1
|
Garcia Castillo J, DeBarge R, Mende A, Tenvooren I, Marquez DM, Straub A, Busch DH, Spitzer MH, DuPage M. A mass cytometry method pairing T cell receptor and differentiation state analysis. Nat Immunol 2024; 25:1754-1763. [PMID: 39191945 DOI: 10.1038/s41590-024-01937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/16/2024] [Indexed: 08/29/2024]
Abstract
T cell antigen receptor (TCR) recognition followed by clonal expansion is a fundamental feature of adaptive immune responses. Here, we present a mass cytometric (CyTOF) approach to track T cell responses by combining antibodies for specific TCR Vα and Vβ chains with antibodies against T cell activation and differentiation proteins in mice. This strategy identifies expansions of CD8+ and CD4+ T cells expressing specific Vβ and Vα chains with varying differentiation states in response to Listeria monocytogenes, tumors and respiratory influenza infection. Expanded T cell populations expressing Vβ chains could be directly linked to the recognition of specific antigens from Listeria, tumor cells or influenza. In the setting of influenza infection, we found that common therapeutic approaches of intramuscular vaccination or convalescent serum transfer altered the TCR diversity and differentiation state of responding T cells. Thus, we present a method to monitor broad changes in TCR use paired with T cell phenotyping during adaptive immune responses.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Mice
- Listeria monocytogenes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Listeriosis/immunology
- Flow Cytometry/methods
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Mice, Inbred C57BL
- Orthomyxoviridae Infections/immunology
- Lymphocyte Activation/immunology
- CD4-Positive T-Lymphocytes/immunology
- Adaptive Immunity
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Jesse Garcia Castillo
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rachel DeBarge
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Abigail Mende
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Iliana Tenvooren
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Diana M Marquez
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany; Partner site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA.
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Castillo JG, DeBarge R, Mende A, Tenvooren I, Marquez DM, Straub A, Busch DH, Spitzer MH, DuPage M. A mass cytometry approach to track the evolution of T cell responses during infection and immunotherapy by paired T cell receptor repertoire and T cell differentiation state analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575237. [PMID: 38260336 PMCID: PMC10802618 DOI: 10.1101/2024.01.11.575237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
T cell receptor (TCR) recognition followed by clonal expansion is a fundamental feature of adaptive immune responses. Here, we developed a mass cytometric (CyTOF) approach combining antibodies specific for different TCR Vα- and Vβ-chains with antibodies against T cell activation and differentiation proteins to identify antigen-specific expansions of T cell subsets and assess aspects of cellular function. This strategy allowed for the identification of expansions of specific Vβ and Vα chain expressing CD8+ and CD4+ T cells with varying differentiation states in response to Listeria monocytogenes, tumors, and respiratory influenza infection. Expanded Vβ chain expressing T cells could be directly linked to the recognition of specific antigens from Listeria, tumor cells, or influenza. In the setting of influenza infection, we showed that the common therapeutic approaches of intramuscular vaccination or convalescent serum transfer altered the clonal diversity and differentiation state of responding T cells. Thus, we present a new method to monitor broad changes in TCR specificity paired with T cell differentiation during adaptive immune responses.
Collapse
Affiliation(s)
- Jesse Garcia Castillo
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| | - Rachel DeBarge
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- These authors contributed equally
| | - Abigail Mende
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Iliana Tenvooren
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Diana M Marquez
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany; Partner site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| |
Collapse
|
3
|
Михеев РК, Андреева ЕН, Григорян ОР, Шереметьева ЕВ, Абсатарова ЮС, Одарченко АС, Оплетаева ОН. [Molecular and cellular mechanisms of ageing: modern knowledge (literature review)]. PROBLEMY ENDOKRINOLOGII 2023; 69:45-54. [PMID: 37968951 PMCID: PMC10680502 DOI: 10.14341/probl13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 11/17/2023]
Abstract
Ageing (as known as eldering, senescence) is a genetically and epigenetically programmed pathophysiological process. Velocity of biological ageing is defined as balance between alteration and reparation of body structures. According to last World Health Organization (WHO) highlights ageing still stays an extremely actual scientific, social and demographic problem: in 2020 total number of people older than 60 years and older was 1 billion people; in 2030 future number may be 1,4 billion people, in 2050 - 2,1 billion people. Absence of single universal theory of aging nowadays is reason for scientifical and clinical collaboration between biologists and doctors, including endocrinologists. Designing of potentially effective newest anti-ageing strategies (such as natural/synthetic telomerase regulators, mesenchymal stem cells etc.) is of interest to scientific community. The aim of present article is a review of modern omics (genomic, proteomic, metabolomic) ageing mechanisms, potential ways of targeted prevention and treatment of age-related disease according to conception of personalized medicine. Present review is narrative, it does not lead to systematic review, meta-analysis and does not aim to commercial advertisement. Review has been provided via PubMed article that have been published since 1979 until 2022.
Collapse
Affiliation(s)
- Р. К. Михеев
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. Н. Андреева
- Национальный медицинский исследовательский центр эндокринологии; Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - О. Р. Григорян
- Национальный медицинский исследовательский центр эндокринологии
| | | | | | - А. С. Одарченко
- Национальный медицинский исследовательский центр эндокринологии
| | | |
Collapse
|
4
|
Tian L, He M, Fan H, Zhang H, Dong X, Qiao M, Tang C, Yu Y, Chen T, Zhou N. COVID-19 of differing severity: from bulk to single-cell expression data analysis. Cell Cycle 2023; 22:1777-1797. [PMID: 37486005 PMCID: PMC10446813 DOI: 10.1080/15384101.2023.2239620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 06/24/2023] [Indexed: 07/25/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is raging worldwide and causes an immense disease burden. Despite this, the biomarkers and targeting drugs of COVID-19 of differing severity remain largely unknown. Based on the GSE164805 dataset, we identified modules most critical for mild COVID-19 (mCOVID-19) and severe COVID-19 (sCOVID-19) through WGCNA, respectively. We subsequently constructed a protein-protein interaction network, and detected 16 hub genes for mCOVID-19 and 10 hub genes for sCOVID-19, followed by the prediction of upstream transcription factors (TFs) and kinases. The enrichment analysis then showed downregulation of TNFA signaling via NFKB for mCOVID-19, as well as downregulation of MYC targets V1 for sCOVID-19. Infiltration degrees of many immune cells, such as macrophages, were also sharply different between mCOVID-19 and sCOVID-19 samples. Predicted protein targeting drugs with the highest scores nearly all belong to naturally derived or synthetic glucocorticoids. For the two single-cell RNA-seq datasets, we explored the expression distribution of hub genes for mCOVID-19/sCOVID-19 in each cell type. The expression levels of PRKCA, MCM5, TYMS, RBBP4, BCL6, FLOT1, KDM6B, and TLR2 were found to be cell-type-specific. Furthermore, the expression levels of 10 hub genes for mCOVID-19 were significantly upregulated in PBMCs between eight healthy controls and eight mCOVID-19 patients at our institution. Collectively, we detected critical modules, pathways, TFs, kinases, immune cells, targeting drugs, hub genes, and their expression distributions in different cell types that may involve the pathogenesis of COVID-19 of differing severity, which may propel earlier diagnosis and more effective treatment of this intractable disease in the future.
Collapse
Affiliation(s)
- Linlin Tian
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R. China
| | - Min He
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R. China
| | - Huafeng Fan
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R. China
| | - Hongying Zhang
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R. China
| | - Xiaoxiao Dong
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R. China
| | - Mengkai Qiao
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R. China
| | - Chenyu Tang
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R. China
| | - Yan Yu
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R. China
| | - Tong Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Nan Zhou
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
5
|
Challenges in Gene Therapy for Somatic Reverted Mosaicism in X-Linked Combined Immunodeficiency by CRISPR/Cas9 and Prime Editing. Genes (Basel) 2022; 13:genes13122348. [PMID: 36553615 PMCID: PMC9777626 DOI: 10.3390/genes13122348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
X-linked severe combined immunodeficiency (X-SCID) is a primary immunodeficiency that is caused by mutations in the interleukin-2 receptor gamma (IL2RG) gene. Some patients present atypical X-SCID with mild clinical symptoms due to somatic revertant mosaicism. CRISPR/Cas9 and prime editing are two advanced genome editing tools that paved the way for treating immune deficiency diseases. Prime editing overcomes the limitations of the CRISPR/Cas9 system, as it does not need to induce double-strand breaks (DSBs) or exogenous donor DNA templates to modify the genome. Here, we applied CRISPR/Cas9 with single-stranded oligodeoxynucleotides (ssODNs) and prime editing methods to generate an in vitro model of the disease in K-562 cells and healthy donors' T cells for the c. 458T>C point mutation in the IL2RG gene, which also resulted in a useful way to optimize the gene correction approach for subsequent experiments in patients' cells. Both methods proved to be successful and were able to induce the mutation of up to 31% of treated K-562 cells and 26% of treated T cells. We also applied similar strategies to correct the IL2RG c. 458T>C mutation in patient T cells that carry the mutation with revertant somatic mosaicism. However, both methods failed to increase the frequency of the wild-type sequence in the mosaic T cells of patients due to limited in vitro proliferation of mutant cells and the presence of somatic reversion. To the best of our knowledge, this is the first attempt to treat mosaic cells from atypical X-SCID patients employing CRISPR/Cas9 and prime editing. We showed that prime editing can be applied to the formation of specific-point IL2RG mutations without inducing nonspecific on-target modifications. We hypothesize that the feasibility of the nucleotide substitution of the IL2RG gene using gene therapy, especially prime editing, could provide an alternative strategy to treat X-SCID patients without revertant mutations, and further technological improvements need to be developed to correct somatic mosaicism mutations.
Collapse
|
6
|
Fischer A. Gene therapy for inborn errors of immunity: past, present and future. Nat Rev Immunol 2022:10.1038/s41577-022-00800-6. [DOI: 10.1038/s41577-022-00800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
|
7
|
Auma AWN, Shive CL, Kostadinova L, Anthony DD. Variable Normalization of Naïve CD4+ Lymphopenia and Markers of Monocyte and T Cell Activation over the Course of Direct-Acting Anti-Viral Treatment of Chronic Hepatitis C Virus Infection. Viruses 2021; 14:50. [PMID: 35062255 PMCID: PMC8780994 DOI: 10.3390/v14010050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is associated with naïve CD4+ T cell lymphopenia and long-standing/persistent elevation of cellular and soluble immune activation parameters, the latter heightened in the setting of HIV co-infection. The underlying mechanisms are not completely understood. However, we recently reported that accelerated peripheral cell death may contribute to naïve CD4+ T cell loss and that mechanistic relationships between monocyte activation, T cell activation, and soluble inflammatory mediators may also contribute. Chronic HCV infection can be cured by direct-acting anti-viral (DAA) therapy, and success is defined as sustained virological response (SVR, undetectable HCV RNA (ribonucleic acid) at 12 weeks after DAA treatment completion). However, there is no general consensus on the short-term and long-term immunological outcomes of DAA therapy. Here, we consolidate previous reports on the partial normalization of naïve CD4+ lymphopenia and T cell immune activation and the apparent irreversibility of monocyte activation following DAA therapy in HCV infected and HCV/HIV co-infected individuals. Further, advanced age and cirrhosis are associated with delayed or abrogation of immune reconstitution after DAA therapy, an indication that non-viral factors also likely contribute to host immune dysregulation in HCV infection.
Collapse
Affiliation(s)
- Ann W. N. Auma
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.W.N.A.); (C.L.S.)
| | - Carey L. Shive
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.W.N.A.); (C.L.S.)
- Cleveland VA Medical Center, Cleveland, OH 44106, USA;
| | | | - Donald D. Anthony
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.W.N.A.); (C.L.S.)
- Cleveland VA Medical Center, Cleveland, OH 44106, USA;
- Metro Health Medical Center, Division of Rheumatology, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Somatic Reversion of a Novel IL2RG Mutation Resulting in Atypical X-Linked Combined Immunodeficiency. Genes (Basel) 2021; 13:genes13010035. [PMID: 35052377 PMCID: PMC8774591 DOI: 10.3390/genes13010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations of the IL2RG gene, which encodes for the interleukin-2 receptor common gamma chain (γC, CD132), can lead to X-linked severe combined immunodeficiency (X-SCID) associated with a T−B+NK− phenotype as a result of dysfunctional γC-JAK3-STAT5 signaling. Lately, hypomorphic mutations of the IL2RG gene have been described causing atypical SCID with a milder phenotype. Here, we report three brothers with low-normal lymphocyte counts and susceptibility to recurrent respiratory infections and cutaneous warts. The clinical presentation combined with dysgammaglobulinemia suspected an inherited immunity disorder, which has been proven by Next Generation Sequencing as a novel c.458T > C; p.Ile153Thr IL2RG missense-mutation. Subsequent functional characterization revealed impaired T-cell proliferation, low TREC levels and a skewed TCR Vβ repertoire in all three patients. Interestingly, investigation of various subpopulations showed normal expression of CD132 but with partially impaired STAT5 phosphorylation compared to healthy controls. Additionally, we performed precise genetic analysis of subpopulations revealing spontaneous somatic reversion, predominately in lymphoid derived CD3+, CD4+ and CD8+ T cells. Our data demonstrate that the atypical SCID phenotype noticed in these three brothers is due to the combination of hypomorphic IL-2RG function and somatic reversion.
Collapse
|
9
|
Miyazawa H, Wada T. Reversion Mosaicism in Primary Immunodeficiency Diseases. Front Immunol 2021; 12:783022. [PMID: 34868061 PMCID: PMC8635092 DOI: 10.3389/fimmu.2021.783022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Reversion mosaicism has been reported in an increasing number of genetic disorders including primary immunodeficiency diseases. Several mechanisms can mediate somatic reversion of inherited mutations. Back mutations restore wild-type sequences, whereas second-site mutations result in compensatory changes. In addition, intragenic recombination, chromosomal deletions, and copy-neutral loss of heterozygosity have been demonstrated in mosaic individuals. Revertant cells that have regained wild-type function may be associated with milder disease phenotypes in some immunodeficient patients with reversion mosaicism. Revertant cells can also be responsible for immune dysregulation. Studies identifying a large variety of genetic changes in the same individual further support a frequent occurrence of reversion mosaicism in primary immunodeficiency diseases. This phenomenon also provides unique opportunities to evaluate the biological effects of restored gene expression in different cell lineages. In this paper, we review the recent findings of reversion mosaicism in primary immunodeficiency diseases and discuss its clinical implications.
Collapse
Affiliation(s)
- Hanae Miyazawa
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
10
|
Liu S, Fang SY, An YF. [Gene editing for the treatment of primary immunodeficiency disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:743-748. [PMID: 34266535 PMCID: PMC8292649 DOI: 10.7499/j.issn.1008-8830.2103150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Gene editing is an advanced technique based on artificial nucleases and can precisely modify genome sequences. It has shown great application prospects in the field of medicine and has provided a new precision therapy for diseases. Primary immunodeficiency disease is a group of diseases caused by single gene mutation and characterized by recurrent and refractory infections, with an extremely high mortality rate. The application of gene editing has brought hope for curing these diseases. This article reviews the development of gene editing technology and briefly introduces the research and application of gene editing technology in primary immunodeficiency disease.
Collapse
Affiliation(s)
- Shan Liu
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400014, China
| | - Shu-Yu Fang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400014, China
| | - Yun-Fei An
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400014, China
| |
Collapse
|
11
|
Steininger J, Leiss-Piller A, Geier CB, Rossmanith R, Elfeky R, Bra D, Pichler H, Lawitschka A, Zubarovskaya N, Artacker G, Matthes-Leodolter S, Eibl MM, Wolf HM. Case Report: A Novel IL2RG Frame-Restoring Rescue Mutation Mimics Early T Cell Engraftment Following Haploidentical Hematopoietic Stem Cell Transplantation in a Patient With X-SCID. Front Immunol 2021; 12:644687. [PMID: 33959125 PMCID: PMC8093767 DOI: 10.3389/fimmu.2021.644687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations of the interleukin 2 receptor γ chain (IL2RG) result in the most common form of severe combined immunodeficiency (SCID), which is characterized by severe and persistent infections starting in early life with an absence of T cells and natural killer cells, normal or elevated B cell counts and hypogammaglobulinemia. SCID is commonly fatal within the first year of life, unless the immune system is reconstituted by hematopoietic stem cell transplantation (HSCT) or gene therapy. We herein describe a male infant with X-linked severe combined immunodeficiency (X-SCID) diagnosed at 5 months of age. Genetic testing revealed a novel C to G missense mutation in exon 1 resulting in a 3' splice site disruption with premature stop codon and aberrant IL2 receptor signaling. Following the diagnosis of X-SCID, the patient subsequently underwent a TCRαβ/CD19-depleted haploidentical HSCT. Post transplantation the patient presented with early CD8+ T cell recovery with the majority of T cells (>99%) being non-donor T cells. Genetic analysis of CD4+ and CD8+ T cells revealed a spontaneous 14 nucleotide insertion at the mutation site resulting in a novel splice site and restoring the reading frame although defective IL2RG function was still demonstrated. In conclusion, our findings describe a spontaneous second-site mutation in IL2RG as a novel cause of somatic mosaicism and early T cell recovery following haploidentical HSCT.
Collapse
Affiliation(s)
| | | | | | | | - Reem Elfeky
- Department of Clinical Immunology, Royal Free Hospital, London, United Kingdom
| | - David Bra
- Immunology Outpatient Clinic, Vienna, Austria
| | - Herbert Pichler
- Department of Pediatrics, St. Anna Kinderspital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| | - Anita Lawitschka
- Department of Pediatrics, St. Anna Kinderspital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| | - Natascha Zubarovskaya
- Department of Pediatrics, St. Anna Kinderspital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| | - Gottfried Artacker
- Department of Paediatrics and Adolescent Medicine, Danube Hospital, Vienna, Austria
| | - Susanne Matthes-Leodolter
- Department of Pediatrics, St. Anna Kinderspital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| | - Martha M Eibl
- Immunology Outpatient Clinic, Vienna, Austria.,Biomedizinische Forschungs GmbH, Vienna, Austria
| | - Hermann M Wolf
- Immunology Outpatient Clinic, Vienna, Austria.,Sigmund Freud Private University- Medical School, Vienna, Austria
| |
Collapse
|
12
|
Auma AWN, Shive CL, Lange A, Damjanovska S, Kowal C, Zebrowski E, Pandiyan P, Wilson B, Kalayjian RC, Canaday DH, Anthony DD. Naïve CD4+ T Cell Lymphopenia and Apoptosis in Chronic Hepatitis C Virus Infection Is Driven by the CD31+ Subset and Is Partially Normalized in Direct-Acting Antiviral Treated Persons. Front Immunol 2021; 12:641230. [PMID: 33912168 PMCID: PMC8075159 DOI: 10.3389/fimmu.2021.641230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/24/2021] [Indexed: 12/29/2022] Open
Abstract
Background The mechanisms underlying naïve CD4+ lymphopenia during chronic Hepatitis C Virus (HCV) infection are unclear. Whether direct-acting antiviral (DAA) therapy restores peripheral naïve CD4+ T cell numbers and function is unknown. Methods We enumerated frequencies and counts of peripheral naïve CD4+, CD4+CD31+ and CD4+CD31- T cells by flow cytometry in a cross sectional analysis comparing chronic HCV infected (n=34), DAA-treated(n=29), and age-range matched controls (n=25), as well as in a longitudinal cohort of HCV DAA treated persons (n=16). The cross-sectional cohort was stratified by cirrhosis state. Cell apoptosis/survival (AnnexinV+7AAD+/BCL-2 labeling) and cell cycle entry (Ki67 expression) of CD31+ and CD31- naïve CD4+ T cells was analyzed directly ex vivo and following 3 and 5 days of in vitro culture with media, interleukin (IL) -7 or CD3/CD28 activator. Results In the cross-sectional cohort, naïve CD4+ proportions were lower in chronic HCV infected persons compared to controls and DAA-treated persons, an effect in part attributed to cirrhosis. Age was associated with naïve cell counts and proportions in HCV infected and treated persons as well. Naïve CD4+ cell proportions negatively correlated with plasma levels of soluble CD14 following therapy in DAA-treated persons. Naïve CD4+ cells from HCV infected persons exhibited greater direct ex vivo apoptosis and cell-cycling compared to cells from DAA-treated persons and controls, and this was localized to the CD4+CD31+ subset. On the other hand, no remarkable differences in expression of BCL-2 or IL-7 Receptor (CD127) at baseline or following in vitro media or IL7 containing culture were observed. In the longitudinal cohort, naïve CD4+CD31+/CD31- ratio tended to increase 24 weeks after DAA therapy initiation. Conclusions Activation and apoptosis of peripheral naïve CD4+CD31+ T cells appear to contribute to naïve CD4+ lymphopenia in chronic HCV infection, and this defect is partially reversible with HCV DAA therapy. Age and cirrhosis -associated naïve CD4+ lymphopenia is present both before and after HCV DAA therapy. These findings have implications for restoration of host immune function after DAA therapy.
Collapse
Affiliation(s)
- Ann W N Auma
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Carey L Shive
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States.,GRECC, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Alyssa Lange
- GRECC, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Sofi Damjanovska
- GRECC, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Corinne Kowal
- GRECC, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | | | - Pushpa Pandiyan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Brigid Wilson
- GRECC, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Robert C Kalayjian
- Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - David H Canaday
- GRECC, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Donald D Anthony
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States.,GRECC, VA Northeast Ohio Healthcare System, Cleveland, OH, United States.,Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
13
|
Brommel CM, Cooney AL, Sinn PL. Adeno-Associated Virus-Based Gene Therapy for Lifelong Correction of Genetic Disease. Hum Gene Ther 2020; 31:985-995. [PMID: 32718227 PMCID: PMC7495917 DOI: 10.1089/hum.2020.138] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
The list of successful gene therapy trials using adeno-associated virus (AAV)-based vectors continues to grow and includes a wide range of monogenic diseases. Replication incompetent AAV genomes typically remain episomal and expression dilutes as cells divide and die. Consequently, long-term transgene expression from AAV is best suited for quiescent cell types, such as retinal cells, myocytes, or neurons. For genetic diseases that involve cells with steady turnover, AAV-conferred correction may require routine readministration, where every dose carries the risk of developing an adaptive immune response that renders treatment ineffective. Here, we discuss innovative approaches to permanently modify the host genome using AAV-based platforms, thus potentially requiring only a single dose. Such approaches include using AAV delivery of DNA transposons, homologous recombination templates into safe harbors, and nucleases for targeting integration. In tissues with continual cell turnover, genetic modification of progenitor cell populations will help ensure persistent therapeutic outcomes. Combining the safety profile of AAV-based gene therapy vectors with the ability to integrate a therapeutic transgene creates novel solutions to the challenge of lifelong curative treatments for human genetic diseases.
Collapse
Affiliation(s)
| | - Ashley L. Cooney
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Patrick L. Sinn
- Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
14
|
Kury P, Führer M, Fuchs S, Lorenz MR, Giorgetti OB, Bakhtiar S, Frei AP, Fisch P, Boehm T, Schwarz K, Speckmann C, Ehl S. Long-term robustness of a T-cell system emerging from somatic rescue of a genetic block in T-cell development. EBioMedicine 2020; 59:102961. [PMID: 32841837 PMCID: PMC7452388 DOI: 10.1016/j.ebiom.2020.102961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGOUND The potential of a single progenitor cell to establish and maintain long-term protective T-cell immunity in humans is unknown. For genetic disorders disabling T-cell immunity, somatic reversion was shown to support limited T-cell development attenuating the clinical phenotype. However, the cases reported so far deteriorated over time leaving unanswered the important question of long-term activity of revertant precursors and the robustness of the resulting T-cell system. METHODS We applied TCRβ-CDR3 sequencing and mass cytometry on serial samples of a now 18 year-old SCIDX1 patient with somatic reversion to analyse the longitudinal diversification and stability of a T-cell system emerging from somatic gene rescue. FINDINGS We detected close to 105 individual CDR3β sequences in the patient. Blood samples of equal size contained about 10-fold fewer unique CDR3β sequences compared to healthy donors, indicating a surprisingly broad repertoire. Despite dramatic expansions and contractions of individual clonotypes representing up to 30% of the repertoire, stable diversity indices revealed that these transient clonal distortions did not cause long-term repertoire imbalance. Phenotypically, the T-cell system did not show evidence for progressive exhaustion. Combined with immunoglobulin substitution, the limited T-cell system in this patient supported an unremarkable clinical course over 18 years. INTERPRETATION Genetic correction in the appropriate cell type, in our patient most likely in a T-cell biased self-renewing hematopoietic progenitor, can yield a diverse T-cell system that provides long-term repertoire stability, does not show evidence for progressive exhaustion and is capable of providing protective and regulated T-cell immunity for at least two decades. FUNDING DFG EH 145/9-1, DFG SCHW 432/4-1 and the German Research Foundation under Germany's Excellence Strategy-EXC-2189-Project ID: 390939984.
Collapse
Affiliation(s)
- Patrick Kury
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 115, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Marita Führer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Baden-Wuerttemberg - Hessen, Ulm, Germany
| | - Sebastian Fuchs
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | - Myriam R Lorenz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Orlando Bruno Giorgetti
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics Freiburg, Freiburg, Germany
| | - Shahrzad Bakhtiar
- Division for Pediatric Stem-Cell Transplantation, Immunology and Intensive Medicine, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Andreas P Frei
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | - Paul Fisch
- Department of Pathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics Freiburg, Freiburg, Germany
| | - Klaus Schwarz
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Baden-Wuerttemberg - Hessen, Ulm, Germany; Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 115, 79106 Freiburg, Germany; Center for Pediatrics, Department of Pediatric Hematology and Oncology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 115, 79106 Freiburg, Germany; CIBBS -Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
15
|
Fischer A, Hacein-Bey-Abina S. Gene therapy for severe combined immunodeficiencies and beyond. J Exp Med 2020; 217:132743. [PMID: 31826240 PMCID: PMC7041706 DOI: 10.1084/jem.20190607] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/10/2019] [Accepted: 11/06/2019] [Indexed: 12/26/2022] Open
Abstract
This review describes how gene therapy of severe combined immunodeficiency became a reality, primarily based on the expected selective advantage conferred by transduction of hematopoietic progenitor cells. Thus, it resulted in a progressive extension to the treatment of other primary immunodeficiencies. Ex vivo retrovirally mediated gene therapy has been shown within the last 20 yr to correct the T cell immunodeficiency caused by γc-deficiency (SCID X1) and adenosine deaminase (ADA) deficiency. The rationale was brought up by the observation of the revertant of SCIDX1 and ADA deficiency as a kind of natural gene therapy. Nevertheless, the first attempts of gene therapy for SCID X1 were associated with insertional mutagenesis causing leukemia, because the viral enhancer induced transactivation of oncogenes. Removal of this element and use of a promoter instead led to safer but still efficacious gene therapy. It was observed that a fully diversified T cell repertoire could be generated by a limited set (<1,000) of progenitor cells. Further advances in gene transfer technology, including the use of lentiviral vectors, has led to success in the treatment of Wiskott–Aldrich syndrome, while further applications are pending. Genome editing of the mutated gene may be envisaged as an alternative strategy to treat SCID diseases.
Collapse
Affiliation(s)
- Alain Fischer
- Imagine Institute, Paris, France.,Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France.,Collège de France, Paris, France
| | - Salima Hacein-Bey-Abina
- Unité de Technologies Chimiques et Biologiques pour la Santé, UMR8258 Centre National de la Recherche Scientifique - U1267 Institut National de la Santé et de la Recherche Médicale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France.,Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| |
Collapse
|
16
|
Courivaud C, Bamoulid J, Crepin T, Gaiffe E, Laheurte C, Saas P, Ducloux D. Pre-transplant Thymic Function Predicts Is Associated With Patient Death After Kidney Transplantation. Front Immunol 2020; 11:1653. [PMID: 32903778 PMCID: PMC7438875 DOI: 10.3389/fimmu.2020.01653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Accelerated thymic involution is a main feature of end-stage renal disease (ESRD)-associated immune senescence. Recent evidences suggest that ESRD-associated immune senescence is associated with adverse outcomes in dialysis patients. However, no study focused on the association between pre-transplant thymic function and patient survival after transplantation. We conducted a prospective, multicenter study to assess whether pre-transplant thymic function measured by recent thymic emigrants (RTE) may predict death after first kidney transplantation. Results were tested in a validation cohort. Nine hundred and sixty-seven incident kidney transplant recipients were included in the prospective study. Mean follow up was 5.1 + 2.9 years. Eighty two patients (8.5%) died during follow up. Lower RTE levels were associated with a higher risk of death (2.53; 95%CI, 1.54–4.39 for each decrease of 1 log in RTE; p < 0.001). Cancer-related death was particularly increased in patients with low RTE levels (4.23; 95%CI, 1.43–12.13; p = 0.007). One hundred and thirty-six patients having received a first kidney transplantation were included in the validation cohort. Lower TREC levels were associated with higher risk of death (1.90; 95%CI, 1.11–3.51 for each decrease of 1 log in RTE; p = 0.025). RTE were not associated with death-censored graft loss. Pre-transplant thymic function is strongly associated with death after transplantation. Attempt to reverse ESRD-related thymic loss may prevent premature death.
Collapse
Affiliation(s)
- Cécile Courivaud
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,Univ. Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Jamal Bamoulid
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,Univ. Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Thomas Crepin
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,Univ. Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Emilie Gaiffe
- CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France.,CHU Besançon, CIC Biothérapie, INSERM CIC1431, Besançon, France
| | - Caroline Laheurte
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, CIC 1431/UMR1098, Besançon, France
| | - Philippe Saas
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,Univ. Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, CIC Biothérapie, INSERM CIC1431, Besançon, France.,EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, CIC 1431/UMR1098, Besançon, France
| | - Didier Ducloux
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,Univ. Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France.,CHU Besançon, CIC Biothérapie, INSERM CIC1431, Besançon, France
| |
Collapse
|
17
|
Notarangelo LD, Bacchetta R, Casanova JL, Su HC. Human inborn errors of immunity: An expanding universe. Sci Immunol 2020; 5:5/49/eabb1662. [PMID: 32651211 DOI: 10.1126/sciimmunol.abb1662] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Molecular, cellular, and clinical studies of human inborn errors of immunity have revolutionized our understanding of their pathogenesis, considerably broadened their spectrum of immunological and clinical phenotypes, and enabled successful targeted therapeutic interventions. These studies have also been of great scientific merit, challenging a number of immunological notions initially established in inbred mice while revealing previously unrecognized mechanisms of host defense by leukocytes and other cells and of both innate and adaptive tolerance to self.
Collapse
Affiliation(s)
- Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Rosa Bacchetta
- Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.,Paris University, Imagine Institute, Paris, France.,Pediatrics Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Zhang ZY, Thrasher AJ, Zhang F. Gene therapy and genome editing for primary immunodeficiency diseases. Genes Dis 2020; 7:38-51. [PMID: 32181274 PMCID: PMC7063425 DOI: 10.1016/j.gendis.2019.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
In past two decades the gene therapy using genetic modified autologous hematopoietic stem cells (HSCs) transduced with the viral vector has become a promising alternative option for treating primary immunodeficiency diseases (PIDs). Despite of some pitfalls at early stage clinical trials, the field of gene therapy has advanced significantly in the last decade with improvements in viral vector safety, preparatory regime for manufacturing high quality virus, automated CD34 cell purification. Hence, the overall outcome from the clinical trials for the different PIDs has been very encouraging. In addition to the viral vector based gene therapy, the recent fast moving forward developments in genome editing using engineered nucleases in HSCs has provided a new promising platform for the treatment of PIDs. This review provides an overall outcome and progress in gene therapy clinical trials for SCID-X, ADA-SCID, WAS, X- CGD, and the recent developments in genome editing technology applied in HSCs for developing potential therapy, particular in the key studies for PIDs.
Collapse
Affiliation(s)
- Zhi-Yong Zhang
- Department of Immunology and Rheumatology, Children's Hospital of Chongqing Medical University, China
| | - Adrian J. Thrasher
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University Colleage London, UK
| | - Fang Zhang
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University Colleage London, UK
| |
Collapse
|
19
|
Pouzolles M, Machado A, Guilbaud M, Irla M, Gailhac S, Barennes P, Cesana D, Calabria A, Benedicenti F, Sergé A, Raman I, Li QZ, Montini E, Klatzmann D, Adjali O, Taylor N, Zimmermann VS. Intrathymic adeno-associated virus gene transfer rapidly restores thymic function and long-term persistence of gene-corrected T cells. J Allergy Clin Immunol 2019; 145:679-697.e5. [PMID: 31513879 DOI: 10.1016/j.jaci.2019.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Patients with T-cell immunodeficiencies are generally treated with allogeneic hematopoietic stem cell transplantation, but alternatives are needed for patients without matched donors. An innovative intrathymic gene therapy approach that directly targets the thymus might improve outcomes. OBJECTIVE We sought to determine the efficacy of intrathymic adeno-associated virus (AAV) serotypes to transduce thymocyte subsets and correct the T-cell immunodeficiency in a zeta-associated protein of 70 kDa (ZAP-70)-deficient murine model. METHODS AAV serotypes were injected intrathymically into wild-type mice, and gene transfer efficiency was monitored. ZAP-70-/- mice were intrathymically injected with an AAV8 vector harboring the ZAP70 gene. Thymus structure, immunophenotyping, T-cell receptor clonotypes, T-cell function, immune responses to transgenes and autoantibodies, vector copy number, and integration were evaluated. RESULTS AAV8, AAV9, and AAV10 serotypes all transduced thymocyte subsets after in situ gene transfer, with transduction of up to 5% of cells. Intrathymic injection of an AAV8-ZAP-70 vector into ZAP-70-/- mice resulted in a rapid thymocyte differentiation associated with the development of a thymic medulla. Strikingly, medullary thymic epithelial cells expressing the autoimmune regulator were detected within 10 days of gene transfer, correlating with the presence of functional effector and regulatory T-cell subsets with diverse T-cell receptor clonotypes in the periphery. Although thymocyte reconstitution was transient, gene-corrected peripheral T cells harboring approximately 1 AAV genome per cell persisted for more than 40 weeks, and AAV vector integration was detected. CONCLUSIONS Intrathymic AAV-transduced progenitors promote a rapid restoration of the thymic architecture, with a single wave of thymopoiesis generating long-term peripheral T-cell function.
Collapse
Affiliation(s)
- Marie Pouzolles
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Alice Machado
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Mickaël Guilbaud
- INSERM UMR1089, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Magali Irla
- Center of Immunology Marseille-Luminy (CIML), INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, France
| | - Sarah Gailhac
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Pierre Barennes
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Arnauld Sergé
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Indu Raman
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Quan-Zhen Li
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, Tex; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - David Klatzmann
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| | - Oumeya Adjali
- INSERM UMR1089, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France.
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France; Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md.
| | - Valérie S Zimmermann
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
20
|
Revy P, Kannengiesser C, Fischer A. Somatic genetic rescue in Mendelian haematopoietic diseases. Nat Rev Genet 2019; 20:582-598. [DOI: 10.1038/s41576-019-0139-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
|
21
|
Romito M, Rai R, Thrasher AJ, Cavazza A. Genome editing for blood disorders: state of the art and recent advances. Emerg Top Life Sci 2019; 3:289-299. [PMID: 33523137 PMCID: PMC7288986 DOI: 10.1042/etls20180147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
In recent years, tremendous advances have been made in the use of gene editing to precisely engineer the genome. This technology relies on the activity of a wide range of nuclease platforms - such as zinc-finger nucleases, transcription activator-like effector nucleases, and the CRISPR-Cas system - that can cleave and repair specific DNA regions, providing a unique and flexible tool to study gene function and correct disease-causing mutations. Preclinical studies using gene editing to tackle genetic and infectious diseases have highlighted the therapeutic potential of this technology. This review summarizes the progresses made towards the development of gene editing tools for the treatment of haematological disorders and the hurdles that need to be overcome to achieve clinical success.
Collapse
Affiliation(s)
- Marianna Romito
- Infection, Immunity and Inflammation Program, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, U.K
| | - Rajeev Rai
- Infection, Immunity and Inflammation Program, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, U.K
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Program, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, U.K
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, U.K
| | - Alessia Cavazza
- Infection, Immunity and Inflammation Program, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, U.K
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, U.K
| |
Collapse
|
22
|
Porter SN, Levine RM, Pruett-Miller SM. A Practical Guide to Genome Editing Using Targeted Nuclease Technologies. Compr Physiol 2019; 9:665-714. [PMID: 30873595 DOI: 10.1002/cphy.c180022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome engineering using programmable nucleases is a rapidly evolving technique that enables precise genetic manipulations within complex genomes. Although this technology first surfaced with the creation of meganucleases, zinc finger nucleases, and transcription activator-like effector nucleases, CRISPR-Cas9 has been the most widely adopted platform because of its ease of use. This comprehensive review presents a basic overview of genome engineering and discusses the major technological advances in the field. In addition to nucleases, we discuss CRISPR-derived base editors and epigenetic modifiers. We also delve into practical applications of these tools, including creating custom-edited cell and animal models as well as performing genetic screens. Finally, we discuss the potential for therapeutic applications and ethical considerations related to employing this technology in humans. © 2019 American Physiological Society. Compr Physiol 9:665-714, 2019.
Collapse
Affiliation(s)
- Shaina N Porter
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachel M Levine
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shondra M Pruett-Miller
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
23
|
Hou X, Zeng P, Zhang X, Chen J, Liang Y, Yang J, Yang Y, Liu X, Diao H. Shorter TCR β-Chains Are Highly Enriched During Thymic Selection and Antigen-Driven Selection. Front Immunol 2019; 10:299. [PMID: 30863407 PMCID: PMC6399399 DOI: 10.3389/fimmu.2019.00299] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/05/2019] [Indexed: 02/05/2023] Open
Abstract
The adaptive immune system uses several strategies to generate a repertoire of T cell receptors (TCR) with sufficient diversity to recognize the universe of potential pathogens. However, it remains unclear how differences in the T cell receptor (TCR) contribute to heterogeneity in T cell state. In this study, we used polychromatic flow cytometry to isolate highly pure CD4+/CD8+ naive and memory T cells, and applied deep sequencing to characterize corresponding TCR β-chain (TCRβ) complementary-determining region 3 (CDR3) repertoires. We find that shorter TCRβ CDR3s with fewer insertions were highly enriched during thymic selection. Antigen-experienced T cells (memory T cells) harbor shorter CDR3s vs. naive T cells. Moreover, the public TCRβ CDR3 clonotypes within cell subsets or interindividual tend to have shorter CDR3 length and a significantly larger size compared with "private" clonotypes. Taken together, shorter CDR3s highly enriched during thymic selection and antigen-driven selection, and further enriched in public T-cell responses. These results indicated that it may be evolutionary pressures drive short CDR3s to recognize most of antigen in nature.
Collapse
Affiliation(s)
- Xianliang Hou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangdong Liu
- College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Hematopoietic stem cell gene therapy for the cure of blood diseases: primary immunodeficiencies. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0742-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Clarke EL, Connell AJ, Six E, Kadry NA, Abbas AA, Hwang Y, Everett JK, Hofstaedter CE, Marsh R, Armant M, Kelsen J, Notarangelo LD, Collman RG, Hacein-Bey-Abina S, Kohn DB, Cavazzana M, Fischer A, Williams DA, Pai SY, Bushman FD. T cell dynamics and response of the microbiota after gene therapy to treat X-linked severe combined immunodeficiency. Genome Med 2018; 10:70. [PMID: 30261899 PMCID: PMC6161392 DOI: 10.1186/s13073-018-0580-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mutation of the IL2RG gene results in a form of severe combined immune deficiency (SCID-X1), which has been treated successfully with hematopoietic stem cell gene therapy. SCID-X1 gene therapy results in reconstitution of the previously lacking T cell compartment, allowing analysis of the roles of T cell immunity in humans by comparing before and after gene correction. METHODS Here we interrogate T cell reconstitution using four forms of high throughput analysis. (1) Estimation of the numbers of transduced progenitor cells by monitoring unique positions of integration of the therapeutic gene transfer vector. (2) Estimation of T cell population structure by sequencing of the recombined T cell receptor (TCR) beta locus. (3) Metagenomic analysis of microbial populations in oropharyngeal, nasopharyngeal, and gut samples. (4) Metagenomic analysis of viral populations in gut samples. RESULTS Comparison of progenitor and mature T cell populations allowed estimation of a minimum number of cell divisions needed to generate the observed populations. Analysis of microbial populations showed the effects of immune reconstitution, including normalization of gut microbiota and clearance of viral infections. Metagenomic analysis revealed enrichment of genes for antibiotic resistance in gene-corrected subjects relative to healthy controls, likely a result of higher healthcare exposure. CONCLUSIONS This multi-omic approach enables the characterization of multiple effects of SCID-X1 gene therapy, including T cell repertoire reconstitution, estimation of numbers of cell divisions between progenitors and daughter T cells, normalization of the microbiome, clearance of microbial pathogens, and modulations in antibiotic resistance gene levels. Together, these results quantify several aspects of the long-term efficacy of gene therapy for SCID-X1. This study includes data from ClinicalTrials.gov numbers NCT01410019, NCT01175239, and NCT01129544.
Collapse
Affiliation(s)
- Erik L Clarke
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - A Jesse Connell
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - Emmanuelle Six
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Nadia A Kadry
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - Arwa A Abbas
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - Young Hwang
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - John K Everett
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - Casey E Hofstaedter
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rebecca Marsh
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Myriam Armant
- Boston Children's Hospital, Karp 08125.3, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Judith Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Luigi D Notarangelo
- Laboratory of Host Defenses, Laboratory of Clinical Infectious Diseases, Immune Deficiency Genetics Section, NIAID, NIH, Bethesda, MD, USA
| | - Ronald G Collman
- Department of Medicine, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA
| | - Salima Hacein-Bey-Abina
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, 78, r. du Général-Leclerc, 94270, Le-Kremlin-Bicêtre, France
- UTCBS CNRS UMR 8258, INSERM U1022, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Chimie Paris-Tech, 4 av. de l'observatoire, 75006, Paris, France
| | - Donald B Kohn
- Departments of Microbiology, Immunology & Molecular Genetics; and Pediatrics, University of California, Los Angeles, USA
| | - Marina Cavazzana
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Alain Fischer
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
- Pediatric Hemato-Immunology Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Collège de France, Paris, France
| | - David A Williams
- Boston Children's Hospital, Karp 08125.3, 300 Longwood Avenue, Boston, MA, 02115, USA
- Havard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Sung-Yun Pai
- Boston Children's Hospital, Karp 08125.3, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA, 19104-6076, USA.
| |
Collapse
|
26
|
Hiramoto T, Li LB, Funk SE, Hirata RK, Russell DW. Nuclease-free Adeno-Associated Virus-Mediated Il2rg Gene Editing in X-SCID Mice. Mol Ther 2018; 26:1255-1265. [PMID: 29606506 DOI: 10.1016/j.ymthe.2018.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022] Open
Abstract
X-linked severe combined immunodeficiency (X-SCID) has been successfully treated by hematopoietic stem cell (HSC) transduction with retroviral vectors expressing the interleukin-2 receptor subunit gamma gene (IL2RG), but several patients developed malignancies due to vector integration near cellular oncogenes. This adverse side effect could in principle be avoided by accurate IL2RG gene editing with a vector that does not contain a functional promoter or IL2RG gene. Here, we show that adeno-associated virus (AAV) gene editing vectors can insert a partial Il2rg cDNA at the endogenous Il2rg locus in X-SCID murine bone marrow cells and that these ex vivo-edited cells repopulate transplant recipients and produce CD4+ and CD8+ T cells. Circulating, edited lymphocytes increased over time and appeared in secondary transplant recipients, demonstrating successful editing in long-term repopulating cells. Random vector integration events were nearly undetectable, and malignant transformation of the transplanted cells was not observed. Similar editing frequencies were observed in human hematopoietic cells. Our results demonstrate that therapeutically relevant HSC gene editing can be achieved by AAV vectors in the absence of site-specific nucleases and suggest that this may be a safe and effective therapy for hematopoietic diseases where in vivo selection can increase edited cell numbers.
Collapse
Affiliation(s)
- Takafumi Hiramoto
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Li B Li
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sarah E Funk
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Roli K Hirata
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - David W Russell
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
27
|
Bamoulid J, Courivaud C, Crepin T, Carron C, Gaiffe E, Roubiou C, Laheurte C, Moulin B, Frimat L, Rieu P, Mousson C, Durrbach A, Heng AE, Rebibou JM, Saas P, Ducloux D. Pretransplant thymic function predicts acute rejection in antithymocyte globulin-treated renal transplant recipients. Kidney Int 2016; 89:1136-1143. [PMID: 27083287 DOI: 10.1016/j.kint.2015.12.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/26/2015] [Accepted: 12/17/2015] [Indexed: 12/25/2022]
Abstract
Lack of clear identification of patients at high risk of acute rejection hampers the ability to individualize immunosuppressive therapy. Here we studied whether thymic function may predict acute rejection in antithymocyte globulin (ATG)-treated renal transplant recipients in 482 patients prospectively studied during the first year post-transplant of which 86 patients experienced acute rejection. Only CD45RA(+)CD31(+)CD4(+) T cell (recent thymic emigrant [RTE]) frequency (RTE%) was marginally associated with acute rejection in the whole population. This T-cell subset accounts for 26% of CD4(+) T cells. Pretransplant RTE% was significantly associated with acute rejection in ATG-treated patients (hazard ratio, 1.04; 95% confidence interval, 1.01-1.08) for each increased percent in RTE/CD4(+) T cells), but not in anti-CD25 monoclonal (αCD25 mAb)-treated patients. Acute rejection was significantly more frequent in ATG-treated patients with high pretransplant RTE% (31.2% vs. 16.4%) or absolute number of RTE/mm(3) (31.7 vs. 16.1). This difference was not found in αCD25 monclonal antibody-treated patients. Highest values of both RTE% (>31%, hazard ratio, 2.50; 95% confidence interval, 1.09-5.74) and RTE/mm(3) (>200/mm(3), hazard ratio, 3.71; 95% confidence interval, 1.59-8.70) were predictive of acute rejection in ATG-treated patients but not in patients having received αCD25 monoclonal antibody). Results were confirmed in a retrospective cohort using T-cell receptor excision circle levels as a marker of thymic function. Thus, pretransplant thymic function predicts acute rejection in ATG-treated patients.
Collapse
Affiliation(s)
- Jamal Bamoulid
- INSERM, UMR1098, Federation hospitalo-universitaire INCREASE, Besançon, France; Faculté de Médecine et de Pharmacie, University Bourgogne Franche-Comté, Besançon, France; Structure Fédérative de Recherche, Besançon, France; Department of Nephrology, Dialysis, and Renal Transplantation, CHU Besançon, Besançon, France
| | - Cécile Courivaud
- INSERM, UMR1098, Federation hospitalo-universitaire INCREASE, Besançon, France; Faculté de Médecine et de Pharmacie, University Bourgogne Franche-Comté, Besançon, France; Structure Fédérative de Recherche, Besançon, France; Department of Nephrology, Dialysis, and Renal Transplantation, CHU Besançon, Besançon, France
| | - Thomas Crepin
- INSERM, UMR1098, Federation hospitalo-universitaire INCREASE, Besançon, France; Faculté de Médecine et de Pharmacie, University Bourgogne Franche-Comté, Besançon, France; Structure Fédérative de Recherche, Besançon, France; Department of Nephrology, Dialysis, and Renal Transplantation, CHU Besançon, Besançon, France
| | - Clémence Carron
- INSERM, UMR1098, Federation hospitalo-universitaire INCREASE, Besançon, France; Faculté de Médecine et de Pharmacie, University Bourgogne Franche-Comté, Besançon, France; Structure Fédérative de Recherche, Besançon, France
| | - Emilie Gaiffe
- Department of Nephrology, Dialysis, and Renal Transplantation, CHU Besançon, Besançon, France; CHU Besançon, CIC Biothérapie, INSERM CIC1431, Besançon, France
| | - Caroline Roubiou
- Faculté de Médecine et de Pharmacie, University Bourgogne Franche-Comté, Besançon, France; Structure Fédérative de Recherche, Besançon, France; Department of Nephrology, Dialysis, and Renal Transplantation, CHU Besançon, Besançon, France
| | - Caroline Laheurte
- INSERM, UMR1098, Federation hospitalo-universitaire INCREASE, Besançon, France; EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, CIC 1431/UMR1098, Besançon, France
| | - Bruno Moulin
- Department of Nephrology, Dialysis, and Renal Transplantation, CHU Strasbourg, Strasbourg, France
| | - Luc Frimat
- Department of Nephrology, Dialysis, and Renal Transplantation, CHU Nancy, Nancy, France
| | - Philippe Rieu
- Department of Nephrology, Dialysis, and Renal Transplantation, CHU Reims, Reims, France
| | - Christiane Mousson
- Department of Nephrology, Dialysis, and Renal Transplantation, CHU Dijon, Dijon, France
| | - Antoine Durrbach
- Department of Nephrology, Dialysis, and Renal Transplantation, CHU Kremlin-Bicêtre, Le Kremlin-Bicêtre, France
| | - Anne-Elisabeth Heng
- Department of Nephrology, Dialysis, and Renal Transplantation, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Jean-Michel Rebibou
- INSERM, UMR1098, Federation hospitalo-universitaire INCREASE, Besançon, France; Department of Nephrology, Dialysis, and Renal Transplantation, CHU Dijon, Dijon, France
| | - Philippe Saas
- INSERM, UMR1098, Federation hospitalo-universitaire INCREASE, Besançon, France; Faculté de Médecine et de Pharmacie, University Bourgogne Franche-Comté, Besançon, France; Structure Fédérative de Recherche, Besançon, France; CHU Besançon, CIC Biothérapie, INSERM CIC1431, Besançon, France; EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, CIC 1431/UMR1098, Besançon, France
| | - Didier Ducloux
- INSERM, UMR1098, Federation hospitalo-universitaire INCREASE, Besançon, France; Faculté de Médecine et de Pharmacie, University Bourgogne Franche-Comté, Besançon, France; Structure Fédérative de Recherche, Besançon, France; Department of Nephrology, Dialysis, and Renal Transplantation, CHU Besançon, Besançon, France; CHU Besançon, CIC Biothérapie, INSERM CIC1431, Besançon, France.
| |
Collapse
|
28
|
Cicalese MP, Aiuti A. Clinical applications of gene therapy for primary immunodeficiencies. Hum Gene Ther 2016; 26:210-9. [PMID: 25860576 DOI: 10.1089/hum.2015.047] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Primary immunodeficiencies (PIDs) have represented a paradigmatic model for successes and pitfalls of hematopoietic stem cells gene therapy. First clinical trials performed with gamma retroviral vectors (γ-RV) for adenosine deaminase severe combined immunodeficiency (ADA-SCID), X-linked SCID (SCID-X1), and Wiskott-Aldrich syndrome (WAS) showed that gene therapy is a valid therapeutic option in patients lacking an HLA-identical donor. No insertional mutagenesis events have been observed in more than 40 ADA-SCID patients treated so far in the context of different clinical trials worldwide, suggesting a favorable risk-benefit ratio for this disease. On the other hand, the occurrence of insertional oncogenesis in SCID-X1, WAS, and chronic granulomatous disease (CGD) RV clinical trials prompted the development of safer vector construct based on self-inactivating (SIN) retroviral or lentiviral vectors (LVs). Here we present the recent results of LV-mediated gene therapy for WAS showing stable multilineage engraftment leading to hematological and immunological improvement, and discuss the differences with respect to the WAS RV trial. We also describe recent clinical results of SCID-X1 gene therapy with SIN γ-RV and the perspectives of targeted genome editing techniques, following early preclinical studies showing promising results in terms of specificity of gene correction. Finally, we provide an overview of the gene therapy approaches for other PIDs and discuss its prospects in relation to the evolving arena of allogeneic transplant.
Collapse
Affiliation(s)
- Maria Pia Cicalese
- 1 San Raffaele Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute , 20132 Milan, Italy
| | | |
Collapse
|
29
|
Silva SL, Sousa AE. Establishment and Maintenance of the Human Naïve CD4 + T-Cell Compartment. Front Pediatr 2016; 4:119. [PMID: 27843891 PMCID: PMC5086629 DOI: 10.3389/fped.2016.00119] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
The naïve CD4+ T-cell compartment is considered essential to guarantee immune competence throughout life. Its replenishment with naïve cells with broad diverse receptor repertoire, albeit with reduced self-reactivity, is ensured by the thymus. Nevertheless, cumulative data support a major requirement of post-thymic proliferation both for the establishment of the human peripheral naïve compartment during the accelerated somatic growth of childhood, as well as for its lifelong maintenance. Additionally, a dynamic equilibrium is operating at the cell level to fine-tune the T-cell receptor threshold to activation and survival cues, in order to counteract the continuous naïve cell loss by death or conversion into memory/effector cells. The main players in these processes are low-affinity self-peptide/MHC and cytokines, particularly IL-7. Moreover, although naïve CD4+ T-cells are usually seen as a homogeneous population regarding stage of maturation and cell differentiation, increasing evidence points to a variety of phenotypic and functional subsets with distinct homeostatic requirements. The paradigm of cells committed to a distinct lineage in the thymus are the naïve regulatory T-cells, but other functional subpopulations have been identified based on their time span after thymic egress, phenotypic markers, such as CD31, or cytokine production, namely IL-8. Understanding the regulation of these processes is of utmost importance to promote immune reconstitution in several clinical settings, namely transplantation, persistent infections, and aging. In this mini review, we provide an overview of the mechanisms underlying human naïve CD4+ T-cell homeostasis, combining clinical data, experimental studies, and modeling approaches.
Collapse
Affiliation(s)
- Susana L Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Centro de Imunodeficiências Primárias, Lisboa, Portugal; Clinica Universitária de Imunoalergologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Ana E Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Centro de Imunodeficiências Primárias, Lisboa, Portugal
| |
Collapse
|
30
|
Le Guen T, Touzot F, André-Schmutz I, Lagresle-Peyrou C, France B, Kermasson L, Lambert N, Picard C, Nitschke P, Carpentier W, Bole-Feysot C, Lim A, Cavazzana M, Callebaut I, Soulier J, Jabado N, Fischer A, de Villartay JP, Revy P. An in vivo genetic reversion highlights the crucial role of Myb-Like, SWIRM, and MPN domains 1 (MYSM1) in human hematopoiesis and lymphocyte differentiation. J Allergy Clin Immunol 2015. [DOI: 10.1016/j.jaci.2015.06.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Abstract
The ability to manipulate the genome with precise spatial and nucleotide resolution (genome editing) has been a powerful research tool. In the past decade, the tools and expertise for using genome editing in human somatic cells and pluripotent cells have increased to such an extent that the approach is now being developed widely as a strategy to treat human disease. The fundamental process depends on creating a site-specific DNA double-strand break (DSB) in the genome and then allowing the cell's endogenous DSB repair machinery to fix the break such that precise nucleotide changes are made to the DNA sequence. With the development and discovery of several different nuclease platforms and increasing knowledge of the parameters affecting different genome editing outcomes, genome editing frequencies now reach therapeutic relevance for a wide variety of diseases. Moreover, there is a series of complementary approaches to assessing the safety and toxicity of any genome editing process, irrespective of the underlying nuclease used. Finally, the development of genome editing has raised the issue of whether it should be used to engineer the human germline. Although such an approach could clearly prevent the birth of people with devastating and destructive genetic diseases, questions remain about whether human society is morally responsible enough to use this tool.
Collapse
Affiliation(s)
- Matthew Porteus
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, California 94305;
| |
Collapse
|
32
|
Fischer A, Notarangelo LD, Neven B, Cavazzana M, Puck JM. Severe combined immunodeficiencies and related disorders. Nat Rev Dis Primers 2015; 1:15061. [PMID: 27189259 DOI: 10.1038/nrdp.2015.61] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Severe combined immunodeficiencies (SCIDs) comprise a group of rare, monogenic diseases that are characterized by an early onset and a profound block in the development of T lymphocytes. Given that adaptive immunity is abrogated, patients with SCID are prone to recurrent infections caused by both non-opportunistic and opportunistic pathogens, leading to early death unless immunity can be restored. Several molecular defects causing SCIDs have been identified, along with many other defects causing profound, albeit incomplete, T cell immunodeficiencies; the latter are referred to as atypical SCIDs or combined immunodeficiencies. The pathophysiology of many of these conditions has now been characterized. Early, accurate and precise diagnosis combined with the ongoing implementation of newborn screening have enabled major advances in the care of infants with SCID, including better outcomes of allogeneic haematopoietic stem cell transplantation. Gene therapy is also becoming an effective option. Further advances and a progressive extension of the indications for gene therapy can be expected in the future. The assessment of long-term outcomes of patients with SCID is now a major challenge, with a view to evaluating the quality and sustainability of immune restoration, the risks of sequelae and the ability to relieve the non-haematopoietic syndromic manifestations that accompany some of these conditions.
Collapse
Affiliation(s)
- Alain Fischer
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France.,INSERM UMR 1163, Paris, France.,Collège de France, Paris, France
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bénédicte Neven
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France.,INSERM UMR 1163, Paris, France
| | - Marina Cavazzana
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,INSERM UMR 1163, Paris, France.,Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Jennifer M Puck
- Division of Allergy, Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
33
|
Laydon DJ, Bangham CRM, Asquith B. Estimating T-cell repertoire diversity: limitations of classical estimators and a new approach. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140291. [PMID: 26150657 PMCID: PMC4528489 DOI: 10.1098/rstb.2014.0291] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2015] [Indexed: 12/26/2022] Open
Abstract
A highly diverse T-cell receptor (TCR) repertoire is a fundamental property of an effective immune system, and is associated with efficient control of viral infections and other pathogens. However, direct measurement of total TCR diversity is impossible. The diversity is high and the frequency distribution of individual TCRs is heavily skewed; the diversity therefore cannot be captured in a blood sample. Consequently, estimators of the total number of TCR clonotypes that are present in the individual, in addition to those observed, are essential. This is analogous to the 'unseen species problem' in ecology. We review the diversity (species richness) estimators that have been applied to T-cell repertoires and the methods used to validate these estimators. We show that existing approaches have significant shortcomings, and frequently underestimate true TCR diversity. We highlight our recently developed estimator, DivE, which can accurately estimate diversity across a range of immunological and biological systems.
Collapse
MESH Headings
- Animals
- Gene Rearrangement, T-Lymphocyte
- Genetic Variation
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Lymphocyte Count
- Models, Genetic
- Models, Immunological
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Statistics, Nonparametric
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Daniel J Laydon
- Section of Immunology, Wright-Fleming Institute, Imperial College School of Medicine, London W2 1PG, UK
| | - Charles R M Bangham
- Section of Immunology, Wright-Fleming Institute, Imperial College School of Medicine, London W2 1PG, UK
| | - Becca Asquith
- Section of Immunology, Wright-Fleming Institute, Imperial College School of Medicine, London W2 1PG, UK
| |
Collapse
|
34
|
Abstract
Recent advances in the development of genome editing technologies based on programmable nucleases have substantially improved our ability to make precise changes in the genomes of eukaryotic cells. Genome editing is already broadening our ability to elucidate the contribution of genetics to disease by facilitating the creation of more accurate cellular and animal models of pathological processes. A particularly tantalizing application of programmable nucleases is the potential to directly correct genetic mutations in affected tissues and cells to treat diseases that are refractory to traditional therapies. Here we discuss current progress toward developing programmable nuclease-based therapies as well as future prospects and challenges.
Collapse
Affiliation(s)
- David Benjamin Turitz Cox
- 1] Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [3] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [4] McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts, USA
| | - Randall Jeffrey Platt
- 1] Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts, USA. [3] Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [4] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Feng Zhang
- 1] Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts, USA. [3] Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [4] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
35
|
Abstract
The ability to remove blood cells, including hematopoietic stem cells (HSCs), from a person and then re-transplant them (hematopoietic stem cell transplantation (HSCT) is a well-established treatment paradigm that can be used in both the autologous setting or in the allogeneic setting. Using allogeneic HSCT can cure different genetic diseases of the blood but has significant limitations. An alternative to allogeneic HSCT is to transplant genetically modified HSCs instead. A powerful approach to the precision modification of HSCs is to use genome editing whereby the genome is modified with spatial precision (at an exact location) in the genome and sometimes with nucleotide precision (the exact nucleotide changes are introduced). The progress and challenges of genome editing of blood are discussed.
Collapse
Affiliation(s)
- Matthew H Porteus
- Dept. of Pediatrics MC5462, Stanford University, Stanford, CA 94305,
| |
Collapse
|
36
|
Farinelli G, Capo V, Scaramuzza S, Aiuti A. Lentiviral vectors for the treatment of primary immunodeficiencies. J Inherit Metab Dis 2014; 37:525-33. [PMID: 24619149 DOI: 10.1007/s10545-014-9690-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 01/22/2023]
Abstract
In the last years important progress has been made in the treatment of several primary immunodeficiency disorders (PIDs) with gene therapy. Hematopoietic stem cell (HSC) gene therapy indeed represents a valid alternative to conventional transplantation when a compatible donor is not available and recent success confirmed the great potential of this approach. First clinical trials performed with gamma retroviral vectors were promising and guaranteed clinical benefits to the patients. On the other hand, the outcome of severe adverse events as the development of hematological abnormalities highlighted the necessity to develop a safer platform to deliver the therapeutic gene. Self-inactivating (SIN) lentiviral vectors (LVVs) were studied to overcome this hurdle through their preferable integration pattern into the host genome. In this review, we describe the recent advancements achieved both in vitro and at preclinical level with LVVs for the treatment of Wiskott-Aldrich syndrome (WAS), chronic granulomatous disease (CGD), ADA deficiency (ADA-SCID), Artemis deficiency, RAG1/2 deficiency, X-linked severe combined immunodeficiency (γchain deficiency, SCIDX1), X-linked lymphoproliferative disease (XLP) and immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome.
Collapse
Affiliation(s)
- Giada Farinelli
- Department of Pediatrics, Children's Hospital Bambino Gesù and University of Rome Tor Vergata School of Medicine, Rome, Italy
| | | | | | | |
Collapse
|
37
|
Matsubara Y, Chiba T, Kashimada K, Morio T, Takada S, Mizutani S, Asahara H. Transcription activator-like effector nuclease-mediated transduction of exogenous gene into IL2RG locus. Sci Rep 2014; 4:5043. [PMID: 24853770 PMCID: PMC4031469 DOI: 10.1038/srep05043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/02/2014] [Indexed: 11/10/2022] Open
Abstract
X-linked severe combined immunodeficiency (SCID-X1) caused by mutations in interleukin 2 receptor gamma (IL2RG) gene threatens the survival of affected boys during the first year of life unless hematopoietic stem cell transplantation is provided. Although viral vector-mediated gene therapy has been successfully performed in patients with no HLA-matched donors, leukemia caused by vector-mediated insertional mutagenesis has been reported in some individuals. Transcription activator-like effector nuclease (TALEN) is an artificial sequence-specific endonuclease that is expected to revolutionize the precise correction of disease-causing mutations and eliminate the risk of insertional mutagenesis. Here, we report TALEN-mediated genome editing of the IL2RG locus. We transfected TALENs along with a targeting vector into Jurkat cells, and we confirmed the precise introduction of the exogenous gene into the IL2RG locus. In addition, we found that the length of homology arm in the targeting vector influenced the efficiency of TALEN-mediated homologous recombination.
Collapse
Affiliation(s)
- Yohei Matsubara
- Department of Systems BioMedicine, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo 113-8510, Japan
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo 113-8510, Japan
- These authors contributed equally to this work
| | - Tomoki Chiba
- Department of Systems BioMedicine, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo 113-8510, Japan
- These authors contributed equally to this work
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo 113-8510, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo 113-8510, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Shuki Mizutani
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo 113-8510, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo 113-8510, Japan
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
- Department of Molecular and Experimental Medicine, The Scripps research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
38
|
Qasim W, Gennery AR. Gene Therapy for Primary Immunodeficiencies: Current Status and Future Prospects. Drugs 2014; 74:963-9. [DOI: 10.1007/s40265-014-0223-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Touzot F, Hacein-Bey-Abina S, Fischer A, Cavazzana M. Gene therapy for inherited immunodeficiency. Expert Opin Biol Ther 2014; 14:789-98. [DOI: 10.1517/14712598.2014.895811] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Abstract
Immunodeficiencies with nonfunctional T cells comprise a heterogeneous group of conditions characterized by altered function of T lymphocytes in spite of largely preserved T cell development. Some of these forms are due to hypomorphic mutations in genes causing severe combined immunodeficiency. More recently, advances in human genome sequencing have facilitated the identification of novel genetic defects that do not affect T cell development, but alter T cell function and homeostasis. Along with increased susceptibility to infections, these conditions are characterized by autoimmunity and higher risk of malignancies. The study of these diseases, and of corresponding animal models, has provided fundamental insights on the mechanisms that govern immune homeostasis.
Collapse
|
41
|
Zhang L, Thrasher AJ, Gaspar HB. Current progress on gene therapy for primary immunodeficiencies. Gene Ther 2013; 20:963-9. [PMID: 23719067 DOI: 10.1038/gt.2013.21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/09/2013] [Accepted: 03/28/2013] [Indexed: 11/09/2022]
Abstract
Primary immunodeficiencies have played a major role in the development of gene therapy for monogenic diseases of the bone marrow. The last decade has seen convincing evidence of long-term disease correction as a result of ex vivo viral vector-mediated gene transfer into autologous haematopoietic stem cells. The success of these early studies has been balanced by the development of vector-related insertional mutagenic events. More recently the use of alternative vector designs with self-inactivating designs, which have an improved safety profile has led to the initiation of a wave of new studies that are showing early signs of efficacy. The ongoing development of safer vector platforms and gene-correction technologies together with improvements in cell-transduction techniques and optimised conditioning regimes is likely to make gene therapy amenable for a greater number of PIDs. If long-term efficacy and safety are shown, gene therapy will become a standard treatment option for specific forms of PID.
Collapse
Affiliation(s)
- L Zhang
- Molecular Immunology Unit, Center for Immunodeficiency, Institute of Child Health, University College London, London, UK
| | | | | |
Collapse
|
42
|
Gene therapy for PIDs: progress, pitfalls and prospects. Gene 2013; 525:174-81. [PMID: 23566838 PMCID: PMC3725417 DOI: 10.1016/j.gene.2013.03.098] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/04/2013] [Accepted: 03/07/2013] [Indexed: 12/31/2022]
Abstract
Substantial progress has been made in the past decade in treating several primary immunodeficiency disorders (PIDs) with gene therapy. Current approaches are based on ex-vivo transfer of therapeutic transgene via viral vectors to patient-derived autologous hematopoietic stem cells (HSCs) followed by transplantation back to the patient with or without conditioning. The overall outcome from all the clinical trials targeting different PIDs has been extremely encouraging but not without caveats. Malignant outcomes from insertional mutagenesis have featured prominently in the adverse events associated with these trials and have warranted intense pre-clinical investigation into defining the tendencies of different viral vectors for genomic integration. Coupled with issues pertaining to transgene expression, the therapeutic landscape has undergone a paradigm shift in determining safety, stability and efficacy of gene therapy approaches. In this review, we aim to summarize the progress made in the gene therapy trials targeting ADA-SCID, SCID-X1, CGD and WAS, review the pitfalls, and outline the recent advancements which are expected to further enhance favourable risk benefit ratios for gene therapeutic approaches in the future.
Collapse
|
43
|
Kuijpers TW, van Leeuwen EMM, Barendregt BH, Klarenbeek P, aan de Kerk DJ, Baars PA, Jansen MH, de Vries N, van Lier RAW, van der Burg M. A reversion of an IL2RG mutation in combined immunodeficiency providing competitive advantage to the majority of CD8+ T cells. Haematologica 2013; 98:1030-8. [PMID: 23403317 DOI: 10.3324/haematol.2012.077511] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mutations in the common gamma chain (γc, CD132, encoded by the IL2RG gene) can lead to B(+)T(-)NK(-) X-linked severe combined immunodeficiency, as a consequence of unresponsiveness to γc-cytokines such as interleukins-2, -7 and -15. Hypomorphic mutations in CD132 may cause combined immunodeficiencies with a variety of clinical presentations. We analyzed peripheral blood mononuclear cells of a 6-year-old boy with normal lymphocyte counts, who suffered from recurrent pneumonia and disseminated mollusca contagiosa. Since proliferative responses of T cells and NK cells to γc -cytokines were severely impaired, we performed IL2RG gene analysis, showing a heterozygous mutation in the presence of a single X-chromosome. Interestingly, an IL2RG reversion to normal predominated in both naïve and antigen-primed CD8(+) T cells and increased over time. Only the revertant CD8(+) T cells showed normal expression of CD132 and the various CD8(+) T cell populations had a different T-cell receptor repertoire. Finally, a fraction of γδ(+) T cells and differentiated CD4(+)CD27(-) effector-memory T cells carried the reversion, whereas NK or B cells were repeatedly negative. In conclusion, in a patient with a novel IL2RG mutation, gene-reverted CD8(+) T cells accumulated over time. Our data indicate that selective outgrowth of particular T-cell subsets may occur following reversion at the level of committed T progenitor cells.
Collapse
Affiliation(s)
- Taco W Kuijpers
- Emma Children's Hospital, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dong J, Chen Y, Xu X, Jin R, Teng F, Yan F, Tang H, Li P, Sun X, Li Y, Wu H, Zhang Y, Ge Q. Homeostatic properties and phenotypic maturation of murine CD4+ pre-thymic emigrants in the thymus. PLoS One 2013; 8:e56378. [PMID: 23409179 PMCID: PMC3569422 DOI: 10.1371/journal.pone.0056378] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/08/2013] [Indexed: 11/24/2022] Open
Abstract
After a tightly regulated developmental program in the thymus, “mature” single positive (SP) thymocytes leave the thymus and enter the periphery. These newly arrived recent thymic emigrants (RTEs) are phenotypically and functionally immature, and will complete a dynamic maturation in the peripheral lymphoid organs before being licensed to be resident naïve T cells. To study the early events occurring in the RTE maturation process, we identified the phenotype of CD4+ pre-RTEs, a population of CD4+ SP thymocytes that have acquired the thymus egress capability. Compared to peripheral naïve T cells, CD4+ pre-RTEs displayed superior survival capability in lymphoreplete mice and faster proliferation under lymphopenic condition. The differences in Bcl2/Bim expression and/or heightened IL-7 signaling pathway may account for the pre-RTEs’ better responsiveness to homeostatic signals. Qa2, the expression of which indicates the phenotypic maturation of SPs and RTEs, was found to be upregulated in CD4+ pre-RTEs in thymic perivascular space. Migratory dendritic cells that surround this region contribute to Qa2 expression in pre-RTEs. The dendritic cell-driven Qa2 induction of CD4+ pre-RTEs is independent of MHC class II and Aire molecules.
Collapse
Affiliation(s)
- Jie Dong
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Yu Chen
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Xi Xu
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Rong Jin
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Fei Teng
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Fan Yan
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Hui Tang
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Pingping Li
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Xiuyuan Sun
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Yan Li
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Hounan Wu
- Peking University Medical and Health Analytical Center, Peking University Health Science Center, Beijing, China
- * E-mail: (QG); (YZ); (HW)
| | - Yu Zhang
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, Peking University Health Science Center, Beijing, China
- * E-mail: (QG); (YZ); (HW)
| | - Qing Ge
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, Peking University Health Science Center, Beijing, China
- * E-mail: (QG); (YZ); (HW)
| |
Collapse
|
45
|
Hirschhorn R, Hirschhorn K, Notarangelo LD. Immunodeficiency Disorders. EMERY AND RIMOIN'S PRINCIPLES AND PRACTICE OF MEDICAL GENETICS 2013:1-30. [DOI: 10.1016/b978-0-12-383834-6.00084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
46
|
Cavazzana-Calvo M, Fischer A, Hacein-Bey-Abina S, Aiuti A. Gene therapy for primary immunodeficiencies: Part 1. Curr Opin Immunol 2012; 24:580-4. [PMID: 22981681 DOI: 10.1016/j.coi.2012.08.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
Abstract
Over 60 patients affected by SCID due to IL2RG deficiency (SCID-X1) or adenosine deaminase (ADA)-SCID have received hematopoietic stem cell gene therapy in the past 15 years using gammaretroviral vectors, resulting in immune reconstitution and clinical benefit in the majority of them. However, the occurrence of insertional oncogenesis in the SCID-X1 trials has led to the development of new clinical trials based on integrating vectors with improved safety design as well as investigation on new technologies for highly efficient gene targeting and site-specific gene editing. Here we will present the experience and perspectives of gene therapy for SCID-X1 and ADA-SCID and discuss the pros and cons of gene therapy in comparison to allogeneic transplantation.
Collapse
|
47
|
Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M. Strategies for retrovirus-based correction of severe, combined immunodeficiency (SCID). Methods Enzymol 2012; 507:15-27. [PMID: 22365767 DOI: 10.1016/b978-0-12-386509-0.00002-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Severe combined immunodeficiencies (SCIDs) appear as optimal disease targets to challenge potential efficacy of gene therapy. Ex vivo, retrovirally mediated gene transfer into hematopoietic progenitor cells has been shown to provide sustained correction of two forms of SCID, that is, SCID-X1 and adenosine deaminase deficiencies. In the former case, however, genotoxicity was observed in a minority of patients as a consequence of retroviral integration into proto-oncogenes loci and transactivation. Design of vectors in which the enhancer element of retroviral LTR has been deleted and an internal promoter added (self-inactivated vectors) could provide both safe and efficient gene transfer as being presently tested.
Collapse
|
48
|
Porteus M. Homologous recombination-based gene therapy for the primary immunodeficiencies. Ann N Y Acad Sci 2012; 1246:131-40. [PMID: 22236437 DOI: 10.1111/j.1749-6632.2011.06314.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The devastating nature of primary immunodeficiencies, the ability to cure primary immunodeficiencies by bone marrow transplantation, the ability of a small number of gene-corrected cells to reconstitute the immune system, and the overall suboptimal results of bone marrow transplantation for most patients with primary immunodeficiencies make the development of gene therapy for this class of diseases important. While there has been clear clinical benefit for a number of patients from viral-based gene therapy strategies, there have also been a significant number of serious adverse events, including the development of leukemia, from the approach. In this review, I discuss the development of nuclease-stimulated, homologous recombination-based approaches as a novel gene therapy strategy for the primary immunodeficiencies.
Collapse
Affiliation(s)
- Matthew Porteus
- Department of Pediatrics, Divisions of Cancer Biology, Hematology/Oncology, Human Gene Therapy, Stanford University, Stanford, California, USA.
| |
Collapse
|
49
|
Abstract
Hematopoietic stem cell (HSC) transplantation may be curative for severe combined immunodeficiency (SCID). However, for a majority of infants with SCID a suitable donor is not available, and even with a matched donor, allogeneic HSC transplantation itself carries potential complications such as graft-versus-host disease as well as side effects from myelosuppressive chemotherapy. In the past decade, substantial advances have been made in the transplantation of gene-modified autologous HSCs, especially for two forms of SCID: X-linked SCID (SCID-X1) and adenosine deaminase (ADA)-deficient SCID. Two new reports in this issue of Science Translational Medicine add to the accumulating findings from gene therapy trials in Italy, France, and the United States that show clinical benefits of this alternative treatment.
Collapse
Affiliation(s)
- Kit L Shaw
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
50
|
Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M. Gene therapy for primary immunodeficiencies. Hematol Oncol Clin North Am 2011; 25:89-100. [PMID: 21236392 DOI: 10.1016/j.hoc.2010.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The concept of gene therapy emerged as a way of correcting monogenic inherited diseases by introducing a normal copy of the mutated gene into at least some of the patients' cells. Although this concept has turned out to be quite complicated to implement, it is in the field of primary immunodeficiencies (PIDs) that proof of feasibility has been undoubtedly achieved. There is now a strong rationale in support of gene therapy for at least some PIDs, as discussed in this article.
Collapse
Affiliation(s)
- Alain Fischer
- Developpement Normal et Pathologique du Systeme Immunitaire, INSERM U 768, Hopital Necker, 149 rue de Sevres, Paris, France
| | | | | |
Collapse
|