1
|
Carmona-Ribeiro AM, Pérez-Betancourt Y. Emerging Cationic Nanovaccines. Pharmaceutics 2024; 16:1362. [PMID: 39598488 PMCID: PMC11597065 DOI: 10.3390/pharmaceutics16111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Cationic vaccines of nanometric sizes can directly perform the delivery of antigen(s) and immunomodulator(s) to dendritic cells in the lymph nodes. The positively charged nanovaccines are taken up by antigen-presenting cells (APCs) of the lymphatic system often originating the cellular immunological defense required to fight intracellular microbial infections and the proliferation of cancers. Cationic molecules imparting the positive charges to nanovaccines exhibit a dose-dependent toxicity which needs to be systematically addressed. Against the coronavirus, mRNA cationic nanovaccines evolved rapidly. Nowadays cationic nanovaccines have been formulated against several infections with the advantage of cationic compounds granting protection of nucleic acids in vivo against biodegradation by nucleases. Up to the threshold concentration of cationic molecules for nanovaccine delivery, cationic nanovaccines perform well eliciting the desired Th 1 improved immune response in the absence of cytotoxicity. A second strategy in the literature involves dilution of cationic components in biocompatible polymeric matrixes. Polymeric nanoparticles incorporating cationic molecules at reduced concentrations for the cationic component often result in an absence of toxic effects. The progress in vaccinology against cancer involves in situ designs for cationic nanovaccines. The lysis of transformed cancer cells releases several tumoral antigens, which in the presence of cationic nanoadjuvants can be systemically presented for the prevention of metastatic cancer. In addition, these local cationic nanovaccines allow immunotherapeutic tumor treatment.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Yunys Pérez-Betancourt
- Department of Microbiology, University of Chicago, Cummings Life Science Center 920 E 58th St., Chicago, IL 60637, USA;
| |
Collapse
|
2
|
Tahir Aleem M, Munir F, Shakoor A, Ud Din Sindhu Z, Gao F. Advancement in the development of DNA vaccines against Trypanosoma brucei and future perspective. Int Immunopharmacol 2024; 140:112847. [PMID: 39088922 DOI: 10.1016/j.intimp.2024.112847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Trypanosomes are the extracellular protozoan parasites that cause human African trypanosomiasis disease in humans and nagana disease in animals. Tsetse flies act as a vector for the transmission of the disease in African countries. Animals infected with these parasites become useless or workless, and if not treated, disease can be fatal. There are many side effects associated with old treatments and some of them result in death in 5% of cases. There is a major surface glycoprotein in the parasite known as variant surface glycoprotein. The immune system of the host develops antibodies against this antigen but due to antigenic variation, parasites evade the immune response. Currently, no vaccine is available that provides complete protection. In murine models, only partial protection was observed using certain antigens. In order to develop vaccines against trypanosomes, molecular biology and immunology tools have been used. Immunization is the sole method for the control of disease because the eradication of the vector from endemic areas is an impossible task. Genetic vaccines can carry multiple genes encoding different antigens of the same parasite or different parasites. DNA immunization induces the activation of both cellular immune response and humoral immune response along with the generation of memory. This review highlights the importance of DNA vaccines and advances in the development of DNA vaccines against T. brucei.
Collapse
Affiliation(s)
- Muhammad Tahir Aleem
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China; Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA.
| | - Furqan Munir
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Amna Shakoor
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad 9, 38040, Pakistan
| | - Zia Ud Din Sindhu
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
3
|
Nasiri M, Bahadorani M, Dellinger K, Aravamudhan S, Vivero-Escoto JL, Zadegan R. Improving DNA nanostructure stability: A review of the biomedical applications and approaches. Int J Biol Macromol 2024; 260:129495. [PMID: 38228209 PMCID: PMC11060068 DOI: 10.1016/j.ijbiomac.2024.129495] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
DNA's programmable, predictable, and precise self-assembly properties enable structural DNA nanotechnology. DNA nanostructures have a wide range of applications in drug delivery, bioimaging, biosensing, and theranostics. However, physiological conditions, including low cationic ions and the presence of nucleases in biological systems, can limit the efficacy of DNA nanostructures. Several strategies for stabilizing DNA nanostructures have been developed, including i) coating them with biomolecules or polymers, ii) chemical cross-linking of the DNA strands, and iii) modifications of the nucleotides and nucleic acids backbone. These methods significantly enhance the structural stability of DNA nanostructures and thus enable in vivo and in vitro applications. This study reviews the present perspective on the distinctive properties of the DNA molecule and explains various DNA nanostructures, their advantages, and their disadvantages. We provide a brief overview of the biomedical applications of DNA nanostructures and comprehensively discuss possible approaches to improve their biostability. Finally, the shortcomings and challenges of the current biostability approaches are examined.
Collapse
Affiliation(s)
- Mahboobeh Nasiri
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, USA
| | - Mehrnoosh Bahadorani
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, USA
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, USA
| | - Shyam Aravamudhan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, USA
| | - Juan L Vivero-Escoto
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Reza Zadegan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, USA.
| |
Collapse
|
4
|
Neun BW, Cedrone E, Dobrovolskaia MA. Analysis of Nanoparticle Adjuvant Properties. Methods Mol Biol 2024; 2789:209-216. [PMID: 38507006 DOI: 10.1007/978-1-0716-3786-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Nanoparticles can be engineered for targeted antigen delivery to immune cells and for stimulating an immune response to improve the antigen immunogenicity. This approach is commonly used to develop nanotechnology-based vaccines. In addition, some nanotechnology platforms may be initially designed for drug delivery, but in the course of subsequent characterization, additional immunomodulatory functions may be discovered that can potentially benefit vaccine efficacy. In both of these scenarios, an in vivo proof of concept study to verify the utility of the nanocarrier for improving vaccine efficacy is needed. Here we describe an experimental approach and considerations for designing an animal study to test adjuvant properties of engineered nanomaterials in vivo.
Collapse
Affiliation(s)
- Barry W Neun
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Edward Cedrone
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
5
|
Nguyen MVT, Dolph K, Delaney KT, Shen K, Sherck N, Köhler S, Gupta R, Francis MB, Shell MS, Fredrickson GH. Molecularly informed field theory for estimating critical micelle concentrations of intrinsically disordered protein surfactants. J Chem Phys 2023; 159:244904. [PMID: 38149742 PMCID: PMC10754628 DOI: 10.1063/5.0178910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
The critical micelle concentration (CMC) is a crucial parameter in understanding the self-assembly behavior of surfactants. In this study, we combine simulation and experiment to demonstrate the predictive capability of molecularly informed field theories in estimating the CMC of biologically based protein surfactants. Our simulation approach combines the relative entropy coarse-graining of small-scale atomistic simulations with large-scale field-theoretic simulations, allowing us to efficiently compute the free energy of micelle formation necessary for the CMC calculation while preserving chemistry-specific information about the underlying surfactant building blocks. We apply this methodology to a unique intrinsically disordered protein platform capable of a wide variety of tailored sequences that enable tunable micelle self-assembly. The computational predictions of the CMC closely match experimental measurements, demonstrating the potential of molecularly informed field theories as a valuable tool to investigate self-assembly in bio-based macromolecules systematically.
Collapse
Affiliation(s)
- My. V. T. Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Kate Dolph
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | | | | | | | - Rohini Gupta
- California Research Alliance (CARA) by BASF, Berkeley, California 94720, USA
| | | | - M. Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
6
|
Barui S, Saha S, Venu Y, Moku GK, Chaudhuri A. In vivo targeting of a tumor-antigen encoded DNA vaccine to dendritic cells in combination with tumor-selective chemotherapy eradicates established mouse melanoma. Biomater Sci 2023; 11:6135-6148. [PMID: 37555308 DOI: 10.1039/d3bm00702b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Despite remarkable progress during the past decade, eradication of established tumors by targeted cancer therapy and cancer immunotherapy remains an uphill task. Herein, we report on a combination approach for eradicating established mouse melanoma. Our approach employs the use of tumor selective chemotherapy in combination with in vivo dendritic cell (DC) targeted DNA vaccination. Liposomes of a newly synthesized lipopeptide containing a previously reported tumor-targeting CGKRK-ligand covalently grafted in its polar head-group region were used for tumor selective delivery of cancer therapeutics. Liposomally co-loaded STAT3siRNA and WP1066 (a commercially available inhibitor of the JAK2/STAT3 pathway) were used as cancer therapeutics. In vivo targeting of a melanoma antigen (MART-1) encoded DNA vaccine (p-CMV-MART1) to dendritic cells was accomplished by complexing it with a previously reported mannose-receptor selective in vivo DC-targeting liposome. Liposomes of the CGKRK-lipopeptide containing encapsulated FITC-labeled siRNA, upon intravenous administration in B16F10 melanoma bearing mice, showed remarkably higher accumulation in tumors 24 h post i.v. treatment, compared to their degree of accumulation in other body tissues including the lungs, liver, kidneys, spleen and heart. Importantly, the findings in tumor growth inhibition studies revealed that only in vivo DC-targeted genetic immunization or only tumor-selective chemotherapy using the presently described systems failed to eradicate the established mouse melanoma. The presently described combination approach is expected to find future applications in combating various malignancies (with well-defined surface antigens).
Collapse
Affiliation(s)
- Sugata Barui
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana, India.
| | - Soumen Saha
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| | - Yakati Venu
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| | - Gopi Krishna Moku
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
- Department of Physical Sciences, Kakatiya Institute of Technology and Science, Yerragattu Gutta, Warangal 506 015, Telangana, India
| | - Arabinda Chaudhuri
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia-74126, West Bengal, India
| |
Collapse
|
7
|
Nguyen M, Shen K, Sherck N, Köhler S, Gupta R, Delaney KT, Shell MS, Fredrickson GH. A molecularly informed field-theoretic study of the complexation of polycation PDADMA with mixed micelles of sodium dodecyl sulfate and ethoxylated surfactants. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:75. [PMID: 37665423 DOI: 10.1140/epje/s10189-023-00332-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
The self-assembly and phase separation of mixtures of polyelectrolytes and surfactants are important to a range of applications, from formulating personal care products to drug encapsulation. In contrast to systems of oppositely charged polyelectrolytes, in polyelectrolyte-surfactant systems the surfactants micellize into structures that are highly responsive to solution conditions. In this work, we examine how the morphology of micelles and degree of polyelectrolyte adsorption dynamically change upon varying the mixing ratio of charged and neutral surfactants. Specifically, we consider a solution of the cationic polyelectrolyte polydiallyldimethylammonium, anionic surfactant sodium dodecyl sulfate, neutral ethoxylated surfactants (C[Formula: see text]EO[Formula: see text]), sodium chloride salt, and water. To capture the chemical specificity of these species, we leverage recent developments in constructing molecularly informed field theories via coarse-graining from all-atom simulations. Our results show how changing the surfactant mixing ratios and the identity of the nonionic surfactant modulates micelle size and surface charge, and as a result dictates the degree of polyelectrolyte adsorption. These results are in semi-quantitative agreement with experimental observations on the same system.
Collapse
Affiliation(s)
- My Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Kevin Shen
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | | | | | - Rohini Gupta
- California Research Alliance (CARA) by BASF, Berkeley, CA, 94720, USA
| | - Kris T Delaney
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
| | - Glenn H Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA.
- Department of Materials, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
8
|
Mao L, Ma P, Luo X, Cheng H, Wang Z, Ye E, Loh XJ, Wu YL, Li Z. Stimuli-Responsive Polymeric Nanovaccines Toward Next-Generation Immunotherapy. ACS NANO 2023; 17:9826-9849. [PMID: 37207347 DOI: 10.1021/acsnano.3c02273] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The development of nanovaccines that employ polymeric delivery carriers has garnered substantial interest in therapeutic treatment of cancer and a variety of infectious diseases due to their superior biocompatibility, lower toxicity and reduced immunogenicity. Particularly, stimuli-responsive polymeric nanocarriers show great promise for delivering antigens and adjuvants to targeted immune cells, preventing antigen degradation and clearance, and increasing the uptake of specific antigen-presenting cells, thereby sustaining adaptive immune responses and improving immunotherapy for certain diseases. In this review, the most recent advances in the utilization of stimulus-responsive polymer-based nanovaccines for immunotherapeutic applications are presented. These sophisticated polymeric nanovaccines with diverse functions, aimed at therapeutic administration for disease prevention and immunotherapy, are further classified into several active domains, including pH, temperature, redox, light and ultrasound-sensitive intelligent nanodelivery systems. Finally, the potential strategies for the future design of multifunctional next-generation polymeric nanovaccines by integrating materials science with biological interface are proposed.
Collapse
Affiliation(s)
- Liuzhou Mao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Panqin Ma
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xi Luo
- BE/Phase I Clinical Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhanxiang Wang
- BE/Phase I Clinical Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Republic of Singapore
| |
Collapse
|
9
|
Kisakova LA, Apartsin EK, Nizolenko LF, Karpenko LI. Dendrimer-Mediated Delivery of DNA and RNA Vaccines. Pharmaceutics 2023; 15:pharmaceutics15041106. [PMID: 37111593 PMCID: PMC10145063 DOI: 10.3390/pharmaceutics15041106] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
DNA and RNA vaccines (nucleic acid-based vaccines) are a promising platform for vaccine development. The first mRNA vaccines (Moderna and Pfizer/BioNTech) were approved in 2020, and a DNA vaccine (Zydus Cadila, India), in 2021. They display unique benefits in the current COVID-19 pandemic. Nucleic acid-based vaccines have a number of advantages, such as safety, efficacy, and low cost. They are potentially faster to develop, cheaper to produce, and easier to store and transport. A crucial step in the technology of DNA or RNA vaccines is choosing an efficient delivery method. Nucleic acid delivery using liposomes is the most popular approach today, but this method has certain disadvantages. Therefore, studies are actively underway to develop various alternative delivery methods, among which synthetic cationic polymers such as dendrimers are very attractive. Dendrimers are three-dimensional nanostructures with a high degree of molecular homogeneity, adjustable size, multivalence, high surface functionality, and high aqueous solubility. The biosafety of some dendrimers has been evaluated in several clinical trials presented in this review. Due to these important and attractive properties, dendrimers are already being used to deliver a number of drugs and are being explored as promising carriers for nucleic acid-based vaccines. This review summarizes the literature data on the development of dendrimer-based delivery systems for DNA and mRNA vaccines.
Collapse
Affiliation(s)
- Lyubov A. Kisakova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| | - Evgeny K. Apartsin
- CBMN, UMR 5248, CNRS, Bordeaux INP, University Bordeaux, F-33600 Pessac, France
| | - Lily F. Nizolenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| |
Collapse
|
10
|
Wang Y, Chen-Mayfield TJ, Li Z, Younis MH, Cai W, Hu Q. Harnessing DNA for immunotherapy: Cancer, infectious diseases, and beyond. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2112273. [PMID: 36304724 PMCID: PMC9595111 DOI: 10.1002/adfm.202112273] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 05/03/2023]
Abstract
Despite the rapid development of immunotherapy, low response rates, poor therapeutic outcomes and severe side effects still limit their implementation, making the augmentation of immunotherapy an important goal for current research. DNA, which has principally been recognized for its functions of encoding genetic information, has recently attracted research interest due to its emerging role in immune modulation. Inspired by the intrinsic DNA-sensing signaling that triggers the host defense in response to foreign DNA, DNA or nucleic acid-based immune stimulators have been used in the prevention and treatment of various diseases. Besides that, DNA vaccines allow the synthesis of target proteins in host cells, subsequently inducing recognition of these antigens to provoke immune responses. On this basis, researchers have designed numerous vehicles for DNA and nucleic acid delivery to regulate immune systems. Additionally, DNA nanostructures have also been implemented as vaccine delivery systems to elicit strong immune responses against pathogens and diseased cells. This review will introduce the mechanism of harnessing DNA-mediated immunity for the prevention and treatment of diseases, summarize recent progress, and envisage their future applications and challenges.
Collapse
Affiliation(s)
- Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Ting-Jing Chen-Mayfield
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Muhsin H. Younis
- Department of Radiology and Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Weibo Cai
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Department of Radiology and Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
11
|
Madinya JJ, Sing CE. Hybrid Field Theory and Particle Simulation Model of Polyelectrolyte–Surfactant Coacervation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jason J. Madinya
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 S. Matthews Ave., Urbana, Illinois 61820, United States
| | - Charles E. Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 S. Matthews Ave., Urbana, Illinois 61820, United States
| |
Collapse
|
12
|
Procházka K, Limpouchová Z, Štěpánek M, Šindelka K, Lísal M. DPD Modelling of the Self- and Co-Assembly of Polymers and Polyelectrolytes in Aqueous Media: Impact on Polymer Science. Polymers (Basel) 2022; 14:404. [PMID: 35160394 PMCID: PMC8838752 DOI: 10.3390/polym14030404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
This review article is addressed to a broad community of polymer scientists. We outline and analyse the fundamentals of the dissipative particle dynamics (DPD) simulation method from the point of view of polymer physics and review the articles on polymer systems published in approximately the last two decades, focusing on their impact on macromolecular science. Special attention is devoted to polymer and polyelectrolyte self- and co-assembly and self-organisation and to the problems connected with the implementation of explicit electrostatics in DPD numerical machinery. Critical analysis of the results of a number of successful DPD studies of complex polymer systems published recently documents the importance and suitability of this coarse-grained method for studying polymer systems.
Collapse
Affiliation(s)
- Karel Procházka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Zuzana Limpouchová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Karel Šindelka
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
| | - Martin Lísal
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632, 400 96 Ústí n. Labem, Czech Republic
| |
Collapse
|
13
|
Anjum S, Ishaque S, Fatima H, Farooq W, Hano C, Abbasi BH, Anjum I. Emerging Applications of Nanotechnology in Healthcare Systems: Grand Challenges and Perspectives. Pharmaceuticals (Basel) 2021; 14:ph14080707. [PMID: 34451803 PMCID: PMC8401281 DOI: 10.3390/ph14080707] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 02/07/2023] Open
Abstract
Healthcare, as a basic human right, has often become the focus of the development of innovative technologies. Technological progress has significantly contributed to the provision of high-quality, on-time, acceptable, and affordable healthcare. Advancements in nanoscience have led to the emergence of a new generation of nanostructures. Each of them has a unique set of properties that account for their astonishing applications. Since its inception, nanotechnology has continuously affected healthcare and has exerted a tremendous influence on its transformation, contributing to better outcomes. In the last two decades, the world has seen nanotechnology taking steps towards its omnipresence and the process has been accelerated by extensive research in various healthcare sectors. The inclusion of nanotechnology and its allied nanocarriers/nanosystems in medicine is known as nanomedicine, a field that has brought about numerous benefits in disease prevention, diagnosis, and treatment. Various nanosystems have been found to be better candidates for theranostic purposes, in contrast to conventional ones. This review paper will shed light on medically significant nanosystems, as well as their applications and limitations in areas such as gene therapy, targeted drug delivery, and in the treatment of cancer and various genetic diseases. Although nanotechnology holds immense potential, it is yet to be exploited. More efforts need to be directed to overcome these limitations and make full use of its potential in order to revolutionize the healthcare sector in near future.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (S.I.); (H.F.); (W.F.); (I.A.)
- Correspondence: ; Tel.: +92-300-6957038
| | - Sara Ishaque
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (S.I.); (H.F.); (W.F.); (I.A.)
| | - Hijab Fatima
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (S.I.); (H.F.); (W.F.); (I.A.)
| | - Wajiha Farooq
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (S.I.); (H.F.); (W.F.); (I.A.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAe USC1328, Université d’Orléans, 28000 Chartres, France;
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 54000, Pakistan;
| | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (S.I.); (H.F.); (W.F.); (I.A.)
| |
Collapse
|
14
|
Abbasi S, Uchida S. Multifunctional Immunoadjuvants for Use in Minimalist Nucleic Acid Vaccines. Pharmaceutics 2021; 13:644. [PMID: 34062771 PMCID: PMC8147386 DOI: 10.3390/pharmaceutics13050644] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Subunit vaccines based on antigen-encoding nucleic acids have shown great promise for antigen-specific immunization against cancer and infectious diseases. Vaccines require immunostimulatory adjuvants to activate the innate immune system and trigger specific adaptive immune responses. However, the incorporation of immunoadjuvants into nonviral nucleic acid delivery systems often results in fairly complex structures that are difficult to mass-produce and characterize. In recent years, minimalist approaches have emerged to reduce the number of components used in vaccines. In these approaches, delivery materials, such as lipids and polymers, and/or pDNA/mRNA are designed to simultaneously possess several functionalities of immunostimulatory adjuvants. Such multifunctional immunoadjuvants encode antigens, encapsulate nucleic acids, and control their pharmacokinetic or cellular fate. Herein, we review a diverse class of multifunctional immunoadjuvants in nucleic acid subunit vaccines and provide a detailed description of their mechanisms of adjuvanticity and induction of specific immune responses.
Collapse
Affiliation(s)
- Saed Abbasi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| |
Collapse
|
15
|
Genito CJ, Batty CJ, Bachelder EM, Ainslie KM. Considerations for Size, Surface Charge, Polymer Degradation, Co-Delivery, and Manufacturability in the Development of Polymeric Particle Vaccines for Infectious Diseases. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000041. [PMID: 33681864 PMCID: PMC7917382 DOI: 10.1002/anbr.202000041] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Indexed: 01/15/2023] Open
Abstract
Vaccines have advanced human health for centuries. To improve upon the efficacy of subunit vaccines they have been formulated into nano/microparticles for infectious diseases. Much progress in the field of polymeric particles for vaccine formulation has been made since the push for a tetanus vaccine in the 1990s. Modulation of particle properties such as size, surface charge, degradation rate, and the co-delivery of antigen and adjuvant has been used. This review focuses on advances in the understanding of how these properties influence immune responses to injectable polymeric particle vaccines. Consideration is also given to how endotoxin, route of administration, and other factors influence conclusions that can be made. Current manufacturing techniques involved in preserving vaccine efficacy and scale-up are discussed, as well as those for progressing polymeric particle vaccines toward commercialization. Consideration of all these factors should aid the continued development of efficacious and marketable polymeric particle vaccines.
Collapse
Affiliation(s)
- Christopher J. Genito
- Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel Hill4211 Marsico Hall, 125 Mason Farm RoadChapel HillNC27599USA
| | - Cole J. Batty
- Division of Pharma Engineering & Molecular PharmaceuticsEshelman School of PharmacyUniversity of North Carolina at Chapel Hill4211 Marsico Hall, 125 Mason Farm RoadChapel HillNC27599USA
| | - Eric M. Bachelder
- Division of Pharma Engineering & Molecular PharmaceuticsEshelman School of PharmacyUniversity of North Carolina at Chapel Hill4211 Marsico Hall, 125 Mason Farm RoadChapel HillNC27599USA
| | - Kristy M. Ainslie
- Division of Pharma Engineering & Molecular PharmaceuticsEshelman School of PharmacyUniversity of North Carolina at Chapel Hill4211 Marsico Hall, 125 Mason Farm RoadChapel HillNC27599USA
| |
Collapse
|
16
|
Edis Z, Wang J, Waqas MK, Ijaz M, Ijaz M. Nanocarriers-Mediated Drug Delivery Systems for Anticancer Agents: An Overview and Perspectives. Int J Nanomedicine 2021; 16:1313-1330. [PMID: 33628022 PMCID: PMC7898224 DOI: 10.2147/ijn.s289443] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology has been actively integrated as drug carriers over the last few years to treat various cancers. The main hurdle in the clinical management of cancer is the development of multidrug resistance against chemotherapeutic agents. To overcome the limitations of chemotherapy, the researchers have been developing technological advances for significant progress in the oncotherapy by enabling the delivery of chemotherapeutic agents at increased drug content levels to the targeted spots. Several nano-drug delivery systems designed for tumor-targeting are evaluated in preclinical and clinical trials and showed promising outcomes in cancerous tumors' clinical management. This review describes nanocarrier's importance in managing different types of cancers and emphasizing nanocarriers for drug delivery and cancer nanotherapeutics. It also highlights the recent advances in nanocarriers-based delivery systems, including polymeric nanocarriers, micelles, nanotubes, dendrimers, magnetic nanoparticles, solid lipid nanoparticles, and quantum dots (QDs). The nanocarrier-based composites are discussed in terms of their structure, characteristics, and therapeutic applications in oncology. To conclude, the challenges and future exploration opportunities of nanocarriers in chemotherapeutics are also presented.
Collapse
Affiliation(s)
- Zehra Edis
- Department of Pharmaceutical Sciences,College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Junli Wang
- Laboratory of Reproduction and Genetics, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Muhammad Khurram Waqas
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Munazza Ijaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defense Road Campus, Lahore, Pakistan
| |
Collapse
|
17
|
Synthesis of multilamellar walls vesicles polyelectrolyte-surfactant complexes from pH-stimulated phase transition using microbial biosurfactants. J Colloid Interface Sci 2020; 580:493-502. [DOI: 10.1016/j.jcis.2020.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 11/20/2022]
|
18
|
Moku G, Vangala S, Gulla SK, Yakati V. In vivo Targeting of DNA Vaccines to Dendritic Cells via the Mannose Receptor Induces Long-Lasting Immunity against Melanoma. Chembiochem 2020; 22:523-531. [PMID: 32909670 DOI: 10.1002/cbic.202000364] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/24/2020] [Indexed: 12/15/2022]
Abstract
Herein, we report effective, C-type lectin mannose receptor (MR)-selective, in vivo dendritic cell (DC)-targeting lipid nanoparticles (LNPs) of a novel lipid-containing mannose-mimicking di-shikimoyl- and guanidine head group and two n-hexadecyl hydrophobic tails (DSG). Subcutaneous administration of LNPs of the DSG/p-CMV-GFP complex showed a significant expression of green fluorescence protein in the CD11c+ DCs of the neighboring lymph nodes compared to the control LNPs of the BBG/p-CMV-GFP complex. Mannose receptor-facilitated in vivo DC-targeted vaccination (s.c.) with the electrostatic complex of LNPs of DSG/pCMV-MART1 stimulated long-lasting (270 days post B16F10 tumor challenge) antimelanoma immunity under prophylactic conditions. Remarkably, under therapeutic settings, vaccination (s.c.) with LNPs of the DSG/pCMV-MART1 complex significantly delayed melanoma growth and improved the survival of mice with melanoma. These findings demonstrate that this nonviral delivery system offers a resilient and potential approach to deliver DNA vaccines encoding tumor antigens to DCs in vivo with high efficacy.
Collapse
Affiliation(s)
- Gopikrishna Moku
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Tarnaka, Uppal Road, Hyderabad, 500 007, India.,Present address: Department of Physical Sciences, Kakatiya Institute of Technology and Science, Yerragattu Gutta, Warangal, 506 015, Telangana, India
| | - Swathi Vangala
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Tarnaka, Uppal Road, Hyderabad, 500 007, India.,Present address: Telangana Social Welfare Residential Degree College for Women, Bhupalapally 506 168, Telangana, India
| | - Suresh Kumar Gulla
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Tarnaka, Uppal Road, Hyderabad, 500 007, India
| | - Venu Yakati
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Tarnaka, Uppal Road, Hyderabad, 500 007, India
| |
Collapse
|
19
|
Raya RK, Štěpánek M, Limpouchová Z, Procházka K, Svoboda M, Lísal M, Pavlova E, Skandalis A, Pispas S. Onion Micelles with an Interpolyelectrolyte Complex Middle Layer: Experimental Motivation and Computer Study. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rahul Kumar Raya
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 12840 Prague 2, Czech Republic
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 12840 Prague 2, Czech Republic
| | - Zuzana Limpouchová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 12840 Prague 2, Czech Republic
| | - Karel Procházka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 12840 Prague 2, Czech Republic
| | - Martin Svoboda
- Department of Physics, Faculty of Science, J. E. Purkinje University, České mládeže 8, 400 96 Ústí n. Lab., Czech Republic
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals of the CAS, Rozvojová 135/1, 165 02 Prague 6, Suchdol, Czech Republic
| | - Martin Lísal
- Department of Physics, Faculty of Science, J. E. Purkinje University, České mládeže 8, 400 96 Ústí n. Lab., Czech Republic
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals of the CAS, Rozvojová 135/1, 165 02 Prague 6, Suchdol, Czech Republic
| | - Ewa Pavlova
- Department of Polymer Morphology, Institute of Macromolecular Chemistry of the CAS, Heyrovský Square 2, 160 00 Prague 6, Czech Republic
| | - Athanasios Skandalis
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
20
|
Carmona-Ribeiro AM, Pérez-Betancourt Y. Cationic Nanostructures for Vaccines Design. Biomimetics (Basel) 2020; 5:biomimetics5030032. [PMID: 32645946 PMCID: PMC7560170 DOI: 10.3390/biomimetics5030032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Subunit vaccines rely on adjuvants carrying one or a few molecular antigens from the pathogen in order to guarantee an improved immune response. However, to be effective, the vaccine formulation usually consists of several components: an antigen carrier, the antigen, a stimulator of cellular immunity such as a Toll-like Receptors (TLRs) ligand, and a stimulator of humoral response such as an inflammasome activator. Most antigens are negatively charged and combine well with oppositely charged adjuvants. This explains the paramount importance of studying a variety of cationic supramolecular assemblies aiming at the optimal activity in vivo associated with adjuvant simplicity, positive charge, nanometric size, and colloidal stability. In this review, we discuss the use of several antigen/adjuvant cationic combinations. The discussion involves antigen assembled to 1) cationic lipids, 2) cationic polymers, 3) cationic lipid/polymer nanostructures, and 4) cationic polymer/biocompatible polymer nanostructures. Some of these cationic assemblies revealed good yet poorly explored perspectives as general adjuvants for vaccine design.
Collapse
|
21
|
Li Z, Ho W, Bai X, Li F, Chen YJ, Zhang XQ, Xu X. Nanoparticle depots for controlled and sustained gene delivery. J Control Release 2020; 322:622-631. [DOI: 10.1016/j.jconrel.2020.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/29/2020] [Accepted: 03/15/2020] [Indexed: 12/18/2022]
|
22
|
Chi Q, Yang Z, Xu K, Wang C, Liang H. DNA Nanostructure as an Efficient Drug Delivery Platform for Immunotherapy. Front Pharmacol 2020; 10:1585. [PMID: 32063844 PMCID: PMC6997790 DOI: 10.3389/fphar.2019.01585] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/06/2019] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy has received increasing attention due to its low potential side effects and high specificity. For instance, cancer immunotherapy has achieved great success. CpG is a well-known and commonly used immunotherapeutic and vaccine adjuvant, but it has the disadvantage of being unstable and low in efficacy and needs to be transported through an effective nanocarrier. With perfect structural programmability, permeability, and biocompatibility, DNA nanostructures are one of the most promising candidates to deliver immune components to realize immunotherapy. However, the instability and low capability of the payload of ordinary DNA assemblies limit the relevant applications. Consequently, DNA nanostructure with a firm structure, high drug payloads is highly desirable. In the paper, the latest progress of biostable, high-payload DNA nanoassemblies of various structures, including cage-like DNA nanostructure, DNA particles, DNA polypods, and DNA hydrogel, are reviewed. Cage-like DNA structures hold drug molecules firmly inside the structure and leave a large space within the cavity. These DNA nanostructures use their unique structure to carry abundant CpG, and their biocompatibility and size advantages to enter immune cells to achieve immunotherapy for various diseases. Part of the DNA nanostructures can also achieve more effective treatment in conjunction with other functional components such as aPD1, RNA, TLR ligands.
Collapse
Affiliation(s)
- Qingjia Chi
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
| | - Zichang Yang
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
| | - Kang Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunli Wang
- “111” Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
23
|
Li Y, Kohane DS. Microparticles. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Lu Y, Wu F, Duan W, Mu X, Fang S, Lu N, Zhou X, Kong W. Engineering a “PEG-g-PEI/DNA nanoparticle-in- PLGA microsphere” hybrid controlled release system to enhance immunogenicity of DNA vaccine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110294. [DOI: 10.1016/j.msec.2019.110294] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 09/18/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
|
25
|
Efficient nanocarriers of siRNA therapeutics for cancer treatment. Transl Res 2019; 214:62-91. [PMID: 31369717 DOI: 10.1016/j.trsl.2019.07.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/01/2019] [Accepted: 07/15/2019] [Indexed: 02/02/2023]
Abstract
Nanocarriers as drug delivery systems are promising and becoming popular, especially for cancer treatment. In addition to improving the pharmacokinetics of poorly soluble hydrophobic drugs by solubilizing them in a hydrophobic core, nanocarriers allow cancer-specific combination drug deliveries by inherent passive targeting phenomena and adoption of active targeting strategies. Nanoparticle-drug formulations can enhance the safety, pharmacokinetic profiles, and bioavailability of locally or systemically administered drugs, leading to improved therapeutic efficacy. Gene silencing by RNA interference (RNAi) is rapidly developing as a personalized field of cancer treatment. Small interfering RNAs (siRNAs) can be used to switch off specific cancer genes, in effect, "silence the gene, silence the cancer." siRNA can be used to silence specific genes that produce harmful or abnormal proteins. The activity of siRNA can be used to harness cellular machinery to destroy a corresponding sequence of mRNA that encodes a disease-causing protein. At present, the main barrier to implementing siRNA therapies in clinical practice is the lack of an effective delivery system that protects the siRNA from nuclease degradation, delivers to it to cancer cells, and releases it into the cytoplasm of targeted cancer cells, without creating adverse effects. This review provides an overview of various nanocarrier formulations in both research and clinical applications with a focus on combinations of siRNA and chemotherapeutic drug delivery systems for the treatment of multidrug resistant cancer. The use of various nanoparticles for siRNA-drug delivery, including liposomes, polymeric nanoparticles, dendrimers, inorganic nanoparticles, exosomes, and red blood cells for targeted drug delivery in cancer is discussed.
Collapse
|
26
|
Han P, Hanlon D, Sobolev O, Chaudhury R, Edelson RL. Ex vivo dendritic cell generation-A critical comparison of current approaches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:251-307. [PMID: 31759433 DOI: 10.1016/bs.ircmb.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, required for the initiation of naïve and memory T cell responses and regulation of adaptive immunity. The discovery of DCs in 1973, which culminated in the Nobel Prize in Physiology or Medicine in 2011 for Ralph Steinman and colleagues, initially focused on the identification of adherent mononuclear cell fractions with uniquely stellate dendritic morphology, followed by key discoveries of their critical immunologic role in initiating and maintaining antigen-specific immunity and tolerance. The medical promise of marshaling these key capabilities of DCs for therapeutic modulation of antigen-specific immune responses has guided decades of research in hopes to achieve genuine physiologic partnership with the immune system. The potential uses of DCs in immunotherapeutic applications include cancer, infectious diseases, and autoimmune disorders; thus, methods for rapid and reliable large-scale production of DCs have been of great academic and clinical interest. However, difficulties in obtaining DCs from lymphoid and peripheral tissues, low numbers and poor survival in culture, have led to advancements in ex vivo production of DCs, both for probing molecular details of DC function as well as for experimenting with their clinical utility. Here, we review the development of a diverse array of DC production methodologies, ranging from cytokine-based strategies to genetic engineering tools devised for enhancing DC-specific immunologic functions. Further, we explore the current state of DC therapies in clinic, as well as emerging insights into physiologic production of DCs inspired by existing therapies.
Collapse
Affiliation(s)
- Patrick Han
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Douglas Hanlon
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Olga Sobolev
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Rabib Chaudhury
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Richard L Edelson
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
27
|
Matthijs AMF, Auray G, Boyen F, Schoos A, Michiels A, García-Nicolás O, Barut GT, Barnier-Quer C, Jakob V, Collin N, Devriendt B, Summerfield A, Haesebrouck F, Maes D. Efficacy of three innovative bacterin vaccines against experimental infection with Mycoplasma hyopneumoniae. Vet Res 2019; 50:91. [PMID: 31703726 PMCID: PMC6842239 DOI: 10.1186/s13567-019-0709-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/25/2019] [Indexed: 12/31/2022] Open
Abstract
New vaccine formulations that include novel strains of Mycoplasma hyopneumoniae and innovative adjuvants designed to induce cellular immunity could improve vaccine efficacy against this pathogen. The aim of this experimental study was to assess the efficacy of three experimental bacterin formulations based on M. hyopneumoniae field strain F7.2C which were able to induce cellular immunity. The formulations included a cationic liposome formulation with the Mincle receptor ligand trehalose 6,6-dibehenate (Lipo_DDA:TDB), a squalene-in-water emulsion with Toll-like receptor (TLR) ligands targeting TLR1/2, TLR7/8 and TLR9 (SWE_TLR), and a poly(lactic-co-glycolic acid) micro-particle formulation with the same TLR ligands (PLGA_TLR). Four groups of 12 M. hyopneumoniae-free piglets were primo- (day (D) 0; 39 days of age) and booster vaccinated (D14) intramuscularly with either one of the three experimental bacterin formulations or PBS. The pigs were endotracheally inoculated with a highly and low virulent M. hyopneumoniae strain on D28 and D29, respectively, and euthanized on D56. The main efficacy parameters were: respiratory disease score (RDS; daily), macroscopic lung lesion score (D56) and log copies M. hyopneumoniae DNA determined with qPCR on bronchoalveolar lavage (BAL) fluid (D42, D56). All formulations were able to reduce clinical symptoms, lung lesions and the M. hyopneumoniae DNA load in the lung, with formulation SWE_TLR being the most effective (RDSD28–D56 −61.90%, macroscopic lung lesions −88.38%, M. hyopneumoniae DNA load in BAL fluid (D42) −67.28%). Further experiments raised under field conditions are needed to confirm these results and to assess the effect of the vaccines on performance parameters.
Collapse
Affiliation(s)
- Anneleen Marguerite Filip Matthijs
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Gaël Auray
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland
| | - Filip Boyen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Alexandra Schoos
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Annelies Michiels
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Obdulio García-Nicolás
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland
| | - Güliz Tuba Barut
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland
| | - Christophe Barnier-Quer
- Vaccine Formulation Laboratory, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Virginie Jakob
- Vaccine Formulation Laboratory, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Nicolas Collin
- Vaccine Formulation Laboratory, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Bert Devriendt
- Laboratory of Veterinary Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Artur Summerfield
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Dominiek Maes
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
28
|
Trimaille T, Lacroix C, Verrier B. Self-assembled amphiphilic copolymers as dual delivery system for immunotherapy. Eur J Pharm Biopharm 2019; 142:232-239. [PMID: 31229673 DOI: 10.1016/j.ejpb.2019.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/03/2019] [Accepted: 06/19/2019] [Indexed: 01/07/2023]
Abstract
Subunit vaccines using recombinant antigens appear as the privileged vaccination technology for safety reasons but still require the development of carriers/adjuvants ensuring optimal immunogenicity and efficacy. Micelles from self-assembled amphiphilic copolymers have recently emerged as highly relevant and promising candidates owing to their ease of preparation, low size (entering in lymphatic capillaries for reaching lymph nodes), size/surface tunability and chemical versatility enabling introduction of stimuli (e.g. pH) responsive features and biofunctionalization with dedicated molecules. In particular, research efforts have increasingly focused on dendritic cells (DCs) targeting and activation by co-delivering (with antigen) ligands of pattern recognition receptors (PRRs, e.g. toll-like receptors). Such strategy has appeared as one of the most effective for eliciting CD 8+ T-cell response, which is crucial in the eradication of tumors and numerous infectious diseases. In this short review, we highlight the recent advances in such micelle-based carriers in subunit vaccination and how their precise engineering can be a strong asset for guiding and controlling immune responses.
Collapse
Affiliation(s)
- Thomas Trimaille
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, Marseille, France.
| | - Céline Lacroix
- Université Lyon 1, CNRS, UMR 5305, Biologie Tissulaire et Ingénierie Thérapeutique, IBCP, 69367 Lyon, France
| | - Bernard Verrier
- Université Lyon 1, CNRS, UMR 5305, Biologie Tissulaire et Ingénierie Thérapeutique, IBCP, 69367 Lyon, France
| |
Collapse
|
29
|
Gulla SK, Rao BR, Moku G, Jinka S, Nimmu NV, Khalid S, Patra CR, Chaudhuri A. In vivo targeting of DNA vaccines to dendritic cells using functionalized gold nanoparticles. Biomater Sci 2019; 7:773-788. [PMID: 30601510 DOI: 10.1039/c8bm01272e] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The clinical success of dendritic cell (DC)-based genetic immunization remains critically dependent on the availability of effective and safe nano-carriers for targeting antigen-encoded DNA vaccines to DCs, the most potent antigen-presenting cells in the human body in vivo. Recent studies revealed the efficacies of mannose receptor-mediated in vivo DC-targeted genetic immunization by liposomal DNA vaccine carriers containing both mannose-mimicking shikimoyl and transfection enhancing guanidinyl functionalities. However, to date, the efficacies of this approach have not been examined for metal-based nanoparticle DNA vaccine carriers. Herein, we report for the first time, the design, synthesis, physico-chemical characterization and bioactivities of gold nanoparticles covalently functionalized with a thiol ligand containing both shikimoyl and guanidinyl functionalities (Au-SGSH). We show that Au-SGSH nanoparticles can deliver DNA vaccines to mouse DCs under in vivo conditions. Subcutaneous administration of near infrared (NIR) dye-labeled Au-SGSH showed significant accumulation of the NIR dye in the DCs of the nearby lymph nodes compared to that for the non-targeting NIR-labeled Au-GSH nanoconjugate containing only a covalently tethered guanidinyl group, not the shikimoyl-functionality. Under prophylactic settings, in vivo immunization (s.c.) with the Au-SGSH-pCMV-MART1 nanoplex induced a long-lasting (180 days) immune response against murine melanoma. Notably, mannose receptor-mediated in vivo DC-targeted immunization (s.c.) with the Au-SGSH-MART1 nanoplex significantly inhibited established melanoma growth and increased the overall survivability of melanoma-bearing mice under therapeutic settings. The Au-SGSH nanoparticles reported herein have potential use for in vivo DC-targeted genetic immunization against cancer and infectious diseases.
Collapse
Affiliation(s)
- Suresh Kumar Gulla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Matthijs AMF, Auray G, Jakob V, García-Nicolás O, Braun RO, Keller I, Bruggman R, Devriendt B, Boyen F, Guzman CA, Michiels A, Haesebrouck F, Collin N, Barnier-Quer C, Maes D, Summerfield A. Systems Immunology Characterization of Novel Vaccine Formulations for Mycoplasma hyopneumoniae Bacterins. Front Immunol 2019; 10:1087. [PMID: 31178860 PMCID: PMC6543460 DOI: 10.3389/fimmu.2019.01087] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
We characterized five different vaccine candidates and a commercial vaccine in terms of safety, immunogenicity and using a systems vaccinology approach, with the aim to select novel vaccine candidates against Mycoplasma hyopneumoniae. Seven groups of six M. hyopneumoniae-free piglets were primo- and booster vaccinated with the different experimental bacterin formulations, the commercial vaccine Hyogen® as a positive control or PBS as a negative control. The experimental bacterin was formulated with cationic liposomes + c-di-AMP (Lipo_AMP), cationic liposomes + Toll-like receptor (TLR) 2/1, TLR7, and TLR9 ligands (TLR ligands; Lipo_TLR), micro-particles + TLR ligands (PLGA_TLR), squalene-in-water emulsion + TLR ligands (SWE_TLR), or DDA:TDB liposomes (Lipo_DDA:TDB). Lipo_DDA:TDB and Lipo_AMP were the most potent in terms of serum antibody induction, and Lipo_DDA:TDB, Lipo_AMP, and SWE_TLR significantly induced Th1 cytokine-secreting T-cells. Only PLGA_TLR appeared to induce Th17 cells, but was unable to induce serum antibodies. The transcriptomic analyses demonstrated that the induction of inflammatory and myeloid cell blood transcriptional modules (BTM) in the first 24 h after vaccination correlated well with serum antibodies, while negative correlations with the same modules were found 7 days post-vaccination. Furthermore, many cell cycle and T-cell BTM upregulated at day seven correlated positively with adaptive immune responses. When comparing the delivery of the identical TLR ligands with the three formulations, we found SWE_TLR to be more potent in the induction of an early innate immune response, while the liposomal formulation more strongly promoted late cell cycle and T-cell BTM. For the PLGA formulation we found signs of a delayed and weak perturbation of these BTM. Lipo_AMP was found to be the most potent vaccine at inducing a BTM profile similar to that correlating with adaptive immune response in this and other studies. Taken together, we identified four promising vaccine candidates able to induce M. hyopneumoniae-specific antibody and T-cell responses. In addition, we have adapted a systems vaccinology approach developed for human to pigs and demonstrated its capacity in identifying early immune signatures in the blood relating to adaptive immune responses. This approach represents an important step in a more rational design of efficacious vaccines for pigs.
Collapse
Affiliation(s)
- Anneleen M F Matthijs
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gaël Auray
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Virginie Jakob
- Vaccine Formulation Laboratory, University of Lausanne, Epalinges, Switzerland
| | - Obdulio García-Nicolás
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Roman O Braun
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Irene Keller
- Interfaculty Bioinformatics Unit, Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Rémy Bruggman
- Interfaculty Bioinformatics Unit, Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Bert Devriendt
- Laboratory of Veterinary Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Boyen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Carlos A Guzman
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Annelies Michiels
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nicolas Collin
- Vaccine Formulation Laboratory, University of Lausanne, Epalinges, Switzerland
| | | | - Dominiek Maes
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Artur Summerfield
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
Leach DG, Young S, Hartgerink JD. Advances in immunotherapy delivery from implantable and injectable biomaterials. Acta Biomater 2019; 88:15-31. [PMID: 30771535 PMCID: PMC6632081 DOI: 10.1016/j.actbio.2019.02.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/10/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Macroscale biomaterials, such as preformed implantable scaffolds and injectable soft materials, possess powerful synergies with anti-cancer immunotherapies. Immunotherapies on their own typically have poor delivery properties, and often require repeated high-dose injections that result in serious off-tumor effects and/or limited efficacy. Rationally designed biomaterials allow for discrete localization and controlled release of immunotherapeutic agents, and have been shown in a large number of applications to improve outcomes in the treatment of cancers via immunotherapy. Among various strategies, macroscale biomaterial delivery systems can take the form of robust tablet-like scaffolds that are surgically implanted into a tumor resection site, releasing programmed immune cells or immunoregulatory agents. Alternatively they can be developed as soft gel-like materials that are injected into solid tumors or sites of resection to stimulate a potent anti-tumor immune response. Biomaterials synthesized from diverse components such as polymers and peptides can be combined with any immunotherapy in the modern toolbox, from checkpoint inhibitors and stimulatory adjuvants, to cancer antigens and adoptive T cells, resulting in unique synergies and improved therapeutic efficacy. The field is growing rapidly in size as publications continue to appear in the literature, and biomaterial-based immunotherapies are entering clinical trials and human patients. It is unarguably an exciting time for cancer immunotherapy and biomaterial researchers, and further work seeks to understand the most critical design considerations in the development of the next-generation of immunotherapeutic biomaterials. This review will discuss recent advances in the delivery of immunotherapies from localized biomaterials, focusing on macroscale implantable and injectable systems. STATEMENT OF SIGNIFICANCE: Anti-cancer immunotherapies have shown exciting clinical results in the past few decades, yet they suffer from a few distinct limitations, such as poor delivery kinetics, narrow patient response profiles, and systemic side effects. Biomaterial systems are now being developed that can overcome many of these problems, allowing for localized adjuvant delivery, focused dose concentrations, and extended therapy presentation. The field of biocompatible carrier materials is uniquely suited to be combined with immunotherapy, promising to yield significant improvements in treatment outcomes and clinical care. In this review, the first pioneering efforts and most recent advances in biomaterials for immunotherapeutic applications are explored, with a specific focus on implantable and injectable biomaterials such as porous scaffolds, cryogels, and hydrogels.
Collapse
Affiliation(s)
- David G Leach
- Department of Chemistry, Department of Bioengineering, Rice University, Houston, TX 77005, United States
| | - Simon Young
- Department of Oral & Maxillofacial Surgery, University of Texas Health Science Center, Houston, TX 77054, United States
| | - Jeffrey D Hartgerink
- Department of Chemistry, Department of Bioengineering, Rice University, Houston, TX 77005, United States.
| |
Collapse
|
32
|
Sharma P, Sen D, Neelakantan V, Shankar V, Jhunjhunwala S. Disparate effects of PEG or albumin based surface modification on the uptake of nano- and micro-particles. Biomater Sci 2019; 7:1411-1421. [DOI: 10.1039/c8bm01545g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Surface modification with PEG or albumin reduces phagocytic internalization of nano-particles but not micro-particles.
Collapse
Affiliation(s)
- Preeti Sharma
- Centre for BioSystems Science and Engineering
- 3rd Floor C Wing Biological Sciences Building
- Indian Institute of Science
- Bengaluru-560012
- India
| | - Devashish Sen
- Centre for BioSystems Science and Engineering
- 3rd Floor C Wing Biological Sciences Building
- Indian Institute of Science
- Bengaluru-560012
- India
| | - Varsha Neelakantan
- Centre for BioSystems Science and Engineering
- 3rd Floor C Wing Biological Sciences Building
- Indian Institute of Science
- Bengaluru-560012
- India
| | - Vinidhra Shankar
- Centre for BioSystems Science and Engineering
- 3rd Floor C Wing Biological Sciences Building
- Indian Institute of Science
- Bengaluru-560012
- India
| | - Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering
- 3rd Floor C Wing Biological Sciences Building
- Indian Institute of Science
- Bengaluru-560012
- India
| |
Collapse
|
33
|
Biomaterial-guided delivery of gene vectors for targeted articular cartilage repair. Nat Rev Rheumatol 2018; 15:18-29. [DOI: 10.1038/s41584-018-0125-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Liu Q, Chen X, Jia J, Lu T, Yang T, Wang L. Potential Hepatitis B Vaccine Formulation Prepared by Uniform-Sized Lipid Hybrid PLA Microparticles with Adsorbed Hepatitis B Surface Antigen. Mol Pharm 2018; 15:5227-5235. [PMID: 30350642 DOI: 10.1021/acs.molpharmaceut.8b00722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
For the purpose of strengthening the immunogenicity of the hepatitis B vaccine, which contains hepatitis B surface antigen (HBsAg), the development of biodegradable poly(lactic acid) (PLA) microparticles (MPs) modified with the cationic surfactant didodecyldimethylammonium bromide (DDAB) was attempted. DDAB-PLA MPs with an uniform size of about 1 μm were prepared in a simple and mild way. DDAB-PLA MPs with increased surface charge enhanced antigen adsorption capacity compared to plain PLA MPs. After immunization, DDAB-PLA MPs induced the gene expression of inflammatory cytokines and chemokines, which facilitated the following immune responses. DDAB-PLA MPs augmented the expression of co-stimulatory molecules along with the activation of bone-marrow-derived dendritic cells (BMDCs). DDAB-PLA MP-based vaccine formulations efficiently induced antibody production more than the aluminum-based vaccine and plain PLA MP-based formulation in vivo. Moreover, DDAB-PLA MPs were more likely to generate the polarization of the Th1 response indicating the cytotoxic ability against infectious pathogens. In conclusion, DDAB-PLA MPs could be a potent vaccine formulation to prime robust cellular and humoral immune responses.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Xiaoming Chen
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Jilei Jia
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Ting Lu
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Tingyuan Yang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Lianyan Wang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| |
Collapse
|
35
|
Ji Y, Mertens AM, Gertler C, Fekiri S, Keser M, Sauer DF, Smith KEC, Schwaneberg U. Directed OmniChange Evolution Converts P450 BM3 into an Alkyltrimethylammonium Hydroxylase. Chemistry 2018; 24:16865-16872. [DOI: 10.1002/chem.201803806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Yu Ji
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Alan Maurice Mertens
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Christoph Gertler
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Sallama Fekiri
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Merve Keser
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Daniel F. Sauer
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Kilian E. C. Smith
- Institute for Environmental Research RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstraße 50 52074 Aachen Germany
| |
Collapse
|
36
|
Du L, Yu Z, Pang F, Xu X, Mao A, Yuan W, He K, Li B. Targeted Delivery of GP5 Antigen of PRRSV to M Cells Enhances the Antigen-Specific Systemic and Mucosal Immune Responses. Front Cell Infect Microbiol 2018; 8:7. [PMID: 29423381 PMCID: PMC5788884 DOI: 10.3389/fcimb.2018.00007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 01/09/2018] [Indexed: 01/28/2023] Open
Abstract
Efficient delivery of antigens through oral immunization is a first and critical step for successful induction of mucosal immunity, which can provide protection against pathogens invading the mucosa. Membranous/microfold cells (M cells) within the mucosa can transcytose internalized antigen without degradation and thus play an important role in initiating antigen-specific mucosal immune responses through inducing secretory IgA production. In this research, we modified poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) with Ulex europaeus agglutinin 1 (UEA-1) and successfully prepared an oral vaccine delivery system, UEA-1/PLGA NPs. PLGA NPs were prepared using a standard double emulsion solvent evaporation technique, which can protect the entrapped PRRSV DNA vaccine [pcDNA3.1-SynORF5 (synthetic ORF5)] or subunit vaccine ORF5-encoded glycoprotein (GP5) from exposure to the gastrointestinal (GI) tract and release the plasmids in a controlled manner. With UEA-1 modification, the UEA-1/PLGA NPs can be effectively transported by M-cells. We investigated immune response induced by UEA-1/PLGA-SynORF5 or UEA-1/PLGA-GP5 following inoculation in mice and piglets. Compared with PLGA-SynORF5 or PLGA-GP5 NPs, UEA-1/PLGA-SynORF5, or UEA-1/PLGA-GP5 NPs stimulated significantly increased serum IgG levels and augmented intestinal IgA levels in mice and piglets (P < 0.05). Our findings indicate UEA-1/PLGA NPs can be applied as a promising and universally robust oral vaccine delivery system.
Collapse
Affiliation(s)
- Luping Du
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China.,Institute of Animal Immunity Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhengyu Yu
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| | - Fengjiao Pang
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| | - Xiangwei Xu
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| | - Aihua Mao
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| | - Wanzhe Yuan
- College of Animal Medicine, Agricultural University of Hebei, Baoding, China
| | - Kongwang He
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| | - Bin Li
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-infection Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| |
Collapse
|
37
|
Abstract
Nanoparticles can be engineered for targeted antigen delivery to the immune cells and for stimulating the immune response to improve the antigen immunogenicity. This approach is commonly used to develop nanotechnology-based vaccines. In addition, some nanotechnology platforms may be initially designed for drug delivery, but in the course of subsequent characterization, their additional immunomodulatory functions may be discovered that can potentially benefit vaccine efficacy. In both of these scenarios, an in vivo proof of concept study to verify the utility of the nanocarrier for improving vaccine efficacy is needed. Here, we describe an experimental approach and considerations for designing an animal study to test adjuvant properties of engineered nanomaterials in vivo.
Collapse
Affiliation(s)
- Barry W Neun
- Cancer Research Technology Program, Nanotechnology Characterization Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD, 21702, USA
| | - Marina A Dobrovolskaia
- Cancer Research Technology Program, Nanotechnology Characterization Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD, 21702, USA.
| |
Collapse
|
38
|
Wang D, Lu X, Jia F, Tan X, Sun X, Cao X, Wai F, Zhang C, Zhang K. Precision Tuning of DNA- and Poly(ethylene glycol)-Based Nanoparticles via Coassembly for Effective Antisense Gene Regulation. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:9882-9886. [PMID: 30739990 PMCID: PMC6366845 DOI: 10.1021/acs.chemmater.7b03520] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Dali Wang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xueguang Lu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Fei Jia
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xuyu Tan
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xiaoya Sun
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xueyan Cao
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Francesco Wai
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
39
|
Martins YA, Tsuchida CJ, Antoniassi P, Demarchi IG. Efficacy and Safety of the Immunization with DNA for Alzheimer's Disease in Animal Models: A Systematic Review from Literature. J Alzheimers Dis Rep 2017; 1:195-217. [PMID: 30480238 PMCID: PMC6159633 DOI: 10.3233/adr-170025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease that does not have a proven cure; however, one of the most promising strategies for its treatment has been DNA vaccines. OBJECTIVE The present review is aimed to report the new developments of the efficacy and safety of DNA vaccines for AD in animal models. METHOD The method PRISMA was used for this review. The article search was made in the electronic databases PubMed, LILACS, and Scopus using the descriptors ''Alzheimer disease" and ''Vaccine, DNA". Articles published between January 2001 and September 2017 in English, Portuguese, and Spanish were included. RESULTS Upon the consensus, the researchers identified 28 original articles. The studies showed satisfying results as for the decrease of amyloid plaques in mouse, rabbits, and monkeys brains using mostly the DNA Aβ42 vaccine, AV-1955, and AdPEDI-(Aβ1-6)11, mainly with a gene gun. In addition to a reduction in tau by the first DNA vaccine (AV-1980D) targeting this protein. The use of adjuvants and boosters also had positive results as they increased the destruction of the amyloid plaques and induced an anti-inflammatory response profile without side effects. CONCLUSION The results of DNA vaccines targeting the amyloid-β and the tau protein with or without adjuvants and boosters were promising in reducing amyloid plaques and tau protein without side effects in animals. Although there are many vaccines being tested in animals, few reach clinical trials. Thus, as a future perspective, we suggest that clinical studies should be conducted with vaccines that have been promising in animal models (e.g., DNA Aβ42 vaccine, AV-1955, and AdPEDI-(Aβ1-6)11).
Collapse
|
40
|
Suschak JJ, Williams JA, Schmaljohn CS. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum Vaccin Immunother 2017. [PMID: 28604157 DOI: 10.1080/21645515.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
A major advantage of DNA vaccination is the ability to induce both humoral and cellular immune responses. DNA vaccines are currently used in veterinary medicine, but have not achieved widespread acceptance for use in humans due to their low immunogenicity in early clinical studies. However, recent clinical data have re-established the value of DNA vaccines, particularly in priming high-level antigen-specific antibody responses. Several approaches have been investigated for improving DNA vaccine efficacy, including advancements in DNA vaccine vector design, the inclusion of genetically engineered cytokine adjuvants, and novel non-mechanical delivery methods. These strategies have shown promise, resulting in augmented adaptive immune responses in not only mice, but also in large animal models. Here, we review advancements in each of these areas that show promise for increasing the immunogenicity of DNA vaccines.
Collapse
Affiliation(s)
- John J Suschak
- a U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | | | - Connie S Schmaljohn
- a U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| |
Collapse
|
41
|
Li B, Du L, Yu Z, Sun B, Xu X, Fan B, Guo R, Yuan W, He K. Poly (d,l-lactide-co-glycolide) nanoparticle-entrapped vaccine induces a protective immune response against porcine epidemic diarrhea virus infection in piglets. Vaccine 2017; 35:7010-7017. [PMID: 29102169 DOI: 10.1016/j.vaccine.2017.10.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/15/2017] [Accepted: 10/17/2017] [Indexed: 01/03/2023]
Abstract
Porcine epidemic diarrhea (PED) causes 80-100% mortality in neonatal piglets, and its causative agent, the porcine epidemic diarrhea virus (PEDV), poses an important threat to the swine industry worldwide. In this study, we prepared biodegradable poly (d,l-lactide-co-glycolide) (PLGA) nanoparticle-entrapped PEDV killed vaccine antigens (KAg) (PLGA-KAg). Late-term pregnant sows were intranasally inoculated with PLGA-KAg, and the mortality resulting from challenge with highly virulent PEDV was investigated in their passively immunized suckling piglets. PEDV-specific IgG and IgA antibody titers were enhanced in pregnant sows immunized with PLGA-KAg relative to the titers in sows inoculated with KAg. Similar results were seen in the passively immunized suckling piglets of these sows. Improved lymphocyte proliferation responses and IFN-γ levels were induced in pregnant sows immunized with PLGA-KAg compared with those vaccinated with KAg or with Montanide™ ISA 201 VG emulsified killed PEDV vaccine (201-KAg). Importantly, there was less piglet mortality in the group vaccinated with PLGA-KAg than in the groups vaccinated with KAg or 201-KAg. These results demonstrate that PLGA-KAg is a promising candidate vaccine that can provide protective immunity against PEDV infection in suckling piglets.
Collapse
Affiliation(s)
- Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu, China.
| | - Luping Du
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu, China
| | - Bing Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu, China
| | - Xiangwei Xu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu, China
| | - Wanzhe Yuan
- College of Animal Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, Jiangsu, China.
| |
Collapse
|
42
|
Zhao K, Li S, Li W, Yu L, Duan X, Han J, Wang X, Jin Z. Quaternized chitosan nanoparticles loaded with the combined attenuated live vaccine against Newcastle disease and infectious bronchitis elicit immune response in chicken after intranasal administration. Drug Deliv 2017; 24:1574-1586. [PMID: 29029568 PMCID: PMC8241129 DOI: 10.1080/10717544.2017.1388450] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 12/15/2022] Open
Abstract
Newcastle disease (ND) and infectious bronchitis (IB) are important diseases, which cause respiratory diseases in chickens, resulting in severely economic losses in the poultry industry. In this study, N-2-hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) and N,O-carboxymethyl chitosan (CMC) were synthesized as adjuvant and delivery carrier for vaccine antigens. N-2-HACC-CMC/NDV/IBV nanoparticles (NPs) (NDV/La Sota and IBV/H120 encapsulated in N-2-HACC-CMC NPs) and N-2-HACC-CMC/NDV-IBV NPs (the mixing of N-2-HACC-CMC/NDV NPs and N-2-HACC-CMC/IBV NPs in a ratio of 1:1) were prepared by the polyelectrolyte composite method, respectively. Both nanoparticles exhibited lower cytotoxicity and higher stability. Their bioactivities were maintained when they were stored at 37 °C for three weeks. Release assay in vitro showed that both NDV and IBV could be sustainably released from the nanoparticles after an initial burst release. In vivo immunization of chickens showed that N-2-HACC-CMC/NDV/IBV NPs or N-2-HACC-CMC/NDV-IBV NPs intranasally induced higher titers of IgG and IgA antibodies, significantly promoted proliferation of lymphocytes and induced higher levels of interleukine-2 (IL-2), IL-4 and interferon-γ (IFN-γ) than the commercially combined attenuated live vaccine did. This is the first study in the field of animal vaccines demonstrating that intranasal administration of chickens with antigens (NDV and IBV) encapsulated with chitosan derivative could induce humoral, cellular, and mucosal immune responses, which protected chickens from the infection of highly virulent NDV and IBV. This study indicated that N-2-HACC-CMC could be used as an efficient adjuvant and delivery carrier for further development of mucosal vaccines and drugs and could have an immense application potential in medicine.
Collapse
Affiliation(s)
- Kai Zhao
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People’s Republic of China
- School of Biological Science and Technology, University of Jinan, Jinan, People’s Republic of China
| | - Shanshan Li
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People’s Republic of China
- Department of Avian Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Wei Li
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People’s Republic of China
| | - Lu Yu
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People’s Republic of China
- Department of Avian Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Xutong Duan
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People’s Republic of China
- Department of Avian Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Jinyu Han
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Chemistry and Material Sciences, Heilongjiang University, Harbin, People’s Republic of China
| | - Xiaohua Wang
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People’s Republic of China
| | - Zheng Jin
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Chemistry and Material Sciences, Heilongjiang University, Harbin, People’s Republic of China
| |
Collapse
|
43
|
Jia F, Lu X, Wang D, Cao X, Tan X, Lu H, Zhang K. Depth-Profiling the Nuclease Stability and the Gene Silencing Efficacy of Brush-Architectured Poly(ethylene glycol)-DNA Conjugates. J Am Chem Soc 2017; 139:10605-10608. [PMID: 28737410 PMCID: PMC9001160 DOI: 10.1021/jacs.7b05064] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PEGylation of an oligonucleotide using a brush polymer can improve its biopharmaceutical characteristics, including enzymatic stability and biodistribution. Herein, we quantitatively explore the nuclease accessibility of the nucleic acid as a function of "depth" toward the backbone of the brush polymer. It is found that protein accessibility decreases as the nucleotide is located closer to the backbone. Thus, by moving the conjugation point from the terminus of the nucleic acid strand to an internal position, much smaller brushes can be used to achieve the same level of steric shielding. This finding also makes it possible to assess antisense gene regulation efficiency of these brush-DNA conjugates as a function of their nuclease stability.
Collapse
Affiliation(s)
- Fei Jia
- Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Xueguang Lu
- Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Dali Wang
- Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Xueyan Cao
- Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Xuyu Tan
- Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Hao Lu
- Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| |
Collapse
|
44
|
Suschak JJ, Williams JA, Schmaljohn CS. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum Vaccin Immunother 2017; 13:2837-2848. [PMID: 28604157 PMCID: PMC5718814 DOI: 10.1080/21645515.2017.1330236] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A major advantage of DNA vaccination is the ability to induce both humoral and cellular immune responses. DNA vaccines are currently used in veterinary medicine, but have not achieved widespread acceptance for use in humans due to their low immunogenicity in early clinical studies. However, recent clinical data have re-established the value of DNA vaccines, particularly in priming high-level antigen-specific antibody responses. Several approaches have been investigated for improving DNA vaccine efficacy, including advancements in DNA vaccine vector design, the inclusion of genetically engineered cytokine adjuvants, and novel non-mechanical delivery methods. These strategies have shown promise, resulting in augmented adaptive immune responses in not only mice, but also in large animal models. Here, we review advancements in each of these areas that show promise for increasing the immunogenicity of DNA vaccines.
Collapse
Affiliation(s)
- John J Suschak
- a U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| | | | - Connie S Schmaljohn
- a U.S. Army Medical Research Institute of Infectious Diseases , Fort Detrick , MD , USA
| |
Collapse
|
45
|
Chattopadhyay S, Chen JY, Chen HW, Hu CMJ. Nanoparticle Vaccines Adopting Virus-like Features for Enhanced Immune Potentiation. Nanotheranostics 2017; 1:244-260. [PMID: 29071191 PMCID: PMC5646730 DOI: 10.7150/ntno.19796] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/17/2017] [Indexed: 12/22/2022] Open
Abstract
Synthetic nanoparticles play an increasingly significant role in vaccine design and development as many nanoparticle vaccines show improved safety and efficacy over conventional formulations. These nanoformulations are structurally similar to viruses, which are nanoscale pathogenic organisms that have served as a key selective pressure driving the evolution of our immune system. As a result, mechanisms behind the benefits of nanoparticle vaccines can often find analogue to the interaction dynamics between the immune system and viruses. This review covers the advances in vaccine nanotechnology with a perspective on the advantages of virus mimicry towards immune potentiation. It provides an overview to the different types of nanomaterials utilized for nanoparticle vaccine development, including functionalization strategies that bestow nanoparticles with virus-like features. As understanding of human immunity and vaccine mechanisms continue to evolve, recognizing the fundamental semblance between synthetic nanoparticles and viruses may offer an explanation for the superiority of nanoparticle vaccines over conventional vaccines and may spur new design rationales for future vaccine research. These nanoformulations are poised to provide solutions towards pressing and emerging human diseases.
Collapse
Affiliation(s)
- Saborni Chattopadhyay
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Jui-Yi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Nanotechnology and Infectious Diseases, Taipei, Taiwan
| | - Che-Ming Jack Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Research Center for Nanotechnology and Infectious Diseases, Taipei, Taiwan
| |
Collapse
|
46
|
Gupta K, Puri A, Shapiro BA. Functionalized non-viral cationic vectors for effective siRNA induced cancer therapy. DNA AND RNA NANOTECHNOLOGY 2017; 4:1-20. [PMID: 34322587 PMCID: PMC8315571 DOI: 10.1515/rnan-2017-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
RNA interference (RNAi) has been regarded as a vital asset in the field of therapeutics as it has the capability to silence various disease causing genes including those that cause cancer. Small non-coding RNA molecules such as short interfering RNAs (siRNAs) are one of the extensively studied RNAi inducers for gene modulations. However, the delivery of RNAi inducers including siRNAs is compromised due to the barriers imposed by the biological system such as degradation by nucleases, rapid clearance, high anionic charge, immunogenicity and off-target effects. Viral vectors, in general exhibit high transfection efficiencies but are expensive and likely to confer immunological and safety issues. Therefore, non-viral cationic vectors (NVCVs) have received considerable attention to not only address these issues but also for developing efficacious siRNA delivery vectors. In this review, we will first discuss the historical development of various NVCVs and then will discuss functionalized NVCVs with linkers that provide stability, as well as respond to the cancer cell environment and with cancer cell receptor specific ligands to explicitly target them for improved siRNA efficacy. Multifunctional NVCVs (MNVCVs) that employ multiple synergistically working components to aid siRNA delivery efficacy are also discussed.
Collapse
Affiliation(s)
- Kshitij Gupta
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick 21702, MD, USA
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick 21702, MD, USA
| | - Bruce A. Shapiro
- RNA Structure and Design Section, RNA Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick 21702, MD, USA
| |
Collapse
|
47
|
Recent development of synthetic nonviral systems for sustained gene delivery. Drug Discov Today 2017; 22:1318-1335. [PMID: 28428056 DOI: 10.1016/j.drudis.2017.04.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/02/2017] [Accepted: 04/05/2017] [Indexed: 12/22/2022]
Abstract
Sustained gene delivery is of particular importance today because it circumvents the need for repeated therapeutic administration and provides spatial and temporal control of the release profile. Better understanding of the genetic basis of diseases and advances in gene therapy have propelled significant research on biocompatible gene carriers for therapeutic purposes. Varied biodegradable polymer-based architectures have been used to create new compositions with unique properties suitable for sustained gene delivery. This review presents the most recent advances in various polymeric systems: hydrogels, microspheres, nanospheres and scaffolds, having complex architectures to encapsulate and deliver functional genes. Through the recombination of different existing polymer systems, the multicomplex systems can be further endowed with new properties for better-targeted biomedical applications.
Collapse
|
48
|
Hafner AM, Corthésy B, Textor M, Merkle HP. Surface-assembled poly(I:C) on PEGylated PLGA microspheres as vaccine adjuvant: APC activation and bystander cell stimulation. Int J Pharm 2017; 514:176-188. [PMID: 27863662 DOI: 10.1016/j.ijpharm.2016.07.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/05/2016] [Accepted: 07/18/2016] [Indexed: 12/22/2022]
Abstract
Biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres are potential vehicles to deliver antigens for vaccination. Because they lack the full capacity to activate professional antigen presenting cells (APCs), combination with an immunostimulatory adjuvant may be considered. A candidate is the synthetic TLR3 ligand polyriboinosinic acid-polyribocytidylic acid, poly(I:C), which drives cell-mediated immunity. However, poly(I:C) has also been linked to the pathogenesis of autoimmunity, as affected by widespread stimulation of non-hematopoietic bystander cells. To address this aspect, we propose to minimize the poly(I:C) dose as well as to control the stimulation of non-immune bystander cells by poly(I:C). To facilitate the maturation of APCs with minimal poly(I:C) doses, we surface-assembled poly(I:C) onto PLGA microspheres. The microspheres' surface was further modified by poly(ethylene glycol) (PEG) coronas with varying PEG-densities. PLGA microspheres loaded with tetanus toxoid (tt) as model antigen were manufactured by microextrusion-based solvent extraction. The negatively charged PLGA(tt) microspheres were coated with polycationic poly(l-lysine) (PLL) polymers, either PLL itself or PEG-grafted PLL (PLL-g-PEG) with varying grafting ratios (g=2.2 and g=10.1). Stable surface assembly of poly(I:C) was achieved by subsequent incubation of polymer-coated PLGA microspheres with aqueous poly(I:C) solutions. We evaluated the immunostimulatory potential of such PLGA(tt) microsphere formulations on monocyte-derived dendritic cells (MoDCs) as well as human foreskin fibroblasts (HFFs) as model for non-hematopoietic bystander cells. Formulations with surface-assembled poly(I:C) readily activated MoDCs with respect to the expression of maturation-related surface markers, proinflammatory cytokine secretion and directed migration. When surface-assembled, poly(I:C) enhanced its immunostimulatory activity by more than one order of magnitude as compared to free poly(I:C). On fibroblasts, surface-assembled poly(I:C) upregulated class I MHC but not class II MHC. Phagocytosis of PLGA(tt) microsphere formulations by MoDCs and HFFs remained mostly unaffected by PEG-grafted PLL coatings. In contrast, high concentrations of free poly(I:C) led to a marked drop of microsphere phagocytosis by HFFs. Overall, surface assembly on PEGylated PLGA microspheres holds promise to improve both efficacy and safety of poly(I:C) as vaccine adjuvant.
Collapse
Affiliation(s)
- Annina M Hafner
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich 8093, Switzerland
| | - Blaise Corthésy
- Division of Immunology and Allergy, CHUV, Lausanne 1005, Switzerland
| | - Marcus Textor
- Laboratory for Surface Science and Technology, ETH Zurich, Zurich 8093, Switzerland
| | - Hans P Merkle
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich 8093, Switzerland.
| |
Collapse
|
49
|
Mishra DK, Balekar N, Mishra PK. Nanoengineered strategies for siRNA delivery: from target assessment to cancer therapeutic efficacy. Drug Deliv Transl Res 2017; 7:346-358. [PMID: 28050890 DOI: 10.1007/s13346-016-0352-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The promise of RNA interference (RNAi) technology in cancer therapeutics aims to deliver small interfering RNA (siRNA) for silencing of gene expression in cell type-specific pathway. However, the challenge for the delivery of stable siRNA is hindered by an immune-hostile tumor microenvironment and physiological barriers of the circulatory system. Therefore, the development and validation of safe, stable, and efficient nanoengineered delivery systems are highly essential for effective delivery of siRNA into cancer cells. This review focuses on gene-silencing mechanisms, challenges to siRNA delivery, design and delivery of nanocarrier systems, ongoing clinical trials, and translational prospects for siRNA-mediated cancer therapeutics.
Collapse
Affiliation(s)
| | - Neelam Balekar
- IPS Academy, College of Pharmacy, A. B. Road, Indore, MP, 452 012, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, National Institute for Research in Environmental Health, Indian Council of Medical Research (ICMR), Bhopal, India
| |
Collapse
|
50
|
Affiliation(s)
- Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | - Yanhang Hong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | - Wenjuan Chen
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | - Chun Wang
- Department
of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo
Hall, 312 Church Street S. E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|