1
|
Hu L, Zhang X, Zang S. Mutations in Ras homolog family member A in patients with peripheral T-cell lymphoma and implications for personalized medicine. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0132. [PMID: 39119774 PMCID: PMC11414223 DOI: 10.20892/j.issn.2095-3941.2024.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Genome sequencing has revealed frequent mutations in Ras homolog family member A (RHOA) among various cancers with unique aberrant profiles and pathogenic effects, especially in peripheral T-cell lymphoma (PTCL). The discrete positional distribution and types of RHOA amino acid substitutions vary according to the tumor type, thereby leading to different functional and biological properties, which provide new insight into the molecular pathogenesis and potential targeted therapies for various tumors. However, the similarities and discrepancies in characteristics of RHOA mutations among various histologic subtypes of PTCL have not been fully elucidated. Herein we highlight the inconsistencies and complexities of the type and location of RHOA mutations and demonstrate the contribution of RHOA variants to the pathogenesis of PTCL by combining epigenetic abnormalities and activating multiple downstream pathways. The promising potential of targeting RHOA as a therapeutic modality is also outlined. This review provides new insight in the field of personalized medicine to improve the clinical outcomes for patients.
Collapse
Affiliation(s)
- Lina Hu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xuanye Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shengbing Zang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
2
|
Silva AI, Socodato R, Pinto C, Terceiro AF, Canedo T, Relvas JB, Saraiva M, Summavielle T. IL-10 and Cdc42 modulate astrocyte-mediated microglia activation in methamphetamine-induced neuroinflammation. Glia 2024; 72:1501-1517. [PMID: 38780232 DOI: 10.1002/glia.24542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Methamphetamine (Meth) use is known to induce complex neuroinflammatory responses, particularly involving astrocytes and microglia. Building upon our previous research, which demonstrated that Meth stimulates astrocytes to release tumor necrosis factor (TNF) and glutamate, leading to microglial activation, this study investigates the role of the anti-inflammatory cytokine interleukin-10 (IL-10) in this process. Our findings reveal that the presence of recombinant IL-10 (rIL-10) counteracts Meth-induced excessive glutamate release in astrocyte cultures, which significantly reduces microglial activation. This reduction is associated with the modulation of astrocytic intracellular calcium (Ca2+) dynamics, particularly by restricting the release of Ca2+ from the endoplasmic reticulum to the cytoplasm. Furthermore, we identify the small Rho GTPase Cdc42 as a crucial intermediary in the astrocyte-to-microglia communication pathway under Meth exposure. By employing a transgenic mouse model that overexpresses IL-10 (pMT-10), we also demonstrate in vivo that IL-10 prevents Meth-induced neuroinflammation. These findings not only enhance our understanding of Meth-related neuroinflammatory mechanisms, but also suggest IL-10 and Cdc42 as putative therapeutic targets for treating Meth-induced neuroinflammation.
Collapse
Affiliation(s)
- Ana Isabel Silva
- Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Renato Socodato
- Glia Cell Biology Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Carolina Pinto
- Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Ana Filipa Terceiro
- Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Teresa Canedo
- Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - João Bettencourt Relvas
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Glia Cell Biology Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Margarida Saraiva
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Immune Regulation Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Teresa Summavielle
- Addiction Biology Group, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ESS.PP, Escola Superior de Saúde do Politécnico do Porto, Porto, Portugal
| |
Collapse
|
3
|
Cowell E, Jaber H, Kris LP, Fitzgerald MG, Sanders VM, Norbury AJ, Eyre NS, Carr JM. Vav proteins do not influence dengue virus replication but are associated with induction of phospho-ERK, IL-6, and viperin mRNA following DENV infection in vitro. Microbiol Spectr 2024; 12:e0239123. [PMID: 38054722 PMCID: PMC10782993 DOI: 10.1128/spectrum.02391-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Dengue disease is characterized by an inflammatory-mediated immunopathology, with elevated levels of circulating factors including TNF-α and IL-6. If the damaging inflammatory pathways could be blocked without loss of antiviral responses or exacerbating viral replication, then this would be of potential therapeutic benefit. The study here has investigated the Vav guanine exchange factors as a potential alternative signaling pathway that may drive dengue virus (DENV)-induced inflammatory responses, with a focus on Vav1 and 2. While Vav proteins were positively associated with mRNA for inflammatory cytokines, blocking Vav signaling didn't affect DENV replication but prevented DENV-induction of p-ERK and enhanced IL-6 (inflammatory) and viperin (antiviral) mRNA. These initial data suggest that Vav proteins could be a target that does not compromise control of viral replication and should be investigated further for broader impact on host inflammatory responses, in settings such as antibody-dependent enhancement of infection and in different cell types.
Collapse
Affiliation(s)
- Evangeline Cowell
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Hawraa Jaber
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Luke P. Kris
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Madeleine G. Fitzgerald
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Valeria M. Sanders
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Aidan J. Norbury
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Nicholas S. Eyre
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Jillian M. Carr
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Shalom B, Salaymeh Y, Risling M, Katzav S. Unraveling the Oncogenic Potential of VAV1 in Human Cancer: Lessons from Mouse Models. Cells 2023; 12:cells12091276. [PMID: 37174676 PMCID: PMC10177506 DOI: 10.3390/cells12091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
VAV1 is a hematopoietic signal transducer that possesses a GDP/GTP nucleotide exchange factor (GEF) that is tightly regulated by tyrosine phosphorylation, along with adapter protein domains, such as SH2 and SH3. Research on VAV1 has advanced over the years since its discovery as an in vitro activated oncogene in an NIH3T3 screen for oncogenes. Although the oncogenic form of VAV1 first identified in the screen has not been detected in human clinical tumors, its wild-type and mutant forms have been implicated in mammalian malignancies of various tissue origins, as well as those of the hematopoietic system. This review article addresses the activity of human VAV1 as an overexpressed or mutated gene and also describes the differences in the distribution of VAV1 mutations in the hematopoietic system and in other tissues. The knowledge accumulated thus far from GEMMs expressing VAV1 is described, with the conclusion that GEMMs of both wild-type VAV1 and mutant VAV1 do not form tumors, yet these will be generated when additional molecular insults, such as loss of p53 or KRAS mutation, occur.
Collapse
Affiliation(s)
- Batel Shalom
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Yaser Salaymeh
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Matan Risling
- Department of Military Medicine and "Tzameret", Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
- Medical Corps, Israel Defense Forces, Tel-Hashomer 02149, Israel
| | - Shulamit Katzav
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
5
|
Ruminski K, Celis-Gutierrez J, Jarmuzynski N, Maturin E, Audebert S, Malissen M, Camoin L, Voisinne G, Malissen B, Roncagalli R. Mapping the SLP76 interactome in T cells lacking each of the GRB2-family adaptors reveals molecular plasticity of the TCR signaling pathway. Front Immunol 2023; 14:1139123. [PMID: 37006259 PMCID: PMC10057548 DOI: 10.3389/fimmu.2023.1139123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
The propagation and diversification of signals downstream of the T cell receptor (TCR) involve several adaptor proteins that control the assembly of multimolecular signaling complexes (signalosomes). The global characterization of changes in protein-protein interactions (PPI) following genetic perturbations is critical to understand the resulting phenotypes. Here, by combining genome editing techniques in T cells and interactomics studies based on affinity purification coupled to mass spectrometry (AP-MS) analysis, we determined and quantified the molecular reorganization of the SLP76 interactome resulting from the ablation of each of the three GRB2-family adaptors. Our data showed that the absence of GADS or GRB2 induces a major remodeling of the PPI network associated with SLP76 following TCR engagement. Unexpectedly, this PPI network rewiring minimally affects proximal molecular events of the TCR signaling pathway. Nevertheless, during prolonged TCR stimulation, GRB2- and GADS-deficient cells displayed a reduced level of activation and cytokine secretion capacity. Using the canonical SLP76 signalosome, this analysis highlights the plasticity of PPI networks and their reorganization following specific genetic perturbations.
Collapse
Affiliation(s)
- Kilian Ruminski
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Javier Celis-Gutierrez
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Nicolas Jarmuzynski
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Emilie Maturin
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Stephane Audebert
- Institut Paoli-Calmettes, CRCM, Aix Marseille Université, CNRS, INSERM, Marseille Protóomique, Marseille, France
| | - Marie Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Luc Camoin
- Institut Paoli-Calmettes, CRCM, Aix Marseille Université, CNRS, INSERM, Marseille Protóomique, Marseille, France
| | - Guillaume Voisinne
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- Centre d’Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
- *Correspondence: Romain Roncagalli, ; Bernard Malissen,
| | - Romain Roncagalli
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
- *Correspondence: Romain Roncagalli, ; Bernard Malissen,
| |
Collapse
|
6
|
Vav1 accelerates Ras-driven lung cancer and modulates its tumor microenvironment. Cell Signal 2022; 97:110395. [PMID: 35752351 DOI: 10.1016/j.cellsig.2022.110395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022]
Abstract
The potential impact of Vav1 on human cancer was only recently acknowledged, as it is detected as a mutant or an overexpressed gene in various cancers, including lung cancer. Vav1, which is normally and exclusively expressed in the hematopoietic system functions as a specific GDP/GTP nucleotide exchange factor (GEF), strictly regulated by tyrosine phosphorylation. To investigate whether Vav1 plays a causative or facilitating role in-vivo in lung cancer development and to examine whether it co-operates with other oncogenes, such as mutant K-Ras, we generated novel mouse strains that express: Vav1 or K-RasG12D in type II pneumocytes, as well as a transgenic mouse line that expresses both Vav1 and K-RasG12D in these cells. Coexpression of Vav1 and K-RasG12D in the lungs dramatically increased malignant lung cancer lesions, and did so significantly faster than K-RasG12D alone, strongly suggesting that these two oncogenes synergize to enhance lung tumor development. Vav1 expression alone had no apparent effects on lung tumorigenesis. The increase in lung cancer in K-RasG12D/Vav1 mice was accompanied by an increase in B-cell, T-cells, and monocyte infiltration in the tumor microenvironment. Concomitantly, ERK phosphorylation was highly elevated in the lungs of K-RasG12 D/Vav1 mice. Also, several cytokines such as IL-4 and IL-13 which play a significant role in the immune system, were elevated in lungs of Vav1 and K-RasG12 D/Vav1 mice. Our findings emphasize the contribution of Vav1 to lung tumor development through its signaling properties.
Collapse
|
7
|
Vav1 Promotes B-Cell Lymphoma Development. Cells 2022; 11:cells11060949. [PMID: 35326399 PMCID: PMC8946024 DOI: 10.3390/cells11060949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
Vav1 is normally and exclusively expressed in the hematopoietic system where it functions as a specific GDP/GTP nucleotide exchange factor (GEF), firmly regulated by tyrosine phosphorylation. Mutations and overexpression of Vav1 in hematopoietic malignancies, and in human cancers of various histologic origins, are well documented. To reveal whether overexpression of Vav1 in different tissues suffices for promoting the development of malignant lesions, we expressed Vav1 in transgenic mice by using the ubiquitous ROSA26 promoter (Rosa Vav1). We detected Vav1 expression in epithelial tissues of various organs including pancreas, liver, and lung. While carcinomas did not develop in these organs, surprisingly, we noticed the development of B-cell lymphomas. Rac1-GTP levels did not change in tissues from Rosa Vav1 mice expressing the transgenic Vav1, while ERK phosphorylation increased in the lymphomas, suggesting that signaling pathways are evoked. One of the growth factors analyzed by us as a suspect candidate to mediate paracrine stimulation in the lymphocytes was CSF-1, which was highly expressed in the epithelial compartment of Rosa Vav1 mice. The expression of its specific receptor, CSF-1R, was found to be highly expressed in the B-cell lymphomas. Taken together, our results suggest a potential cross-talk between epithelial cells expressing Vav1, that secrete CSF-1, and the lymphocytes that express CSF-1R, thus leading to the generation of B-cell lymphomas. Our findings provide a novel mechanism by which Vav1 contributes to tumor propagation.
Collapse
|
8
|
Lawton ML, Emili A. Mass Spectrometry-Based Phosphoproteomics and Systems Biology: Approaches to Study T Lymphocyte Activation and Exhaustion. J Mol Biol 2021; 433:167318. [PMID: 34687714 DOI: 10.1016/j.jmb.2021.167318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022]
Abstract
T lymphocytes respond to extracellular cues and recognize and clear foreign bodies. These functions are tightly regulated by receptor-mediated intracellular signal transduction pathways and phosphorylation cascades resulting in rewiring of transcription, cell adhesion, and metabolic pathways, which leads to changes in downstream effector functions including cytokine secretion and target-cell killing. Given that these pathways become dysregulated in chronic diseases such as cancer, auto-immunity, diabetes, and persistent infections, mapping T cell signaling dynamics in normal and pathological states is central to understanding and modulating immune system behavior. Despite recent advances, there remains much to be learned from the study of T cell signaling at a systems level. The application of global phospho-proteomic profiling technology has the potential to provide unprecedented insights into the molecular networks that govern T cell function. These include capturing the spatiotemporal dynamics of the T cell responses as an ensemble of interacting components, rather than a static view at a single point in time. In this review, we describe innovative experimental approaches to study signaling mechanisms in the TCR, co-stimulatory receptors, synthetic signaling molecules such as chimeric antigen receptors, inhibitory receptors, and T cell exhaustion. Technical advances in mass spectrometry and systems biology frameworks are emphasized as these are poised to identify currently unknown functional relationships and dependencies to create causal predictive models that expand from the traditional narrow reductionist lens of singular components in isolation.
Collapse
Affiliation(s)
- Matthew L Lawton
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
9
|
VAV1 mutations contribute to development of T-cell neoplasms in mice. Blood 2021; 136:3018-3032. [PMID: 32992343 DOI: 10.1182/blood.2020006513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/16/2020] [Indexed: 01/23/2023] Open
Abstract
Activating mutations in the Vav guanine nucleotide exchange factor 1 (VAV1) gene are reported in various subtypes of mature T-cell neoplasms (TCNs). However, oncogenic activities associated with VAV1 mutations in TCNs remain unclear. To define them, we established transgenic mice expressing VAV1 mutants cloned from human TCNs. Although we observed no tumors in these mice for up to a year, tumors did develop in comparably aged mice on a p53-null background (p53-/-VAV1-Tg), and p53-/-VAV1-Tg mice died with shorter latencies than did p53-null (p53-/-) mice. Notably, various TCNs with tendency of maturation developed in p53-/-VAV1-Tg mice, whereas p53-/- mice exhibited only immature TCNs. Mature TCNs in p53-/-VAV1-Tg mice mimicked a subtype of human peripheral T-cell lymphoma (PTCL-GATA3) and exhibited features of type 2 T helper (Th2) cells. Phenotypes seen following transplantation of either p53-/-VAV1 or p53-/- tumor cells into nude mice were comparable, indicating cell-autonomous tumor-initiating capacity. Whole-transcriptome analysis showed enrichment of multiple Myc-related pathways in TCNs from p53-/-VAV1-Tg mice relative to p53-/- or wild-type T cells. Remarkably, amplification of the Myc locus was found recurrently in TCNs of p53-/-VAV1-Tg mice. Finally, treatment of nude mice transplanted with p53-/-VAV1-Tg tumor cells with JQ1, a bromodomain inhibitor that targets the Myc pathway, prolonged survival of mice. We conclude that VAV1 mutations function in malignant transformation of T cells in vivo and that VAV1-mutant-expressing mice could provide an efficient tool for screening new therapeutic targets in TCNs harboring these mutations.
Collapse
|
10
|
Gunasinghe SD, Peres NG, Goyette J, Gaus K. Biomechanics of T Cell Dysfunctions in Chronic Diseases. Front Immunol 2021; 12:600829. [PMID: 33717081 PMCID: PMC7948521 DOI: 10.3389/fimmu.2021.600829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms behind T cell dysfunctions during chronic diseases is critical in developing effective immunotherapies. As demonstrated by several animal models and human studies, T cell dysfunctions are induced during chronic diseases, spanning from infections to cancer. Although factors governing the onset and the extent of the functional impairment of T cells can differ during infections and cancer, most dysfunctional phenotypes share common phenotypic traits in their immune receptor and biophysical landscape. Through the latest developments in biophysical techniques applied to explore cell membrane and receptor-ligand dynamics, we are able to dissect and gain further insights into the driving mechanisms behind T cell dysfunctions. These insights may prove useful in developing immunotherapies aimed at reinvigorating our immune system to fight off infections and malignancies more effectively. The recent success with checkpoint inhibitors in treating cancer opens new avenues to develop more effective, targeted immunotherapies. Here, we highlight the studies focused on the transformation of the biophysical landscape during infections and cancer, and how T cell biomechanics shaped the immunopathology associated with chronic diseases.
Collapse
Affiliation(s)
- Sachith D Gunasinghe
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Newton G Peres
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
11
|
Wang S, Wang Y, Wang C. Rho guanine nucleotide exchange factor 39 increases the viability, migration and invasion of clear cell renal cell carcinoma cells via the activation of the AKT/ERK signaling pathway. Genet Mol Biol 2020; 43:e20190383. [PMID: 33231603 PMCID: PMC7684694 DOI: 10.1590/1678-4685-gmb-2019-0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 08/05/2020] [Indexed: 11/24/2022] Open
Abstract
We attempted to explore the effect of Rho guanine nucleotide exchange factor 39 (ARHGEF39) on the phenotypes of clear cell renal cell carcinoma (ccRCC) cells and the underlying mechanism. Analyses of the data from The Cancer Genome Atlas (TCGA) illustrated that ARHGEF39 expression was upregulated in ccRCC and high ARHGEF39 expression was correlated with a worse prognosis. The mRNA and protein expression of ARHGEF39 in ccRCC and nontumorigenic cells was measured by qRT-PCR and western blotting, respectively. The results showed that ARHGEF39 expression was upregulated in ccRCC cells compared with nontumorigenic cells. CCK8 and clonogenic assays were used to measure the viability of ccRCC cells after knockdown or overexpression of ARHGEF39. Transwell assays were used to examine the changes in cell motility after alterations in ARHGEF39 expression and treatment with LY294002 (an AKT inhibitor) or PD98059 (an ERK inhibitor). ARHGEF39-mediated changes in the phosphorylation of AKT and ERK were measured by western blotting. The results indicated that ARHGEF39 promoted the viability, migration and invasion of ccRCC cells by regulating the activation of the AKT/ERK signaling pathway. Overall, our research suggested that ARHGEF39 was upregulated in ccRCC and possibly facilitated the malignant development of ccRCC by modulating the AKT/ERK signaling pathway.
Collapse
Affiliation(s)
- Shuzhong Wang
- Hubei University of Medicine, Suizhou Hospital, Department of Nephrology, Suizhou, China
| | - Yanmei Wang
- Yantai Yuhuangding Hospital, Department of Blood Purification, Shandong, China
| | - Chuanyun Wang
- Jining No.1 People's Hospital, Department of Urinary Surgery, Shandong, China
| |
Collapse
|
12
|
Rohrs JA, Siegler EL, Wang P, Finley SD. ERK Activation in CAR T Cells Is Amplified by CD28-Mediated Increase in CD3ζ Phosphorylation. iScience 2020; 23:101023. [PMID: 32325413 PMCID: PMC7178546 DOI: 10.1016/j.isci.2020.101023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/24/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptors (CARs) are engineered receptors that mediate T cell activation. CARs are comprised of activating and co-stimulatory intracellular signaling domains derived from endogenous T cells that initiate signaling required for T cell activation, including ERK activation through the MAPK pathway. Understanding the mechanisms by which co-stimulatory domains influence signaling can help guide the design of next-generation CARs. Therefore, we constructed an experimentally validated computational model of anti-CD19 CARs in T cells bearing the CD3ζ domain alone or in combination with CD28. We performed a systematic analysis to explore the different mechanisms of CD28 co-stimulation on the ERK response time. Comparing these model simulations with experimental data indicates that CD28 primarily influences ERK activation by enhancing the phosphorylation kinetics of CD3ζ. Overall, we present a mechanistic mathematical modeling framework that can be used to gain insights into the mechanism of CAR T cell activation and produce new testable hypotheses.
Collapse
Affiliation(s)
| | | | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA; Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Stacey D Finley
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
13
|
Rashid A, Duan X, Gao F, Yang M, Yen A. Roscovitine enhances all- trans retinoic acid (ATRA)-induced nuclear enrichment of an ensemble of activated signaling molecules and augments ATRA-induced myeloid cell differentiation. Oncotarget 2020; 11:1017-1036. [PMID: 32256976 PMCID: PMC7105165 DOI: 10.18632/oncotarget.27508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/08/2020] [Indexed: 02/07/2023] Open
Abstract
Although ATRA represents a successful differentiation therapy for APL, it is largely ineffective for non-APL AMLs. Hence combination therapies using an agent targeting ATRA-regulated molecules that drive cell differentiation/arrest are of interest. Using the HL-60 human non-APL AML model where ATRA causes nuclear enrichment of c-Raf that drives differentiation/G0-arrest, we now observe that roscovitine enhanced nuclear enrichment of certain traditionally cytoplasmic signaling molecules and enhanced differentiation and cell cycle arrest. Roscovitine upregulated ATRA-induced nuclear c-Raf phosphorylation at S259 and S289/296/301. Nuclear c-Raf interacted with RB protein and specifically with pS608RB, the hinge region phosphorylation controlling E2F binding and cell cycle progression. ATRA-induced loss of pS608RB with cell cycle arrest was associated with loss of RB-sequestered c-Raf, thereby coupling cell cycle arrest and increased availability of c-Raf to promote differentiation. Part of this mechanism reflects promoting cell cycle arrest via ATRA-induced upregulation of the p27 Kip1 CDKI. Roscovitine also enhanced the ATRA-induced nuclear enrichment of other signaling molecules traditionally perceived as cytoplasmic promoters of proliferation, but now known to promote differentiation; in particular: SFKs, Lyn, Fgr; adaptor proteins, c-Cbl, SLP-76; a guanine exchange factor, Vav1; and a transcription factor, IRF-1. Akin to c-Raf, Lyn bound to RB, specifically to pS608RB. Lyn-pS608RB association was greatly diminished by ATRA and essentially lost in ATRA plus roscovitine treated cells. Interestingly Lyn-KD enhanced such ATRA-induced nuclear signaling and differentiation and made roscovitine more effective. ATRA thus mobilized traditionally cytoplasmic signaling molecules to the nucleus where they drove differentiation which were further enhanced by roscovitine.
Collapse
Affiliation(s)
- Asif Rashid
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China.,Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Xin Duan
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Feng Gao
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
14
|
Rashid A, Duan X, Gao F, Yang M, Yen A. Roscovitine enhances All-trans retinoic acid (ATRA)-induced leukemia cell differentiation: Novel effects on signaling molecules for a putative Cdk2 inhibitor. Cell Signal 2020; 71:109555. [PMID: 32032659 DOI: 10.1016/j.cellsig.2020.109555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/31/2022]
Abstract
All-trans retinoic acid (ATRA)-based differentiation therapy has been unsuccessful in treating t(15;17) negative acute myeloid leukemia (AML) patients, motivating interest in combination therapies using ATRA plus other agents. Using the t (15, 17) negative HL-60 human myeloblastic leukemia model, we find that the cyclin-dependent kinase (CDK) inhibitor, roscovitine, augments signaling by an ATRA-induced macromolecular signalsome that propels differentiation and enhances ATRA-induced differentiation. Roscovitine co-treatment enhanced ATRA-induced expression of pS259- pS289/296/301- pS621-c-Raf, pS217/221-Mek, Src Family Kinases (SFKs) Lyn and Fgr and SFK Y416 phosphorylation, adaptor proteins c-Cbl and SLP-76, Vav, and acetylated 14-3-3 in the signalsome. Roscovitine enhanced ATRA-induced c-Raf interaction with Lyn, Vav, and c-Cbl. Consistent with signalsome hyper-activation, roscovitine co-treatment enhanced ATRA-induced G1/0 arrest and expression of differentiation markers, CD11b, ROS and p47 Phox. Because roscovitine regulated Lyn expression, activation and partnering, a stably transfected Lyn knockdown was generated from wt-parental cells to investigate its function in ATRA-induced differentiation. Lyn-knockdown enhanced ATRA-induced up-regulation of key signalsome molecules, c-Raf, pS259-c-Raf, pS289/296/301-c-Raf, Vav1, SLP-76, and Fgr, but with essentially total loss of pY416-SFK. Compared to ATRA-treated wt-parental cells, differentiation markers p47 phox, CD11b, G1/G0 arrest and ROS production were enhanced in ATRA-treated Lyn-knockdown stable transfectants, and addition of roscovitine further enhanced these ATRA-inducible markers. The Lyn-knockdown cells expressed slightly higher c-Raf, pS259-c-Raf, pS289/296/301-c-Raf, and SLP-76 than wt-parental cells, and this was associated with enhanced ATRA-induced upregulation of Fgr and cell differentiation, consistent with heightened signaling, suggesting that enhanced Fgr may have compensated for loss of Lyn to enhance differentiation in the Lyn-knockdown cells.
Collapse
Affiliation(s)
- Asif Rashid
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China; Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Xin Duan
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Feng Gao
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China.
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
15
|
Rodríguez-Fdez S, Citterio C, Lorenzo-Martín LF, Baltanás-Copado J, Llorente-González C, Corbalán-García S, Vicente-Manzanares M, Bustelo XR. Phosphatidylinositol Monophosphates Regulate Optimal Vav1 Signaling Output. Cells 2019; 8:cells8121649. [PMID: 31888228 PMCID: PMC6952945 DOI: 10.3390/cells8121649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/13/2023] Open
Abstract
Phosphatidylinositol–5 phosphate (PI5P) and other mono-phosphoinositides (mono-PIs) play second messenger roles in both physiological and pathological conditions. Despite this, their intracellular targets and mechanisms of action remain poorly characterized. Here, we show that Vav1, a protein that exhibits both Rac1 GDP/GTP exchange and adaptor activities, is positively modulated by PI5P and, possibly, other mono-PIs. Unlike other phospholipid–protein complexes, the affinity and specificity of the Vav1–lipid interaction entail a new structural solution that involves the synergistic action of the Vav1 C1 domain and an adjacent polybasic tail. This new regulatory layer, which is not conserved in the Vav family paralogs, favors the engagement of optimal Vav1 signaling outputs in lymphocytes.
Collapse
Affiliation(s)
- Sonia Rodríguez-Fdez
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - Carmen Citterio
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - L. Francisco Lorenzo-Martín
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - Jesús Baltanás-Copado
- Department of Biochemistry and Molecular Biology, University of Murcia, 30100 Murcia, Spain; (J.B.-C.); (S.C.-G.)
- Biomedical Research Institute of Murcia, University of Murcia, 30100 Murcia, Spain
| | - Clara Llorente-González
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - Senena Corbalán-García
- Department of Biochemistry and Molecular Biology, University of Murcia, 30100 Murcia, Spain; (J.B.-C.); (S.C.-G.)
- Biomedical Research Institute of Murcia, University of Murcia, 30100 Murcia, Spain
| | - Miguel Vicente-Manzanares
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC–University of Salamanca, 37007 Salamanca, Spain
- Correspondence:
| |
Collapse
|
16
|
Genome-wide screening identifies novel genes implicated in cellular sensitivity to BRAF V600E expression. Oncogene 2019; 39:723-738. [PMID: 31548614 DOI: 10.1038/s41388-019-1022-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/10/2023]
Abstract
The V600E mutation of BRAF (BRAFV600E), which constitutively activates the ERK/MAPK signaling pathway, is frequently found in melanoma and other cancers. Like most other oncogenes, BRAFV600E causes oncogenic stress to normal cells, leading to growth arrest (senescence) or apoptosis. Through genome-wide screening, we identified genes implicated in sensitivity of human skin melanocytes and fibroblasts to BRAFV600E overexpression. Among the identified genes shared by the two cell types are proto-oncogenes ERK2, a component of the ERK/MAPK pathway, and VAV1, a guanine nucleotide exchange factor for Rho family GTPases that also activates the ERK/MAPK pathway. CDKN1A, which has been known to promote senescence of fibroblasts but not melanocytes, is implicated in sensitivity of the fibroblasts but not the melanocytes to BRAFV600E overexpression. Disruptions of GPR4, a pH-sensing G-protein coupled receptor, and DBT, a subunit of the branched chain α-keto acid dehydrogenase that is required for the second and rate-limiting step of branched amino acid catabolism and implicated in maple syrup urine disease, are the most highly selected in the melanocytes upon BRAFV600E overexpression. Disruption of DBT severely attenuates ERK/MAPK signaling, p53 activation, and apoptosis in melanocytes, at least in part due to accumulation of branched chain α-keto acids. The expression level of BRAF positively correlates with that of DBT in all cancer types and with that of GPR4 in most cancer types. Overexpression of DBT kills all four melanoma cell lines tested regardless of the presence of BRAFV600E mutation. Our findings shed new lights on regulations of oncogenic stress signaling and may be informative for development of novel cancer treatment strategies.
Collapse
|
17
|
Modulation of LPA1 receptor-mediated neuronal apoptosis by Saikosaponin-d: A target involved in depression. Neuropharmacology 2019; 155:150-161. [DOI: 10.1016/j.neuropharm.2019.05.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022]
|
18
|
Rodríguez-Fdez S, Bustelo XR. The Vav GEF Family: An Evolutionary and Functional Perspective. Cells 2019; 8:E465. [PMID: 31100928 PMCID: PMC6562523 DOI: 10.3390/cells8050465] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Vav proteins play roles as guanosine nucleotide exchange factors for Rho GTPases and signaling adaptors downstream of protein tyrosine kinases. The recent sequencing of the genomes of many species has revealed that this protein family originated in choanozoans, a group of unicellular organisms from which animal metazoans are believed to have originated from. Since then, the Vav family underwent expansions and reductions in its members during the evolutionary transitions that originated the agnates, chondrichthyes, some teleost fish, and some neoaves. Exotic members of the family harboring atypical structural domains can be also found in some invertebrate species. In this review, we will provide a phylogenetic perspective of the evolution of the Vav family. We will also pay attention to the structure, signaling properties, regulatory layers, and functions of Vav proteins in both invertebrate and vertebrate species.
Collapse
Affiliation(s)
- Sonia Rodríguez-Fdez
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
| |
Collapse
|
19
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
20
|
Bernard I, Sacquin A, Kassem S, Benamar M, Colacios C, Gador M, Pérals C, Fazilleau N, Saoudi A. A Natural Variant of the Signaling Molecule Vav1 Enhances Susceptibility to Myasthenia Gravis and Influences the T Cell Receptor Repertoire. Front Immunol 2018; 9:2399. [PMID: 30410484 PMCID: PMC6210741 DOI: 10.3389/fimmu.2018.02399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/27/2018] [Indexed: 01/01/2023] Open
Abstract
The guanine nucleotide exchange factor Vav1 is essential for transducing T cell receptor (TCR) signals and plays an important role in T cell development and activation. Previous genetic studies identified a natural variant of Vav1 characterized by the substitution of an arginine (R) residue by a tryptophane (W) at position 63 (Vav1R63W). This variant impacts Vav1 adaptor functions and controls susceptibility to T cell-mediated neuroinflammation. To assess the implication of this Vav1 variant on the susceptibility to antibody-mediated diseases, we used the animal model of myasthenia gravis, experimental autoimmune myasthenia gravis (EAMG). To this end, we generated a knock-in (KI) mouse model bearing a R to W substitution in the Vav1 gene (Vav1R63W) and immunized it with either torpedo acetylcholine receptor (tAChR) or the α146-162 immunodominant peptide. We observed that the Vav1R63W conferred increased susceptibility to EAMG, revealed by a higher AChR loss together with an increased production of effector cytokines (IFN-γ, IL-17A, GM-CSF) by antigen-specific CD4+ T cells, as well as an increased frequency of antigen-specific CD4+ T cells. This correlated with the emergence of a dominant antigen-specific T cell clone in KI mice that was not present in wild-type mice, suggesting an impact on thymic selection and/or a different clonal selection threshold following antigen encounter. Our results highlight the key role of Vav1 in the pathophysiology of EAMG and this was associated with an impact on the TCR repertoire of AChR reactive T lymphocytes.
Collapse
Affiliation(s)
- Isabelle Bernard
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, UPS, Inserm, CNRS, Toulouse, France
| | - Antoine Sacquin
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, UPS, Inserm, CNRS, Toulouse, France
| | - Sahar Kassem
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, UPS, Inserm, CNRS, Toulouse, France
| | - Mehdi Benamar
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, UPS, Inserm, CNRS, Toulouse, France
| | - Céline Colacios
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, UPS, Inserm, CNRS, Toulouse, France
| | - Mylène Gador
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, UPS, Inserm, CNRS, Toulouse, France
| | - Corine Pérals
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, UPS, Inserm, CNRS, Toulouse, France
| | - Nicolas Fazilleau
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, UPS, Inserm, CNRS, Toulouse, France
| | - Abdelhadi Saoudi
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, UPS, Inserm, CNRS, Toulouse, France
| |
Collapse
|
21
|
Vav1 mutations identified in human cancers give rise to different oncogenic phenotypes. Oncogenesis 2018; 7:80. [PMID: 30297765 PMCID: PMC6175932 DOI: 10.1038/s41389-018-0091-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/27/2018] [Accepted: 09/09/2018] [Indexed: 01/26/2023] Open
Abstract
Vav1 is physiologically active as a GDP/GTP nucleotide exchange factor (GEF) in the hematopoietic system. Overexpression of Vav1 in multiple tumor types is known to enhance oncogenicity, yet whether or not Vav1 is a bona fide oncogene is still a matter of debate. Although mutations in Vav1 were recently identified in human cancers of various origins, the functional activities of these mutants are not known. We tested the transforming potential of three mutations identified in human lung adenocarcinoma: E59K, D517E, and L801P. Results from several assays indicative of transforming activities such as rate of proliferation, growth in agar, and generation of tumors in NOD/SCID mice clearly indicated that E59K and D517E are highly transforming but L801P at the SH3 domain is not. The acquired oncogenic activity of these mutants can be attributed to their enhanced activity as GEFs for Rho/Rac GTPases. Deciphering of the mechanisms leading to overactivity of the tested mutants revealed that the E59K mutation facilitates cleavage of a truncated protein that is uncontrollably active as a GEF, while D517E generates a highly stable overexpressed protein that is also more active as a GEF than wild-type Vav1. These findings support the classification of Vav1 as a bona fide oncogene in human cancer.
Collapse
|
22
|
Gaud G, Roncagalli R, Chaoui K, Bernard I, Familiades J, Colacios C, Kassem S, Monsarrat B, Burlet-Schiltz O, de Peredo AG, Malissen B, Saoudi A. The costimulatory molecule CD226 signals through VAV1 to amplify TCR signals and promote IL-17 production by CD4 + T cells. Sci Signal 2018; 11:11/538/eaar3083. [PMID: 29991650 DOI: 10.1126/scisignal.aar3083] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The activation of T cells requires the guanine nucleotide exchange factor VAV1. Using mice in which a tag for affinity purification was attached to endogenous VAV1 molecules, we analyzed by quantitative mass spectrometry the signaling complex that assembles around activated VAV1. Fifty VAV1-binding partners were identified, most of which had not been previously reported to participate in VAV1 signaling. Among these was CD226, a costimulatory molecule of immune cells. Engagement of CD226 induced the tyrosine phosphorylation of VAV1 and synergized with T cell receptor (TCR) signals to specifically enhance the production of interleukin-17 (IL-17) by primary human CD4+ T cells. Moreover, co-engagement of the TCR and a risk variant of CD226 that is associated with autoimmunity (rs763361) further enhanced VAV1 activation and IL-17 production. Thus, our study reveals that a VAV1-based, synergistic cross-talk exists between the TCR and CD226 during both physiological and pathological T cell responses and provides a rational basis for targeting CD226 for the management of autoimmune diseases.
Collapse
Affiliation(s)
- Guillaume Gaud
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, Inserm, Toulouse 31300, France
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, Inserm, CNRS, 13288 Marseille, France
| | - Karima Chaoui
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS UMR 5089, 31077 Toulouse Cedex, France
| | - Isabelle Bernard
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, Inserm, Toulouse 31300, France
| | - Julien Familiades
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, Inserm, Toulouse 31300, France
| | - Céline Colacios
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, Inserm, Toulouse 31300, France
| | - Sahar Kassem
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, Inserm, Toulouse 31300, France
| | - Bernard Monsarrat
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS UMR 5089, 31077 Toulouse Cedex, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS UMR 5089, 31077 Toulouse Cedex, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS UMR 5089, 31077 Toulouse Cedex, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, Inserm, CNRS, 13288 Marseille, France.,Centre d'Immunophénomique, Aix-Marseille Université, Inserm, CNRS, 13288 Marseille, France
| | - Abdelhadi Saoudi
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, Inserm, Toulouse 31300, France.
| |
Collapse
|
23
|
An Effective Model of the Retinoic Acid Induced HL-60 Differentiation Program. Sci Rep 2017; 7:14327. [PMID: 29085021 PMCID: PMC5662654 DOI: 10.1038/s41598-017-14523-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022] Open
Abstract
In this study, we present an effective model All-Trans Retinoic Acid (ATRA)-induced differentiation of HL-60 cells. The model describes reinforcing feedback between an ATRA-inducible signalsome complex involving many proteins including Vav1, a guanine nucleotide exchange factor, and the activation of the mitogen activated protein kinase (MAPK) cascade. We decomposed the effective model into three modules; a signal initiation module that sensed and transformed an ATRA signal into program activation signals; a signal integration module that controlled the expression of upstream transcription factors; and a phenotype module which encoded the expression of functional differentiation markers from the ATRA-inducible transcription factors. We identified an ensemble of effective model parameters using measurements taken from ATRA-induced HL-60 cells. Using these parameters, model analysis predicted that MAPK activation was bistable as a function of ATRA exposure. Conformational experiments supported ATRA-induced bistability. Additionally, the model captured intermediate and phenotypic gene expression data. Knockout analysis suggested Gfi-1 and PPARg were critical to the ATRAinduced differentiation program. These findings, combined with other literature evidence, suggested that reinforcing feedback is central to hyperactive signaling in a diversity of cell fate programs.
Collapse
|
24
|
Chen Y, Jin Y, Zhan H, Chen J, Chen Y, Meng H, Jin J, Yu L, Cao X, Xu Y. Proteomic analysis of the effects of Nur77 on lipopolysaccharide-induced microglial activation. Neurosci Lett 2017; 659:33-43. [DOI: 10.1016/j.neulet.2017.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 12/23/2022]
|
25
|
A Novel Vav3 Homolog Identified in Lamprey, Lampetra japonica, with Roles in Lipopolysaccharide-Mediated Immune Response. Int J Mol Sci 2017; 18:ijms18102035. [PMID: 28937614 PMCID: PMC5666717 DOI: 10.3390/ijms18102035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 11/16/2022] Open
Abstract
Vav guanine nucleotide exchange factor 3 (Vav3), a Rho family GTPase, regulates multiple cell signaling pathways including those of T- and B-cell receptors in vertebrates through mediating the activities of the Rho family members. Whether the lamprey possesses Vav3 homolog and what role it plays in immune response remain unknown. Gene cloning, recombinant expression, antibody production and expression pattern analyses were performed to characterize the lamprey Vav3 in the current study. The lamprey Vav3 is closer to jawed vertebrates' Vav3 molecules (about 53% identities in general) than to Vav2 molecules of jawless and jawed vertebrates (about 51% identities in general) in sequence similarity. Conserved motif analysis showed that the most distinguished parts between Vav3 and Vav2 proteins are their two Src-homology 3 domains. The relative expression levels of lamprey vav3 mRNA and protein were significantly up-regulated in lamprey lymphocytes and supraneural myeloid bodies after mixed-antigens stimulation, respectively. In addition, lamprey Vav3 were up-regulated drastically in lymphocytes and supraneural myeloid bodies after lipopolysaccharide (LPS) rather than phytohemagglutinin (PHA) stimulation. Lamprey Vav3 distributed in the cytoplasm of variable lymphocyte receptor B positive (VLRB⁺) lymphocytes, and the number of plasmacytes (VLRB and lamprey Vav3 double positive) in blood lymphocytes also increased after LPS stimulation. Our results proved that lamprey Vav3 was involved in the LPS-mediated immune reaction of lamprey and provided a clue for the further study of the precise role lamprey Vav3 played in the signaling pathway of lamprey VLRB⁺ lymphocytes.
Collapse
|
26
|
Activating mutations and translocations in the guanine exchange factor VAV1 in peripheral T-cell lymphomas. Proc Natl Acad Sci U S A 2017; 114:764-769. [PMID: 28062691 DOI: 10.1073/pnas.1608839114] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are a heterogeneous group of non-Hodgkin lymphomas frequently associated with poor prognosis and for which genetic mechanisms of transformation remain incompletely understood. Using RNA sequencing and targeted sequencing, here we identify a recurrent in-frame deletion (VAV1 Δ778-786) generated by a focal deletion-driven alternative splicing mechanism as well as novel VAV1 gene fusions (VAV1-THAP4, VAV1-MYO1F, and VAV1-S100A7) in PTCL. Mechanistically these genetic lesions result in increased activation of VAV1 catalytic-dependent (MAPK, JNK) and non-catalytic-dependent (nuclear factor of activated T cells, NFAT) VAV1 effector pathways. These results support a driver oncogenic role for VAV1 signaling in the pathogenesis of PTCL.
Collapse
|
27
|
Vav1: A Dr. Jekyll and Mr. Hyde protein--good for the hematopoietic system, bad for cancer. Oncotarget 2016; 6:28731-42. [PMID: 26353933 PMCID: PMC4745688 DOI: 10.18632/oncotarget.5086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/07/2015] [Indexed: 01/10/2023] Open
Abstract
Many deregulated signal transducer proteins are involved in various cancers at numerous stages of tumor development. One of these, Vav1, is normally expressed exclusively in the hematopoietic system, where it functions as a specific GDP/GTP nucleotide exchange factor (GEF), strictly regulated by tyrosine phosphorylation. Vav was first identified in an NIH3T3 screen for oncogenes. Although the oncogenic form of Vav1 identified in the screen has not been detected in clinical human tumors, its wild-type form has recently been implicated in mammalian malignancies, including neuroblastoma, melanoma, pancreatic, lung and breast cancers, and B-cell chronic lymphocytic leukemia. In addition, it was recently identified as a mutated gene in human cancers of various origins. However, the activity and contribution to cancer of these Vav1 mutants is still unclear. This review addresses the physiological function of wild-type Vav1 and its activity as an oncogene in human cancer. It also discusses the novel mutations identified in Vav1 in various cancers and their potential contribution to cancer development as oncogenes or tumor suppressor genes.
Collapse
|
28
|
Liao W, Sharma S. Modulation of B-cell receptor and microenvironment signaling by a guanine exchange factor in B-cell malignancies. Cancer Biol Med 2016; 13:277-85. [PMID: 27458535 PMCID: PMC4944547 DOI: 10.20892/j.issn.2095-3941.2016.0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) cells over-express a guanine exchange factor (GEF), Rasgrf-1. This GEF increases active Ras as it catalyzes the removal of GDP from Ras so that GTP can bind and activate Ras. This study aims to study the mechanism of action of Rasgrf-1 in B-cell malignancies. METHODS N-terminus truncated Rasgrf-1 variants have a higher GEF activity as compared to the full-length transcript therefore a MCL cell line with stable over-expression of truncated Rasgrf-1 was established. The B-cell receptor (BCR) and chemokine signaling pathways were compared in the Rasgrf-1 over-expressing and a control transfected cell line. RESULTS Cells over-expressing truncated form of Rasgrf-1 have a higher proliferative rate as compared to control transfected cells. BCR was activated by lower concentrations of anti-IgM antibody in Rasgrf-1 over-expressing cells as compared to control cells indicating that these cells are more sensitive to BCR signaling. BCR signaling also phosphorylates Rasgrf-1 that further increases its GEF function and amplifies BCR signaling. This activation of Rasgrf-1 in over-expressing cells resulted in a higher expression of phospho-ERK, AKT, BTK and PKC-alpha as compared to control cells. Besides BCR, Rasgrf-1 over-expressing cells were also more sensitive to microenvironment stimuli as determined by resistance to apoptosis, chemotaxis and ERK pathway activation. CONCLUSIONS This GEF protein sensitizes B-cells to BCR and chemokine mediated signaling and also upregulates a number of other signaling pathways which promotes growth and survival of these cells.
Collapse
Affiliation(s)
- Wei Liao
- Division of Hematology-Oncology, Greater Los Angeles VA Healthcare Center, UCLA School of Medicine, Los Angeles, CA 90073, USA
| | - Sanjai Sharma
- Division of Hematology-Oncology, Greater Los Angeles VA Healthcare Center, UCLA School of Medicine, Los Angeles, CA 90073, USA
| |
Collapse
|
29
|
A Natural Variant of the T Cell Receptor-Signaling Molecule Vav1 Reduces Both Effector T Cell Functions and Susceptibility to Neuroinflammation. PLoS Genet 2016; 12:e1006185. [PMID: 27438086 PMCID: PMC4954684 DOI: 10.1371/journal.pgen.1006185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/22/2016] [Indexed: 12/16/2022] Open
Abstract
The guanine nucleotide exchange factor Vav1 is essential for transducing T cell antigen receptor signals and therefore plays an important role in T cell development and activation. Our previous genetic studies identified a locus on rat chromosome 9 that controls the susceptibility to neuroinflammation and contains a non-synonymous polymorphism in the major candidate gene Vav1. To formally demonstrate the causal implication of this polymorphism, we generated a knock-in mouse bearing this polymorphism (Vav1R63W). Using this model, we show that Vav1R63W mice display reduced susceptibility to experimental autoimmune encephalomyelitis (EAE) induced by MOG35-55 peptide immunization. This is associated with a lower production of effector cytokines (IFN-γ, IL-17 and GM-CSF) by autoreactive CD4 T cells. Despite increased proportion of Foxp3+ regulatory T cells in Vav1R63W mice, we show that this lowered cytokine production is intrinsic to effector CD4 T cells and that Treg depletion has no impact on EAE development. Finally, we provide a mechanism for the above phenotype by showing that the Vav1R63W variant has normal enzymatic activity but reduced adaptor functions. Together, these data highlight the importance of Vav1 adaptor functions in the production of inflammatory cytokines by effector T cells and in the susceptibility to neuroinflammation. The understanding of the physiological role of Vav1, a key regulator of T cell receptor signaling, was primarily inferred from studies using Vav1-deficient mice. Such models, however, provide little insight on how polymorphisms leading to quantitative changes in Vav1 activity could affect immune system functions. In the present study, we focused on a recently identified Vav1R63W natural variant that has been supposed to play a central role in the susceptibility to neuroinflammation. Using a Vav1R63W knock-in mouse model, we show that Vav1R63W leads to defects in adaptor functions and reduces the susceptibility to experimental autoimmune encephalomyelitis, together with an intrinsic defect in the production of Th1/Th17 cytokines by autoreactive effector CD4 T cells. Thus, our study highlights the importance of Vav1 adaptor functions in CD4 T cells differentiation and suggests that genetic or acquired alterations of this Vav1 function could play a major role in susceptibility to Th1/Th17 mediated diseases.
Collapse
|
30
|
Zaldua N, Llavero F, Artaso A, Gálvez P, Lacerda HM, Parada LA, Zugaza JL. Rac1/p21‐activated kinase pathway controls retinoblastoma protein phosphorylation and E2F transcription factor activation in B lymphocytes. FEBS J 2016; 283:647-61. [DOI: 10.1111/febs.13617] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/26/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Natalia Zaldua
- Center for Cooperative Research in Biosciences Bizkaia Science and Technology Park Spain
- Idem Biotechnology SL Cordovilla Spain
| | - Francisco Llavero
- Department of Genetics, Physical Anthropology and Animal Physiology University of the Basque Country Leioa Spain
- Achucarro Basque Center for Neuroscience Bizkaia Science and Technology Park Spain
| | - Alain Artaso
- Department of Genetics, Physical Anthropology and Animal Physiology University of the Basque Country Leioa Spain
| | - Patricia Gálvez
- Bioiberica Pharmascience Division Technological Park of Health Sciences Granada Spain
| | | | - Luis A. Parada
- Instituto de Patología Experimental CONICET‐Universidad Nacional de Salta Argentina
| | - José L. Zugaza
- Department of Genetics, Physical Anthropology and Animal Physiology University of the Basque Country Leioa Spain
- Achucarro Basque Center for Neuroscience Bizkaia Science and Technology Park Spain
- IKERBASQUE Basque Foundation for Science Bilbao Spain
| |
Collapse
|
31
|
Lee W, Miyagawa Y, Long C, Zhang M, Cooper DKC, Hara H. Effect of Rho-kinase Inhibitor, Y27632, on Porcine Corneal Endothelial Cell Culture, Inflammation and Immune Regulation. Ocul Immunol Inflamm 2015; 24:579-93. [PMID: 26471144 DOI: 10.3109/09273948.2015.1056534] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE To investigate the effect of the Rho-kinase inhibitor, Y27632, on pig corneal endothelial cell (pCEC) culture, and on inflammation and immune regulation of the responses of human cells to pCECs. METHODS pCECs were cultured with/without Y27632 to assess cell proliferation and in vitro wound healing assay. The level of MCP-1 and VEGF in pCECs stimulated with human TNF-α were measured. Proliferation of human PBMCs stimulated with pCECs, and cytokine production in human T cells, and monocyte migration after stimulation were investigated. RESULTS Y27632 promoted pCEC proliferation, prevented pCEC death, and enhanced in vitro wound healing. After stimulation, there were significantly lower levels of MCP-1 and VEGF measured in pCECs cultured with Y27632, and significantly reduced human PBMC proliferation, cytokine production, and monocyte migration. CONCLUSIONS The application of the Rho-kinase inhibitor will be beneficial when culturing pCECs, and may provide a novel therapy to reduce inflammation after corneal xenotransplantation.
Collapse
Affiliation(s)
- Whayoung Lee
- a Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Yuko Miyagawa
- a Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Cassandra Long
- a Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Matthew Zhang
- a Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - David K C Cooper
- a Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Hidetaka Hara
- a Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| |
Collapse
|
32
|
Sebban S, Farago M, Rabinovich S, Lazer G, Idelchuck Y, Ilan L, Pikarsky E, Katzav S. Vav1 promotes lung cancer growth by instigating tumor-microenvironment cross-talk via growth factor secretion. Oncotarget 2015; 5:9214-26. [PMID: 25313137 PMCID: PMC4253429 DOI: 10.18632/oncotarget.2400] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vav1 is a signal transducer that functions as a scaffold protein and a regulator of cytoskeleton organization in the hematopoietic system, where it is exclusively expressed. Recently, Vav1 was shown to be involved in diverse human cancers, including lung cancer. We demonstrate that lung cancer cells that abnormally express Vav1 secrete growth factors in a Vav1-dependent manner. Transcriptome analysis demonstrated that Vav1 depletion results in a marked reduction in the expression of colony-stimulating-factor-1 (CSF1), a hematopoietic growth factor. The association between Vav1 expression and CSF1 was further supported by signal transduction experiments, supporting involvement of Vav1 in regulating lung cancer secretome. Blocking of ERK phosphorylation, led to a decrease in CSF1 transcription, thus suggesting a role for ERK, a downstream effector of Vav1, in CSF1 expression. CSF1-silenced cells exhibited reduced focus formation, proliferation abilities, and growth in NOD/SCID mice. CSF1-silenced H358 cells resulted in significantly smaller tumors, showing increased fibrosis and a decrease in tumor infiltrating macrophages. Finally, immunohistochemical analysis of primary human lung tumors revealed a positive correlation between Vav1 and CSF1 expression, which was associated with tumor grade. Additional results presented herein suggest a potential cross-talk between cancer cells and the microenvironment controlled by CSF1/Vav1 signaling pathways.
Collapse
Affiliation(s)
- Shulamit Sebban
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Marganit Farago
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Shiran Rabinovich
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Galit Lazer
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Yulia Idelchuck
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Lena Ilan
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Eli Pikarsky
- Department of Immunology and Cancer Research and Department of Pathology, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Shulamit Katzav
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| |
Collapse
|
33
|
Abstract
The Vav family is a group of tyrosine phosphorylation-regulated signal transduction molecules hierarchically located downstream of protein tyrosine kinases. The main function of these proteins is to work as guanosine nucleotide exchange factors (GEFs) for members of the Rho GTPase family. In addition, they can exhibit a variety of catalysis-independent roles in specific signaling contexts. Vav proteins play essential signaling roles for both the development and/or effector functions of a large variety of cell lineages, including those belonging to the immune, nervous, and cardiovascular systems. They also contribute to pathological states such as cancer, immune-related dysfunctions, and atherosclerosis. Here, I will provide an integrated view about the evolution, regulation, and effector properties of these signaling molecules. In addition, I will discuss the pros and cons for their potential consideration as therapeutic targets.
Collapse
Key Words
- Ac, acidic
- Ahr, aryl hydrocarbon receptor
- CH, calponin homology
- CSH3, most C-terminal SH3 domain of Vav proteins
- DAG, diacylglycerol
- DH, Dbl-homology domain
- Dbl-homology
- GDP/GTP exchange factors
- GEF, guanosine nucleotide exchange factor
- HIV, human immunodeficiency virus
- IP3, inositoltriphosphate
- NFAT, nuclear factor of activated T-cells
- NSH3, most N-terminal SH3 domain of Vav proteins
- PH, plekstrin-homology domain
- PI3K, phosphatidylinositol-3 kinase
- PIP3, phosphatidylinositol (3,4,5)-triphosphate
- PKC, protein kinase C
- PKD, protein kinase D
- PLC-g, phospholipase C-g
- PRR, proline-rich region
- PTK, protein tyrosine kinase
- Phox, phagocyte oxidase
- Rho GTPases
- SH2, Src homology 2
- SH3, Src homology 3
- SNP, single nucleotide polymorphism
- TCR, T-cell receptor
- Vav
- ZF, zinc finger region
- cGMP, cyclic guanosine monophosphate
- cancer
- cardiovascular biology
- disease
- immunology
- nervous system
- signaling
- therapies
Collapse
Affiliation(s)
- Xosé R Bustelo
- a Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer ; Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca ; Campus Unamuno; Salamanca , Spain
| |
Collapse
|
34
|
Helou YA, Petrashen AP, Salomon AR. Vav1 Regulates T-Cell Activation through a Feedback Mechanism and Crosstalk between the T-Cell Receptor and CD28. J Proteome Res 2015; 14:2963-75. [PMID: 26043137 DOI: 10.1021/acs.jproteome.5b00340] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vav1, a Rac/Rho guanine nucleotide exchange factor and a critical component of the T-cell receptor (TCR) signaling cascade is tyrosine phosphorylated rapidly in response to T-cell activation. Vav1 has established roles in proliferation, cytokine secretion, Ca(2+) responses, and actin cytoskeleton regulation; however, its function in the regulation of phosphorylation of TCR components, including the ζ chain, the CD3 δ, ε, γ chains, and the associated kinases Lck and ZAP-70, is not well established. To obtain a more comprehensive picture of the role of Vav1 in receptor proximal signaling, we performed a wide-scale characterization of Vav1-dependent tyrosine phosphorylation events using quantitative phosphoproteomic analysis of Vav1-deficient T cells across a time course of TCR stimulation. Importantly, this study revealed a new function for Vav1 in the negative feedback regulation of the phosphorylation of immunoreceptor tyrosine-based activation motifs within the ζ chains, CD3 δ, ε, γ chains, as well as activation sites on the critical T cell tyrosine kinases Itk, Lck, and ZAP-70. Our study also uncovered a previously unappreciated role for Vav1 in crosstalk between the CD28 and TCR signaling pathways.
Collapse
Affiliation(s)
- Ynes A Helou
- †Department of Molecular Pharmacology, Physiology, and Biotechnology and ‡Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, United States
| | - Anna P Petrashen
- †Department of Molecular Pharmacology, Physiology, and Biotechnology and ‡Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, United States
| | - Arthur R Salomon
- †Department of Molecular Pharmacology, Physiology, and Biotechnology and ‡Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, United States
| |
Collapse
|
35
|
Yoshitaka T, Mukai T, Kittaka M, Alford LM, Masrani S, Ishida S, Yamaguchi K, Yamada M, Mizuno N, Olsen BR, Reichenberger EJ, Ueki Y. Enhanced TLR-MYD88 signaling stimulates autoinflammation in SH3BP2 cherubism mice and defines the etiology of cherubism. Cell Rep 2014; 8:1752-1766. [PMID: 25220465 DOI: 10.1016/j.celrep.2014.08.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/26/2014] [Accepted: 08/11/2014] [Indexed: 12/30/2022] Open
Abstract
Cherubism is caused by mutations in SH3BP2. Studies of cherubism mice showed that tumor necrosis factor α (TNF-α)-dependent autoinflammation is a major cause of the disorder but failed to explain why human cherubism lesions are restricted to jaws and regress after puberty. We demonstrate that the inflammation in cherubism mice is MYD88 dependent and is rescued in the absence of TLR2 and TLR4. However, germ-free cherubism mice also develop inflammation. Mutant macrophages are hyperresponsive to PAMPs (pathogen-associated molecular patterns) and DAMPs (damage-associated molecular patterns) that activate Toll-like receptors (TLRs), resulting in TNF-α overproduction. Phosphorylation of SH3BP2 at Y183 is critical for the TNF-α production. Finally, SYK depletion in macrophages prevents the inflammation. These data suggest that the presence of a large amount of TLR ligands, presumably oral bacteria and DAMPs during jawbone remodeling, may cause the jaw-specific development of human cherubism lesions. Reduced levels of DAMPs after stabilization of jaw remodeling may contribute to the age-dependent regression.
Collapse
Affiliation(s)
- Teruhito Yoshitaka
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Tomoyuki Mukai
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Mizuho Kittaka
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Lisa M Alford
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Salome Masrani
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Shu Ishida
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Division of Applied Life Science, Department of Periodontal Medicine, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734, Japan
| | - Ken Yamaguchi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700, Japan
| | - Motohiko Yamada
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700, Japan
| | - Noriyoshi Mizuno
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Division of Applied Life Science, Department of Periodontal Medicine, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734, Japan
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Ernst J Reichenberger
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yasuyoshi Ueki
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
36
|
Zenker S, Panteleev-Ivlev J, Wirtz S, Kishimoto T, Waldner MJ, Ksionda O, Tybulewicz VLJ, Neurath MF, Atreya I. A key regulatory role for Vav1 in controlling lipopolysaccharide endotoxemia via macrophage-derived IL-6. THE JOURNAL OF IMMUNOLOGY 2014; 192:2830-2836. [PMID: 24532586 DOI: 10.4049/jimmunol.1300157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophages are centrally involved in the pathogenesis of acute inflammatory diseases, peritonitis, endotoxemia, and septic shock. However, the molecular mechanisms controlling such macrophage activation are incompletely understood. In this article, we provide evidence that Vav1, a member of the RhoGEF family, plays a crucial role in macrophage activation and septic endotoxemia. Vav1-deficient mice demonstrated a significantly increased susceptibility for LPS endotoxemia that could be abrogated by anti-IL-6R Ab treatment. Subsequent studies showed that Vav1-deficient macrophages display augmented production of the proinflammatory cytokine IL-6. Nuclear Vav1 was identified as a key negative regulator of macrophage-derived IL-6 production. In fact, Vav1 formed a nuclear DNA-binding complex with heat shock transcription factor 1 at the HSE2 region of the IL-6 promoter to suppress IL-6 gene transcription in macrophages. These findings provide new insights into the pathogenesis of endotoxemia and suggest new avenues for therapy.
Collapse
Affiliation(s)
- Stefanie Zenker
- Medical Clinic 1, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital of Erlangen, Germany
| | - Julia Panteleev-Ivlev
- Medical Clinic 1, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital of Erlangen, Germany
| | - Stefan Wirtz
- Medical Clinic 1, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital of Erlangen, Germany
| | | | - Maximilian J Waldner
- Medical Clinic 1, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital of Erlangen, Germany
| | - Olga Ksionda
- MRC National Institute for Medical Research, London, United Kingdom
| | | | - Markus F Neurath
- Medical Clinic 1, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital of Erlangen, Germany
| | - Imke Atreya
- Medical Clinic 1, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital of Erlangen, Germany
| |
Collapse
|
37
|
Tomar N, De RK. A model of an integrated immune system pathway in Homo sapiens and its interaction with superantigen producing expression regulatory pathway in Staphylococcus aureus: comparing behavior of pathogen perturbed and unperturbed pathway. PLoS One 2013; 8:e80918. [PMID: 24324645 PMCID: PMC3855681 DOI: 10.1371/journal.pone.0080918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/17/2013] [Indexed: 11/19/2022] Open
Abstract
Response of an immune system to a pathogen attack depends on the balance between the host immune defense and the virulence of the pathogen. Investigation of molecular interactions between the proteins of a host and a pathogen helps in identifying the pathogenic proteins. It is necessary to understand the dynamics of a normally behaved host system to evaluate the capacity of its immune system upon pathogen attack. In this study, we have compared the behavior of an unperturbed and pathogen perturbed host system. Moreover, we have developed a formalism under Flux Balance Analysis (FBA) for the optimization of conflicting objective functions. We have constructed an integrated pathway system, which includes Staphylococcal Superantigen (SAg) expression regulatory pathway and TCR signaling pathway of Homo sapiens. We have implemented the method on this pathway system and observed the behavior of host signaling molecules upon pathogen attack. The entire study has been divided into six different cases, based on the perturbed/unperturbed conditions. In other words, we have investigated unperturbed and pathogen perturbed human TCR signaling pathway, with different combinations of optimization of concentrations of regulatory and signaling molecules. One of these cases has aimed at finding out whether minimization of the toxin production in a pathogen leads to the change in the concentration levels of the proteins coded by TCR signaling pathway genes in the infected host. Based on the computed results, we have hypothesized that the balance between TCR signaling inhibitory and stimulatory molecules can keep TCR signaling system into resting/stimulating state, depending upon the perturbation. The proposed integrated host-pathogen interaction pathway model has accurately reflected the experimental evidences, which we have used for validation purpose. The significance of this kind of investigation lies in revealing the susceptible interaction points that can take back the Staphylococcal Enterotoxin (SE)-challenged system within the range of normal behavior.
Collapse
Affiliation(s)
- Namrata Tomar
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India
| | - Rajat K. De
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
38
|
Philipsen L, Engels T, Schilling K, Gurbiel S, Fischer KD, Tedford K, Schraven B, Gunzer M, Reichardt P. Multimolecular analysis of stable immunological synapses reveals sustained recruitment and sequential assembly of signaling clusters. Mol Cell Proteomics 2013; 12:2551-67. [PMID: 23754785 DOI: 10.1074/mcp.m112.025205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The formation of the immunological synapse between T cells and antigen-presenting cells (APC) begins within minutes of contact and can take hours for full T-cell activation. Although early phases of the synapse have been extensively studied for a select number of proteins, later phases have not yet been examined in detail. We studied the signaling network in stable synapses by measuring the simultaneous localization of 25 signaling and structural molecules over 2 h at the level of individual synapses using multi-epitope ligand cartography (MELC). Signaling proteins including phospho(p)ZAP70, pSLP76, pCD3ζ, and pLAT, along with proteins that influence synapse structure such as F-actin, tubulin, CD45, and ICAM-1, were localized in images of synapses and revealed the multidimensional construction of a mature synapse. The construction of the stable synapse included intense early TCR signaling, a phase of recruitment of structural proteins, and a sustained increase in signaling molecules and colocalization of TCR and pLAT signaling clusters in the center of the synapse. Consolidation of TCR and associated proteins resulted in formation of a small number of discrete synaptic microclusters. Development of synapses and cSMAC composition was greatly affected by the absence of Vav1, with an associated loss in PLCγ1 recruitment, pSLP76, and increased CXCR4. Together, these data demonstrate the use of multi-epitope ligand cartography to quantitatively analyze synapse formation and reveal successive recruitment of structural and signaling proteins and sustained phosphorylation at the mature synapse.
Collapse
Affiliation(s)
- Lars Philipsen
- Otto von Guericke University, Institute of Molecular and Clinical Immunology, Leipziger Str. 44, 39120 Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Talab F, Allen JC, Thompson V, Lin K, Slupsky JR. LCK is an important mediator of B-cell receptor signaling in chronic lymphocytic leukemia cells. Mol Cancer Res 2013; 11:541-54. [PMID: 23505068 DOI: 10.1158/1541-7786.mcr-12-0415-t] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
B-cell receptor (BCR) signals promote survival of chronic lymphocytic leukemia (CLL) cells, and it is believed that overexpressed and constitutively active Lyn mediates this signaling. Here, we show that CLL cells express lymphocyte-specific protein tyrosine kinase (LCK) and that inhibition of this Src family tyrosine kinase with the specific inhibitor [4-amino-5-(4-phenoxyphenyl)-7H-pyrrolo[3,2-d]pyrimidin-7-yl-cyclopentane (Lck-i)], or reduction of its expression with siRNA, blocks the induction of CD79a, Syk, inhibitor of IκB kinase (IKK), Akt, and extracellular signal-regulated kinase (ERK) phosphorylation by BCR cross-linking in these cells. Furthermore, we show that CLL cells with high levels of LCK expression have higher levels of BCR-mediated IKK, Akt, and ERK phosphorylation as well as cell survival than CLL cells with low levels of LCK expression. We also show that treatment of CLL cells with Lck-i inhibits BCR cross-linking-induced cell survival. Taken together, these data show a major role for LCK in proximal and distal BCR-mediated signaling in CLL cells and suggest that LCK expression is important in the pathogenesis of this disease. On a clinical level, these studies advocate the use of specific LCK inhibitors in the treatment of progressive CLL.
Collapse
Affiliation(s)
- Fatima Talab
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | |
Collapse
|
40
|
Sebban S, Farago M, Gashai D, Ilan L, Pikarsky E, Ben-Porath I, Katzav S. Vav1 fine tunes p53 control of apoptosis versus proliferation in breast cancer. PLoS One 2013; 8:e54321. [PMID: 23342133 PMCID: PMC3544807 DOI: 10.1371/journal.pone.0054321] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/10/2012] [Indexed: 11/18/2022] Open
Abstract
Vav1 functions as a signal transducer protein in the hematopoietic system, where it is exclusively expressed. Vav1 was recently implicated in several human cancers, including lung, pancreatic and neuroblasoma. In this study, we analyzed the expression and function of Vav1 in human breast tumors and breast cancer cell lines. Immunohistochemical analysis of primary human breast carcinomas indicated that Vav1 is expressed in 62% of 65 tumors tested and is correlated positively with estrogen receptor expression. Based on published gene profiling of 50 breast cancer cell lines, several Vav1-expressing cell lines were identified. RT-PCR confirmed Vav1 mRNA expression in several of these cell lines, yet no detectable levels of Vav1 protein were observed due to cbl-c proteasomal degradation. We used two of these lines, MCF-7 (Vav1 mRNA negative) and AU565 (Vav1 mRNA positive), to explore the effect of Vav1 expression on breast cell phenotype and function. Vav1 expression had opposite effects on function in these two lines: it reduced proliferation and enhanced cell death in MCF-7 cells but enhanced proliferation in AU565 cells. Consistent with these findings, transcriptome analysis revealed an increase in expression of proliferation-related genes in Vav1-expressing AU565 cells compared to controls, and an increase in apoptosis-related genes in Vav1-expressing MCF-7 cells compared with controls. TUNEL and γ-H2AX foci assays confirmed that expression of Vav1 increased apoptosis in MCF-7 cells but not AU565 cells and shRNA experiments revealed that p53 is required for this pro-apoptotic effect of Vav1 in these cells. These results highlight for the first time the potential role of Vav1 as an oncogenic stress activator in cancer and the p53 dependence of its pro-apoptotic effect in breast cells.
Collapse
Affiliation(s)
- Shulamit Sebban
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Marganit Farago
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Dan Gashai
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Lena Ilan
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Eli Pikarsky
- Deaprtment of Immunology & Cancer Research and Department of Pathology, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Ittai Ben-Porath
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Shulamit Katzav
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
41
|
Ksionda O, Saveliev A, Köchl R, Rapley J, Faroudi M, Smith-Garvin JE, Wülfing C, Rittinger K, Carter T, Tybulewicz VLJ. Mechanism and function of Vav1 localisation in TCR signalling. J Cell Sci 2012; 125:5302-14. [PMID: 22956543 PMCID: PMC3561853 DOI: 10.1242/jcs.105148] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The antigen-specific binding of T cells to antigen presenting cells results in recruitment of signalling proteins to microclusters at the cell-cell interface known as the immunological synapse (IS). The Vav1 guanine nucleotide exchange factor plays a critical role in T cell antigen receptor (TCR) signalling, leading to the activation of multiple pathways. We now show that it is recruited to microclusters and to the IS in primary CD4+ and CD8+ T cells. Furthermore, we show that this recruitment depends on the SH2 and C-terminal SH3 (SH3B) domains of Vav1, and on phosphotyrosines 112 and 128 of the SLP76 adaptor protein. Biophysical measurements show that Vav1 binds directly to these residues on SLP76 and that efficient binding depends on the SH2 and SH3B domains of Vav1. Finally, we show that the same two domains are critical for the phosphorylation of Vav1 and its signalling function in TCR-induced calcium flux. We propose that Vav1 is recruited to the IS by binding to SLP76 and that this interaction is critical for the transduction of signals leading to calcium flux.
Collapse
Affiliation(s)
- Olga Ksionda
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Haubert D, Li J, Saveliev A, Calzascia T, Sutter E, Metzler B, Kaiser D, Tybulewicz VL, Weckbecker G. Vav1 GEF activity is required for T cell mediated allograft rejection. Transpl Immunol 2012; 26:212-9. [PMID: 22456277 PMCID: PMC3485565 DOI: 10.1016/j.trim.2012.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/09/2012] [Accepted: 03/09/2012] [Indexed: 11/30/2022]
Abstract
The GDP exchange factor (GEF) Vav1 is a central signal transducer downstream of the T cell receptor and has been identified as a key factor for T cell activation in the context of allograft rejection. Vav1 has been shown to transduce signals both dependent and independent of its GEF function. The most promising approach to disrupt Vav1 activity by pharmacological inhibition would be to target its GEF function. However, the contribution of Vav1 GEF activity for allogeneic T cell activation has not been clarified yet. To address this question, we used knock-in mice bearing a mutated Vav1 with disrupted GEF activity but intact GEF-independent functions. T cells from these mice showed strongly reduced proliferation and activation in response to allogeneic stimulation. Furthermore, lack of Vav1 GEF activity strongly abrogated the in vivo expansion of T cells in a systemic graft-versus-host model. In a cardiac transplantation model, mice with disrupted Vav1 GEF activity show prolonged allograft survival. These findings demonstrate a strong requirement for Vav1 GEF activity for allogeneic T cell activation and graft rejection suggesting that disruption of Vav1 GEF activity alone is sufficient to induce significant immunosuppression.
Collapse
Affiliation(s)
- Dirk Haubert
- Novartis Institutes of BioMedical Research, Autoimmunity, Transplantation & Inflammation, 4002 Basel, Switzerland
| | - Jianping Li
- Novartis Institutes of BioMedical Research, Autoimmunity, Transplantation & Inflammation, 4002 Basel, Switzerland
| | - Alexander Saveliev
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London NW7 1AA, UK
| | - Thomas Calzascia
- Novartis Institutes of BioMedical Research, Autoimmunity, Transplantation & Inflammation, 4002 Basel, Switzerland
| | - Esther Sutter
- Novartis Institutes of BioMedical Research, Autoimmunity, Transplantation & Inflammation, 4002 Basel, Switzerland
| | - Barbara Metzler
- Novartis Institutes of BioMedical Research, Autoimmunity, Transplantation & Inflammation, 4002 Basel, Switzerland
| | - Daniel Kaiser
- Novartis Institutes of BioMedical Research, Autoimmunity, Transplantation & Inflammation, 4002 Basel, Switzerland
| | - Victor L.J. Tybulewicz
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London NW7 1AA, UK
| | - Gisbert Weckbecker
- Novartis Institutes of BioMedical Research, Autoimmunity, Transplantation & Inflammation, 4002 Basel, Switzerland
| |
Collapse
|
43
|
Knyazhitsky M, Moas E, Shaginov E, Luria A, Braiman A. Vav1 oncogenic mutation inhibits T cell receptor-induced calcium mobilization through inhibition of phospholipase Cγ1 activation. J Biol Chem 2012; 287:19725-35. [PMID: 22474331 DOI: 10.1074/jbc.m111.309799] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Robust elevation of the cytosolic calcium concentration is a crucial early step for T cell activation triggered by the T cell antigen receptor. Vav1 is a proto-oncogene expressed in hematopoietic cells that is indispensable for transducing the calcium-mobilizing signal. Following T cell receptor stimulation, Vav1 facilitates formation of signaling microclusters through multiple interactions with other proteins participating in the signaling cascade. Truncation of the N terminus of Vav1 produces its oncogenic version, which is unable to support normal calcium flux following T cell activation. We show here that truncation of the N-terminal region of Vav1 alters the fine structure of protein complexes in the signaling clusters, affecting the interaction of Vav1 with phospholipase Cγ1 (PLCγ1). This alteration is accompanied by a decrease in PLCγ1 phosphorylation and inhibition of inositol 1,4,5-trisphosphate production. We suggest that the structural integrity of the N-terminal region of Vav1 is important for the proper formation of the Vav1-associated signaling complexes. The oncogenic truncation of this region elicits conformational changes that interfere with the Vav1-mediated activation of PLCγ1 and that inhibit calcium mobilization.
Collapse
Affiliation(s)
- Mira Knyazhitsky
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
44
|
Oberley MJ, Wang DS, Yang DT. Vav1 in hematologic neoplasms, a mini review. AMERICAN JOURNAL OF BLOOD RESEARCH 2012; 2:1-8. [PMID: 22432082 PMCID: PMC3301436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 12/29/2011] [Indexed: 05/31/2023]
Abstract
The Vav family of proteins are guanine nucleotide exchange factors which have been shown to be deregulated in several types of human cancer. There are three members of the Vav family that have been identified which are members of the Dbl domain superfamily and have specificity towards Rho/Rac GTPases. The Vav family plays an important role in normal hematologic system development and homeostasis, and Vav1 is largely restricted to the hematologic system. While Vav1 was originally identified as a proto-oncogene, several recent studies have shown that Vav family deletion leads to the development of T-cell malignancies in mice. In addition, Vav1 has been shown to play a role in the ATRA-mediated differentiation of promyelocytic leukemia cells. In this concise review, the gene structure and normal function of Vav1, as well as a possible role for Vav1 in the development of hematologic and other malignancies is reviewed.
Collapse
Affiliation(s)
- Matthew J Oberley
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health Madison, WI, USA
| | | | | |
Collapse
|
45
|
Rahaman SO, Zhou G, Silverstein RL. Vav protein guanine nucleotide exchange factor regulates CD36 protein-mediated macrophage foam cell formation via calcium and dynamin-dependent processes. J Biol Chem 2011; 286:36011-36019. [PMID: 21865158 DOI: 10.1074/jbc.m111.265082] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Atherosclerosis, a chronic inflammatory disease, results in part from the accumulation of modified lipoproteins in the arterial wall and formation of lipid-laden macrophages, known as "foam cells." Recently, we reported that CD36, a scavenger receptor, contributes to activation of Vav-family guanine nucleotide exchange factors by oxidatively modified LDL in macrophages. We also discovered that CD36-dependent uptake of oxidized LDL (oxLDL) in vitro and foam cell formation in vitro and in vivo was significantly reduced in macrophages deficient of Vav proteins. The goal of the present study was to identify the mechanisms by which Vav proteins regulate CD36-dependent foam cell formation. We now show that a Vav-dynamin signaling axis plays a critical role in generating calcium signals in mouse macrophages exposed to CD36-specific oxidized phospholipid ligands. Chelation of intracellular Ca(2+) or inhibition of phospholipase C-γ (PLC-γ) inhibited Vav activation (85 and 70%, respectively, compared with vehicle control) and reduced foam cell formation (approximately 75%). Knockdown of expression by siRNA or inhibition of GTPase activity of dynamin 2, a Vav-interacting protein involved in endocytic vesicle fission, significantly blocked oxLDL uptake and inhibited foam cell formation. Immunofluorescence microscopy studies showed that Vav1 and dynamin 2 colocalized with internalized oxLDL in macrophages and that activation and mobilization of dynamin 2 by oxLDL was impaired in vav null cells. These studies identified previously unknown components of the CD36 signaling pathway, demonstrating that Vav proteins regulate oxLDL uptake and foam cell formation via calcium- and dynamin 2-dependent processes and thus represent novel therapeutic targets for atherosclerosis.
Collapse
Affiliation(s)
- S Ohidar Rahaman
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.
| | - Gang Zhou
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Roy L Silverstein
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195.
| |
Collapse
|
46
|
Choi S, Schwartz RH. Impairment of immunological synapse formation in adaptively tolerant T cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:805-16. [PMID: 21685322 DOI: 10.4049/jimmunol.1003314] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adaptive tolerance is a hyporesponsive state in which lymphocyte Ag receptor signaling becomes desensitized after prolonged in vivo encounter with Ag. The molecular mechanisms underlying this hyporesponsive state in T cells are not fully understood, although a major signaling block has been shown to be present at the level of ZAP70 phosphorylation of linker for activation of T cells (LAT). In this study, we investigated the ability of adaptively tolerant mouse T cells to form conjugates with Ag-bearing APCs and to translocate signaling molecules into the interface between the T cells and APCs. Compared with naive or preactivated T cells, adaptively tolerant T cells showed no dramatic impairment in their formation of conjugates with APCs. In contrast, there was a large impairment in immunological synapse formation. Adaptively tolerant T cells were defective in their translocation of signaling molecules, such as ZAP70, LAT, and phospholipase C γ1, into the T cell-APC contact sites. Although Ag-induced activation of VAV1 was normal, VAV's recruitment into the synapse was also impaired. Interestingly, expressions of both IL-2-inducible T cell kinase and growth factor receptor-bound protein 2-related adaptor downstream of SHC were decreased by 60-80% in adaptively tolerant T cells. These decreases, in addition to the impairment in LAT phosphorylation by ZAP70, appear to be the major impediments to the phosphorylation of SLP76 (SRC homology 2 domain-containing leukocyte protein of 76 kDa) and the recruitment of VAV1, which are important for stable immunological synapse formation.
Collapse
Affiliation(s)
- Seeyoung Choi
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0420, USA
| | | |
Collapse
|
47
|
Two closely spaced tyrosines regulate NFAT signaling in B cells via Syk association with Vav. Mol Cell Biol 2011; 31:2984-96. [PMID: 21606197 DOI: 10.1128/mcb.05043-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Activated Syk, an essential tyrosine kinase in B cell signaling, interacts with Vav guanine nucleotide exchange factors and regulates Vav activity through tyrosine phosphorylation. The Vav SH2 domain binds Syk linker B by an unusual recognition of two closely spaced Syk tyrosines: Y342 and Y346. The binding affinity is highest when both Y342 and Y346 are phosphorylated. An investigation in B cells of the dependence of Vav phosphorylation and NFAT activation on phosphorylation of Y342 and Y346 finds that cellular response levels match the relative binding affinities of the Vav1 SH2 domain for singly and doubly phosphorylated linker B peptides. This key result suggests that the uncommon recognition determinant of these two closely spaced tyrosines is a limiting factor in signaling. Interestingly, differences in affinities for binding singly and doubly phosphorylated peptides are reflected in the on rate, not the off rate. Such a control mechanism would be highly effective for regulating binding among competing Syk binding partners. The nuclear magnetic resonance (NMR) structure of Vav1 SH2 in complex with a doubly phosphorylated linker B peptide reveals diverse conformations associated with the unusual SH2 recognition of two phosphotyrosines. NMR relaxation indicates compensatory changes in loop fluctuations upon binding, with implications for nonphosphotyrosine interactions of Vav1 SH2.
Collapse
|
48
|
Itk: the rheostat of the T cell response. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:297868. [PMID: 21747996 PMCID: PMC3116522 DOI: 10.1155/2011/297868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/19/2011] [Indexed: 12/28/2022]
Abstract
The nonreceptor tyrosine kinase Itk plays a key role in TCR-initiated signaling that directly and significantly affects the regulation of PLCγ1 and the consequent mobilization of Ca2+. Itk also participates in the regulation of cytoskeletal reorganization as well as cellular adhesion, which is necessary for a productive T cell response. The functional cellular outcome of these molecular regulations by Itk renders it an important mediator of T cell development and differentiation. This paper encompasses the structure of Itk, the signaling parameters leading to Itk activation, and Itk effects on molecular pathways resulting in functional cellular outcomes. The incorporation of these factors persuades one to believe that Itk serves as a modulator, or rheostat, critically fine-tuning the T cell response.
Collapse
|
49
|
Sylvain NR, Nguyen K, Bunnell SC. Vav1-mediated scaffolding interactions stabilize SLP-76 microclusters and contribute to antigen-dependent T cell responses. Sci Signal 2011; 4:ra14. [PMID: 21386095 DOI: 10.1126/scisignal.2001178] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The guanine nucleotide exchange factor (GEF) Vav1 synergizes with the adaptor protein SLP-76 (Src homology 2 domain--containing leukocyte phosphoprotein of 76 kD) to support T cell development and activation. In response to ligation of the T cell receptor (TCR), SLP-76 is assembled into microclusters that provide an essential platform for the signaling events that drive T cell activation. We found that Vav1 selectively entered SLP-76 microclusters, rather than TCR microclusters, influencing their stability and function. The carboxyl terminus of Vav1, which consists of Src homology domains, was both necessary and sufficient for the entry of Vav1 into SLP-76 microclusters; however, this fragment of Vav1 was insufficient to stabilize the microclusters, and it potently suppressed T cell activation. This indicated that the amino terminus of Vav1, which has the GEF domain, also contributed to the integrity of SLP-76 microclusters and thereby to T cell activation. These microcluster-stabilizing functions were independent of the GEF activity in the amino terminus of Vav1 and were unaffected if the GEF function of Vav1 was either inactivated or constitutively activated by mutation. In contrast, Vav1 deletion mutants lacking either the calponin homology domain or the catalytic core of the GEF exhibited mild scaffolding defects, but they differentially affected TCR-dependent calcium ion (Ca²+) responses. We conclude that multiple GEF-independent scaffolding functions distributed throughout the amino terminus of Vav1 contribute to the activation of T cells by acting synergistically to increase the stability and function of SLP-76 microclusters.
Collapse
Affiliation(s)
- Nicholas R Sylvain
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
50
|
Tuosto L. NF-κB family of transcription factors: Biochemical players of CD28 co-stimulation. Immunol Lett 2011; 135:1-9. [DOI: 10.1016/j.imlet.2010.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/09/2010] [Accepted: 09/14/2010] [Indexed: 12/31/2022]
|