1
|
Pandey AK, Pain J, Singh P, Dancis A, Pain D. Mitochondrial glutaredoxin Grx5 functions as a central hub for cellular iron-sulfur cluster assembly. J Biol Chem 2025; 301:108391. [PMID: 40074084 PMCID: PMC12004709 DOI: 10.1016/j.jbc.2025.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Iron-sulfur (Fe-S) protein biogenesis in eukaryotes is mediated by two different machineries-one in the mitochondria and another in the cytoplasm. Glutaredoxin 5 (Grx5) is a component of the mitochondrial iron-sulfur cluster machinery. Here, we define the roles of Grx5 in maintaining overall mitochondrial/cellular Fe-S protein biogenesis, utilizing mitochondria and cytoplasm isolated from Saccharomyces cerevisiae cells. We previously demonstrated that isolated wild-type (WT) mitochondria themselves can synthesize new Fe-S clusters, but isolated WT cytoplasm alone cannot do so unless it is mixed with WT mitochondria. WT mitochondria generate an intermediate, called (Fe-S)int, that is exported to the cytoplasm and utilized for cytoplasmic Fe-S cluster assembly. We here show that mitochondria lacking endogenous Grx5 (Grx5↓) failed to synthesize Fe-S clusters for proteins within the organelle. Similarly, Grx5↓ mitochondria were unable to synthesize (Fe-S)int, as judged by their inability to promote Fe-S cluster biosynthesis in WT cytoplasm. Most importantly, purified Grx5 precursor protein, imported into isolated Grx5↓ mitochondria, rescued these Fe-S cluster synthesis/trafficking defects. Notably, mitochondria lacking immediate downstream components of the mitochondrial iron-sulfur cluster machinery (Isa1 or Isa2) could synthesize [2Fe-2S] but not [4Fe-4S] clusters within the organelle. Isa1↓ (or Isa2↓) mitochondria could still support Fe-S cluster biosynthesis in WT cytoplasm. These results provide evidence for Grx5 serving as a central hub for Fe-S cluster intermediate trafficking within mitochondria and export to the cytoplasm. Grx5 is conserved from yeast to humans, and deficiency or mutation causes fatal human diseases. Data as presented here will be informative for human physiology.
Collapse
Affiliation(s)
- Ashutosh K Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Jayashree Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Pratibha Singh
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Andrew Dancis
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Debkumar Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.
| |
Collapse
|
2
|
Steinhilper R, Boß L, Freibert SA, Schulz V, Krapoth N, Kaltwasser S, Lill R, Murphy BJ. Two-stage binding of mitochondrial ferredoxin-2 to the core iron-sulfur cluster assembly complex. Nat Commun 2024; 15:10559. [PMID: 39632806 PMCID: PMC11618653 DOI: 10.1038/s41467-024-54585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Iron-sulfur (FeS) protein biogenesis in eukaryotes begins with the de novo assembly of [2Fe-2S] clusters by the mitochondrial core iron-sulfur cluster assembly (ISC) complex. This complex comprises the scaffold protein ISCU2, the cysteine desulfurase subcomplex NFS1-ISD11-ACP1, the allosteric activator frataxin (FXN) and the electron donor ferredoxin-2 (FDX2). The structural interaction of FDX2 with the complex remains unclear. Here, we present cryo-EM structures of the human FDX2-bound core ISC complex showing that FDX2 and FXN compete for overlapping binding sites. FDX2 binds in either a 'distal' conformation, where its helix F interacts electrostatically with an arginine patch of NFS1, or a 'proximal' conformation, where this interaction tightens and the FDX2-specific C terminus binds to NFS1, facilitating the movement of the [2Fe-2S] cluster of FDX2 closer to the ISCU2 FeS cluster assembly site for rapid electron transfer. Structure-based mutational studies verify the contact areas of FDX2 within the core ISC complex.
Collapse
Affiliation(s)
- Ralf Steinhilper
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Linda Boß
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Sven-A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Vinzent Schulz
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Nils Krapoth
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany
| | - Susann Kaltwasser
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany.
- Zentrum für Synthetische Mikrobiologie Synmikro, Karl-von-Frisch-Str. 14, 35032, Marburg, Germany.
| | - Bonnie J Murphy
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Pandey AK, Yoon H, Pain J, Dancis A, Pain D. Mitochondrial acyl carrier protein, Acp1, required for iron-sulfur cluster assembly in mitochondria and cytoplasm in Saccharomyces cerevisiae. Mitochondrion 2024; 79:101955. [PMID: 39251117 DOI: 10.1016/j.mito.2024.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024]
Abstract
Mitochondria perform vital biosynthetic processes, including fatty acid synthesis and iron-sulfur (FeS) cluster biogenesis. In Saccharomyces cerevisiae mitochondria, the acyl carrier protein Acp1 participates in type II fatty acid synthesis, requiring a 4-phosphopantetheine (PP) prosthetic group. Acp1 also interacts with the mitochondrial FeS cluster assembly complex that contains the cysteine desulfurase Nfs1. Here we investigated the role of Acp1 in FeS cluster biogenesis in mitochondria and cytoplasm. In the Acp1-depleted (Acp1↓) cells, biogenesis of mitochondrial FeS proteins was impaired, likely due to greatly reduced Nfs1 protein and/or its persulfide-forming activity. Formation of cytoplasmic FeS proteins was also deficient, suggesting a disruption in generating the (Fe-S)int intermediate, that is exported from mitochondria and is subsequently utilized for cytoplasmic FeS cluster assembly. Iron homeostasis was perturbed, with enhanced iron uptake into the cells and accumulation of iron in mitochondria. The Δppt2 strain, lacking the mitochondrial ability to add PP to Acp1, phenocopied the Acp1↓ cells. These data suggest that the holo form of Acp1 with the PP-conjugated acyl chain is required for stability of the Nfs1 protein and/or stimulation of its persulfide-forming activity. Thus, mitochondria lacking Acp1 (or Ppt2) cannot support FeS cluster biogenesis in mitochondria or cytoplasm, leading to disrupted iron homeostasis.
Collapse
Affiliation(s)
- Ashutosh K Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, United States
| | - Heeyong Yoon
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jayashree Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, United States
| | - Andrew Dancis
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Debkumar Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, United States.
| |
Collapse
|
4
|
Grifagni D, Doni D, Susini B, Fonseca BM, Louro RO, Costantini P, Ciofi‐Baffoni S. Unraveling the molecular determinants of a rare human mitochondrial disorder caused by the P144L mutation of FDX2. Protein Sci 2024; 33:e5197. [PMID: 39467201 PMCID: PMC11515921 DOI: 10.1002/pro.5197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
Episodic mitochondrial myopathy with or without optic atrophy and reversible leukoencephalopathy (MEOAL) is a rare, orphan autosomal recessive disorder caused by mutations in ferredoxin-2 (FDX2), which is a [2Fe-2S] cluster-binding protein participating in the formation of iron-sulfur clusters in mitochondria. In this biosynthetic pathway, FDX2 works as electron donor to promote the assembly of both [2Fe-2S] and [4Fe-4S] clusters. A recently identified missense mutation of MEOAL is the homozygous mutation c.431C>T (p.P144L) described in six patients from two unrelated families. This mutation alters a highly conserved proline residue located in a loop of FDX2 that is distant from the [2Fe-2S] cluster. How this Pro to Leu substitution damages iron-sulfur cluster biosynthesis is unknown. In this work, we have first compared the structural, dynamic, cluster binding and redox properties of WT and P144L [2Fe-2S] FDX2 to have clues on how the pathogenic P144L mutation can perturb the FDX2 function. Then, we have investigated the interaction of both WT and P144L [2Fe-2S] FDX2 with its physiological electron donor, ferredoxin reductase FDXR, comparing their electron transfer efficiency and protein-protein recognition patterns. Overall, the data indicate that the pathogenic P144L mutation negatively affects the FDXR-dependent electron transfer pathway from NADPH to FDX2, thereby reducing the capacity of FDX2 in assembling both [2Fe-2S] and [4Fe-4S] clusters. Our study also provided solid molecular evidences on the functional role of the C-terminal tail of FDX2 in the electron transfer between FDX2 and FDXR.
Collapse
Affiliation(s)
- Deborah Grifagni
- Magnetic Resonance Center CERMUniversity of FlorenceFlorenceItaly
- Department of ChemistryUniversity of FlorenceFlorenceItaly
| | - Davide Doni
- Department of BiologyUniversity of PadovaPadovaItaly
| | - Bianca Susini
- Magnetic Resonance Center CERMUniversity of FlorenceFlorenceItaly
- Department of ChemistryUniversity of FlorenceFlorenceItaly
| | - Bruno M. Fonseca
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB‐NOVA)Universidade Nova de LisboaOeirasPortugal
| | - Ricardo O. Louro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB‐NOVA)Universidade Nova de LisboaOeirasPortugal
| | | | - Simone Ciofi‐Baffoni
- Magnetic Resonance Center CERMUniversity of FlorenceFlorenceItaly
- Department of ChemistryUniversity of FlorenceFlorenceItaly
| |
Collapse
|
5
|
Hackett MJ. A commentary on studies of brain iron accumulation during ageing. J Biol Inorg Chem 2024; 29:385-394. [PMID: 38735007 PMCID: PMC11186910 DOI: 10.1007/s00775-024-02060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Brain iron content is widely reported to increase during "ageing", across multiple species from nematodes, rodents (mice and rats) and humans. Given the redox-active properties of iron, there has been a large research focus on iron-mediated oxidative stress as a contributor to tissue damage during natural ageing, and also as a risk factor for neurodegenerative disease. Surprisingly, however, the majority of published studies have not investigated brain iron homeostasis during the biological time period of senescence, and thus knowledge of how brain homeostasis changes during this critical stage of life largely remains unknown. This commentary examines the literature published on the topic of brain iron homeostasis during ageing, providing a critique on limitations of currently used experimental designs. The commentary also aims to highlight that although much research attention has been given to iron accumulation or iron overload as a pathological feature of ageing, there is evidence to support functional iron deficiency may exist, and this should not be overlooked in studies of ageing or neurodegenerative disease.
Collapse
Affiliation(s)
- Mark J Hackett
- School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia.
| |
Collapse
|
6
|
Dancis A, Pandey AK, Pain D. Mitochondria function in cytoplasmic FeS protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119733. [PMID: 38641180 DOI: 10.1016/j.bbamcr.2024.119733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/18/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Iron‑sulfur (FeS) clusters are cofactors of numerous proteins involved in essential cellular functions including respiration, protein translation, DNA synthesis and repair, ribosome maturation, anti-viral responses, and isopropylmalate isomerase activity. Novel FeS proteins are still being discovered due to the widespread use of cryogenic electron microscopy (cryo-EM) and elegant genetic screens targeted at protein discovery. A complex sequence of biochemical reactions mediated by a conserved machinery controls biosynthesis of FeS clusters. In eukaryotes, a remarkable epistasis has been observed: the mitochondrial machinery, termed ISC (Iron-Sulfur Cluster), lies upstream of the cytoplasmic machinery, termed CIA (Cytoplasmic Iron‑sulfur protein Assembly). The basis for this arrangement is the production of a hitherto uncharacterized intermediate, termed X-S or (Fe-S)int, produced in mitochondria by the ISC machinery, exported by the mitochondrial ABC transporter Atm1 (ABCB7 in humans), and then utilized by the CIA machinery for the cytoplasmic/nuclear FeS cluster assembly. Genetic and biochemical findings supporting this sequence of events are herein presented. New structural views of the Atm1 transport phases are reviewed. The key compartmental roles of glutathione in cellular FeS cluster biogenesis are highlighted. Finally, data are presented showing that every one of the ten core components of the mitochondrial ISC machinery and Atm1, when mutated or depleted, displays similar phenotypes: mitochondrial and cytoplasmic FeS clusters are both rendered deficient, consistent with the epistasis noted above.
Collapse
Affiliation(s)
- Andrew Dancis
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Ashutosh K Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Debkumar Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
7
|
Maio N, Heffner AL, Rouault TA. Iron‑sulfur clusters in viral proteins: Exploring their elusive nature, roles and new avenues for targeting infections. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119723. [PMID: 38599324 PMCID: PMC11139609 DOI: 10.1016/j.bbamcr.2024.119723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Viruses have evolved complex mechanisms to exploit host factors for replication and assembly. In response, host cells have developed strategies to block viruses, engaging in a continuous co-evolutionary battle. This dynamic interaction often revolves around the competition for essential resources necessary for both host cell and virus replication. Notably, iron, required for the biosynthesis of several cofactors, including iron‑sulfur (FeS) clusters, represents a critical element in the ongoing competition for resources between infectious agents and host. Although several recent studies have identified FeS cofactors at the core of virus replication machineries, our understanding of their specific roles and the cellular processes responsible for their incorporation into viral proteins remains limited. This review aims to consolidate our current knowledge of viral components that have been characterized as FeS proteins and elucidate how viruses harness these versatile cofactors to their benefit. Its objective is also to propose that viruses may depend on incorporation of FeS cofactors more extensively than is currently known. This has the potential to revolutionize our understanding of viral replication, thereby carrying significant implications for the development of strategies to target infections.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | - Audrey L Heffner
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Gonzalez L, Chau-Duy Tam Vo S, Faivre B, Pierrel F, Fontecave M, Hamdane D, Lombard M. Activation of Coq6p, a FAD Monooxygenase Involved in Coenzyme Q Biosynthesis, by Adrenodoxin Reductase/Ferredoxin. Chembiochem 2024; 25:e202300738. [PMID: 38141230 DOI: 10.1002/cbic.202300738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/25/2023]
Abstract
Adrenodoxin reductase (AdxR) plays a pivotal role in electron transfer, shuttling electrons between NADPH and iron/sulfur adrenodoxin proteins in mitochondria. This electron transport system is essential for P450 enzymes involved in various endogenous biomolecules biosynthesis. Here, we present an in-depth examination of the kinetics governing the reduction of human AdxR by NADH or NADPH. Our results highlight the efficiency of human AdxR when utilizing NADPH as a flavin reducing agent. Nevertheless, akin to related flavoenzymes such as cytochrome P450 reductase, we observe that low NADPH concentrations hinder flavin reduction due to intricate equilibrium reactions between the enzyme and its substrate/product. Remarkably, the presence of MgCl2 suppresses this complex kinetic behavior by decreasing NADPH binding to oxidized AdxR, effectively transforming AdxR into a classical Michaelis-Menten enzyme. We propose that the addition of MgCl2 may be adapted for studying the reductive half-reactions of other flavoenzymes with NADPH. Furthermore, in vitro experiments provide evidence that the reduction of the yeast flavin monooxygenase Coq6p relies on an electron transfer chain comprising NADPH-AdxR-Yah1p-Coq6p, where Yah1p shuttles electrons between AdxR and Coq6p. This discovery explains the previous in vivo observation that Yah1p and the AdxR homolog, Arh1p, are required for the biosynthesis of coenzyme Q in yeast.
Collapse
Affiliation(s)
- Lucie Gonzalez
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
| | - Samuel Chau-Duy Tam Vo
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bruno Faivre
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
| | - Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
- Institut de Biologie Paris-Seine, Biology of Aging and Adaptation, UMR 8256, Sorbonne Université, 7 quai Saint-Bernard, 75 252, Paris, France
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
| |
Collapse
|
9
|
Zulkifli M, Okonkwo AU, Gohil VM. FDX1 Is Required for the Biogenesis of Mitochondrial Cytochrome c Oxidase in Mammalian Cells. J Mol Biol 2023; 435:168317. [PMID: 37858707 PMCID: PMC11451897 DOI: 10.1016/j.jmb.2023.168317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Ferredoxins (FDXs) are evolutionarily conserved iron-sulfur (Fe-S) proteins that function as electron transfer proteins in diverse metabolic pathways. Mammalian mitochondria contain two ferredoxins, FDX1 and FDX2, which share a high degree of structural similarity but exhibit different functionalities. Previous studies have established the unique role of FDX2 in the biogenesis of Fe-S clusters; however, FDX1 seems to have multiple targets in vivo, some of which are only recently emerging. Using CRISPR-Cas9-based loss-of-function studies in rat cardiomyocyte cell line, we demonstrate an essential requirement of FDX1 in mitochondrial respiration and energy production. We attribute reduced mitochondrial respiration to a specific decrease in the abundance and assembly of cytochrome c oxidase (CcO), a mitochondrial heme-copper oxidase and the terminal enzyme of the mitochondrial respiratory chain. FDX1 knockout cells have reduced levels of copper and heme a/a3, factors that are essential for the maturation of the CcO enzyme complex. Copper supplementation failed to rescue CcO biogenesis, but overexpression of heme a synthase, COX15, partially rescued COX1 abundance in FDX1 knockout cells. This finding links FDX1 function to heme a biosynthesis, and places it upstream of COX15 in CcO biogenesis like its ancestral yeast homolog. Taken together, our work has identified FDX1 as a critical CcO biogenesis factor in mammalian cells.
Collapse
Affiliation(s)
- Mohammad Zulkifli
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA.
| | - Adriana U Okonkwo
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
10
|
Dreishpoon MB, Bick NR, Petrova B, Warui DM, Cameron A, Booker SJ, Kanarek N, Golub TR, Tsvetkov P. FDX1 regulates cellular protein lipoylation through direct binding to LIAS. J Biol Chem 2023; 299:105046. [PMID: 37453661 PMCID: PMC10462841 DOI: 10.1016/j.jbc.2023.105046] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Ferredoxins are a family of iron-sulfur (Fe-S) cluster proteins that serve as essential electron donors in numerous cellular processes that are conserved through evolution. The promiscuous nature of ferredoxins as electron donors enables them to participate in many metabolic processes including steroid, heme, vitamin D, and Fe-S cluster biosynthesis in different organisms. However, the unique natural function(s) of each of the two human ferredoxins (FDX1 and FDX2) are still poorly characterized. We recently reported that FDX1 is both a crucial regulator of copper ionophore-induced cell death and serves as an upstream regulator of cellular protein lipoylation, a mitochondrial lipid-based post-translational modification naturally occurring on four mitochondrial enzymes that are crucial for TCA cycle function. Here we show that FDX1 directly regulates protein lipoylation by binding the lipoyl synthase (LIAS) enzyme promoting its functional binding to the lipoyl carrier protein GCSH and not through indirect regulation of cellular Fe-S cluster biosynthesis. Metabolite profiling revealed that the predominant cellular metabolic outcome of FDX1 loss of function is manifested through the regulation of the four lipoylation-dependent enzymes ultimately resulting in loss of cellular respiration and sensitivity to mild glucose starvation. Transcriptional profiling established that FDX1 loss-of-function results in the induction of both compensatory metabolism-related genes and the integrated stress response, consistent with our findings that FDX1 loss-of-function is conditionally lethal. Together, our findings establish that FDX1 directly engages with LIAS, promoting its role in cellular protein lipoylation, a process essential in maintaining cell viability under low glucose conditions.
Collapse
Affiliation(s)
| | - Nolan R Bick
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - Boryana Petrova
- Harvard Medical School, Boston, Massachusetts, USA; Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Douglas M Warui
- Department of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes Medical Institute, The Pennsylvania State University, State College, Pennsylvania, USA
| | | | - Squire J Booker
- Department of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes Medical Institute, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Naama Kanarek
- Broad Institute of Harvard and MIT, Cambridge, USA; Harvard Medical School, Boston, Massachusetts, USA; Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Todd R Golub
- Broad Institute of Harvard and MIT, Cambridge, USA; Harvard Medical School, Boston, Massachusetts, USA; Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
11
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Pandey AK, Pain J, J B, Dancis A, Pain D. Essential mitochondrial role in iron-sulfur cluster assembly of the cytoplasmic isopropylmalate isomerase Leu1 in Saccharomyces cerevisiae. Mitochondrion 2023; 69:104-115. [PMID: 36773733 DOI: 10.1016/j.mito.2023.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Iron-sulfur (Fe-S) cluster assembly in mitochondria and cytoplasm is essential for cell viability. In the yeast S. cerevisiae, Leu1 [4Fe-4S] is the cytoplasmic isopropylmalate isomerase involved in leucine biosynthesis. Using permeabilized Δleu1 cells and recombinant apo-Leu1R, here we show that the [4Fe-4S] cluster assembly on Leu1R can be reconstituted in a physiologic manner requiring both mitochondria and cytoplasm, as judged by conversion of the inactive enzyme to an active form. The mitochondrial contribution to this reconstitution assay is abrogated by inactivating mutations in the mitochondrial ISC (iron-sulfur cluster assembly) machinery components (such as Nfs1 cysteine desulfurase and Ssq1 chaperone) or the mitochondrial exporter Atm1. Likewise, depletion of a CIA (cytoplasmic iron-sulfur protein assembly) component Dre2 leads to impaired Leu1R reconstitution. Mitochondria likely make and export an intermediate, called X-S or (Fe-S)int, that is needed for cytoplasmic Fe-S cluster biosynthesis. Here we show that once exported, the same intermediate can be used for both [2Fe-2S] and [4Fe-4S] cluster biogenesis in the cytoplasm, with no further requirement of mitochondria. Our data also suggest that the exported intermediate can activate defective/latent CIA components in cytoplasm isolated from nfs1 or Δatm1 mutant cells. These findings may provide a way to isolate X-S or (Fe-S)int.
Collapse
Affiliation(s)
- Ashutosh K Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, United States
| | - Jayashree Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, United States
| | - Brindha J
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, United States
| | - Andrew Dancis
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, United States
| | - Debkumar Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, United States.
| |
Collapse
|
13
|
Dreishpoon MB, Bick NR, Petrova B, Warui DM, Cameron A, Booker SJ, Kanarek N, Golub TR, Tsvetkov P. FDX1 regulates cellular protein lipoylation through direct binding to LIAS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526472. [PMID: 36778498 PMCID: PMC9915701 DOI: 10.1101/2023.02.03.526472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Ferredoxins are a family of iron-sulfur (Fe-S) cluster proteins that serve as essential electron donors in numerous cellular processes that are conserved through evolution. The promiscuous nature of ferredoxins as electron donors enables them to participate in many metabolic processes including steroid, heme, vitamin D and Fe-S cluster biosynthesis in different organisms. However, the unique natural function(s) of each of the two human ferredoxins (FDX1 and FDX2) are still poorly characterized. We recently reported that FDX1 is both a crucial regulator of copper ionophore induced cell death and serves as an upstream regulator of cellular protein lipoylation, a mitochondrial lipid-based post translational modification naturally occurring on four mitochondrial enzymes that are crucial for TCA cycle function. Here we show that FDX1 regulates protein lipoylation by directly binding to the lipoyl synthase (LIAS) enzyme and not through indirect regulation of cellular Fe-S cluster biosynthesis. Metabolite profiling revealed that the predominant cellular metabolic outcome of FDX1 loss-of-function is manifested through the regulation of the four lipoylation-dependent enzymes ultimately resulting in loss of cellular respiration and sensitivity to mild glucose starvation. Transcriptional profiling of cells growing in either normal or low glucose conditions established that FDX1 loss-of-function results in the induction of both compensatory metabolism related genes and the integrated stress response, consistent with our findings that FDX1 loss-of-functions is conditionally lethal. Together, our findings establish that FDX1 directly engages with LIAS, promoting cellular protein lipoylation, a process essential in maintaining cell viability under low glucose conditions.
Collapse
Affiliation(s)
| | | | - Boryana Petrova
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Boston Children’s Hospital, Boston, MA USA
| | - Douglas M. Warui
- Department of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes Medical Institute, The Pennsylvania State University, PA, United States
| | | | - Squire J. Booker
- Department of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes Medical Institute, The Pennsylvania State University, PA, United States
| | - Naama Kanarek
- Broad Institute of Harvard and MIT, Cambridge, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Boston Children’s Hospital, Boston, MA USA
| | - Todd R. Golub
- Broad Institute of Harvard and MIT, Cambridge, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| | | |
Collapse
|
14
|
Schulz V, Basu S, Freibert SA, Webert H, Boss L, Mühlenhoff U, Pierrel F, Essen LO, Warui DM, Booker SJ, Stehling O, Lill R. Functional spectrum and specificity of mitochondrial ferredoxins FDX1 and FDX2. Nat Chem Biol 2023; 19:206-217. [PMID: 36280795 PMCID: PMC10873809 DOI: 10.1038/s41589-022-01159-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/01/2022] [Indexed: 02/04/2023]
Abstract
Ferredoxins comprise a large family of iron-sulfur (Fe-S) proteins that shuttle electrons in diverse biological processes. Human mitochondria contain two isoforms of [2Fe-2S] ferredoxins, FDX1 (aka adrenodoxin) and FDX2, with known functions in cytochrome P450-dependent steroid transformations and Fe-S protein biogenesis. Here, we show that only FDX2, but not FDX1, is involved in Fe-S protein maturation. Vice versa, FDX1 is specific not only for steroidogenesis, but also for heme a and lipoyl cofactor biosyntheses. In the latter pathway, FDX1 provides electrons to kickstart the radical chain reaction catalyzed by lipoyl synthase. We also identified lipoylation as a target of the toxic antitumor copper ionophore elesclomol. Finally, the striking target specificity of each ferredoxin was assigned to small conserved sequence motifs. Swapping these motifs changed the target specificity of these electron donors. Together, our findings identify new biochemical tasks of mitochondrial ferredoxins and provide structural insights into their functional specificity.
Collapse
Affiliation(s)
- Vinzent Schulz
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Somsuvro Basu
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
- Freelance Medical Communications Consultant, Brno, Czech Republic
| | - Sven-A Freibert
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Holger Webert
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Linda Boss
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Ulrich Mühlenhoff
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Fabien Pierrel
- Univ. of Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, France
| | - Lars-O Essen
- Department of Biochemistry, Faculty of Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Douglas M Warui
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Squire J Booker
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- The Howard Hughes Medical Institute, The Pennsylvania State University, University Park, PA, USA
| | - Oliver Stehling
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany.
- Centre for Synthetic Microbiology, Synmikro, Marburg, Germany.
| | - Roland Lill
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany.
- Centre for Synthetic Microbiology, Synmikro, Marburg, Germany.
| |
Collapse
|
15
|
Schulz V, Freibert SA, Boss L, Mühlenhoff U, Stehling O, Lill R. Mitochondrial [2Fe-2S] ferredoxins: new functions for old dogs. FEBS Lett 2023; 597:102-121. [PMID: 36443530 DOI: 10.1002/1873-3468.14546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
Ferredoxins (FDXs) comprise a large family of iron-sulfur proteins that shuttle electrons from NADPH and FDX reductases into diverse biological processes. This review focuses on the structure, function and specificity of mitochondrial [2Fe-2S] FDXs that are related to bacterial FDXs due to their endosymbiotic inheritance. Their classical function in cytochrome P450-dependent steroid transformations was identified around 1960, and is exemplified by mammalian FDX1 (aka adrenodoxin). Thirty years later the essential function in cellular Fe/S protein biogenesis was discovered for the yeast mitochondrial FDX Yah1 that is additionally crucial for the formation of haem a and ubiquinone CoQ6 . In mammals, Fe/S protein biogenesis is exclusively performed by the FDX1 paralog FDX2, despite the high structural similarity of both proteins. Recently, additional and specific roles of human FDX1 in haem a and lipoyl cofactor biosyntheses were described. For lipoyl synthesis, FDX1 transfers electrons to the radical S-adenosyl methionine-dependent lipoyl synthase to kickstart its radical chain reaction. The high target specificity of the two mammalian FDXs is contained within small conserved sequence motifs, that upon swapping change the target selection of these electron donors.
Collapse
Affiliation(s)
- Vinzent Schulz
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Sven-A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Linda Boss
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Oliver Stehling
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| |
Collapse
|
16
|
Kim S, Koo J. Recent advances in utilization of ferredoxins for biosynthesis of valuable compounds. World J Microbiol Biotechnol 2022; 38:178. [PMID: 35941298 DOI: 10.1007/s11274-022-03371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022]
Abstract
Ferredoxin (Fd) is a small metalloprotein holding one or two Fe-S clusters in its inner shell. Like many other metalloproteins, Fd is redox active and involved in electron transfer during cellular metabolism. The electrons from reduced Fd are mostly used to regenerate NADPH under physiological conditions. Increasing number of attempts have been reported, however, where Fd delivers electrons to enable biosynthesis of valuable compounds. Various compounds ranging from H2 to vitamin D3 have been synthesized successfully using electrons mediated by Fd molecules. In this review, we provide an overview of the engineering studies utilizing Fd for biosynthesis of targeted molecules. The emphasis is on the role and activity of Fd as well as the methods used to improve the rate of electron transfer. Both microbial and electrochemical biosynthesis technologies are described and compared with respect to productivity and the compound being produced. In addition to the ferredoxins from the microbial organisms, artificially designed de novo types are described, highlighting the potential of the emerging computational methods used in metabolic and protein engineering. We believe that the recent advances in utilization of Fd for biosynthesis can result in breakthrough innovation across the biotechnology industry.
Collapse
Affiliation(s)
- Seongwon Kim
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jamin Koo
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea.
| |
Collapse
|
17
|
Yi Z, Xie J. Genomic Analysis of Two Representative Strains of Shewanella putrefaciens Isolated from Bigeye Tuna: Biofilm and Spoilage-Associated Behavior. Foods 2022; 11:foods11091261. [PMID: 35563985 PMCID: PMC9100107 DOI: 10.3390/foods11091261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Shewanella putrefaciens can cause the spoilage of seafood and shorten its shelf life. In this study, both strains of S. putrefaciens (YZ08 and YZ-J) isolated from spoiled bigeye tuna were subjected to in-depth phenotypic and genotypic characterization to better understand their roles in seafood spoilage. The complete genome sequences of strains YZ08 and YZ-J were reported. Unique genes of the two S. putrefaciens strains were identified by pan-genomic analysis. In vitro experiments revealed that YZ08 and YZ-J could adapt to various environmental stresses, including cold-shock temperature, pH, NaCl, and nutrient stresses. YZ08 was better at adapting to NaCl stress, and its genome possessed more NaCl stress-related genes compared with the YZ-J strain. YZ-J was a higher biofilm and exopolysaccharide producer than YZ08 at 4 and 30 °C, while YZ08 showed greater motility and enhanced capacity for biogenic amine metabolism, trimethylamine metabolism, and sulfur metabolism compared with YZ-J at both temperatures. That YZ08 produced low biofilm and exopolysaccharide contents and displayed high motility may be associated with the presence of more a greater number of genes encoding chemotaxis-related proteins (cheX) and low expression of the bpfA operon. This study provided novel molecular targets for the development of new antiseptic antisepsis strategies.
Collapse
Affiliation(s)
- Zhengkai Yi
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China;
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai 201306, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China;
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai 201306, China
- Correspondence: ; Tel.: +86-02161900391
| |
Collapse
|
18
|
Mitochondrial De Novo Assembly of Iron–Sulfur Clusters in Mammals: Complex Matters in a Complex That Matters. INORGANICS 2022. [DOI: 10.3390/inorganics10030031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Iron–sulfur clusters (Fe–S or ISC) are essential cofactors that function in a wide range of biological pathways. In mammalian cells, Fe–S biosynthesis primarily relies on mitochondria and involves a concerted group of evolutionary-conserved proteins forming the ISC pathway. In the early stage of the ISC pathway, the Fe–S core complex is required for de novo assembly of Fe–S. In humans, the Fe–S core complex comprises the cysteine desulfurase NFS1, the scaffold protein ISCU2, frataxin (FXN), the ferredoxin FDX2, and regulatory/accessory proteins ISD11 and Acyl Carrier Protein (ACP). In recent years, the field has made significant advances in unraveling the structure of the Fe–S core complex and the mechanism underlying its function. Herein, we review the key recent findings related to the Fe–S core complex and its components. We highlight some of the unanswered questions and provide a model of the Fe–S assembly within the complex. In addition, we briefly touch on the genetic diseases associated with mutations in the Fe–S core complex components.
Collapse
|
19
|
Dong Y, Zhang S, Zhao L. Unraveling the Structural Development of
Peptide‐Coordinated Iron‐Sulfur
Clusters: Prebiotic Evolution and Biosynthetic Strategies. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yijun Dong
- School of Life Sciences, Tsinghua University Beijing 100084 China
| | - Siqi Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
20
|
Tang J, Zhuo Y, Li Y. Effects of Iron and Zinc on Mitochondria: Potential Mechanisms of Glaucomatous Injury. Front Cell Dev Biol 2021; 9:720288. [PMID: 34447755 PMCID: PMC8383321 DOI: 10.3389/fcell.2021.720288] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
Glaucoma is the most substantial cause of irreversible blinding, which is accompanied by progressive retinal ganglion cell damage. Retinal ganglion cells are energy-intensive neurons that connect the brain and retina, and depend on mitochondrial homeostasis to transduce visual information through the brain. As cofactors that regulate many metabolic signals, iron and zinc have attracted increasing attention in studies on neurons and neurodegenerative diseases. Here, we summarize the research connecting iron, zinc, neuronal mitochondria, and glaucomatous injury, with the aim of updating and expanding the current view of how retinal ganglion cells degenerate in glaucoma, which can reveal novel potential targets for neuroprotection.
Collapse
Affiliation(s)
- Jiahui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Klusch N, Senkler J, Yildiz Ö, Kühlbrandt W, Braun HP. A ferredoxin bridge connects the two arms of plant mitochondrial complex I. THE PLANT CELL 2021; 33:2072-2091. [PMID: 33768254 PMCID: PMC8290278 DOI: 10.1093/plcell/koab092] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/19/2021] [Indexed: 05/23/2023]
Abstract
Mitochondrial complex I is the main site for electron transfer to the respiratory chain and generates much of the proton gradient across the inner mitochondrial membrane. Complex I is composed of two arms, which form a conserved L-shape. We report the structures of the intact, 47-subunit mitochondrial complex I from Arabidopsis thaliana and the 51-subunit complex I from the green alga Polytomella sp., both at around 2.9 Å resolution. In both complexes, a heterotrimeric γ-carbonic anhydrase domain is attached to the membrane arm on the matrix side. Two states are resolved in A. thaliana complex I, with different angles between the two arms and different conformations of the ND1 (NADH dehydrogenase subunit 1) loop near the quinol binding site. The angle appears to depend on a bridge domain, which links the peripheral arm to the membrane arm and includes an unusual ferredoxin. We propose that the bridge domain participates in regulating the activity of plant complex I.
Collapse
Affiliation(s)
- Niklas Klusch
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt 60438, Germany
| | - Jennifer Senkler
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Özkan Yildiz
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt 60438, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt 60438, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover 30419, Germany
| |
Collapse
|
22
|
Das D, Ainavarapu SRK. Azurin-Derived Peptides: Comparison of Nickel- and Copper-Binding Properties. Inorg Chem 2021; 60:9720-9726. [PMID: 34137603 DOI: 10.1021/acs.inorgchem.1c01007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metalloproteins are an important class of proteins involved in metal uptake, transport, and electron-transfer reactions. Mimicking the active sites of these proteins through miniaturization is an active area of research with applications in biotechnology and medicine. Azurin is a 128-residue copper-binding cupredoxin protein involved in electron-transfer reactions. Previous studies have reported on the copper-binding-induced spectroscopic and structural properties of peptide loops (11 and 13 residues) from azurin. These azurin peptides exhibited novel stoichiometries. However, the underlying mechanism of fluorescence quenching upon copper binding remains to be understood, whether it is due to electron transfer, energy transfer, or both. Here, we report nickel-binding-associated spectroscopic and structural properties of the azurin peptides. They develop a β-turn upon nickel binding as seen in circular dichroism and exhibit electronic transitions centered at 270 and 450 nm. Unlike copper, which exhibited 1:1 and 1:2 peptide:metal stoichiometries, nickel exhibited only a 1:1 stoichiometry. Tryptophan-containing peptides showed fluorescence quenching upon nickel binding, which is due to electron transfer. These results further suggest that the quenching in copper-bound peptides is also due to electron transfer, which could not be ascertained in previous studies. Overall, azurin peptides provide a platform for studying metal-induced structural and spectroscopic properties using transition-metal ions.
Collapse
Affiliation(s)
- Debanjana Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
23
|
Lill R. From the discovery to molecular understanding of cellular iron-sulfur protein biogenesis. Biol Chem 2021; 401:855-876. [PMID: 32229650 DOI: 10.1515/hsz-2020-0117] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022]
Abstract
Protein cofactors often are the business ends of proteins, and are either synthesized inside cells or are taken up from the nutrition. A cofactor that strictly needs to be synthesized by cells is the iron-sulfur (Fe/S) cluster. This evolutionary ancient compound performs numerous biochemical functions including electron transfer, catalysis, sulfur mobilization, regulation and protein stabilization. Since the discovery of eukaryotic Fe/S protein biogenesis two decades ago, more than 30 biogenesis factors have been identified in mitochondria and cytosol. They support the synthesis, trafficking and target-specific insertion of Fe/S clusters. In this review, I first summarize what led to the initial discovery of Fe/S protein biogenesis in yeast. I then discuss the function and localization of Fe/S proteins in (non-green) eukaryotes. The major part of the review provides a detailed synopsis of the three major steps of mitochondrial Fe/S protein biogenesis, i.e. the de novo synthesis of a [2Fe-2S] cluster on a scaffold protein, the Hsp70 chaperone-mediated transfer of the cluster and integration into [2Fe-2S] recipient apoproteins, and the reductive fusion of [2Fe-2S] to [4Fe-4S] clusters and their subsequent assembly into target apoproteins. Finally, I summarize the current knowledge of the mechanisms underlying the maturation of cytosolic and nuclear Fe/S proteins.
Collapse
Affiliation(s)
- Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032 Marburg, Germany.,SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35043 Marburg, Germany
| |
Collapse
|
24
|
Identification of an Intermediate Form of Ferredoxin That Binds Only Iron Suggests That Conversion to Holo-Ferredoxin Is Independent of the ISC System in Escherichia coli. Appl Environ Microbiol 2021; 87:AEM.03153-20. [PMID: 33712431 DOI: 10.1128/aem.03153-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/02/2021] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli [2Fe-2S]-ferredoxin and other ISC proteins encoded by the iscRSUA-hscBA-fdx-iscX (isc) operon are responsible for the assembly of iron-sulfur clusters. It is proposed that ferredoxin (Fdx) donates electrons from its reduced [2Fe-2S] center to iron-sulfur cluster biogenesis reactions. However, the underlying mechanisms of the [2Fe-2S] cluster assembly in Fdx remain elusive. Here, we report that Fdx preferentially binds iron, but not the [2Fe-2S] cluster, under cold stress conditions (≤16°C). The iron binding in Fdx is characterized by a unique absorption peak at 320 nm based on UV-visible spectroscopy. In addition, the iron-binding form of Fdx could be converted to the [2Fe-2S] cluster-bound form after transferring cold-stressed cells to normal cultivation temperatures above 25°C. In vitro experiments also revealed that Fdx could utilize bound iron to assemble the [2Fe-2S] cluster by itself. Furthermore, inactivation of the genes encoding IscS, IscU, and IscA did not limit [2Fe-2S] cluster assembly in Fdx, which was also observed by inactivating the isc or suf operon, indicating that iron-sulfur cluster biogenesis in Fdx arose from a unique pathway in E. coli Our results suggest that the intracellular assembly of [2Fe-2S] clusters in Fdx is susceptible to environmental temperatures. The iron binding form of Fdx (Fe-Fdx) is a precursor during its maturation to a cluster binding form ([2Fe-2S]-Fdx), and reassembly of the [2Fe-2S] clusters during temperature increases is not strictly reliant on other specific iron donors and scaffold proteins within the Isc or Suf system.IMPORTANCE Fdx is an electron carrier that is required for the maturation of many other iron-sulfur proteins. Its function strictly depends on its [2Fe-2S] center that bonds with the cysteinyl S atoms of four cysteine residues within Fdx. However, the assembly mechanism of the [2Fe-2S] clusters in Fdx remains controversial. This study reports that Fdx fails to form its [2Fe-2S] cluster under cold stress conditions but instead binds a single Fe atom at the cluster binding site. Moreover, when temperatures increase, Fdx can assemble clusters by itself from its iron-only binding form in E. coli cells. The possibility remains that Fdx can effectively accept clusters from multiple sources. Nevertheless, our results suggest that Fdx has a strong iron binding activity that contributes to the assembly of its own [2Fe-2S] cluster and that Fdx acts as a temperature sensor to regulate Isc system-mediated iron-sulfur cluster biogenesis.
Collapse
|
25
|
Przybyla-Toscano J, Christ L, Keech O, Rouhier N. Iron-sulfur proteins in plant mitochondria: roles and maturation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2014-2044. [PMID: 33301571 DOI: 10.1093/jxb/eraa578] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/05/2020] [Indexed: 05/22/2023]
Abstract
Iron-sulfur (Fe-S) clusters are prosthetic groups ensuring electron transfer reactions, activating substrates for catalytic reactions, providing sulfur atoms for the biosynthesis of vitamins or other cofactors, or having protein-stabilizing effects. Hence, metalloproteins containing these cofactors are essential for numerous and diverse metabolic pathways and cellular processes occurring in the cytoplasm. Mitochondria are organelles where the Fe-S cluster demand is high, notably because the activity of the respiratory chain complexes I, II, and III relies on the correct assembly and functioning of Fe-S proteins. Several other proteins or complexes present in the matrix require Fe-S clusters as well, or depend either on Fe-S proteins such as ferredoxins or on cofactors such as lipoic acid or biotin whose synthesis relies on Fe-S proteins. In this review, we have listed and discussed the Fe-S-dependent enzymes or pathways in plant mitochondria including some potentially novel Fe-S proteins identified based on in silico analysis or on recent evidence obtained in non-plant organisms. We also provide information about recent developments concerning the molecular mechanisms involved in Fe-S cluster synthesis and trafficking steps of these cofactors from maturation factors to client apoproteins.
Collapse
Affiliation(s)
- Jonathan Przybyla-Toscano
- Université de Lorraine, INRAE, IAM, Nancy, France
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Loïck Christ
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | | |
Collapse
|
26
|
Lehrke MJ, Shapiro MJ, Rajcula MJ, Kennedy MM, McCue SA, Medina KL, Shapiro VS. The mitochondrial iron transporter ABCB7 is required for B cell development, proliferation, and class switch recombination in mice. eLife 2021; 10:69621. [PMID: 34762046 PMCID: PMC8585479 DOI: 10.7554/elife.69621] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are cofactors essential for the activity of numerous enzymes including DNA polymerases, helicases, and glycosylases. They are synthesized in the mitochondria as Fe-S intermediates and are exported to the cytoplasm for maturation by the mitochondrial transporter ABCB7. Here, we demonstrate that ABCB7 is required for bone marrow B cell development, proliferation, and class switch recombination, but is dispensable for peripheral B cell homeostasis in mice. Conditional deletion of ABCB7 using Mb1-cre resulted in a severe block in bone marrow B cell development at the pro-B cell stage. The loss of ABCB7 did not alter expression of transcription factors required for B cell specification or commitment. While increased intracellular iron was observed in ABCB7-deficient pro-B cells, this did not lead to increased cellular or mitochondrial reactive oxygen species, ferroptosis, or apoptosis. Interestingly, loss of ABCB7 led to replication-induced DNA damage in pro-B cells, independent of VDJ recombination, and these cells had evidence of slowed DNA replication. Stimulated ABCB7-deficient splenic B cells from CD23-cre mice also had a striking loss of proliferation and a defect in class switching. Thus, ABCB7 is essential for early B cell development, proliferation, and class switch recombination.
Collapse
Affiliation(s)
| | | | | | | | | | - Kay L Medina
- Department of Immunology, Mayo ClinicRochesterUnited States
| | | |
Collapse
|
27
|
Abstract
Iron–sulfur (Fe–S) clusters are protein cofactors of a multitude of enzymes performing essential biological functions. Specialized multi-protein machineries present in all types of organisms support their biosynthesis. These machineries encompass a scaffold protein on which Fe–S clusters are assembled and a cysteine desulfurase that provides sulfur in the form of a persulfide. The sulfide ions are produced by reductive cleavage of the persulfide, which involves specific reductase systems. Several other components are required for Fe–S biosynthesis, including frataxin, a key protein of controversial function and accessory components for insertion of Fe–S clusters in client proteins. Fe–S cluster biosynthesis is thought to rely on concerted and carefully orchestrated processes. However, the elucidation of the mechanisms of their assembly has remained a challenging task due to the biochemical versatility of iron and sulfur and the relative instability of Fe–S clusters. Nonetheless, significant progresses have been achieved in the past years, using biochemical, spectroscopic and structural approaches with reconstituted system in vitro. In this paper, we review the most recent advances on the mechanism of assembly for the founding member of the Fe–S cluster family, the [2Fe2S] cluster that is the building block of all other Fe–S clusters. The aim is to provide a survey of the mechanisms of iron and sulfur insertion in the scaffold proteins by examining how these processes are coordinated, how sulfide is produced and how the dinuclear [2Fe2S] cluster is formed, keeping in mind the question of the physiological relevance of the reconstituted systems. We also cover the latest outcomes on the functional role of the controversial frataxin protein in Fe–S cluster biosynthesis.
Collapse
|
28
|
Kayama M, Chen JF, Nakada T, Nishimura Y, Shikanai T, Azuma T, Miyashita H, Takaichi S, Kashiyama Y, Kamikawa R. A non-photosynthetic green alga illuminates the reductive evolution of plastid electron transport systems. BMC Biol 2020; 18:126. [PMID: 32938439 PMCID: PMC7495860 DOI: 10.1186/s12915-020-00853-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/21/2020] [Indexed: 11/12/2022] Open
Abstract
Background Plastid electron transport systems are essential not only for photosynthesis but also for dissipating excess reducing power and sinking excess electrons generated by various redox reactions. Although numerous organisms with plastids have lost their photoautotrophic lifestyles, there is a spectrum of known functions of remnant plastids in non-photosynthetic algal/plant lineages; some of non-photosynthetic plastids still retain diverse metabolic pathways involving redox reactions while others, such as apicoplasts of apicomplexan parasites, possess highly reduced sets of functions. However, little is known about underlying mechanisms for redox homeostasis in functionally versatile non-photosynthetic plastids and thus about the reductive evolution of plastid electron transport systems. Results Here we demonstrated that the central component for plastid electron transport systems, plastoquinone/plastoquinol pool, is still retained in a novel strain of an obligate heterotrophic green alga lacking the photosynthesis-related thylakoid membrane complexes. Microscopic and genome analyses revealed that the Volvocales green alga, chlamydomonad sp. strain NrCl902, has non-photosynthetic plastids and a plastid DNA that carries no genes for the photosynthetic electron transport system. Transcriptome-based in silico prediction of the metabolic map followed by liquid chromatography analyses demonstrated carotenoid and plastoquinol synthesis, but no trace of chlorophyll pigments in the non-photosynthetic green alga. Transient RNA interference knockdown leads to suppression of plastoquinone/plastoquinol synthesis. The alga appears to possess genes for an electron sink system mediated by plastid terminal oxidase, plastoquinone/plastoquinol, and type II NADH dehydrogenase. Other non-photosynthetic algae/land plants also possess key genes for this system, suggesting a broad distribution of an electron sink system in non-photosynthetic plastids. Conclusion The plastoquinone/plastoquinol pool and thus the involved electron transport systems reported herein might be retained for redox homeostasis and might represent an intermediate step towards a more reduced set of the electron transport system in many non-photosynthetic plastids. Our findings illuminate a broadly distributed but previously hidden step of reductive evolution of plastid electron transport systems after the loss of photosynthesis.
Collapse
Affiliation(s)
- Motoki Kayama
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, 606-8501, Japan
| | - Jun-Feng Chen
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, 606-8501, Japan
| | - Takashi Nakada
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | | | | | - Tomonori Azuma
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, 606-8501, Japan
| | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, 606-8501, Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Yuichiro Kashiyama
- Graduate School of Engineering, Fukui University of Technology, Fukui, Japan
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, 606-8501, Japan. .,Graduate School of Agriculture, Kyoto University, Kitashirakawa oiwake cho, Sakyo ku, Kyoto, Kyoto, 606-8502, Japan.
| |
Collapse
|
29
|
Mitochondrial [4Fe-4S] protein assembly involves reductive [2Fe-2S] cluster fusion on ISCA1-ISCA2 by electron flow from ferredoxin FDX2. Proc Natl Acad Sci U S A 2020; 117:20555-20565. [PMID: 32817474 DOI: 10.1073/pnas.2003982117] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The essential process of iron-sulfur (Fe/S) cluster assembly (ISC) in mitochondria occurs in three major phases. First, [2Fe-2S] clusters are synthesized on the scaffold protein ISCU2; second, these clusters are transferred to the monothiol glutaredoxin GLRX5 by an Hsp70 system followed by insertion into [2Fe-2S] apoproteins; third, [4Fe-4S] clusters are formed involving the ISC proteins ISCA1-ISCA2-IBA57 followed by target-specific apoprotein insertion. The third phase is poorly characterized biochemically, because previous in vitro assembly reactions involved artificial reductants and lacked at least one of the in vivo-identified ISC components. Here, we reconstituted the maturation of mitochondrial [4Fe-4S] aconitase without artificial reductants and verified the [2Fe-2S]-containing GLRX5 as cluster donor. The process required all components known from in vivo studies (i.e., ISCA1-ISCA2-IBA57), yet surprisingly also depended on mitochondrial ferredoxin FDX2 and its NADPH-coupled reductase FDXR. Electrons from FDX2 catalyze the reductive [2Fe-2S] cluster fusion on ISCA1-ISCA2 in an IBA57-dependent fashion. This previously unidentified electron transfer was occluded during previous in vivo studies due to the earlier FDX2 requirement for [2Fe-2S] cluster synthesis on ISCU2. The FDX2 function is specific, because neither FDX1, a mitochondrial ferredoxin involved in steroid production, nor other cellular reducing systems, supported maturation. In contrast to ISC factor-assisted [4Fe-4S] protein assembly, [2Fe-2S] cluster transfer from GLRX5 to [2Fe-2S] apoproteins occurred spontaneously within seconds, clearly distinguishing the mechanisms of [2Fe-2S] and [4Fe-4S] protein maturation. Our study defines the physiologically relevant mechanistic action of late-acting ISC factors in mitochondrial [4Fe-4S] cluster synthesis, trafficking, and apoprotein insertion.
Collapse
|
30
|
The Requirement of Inorganic Fe-S Clusters for the Biosynthesis of the Organometallic Molybdenum Cofactor. INORGANICS 2020. [DOI: 10.3390/inorganics8070043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Iron-sulfur (Fe-S) clusters are essential protein cofactors. In enzymes, they are present either in the rhombic [2Fe-2S] or the cubic [4Fe-4S] form, where they are involved in catalysis and electron transfer and in the biosynthesis of metal-containing prosthetic groups like the molybdenum cofactor (Moco). Here, we give an overview of the assembly of Fe-S clusters in bacteria and humans and present their connection to the Moco biosynthesis pathway. In all organisms, Fe-S cluster assembly starts with the abstraction of sulfur from l-cysteine and its transfer to a scaffold protein. After formation, Fe-S clusters are transferred to carrier proteins that insert them into recipient apo-proteins. In eukaryotes like humans and plants, Fe-S cluster assembly takes place both in mitochondria and in the cytosol. Both Moco biosynthesis and Fe-S cluster assembly are highly conserved among all kingdoms of life. Moco is a tricyclic pterin compound with molybdenum coordinated through its unique dithiolene group. Moco biosynthesis begins in the mitochondria in a Fe-S cluster dependent step involving radical/S-adenosylmethionine (SAM) chemistry. An intermediate is transferred to the cytosol where the dithiolene group is formed, to which molybdenum is finally added. Further connections between Fe-S cluster assembly and Moco biosynthesis are discussed in detail.
Collapse
|
31
|
Abstract
Mitochondria are essential in most eukaryotes and are involved in numerous biological functions including ATP production, cofactor biosyntheses, apoptosis, lipid synthesis, and steroid metabolism. Work over the past two decades has uncovered the biogenesis of cellular iron-sulfur (Fe/S) proteins as the essential and minimal function of mitochondria. This process is catalyzed by the bacteria-derived iron-sulfur cluster assembly (ISC) machinery and has been dissected into three major steps: de novo synthesis of a [2Fe-2S] cluster on a scaffold protein; Hsp70 chaperone-mediated trafficking of the cluster and insertion into [2Fe-2S] target apoproteins; and catalytic conversion of the [2Fe-2S] into a [4Fe-4S] cluster and subsequent insertion into recipient apoproteins. ISC components of the first two steps are also required for biogenesis of numerous essential cytosolic and nuclear Fe/S proteins, explaining the essentiality of mitochondria. This review summarizes the molecular mechanisms underlying the ISC protein-mediated maturation of mitochondrial Fe/S proteins and the importance for human disease.
Collapse
Affiliation(s)
- Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany;
- SYNMIKRO Zentrum für synthetische Mikrobiologie, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Sven-A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany;
| |
Collapse
|
32
|
Baussier C, Fakroun S, Aubert C, Dubrac S, Mandin P, Py B, Barras F. Making iron-sulfur cluster: structure, regulation and evolution of the bacterial ISC system. Adv Microb Physiol 2020; 76:1-39. [PMID: 32408945 DOI: 10.1016/bs.ampbs.2020.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iron sulfur (Fe-S) clusters rank among the most ancient and conserved prosthetic groups. Fe-S clusters containing proteins are present in most, if not all, organisms. Fe-S clusters containing proteins are involved in a wide range of cellular processes, from gene regulation to central metabolism, via gene expression, RNA modification or bioenergetics. Fe-S clusters are built by biogenesis machineries conserved throughout both prokaryotes and eukaryotes. We focus mostly on bacterial ISC machinery, but not exclusively, as we refer to eukaryotic ISC system when it brings significant complementary information. Besides covering the structural and regulatory aspects of Fe-S biogenesis, this review aims to highlight Fe-S biogenesis facets remaining matters of discussion, such as the role of frataxin, or the link between fatty acid metabolism and Fe-S homeostasis. Last, we discuss recent advances on strategies used by different species to make and use Fe-S clusters in changing redox environmental conditions.
Collapse
Affiliation(s)
- Corentin Baussier
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Soufyan Fakroun
- Stress Adaptation and Metabolism Unit, Department of Microbiology, Institut Pasteur, Paris, France; ERL CNRS 6002, CNRS, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Corinne Aubert
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Sarah Dubrac
- Stress Adaptation and Metabolism Unit, Department of Microbiology, Institut Pasteur, Paris, France; ERL CNRS 6002, CNRS, Paris, France
| | - Pierre Mandin
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Béatrice Py
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Frédéric Barras
- Stress Adaptation and Metabolism Unit, Department of Microbiology, Institut Pasteur, Paris, France; ERL CNRS 6002, CNRS, Paris, France
| |
Collapse
|
33
|
Lin CW, McCabe JW, Russell DH, Barondeau DP. Molecular Mechanism of ISC Iron-Sulfur Cluster Biogenesis Revealed by High-Resolution Native Mass Spectrometry. J Am Chem Soc 2020; 142:6018-6029. [PMID: 32131593 DOI: 10.1021/jacs.9b11454] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Iron-sulfur (Fe-S) clusters are ubiquitous protein cofactors that are required for many important biological processes including oxidative respiration, nitrogen fixation, and photosynthesis. Biosynthetic pathways assemble Fe-S clusters with different iron-to-sulfur stoichiometries and distribute these clusters to appropriate apoproteins. In the ISC pathway, the pyridoxal 5'-phosphate-dependent cysteine desulfurase enzyme IscS provides sulfur to the scaffold protein IscU, which templates the Fe-S cluster assembly. Despite their functional importance, mechanistic details for cluster synthesis have remained elusive. Recent advances in native mass spectrometry (MS) have allowed proteins to be preserved in native-like structures and support applications in the investigation of protein structure, dynamics, ligand interactions, and the identification of protein-associated intermediates. Here, we prepared samples under anaerobic conditions and then applied native MS to investigate the molecular mechanism for Fe-S cluster synthesis. This approach was validated by the high agreement between native MS and traditional visible circular dichroism spectroscopic assays. Time-dependent native MS experiments revealed potential iron- and sulfur-based intermediates that decay as the [2Fe-2S] cluster signal developed. Additional experiments establish that (i) Zn(II) binding stabilizes IscU and protects the cysteine residues from oxidation, weakens the interactions between IscU and IscS, and inhibits Fe-S cluster biosynthesis; and (ii) Fe(II) ions bind to the IscU active site cysteine residues and another lower affinity binding site and promote the intermolecular sulfur transfer reaction from IscS to IscU. Overall, these results support an iron-first model for Fe-S cluster synthesis and highlight the power of native MS in defining protein-associated intermediates and elucidating mechanistic details of enzymatic processes.
Collapse
Affiliation(s)
- Cheng-Wei Lin
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - David P Barondeau
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
34
|
Gervason S, Larkem D, Mansour AB, Botzanowski T, Müller CS, Pecqueur L, Le Pavec G, Delaunay-Moisan A, Brun O, Agramunt J, Grandas A, Fontecave M, Schünemann V, Cianférani S, Sizun C, Tolédano MB, D'Autréaux B. Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin. Nat Commun 2019; 10:3566. [PMID: 31395877 PMCID: PMC6687725 DOI: 10.1038/s41467-019-11470-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are essential protein cofactors whose biosynthetic defects lead to severe diseases among which is Friedreich's ataxia caused by impaired expression of frataxin (FXN). Fe-S clusters are biosynthesized on the scaffold protein ISCU, with cysteine desulfurase NFS1 providing sulfur as persulfide and ferredoxin FDX2 supplying electrons, in a process stimulated by FXN but not clearly understood. Here, we report the breakdown of this process, made possible by removing a zinc ion in ISCU that hinders iron insertion and promotes non-physiological Fe-S cluster synthesis from free sulfide in vitro. By binding zinc-free ISCU, iron drives persulfide uptake from NFS1 and allows persulfide reduction into sulfide by FDX2, thereby coordinating sulfide production with its availability to generate Fe-S clusters. FXN stimulates the whole process by accelerating persulfide transfer. We propose that this reconstitution recapitulates physiological conditions which provides a model for Fe-S cluster biosynthesis, clarifies the roles of FDX2 and FXN and may help develop Friedreich's ataxia therapies.
Collapse
Affiliation(s)
- Sylvain Gervason
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Djabir Larkem
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Amir Ben Mansour
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| | - Christina S Müller
- Fachbreich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 56, 67663, Kaiserslautern, Germany
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR 8229, PSL Research University, 11 place Marcelin Berthelot, 75005, Paris, France
| | - Gwenaelle Le Pavec
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Agnès Delaunay-Moisan
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Omar Brun
- Departament de Química Orgànica i IBUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, E-08028, Barcelona, Spain
| | - Jordi Agramunt
- Departament de Química Orgànica i IBUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, E-08028, Barcelona, Spain
| | - Anna Grandas
- Departament de Química Orgànica i IBUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, E-08028, Barcelona, Spain
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR 8229, PSL Research University, 11 place Marcelin Berthelot, 75005, Paris, France
| | - Volker Schünemann
- Fachbreich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 56, 67663, Kaiserslautern, Germany
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190, Gif-sur-Yvette, France
| | - Michel B Tolédano
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Benoit D'Autréaux
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| |
Collapse
|
35
|
Zhang Y, Feng X, Zhang J, Chen M, Huang E, Chen X. Iron regulatory protein 2 is a suppressor of mutant p53 in tumorigenesis. Oncogene 2019; 38:6256-6269. [PMID: 31332290 DOI: 10.1038/s41388-019-0876-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 01/20/2023]
Abstract
p53 is known to play a role in iron homeostasis and is required for FDXR-mediated iron metabolism via iron regulatory protein 2 (IRP2). Interestingly, p53 is frequently mutated in tumors wherein iron is often accumulated, suggesting that mutant p53 may exert its gain of function by altering iron metabolism. In this study, we found that FDXR deficiency decreased mutant p53 expression along with altered iron metabolism in p53R270H/- MEFs and cancer cells carrying mutant p53. Consistently, we found that decreased expression of mutant p53 by FDXR deficiency inhibited mutant p53-R270H to induce carcinoma and high grade pleomorphic sarcoma in FDXR+/-; p53R270H/- mice as compared with p53R270H/- mice. Moreover, we found that like its effect on wild-type p53, loss of IRP2 increased mutant p53 expression. However, unlike its effect to suppress cell growth in cells carrying wild-type p53, loss of IRP2 promoted cell growth in cancer cells expressing mutant p53. Finally, we found that ectopic expression of IRP2 suppressed cell growth in a mutant p53-dependent manner. Together, our data indicate that mutant p53 gain-of-function can be suppressed by IRP2 and FDXR deficiency, both of which may be explored to target tumors carrying mutant p53.
Collapse
Affiliation(s)
- Yanhong Zhang
- Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California at Davis, Davis, CA, 95616, USA
| | - Xiuli Feng
- Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California at Davis, Davis, CA, 95616, USA.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California at Davis, Davis, CA, 95616, USA
| | - Minyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Eric Huang
- Department of Pathology, University of Washington, Seattle, WA, 98104, USA
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California at Davis, Davis, CA, 95616, USA.
| |
Collapse
|
36
|
Alfadhel M, Nashabat M, Abu Ali Q, Hundallah K. Mitochondrial iron-sulfur cluster biogenesis from molecular understanding to clinical disease. ACTA ACUST UNITED AC 2019; 22:4-13. [PMID: 28064324 PMCID: PMC5726836 DOI: 10.17712/nsj.2017.1.20160542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Iron–sulfur clusters (ISCs) are known to play a major role in various protein functions. Located in the mitochondria, cytosol, endoplasmic reticulum and nucleus, they contribute to various core cellular functions. Until recently, only a few human diseases related to mitochondrial ISC biogenesis defects have been described. Such diseases include Friedreich ataxia, combined oxidative phosphorylation deficiency 19, infantile complex II/III deficiency defect, hereditary myopathy with lactic acidosis and mitochondrial muscle myopathy, lipoic acid biosynthesis defects, multiple mitochondrial dysfunctions syndromes and non ketotic hyperglycinemia due to glutaredoxin 5 gene defect. Disorders of mitochondrial import, export and translation, including sideroblastic anemia with ataxia, EVEN-PLUS syndrome and mitochondrial complex I deficiency due to nucleotide-binding protein-like protein gene defect, have also been implicated in ISC biogenesis defects. With advances in next generation sequencing technologies, more disorders related to ISC biogenesis defects are expected to be elucidated. In this article, we aim to shed the light on mitochondrial ISC biogenesis, related proteins and their function, pathophysiology, clinical phenotypes of related disorders, diagnostic approach, and future implications.
Collapse
Affiliation(s)
- Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Kingdom of Saudi Arabia
| | | | | | | |
Collapse
|
37
|
Malina C, Larsson C, Nielsen J. Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology. FEMS Yeast Res 2019; 18:4969682. [PMID: 29788060 DOI: 10.1093/femsyr/foy040] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/10/2018] [Indexed: 12/29/2022] Open
Abstract
Mitochondria are dynamic organelles of endosymbiotic origin that are essential components of eukaryal cells. They contain their own genetic machinery, have multicopy genomes and like their bacterial ancestors they consist of two membranes. However, the majority of the ancestral genome has been lost or transferred to the nuclear genome of the host, preserving only a core set of genes involved in oxidative phosphorylation. Mitochondria perform numerous biological tasks ranging from bioenergetics to production of protein co-factors, including heme and iron-sulfur clusters. Due to the importance of mitochondria in many cellular processes, mitochondrial dysfunction is implicated in a wide variety of human disorders. Much of our current knowledge on mitochondrial function and dysfunction comes from studies using Saccharomyces cerevisiae. This yeast has good fermenting capacity, rendering tolerance to mutations that inactivate oxidative phosphorylation and complete loss of mitochondrial DNA. Here, we review yeast mitochondrial metabolism and function with focus on S. cerevisiae and its contribution in understanding mitochondrial biology. We further review how systems biology studies, including mathematical modeling, has allowed gaining new insight into mitochondrial function, and argue that this approach may enable us to gain a holistic view on how mitochondrial function interacts with different cellular processes.
Collapse
Affiliation(s)
- Carl Malina
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.,Wallenberg Center for Protein Research, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Christer Larsson
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.,Wallenberg Center for Protein Research, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
38
|
Zheng C, Guo S, Tennant WG, Pradhan PK, Black KA, Dos Santos PC. The Thioredoxin System Reduces Protein Persulfide Intermediates Formed during the Synthesis of Thio-Cofactors in Bacillus subtilis. Biochemistry 2019; 58:1892-1904. [PMID: 30855939 DOI: 10.1021/acs.biochem.9b00045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The biosynthesis of Fe-S clusters and other thio-cofactors requires the participation of redox agents. A shared feature in these pathways is the formation of transient protein persulfides, which are susceptible to reduction by artificial reducing agents commonly used in reactions in vitro. These agents modulate the reactivity and catalytic efficiency of biosynthetic reactions and, in some cases, skew the enzymes' kinetic behavior, bypassing sulfur acceptors known to be critical for the functionality of these pathways in vivo. Here, we provide kinetic evidence for the selective reactivity of the Bacillus subtilis Trx (thioredoxin) system toward protein-bound persulfide intermediates. Our results demonstrate that the redox flux of the Trx system modulates the rate of sulfide production in cysteine desulfurase assays. Likewise, the activity of the Trx system is dependent on the rate of persulfide formation, suggesting the occurrence of coupled reaction schemes between both enzymatic systems in vitro. Inactivation of TrxA (thioredoxin) or TrxR (thioredoxin reductase) impairs the activity of Fe-S enzymes in B. subtilis, indicating the involvement of the Trx system in Fe-S cluster metabolism. Surprisingly, biochemical characterization of TrxA reveals that this enzyme is able to coordinate Fe-S species, resulting in the loss of its reductase activity. The inactivation of TrxA through the coordination of a labile cluster, combined with its proposed role as a physiological reducing agent in sulfur transfer pathways, suggests a model for redox regulation. These findings provide a potential link between redox regulation and Fe-S metabolism.
Collapse
Affiliation(s)
- Chenkang Zheng
- Department of Chemistry , Wake Forest University , Winston-Salem , North Carolina 27106 , United States
| | - Selina Guo
- Department of Chemistry , Wake Forest University , Winston-Salem , North Carolina 27106 , United States
| | - William G Tennant
- Department of Chemistry , Wake Forest University , Winston-Salem , North Carolina 27106 , United States
| | - Pradyumna K Pradhan
- Department of Chemistry , Wake Forest University , Winston-Salem , North Carolina 27106 , United States.,Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina 27412 , United States
| | - Katherine A Black
- Department of Chemistry , Wake Forest University , Winston-Salem , North Carolina 27106 , United States.,Department of Medicine , Weill Cornell Medicine , New York , New York 10065 , United States
| | - Patricia C Dos Santos
- Department of Chemistry , Wake Forest University , Winston-Salem , North Carolina 27106 , United States
| |
Collapse
|
39
|
Ciofi-Baffoni S, Nasta V, Banci L. Protein networks in the maturation of human iron-sulfur proteins. Metallomics 2019; 10:49-72. [PMID: 29219157 DOI: 10.1039/c7mt00269f] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The biogenesis of iron-sulfur (Fe-S) proteins in humans is a multistage process occurring in different cellular compartments. The mitochondrial iron-sulfur cluster (ISC) assembly machinery composed of at least 17 proteins assembles mitochondrial Fe-S proteins. A cytosolic iron-sulfur assembly (CIA) machinery composed of at least 13 proteins has been more recently identified and shown to be responsible for the Fe-S cluster incorporation into cytosolic and nuclear Fe-S proteins. Cytosolic and nuclear Fe-S protein maturation requires not only the CIA machinery, but also the components of the mitochondrial ISC assembly machinery. An ISC export machinery, composed of a protein transporter located in the mitochondrial inner membrane, has been proposed to act in mediating the export process of a still unknown component that is required for the CIA machinery. Several functional and molecular aspects of the protein networks operative in the three machineries are still largely obscure. This Review focuses on the Fe-S protein maturation processes in humans with the specific aim of providing a molecular picture of the currently known protein-protein interaction networks. The human ISC and CIA machineries are presented, and the ISC export machinery is discussed with respect to possible molecules being the substrates of the mitochondrial protein transporter.
Collapse
Affiliation(s)
- Simone Ciofi-Baffoni
- Magnetic Resonance Center-CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy.
| | | | | |
Collapse
|
40
|
Olive JA, Cowan JA. Role of the HSPA9/HSC20 chaperone pair in promoting directional human iron-sulfur cluster exchange involving monothiol glutaredoxin 5. J Inorg Biochem 2018; 184:100-107. [PMID: 29689452 DOI: 10.1016/j.jinorgbio.2018.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
Abstract
Iron‑sulfur clusters are essential cofactors found across all domains of life. Their assembly and transfer are accomplished by highly conserved protein complexes and partners. In eukaryotes a [2Fe-2S] cluster is first assembled in the mitochondria on the iron‑sulfur cluster scaffold protein ISCU in tandem with iron, sulfide, and electron donors. Current models suggest that a chaperone pair interacts with a cluster-bound ISCU to facilitate cluster transfer to a monothiol glutaredoxin. In humans this protein is glutaredoxin 5 (GLRX5) and the cluster can then be exchanged with a variety of target apo proteins. By use of circular dichroism spectroscopy, the kinetics of cluster exchange reactivity has been evaluated for human GLRX5 with a variety of cluster donor and acceptor partners, and the role of chaperones determined for several of these. In contrast to the prokaryotic model, where heat-shock type chaperone proteins HscA and HscB are required for successful and efficient transfer of a [2Fe-2S] cluster from the ISCU scaffold to a monothiol glutaredoxin. However, in the human system the chaperone homologs, HSPA9 and HSC20, are not necessary for human ISCU to promote cluster transfer to GLRX5, and appear to promote the reverse transfer. Cluster exchange with the human iron‑sulfur cluster carrier protein NFU1 and ferredoxins (FDX's), and the role of chaperones, has also been evaluated, demonstrating in certain cases control over the directionality of cluster transfer. In contrast to other prokaryotic and eukaryotic organisms, NFU1 is identified as a more likely physiological donor of [2Fe-2S] cluster to human GLRX5 than ISCU.
Collapse
Affiliation(s)
- Joshua A Olive
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, United States
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, United States.
| |
Collapse
|
41
|
Böttinger L, Mårtensson CU, Song J, Zufall N, Wiedemann N, Becker T. Respiratory chain supercomplexes associate with the cysteine desulfurase complex of the iron-sulfur cluster assembly machinery. Mol Biol Cell 2018; 29:776-785. [PMID: 29386296 PMCID: PMC5905291 DOI: 10.1091/mbc.e17-09-0555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial cytochrome bc1 complex and cytochrome c oxidase associate in respiratory chain supercomplexes. We identified a specific association of the iron–sulfur cluster biogenesis desulfurase with the respiratory chain supercomplexes. Our finding reveals a novel link between respiration and iron–sulfur cluster formation. Mitochondria are the powerhouses of eukaryotic cells. The activity of the respiratory chain complexes generates a proton gradient across the inner membrane, which is used by the F1FO-ATP synthase to produce ATP for cellular metabolism. In baker’s yeast, Saccharomyces cerevisiae, the cytochrome bc1 complex (complex III) and cytochrome c oxidase (complex IV) associate in respiratory chain supercomplexes. Iron–sulfur clusters (ISC) form reactive centers of respiratory chain complexes. The assembly of ISC occurs in the mitochondrial matrix and is essential for cell viability. The cysteine desulfurase Nfs1 provides sulfur for ISC assembly and forms with partner proteins the ISC-biogenesis desulfurase complex (ISD complex). Here, we report an unexpected interaction of the active ISD complex with the cytochrome bc1 complex and cytochrome c oxidase. The individual deletion of complex III or complex IV blocks the association of the ISD complex with respiratory chain components. We conclude that the ISD complex binds selectively to respiratory chain supercomplexes. We propose that this molecular link contributes to coordination of iron–sulfur cluster formation with respiratory activity.
Collapse
Affiliation(s)
- Lena Böttinger
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Christoph U Mårtensson
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Nicole Zufall
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
42
|
Freibert SA, Weiler BD, Bill E, Pierik AJ, Mühlenhoff U, Lill R. Biochemical Reconstitution and Spectroscopic Analysis of Iron-Sulfur Proteins. Methods Enzymol 2018; 599:197-226. [PMID: 29746240 DOI: 10.1016/bs.mie.2017.11.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Iron-sulfur (Fe/S) proteins are involved in numerous key biological functions such as respiration, metabolic processes, protein translation, DNA synthesis, and DNA repair. The simplest types of Fe/S clusters include [2Fe-2S], [3Fe-4S], and [4Fe-4S] forms that sometimes are present in multiple copies. De novo assembly of Fe/S cofactors and their insertion into apoproteins in living cells requires complex proteinaceous machineries that are frequently highly conserved. In eukaryotes such as yeast and mammals, the mitochondrial iron-sulfur cluster assembly machinery and the cytosolic iron-sulfur protein assembly system consist of more than 30 components that cooperate in the generation of some 50 cellular Fe/S proteins. Both the mechanistic dissection of the intracellular Fe/S protein assembly pathways and the identification and characterization of Fe/S proteins rely on tool boxes of in vitro and in vivo methods. These cell biological, biochemical, and biophysical techniques help to determine the extent, stability, and type of bound Fe/S cluster. They also serve to distinguish bona fide Fe/S proteins from other metal-binding proteins containing similar cofactor coordination motifs. Here, we present a collection of in vitro methods that have proven useful for basic biochemical and biophysical characterization of Fe/S proteins. First, we describe the chemical assembly of [2Fe-2S] or [4Fe-4S] clusters on purified apoproteins. Then, we summarize a reconstitution system reproducing the de novo synthesis of a [2Fe-2S] cluster in mitochondria. Finally, we explain the use of UV-vis, CD, electron paramagnetic resonance, and Mössbauer spectroscopy for the routine characterization of Fe/S proteins.
Collapse
Affiliation(s)
| | | | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr, Germany
| | - Antonio J Pierik
- Chemistry and Biochemistry, Technical University of Kaiserlautern, Kaiserlautern, Germany
| | | | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität, Marburg, Germany; LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Marburg, Germany.
| |
Collapse
|
43
|
Stehling O, Paul VD, Bergmann J, Basu S, Lill R. Biochemical Analyses of Human Iron–Sulfur Protein Biogenesis and of Related Diseases. Methods Enzymol 2018; 599:227-263. [DOI: 10.1016/bs.mie.2017.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Abstract
Iron-sulfur clusters (Fe/S clusters) are essential cofactors required throughout the clades of biology for performing a myriad of unique functions including nitrogen fixation, ribosome assembly, DNA repair, mitochondrial respiration, and metabolite catabolism. Although Fe/S clusters can be synthesized in vitro and transferred to a client protein without enzymatic assistance, biology has evolved intricate mechanisms to assemble and transfer Fe/S clusters within the cellular environment. In eukaryotes, the foundation of all cellular clusters starts within the mitochondria. The focus of this review is to detail the mitochondrial Fe/S biogenesis (ISC) pathway along with the Fe/S cluster transfer steps necessary to mature Fe/S proteins. New advances in our understanding of the mitochondrial Fe/S biogenesis machinery will be highlighted. Additionally, we will address various experimental approaches that have been successful in the identification and characterization of components of the ISC pathway.
Collapse
Affiliation(s)
- Andrew Melber
- University of Utah Health Sciences Center, Salt Lake City, Utah, United States
| | - Dennis R Winge
- University of Utah Health Sciences Center, Salt Lake City, Utah, United States.
| |
Collapse
|
45
|
Dutkiewicz R, Nowak M. Molecular chaperones involved in mitochondrial iron-sulfur protein biogenesis. J Biol Inorg Chem 2017; 23:569-579. [PMID: 29124426 PMCID: PMC6006194 DOI: 10.1007/s00775-017-1504-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/28/2017] [Indexed: 12/16/2022]
Abstract
Iron-sulfur (FeS) clusters are prosthetic groups critical for the function of many proteins in all domains of life. FeS proteins function in processes ranging from oxidative phosphorylation and cofactor biosyntheses to DNA/RNA metabolism and regulation of gene expression. In eukaryotic cells, mitochondria play a central role in the process of FeS biogenesis and support maturation of FeS proteins localized within mitochondria and in other cellular compartments. In humans, defects in mitochondrial FeS cluster biogenesis lead to numerous pathologies, which are often fatal. The generation of FeS clusters in mitochondria is a complex process. The [2Fe-2S] cluster is first assembled on a dedicated scaffold protein (Isu1) by the action of protein factors that interact with Isu1 to form the "assembly complex". Next, the FeS cluster is transferred onto a recipient apo-protein. Genetic and biochemical evidence implicates participation of a specialized J-protein co-chaperone Jac1 and its mitochondrial (mt)Hsp70 chaperone partner, and the glutaredoxin Grx5 in the FeS cluster transfer process. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Although a framework of protein components that are involved in the mitochondrial FeS cluster biogenesis has been established based on genetic and biochemical studies, detailed molecular mechanisms involved in this important and medically relevant process are not well understood. This review summarizes our molecular knowledge on chaperone proteins' functions during the FeS protein biogenesis.
Collapse
Affiliation(s)
- Rafal Dutkiewicz
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdańsk, Poland.
| | - Malgorzata Nowak
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdańsk, Poland
| |
Collapse
|
46
|
Tripathi SK, Xu T, Feng Q, Avula B, Shi X, Pan X, Mask MM, Baerson SR, Jacob MR, Ravu RR, Khan SI, Li XC, Khan IA, Clark AM, Agarwal AK. Two plant-derived aporphinoid alkaloids exert their antifungal activity by disrupting mitochondrial iron-sulfur cluster biosynthesis. J Biol Chem 2017; 292:16578-16593. [PMID: 28821607 PMCID: PMC5633121 DOI: 10.1074/jbc.m117.781773] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/15/2017] [Indexed: 11/06/2022] Open
Abstract
Eupolauridine and liriodenine are plant-derived aporphinoid alkaloids that exhibit potent inhibitory activity against the opportunistic fungal pathogens Candida albicans and Cryptococcus neoformans However, the molecular mechanism of this antifungal activity is unknown. In this study, we show that eupolauridine 9591 (E9591), a synthetic analog of eupolauridine, and liriodenine methiodide (LMT), a methiodide salt of liriodenine, mediate their antifungal activities by disrupting mitochondrial iron-sulfur (Fe-S) cluster synthesis. Several lines of evidence supported this conclusion. First, both E9591 and LMT elicited a transcriptional response indicative of iron imbalance, causing the induction of genes that are required for iron uptake and for the maintenance of cellular iron homeostasis. Second, a genome-wide fitness profile analysis showed that yeast mutants with deletions in iron homeostasis-related genes were hypersensitive to E9591 and LMT. Third, treatment of wild-type yeast cells with E9591 or LMT generated cellular defects that mimicked deficiencies in mitochondrial Fe-S cluster synthesis including an increase in mitochondrial iron levels, a decrease in the activities of Fe-S cluster enzymes, a decrease in respiratory function, and an increase in oxidative stress. Collectively, our results demonstrate that E9591 and LMT perturb mitochondrial Fe-S cluster biosynthesis; thus, these two compounds target a cellular pathway that is distinct from the pathways commonly targeted by clinically used antifungal drugs. Therefore, the identification of this pathway as a target for antifungal compounds has potential applications in the development of new antifungal therapies.
Collapse
Affiliation(s)
| | - Tao Xu
- From the National Center for Natural Products Research
| | - Qin Feng
- From the National Center for Natural Products Research
| | | | - Xiaomin Shi
- the Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, and
| | - Xuewen Pan
- the Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, and
| | - Melanie M Mask
- the United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677
| | - Scott R Baerson
- the United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677
| | | | | | - Shabana I Khan
- From the National Center for Natural Products Research
- the Divisions of Pharmacognosy and
| | - Xing-Cong Li
- From the National Center for Natural Products Research
- the Divisions of Pharmacognosy and
| | - Ikhlas A Khan
- From the National Center for Natural Products Research
- the Divisions of Pharmacognosy and
| | - Alice M Clark
- From the National Center for Natural Products Research
- the Divisions of Pharmacognosy and
| | - Ameeta K Agarwal
- From the National Center for Natural Products Research,
- Pharmacology, Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677
| |
Collapse
|
47
|
Vallières C, Holland SL, Avery SV. Mitochondrial Ferredoxin Determines Vulnerability of Cells to Copper Excess. Cell Chem Biol 2017; 24:1228-1237.e3. [PMID: 28867595 PMCID: PMC5654725 DOI: 10.1016/j.chembiol.2017.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 03/02/2017] [Accepted: 08/01/2017] [Indexed: 01/17/2023]
Abstract
The essential micronutrient copper is tightly regulated in organisms, as environmental exposure or homeostasis defects can cause toxicity and neurodegenerative disease. The principal target(s) of copper toxicity have not been pinpointed, but one key effect is impaired supply of iron-sulfur (FeS) clusters to the essential protein Rli1 (ABCE1). Here, to find upstream FeS biosynthesis/delivery protein(s) responsible for this, we compared copper sensitivity of yeast-overexpressing candidate targets. Overexpression of the mitochondrial ferredoxin Yah1 produced copper hyper-resistance. 55Fe turnover assays revealed that FeS integrity of Yah1 was particularly vulnerable to copper among the test proteins. Furthermore, destabilization of the FeS domain of Yah1 produced copper hypersensitivity, and YAH1 overexpression rescued Rli1 dysfunction. This copper-resistance function was conserved in the human ferredoxin, Fdx2. The data indicate that the essential mitochondrial ferredoxin is an important copper target, determining a tipping point where plentiful copper supply becomes excessive. This knowledge could help in tackling copper-related diseases.
Collapse
Affiliation(s)
- Cindy Vallières
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Sara L Holland
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
48
|
|
49
|
Zhang Y, Qian Y, Zhang J, Yan W, Jung YS, Chen M, Huang E, Lloyd K, Duan Y, Wang J, Liu G, Chen X. Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2. Genes Dev 2017; 31:1243-1256. [PMID: 28747430 PMCID: PMC5558926 DOI: 10.1101/gad.299388.117] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/26/2017] [Indexed: 01/20/2023]
Abstract
In this study, Chen and colleagues investigated the biological function of ferredoxin reductase (FDXR), a target of p53. They generated a Fdxr-deficient mouse model and found that the signal from FDXR to iron homeostasis and the p53 pathway was transduced by ferredoxin 2, a substrate of FDXR, and that p53 played a role in iron homeostasis and was required for FDXR-mediated iron metabolism, suggesting that the FDXR–p53 loop is critical for tumor suppression via iron homeostasis. Ferredoxin reductase (FDXR), a target of p53, modulates p53-dependent apoptosis and is necessary for steroidogenesis and biogenesis of iron–sulfur clusters. To determine the biological function of FDXR, we generated a Fdxr-deficient mouse model and found that loss of Fdxr led to embryonic lethality potentially due to iron overload in developing embryos. Interestingly, mice heterozygous in Fdxr had a short life span and were prone to spontaneous tumors and liver abnormalities, including steatosis, hepatitis, and hepatocellular carcinoma. We also found that FDXR was necessary for mitochondrial iron homeostasis and proper expression of several master regulators of iron metabolism, including iron regulatory protein 2 (IRP2). Surprisingly, we found that p53 mRNA translation was suppressed by FDXR deficiency via IRP2. Moreover, we found that the signal from FDXR to iron homeostasis and the p53 pathway was transduced by ferredoxin 2, a substrate of FDXR. Finally, we found that p53 played a role in iron homeostasis and was required for FDXR-mediated iron metabolism. Together, we conclude that FDXR and p53 are mutually regulated and that the FDXR–p53 loop is critical for tumor suppression via iron homeostasis.
Collapse
Affiliation(s)
- Yanhong Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California 95616, USA
| | - Yingjuan Qian
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California 95616, USA.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California 95616, USA
| | - Wensheng Yan
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California 95616, USA
| | - Yong-Sam Jung
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California 95616, USA.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Eric Huang
- Department of Pathology, School of Medicine, University of California at Davis Health, Sacramento, California 95817, USA
| | - Kent Lloyd
- Department of Surgery, School of Medicine, University of California at Davis Health, Sacramento, California 95817, USA
| | - Yuyou Duan
- Department of Dermatology and Internal Medicine, University of California at Davis Health, Sacramento, California 95616, USA
| | - Jian Wang
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201 USA
| | - Gang Liu
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
50
|
Omura T, Gotoh O. Evolutionary origin of mitochondrial cytochrome P450. J Biochem 2017; 161:399-407. [DOI: 10.1093/jb/mvx011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022] Open
|