bdago2. In total, our results showed that various stressors could influence the expression of core components of B. dorsalis siRNA pathway. This highlights further speculation on the RNAi efficiency upon these stressors. Considering the complexity and variation of RNAi efficiency in different conditions, these results provide initial aspects in possible environmental stressors to influence the activity of the siRNA pathway, but the real impact of RNAi efficiency posed by these stressors requires further studies.
Collapse
Affiliation(s)
- Yi-Fei Xie
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Hunan Academy of Forestry, Changsha, China
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Xuan-Zhao Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Wen-Jia Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Guang-Mao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Dong Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Onyilo F, Tusiime G, Chen LH, Falk B, Stergiopoulos I, Tripathi JN, Tushemereirwe W, Kubiriba J, Changa C, Tripathi L. Agrobacterium tumefaciens-Mediated Transformation of Pseudocercospora fijiensis to Determine the Role of PfHog1 in Osmotic Stress Regulation and Virulence Modulation. Front Microbiol 2017; 8:830. [PMID: 28559879 PMCID: PMC5432539 DOI: 10.3389/fmicb.2017.00830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/24/2017] [Indexed: 12/15/2022] Open
Abstract
Black Sigatoka disease, caused by Pseudocercospora fijiensis is a serious constraint to banana production worldwide. The disease continues to spread in new ecological niches and there is an urgent need to develop strategies for its control. The high osmolarity glycerol (HOG) pathway in Saccharomyces cerevisiae is well known to respond to changes in external osmolarity. HOG pathway activation leads to phosphorylation, activation and nuclear transduction of the HOG1 mitogen-activated protein kinases (MAPKs). The activated HOG1 triggers several responses to osmotic stress, including up or down regulation of different genes, regulation of protein translation, adjustments to cell cycle progression and synthesis of osmolyte glycerol. This study investigated the role of the MAPK-encoding PfHog1 gene on osmotic stress adaptation and virulence of P. fijiensis. RNA interference-mediated gene silencing of PfHog1 significantly suppressed growth of P. fijiensis on potato dextrose agar media supplemented with 1 M NaCl, indicating that PfHog1 regulates osmotic stress. In addition, virulence of the PfHog1-silenced mutants of P. fijiensis on banana was significantly reduced, as observed from the low rates of necrosis and disease development on the infected leaves. Staining with lacto phenol cotton blue further confirmed the impaired mycelial growth of the PfHog1 in the infected leaf tissues, which was further confirmed with quantification of the fungal biomass using absolute- quantitative PCR. Collectively, these findings demonstrate that PfHog1 plays a critical role in osmotic stress regulation and virulence of P. fijiensis on its host banana. Thus, PfHog1 could be an interesting target for the control of black Sigatoka disease in banana.
Collapse
Affiliation(s)
- Francis Onyilo
- National Agricultural Research LaboratoriesKampala, Uganda
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere UniversityKampala, Uganda
- International Institute of Tropical AgricultureNairobi, Kenya
| | - Geoffrey Tusiime
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere UniversityKampala, Uganda
| | - Li-Hung Chen
- Department of Plant Pathology, University of California, Davis, DavisCA, USA
| | - Bryce Falk
- Department of Plant Pathology, University of California, Davis, DavisCA, USA
| | | | | | | | | | - Charles Changa
- National Agricultural Research LaboratoriesKampala, Uganda
| | - Leena Tripathi
- International Institute of Tropical AgricultureNairobi, Kenya
| |
Collapse
|
14
|
Whitten M, Dyson P. Gene silencing in non-model insects: Overcoming hurdles using symbiotic bacteria for trauma-free sustainable delivery of RNA interference. Bioessays 2017; 39. [DOI: 10.1002/bies.201600247] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Miranda Whitten
- Institute of Life Science; Swansea University Medical School; Singleton Park Swansea UK
| | - Paul Dyson
- Institute of Life Science; Swansea University Medical School; Singleton Park Swansea UK
| |
Collapse
|
15
|
Zhao MX, Zhu BJ. The Research and Applications of Quantum Dots as Nano-Carriers for Targeted Drug Delivery and Cancer Therapy. NANOSCALE RESEARCH LETTERS 2016; 11:207. [PMID: 27090658 PMCID: PMC4835414 DOI: 10.1186/s11671-016-1394-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 04/04/2016] [Indexed: 05/10/2023]
Abstract
Quantum dots (QDs), nano-carriers for drugs, can help realize the targeting of drugs, and improve the bioavailability of drugs in biological fields. And, a QD nano-carrier system for drugs has the potential to realize early detection, monitoring, and localized treatments of specific disease sites. In addition, QD nano-carrier systems for drugs can improve stability of drugs, lengthen circulation time in vivo, enhance targeted absorption, and improve the distribution and metabolism process of drugs in organization. So, the development of QD nano-carriers for drugs has become a hotspot in the fields of nano-drug research in recent years. In this paper, we review the advantages and applications of the QD nano-carriers for drugs in biological fields.
Collapse
Affiliation(s)
- Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, China.
| | - Bing-Jie Zhu
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, 475004, China
| |
Collapse
|
16
|
NF-Y in invertebrates. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:630-635. [PMID: 27793714 DOI: 10.1016/j.bbagrm.2016.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 01/07/2023]
Abstract
Both Drosophila melanogaster and Caenorhabditis elegans (C. elegans) are useful model organisms to study in vivo roles of NF-Y during development. Drosophila NF-Y (dNF-Y) consists of three subunits dNF-YA, dNF-YB and dNF-YC. In some tissues, dNF-YC-related protein Mes4 may replace dNF-YC in dNF-Y complex. Studies with eye imaginal disc-specific dNF-Y-knockdown flies revealed that dNF-Y positively regulates the sevenless gene encoding a receptor tyrosine kinase, a component of the ERK pathway and negatively regulates the Sensless gene encoding a transcription factor to ensure proper development of R7 photoreceptor cells together with proper R7 axon targeting. dNF-Y also controls the Drosophila Bcl-2 (debcl) to regulate apoptosis. In thorax development, dNF-Y is necessary for both proper Drosophila JNK (basket) expression and JNK signaling activity that is responsible for thorax development. Drosophila p53 gene was also identified as one of the dNF-Y target genes in this system. C. elegans contains two forms of NF-YA subunit, CeNF-YA1 and CeNF-YA2. C. elegans NF-Y (CeNF-Y) therefore consists of CeNF-YB, CeNF-YC and either CeNF-YA1 or CeNF-YA2. CeNF-Y negatively regulates expression of the Hox gene egl-5 (ortholog of Drosophila Abdominal-B) that is involved in tail patterning. CeNF-Y also negatively regulates expression of the tbx-2 gene that is essential for development of the pharyngeal muscles, specification of neural cell fate and adaptation in olfactory neurons. Negative regulation of the expression of egl-5 and tbx-2 by CeNF-Y provides new insight into the physiological meaning of negative regulation of gene expression by NF-Y during development. In addition, studies on NF-Y in platyhelminths are also summarized. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
|
17
|
Wang K, Li Y, Huang X, Wang DW, Xu CL, Xie H. The cathepsin S cysteine proteinase of the burrowing nematode Radopholus similis is essential for the reproduction and invasion. Cell Biosci 2016; 6:39. [PMID: 27293544 PMCID: PMC4901441 DOI: 10.1186/s13578-016-0107-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nematode Radopholus similis is an important migratory endoparasite of plants. Cysteine proteinases such as cathepsin S (CPS) play key roles during embryonic development, invasion, and pathogenesis in nematodes and many other animal parasites. This study was designed to investigate the molecular characterization and functions of a cathepsin S protease in R. similis and to find new targets for its control. RESULTS Rs-CPS of R. similis, Hg-CPS of Heterodera glycines and Ha-CPS of H. avenae are closely genetically related and share the same branch of the phylogenetic tree. Rs-cps is a multi-copy gene that is expressed in the esophageal glands, ovaries, testes, vas deferens, and eggs of R. similis. Rs-cps mRNA transcripts are expressed at varying levels during all developmental stages of R. similis. Rs-cps expression was highest in females. The neurostimulant octopamine did not significantly enhance the ingestion of the dsRNA soaking solution by R. similis but instead had a detrimental effect on nematode activity. The dsRNA soaking solution diffused into the body of R. similis not only through the esophageal lumen but also through the amphids, excretory duct, vagina, anus and cloacal orifice. We confirmed that RNAi significantly suppressed the expression level of Rs-cps and reproductive capability and pathogenicity of R. similis. CONCLUSIONS Our results demonstrate that Rs-cps plays important roles in the reproduction, parasitism and pathogenesis of R. similis and could be used as a new potential target for controlling plant parasitic nematodes.
Collapse
Affiliation(s)
- Ke Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Yu Li
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China.,Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002 China
| | - Xin Huang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Dong-Wei Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Chun-Ling Xu
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Hui Xie
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
18
|
Spring AM, Brusich DJ, Frank CA. C-terminal Src Kinase Gates Homeostatic Synaptic Plasticity and Regulates Fasciclin II Expression at the Drosophila Neuromuscular Junction. PLoS Genet 2016; 12:e1005886. [PMID: 26901416 PMCID: PMC4764653 DOI: 10.1371/journal.pgen.1005886] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 01/29/2016] [Indexed: 12/02/2022] Open
Abstract
Forms of homeostatic plasticity stabilize neuronal outputs and promote physiologically favorable synapse function. A well-studied homeostatic system operates at the Drosophila melanogaster larval neuromuscular junction (NMJ). At the NMJ, impairment of postsynaptic glutamate receptor activity is offset by a compensatory increase in presynaptic neurotransmitter release. We aim to elucidate how this process operates on a molecular level and is preserved throughout development. In this study, we identified a tyrosine kinase-driven signaling system that sustains homeostatic control of NMJ function. We identified C-terminal Src Kinase (Csk) as a potential regulator of synaptic homeostasis through an RNAi- and electrophysiology-based genetic screen. We found that Csk loss-of-function mutations impaired the sustained expression of homeostatic plasticity at the NMJ, without drastically altering synapse growth or baseline neurotransmission. Muscle-specific overexpression of Src Family Kinase (SFK) substrates that are negatively regulated by Csk also impaired NMJ homeostasis. Surprisingly, we found that transgenic Csk-YFP can support homeostatic plasticity at the NMJ when expressed either in the muscle or in the nerve. However, only muscle-expressed Csk-YFP was able to localize to NMJ structures. By immunostaining, we found that Csk mutant NMJs had dysregulated expression of the Neural Cell Adhesion Molecule homolog Fasciclin II (FasII). By immunoblotting, we found that levels of a specific isoform of FasII were decreased in homeostatically challenged GluRIIA mutant animals–but markedly increased in Csk mutant animals. Additionally, we found that postsynaptic overexpression of FasII from its endogenous locus was sufficient to impair synaptic homeostasis, and genetically reducing FasII levels in Csk mutants fully restored synaptic homeostasis. Based on these data, we propose that Csk and its SFK substrates impinge upon homeostatic control of NMJ function by regulating downstream expression or localization of FasII. Homeostasis is a fundamental topic in biology. Individual cells and systems of cells constantly monitor their environments and adjust their outputs in order to maintain physiological properties within ranges that can support life. The nervous system is no exception. Synapses and circuits are endowed with a capacity to respond to environmental challenges in a homeostatic fashion. As a result, synaptic output stays within an appropriate physiological range. We know that homeostasis is a fundamental form of regulation in animal nervous systems, but we have very little information about how it works. In this study, we examine the fruit fly Drosophila melanogaster and its ability to maintain normal levels of synaptic output over long periods of developmental time. We identify new roles in this process for classical signaling molecules called C-terminal Src kinase, Src family kinases, as well as a neuronal cell adhesion molecule called Fasciclin II, which was previously shown to stabilize synaptic contacts between neurons and muscles. Our work contributes to a broader understanding of how neurons work to maintain stable outputs. Ultimately, this type of knowledge could have important implications for neurological disorders in which stability is lost, such as forms of epilepsy or ataxia.
Collapse
Affiliation(s)
- Ashlyn M. Spring
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Douglas J. Brusich
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - C. Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Interdisciplinary Programs in Genetics, Neuroscience, and MCB, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
19
|
Weninger A, Killinger M, Vogl T. Key Methods for Synthetic Biology: Genome Engineering and DNA Assembly. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-319-22708-5_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
20
|
Taju G, Madan N, Abdul Majeed S, Kumar TR, Thamizhvanan S, Otta SK, Sahul Hameed AS. Immune responses of whiteleg shrimp, Litopenaeus vannamei (Boone, 1931), to bacterially expressed dsRNA specific to VP28 gene of white spot syndrome virus. JOURNAL OF FISH DISEASES 2015; 38:451-465. [PMID: 24917208 DOI: 10.1111/jfd.12256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/07/2014] [Accepted: 04/16/2014] [Indexed: 06/03/2023]
Abstract
In this study, dsRNA specific to VP28 gene of white spot syndrome virus (WSSV) of shrimp was synthesized in Escherichia coli in large scale and studied the immune response of shrimp to dsRNA-VP28. The haematological parameters such as clotting time and total haemocytes counts, and immunological parameters such as prophenoloxidase (proPO), superoxide dismutase (SOD), superoxide anion (SOA) and malondialdehyde content, as well as the mRNA expression of ten immune-related genes were examined to estimate the effect of dsRNA-VP28 on the innate immunity of Litopenaeus vannamei. The activities of proPO, SOA and SOD significantly increased in haemocyte after dsRNA-VP28 treatment, whereas MDA content did not change significantly. Among the ten immune-related genes examined, only the mRNA expression of proPO, cMnSOD, haemocyanin, crustin, BGBP, lipopolysaccharides (LPs), lectin and lysozyme in haemocytes, gill and hepatopancreas of L. vannamei, was significantly upregulated at 12 h after dsRNA-VP28 treatment, while no significant expression changes were observed in Toll receptor and tumour receptor genes. The increase of proPO and SOD activities, and SOA level and mRNA expression level of proPO, cMnSOD, haemocyanin, crustin, BGBP, LPs, lectin and lysozyme after dsRNA-VP28 stimulation indicate that these immune-related genes were involved in dsRNA-VP28-induced innate immunity in shrimp.
Collapse
Affiliation(s)
- G Taju
- OIE Reference Laboratory for WTD, PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Vellore District, Tamilnadu, India
| | | | | | | | | | | | | |
Collapse
|
21
|
Kola VSR, Renuka P, Madhav MS, Mangrauthia SK. Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing. Front Physiol 2015; 6:119. [PMID: 25954206 PMCID: PMC4406143 DOI: 10.3389/fphys.2015.00119] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/31/2015] [Indexed: 11/23/2022] Open
Abstract
RNA interference (RNAi) is a mechanism of homology dependent gene silencing present in plants and animals. It operates through 21-24 nucleotides small RNAs which are processed through a set of core enzymatic machinery that involves Dicer and Argonaute proteins. In recent past, the technology has been well appreciated toward the control of plant pathogens and insects through suppression of key genes/proteins of infecting organisms. The genes encoding key enzymes/proteins with the great potential for developing an effective insect control by RNAi approach are actylcholinesterase, cytochrome P450 enzymes, amino peptidase N, allatostatin, allatotropin, tryptophan oxygenase, arginine kinase, vacuolar ATPase, chitin synthase, glutathione-S-transferase, catalase, trehalose phosphate synthase, vitellogenin, hydroxy-3-methylglutaryl coenzyme A reductase, and hormone receptor genes. Through various studies, it is demonstrated that RNAi is a reliable molecular tool which offers great promises in meeting the challenges imposed by crop insects with careful selection of key enzymes/proteins. Utilization of RNAi tool to target some of these key proteins of crop insects through various approaches is described here. The major challenges of RNAi based insect control such as identifying potential targets, delivery methods of silencing trigger, off target effects, and complexity of insect biology are very well illustrated. Further, required efforts to address these challenges are also discussed.
Collapse
Affiliation(s)
| | | | - Maganti Sheshu Madhav
- Department of Biotechnology, Directorate of Rice Research, ICAR-Indian Institute of Rice ResearchHyderabad, India
| | - Satendra K. Mangrauthia
- Department of Biotechnology, Directorate of Rice Research, ICAR-Indian Institute of Rice ResearchHyderabad, India
| |
Collapse
|
22
|
Palli SR. RNA interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide. CURRENT OPINION IN INSECT SCIENCE 2014; 6:1-8. [PMID: 26705514 PMCID: PMC4688004 DOI: 10.1016/j.cois.2014.09.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Colorado potato beetle (CPB) is a notorious pest on potatoes and has a remarkable ability to detoxify plant chemicals and develop resistance against insecticides. dsRNA targeting CPB genes could be expressed in potato plants to control this pest. However, previous attempts at introducing transgenic potato plants to control CPB were not highly successful. Recent studies showed that feeding dsRNA expressed in bacteria works very well to kill CPB. To realize the potential of RNAi to control this and other economically important pests, more efficient methods for production and delivery of dsRNA need to be developed. Extensive research to determine off-target and non-target effects, environmental fate and potential for resistance development is also essential.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, United States
| |
Collapse
|
23
|
Draz MS, Fang BA, Zhang P, Hu Z, Gu S, Weng KC, Gray JW, Chen FF. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Am J Cancer Res 2014; 4:872-92. [PMID: 25057313 PMCID: PMC4107289 DOI: 10.7150/thno.9404] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/27/2014] [Indexed: 12/17/2022] Open
Abstract
RNA interference (RNAi) is an endogenous post-transcriptional gene regulatory mechanism, where non-coding, double-stranded RNA molecules interfere with the expression of certain genes in order to silence it. Since its discovery, this phenomenon has evolved as powerful technology to diagnose and treat diseases at cellular and molecular levels. With a lot of attention, short interfering RNA (siRNA) therapeutics has brought a great hope for treatment of various undruggable diseases, including genetic diseases, cancer, and resistant viral infections. However, the challenge of their systemic delivery and on how they are integrated to exhibit the desired properties and functions remains a key bottleneck for realizing its full potential. Nanoparticles are currently well known to exhibit a number of unique properties that could be strategically tailored into new advanced siRNA delivery systems. This review summarizes the various nanoparticulate systems developed so far in the literature for systemic delivery of siRNA, which include silica and silicon-based nanoparticles, metal and metal oxides nanoparticles, carbon nanotubes, graphene, dendrimers, polymers, cyclodextrins, lipids, hydrogels, and semiconductor nanocrystals. Challenges and barriers to the delivery of siRNA and the role of different nanoparticles to surmount these challenges are also included in the review.
Collapse
|
24
|
Ejsmont RK, Hassan BA. The Little Fly that Could: Wizardry and Artistry of Drosophila Genomics. Genes (Basel) 2014; 5:385-414. [PMID: 24827974 PMCID: PMC4094939 DOI: 10.3390/genes5020385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 12/30/2022] Open
Abstract
For more than 100 years now, the fruit fly Drosophila melanogaster has been at the forefront of our endeavors to unlock the secrets of the genome. From the pioneering studies of chromosomes and heredity by Morgan and his colleagues, to the generation of fly models for human disease, Drosophila research has been at the forefront of genetics and genomics. We present a broad overview of some of the most powerful genomics tools that keep Drosophila research at the cutting edge of modern biomedical research.
Collapse
Affiliation(s)
| | - Bassem A Hassan
- VIB Center for the Biology of Disease, VIB, 3000 Leuven, Belgium.
| |
Collapse
|
25
|
In Vivo RNAi-Based Screens: Studies in Model Organisms. Genes (Basel) 2013; 4:646-65. [PMID: 24705267 PMCID: PMC3927573 DOI: 10.3390/genes4040646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 10/29/2013] [Accepted: 11/14/2013] [Indexed: 11/23/2022] Open
Abstract
RNA interference (RNAi) is a technique widely used for gene silencing in organisms and cultured cells, and depends on sequence homology between double-stranded RNA (dsRNA) and target mRNA molecules. Numerous cell-based genome-wide screens have successfully identified novel genes involved in various biological processes, including signal transduction, cell viability/death, and cell morphology. However, cell-based screens cannot address cellular processes such as development, behavior, and immunity. Drosophila and Caenorhabditis elegans are two model organisms whose whole bodies and individual body parts have been subjected to RNAi-based genome-wide screening. Moreover, Drosophila RNAi allows the manipulation of gene function in a spatiotemporal manner when it is implemented using the Gal4/UAS system. Using this inducible RNAi technique, various large-scale screens have been performed in Drosophila, demonstrating that the method is straightforward and valuable. However, accumulated results reveal that the results of RNAi-based screens have relatively high levels of error, such as false positives and negatives. Here, we review in vivo RNAi screens in Drosophila and the methods that could be used to remove ambiguity from screening results.
Collapse
|
26
|
Hiruta C, Toyota K, Miyakawa H, Ogino Y, Miyagawa S, Tatarazako N, Shaw JR, Iguchi T. Development of a microinjection system for RNA interference in the water flea Daphnia pulex. BMC Biotechnol 2013; 13:96. [PMID: 24188141 PMCID: PMC4228505 DOI: 10.1186/1472-6750-13-96] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/31/2013] [Indexed: 11/25/2022] Open
Abstract
Background The ubiquitous, freshwater microcrustacean Daphnia pulex provides a model system for both human health research and monitoring ecosystem integrity. It is the first crustacean to have a well annotated, reference genome assembly that revealed an unusually high gene count highlighted by a large gene orphanage,-i.e., previously uncharacterized genes. Daphnia are capable of either clonal or sexual reproduction, making them ideally suited for genetic manipulation, but the establishment of gene manipulation techniques is needed to accurately define gene functions. Although previous investigations developed an RNA interference (RNAi) system for one congener D. magna, these methods are not appropriate for D. pulex because of the smaller size of their early embryos. In these studies, we develop RNAi techniques for D. pulex by first determining the optimum culture conditions of their isolated embryos and then applying these conditions to the development of microinjection techniques and proof-of-principle RNAi experiments. Results We found that isolated embryos were best cultured on a 2% agar plate bathed in 60 mM sucrose dissolved in M4 media, providing optimal conditions for microinjections. Then, we injected double-stranded (ds)RNA specific to the Distal-less gene (Dll), which is a homeobox transcription factor essential for limb development in invertebrates and vertebrates. Injected embryos presented with defects in the second antenna and appendage development, and dsRNA induced the degradation of Dll mRNAs, indicating that this technique successfully inhibited transcription of the target gene. Conclusions We developed a microinjection system for RNAi studies in D. pulex. These techniques add to the growing genomic toolbox and enhance the genetic tractability of this important model for environmental, evolutionary, and developmental genomics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
27
|
RNAi for Insect Control: Current Perspective and Future Challenges. Appl Biochem Biotechnol 2013; 171:847-73. [DOI: 10.1007/s12010-013-0399-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 07/15/2013] [Indexed: 12/15/2022]
|
28
|
Ettensohn CA. Encoding anatomy: Developmental gene regulatory networks and morphogenesis. Genesis 2013; 51:383-409. [PMID: 23436627 DOI: 10.1002/dvg.22380] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Charles A. Ettensohn
- Department of Biological Sciences; Carnegie Mellon University; Pittsburgh; Pennsylvania
| |
Collapse
|
29
|
Yu N, Christiaens O, Liu J, Niu J, Cappelle K, Caccia S, Huvenne H, Smagghe G. Delivery of dsRNA for RNAi in insects: an overview and future directions. INSECT SCIENCE 2013; 20:4-14. [PMID: 23955821 DOI: 10.1111/j.1744-7917.2012.01534.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
RNA interference (RNAi) refers to the process of exogenous double-stranded RNA (dsRNA) silencing the complementary endogenous messenger RNA. RNAi has been widely used in entomological research for functional genomics in a variety of insects and its potential for RNAi-based pest control has been increasingly emphasized mainly because of its high specificity. This review focuses on the approaches of introducing dsRNA into insect cells or insect bodies to induce effective RNAi. The three most common delivery methods, namely, microinjection, ingestion, and soaking, are illustrated in details and their advantages and limitations are summarized for purpose of feasible RNAi research. In this review, we also briefly introduce the two possible dsRNA uptake machineries, other dsRNA delivery methods and the history of RNAi in entomology. Factors that influence the specificity and efficiency of RNAi such as transfection reagents, selection of dsRNA region, length, and stability of dsRNA in RNAi research are discussed for further studies.
Collapse
Affiliation(s)
- Na Yu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Toprak U, Baldwin D, Erlandson M, Gillott C, Harris S, Hegedus DD. In vitro and in vivo application of RNA interference for targeting genes involved in peritrophic matrix synthesis in a lepidopteran system. INSECT SCIENCE 2013; 20:92-100. [PMID: 23955829 DOI: 10.1111/j.1744-7917.2012.01562.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The midgut of most insects is lined with a semipermeable acellular tube, the peritrophic matrix (PM), composed of chitin and proteins. Although various genes encoding PM proteins have been characterized, our understanding of their roles in PM structure and function is very limited. One promising approach for obtaining functional information is RNA interference, which has been used to reduce the levels of specific mRNAs using double-stranded RNAs administered to larvae by either injection or feeding. Although this method is well documented in dipterans and coleopterans, reports of its success in lepidopterans are varied. In the current study, the silencing midgut genes encoding PM proteins (insect intestinal mucin 1, insect intestinal mucin 4, PM protein 1) and the chitin biosynthetic or modifying enzymes (chitin synthase-B and chitin deacetylase 1) in a noctuid lepidopteran, Mamestra configurata, was examined in vitro and in vivo. In vitro studies in primary midgut epithelial cell preparations revealed an acute and rapid silencing (by 24 h) for the gene encoding chitin deacetylase 1 and a slower rate of silencing (by 72 h) for the gene encoding PM protein 1. Genes encoding insect intestinal mucins were slightly silenced by 72 h, whereas no silencing was detected for the gene encoding chitin synthase-B. In vivo experiments focused on chitin deacetylase 1, as the gene was silenced to the greatest extent in vitro. Continuous feeding of neonates and fourth instar larvae with double-stranded RNA resulted in silencing of chitin deacetylase 1 by 24 and 36 h, respectively. Feeding a single dose to neonates also resulted in silencing by 24 h. The current study demonstrates that genes encoding PM proteins can be silenced and outlines conditions for RNA interference by per os feeding in lepidopterans.
Collapse
Affiliation(s)
- Umut Toprak
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Singh AD, Wong S, Ryan CP, Whyard S. Oral delivery of double-stranded RNA in larvae of the yellow fever mosquito, Aedes aegypti: implications for pest mosquito control. JOURNAL OF INSECT SCIENCE (ONLINE) 2013; 13:69. [PMID: 24224468 PMCID: PMC3835047 DOI: 10.1673/031.013.6901] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
RNA interference has already proven itself to be a highly versatile molecular biology tool for understanding gene function in a limited number of insect species, but its widespread use in other species will be dependent on the development of easier methods of double-stranded RNA (dsRNA) delivery. This study demonstrates that RNA interference can be induced in the mosquito Aedes aegypti L. (Diptera: Culicidae) simply by soaking larvae in a solution of dsRNA for two hours. The mRNA transcripts for β-tubulin, chitin synthase-1 and -2, and heat shock protein 83 were reduced between 30 and 50% three days post-dsRNA treatment. The dsRNA was mixed with a visible dye to identify those individuals that fed on the dsRNA, and based on an absence of RNA interference in those individuals that contained no dye within their guts, the primary route of entry of dsRNA is likely through the gut epithelium. RNA interference was systemic in the insects, inducing measurable knock down of gene expression in tissues beyond the gut. Silencing of the β-tubulin and chitin synthase-1 genes resulted in reduced growth and/or mortality of the larvae, demonstrating the utility of dsRNA as a potential mosquito larvicide. Silencing of chitin synthase-2 did not induce mortality in the larvae, and silencing of heat shock protein 83 only induced mortality in the insects if they were subsequently subjected to a heat stress. Drosophila melanogaster Meigen (Diptera: Drosophilidae) larvae were also soaked in dsRNA designed to specifically target either their own β-tubulin gene, or that of A. aegypti, and significant mortality was only seen in larvae treated with dsRNA targeting their own gene, which suggests that dsRNA pesticides could be designed to be species-limited.
Collapse
Affiliation(s)
- Aditi D. Singh
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sylvia Wong
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Calen P. Ryan
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Steven Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Corresponding author.,
| |
Collapse
|
32
|
Anion-sensitive fluorophore identifies the Drosophila swell-activated chloride channel in a genome-wide RNA interference screen. PLoS One 2012; 7:e46865. [PMID: 23056495 PMCID: PMC3464265 DOI: 10.1371/journal.pone.0046865] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 09/06/2012] [Indexed: 12/21/2022] Open
Abstract
When cells swell in hypo-osmotic solutions, chloride-selective ion channels (Cl(swell)) activate to reduce intracellular osmolality and prevent catastrophic cell rupture. Despite intensive efforts to assign a molecular identity to the mammalian Cl(swell) channel, it remains unknown. In an unbiased genome-wide RNA interference (RNAi) screen of Drosophila cells stably expressing an anion-sensitive fluorescent indicator, we identify Bestrophin 1 (dBest1) as the Drosophila Cl(swell) channel. Of the 23 screen hits with mammalian homologs and predicted transmembrane domains, only RNAi specifically targeting dBest1 eliminated the Cl(swell) current (I(Clswell)). We further demonstrate the essential contribution of dBest1 to Drosophila I(Clswell) with the introduction of a human Bestrophin disease-associated mutation (W94C). Overexpression of the W94C construct in Drosophila cells significantly reduced the endogenous I(Clswell). We confirm that exogenous expression of dBest1 alone in human embryonic kidney (HEK293) cells creates a clearly identifiable Drosophila-like I(Clswell). In contrast, activation of mouse Bestrophin 2 (mBest2), the closest mammalian ortholog of dBest1, is swell-insensitive. The first 64 residues of dBest1 conferred swell activation to mBest2. The chimera, however, maintains mBest2-like pore properties, strongly indicating that the Bestrophin protein forms the Cl(swell) channel itself rather than functioning as an essential auxiliary subunit. dBest1 is an anion channel clearly responsive to swell; this activation depends upon its N-terminus.
Collapse
|
33
|
Garbutt JS, Reynolds SE. Induction of RNA interference genes by double-stranded RNA; implications for susceptibility to RNA interference. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:621-8. [PMID: 22634162 DOI: 10.1016/j.ibmb.2012.05.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 05/03/2023]
Abstract
Gene silencing by RNA interference (RNAi) can be a useful reverse genetics tool in eukaryotes. However, some species appear refractory to RNAi. To study the role of the differential expression of RNAi proteins in RNAi, we isolated partial dicer-2, argonaute-2 translin, vasa intronic gene (VIG) and tudor staphylococcus/micrococcal nuclease (TSN) genes from the tobacco hornworm, Manduca sexta, a well-studied insect model which we have found to be variably sensitive to RNAi. We found that the RNAi gene, translin, was expressed at minimal levels in M. sexta tissue and that there is a specific, dose-dependent upregulation of dicer-2 and argonaute-2 expression in response to injection with dsRNA, but no upregulation of the other genes tested. Upregulation of gene expression was rapid and transient. In order to prolong the upregulation we introduced multiple doses of dsRNA, resulting in multiple peaks of dicer-2 gene expression. Our results have implications for the design of RNAi experiments and may help to explain differences in the sensitivity of eukaryotic organisms to RNAi.
Collapse
Affiliation(s)
- Jennie S Garbutt
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | | |
Collapse
|
34
|
Tomimoto K, Yamakawa M, Tanaka H. Construction of a long hairpin RNA expression library using Cre recombinase. J Biotechnol 2012; 160:129-39. [DOI: 10.1016/j.jbiotec.2012.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/15/2012] [Accepted: 03/20/2012] [Indexed: 10/28/2022]
|
35
|
Li KM, Ren LY, Zhang YJ, Wu KM, Guo YY. Knockdown of Microplitis mediator Odorant Receptor Involved in the Sensitive Detection of Two Chemicals. J Chem Ecol 2012; 38:287-94. [DOI: 10.1007/s10886-012-0085-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/13/2012] [Accepted: 02/17/2012] [Indexed: 11/28/2022]
|
36
|
Enriquez J, de Taffin M, Crozatier M, Vincent A, Dubois L. Combinatorial coding of Drosophila muscle shape by Collier and Nautilus. Dev Biol 2011; 363:27-39. [PMID: 22200594 DOI: 10.1016/j.ydbio.2011.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 11/28/2022]
Abstract
The diversity of Drosophila muscles correlates with the expression of combinations of identity transcription factors (iTFs) in muscle progenitors. Here, we address the question of when and how a combinatorial code is translated into muscle specific properties, by studying the roles of the Collier and Nautilus iTFs that are expressed in partly overlapping subsets of muscle progenitors. We show that the three dorso-lateral (DL) progenitors which express Nautilus and Collier are specified in a fixed temporal sequence and that each expresses additionally other, distinct iTFs. Removal of Collier leads to changes in expression of some of these iTFs and mis-orientation of several DL muscles, including the dorsal acute DA3 muscle which adopts a DA2 morphology. Detailed analysis of this transformation revealed the existence of two steps in the attachment of elongating muscles to specific tendon cells: transient attachment to alternate tendon cells, followed by a resolution step selecting the final sites. The multiple cases of triangular-shaped muscles observed in col mutant embryos indicate that transient binding of elongating muscle to exploratory sites could be a general feature of the developing musculature. In nau mutants, the DA3 muscle randomly adopts the attachment sites of the DA3 or DO5 muscles that derive from the same progenitor, resulting in a DA3, DO5-like or bifid DA3-DO5 orientation. In addition, nau mutant embryos display thinner muscle fibres. Together, our data show that the sequence of expression and combinatorial activities of Col and Nau control the pattern and morphology of DL muscles.
Collapse
Affiliation(s)
- Jonathan Enriquez
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
37
|
Tomimoto K, Fujita K, Ishibashi J, Imanishi S, Yamakawa M, Tanaka H. A Novel Method to Convert a DNA Fragment Inserted into a Plasmid to an Inverted Repeat Structure. Mol Biotechnol 2011; 50:18-27. [DOI: 10.1007/s12033-011-9408-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Lü ZC, Wan FH. Using double-stranded RNA to explore the role of heat shock protein genes in heat tolerance in Bemisia tabaci (Gennadius). J Exp Biol 2011; 214:764-9. [DOI: 10.1242/jeb.047415] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The whitefly, Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) biotype B, is one of the most destructive invasive pests of field and glasshouse crops, and has a high tolerance to heat. Our previous work found that whitefly females are more heat tolerant than males. In the present study, real-time PCR and double-stranded RNA (dsRNA) methods were used to explore the role of heat shock protein (Hsp) genes in whitefly of both sexes; this provided further evidence of the mechanism underlying the differential heat tolerance abilities of females and males. The results showed that both hsp23 and hsp70 mRNA expression levels were higher in females than in males from 37.5 to 42°C, while at the extreme temperature of 44°C the hsp70 mRNA level was higher in males than in females. There was no significant difference in hsp90 mRNA expression between females and males under heat shock conditions. Furthermore, the survival rate of females fed hsp23 or hsp70 dsRNA significantly decreased following heat shock at 44°C for 1 h, but male survival rate was not significantly affected. Additionally, the survival rate of both females and males showed no significant change after they were fed with hsp90 dsRNA. Collectively, the present study shows that the optimum mRNA expression of Hsp genes in females promotes a higher survival rate under heat shock conditions; hsp23 and hsp70 play a key role for heat tolerance in females but not in males, and hsp90 shows no significant role in heat tolerance in either females or males. Further, our study indicates that feeding with dsRNA is an effective method by which to study gene function, and the simplicity of this approach opens the way for further research on gene function in different sexes and diverse groups of species.
Collapse
Affiliation(s)
- Zhi-Chuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Fang-Hao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100081, China
- Center for Management of Invasive Alien Species, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
39
|
Nagai R, Hashimoto R, Yamaguchi M. Drosophila Syntrophins are involved in locomotion and regulation of synaptic morphology. Exp Cell Res 2010; 316:2313-21. [PMID: 20632467 DOI: 10.1016/j.yexcr.2010.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Syntrophin components of the dystrophin glycoprotein complex (DGC) feature multiple protein interaction domains that may act in molecular scaffolding, recruiting signaling proteins to membranes and the DGC. Drosophila Syntrophin-1 (Syn1) and Syntrophin-2 (Syn2) are counterparts of human alpha1/beta1/beta2-syntrophins and gamma1/gamma2-syntrophins, respectively. alpha1/beta1/beta2-syntrophins are well documented, while little is known about gamma1/gamma2-syntrophins. Here, we performed immunohistochemical analyses with a specific antibody to Syn2 and demonstrated predominant expression in the larval and adult central nervous system. To investigate the in vivo functions of Syn2, we have generated Drosophila Syn2 deficiency mutants. Although the Syn2 mutants exhibit no overt phenotype, the combination of Syn1 knockdown and Syn2(37) mutation dramatically shortened life span, synergistically reduced locomotion ability and synergistically enhanced overgrowth of neuromuscular junctions in N-ethylmaleimide sensitive factor 2 mutants. From these data we conclude that Syn1 and Syn2 are required for locomotion and are involved in regulation of synaptic morphology. In addition, the two syntrophins can at least partially compensate for each other's functions.
Collapse
Affiliation(s)
- Rika Nagai
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | |
Collapse
|
40
|
McMahon A, Reeves GT, Supatto W, Stathopoulos A. Mesoderm migration in Drosophila is a multi-step process requiring FGF signaling and integrin activity. Development 2010; 137:2167-75. [PMID: 20530544 PMCID: PMC2882136 DOI: 10.1242/dev.051573] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2010] [Indexed: 02/02/2023]
Abstract
Migration is a complex, dynamic process that has largely been studied using qualitative or static approaches. As technology has improved, we can now take quantitative approaches towards understanding cell migration using in vivo imaging and tracking analyses. In this manner, we have established a four-step model of mesoderm migration during Drosophila gastrulation: (I) mesodermal tube formation, (II) collapse of the mesoderm, (III) dorsal migration and spreading and (IV) monolayer formation. Our data provide evidence that these steps are temporally distinct and that each might require different chemical inputs. To support this, we analyzed the role of fibroblast growth factor (FGF) signaling, in particular the function of two Drosophila FGF ligands, Pyramus and Thisbe, during mesoderm migration. We determined that FGF signaling through both ligands controls movements in the radial direction. Thisbe is required for the initial collapse of the mesoderm onto the ectoderm, whereas both Pyramus and Thisbe are required for monolayer formation. In addition, we uncovered that the GTPase Rap1 regulates radial movement of cells and localization of the beta-integrin subunit, Myospheroid, which is also required for monolayer formation. Our analyses suggest that distinct signals influence particular movements, as we found that FGF signaling is involved in controlling collapse and monolayer formation but not dorsal movement, whereas integrins are required to support monolayer formation only and not earlier movements. Our work demonstrates that complex cell migration is not necessarily a fluid process, but suggests instead that different types of movements are directed by distinct inputs in a stepwise manner.
Collapse
Affiliation(s)
- Amy McMahon
- California Institute of Technology, Division of Biology MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Gregory T. Reeves
- California Institute of Technology, Division of Biology MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | | | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
41
|
Abstract
RNA interference (RNAi) provides a powerful reverse genetics approach to analyze gene functions both in tissue culture and in vivo. Because of its widespread applicability and effectiveness it has become an essential part of the tool box kits of model organisms such as Caenorhabditis elegans, Drosophila, and the mouse. In addition, the use of RNAi in animals in which genetic tools are either poorly developed or nonexistent enables a myriad of fundamental questions to be asked. Here, we review the methods and applications of in vivo RNAi to characterize gene functions in model organisms and discuss their impact to the study of developmental as well as evolutionary questions. Further, we discuss the applications of RNAi technologies to crop improvement, pest control and RNAi therapeutics, thus providing an appreciation of the potential for phenomenal applications of RNAi to agriculture and medicine.
Collapse
Affiliation(s)
- Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
42
|
Ciglar L, Furlong EEM. Conservation and divergence in developmental networks: a view from Drosophila myogenesis. Curr Opin Cell Biol 2009; 21:754-60. [PMID: 19896355 DOI: 10.1016/j.ceb.2009.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/20/2009] [Accepted: 10/06/2009] [Indexed: 01/07/2023]
Abstract
Understanding developmental networks has recently been enhanced through the identification of a large number of conserved essential regulators. Interspecies comparisons of the transcriptional networks regulated by these factors are still at a rather early stage, with limited global data available. Here we use the accumulating phenotypic information from multiple species to provide initial insights into the wiring and rewiring of developmental networks, with particular emphasis on myogenesis, a highly conserved developmental process. This review highlights the most recent findings on the transcriptional program driving Drosophila myogenesis and compares this with vertebrates, revealing emerging themes that may be applicable to other developmental contexts.
Collapse
Affiliation(s)
- Lucia Ciglar
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | |
Collapse
|
43
|
Whyard S, Singh AD, Wong S. Ingested double-stranded RNAs can act as species-specific insecticides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:824-32. [PMID: 19815067 DOI: 10.1016/j.ibmb.2009.09.007] [Citation(s) in RCA: 387] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 08/28/2009] [Accepted: 09/28/2009] [Indexed: 05/03/2023]
Abstract
A serious shortcoming of many insecticides is that they can kill non-target species. To address this issue, we harnessed the sequence specificity of RNA interference (RNAi) to design orally-delivered double-stranded (ds) RNAs that selectively killed target species. Fruit flies (Drosophila melanogaster), flour beetles (Tribolium castaneum), pea aphids (Acyrthosiphon pisum), and tobacco hornworms (Manduca sexta) were selectively killed when fed species-specific dsRNA targeting vATPase transcripts. We also demonstrate that even closely related species can be selectively killed by feeding on dsRNAs that target the more variable regions of genes, such as the 3' untranslated regions (UTRs): four species of the genus Drosophila were selectively killed by feeding on short (<40 nt) dsRNAs that targeted the 3' UTR of the gamma-tubulin gene. For the aphid nymphs and beetle and moth larvae, dsRNA could simply be dissolved into their diets, but to induce RNAi in the drosophilid species, the dsRNAs needed to be encapsulated in liposomes to help facilitate uptake of the dsRNA. This is the first demonstration of RNAi following ingestion of dsRNA in all of the species tested, and the method offers promise of both higher throughput RNAi screens and the development of a new generation of species-specific insecticides.
Collapse
Affiliation(s)
- Steven Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | |
Collapse
|
44
|
Syntrophin-2 is required for eye development in Drosophila. Exp Cell Res 2009; 316:272-85. [PMID: 19836389 DOI: 10.1016/j.yexcr.2009.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/07/2009] [Accepted: 10/07/2009] [Indexed: 11/23/2022]
Abstract
Syntrophins are components of the dystrophin glycoprotein complex (DGC), which is encoded by causative genes of muscular dystrophies. The DGC is thought to play roles not only in linking the actin cytoskeleton to the extracellular matrix, providing stability to the cell membrane, but also in signal transduction. Because of their binding to a variety of different molecules, it has been suggested that syntrophins are adaptor proteins recruiting signaling proteins to membranes and the DGC. However, critical roles in vivo remain elusive. Drosophila Syntrophin-2 (Syn2) is an orthologue of human gamma 1/gamma 2-syntrophins. Western immunoblot analysis here showed Syn2 to be expressed throughout development, with especially high levels in the adult head. Morphological aberrations were observed in Syn2 knockdown adult flies, with lack of retinal elongation and malformation of rhabdomeres. Furthermore, Syn2 knockdown flies exhibited excessive apoptosis in third instar larvae and alterations in the actin localization in the pupal retinae. Genetic crosses with a collection of Drosophila deficiency stocks allowed us to identify seven genomic regions, deletions of which caused enhancement of the rough eye phenotype induced by Syn2 knockdown. This information should facilitate identification of Syn2 regulators in Drosophila and clarification of roles of Syn2 in eye development.
Collapse
|
45
|
Hazelett DJ, Lakeland DL, Weiss JB. Affinity Density: a novel genomic approach to the identification of transcription factor regulatory targets. Bioinformatics 2009; 25:1617-24. [PMID: 19401399 PMCID: PMC2732317 DOI: 10.1093/bioinformatics/btp282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Methods: A new method was developed for identifying novel transcription factor regulatory targets based on calculating Local Affinity Density. Techniques from the signal-processing field were used, in particular the Hann digital filter, to calculate the relative binding affinity of different regions based on previously published in vitro binding data. To illustrate this approach, the complete genomes of Drosophila melanogaster and D.pseudoobscura were analyzed for binding sites of the homeodomain proteinc Tinman, an essential heart development gene in both Drosophila and Mouse. The significant binding regions were identified relative to genomic background and assigned to putative target genes. Valid candidates common to both species of Drosophila were selected as a test of conservation. Results: The new method was more sensitive than cluster searches for conserved binding motifs with respect to positive identification of known Tinman targets. Our Local Affinity Density method also identified a significantly greater proportion of Tinman-coexpressed genes than equivalent, optimized cluster searching. In addition, this new method predicted a significantly greater than expected number of genes with previously published RNAi phenotypes in the heart. Availability: Algorithms were implemented in Python, LISP, R and maxima, using MySQL to access locally mirrored sequence data from Ensembl (D.melanogaster release 4.3) and flybase (D.pseudoobscura). All code is licensed under GPL and freely available at http://www.ohsu.edu/cellbio/dev_biol_prog/affinitydensity/. Contact:hazelett@ohsu.edu
Collapse
Affiliation(s)
- Dennis J Hazelett
- Integrative Biosciences, Oregon Health and Science University, 611 SW Campus Drive, Portland, OR 97239, USA.
| | | | | |
Collapse
|
46
|
|
47
|
Establishment of tribolium as a genetic model system and its early contributions to evo-devo. Genetics 2009; 180:1779-86. [PMID: 19087969 DOI: 10.1534/genetics.104.98673] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
La Fauce KA, Owens L. RNA interference reduces PmergDNV expression and replication in an in vivo cricket model. J Invertebr Pathol 2009; 100:111-5. [DOI: 10.1016/j.jip.2008.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 10/27/2008] [Indexed: 11/26/2022]
|
49
|
Kiefer J, Yin HH, Que QQ, Mousses S. High-throughput siRNA screening as a method of perturbation of biological systems and identification of targeted pathways coupled with compound screening. Methods Mol Biol 2009; 563:275-87. [PMID: 19597791 DOI: 10.1007/978-1-60761-175-2_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High-throughput RNA interference (HT-RNAi) is a powerful research tool for parallel, 'genome-wide', targeted knockdown of specific gene products. Such perturbation of gene product expression allows for the systematic query of gene function. The phenotypic results can be monitored by assaying for specific alterations in molecular and cellular endpoints, such as promoter activation, cell proliferation and survival. RNAi profiling may also be coupled with drug screening to identify molecular correlates of drug response. As with other genomic-scale data, methods of data analysis are required to handle the unique aspects of data normalization and statistical processing. In addition, novel techniques or knowledge-mining strategies are required to extract useful biological information from HT-RNAi data. Knowledge-mining strategies involve the novel application of bioinformatic tools and expert curation to provide biological context to genomic-scale data such as that generated from HT-RNAi data. Pathway-based tools, whether text-mining based or manually curated, serve an essential role in knowledge mining. These tools can be applied during all steps of HT-RNAi screen experiments including pre-screen knowledge gathering, assay development and hit confirmation and validation. Most importantly, pathway tools allow the interrogation of HT-RNAi data to identify and prioritize pathway-based biological information as a result of specific loss of gene function.
Collapse
Affiliation(s)
- Jeff Kiefer
- Pharmaceutical Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | | | | | | |
Collapse
|
50
|
Skromne I, Prince VE. Current perspectives in zebrafish reverse genetics: moving forward. Dev Dyn 2008; 237:861-82. [PMID: 18330930 DOI: 10.1002/dvdy.21484] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Use of the zebrafish as a model of vertebrate development and disease has expanded dramatically over the past decade. While many articles have discussed the strengths of zebrafish forward genetics (the phenotype-driven approach), there has been less emphasis on equally important and frequently used reverse genetics (the candidate gene-driven approach). Here we review both current and prospective reverse genetic techniques that are applicable to the zebrafish model. We include discussion of pharmacological approaches, popular gain-of-function and knockdown approaches, and gene targeting strategies. We consider the need for temporal and spatial control over gain/loss of gene function, and discuss available and developing techniques to achieve this end. Our goal is both to reveal the current technical advantages of the zebrafish and to highlight those areas where work is still required to allow this system to be exploited to full advantage.
Collapse
Affiliation(s)
- Isaac Skromne
- Department of Biology, University of Miami, Coral Gables, Florida 33146, USA.
| | | |
Collapse
|